Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / net / ethernet / smsc / smc91x.c
1 /*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4 *
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 *
24 * Arguments:
25 * io = for the base address
26 * irq = for the IRQ
27 * nowait = 0 for normal wait states, 1 eliminates additional wait states
28 *
29 * original author:
30 * Erik Stahlman <erik@vt.edu>
31 *
32 * hardware multicast code:
33 * Peter Cammaert <pc@denkart.be>
34 *
35 * contributors:
36 * Daris A Nevil <dnevil@snmc.com>
37 * Nicolas Pitre <nico@fluxnic.net>
38 * Russell King <rmk@arm.linux.org.uk>
39 *
40 * History:
41 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
42 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
43 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
44 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
45 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
46 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
47 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
48 * more bus abstraction, big cleanup, etc.
49 * 29/09/03 Russell King - add driver model support
50 * - ethtool support
51 * - convert to use generic MII interface
52 * - add link up/down notification
53 * - don't try to handle full negotiation in
54 * smc_phy_configure
55 * - clean up (and fix stack overrun) in PHY
56 * MII read/write functions
57 * 22/09/04 Nicolas Pitre big update (see commit log for details)
58 */
59 static const char version[] =
60 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
61
62 /* Debugging level */
63 #ifndef SMC_DEBUG
64 #define SMC_DEBUG 0
65 #endif
66
67
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/sched.h>
71 #include <linux/delay.h>
72 #include <linux/interrupt.h>
73 #include <linux/irq.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/crc32.h>
77 #include <linux/platform_device.h>
78 #include <linux/spinlock.h>
79 #include <linux/ethtool.h>
80 #include <linux/mii.h>
81 #include <linux/workqueue.h>
82 #include <linux/of.h>
83 #include <linux/of_device.h>
84 #include <linux/of_gpio.h>
85
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89
90 #include <asm/io.h>
91
92 #include "smc91x.h"
93
94 #if defined(CONFIG_ASSABET_NEPONSET)
95 #include <mach/assabet.h>
96 #include <mach/neponset.h>
97 #endif
98
99 #ifndef SMC_NOWAIT
100 # define SMC_NOWAIT 0
101 #endif
102 static int nowait = SMC_NOWAIT;
103 module_param(nowait, int, 0400);
104 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
105
106 /*
107 * Transmit timeout, default 5 seconds.
108 */
109 static int watchdog = 1000;
110 module_param(watchdog, int, 0400);
111 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
112
113 MODULE_LICENSE("GPL");
114 MODULE_ALIAS("platform:smc91x");
115
116 /*
117 * The internal workings of the driver. If you are changing anything
118 * here with the SMC stuff, you should have the datasheet and know
119 * what you are doing.
120 */
121 #define CARDNAME "smc91x"
122
123 /*
124 * Use power-down feature of the chip
125 */
126 #define POWER_DOWN 1
127
128 /*
129 * Wait time for memory to be free. This probably shouldn't be
130 * tuned that much, as waiting for this means nothing else happens
131 * in the system
132 */
133 #define MEMORY_WAIT_TIME 16
134
135 /*
136 * The maximum number of processing loops allowed for each call to the
137 * IRQ handler.
138 */
139 #define MAX_IRQ_LOOPS 8
140
141 /*
142 * This selects whether TX packets are sent one by one to the SMC91x internal
143 * memory and throttled until transmission completes. This may prevent
144 * RX overruns a litle by keeping much of the memory free for RX packets
145 * but to the expense of reduced TX throughput and increased IRQ overhead.
146 * Note this is not a cure for a too slow data bus or too high IRQ latency.
147 */
148 #define THROTTLE_TX_PKTS 0
149
150 /*
151 * The MII clock high/low times. 2x this number gives the MII clock period
152 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
153 */
154 #define MII_DELAY 1
155
156 #define DBG(n, dev, fmt, ...) \
157 do { \
158 if (SMC_DEBUG >= (n)) \
159 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
160 } while (0)
161
162 #define PRINTK(dev, fmt, ...) \
163 do { \
164 if (SMC_DEBUG > 0) \
165 netdev_info(dev, fmt, ##__VA_ARGS__); \
166 else \
167 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
168 } while (0)
169
170 #if SMC_DEBUG > 3
171 static void PRINT_PKT(u_char *buf, int length)
172 {
173 int i;
174 int remainder;
175 int lines;
176
177 lines = length / 16;
178 remainder = length % 16;
179
180 for (i = 0; i < lines ; i ++) {
181 int cur;
182 printk(KERN_DEBUG);
183 for (cur = 0; cur < 8; cur++) {
184 u_char a, b;
185 a = *buf++;
186 b = *buf++;
187 pr_cont("%02x%02x ", a, b);
188 }
189 pr_cont("\n");
190 }
191 printk(KERN_DEBUG);
192 for (i = 0; i < remainder/2 ; i++) {
193 u_char a, b;
194 a = *buf++;
195 b = *buf++;
196 pr_cont("%02x%02x ", a, b);
197 }
198 pr_cont("\n");
199 }
200 #else
201 static inline void PRINT_PKT(u_char *buf, int length) { }
202 #endif
203
204
205 /* this enables an interrupt in the interrupt mask register */
206 #define SMC_ENABLE_INT(lp, x) do { \
207 unsigned char mask; \
208 unsigned long smc_enable_flags; \
209 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
210 mask = SMC_GET_INT_MASK(lp); \
211 mask |= (x); \
212 SMC_SET_INT_MASK(lp, mask); \
213 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
214 } while (0)
215
216 /* this disables an interrupt from the interrupt mask register */
217 #define SMC_DISABLE_INT(lp, x) do { \
218 unsigned char mask; \
219 unsigned long smc_disable_flags; \
220 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
221 mask = SMC_GET_INT_MASK(lp); \
222 mask &= ~(x); \
223 SMC_SET_INT_MASK(lp, mask); \
224 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
225 } while (0)
226
227 /*
228 * Wait while MMU is busy. This is usually in the order of a few nanosecs
229 * if at all, but let's avoid deadlocking the system if the hardware
230 * decides to go south.
231 */
232 #define SMC_WAIT_MMU_BUSY(lp) do { \
233 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
234 unsigned long timeout = jiffies + 2; \
235 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
236 if (time_after(jiffies, timeout)) { \
237 netdev_dbg(dev, "timeout %s line %d\n", \
238 __FILE__, __LINE__); \
239 break; \
240 } \
241 cpu_relax(); \
242 } \
243 } \
244 } while (0)
245
246
247 /*
248 * this does a soft reset on the device
249 */
250 static void smc_reset(struct net_device *dev)
251 {
252 struct smc_local *lp = netdev_priv(dev);
253 void __iomem *ioaddr = lp->base;
254 unsigned int ctl, cfg;
255 struct sk_buff *pending_skb;
256
257 DBG(2, dev, "%s\n", __func__);
258
259 /* Disable all interrupts, block TX tasklet */
260 spin_lock_irq(&lp->lock);
261 SMC_SELECT_BANK(lp, 2);
262 SMC_SET_INT_MASK(lp, 0);
263 pending_skb = lp->pending_tx_skb;
264 lp->pending_tx_skb = NULL;
265 spin_unlock_irq(&lp->lock);
266
267 /* free any pending tx skb */
268 if (pending_skb) {
269 dev_kfree_skb(pending_skb);
270 dev->stats.tx_errors++;
271 dev->stats.tx_aborted_errors++;
272 }
273
274 /*
275 * This resets the registers mostly to defaults, but doesn't
276 * affect EEPROM. That seems unnecessary
277 */
278 SMC_SELECT_BANK(lp, 0);
279 SMC_SET_RCR(lp, RCR_SOFTRST);
280
281 /*
282 * Setup the Configuration Register
283 * This is necessary because the CONFIG_REG is not affected
284 * by a soft reset
285 */
286 SMC_SELECT_BANK(lp, 1);
287
288 cfg = CONFIG_DEFAULT;
289
290 /*
291 * Setup for fast accesses if requested. If the card/system
292 * can't handle it then there will be no recovery except for
293 * a hard reset or power cycle
294 */
295 if (lp->cfg.flags & SMC91X_NOWAIT)
296 cfg |= CONFIG_NO_WAIT;
297
298 /*
299 * Release from possible power-down state
300 * Configuration register is not affected by Soft Reset
301 */
302 cfg |= CONFIG_EPH_POWER_EN;
303
304 SMC_SET_CONFIG(lp, cfg);
305
306 /* this should pause enough for the chip to be happy */
307 /*
308 * elaborate? What does the chip _need_? --jgarzik
309 *
310 * This seems to be undocumented, but something the original
311 * driver(s) have always done. Suspect undocumented timing
312 * info/determined empirically. --rmk
313 */
314 udelay(1);
315
316 /* Disable transmit and receive functionality */
317 SMC_SELECT_BANK(lp, 0);
318 SMC_SET_RCR(lp, RCR_CLEAR);
319 SMC_SET_TCR(lp, TCR_CLEAR);
320
321 SMC_SELECT_BANK(lp, 1);
322 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
323
324 /*
325 * Set the control register to automatically release successfully
326 * transmitted packets, to make the best use out of our limited
327 * memory
328 */
329 if(!THROTTLE_TX_PKTS)
330 ctl |= CTL_AUTO_RELEASE;
331 else
332 ctl &= ~CTL_AUTO_RELEASE;
333 SMC_SET_CTL(lp, ctl);
334
335 /* Reset the MMU */
336 SMC_SELECT_BANK(lp, 2);
337 SMC_SET_MMU_CMD(lp, MC_RESET);
338 SMC_WAIT_MMU_BUSY(lp);
339 }
340
341 /*
342 * Enable Interrupts, Receive, and Transmit
343 */
344 static void smc_enable(struct net_device *dev)
345 {
346 struct smc_local *lp = netdev_priv(dev);
347 void __iomem *ioaddr = lp->base;
348 int mask;
349
350 DBG(2, dev, "%s\n", __func__);
351
352 /* see the header file for options in TCR/RCR DEFAULT */
353 SMC_SELECT_BANK(lp, 0);
354 SMC_SET_TCR(lp, lp->tcr_cur_mode);
355 SMC_SET_RCR(lp, lp->rcr_cur_mode);
356
357 SMC_SELECT_BANK(lp, 1);
358 SMC_SET_MAC_ADDR(lp, dev->dev_addr);
359
360 /* now, enable interrupts */
361 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
362 if (lp->version >= (CHIP_91100 << 4))
363 mask |= IM_MDINT;
364 SMC_SELECT_BANK(lp, 2);
365 SMC_SET_INT_MASK(lp, mask);
366
367 /*
368 * From this point the register bank must _NOT_ be switched away
369 * to something else than bank 2 without proper locking against
370 * races with any tasklet or interrupt handlers until smc_shutdown()
371 * or smc_reset() is called.
