bonding:record primary when modify it via sysfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / sfc / siena_sriov.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2010-2011 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9 #include <linux/pci.h>
10 #include <linux/module.h>
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic.h"
14 #include "io.h"
15 #include "mcdi.h"
16 #include "filter.h"
17 #include "mcdi_pcol.h"
18 #include "regs.h"
19 #include "vfdi.h"
20
21 /* Number of longs required to track all the VIs in a VF */
22 #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
23
24 /**
25 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
26 * @VF_TX_FILTER_OFF: Disabled
27 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
28 * 2 TX queues allowed per VF.
29 * @VF_TX_FILTER_ON: Enabled
30 */
31 enum efx_vf_tx_filter_mode {
32 VF_TX_FILTER_OFF,
33 VF_TX_FILTER_AUTO,
34 VF_TX_FILTER_ON,
35 };
36
37 /**
38 * struct efx_vf - Back-end resource and protocol state for a PCI VF
39 * @efx: The Efx NIC owning this VF
40 * @pci_rid: The PCI requester ID for this VF
41 * @pci_name: The PCI name (formatted address) of this VF
42 * @index: Index of VF within its port and PF.
43 * @req: VFDI incoming request work item. Incoming USR_EV events are received
44 * by the NAPI handler, but must be handled by executing MCDI requests
45 * inside a work item.
46 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
47 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
48 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
49 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
50 * @status_lock
51 * @busy: VFDI request queued to be processed or being processed. Receiving
52 * a VFDI request when @busy is set is an error condition.
53 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
54 * @buftbl_base: Buffer table entries for this VF start at this index.
55 * @rx_filtering: Receive filtering has been requested by the VF driver.
56 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
57 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
58 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
59 * @tx_filter_mode: Transmit MAC filtering mode.
60 * @tx_filter_id: Transmit MAC filter ID.
61 * @addr: The MAC address and outer vlan tag of the VF.
62 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
63 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
64 * @peer_page_addrs and @peer_page_count from simultaneous
65 * updates by the VM and consumption by
66 * efx_sriov_update_vf_addr()
67 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
68 * @peer_page_count: Number of entries in @peer_page_count.
69 * @evq0_addrs: Array of guest pages backing evq0.
70 * @evq0_count: Number of entries in @evq0_addrs.
71 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
72 * to wait for flush completions.
73 * @txq_lock: Mutex for TX queue allocation.
74 * @txq_mask: Mask of initialized transmit queues.
75 * @txq_count: Number of initialized transmit queues.
76 * @rxq_mask: Mask of initialized receive queues.
77 * @rxq_count: Number of initialized receive queues.
78 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
79 * due to flush failure.
80 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
81 * @reset_work: Work item to schedule a VF reset.
82 */
83 struct efx_vf {
84 struct efx_nic *efx;
85 unsigned int pci_rid;
86 char pci_name[13]; /* dddd:bb:dd.f */
87 unsigned int index;
88 struct work_struct req;
89 u64 req_addr;
90 int req_type;
91 unsigned req_seqno;
92 unsigned msg_seqno;
93 bool busy;
94 struct efx_buffer buf;
95 unsigned buftbl_base;
96 bool rx_filtering;
97 enum efx_filter_flags rx_filter_flags;
98 unsigned rx_filter_qid;
99 int rx_filter_id;
100 enum efx_vf_tx_filter_mode tx_filter_mode;
101 int tx_filter_id;
102 struct vfdi_endpoint addr;
103 u64 status_addr;
104 struct mutex status_lock;
105 u64 *peer_page_addrs;
106 unsigned peer_page_count;
107 u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
108 EFX_BUF_SIZE];
109 unsigned evq0_count;
110 wait_queue_head_t flush_waitq;
111 struct mutex txq_lock;
112 unsigned long txq_mask[VI_MASK_LENGTH];
113 unsigned txq_count;
114 unsigned long rxq_mask[VI_MASK_LENGTH];
115 unsigned rxq_count;
116 unsigned long rxq_retry_mask[VI_MASK_LENGTH];
117 atomic_t rxq_retry_count;
118 struct work_struct reset_work;
119 };
120
121 struct efx_memcpy_req {
122 unsigned int from_rid;
123 void *from_buf;
124 u64 from_addr;
125 unsigned int to_rid;
126 u64 to_addr;
127 unsigned length;
128 };
129
130 /**
131 * struct efx_local_addr - A MAC address on the vswitch without a VF.
132 *
133 * Siena does not have a switch, so VFs can't transmit data to each
134 * other. Instead the VFs must be made aware of the local addresses
135 * on the vswitch, so that they can arrange for an alternative
136 * software datapath to be used.