372 */
373 }
374
375 /*
376 * this puts the device in an inactive state
377 */
378 static void smc_shutdown(struct net_device *dev)
379 {
380 struct smc_local *lp = netdev_priv(dev);
381 void __iomem *ioaddr = lp->base;
382 struct sk_buff *pending_skb;
383
384 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
385
386 /* no more interrupts for me */
387 spin_lock_irq(&lp->lock);
388 SMC_SELECT_BANK(lp, 2);
389 SMC_SET_INT_MASK(lp, 0);
390 pending_skb = lp->pending_tx_skb;
391 lp->pending_tx_skb = NULL;
392 spin_unlock_irq(&lp->lock);
393 if (pending_skb)
394 dev_kfree_skb(pending_skb);
395
396 /* and tell the card to stay away from that nasty outside world */
397 SMC_SELECT_BANK(lp, 0);
398 SMC_SET_RCR(lp, RCR_CLEAR);
399 SMC_SET_TCR(lp, TCR_CLEAR);
400
401 #ifdef POWER_DOWN
402 /* finally, shut the chip down */
403 SMC_SELECT_BANK(lp, 1);
404 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
405 #endif
406 }
407
408 /*
409 * This is the procedure to handle the receipt of a packet.
410 */
411 static inline void smc_rcv(struct net_device *dev)
412 {
413 struct smc_local *lp = netdev_priv(dev);
414 void __iomem *ioaddr = lp->base;
415 unsigned int packet_number, status, packet_len;
416
417 DBG(3, dev, "%s\n", __func__);
418
419 packet_number = SMC_GET_RXFIFO(lp);
420 if (unlikely(packet_number & RXFIFO_REMPTY)) {
421 PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
422 return;
423 }
424
425 /* read from start of packet */
426 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
427
428 /* First two words are status and packet length */
429 SMC_GET_PKT_HDR(lp, status, packet_len);
430 packet_len &= 0x07ff; /* mask off top bits */
431 DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
432 packet_number, status, packet_len, packet_len);
433
434 back:
435 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
436 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
437 /* accept VLAN packets */
438 status &= ~RS_TOOLONG;
439 goto back;
440 }
441 if (packet_len < 6) {
442 /* bloody hardware */
443 netdev_err(dev, "fubar (rxlen %u status %x\n",
444 packet_len, status);
445 status |= RS_TOOSHORT;
446 }
447 SMC_WAIT_MMU_BUSY(lp);
448 SMC_SET_MMU_CMD(lp, MC_RELEASE);
449 dev->stats.rx_errors++;
450 if (status & RS_ALGNERR)
451 dev->stats.rx_frame_errors++;
452 if (status & (RS_TOOSHORT | RS_TOOLONG))
453 dev->stats.rx_length_errors++;
454 if (status & RS_BADCRC)
455 dev->stats.rx_crc_errors++;
456 } else {
457 struct sk_buff *skb;
458 unsigned char *data;
459 unsigned int data_len;
460
461 /* set multicast stats */
462 if (status & RS_MULTICAST)
463 dev->stats.multicast++;
464
465 /*
466 * Actual payload is packet_len - 6 (or 5 if odd byte).
467 * We want skb_reserve(2) and the final ctrl word
468 * (2 bytes, possibly containing the payload odd byte).
469 * Furthermore, we add 2 bytes to allow rounding up to
470 * multiple of 4 bytes on 32 bit buses.
471 * Hence packet_len - 6 + 2 + 2 + 2.
472 */
473 skb = netdev_alloc_skb(dev, packet_len);
474 if (unlikely(skb == NULL)) {
475 SMC_WAIT_MMU_BUSY(lp);
476 SMC_SET_MMU_CMD(lp, MC_RELEASE);
477 dev->stats.rx_dropped++;
478 return;
479 }
480
481 /* Align IP header to 32 bits */
482 skb_reserve(skb, 2);
483
484 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
485 if (lp->version == 0x90)
486 status |= RS_ODDFRAME;
487
488 /*
489 * If odd length: packet_len - 5,
490 * otherwise packet_len - 6.
491 * With the trailing ctrl byte it's packet_len - 4.
492 */
493 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
494 data = skb_put(skb, data_len);
495 SMC_PULL_DATA(lp, data, packet_len - 4);
496
497 SMC_WAIT_MMU_BUSY(lp);
498 SMC_SET_MMU_CMD(lp, MC_RELEASE);
499
500 PRINT_PKT(data, packet_len - 4);
501
502 skb->protocol = eth_type_trans(skb, dev);
503 netif_rx(skb);
504 dev->stats.rx_packets++;
505 dev->stats.rx_bytes += data_len;
506 }
507 }
508
509 #ifdef CONFIG_SMP
510 /*
511 * On SMP we have the following problem:
512 *
513 * A = smc_hardware_send_pkt()
514 * B = smc_hard_start_xmit()
515 * C = smc_interrupt()
516 *
517 * A and B can never be executed simultaneously. However, at least on UP,
518 * it is possible (and even desirable) for C to interrupt execution of
519 * A or B in order to have better RX reliability and avoid overruns.
520 * C, just like A and B, must have exclusive access to the chip and
521 * each of them must lock against any other concurrent access.
522 * Unfortunately this is not possible to have C suspend execution of A or
523 * B taking place on another CPU. On UP this is no an issue since A and B
524 * are run from softirq context and C from hard IRQ context, and there is
525 * no other CPU where concurrent access can happen.
526 * If ever there is a way to force at least B and C to always be executed
527 * on the same CPU then we could use read/write locks to protect against
528 * any other concurrent access and C would always interrupt B. But life
529 * isn't that easy in a SMP world...
530 */
531 #define smc_special_trylock(lock, flags) \
532 ({ \
533 int __ret; \
534 local_irq_save(flags); \
535 __ret = spin_trylock(lock); \
536 if (!__ret) \
537 local_irq_restore(flags); \
538 __ret; \
539 })
540 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
541 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
542 #else
543 #define smc_special_trylock(lock, flags) (flags == flags)
544 #define smc_special_lock(lock, flags) do { flags = 0; } while (0)
545 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
546 #endif
547
548 /*
549 * This is called to actually send a packet to the chip.
550 */
551 static void smc_hardware_send_pkt(unsigned long data)
552 {
553 struct net_device *dev = (struct net_device *)data;
554 struct smc_local *lp = netdev_priv(dev);
555 void __iomem *ioaddr = lp->base;
556 struct sk_buff *skb;
557 unsigned int packet_no, len;
558 unsigned char *buf;
559 unsigned long flags;
560
561 DBG(3, dev, "%s\n", __func__);
562
563 if (!smc_special_trylock(&lp->lock, flags)) {
564 netif_stop_queue(dev);
565 tasklet_schedule(&lp->tx_task);
566 return;
567 }
568
569 skb = lp->pending_tx_skb;
570 if (unlikely(!skb)) {
571 smc_special_unlock(&lp->lock, flags);
572 return;
573 }
574 lp->pending_tx_skb = NULL;
575
576 packet_no = SMC_GET_AR(lp);
577 if (unlikely(packet_no & AR_FAILED)) {
578 netdev_err(dev, "Memory allocation failed.\n");
579 dev->stats.tx_errors++;
580 dev->stats.tx_fifo_errors++;
581 smc_special_unlock(&lp->lock, flags);
582 goto done;
583 }
584
585 /* point to the beginning of the packet */
586 SMC_SET_PN(lp, packet_no);
587 SMC_SET_PTR(lp, PTR_AUTOINC);
588
589 buf = skb->data;
590 len = skb->len;
591 DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
592 packet_no, len, len, buf);
593 PRINT_PKT(buf, len);
594
595 /*
596 * Send the packet length (+6 for status words, length, and ctl.
597 * The card will pad to 64 bytes with zeroes if packet is too small.
598 */
599 SMC_PUT_PKT_HDR(lp, 0, len + 6);
600
601 /* send the actual data */
602 SMC_PUSH_DATA(lp, buf, len & ~1);
603
604 /* Send final ctl word with the last byte if there is one */
605 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
606
607 /*
608 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
609 * have the effect of having at most one packet queued for TX
610 * in the chip's memory at all time.
611 *
612 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
613 * when memory allocation (MC_ALLOC) does not succeed right away.
614 */
615 if (THROTTLE_TX_PKTS)
616 netif_stop_queue(dev);
617
618 /* queue the packet for TX */
619 SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
620 smc_special_unlock(&lp->lock, flags);
621
622 dev->trans_start = jiffies;
623 dev->stats.tx_packets++;
624 dev->stats.tx_bytes += len;
625
626 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
627
628 done: if (!THROTTLE_TX_PKTS)
629 netif_wake_queue(dev);
630
631 dev_consume_skb_any(skb);
632 }
633
634 /*
635 * Since I am not sure if I will have enough room in the chip's ram
636 * to store the packet, I call this routine which either sends it
637 * now, or set the card to generates an interrupt when ready
638 * for the packet.
639 */
640 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
641 {
642 struct smc_local *lp = netdev_priv(dev);
643 void __iomem *ioaddr = lp->base;
644 unsigned int numPages, poll_count, status;
645 unsigned long flags;
646
647 DBG(3, dev, "%s\n", __func__);
648
649 BUG_ON(lp->pending_tx_skb != NULL);
650
651 /*
652 * The MMU wants the number of pages to be the number of 256 bytes
653 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
654 *
655 * The 91C111 ignores the size bits, but earlier models don't.
656 *
657 * Pkt size for allocating is data length +6 (for additional status
658 * words, length and ctl)
659 *
660 * If odd size then last byte is included in ctl word.
661 */
662 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
663 if (unlikely(numPages > 7)) {
664 netdev_warn(dev, "Far too big packet error.\n");
665 dev->stats.tx_errors++;
666 dev->stats.tx_dropped++;
667 dev_kfree_skb_any(skb);
668 return NETDEV_TX_OK;
669 }
670
671 smc_special_lock(&lp->lock, flags);
672
673 /* now, try to allocate the memory */
674 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
675
676 /*
677 * Poll the chip for a short amount of time in case the
678 * allocation succeeds quickly.
679 */
680 poll_count = MEMORY_WAIT_TIME;
681 do {
682 status = SMC_GET_INT(lp);
683 if (status & IM_ALLOC_INT) {
684 SMC_ACK_INT(lp, IM_ALLOC_INT);
685 break;
686 }
687 } while (--poll_count);
688
689 smc_special_unlock(&lp->lock, flags);
690
691 lp->pending_tx_skb = skb;
692 if (!poll_count) {
693 /* oh well, wait until the chip finds memory later */
694 netif_stop_queue(dev);
695 DBG(2, dev, "TX memory allocation deferred.\n");
696 SMC_ENABLE_INT(lp, IM_ALLOC_INT);
697 } else {
698 /*
699 * Allocation succeeded: push packet to the chip's own memory
700 * immediately.
701 */
702 smc_hardware_send_pkt((unsigned long)dev);
703 }
704
705 return NETDEV_TX_OK;
706 }
707
708 /*
709 * This handles a TX interrupt, which is only called when:
710 * - a TX error occurred, or
711 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
712 */
713 static void smc_tx(struct net_device *dev)
714 {
715 struct smc_local *lp = netdev_priv(dev);
716 void __iomem *ioaddr = lp->base;
717 unsigned int saved_packet, packet_no, tx_status, pkt_len;
718
719 DBG(3, dev, "%s\n", __func__);
720
721 /* If the TX FIFO is empty then nothing to do */
722 packet_no = SMC_GET_TXFIFO(lp);
723 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
724 PRINTK(dev, "smc_tx with nothing on FIFO.\n");
725 return;
726 }
727
728 /* select packet to read from */
729 saved_packet = SMC_GET_PN(lp);
730 SMC_SET_PN(lp, packet_no);
731
732 /* read the first word (status word) from this packet */
733 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
734 SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
735 DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
736 tx_status, packet_no);
737
738 if (!(tx_status & ES_TX_SUC))
739 dev->stats.tx_errors++;
740
741 if (tx_status & ES_LOSTCARR)
742 dev->stats.tx_carrier_errors++;
743
744 if (tx_status & (ES_LATCOL | ES_16COL)) {
745 PRINTK(dev, "%s occurred on last xmit\n",
746 (tx_status & ES_LATCOL) ?
747 "late collision" : "too many collisions");
748 dev->stats.tx_window_errors++;
749 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
750 netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
751 }
752 }
753
754 /* kill the packet */
755 SMC_WAIT_MMU_BUSY(lp);
756 SMC_SET_MMU_CMD(lp, MC_FREEPKT);
757
758 /* Don't restore Packet Number Reg until busy bit is cleared */
759 SMC_WAIT_MMU_BUSY(lp);
760 SMC_SET_PN(lp, saved_packet);
761
762 /* re-enable transmit */
763 SMC_SELECT_BANK(lp, 0);
764 SMC_SET_TCR(lp, lp->tcr_cur_mode);
765 SMC_SELECT_BANK(lp, 2);
766 }
767
768
769 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
770
771 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
772 {
773 struct smc_local *lp = netdev_priv(dev);
774 void __iomem *ioaddr = lp->base;
775 unsigned int mii_reg, mask;
776
777 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
778 mii_reg |= MII_MDOE;
779
780 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
781 if (val & mask)
782 mii_reg |= MII_MDO;
783 else
784 mii_reg &= ~MII_MDO;
785
786 SMC_SET_MII(lp, mii_reg);
787 udelay(MII_DELAY);
788 SMC_SET_MII(lp, mii_reg | MII_MCLK);
789 udelay(MII_DELAY);
790 }
791 }
792
793 static unsigned int smc_mii_in(struct net_device *dev, int bits)
794 {
795 struct smc_local *lp = netdev_priv(dev);
796 void __iomem *ioaddr = lp->base;
797 unsigned int mii_reg, mask, val;
798
799 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
800 SMC_SET_MII(lp, mii_reg);
801
802 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
803 if (SMC_GET_MII(lp) & MII_MDI)
804 val |= mask;
805
806 SMC_SET_MII(lp, mii_reg);
807 udelay(MII_DELAY);
808 SMC_SET_MII(lp, mii_reg | MII_MCLK);
809 udelay(MII_DELAY);
810 }
811
812 return val;
813 }
814
815 /*
816 * Reads a register from the MII Management serial interface
817 */
818 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
819 {
820 struct smc_local *lp = netdev_priv(dev);
821 void __iomem *ioaddr = lp->base;
822 unsigned int phydata;
823
824 SMC_SELECT_BANK(lp, 3);
825
826 /* Idle - 32 ones */
827 smc_mii_out(dev, 0xffffffff, 32);
828
829 /* Start code (01) + read (10) + phyaddr + phyreg */
830 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
831
832 /* Turnaround (2bits) + phydata */
833 phydata = smc_mii_in(dev, 18);
834
835 /* Return to idle state */
836 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
837
838 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
839 __func__, phyaddr, phyreg, phydata);
840
841 SMC_SELECT_BANK(lp, 2);
842 return phydata;
843 }
844
845 /*
846 * Writes a register to the MII Management serial interface
847 */
848 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
849 int phydata)
850 {
851 struct smc_local *lp = netdev_priv(dev);
852 void __iomem *ioaddr = lp->base;
853
854 SMC_SELECT_BANK(lp, 3);
855
856 /* Idle - 32 ones */
857 smc_mii_out(dev, 0xffffffff, 32);
858
859 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
860 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
861
862 /* Return to idle state */
863 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
864
865 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
866 __func__, phyaddr, phyreg, phydata);
867
868 SMC_SELECT_BANK(lp, 2);
869 }
870
871 /*
872 * Finds and reports the PHY address
873 */
874 static void smc_phy_detect(struct net_device *dev)
875 {
876 struct smc_local *lp = netdev_priv(dev);
877 int phyaddr;
878
879 DBG(2, dev, "%s\n", __func__);
880
881 lp->phy_type = 0;
882
883 /*
884 * Scan all 32 PHY addresses if necessary, starting at
885 * PHY#1 to PHY#31, and then PHY#0 last.
886 */
887 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
888 unsigned int id1, id2;
889
890 /* Read the PHY identifiers */
891 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
892 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
893
894 DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
895 id1, id2);
896
897 /* Make sure it is a valid identifier */
898 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
899 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
900 /* Save the PHY's address */
901 lp->mii.phy_id = phyaddr & 31;
902 lp->phy_type = id1 << 16 | id2;
903 break;
904 }
905 }
906 }
907
908 /*
909 * Sets the PHY to a configuration as determined by the user
910 */
911 static int smc_phy_fixed(struct net_device *dev)
912 {
913 struct smc_local *lp = netdev_priv(dev);
914 void __iomem *ioaddr = lp->base;
915 int phyaddr = lp->mii.phy_id;
916 int bmcr, cfg1;
917
918 DBG(3, dev, "%s\n", __func__);
919
920 /* Enter Link Disable state */
921 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
922 cfg1 |= PHY_CFG1_LNKDIS;
923 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
924
925 /*
926 * Set our fixed capabilities
927 * Disable auto-negotiation
928 */
929 bmcr = 0;
930
931 if (lp->ctl_rfduplx)
932 bmcr |= BMCR_FULLDPLX;
933
934 if (lp->ctl_rspeed == 100)
935 bmcr |= BMCR_SPEED100;
936
937 /* Write our capabilities to the phy control register */
938 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
939
940 /* Re-Configure the Receive/Phy Control register */
941 SMC_SELECT_BANK(lp, 0);
942 SMC_SET_RPC(lp, lp->rpc_cur_mode);
943 SMC_SELECT_BANK(lp, 2);
944
945 return 1;
946 }
947
948 /**
949 * smc_phy_reset - reset the phy
950 * @dev: net device
951 * @phy: phy address
952 *
953 * Issue a software reset for the specified PHY and
954 * wait up to 100ms for the reset to complete. We should
955 * not access the PHY for 50ms after issuing the reset.
956 *
957 * The time to wait appears to be dependent on the PHY.
958 *
959 * Must be called with lp->lock locked.
960 */
961 static int smc_phy_reset(struct net_device *dev, int phy)
962 {
963 struct smc_local *lp = netdev_priv(dev);
964 unsigned int bmcr;
965 int timeout;
966
967 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
968
969 for (timeout = 2; timeout; timeout--) {
970 spin_unlock_irq(&lp->lock);
971 msleep(50);
972 spin_lock_irq(&lp->lock);
973
974 bmcr = smc_phy_read(dev, phy, MII_BMCR);
975 if (!(bmcr & BMCR_RESET))
976 break;
977 }
978
979 return bmcr & BMCR_RESET;
980 }
981
982 /**
983 * smc_phy_powerdown - powerdown phy
984 * @dev: net device
985 *
986 * Power down the specified PHY
987 */
988 static void smc_phy_powerdown(struct net_device *dev)
989 {
990 struct smc_local *lp = netdev_priv(dev);
991 unsigned int bmcr;
992 int phy = lp->mii.phy_id;
993
994 if (lp->phy_type == 0)
995 return;
996
997 /* We need to ensure that no calls to smc_phy_configure are
998 pending.
999 */
1000 cancel_work_sync(&lp->phy_configure);
1001
1002 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1003 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1004 }
1005
1006 /**
1007 * smc_phy_check_media - check the media status and adjust TCR
1008 * @dev: net device
1009 * @init: set true for initialisation
1010 *
1011 * Select duplex mode depending on negotiation state. This
1012 * also updates our carrier state.
1013 */
1014 static void smc_phy_check_media(struct net_device *dev, int init)
1015 {
1016 struct smc_local *lp = netdev_priv(dev);
1017 void __iomem *ioaddr = lp->base;
1018
1019 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1020 /* duplex state has changed */
1021 if (lp->mii.full_duplex) {
1022 lp->tcr_cur_mode |= TCR_SWFDUP;
1023 } else {
1024 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1025 }
1026
1027 SMC_SELECT_BANK(lp, 0);
1028 SMC_SET_TCR(lp, lp->tcr_cur_mode);
1029 }
1030 }
1031
1032 /*
1033 * Configures the specified PHY through the MII management interface
1034 * using Autonegotiation.
1035 * Calls smc_phy_fixed() if the user has requested a certain config.
1036 * If RPC ANEG bit is set, the media selection is dependent purely on
1037 * the selection by the MII (either in the MII BMCR reg or the result
1038 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1039 * is controlled by the RPC SPEED and RPC DPLX bits.
1040 */
1041 static void smc_phy_configure(struct work_struct *work)
1042 {
1043 struct smc_local *lp =
1044 container_of(work, struct smc_local, phy_configure);
1045 struct net_device *dev = lp->dev;
1046 void __iomem *ioaddr = lp->base;
1047 int phyaddr = lp->mii.phy_id;
1048 int my_phy_caps; /* My PHY capabilities */
1049 int my_ad_caps; /* My Advertised capabilities */
1050 int status;
1051
1052 DBG(3, dev, "smc_program_phy()\n");
1053
1054 spin_lock_irq(&lp->lock);
1055
1056 /*
1057 * We should not be called if phy_type is zero.
1058 */
1059 if (lp->phy_type == 0)
1060 goto smc_phy_configure_exit;
1061
1062 if (smc_phy_reset(dev, phyaddr)) {
1063 netdev_info(dev, "PHY reset timed out\n");
1064 goto smc_phy_configure_exit;
1065 }
1066
1067 /*
1068 * Enable PHY Interrupts (for register 18)
1069 * Interrupts listed here are disabled
1070 */
1071 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1072 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1073 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1074 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1075
1076 /* Configure the Receive/Phy Control register */
1077 SMC_SELECT_BANK(lp, 0);
1078 SMC_SET_RPC(lp, lp->rpc_cur_mode);
1079
1080 /* If the user requested no auto neg, then go set his request */
1081 if (lp->mii.force_media) {
1082 smc_phy_fixed(dev);
1083 goto smc_phy_configure_exit;
1084 }
1085
1086 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1087 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1088
1089 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1090 netdev_info(dev, "Auto negotiation NOT supported\n");
1091 smc_phy_fixed(dev);
1092 goto smc_phy_configure_exit;
1093 }
1094
1095 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1096
1097 if (my_phy_caps & BMSR_100BASE4)
1098 my_ad_caps |= ADVERTISE_100BASE4;
1099 if (my_phy_caps & BMSR_100FULL)
1100 my_ad_caps |= ADVERTISE_100FULL;
1101 if (my_phy_caps & BMSR_100HALF)
1102 my_ad_caps |= ADVERTISE_100HALF;
1103 if (my_phy_caps & BMSR_10FULL)
1104 my_ad_caps |= ADVERTISE_10FULL;
1105 if (my_phy_caps & BMSR_10HALF)
1106 my_ad_caps |= ADVERTISE_10HALF;
1107
1108 /* Disable capabilities not selected by our user */
1109 if (lp->ctl_rspeed != 100)
1110 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1111
1112 if (!lp->ctl_rfduplx)
1113 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1114
1115 /* Update our Auto-Neg Advertisement Register */
1116 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1117 lp->mii.advertising = my_ad_caps;
1118
1119 /*
1120 * Read the register back. Without this, it appears that when
1121 * auto-negotiation is restarted, sometimes it isn't ready and
1122 * the link does not come up.
1123 */
1124 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1125
1126 DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1127 DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1128
1129 /* Restart auto-negotiation process in order to advertise my caps */
1130 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1131
1132 smc_phy_check_media(dev, 1);
1133
1134 smc_phy_configure_exit:
1135 SMC_SELECT_BANK(lp, 2);
1136 spin_unlock_irq(&lp->lock);
1137 }
1138
1139 /*
1140 * smc_phy_interrupt
1141 *
1142 * Purpose: Handle interrupts relating to PHY register 18. This is
1143 * called from the "hard" interrupt handler under our private spinlock.
1144 */
1145 static void smc_phy_interrupt(struct net_device *dev)
1146 {
1147 struct smc_local *lp = netdev_priv(dev);
1148 int phyaddr = lp->mii.phy_id;
1149 int phy18;
1150
1151 DBG(2, dev, "%s\n", __func__);
1152
1153 if (lp->phy_type == 0)
1154 return;
1155
1156 for(;;) {
1157 smc_phy_check_media(dev, 0);
1158
1159 /* Read PHY Register 18, Status Output */
1160 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1161 if ((phy18 & PHY_INT_INT) == 0)
1162 break;
1163 }
1164 }
1165
1166 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1167
1168 static void smc_10bt_check_media(struct net_device *dev, int init)
1169 {
1170 struct smc_local *lp = netdev_priv(dev);
1171 void __iomem *ioaddr = lp->base;
1172 unsigned int old_carrier, new_carrier;
1173
1174 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1175
1176 SMC_SELECT_BANK(lp, 0);
1177 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1178 SMC_SELECT_BANK(lp, 2);
1179
1180 if (init || (old_carrier != new_carrier)) {
1181 if (!new_carrier) {
1182 netif_carrier_off(dev);
1183 } else {
1184 netif_carrier_on(dev);
1185 }
1186 if (netif_msg_link(lp))
1187 netdev_info(dev, "link %s\n",
1188 new_carrier ? "up" : "down");
1189 }
1190 }
1191
1192 static void smc_eph_interrupt(struct net_device *dev)
1193 {
1194 struct smc_local *lp = netdev_priv(dev);
1195 void __iomem *ioaddr = lp->base;
1196 unsigned int ctl;
1197
1198 smc_10bt_check_media(dev, 0);
1199
1200 SMC_SELECT_BANK(lp, 1);
1201 ctl = SMC_GET_CTL(lp);
1202 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1203 SMC_SET_CTL(lp, ctl);
1204 SMC_SELECT_BANK(lp, 2);
1205 }
1206
1207 /*
1208 * This is the main routine of the driver, to handle the device when
1209 * it needs some attention.
1210 */
1211 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1212 {
1213 struct net_device *dev = dev_id;
1214 struct smc_local *lp = netdev_priv(dev);
1215 void __iomem *ioaddr = lp->base;
1216 int status, mask, timeout, card_stats;
1217 int saved_pointer;
1218
1219 DBG(3, dev, "%s\n", __func__);
1220
1221 spin_lock(&lp->lock);
1222
1223 /* A preamble may be used when there is a potential race
1224 * between the interruptible transmit functions and this
1225 * ISR. */
1226 SMC_INTERRUPT_PREAMBLE;
1227
1228 saved_pointer = SMC_GET_PTR(lp);
1229 mask = SMC_GET_INT_MASK(lp);
1230 SMC_SET_INT_MASK(lp, 0);
1231
1232 /* set a timeout value, so I don't stay here forever */
1233 timeout = MAX_IRQ_LOOPS;
1234
1235 do {
1236 status = SMC_GET_INT(lp);
1237
1238 DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1239 status, mask,
1240 ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1241 meminfo = SMC_GET_MIR(lp);
1242 SMC_SELECT_BANK(lp, 2); meminfo; }),
1243 SMC_GET_FIFO(lp));
1244
1245 status &= mask;
1246 if (!status)
1247 break;
1248
1249 if (status & IM_TX_INT) {
1250 /* do this before RX as it will free memory quickly */
1251 DBG(3, dev, "TX int\n");
1252 smc_tx(dev);
1253 SMC_ACK_INT(lp, IM_TX_INT);
1254 if (THROTTLE_TX_PKTS)
1255 netif_wake_queue(dev);
1256 } else if (status & IM_RCV_INT) {
1257 DBG(3, dev, "RX irq\n");
1258 smc_rcv(dev);
1259 } else if (status & IM_ALLOC_INT) {
1260 DBG(3, dev, "Allocation irq\n");
1261 tasklet_hi_schedule(&lp->tx_task);
1262 mask &= ~IM_ALLOC_INT;
1263 } else if (status & IM_TX_EMPTY_INT) {
1264 DBG(3, dev, "TX empty\n");
1265 mask &= ~IM_TX_EMPTY_INT;
1266
1267 /* update stats */
1268 SMC_SELECT_BANK(lp, 0);
1269 card_stats = SMC_GET_COUNTER(lp);
1270 SMC_SELECT_BANK(lp, 2);
1271
1272 /* single collisions */
1273 dev->stats.collisions += card_stats & 0xF;
1274 card_stats >>= 4;
1275
1276 /* multiple collisions */
1277 dev->stats.collisions += card_stats & 0xF;
1278 } else if (status & IM_RX_OVRN_INT) {
1279 DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1280 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1281 eph_st = SMC_GET_EPH_STATUS(lp);
1282 SMC_SELECT_BANK(lp, 2); eph_st; }));
1283 SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1284 dev->stats.rx_errors++;
1285 dev->stats.rx_fifo_errors++;
1286 } else if (status & IM_EPH_INT) {
1287 smc_eph_interrupt(dev);
1288 } else if (status & IM_MDINT) {
1289 SMC_ACK_INT(lp, IM_MDINT);
1290 smc_phy_interrupt(dev);
1291 } else if (status & IM_ERCV_INT) {
1292 SMC_ACK_INT(lp, IM_ERCV_INT);
1293 PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1294 }
1295 } while (--timeout);
1296
1297 /* restore register states */
1298 SMC_SET_PTR(lp, saved_pointer);
1299 SMC_SET_INT_MASK(lp, mask);
1300 spin_unlock(&lp->lock);
1301
1302 #ifndef CONFIG_NET_POLL_CONTROLLER
1303 if (timeout == MAX_IRQ_LOOPS)
1304 PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1305 mask);
1306 #endif
1307 DBG(3, dev, "Interrupt done (%d loops)\n",
1308 MAX_IRQ_LOOPS - timeout);
1309
1310 /*
1311 * We return IRQ_HANDLED unconditionally here even if there was
1312 * nothing to do. There is a possibility that a packet might
1313 * get enqueued into the chip right after TX_EMPTY_INT is raised
1314 * but just before the CPU acknowledges the IRQ.
1315 * Better take an unneeded IRQ in some occasions than complexifying
1316 * the code for all cases.
1317 */
1318 return IRQ_HANDLED;
1319 }
1320
1321 #ifdef CONFIG_NET_POLL_CONTROLLER
1322 /*
1323 * Polling receive - used by netconsole and other diagnostic tools
1324 * to allow network i/o with interrupts disabled.
1325 */
1326 static void smc_poll_controller(struct net_device *dev)
1327 {
1328 disable_irq(dev->irq);
1329 smc_interrupt(dev->irq, dev);
1330 enable_irq(dev->irq);
1331 }
1332 #endif
1333
1334 /* Our watchdog timed out. Called by the networking layer */
1335 static void smc_timeout(struct net_device *dev)
1336 {
1337 struct smc_local *lp = netdev_priv(dev);
1338 void __iomem *ioaddr = lp->base;
1339 int status, mask, eph_st, meminfo, fifo;
1340
1341 DBG(2, dev, "%s\n", __func__);
1342
1343 spin_lock_irq(&lp->lock);
1344 status = SMC_GET_INT(lp);
1345 mask = SMC_GET_INT_MASK(lp);
1346 fifo = SMC_GET_FIFO(lp);
1347 SMC_SELECT_BANK(lp, 0);
1348 eph_st = SMC_GET_EPH_STATUS(lp);
1349 meminfo = SMC_GET_MIR(lp);
1350 SMC_SELECT_BANK(lp, 2);
1351 spin_unlock_irq(&lp->lock);
1352 PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1353 status, mask, meminfo, fifo, eph_st);
1354
1355 smc_reset(dev);
1356 smc_enable(dev);
1357
1358 /*
1359 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1360 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1361 * which calls schedule(). Hence we use a work queue.
1362 */
1363 if (lp->phy_type != 0)
1364 schedule_work(&lp->phy_configure);
1365
1366 /* We can accept TX packets again */
1367 dev->trans_start = jiffies; /* prevent tx timeout */
1368 netif_wake_queue(dev);
1369 }
1370
1371 /*
1372 * This routine will, depending on the values passed to it,
1373 * either make it accept multicast packets, go into
1374 * promiscuous mode (for TCPDUMP and cousins) or accept
1375 * a select set of multicast packets
1376 */
1377 static void smc_set_multicast_list(struct net_device *dev)
1378 {
1379 struct smc_local *lp = netdev_priv(dev);
1380 void __iomem *ioaddr = lp->base;
1381 unsigned char multicast_table[8];
1382 int update_multicast = 0;
1383
1384 DBG(2, dev, "%s\n", __func__);
1385
1386 if (dev->flags & IFF_PROMISC) {
1387 DBG(2, dev, "RCR_PRMS\n");
1388 lp->rcr_cur_mode |= RCR_PRMS;
1389 }
1390
1391 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1392 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1393 when promiscuous mode is turned on.
1394 */
1395
1396 /*
1397 * Here, I am setting this to accept all multicast packets.
1398 * I don't need to zero the multicast table, because the flag is
1399 * checked before the table is
1400 */
1401 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1402 DBG(2, dev, "RCR_ALMUL\n");
1403 lp->rcr_cur_mode |= RCR_ALMUL;
1404 }
1405
1406 /*
1407 * This sets the internal hardware table to filter out unwanted
1408 * multicast packets before they take up memory.
1409 *
1410 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1411 * address are the offset into the table. If that bit is 1, then the
1412 * multicast packet is accepted. Otherwise, it's dropped silently.
1413 *
1414 * To use the 6 bits as an offset into the table, the high 3 bits are
1415 * the number of the 8 bit register, while the low 3 bits are the bit
1416 * within that register.
1417 */
1418 else if (!netdev_mc_empty(dev)) {
1419 struct netdev_hw_addr *ha;
1420
1421 /* table for flipping the order of 3 bits */
1422 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1423
1424 /* start with a table of all zeros: reject all */
1425 memset(multicast_table, 0, sizeof(multicast_table));
1426
1427 netdev_for_each_mc_addr(ha, dev) {
1428 int position;
1429
1430 /* only use the low order bits */
1431 position = crc32_le(~0, ha->addr, 6) & 0x3f;
1432
1433 /* do some messy swapping to put the bit in the right spot */
1434 multicast_table[invert3[position&7]] |=
1435 (1<<invert3[(position>>3)&7]);
1436 }
1437
1438 /* be sure I get rid of flags I might have set */
1439 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1440
1441 /* now, the table can be loaded into the chipset */
1442 update_multicast = 1;
1443 } else {
1444 DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1445 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1446
1447 /*
1448 * since I'm disabling all multicast entirely, I need to
1449 * clear the multicast list
1450 */
1451 memset(multicast_table, 0, sizeof(multicast_table));
1452 update_multicast = 1;
1453 }
1454
1455 spin_lock_irq(&lp->lock);
1456 SMC_SELECT_BANK(lp, 0);
1457 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1458 if (update_multicast) {
1459 SMC_SELECT_BANK(lp, 3);
1460 SMC_SET_MCAST(lp, multicast_table);
1461 }
1462 SMC_SELECT_BANK(lp, 2);
1463 spin_unlock_irq(&lp->lock);
1464 }
1465
1466
1467 /*
1468 * Open and Initialize the board
1469 *
1470 * Set up everything, reset the card, etc..
1471 */
1472 static int
1473 smc_open(struct net_device *dev)
1474 {
1475 struct smc_local *lp = netdev_priv(dev);
1476
1477 DBG(2, dev, "%s\n", __func__);
1478
1479 /* Setup the default Register Modes */
1480 lp->tcr_cur_mode = TCR_DEFAULT;
1481 lp->rcr_cur_mode = RCR_DEFAULT;
1482 lp->rpc_cur_mode = RPC_DEFAULT |
1483 lp->cfg.leda << RPC_LSXA_SHFT |
1484 lp->cfg.ledb << RPC_LSXB_SHFT;
1485
1486 /*
1487 * If we are not using a MII interface, we need to
1488 * monitor our own carrier signal to detect faults.
1489 */
1490 if (lp->phy_type == 0)
1491 lp->tcr_cur_mode |= TCR_MON_CSN;
1492
1493 /* reset the hardware */
1494 smc_reset(dev);
1495 smc_enable(dev);
1496
1497 /* Configure the PHY, initialize the link state */
1498 if (lp->phy_type != 0)
1499 smc_phy_configure(&lp->phy_configure);
1500 else {
1501 spin_lock_irq(&lp->lock);
1502 smc_10bt_check_media(dev, 1);
1503 spin_unlock_irq(&lp->lock);
1504 }
1505
1506 netif_start_queue(dev);
1507 return 0;
1508 }
1509
1510 /*
1511 * smc_close
1512 *
1513 * this makes the board clean up everything that it can
1514 * and not talk to the outside world. Caused by
1515 * an 'ifconfig ethX down'
1516 */
1517 static int smc_close(struct net_device *dev)
1518 {
1519 struct smc_local *lp = netdev_priv(dev);
1520
1521 DBG(2, dev, "%s\n", __func__);
1522
1523 netif_stop_queue(dev);
1524 netif_carrier_off(dev);
1525
1526 /* clear everything */
1527 smc_shutdown(dev);
1528 tasklet_kill(&lp->tx_task);
1529 smc_phy_powerdown(dev);
1530 return 0;
1531 }
1532
1533 /*
1534 * Ethtool support
1535 */
1536 static int
1537 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1538 {
1539 struct smc_local *lp = netdev_priv(dev);
1540 int ret;
1541
1542 cmd->maxtxpkt = 1;
1543 cmd->maxrxpkt = 1;
1544
1545 if (lp->phy_type != 0) {
1546 spin_lock_irq(&lp->lock);
1547 ret = mii_ethtool_gset(&lp->mii, cmd);
1548 spin_unlock_irq(&lp->lock);
1549 } else {
1550 cmd->supported = SUPPORTED_10baseT_Half |
1551 SUPPORTED_10baseT_Full |
1552 SUPPORTED_TP | SUPPORTED_AUI;
1553
1554 if (lp->ctl_rspeed == 10)
1555 ethtool_cmd_speed_set(cmd, SPEED_10);
1556 else if (lp->ctl_rspeed == 100)
1557 ethtool_cmd_speed_set(cmd, SPEED_100);
1558
1559 cmd->autoneg = AUTONEG_DISABLE;
1560 cmd->transceiver = XCVR_INTERNAL;
1561 cmd->port = 0;
1562 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1563
1564 ret = 0;
1565 }
1566
1567 return ret;
1568 }
1569
1570 static int
1571 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1572 {
1573 struct smc_local *lp = netdev_priv(dev);
1574 int ret;
1575
1576 if (lp->phy_type != 0) {
1577 spin_lock_irq(&lp->lock);
1578 ret = mii_ethtool_sset(&lp->mii, cmd);
1579 spin_unlock_irq(&lp->lock);
1580 } else {
1581 if (cmd->autoneg != AUTONEG_DISABLE ||
1582 cmd->speed != SPEED_10 ||
1583 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1584 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1585 return -EINVAL;
1586
1587 // lp->port = cmd->port;
1588 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1589
1590 // if (netif_running(dev))
1591 // smc_set_port(dev);
1592
1593 ret = 0;
1594 }
1595
1596 return ret;
1597 }
1598
1599 static void
1600 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1601 {
1602 strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1603 strlcpy(info->version, version, sizeof(info->version));
1604 strlcpy(info->bus_info, dev_name(dev->dev.parent),
1605 sizeof(info->bus_info));
1606 }
1607
1608 static int smc_ethtool_nwayreset(struct net_device *dev)
1609 {
1610 struct smc_local *lp = netdev_priv(dev);
1611 int ret = -EINVAL;
1612
1613 if (lp->phy_type != 0) {
1614 spin_lock_irq(&lp->lock);
1615 ret = mii_nway_restart(&lp->mii);
1616 spin_unlock_irq(&lp->lock);
1617 }
1618
1619 return ret;
1620 }
1621
1622 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1623 {
1624 struct smc_local *lp = netdev_priv(dev);
1625 return lp->msg_enable;
1626 }
1627
1628 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1629 {
1630 struct smc_local *lp = netdev_priv(dev);
1631 lp->msg_enable = level;
1632 }
1633
1634 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1635 {
1636 u16 ctl;
1637 struct smc_local *lp = netdev_priv(dev);
1638 void __iomem *ioaddr = lp->base;
1639
1640 spin_lock_irq(&lp->lock);
1641 /* load word into GP register */
1642 SMC_SELECT_BANK(lp, 1);
1643 SMC_SET_GP(lp, word);
1644 /* set the address to put the data in EEPROM */
1645 SMC_SELECT_BANK(lp, 2);
1646 SMC_SET_PTR(lp, addr);
1647 /* tell it to write */
1648 SMC_SELECT_BANK(lp, 1);
1649 ctl = SMC_GET_CTL(lp);
1650 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1651 /* wait for it to finish */
1652 do {
1653 udelay(1);
1654 } while (SMC_GET_CTL(lp) & CTL_STORE);
1655 /* clean up */
1656 SMC_SET_CTL(lp, ctl);
1657 SMC_SELECT_BANK(lp, 2);
1658 spin_unlock_irq(&lp->lock);
1659 return 0;
1660 }
1661
1662 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1663 {
1664 u16 ctl;
1665 struct smc_local *lp = netdev_priv(dev);
1666 void __iomem *ioaddr = lp->base;
1667
1668 spin_lock_irq(&lp->lock);
1669 /* set the EEPROM address to get the data from */
1670 SMC_SELECT_BANK(lp, 2);
1671 SMC_SET_PTR(lp, addr | PTR_READ);
1672 /* tell it to load */
1673 SMC_SELECT_BANK(lp, 1);
1674 SMC_SET_GP(lp, 0xffff); /* init to known */
1675 ctl = SMC_GET_CTL(lp);
1676 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1677 /* wait for it to finish */
1678 do {
1679 udelay(1);
1680 } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1681 /* read word from GP register */
1682 *word = SMC_GET_GP(lp);
1683 /* clean up */
1684 SMC_SET_CTL(lp, ctl);
1685 SMC_SELECT_BANK(lp, 2);
1686 spin_unlock_irq(&lp->lock);
1687 return 0;
1688 }
1689
1690 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1691 {
1692 return 0x23 * 2;
1693 }
1694
1695 static int smc_ethtool_geteeprom(struct net_device *dev,
1696 struct ethtool_eeprom *eeprom, u8 *data)
1697 {
1698 int i;
1699 int imax;
1700
1701 DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1702 eeprom->len, eeprom->offset, eeprom->offset);
1703 imax = smc_ethtool_geteeprom_len(dev);
1704 for (i = 0; i < eeprom->len; i += 2) {
1705 int ret;
1706 u16 wbuf;
1707 int offset = i + eeprom->offset;
1708 if (offset > imax)
1709 break;
1710 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1711 if (ret != 0)
1712 return ret;
1713 DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1714 data[i] = (wbuf >> 8) & 0xff;
1715 data[i+1] = wbuf & 0xff;
1716 }
1717 return 0;
1718 }
1719
1720 static int smc_ethtool_seteeprom(struct net_device *dev,
1721 struct ethtool_eeprom *eeprom, u8 *data)
1722 {
1723 int i;
1724 int imax;
1725
1726 DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1727 eeprom->len, eeprom->offset, eeprom->offset);
1728 imax = smc_ethtool_geteeprom_len(dev);
1729 for (i = 0; i < eeprom->len; i += 2) {
1730 int ret;
1731 u16 wbuf;
1732 int offset = i + eeprom->offset;
1733 if (offset > imax)
1734 break;
1735 wbuf = (data[i] << 8) | data[i + 1];
1736 DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1737 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1738 if (ret != 0)
1739 return ret;
1740 }
1741 return 0;
1742 }
1743
1744
1745 static const struct ethtool_ops smc_ethtool_ops = {
1746 .get_settings = smc_ethtool_getsettings,
1747 .set_settings = smc_ethtool_setsettings,
1748 .get_drvinfo = smc_ethtool_getdrvinfo,
1749
1750 .get_msglevel = smc_ethtool_getmsglevel,
1751 .set_msglevel = smc_ethtool_setmsglevel,
1752 .nway_reset = smc_ethtool_nwayreset,
1753 .get_link = ethtool_op_get_link,
1754 .get_eeprom_len = smc_ethtool_geteeprom_len,
1755 .get_eeprom = smc_ethtool_geteeprom,
1756 .set_eeprom = smc_ethtool_seteeprom,
1757 };
1758
1759 static const struct net_device_ops smc_netdev_ops = {
1760 .ndo_open = smc_open,
1761 .ndo_stop = smc_close,
1762 .ndo_start_xmit = smc_hard_start_xmit,
1763 .ndo_tx_timeout = smc_timeout,
1764 .ndo_set_rx_mode = smc_set_multicast_list,
1765 .ndo_change_mtu = eth_change_mtu,
1766 .ndo_validate_addr = eth_validate_addr,
1767 .ndo_set_mac_address = eth_mac_addr,
1768 #ifdef CONFIG_NET_POLL_CONTROLLER
1769 .ndo_poll_controller = smc_poll_controller,
1770 #endif
1771 };
1772
1773 /*
1774 * smc_findirq
1775 *
1776 * This routine has a simple purpose -- make the SMC chip generate an
1777 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1778 */
1779 /*
1780 * does this still work?
1781 *
1782 * I just deleted auto_irq.c, since it was never built...
1783 * --jgarzik
1784 */
1785 static int smc_findirq(struct smc_local *lp)
1786 {
1787 void __iomem *ioaddr = lp->base;
1788 int timeout = 20;
1789 unsigned long cookie;
1790
1791 DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1792
1793 cookie = probe_irq_on();
1794
1795 /*
1796 * What I try to do here is trigger an ALLOC_INT. This is done
1797 * by allocating a small chunk of memory, which will give an interrupt
1798 * when done.
1799 */
1800 /* enable ALLOCation interrupts ONLY */
1801 SMC_SELECT_BANK(lp, 2);
1802 SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1803
1804 /*
1805 * Allocate 512 bytes of memory. Note that the chip was just
1806 * reset so all the memory is available
1807 */
1808 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1809
1810 /*
1811 * Wait until positive that the interrupt has been generated
1812 */
1813 do {
1814 int int_status;
1815 udelay(10);
1816 int_status = SMC_GET_INT(lp);
1817 if (int_status & IM_ALLOC_INT)
1818 break; /* got the interrupt */
1819 } while (--timeout);
1820
1821 /*
1822 * there is really nothing that I can do here if timeout fails,
1823 * as autoirq_report will return a 0 anyway, which is what I
1824 * want in this case. Plus, the clean up is needed in both
1825 * cases.
1826 */
1827
1828 /* and disable all interrupts again */
1829 SMC_SET_INT_MASK(lp, 0);
1830
1831 /* and return what I found */
1832 return probe_irq_off(cookie);
1833 }
1834
1835 /*
1836 * Function: smc_probe(unsigned long ioaddr)
1837 *
1838 * Purpose:
1839 * Tests to see if a given ioaddr points to an SMC91x chip.
1840 * Returns a 0 on success
1841 *
1842 * Algorithm:
1843 * (1) see if the high byte of BANK_SELECT is 0x33
1844 * (2) compare the ioaddr with the base register's address
1845 * (3) see if I recognize the chip ID in the appropriate register
1846 *
1847 * Here I do typical initialization tasks.
1848 *
1849 * o Initialize the structure if needed
1850 * o print out my vanity message if not done so already
1851 * o print out what type of hardware is detected
1852 * o print out the ethernet address
1853 * o find the IRQ
1854 * o set up my private data
1855 * o configure the dev structure with my subroutines
1856 * o actually GRAB the irq.
1857 * o GRAB the region
1858 */
1859 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1860 unsigned long irq_flags)
1861 {
1862 struct smc_local *lp = netdev_priv(dev);
1863 int retval;
1864 unsigned int val, revision_register;
1865 const char *version_string;
1866
1867 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1868
1869 /* First, see if the high byte is 0x33 */
1870 val = SMC_CURRENT_BANK(lp);
1871 DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1872 CARDNAME, val);
1873 if ((val & 0xFF00) != 0x3300) {
1874 if ((val & 0xFF) == 0x33) {
1875 netdev_warn(dev,
1876 "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1877 CARDNAME, ioaddr);
1878 }
1879 retval = -ENODEV;
1880 goto err_out;
1881 }
1882
1883 /*
1884 * The above MIGHT indicate a device, but I need to write to
1885 * further test this.
1886 */
1887 SMC_SELECT_BANK(lp, 0);
1888 val = SMC_CURRENT_BANK(lp);
1889 if ((val & 0xFF00) != 0x3300) {
1890 retval = -ENODEV;
1891 goto err_out;
1892 }
1893
1894 /*
1895 * well, we've already written once, so hopefully another
1896 * time won't hurt. This time, I need to switch the bank
1897 * register to bank 1, so I can access the base address
1898 * register
1899 */
1900 SMC_SELECT_BANK(lp, 1);
1901 val = SMC_GET_BASE(lp);
1902 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1903 if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1904 netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1905 CARDNAME, ioaddr, val);
1906 }
1907
1908 /*
1909 * check if the revision register is something that I
1910 * recognize. These might need to be added to later,
1911 * as future revisions could be added.
1912 */
1913 SMC_SELECT_BANK(lp, 3);
1914 revision_register = SMC_GET_REV(lp);
1915 DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1916 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1917 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1918 /* I don't recognize this chip, so... */
1919 netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1920 CARDNAME, ioaddr, revision_register);
1921
1922 retval = -ENODEV;
1923 goto err_out;
1924 }
1925
1926 /* At this point I'll assume that the chip is an SMC91x. */
1927 pr_info_once("%s\n", version);
1928
1929 /* fill in some of the fields */
1930 dev->base_addr = (unsigned long)ioaddr;
1931 lp->base = ioaddr;
1932 lp->version = revision_register & 0xff;
1933 spin_lock_init(&lp->lock);
1934
1935 /* Get the MAC address */
1936 SMC_SELECT_BANK(lp, 1);
1937 SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1938
1939 /* now, reset the chip, and put it into a known state */
1940 smc_reset(dev);
1941
1942 /*
1943 * If dev->irq is 0, then the device has to be banged on to see
1944 * what the IRQ is.
1945 *
1946 * This banging doesn't always detect the IRQ, for unknown reasons.
1947 * a workaround is to reset the chip and try again.
1948 *
1949 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1950 * be what is requested on the command line. I don't do that, mostly
1951 * because the card that I have uses a non-standard method of accessing
1952 * the IRQs, and because this _should_ work in most configurations.
1953 *
1954 * Specifying an IRQ is done with the assumption that the user knows
1955 * what (s)he is doing. No checking is done!!!!
1956 */
1957 if (dev->irq < 1) {
1958 int trials;
1959
1960 trials = 3;
1961 while (trials--) {
1962 dev->irq = smc_findirq(lp);
1963 if (dev->irq)
1964 break;
1965 /* kick the card and try again */
1966 smc_reset(dev);
1967 }
1968 }
1969 if (dev->irq == 0) {
1970 netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1971 retval = -ENODEV;
1972 goto err_out;
1973 }
1974 dev->irq = irq_canonicalize(dev->irq);
1975
1976 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1977 dev->netdev_ops = &smc_netdev_ops;
1978 dev->ethtool_ops = &smc_ethtool_ops;
1979
1980 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1981 INIT_WORK(&lp->phy_configure, smc_phy_configure);
1982 lp->dev = dev;
1983 lp->mii.phy_id_mask = 0x1f;
1984 lp->mii.reg_num_mask = 0x1f;
1985 lp->mii.force_media = 0;
1986 lp->mii.full_duplex = 0;
1987 lp->mii.dev = dev;
1988 lp->mii.mdio_read = smc_phy_read;
1989 lp->mii.mdio_write = smc_phy_write;
1990
1991 /*
1992 * Locate the phy, if any.
1993 */
1994 if (lp->version >= (CHIP_91100 << 4))
1995 smc_phy_detect(dev);
1996
1997 /* then shut everything down to save power */
1998 smc_shutdown(dev);
1999 smc_phy_powerdown(dev);
2000
2001 /* Set default parameters */
2002 lp->msg_enable = NETIF_MSG_LINK;
2003 lp->ctl_rfduplx = 0;
2004 lp->ctl_rspeed = 10;
2005
2006 if (lp->version >= (CHIP_91100 << 4)) {
2007 lp->ctl_rfduplx = 1;
2008 lp->ctl_rspeed = 100;
2009 }
2010
2011 /* Grab the IRQ */
2012 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2013 if (retval)
2014 goto err_out;
2015
2016 #ifdef CONFIG_ARCH_PXA
2017 # ifdef SMC_USE_PXA_DMA
2018 lp->cfg.flags |= SMC91X_USE_DMA;
2019 # endif
2020 if (lp->cfg.flags & SMC91X_USE_DMA) {
2021 dma_cap_mask_t mask;
2022 struct pxad_param param;
2023
2024 dma_cap_zero(mask);
2025 dma_cap_set(DMA_SLAVE, mask);
2026 param.prio = PXAD_PRIO_LOWEST;
2027 param.drcmr = -1UL;
2028
2029 lp->dma_chan =
2030 dma_request_slave_channel_compat(mask, pxad_filter_fn,
2031 &param, &dev->dev,
2032 "data");
2033 }
2034 #endif
2035
2036 retval = register_netdev(dev);
2037 if (retval == 0) {
2038 /* now, print out the card info, in a short format.. */
2039 netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2040 version_string, revision_register & 0x0f,
2041 lp->base, dev->irq);
2042
2043 if (lp->dma_chan)
2044 pr_cont(" DMA %p", lp->dma_chan);
2045
2046 pr_cont("%s%s\n",
2047 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2048 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2049
2050 if (!is_valid_ether_addr(dev->dev_addr)) {
2051 netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2052 } else {
2053 /* Print the Ethernet address */
2054 netdev_info(dev, "Ethernet addr: %pM\n",
2055 dev->dev_addr);
2056 }
2057
2058 if (lp->phy_type == 0) {
2059 PRINTK(dev, "No PHY found\n");
2060 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2061 PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2062 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2063 PRINTK(dev, "PHY LAN83C180\n");
2064 }
2065 }
2066
2067 err_out:
2068 #ifdef CONFIG_ARCH_PXA
2069 if (retval && lp->dma_chan)
2070 dma_release_channel(lp->dma_chan);
2071 #endif
2072 return retval;
2073 }
2074
2075 static int smc_enable_device(struct platform_device *pdev)
2076 {
2077 struct net_device *ndev = platform_get_drvdata(pdev);
2078 struct smc_local *lp = netdev_priv(ndev);
2079 unsigned long flags;
2080 unsigned char ecor, ecsr;
2081 void __iomem *addr;
2082 struct resource * res;
2083
2084 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2085 if (!res)
2086 return 0;
2087
2088 /*
2089 * Map the attribute space. This is overkill, but clean.
2090 */
2091 addr = ioremap(res->start, ATTRIB_SIZE);
2092 if (!addr)
2093 return -ENOMEM;
2094
2095 /*
2096 * Reset the device. We must disable IRQs around this
2097 * since a reset causes the IRQ line become active.
2098 */
2099 local_irq_save(flags);
2100 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2101 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2102 readb(addr + (ECOR << SMC_IO_SHIFT));
2103
2104 /*
2105 * Wait 100us for the chip to reset.
2106 */
2107 udelay(100);
2108
2109 /*
2110 * The device will ignore all writes to the enable bit while
2111 * reset is asserted, even if the reset bit is cleared in the
2112 * same write. Must clear reset first, then enable the device.
2113 */
2114 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2115 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2116
2117 /*
2118 * Set the appropriate byte/word mode.
2119 */
2120 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2121 if (!SMC_16BIT(lp))
2122 ecsr |= ECSR_IOIS8;
2123 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2124 local_irq_restore(flags);
2125
2126 iounmap(addr);
2127
2128 /*
2129 * Wait for the chip to wake up. We could poll the control
2130 * register in the main register space, but that isn't mapped
2131 * yet. We know this is going to take 750us.
2132 */
2133 msleep(1);
2134
2135 return 0;
2136 }
2137
2138 static int smc_request_attrib(struct platform_device *pdev,
2139 struct net_device *ndev)
2140 {
2141 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2142 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2143
2144 if (!res)
2145 return 0;
2146
2147 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2148 return -EBUSY;
2149
2150 return 0;
2151 }
2152
2153 static void smc_release_attrib(struct platform_device *pdev,
2154 struct net_device *ndev)
2155 {
2156 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2157 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2158
2159 if (res)
2160 release_mem_region(res->start, ATTRIB_SIZE);
2161 }
2162
2163 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2164 {
2165 if (SMC_CAN_USE_DATACS) {
2166 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2167 struct smc_local *lp = netdev_priv(ndev);
2168
2169 if (!res)
2170 return;
2171
2172 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2173 netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2174 CARDNAME);
2175 return;
2176 }
2177
2178 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2179 }
2180 }
2181
2182 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2183 {
2184 if (SMC_CAN_USE_DATACS) {
2185 struct smc_local *lp = netdev_priv(ndev);
2186 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2187
2188 if (lp->datacs)
2189 iounmap(lp->datacs);
2190
2191 lp->datacs = NULL;
2192
2193 if (res)
2194 release_mem_region(res->start, SMC_DATA_EXTENT);
2195 }
2196 }
2197
2198 #if IS_BUILTIN(CONFIG_OF)
2199 static const struct of_device_id smc91x_match[] = {
2200 { .compatible = "smsc,lan91c94", },
2201 { .compatible = "smsc,lan91c111", },
2202 {},
2203 };
2204 MODULE_DEVICE_TABLE(of, smc91x_match);
2205
2206 /**
2207 * of_try_set_control_gpio - configure a gpio if it exists
2208 */
2209 static int try_toggle_control_gpio(struct device *dev,
2210 struct gpio_desc **desc,
2211 const char *name, int index,
2212 int value, unsigned int nsdelay)
2213 {
2214 struct gpio_desc *gpio = *desc;
2215 enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2216
2217 gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2218 if (IS_ERR(gpio))
2219 return PTR_ERR(gpio);
2220
2221 if (gpio) {
2222 if (nsdelay)
2223 usleep_range(nsdelay, 2 * nsdelay);
2224 gpiod_set_value_cansleep(gpio, value);
2225 }
2226 *desc = gpio;
2227
2228 return 0;
2229 }
2230 #endif
2231
2232 /*
2233 * smc_init(void)
2234 * Input parameters:
2235 * dev->base_addr == 0, try to find all possible locations
2236 * dev->base_addr > 0x1ff, this is the address to check
2237 * dev->base_addr == <anything else>, return failure code
2238 *
2239 * Output:
2240 * 0 --> there is a device
2241 * anything else, error
2242 */
2243 static int smc_drv_probe(struct platform_device *pdev)
2244 {
2245 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2246 const struct of_device_id *match = NULL;
2247 struct smc_local *lp;
2248 struct net_device *ndev;
2249 struct resource *res;
2250 unsigned int __iomem *addr;
2251 unsigned long irq_flags = SMC_IRQ_FLAGS;
2252 unsigned long irq_resflags;
2253 int ret;
2254
2255 ndev = alloc_etherdev(sizeof(struct smc_local));
2256 if (!ndev) {
2257 ret = -ENOMEM;
2258 goto out;
2259 }
2260 SET_NETDEV_DEV(ndev, &pdev->dev);
2261
2262 /* get configuration from platform data, only allow use of
2263 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2264 */
2265
2266 lp = netdev_priv(ndev);
2267 lp->cfg.flags = 0;
2268
2269 if (pd) {
2270 memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2271 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2272 }
2273
2274 #if IS_BUILTIN(CONFIG_OF)
2275 match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2276 if (match) {
2277 struct device_node *np = pdev->dev.of_node;
2278 u32 val;
2279
2280 /* Optional pwrdwn GPIO configured? */
2281 ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2282 "power", 0, 0, 100);
2283 if (ret)
2284 return ret;
2285
2286 /*
2287 * Optional reset GPIO configured? Minimum 100 ns reset needed
2288 * according to LAN91C96 datasheet page 14.
2289 */
2290 ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2291 "reset", 0, 0, 100);
2292 if (ret)
2293 return ret;
2294
2295 /*
2296 * Need to wait for optional EEPROM to load, max 750 us according
2297 * to LAN91C96 datasheet page 55.
2298 */
2299 if (lp->reset_gpio)
2300 usleep_range(750, 1000);
2301
2302 /* Combination of IO widths supported, default to 16-bit */
2303 if (!of_property_read_u32(np, "reg-io-width", &val)) {
2304 if (val & 1)
2305 lp->cfg.flags |= SMC91X_USE_8BIT;
2306 if ((val == 0) || (val & 2))
2307 lp->cfg.flags |= SMC91X_USE_16BIT;
2308 if (val & 4)
2309 lp->cfg.flags |= SMC91X_USE_32BIT;
2310 } else {
2311 lp->cfg.flags |= SMC91X_USE_16BIT;
2312 }
2313 }
2314 #endif
2315
2316 if (!pd && !match) {
2317 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
2318 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2319 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2320 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2321 }
2322
2323 if (!lp->cfg.leda && !lp->cfg.ledb) {
2324 lp->cfg.leda = RPC_LSA_DEFAULT;
2325 lp->cfg.ledb = RPC_LSB_DEFAULT;
2326 }
2327
2328 ndev->dma = (unsigned char)-1;
2329
2330 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2331 if (!res)
2332 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2333 if (!res) {
2334 ret = -ENODEV;
2335 goto out_free_netdev;
2336 }
2337
2338
2339 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2340 ret = -EBUSY;
2341 goto out_free_netdev;
2342 }
2343
2344 ndev->irq = platform_get_irq(pdev, 0);
2345 if (ndev->irq <= 0) {
2346 ret = -ENODEV;
2347 goto out_release_io;
2348 }
2349 /*
2350 * If this platform does not specify any special irqflags, or if
2351 * the resource supplies a trigger, override the irqflags with
2352 * the trigger flags from the resource.
2353 */
2354 irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2355 if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2356 irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2357
2358 ret = smc_request_attrib(pdev, ndev);
2359 if (ret)
2360 goto out_release_io;
2361 #if defined(CONFIG_ASSABET_NEPONSET)
2362 if (machine_is_assabet() && machine_has_neponset())
2363 neponset_ncr_set(NCR_ENET_OSC_EN);
2364 #endif
2365 platform_set_drvdata(pdev, ndev);
2366 ret = smc_enable_device(pdev);
2367 if (ret)
2368 goto out_release_attrib;
2369
2370 addr = ioremap(res->start, SMC_IO_EXTENT);
2371 if (!addr) {
2372 ret = -ENOMEM;
2373 goto out_release_attrib;
2374 }
2375
2376 #ifdef CONFIG_ARCH_PXA
2377 {
2378 struct smc_local *lp = netdev_priv(ndev);
2379 lp->device = &pdev->dev;
2380 lp->physaddr = res->start;
2381
2382 }
2383 #endif
2384
2385 ret = smc_probe(ndev, addr, irq_flags);
2386 if (ret != 0)
2387 goto out_iounmap;
2388
2389 smc_request_datacs(pdev, ndev);
2390
2391 return 0;
2392
2393 out_iounmap:
2394 iounmap(addr);
2395 out_release_attrib:
2396 smc_release_attrib(pdev, ndev);
2397 out_release_io:
2398 release_mem_region(res->start, SMC_IO_EXTENT);
2399 out_free_netdev:
2400 free_netdev(ndev);
2401 out:
2402 pr_info("%s: not found (%d).\n", CARDNAME, ret);
2403
2404 return ret;
2405 }
2406
2407 static int smc_drv_remove(struct platform_device *pdev)
2408 {
2409 struct net_device *ndev = platform_get_drvdata(pdev);
2410 struct smc_local *lp = netdev_priv(ndev);
2411 struct resource *res;
2412
2413 unregister_netdev(ndev);
2414
2415 free_irq(ndev->irq, ndev);
2416
2417 #ifdef CONFIG_ARCH_PXA
2418 if (lp->dma_chan)
2419 dma_release_channel(lp->dma_chan);
2420 #endif
2421 iounmap(lp->base);
2422
2423 smc_release_datacs(pdev,ndev);
2424 smc_release_attrib(pdev,ndev);
2425
2426 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2427 if (!res)
2428 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2429 release_mem_region(res->start, SMC_IO_EXTENT);
2430
2431 free_netdev(ndev);
2432
2433 return 0;
2434 }
2435
2436 static int smc_drv_suspend(struct device *dev)
2437 {
2438 struct platform_device *pdev = to_platform_device(dev);
2439 struct net_device *ndev = platform_get_drvdata(pdev);
2440
2441 if (ndev) {
2442 if (netif_running(ndev)) {
2443 netif_device_detach(ndev);
2444 smc_shutdown(ndev);
2445 smc_phy_powerdown(ndev);
2446 }
2447 }
2448 return 0;
2449 }
2450
2451 static int smc_drv_resume(struct device *dev)
2452 {
2453 struct platform_device *pdev = to_platform_device(dev);
2454 struct net_device *ndev = platform_get_drvdata(pdev);
2455
2456 if (ndev) {
2457 struct smc_local *lp = netdev_priv(ndev);
2458 smc_enable_device(pdev);
2459 if (netif_running(ndev)) {
2460 smc_reset(ndev);
2461 smc_enable(ndev);
2462 if (lp->phy_type != 0)
2463 smc_phy_configure(&lp->phy_configure);
2464 netif_device_attach(ndev);
2465 }
2466 }
2467 return 0;
2468 }
2469
2470 static struct dev_pm_ops smc_drv_pm_ops = {
2471 .suspend = smc_drv_suspend,
2472 .resume = smc_drv_resume,
2473 };
2474
2475 static struct platform_driver smc_driver = {
2476 .probe = smc_drv_probe,
2477 .remove = smc_drv_remove,
2478 .driver = {
2479 .name = CARDNAME,
2480 .pm = &smc_drv_pm_ops,
2481 .of_match_table = of_match_ptr(smc91x_match),
2482 },
2483 };
2484
2485 module_platform_driver(smc_driver);