137 *
138 * @link: List head for insertion into efx->local_addr_list.
139 * @addr: Ethernet address
140 */
141 struct efx_local_addr {
142 struct list_head link;
143 u8 addr[ETH_ALEN];
144 };
145
146 /**
147 * struct efx_endpoint_page - Page of vfdi_endpoint structures
148 *
149 * @link: List head for insertion into efx->local_page_list.
150 * @ptr: Pointer to page.
151 * @addr: DMA address of page.
152 */
153 struct efx_endpoint_page {
154 struct list_head link;
155 void *ptr;
156 dma_addr_t addr;
157 };
158
159 /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
160 #define EFX_BUFTBL_TXQ_BASE(_vf, _qid) \
161 ((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
162 #define EFX_BUFTBL_RXQ_BASE(_vf, _qid) \
163 (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
164 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
165 #define EFX_BUFTBL_EVQ_BASE(_vf, _qid) \
166 (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
167 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
168
169 #define EFX_FIELD_MASK(_field) \
170 ((1 << _field ## _WIDTH) - 1)
171
172 /* VFs can only use this many transmit channels */
173 static unsigned int vf_max_tx_channels = 2;
174 module_param(vf_max_tx_channels, uint, 0444);
175 MODULE_PARM_DESC(vf_max_tx_channels,
176 "Limit the number of TX channels VFs can use");
177
178 static int max_vfs = -1;
179 module_param(max_vfs, int, 0444);
180 MODULE_PARM_DESC(max_vfs,
181 "Reduce the number of VFs initialized by the driver");
182
183 /* Workqueue used by VFDI communication. We can't use the global
184 * workqueue because it may be running the VF driver's probe()
185 * routine, which will be blocked there waiting for a VFDI response.
186 */
187 static struct workqueue_struct *vfdi_workqueue;
188
189 static unsigned abs_index(struct efx_vf *vf, unsigned index)
190 {
191 return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
192 }
193
194 static int efx_sriov_cmd(struct efx_nic *efx, bool enable,
195 unsigned *vi_scale_out, unsigned *vf_total_out)
196 {
197 u8 inbuf[MC_CMD_SRIOV_IN_LEN];
198 u8 outbuf[MC_CMD_SRIOV_OUT_LEN];
199 unsigned vi_scale, vf_total;
200 size_t outlen;
201 int rc;
202
203 MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
204 MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
205 MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
206
207 rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
208 outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
209 if (rc)
210 return rc;
211 if (outlen < MC_CMD_SRIOV_OUT_LEN)
212 return -EIO;
213
214 vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
215 vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
216 if (vi_scale > EFX_VI_SCALE_MAX)
217 return -EOPNOTSUPP;
218
219 if (vi_scale_out)
220 *vi_scale_out = vi_scale;
221 if (vf_total_out)
222 *vf_total_out = vf_total;
223
224 return 0;
225 }
226
227 static void efx_sriov_usrev(struct efx_nic *efx, bool enabled)
228 {
229 efx_oword_t reg;
230
231 EFX_POPULATE_OWORD_2(reg,
232 FRF_CZ_USREV_DIS, enabled ? 0 : 1,
233 FRF_CZ_DFLT_EVQ, efx->vfdi_channel->channel);
234 efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
235 }
236
237 static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req,
238 unsigned int count)
239 {
240 u8 *inbuf, *record;
241 unsigned int used;
242 u32 from_rid, from_hi, from_lo;
243 int rc;
244
245 mb(); /* Finish writing source/reading dest before DMA starts */
246
247 used = MC_CMD_MEMCPY_IN_LEN(count);
248 if (WARN_ON(used > MCDI_CTL_SDU_LEN_MAX))
249 return -ENOBUFS;
250
251 /* Allocate room for the largest request */
252 inbuf = kzalloc(MCDI_CTL_SDU_LEN_MAX, GFP_KERNEL);
253 if (inbuf == NULL)
254 return -ENOMEM;
255
256 record = inbuf;
257 MCDI_SET_DWORD(record, MEMCPY_IN_RECORD, count);
258 while (count-- > 0) {
259 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
260 req->to_rid);
261 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_LO,
262 (u32)req->to_addr);
263 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_HI,
264 (u32)(req->to_addr >> 32));
265 if (req->from_buf == NULL) {
266 from_rid = req->from_rid;
267 from_lo = (u32)req->from_addr;
268 from_hi = (u32)(req->from_addr >> 32);
269 } else {
270 if (WARN_ON(used + req->length > MCDI_CTL_SDU_LEN_MAX)) {
271 rc = -ENOBUFS;
272 goto out;
273 }
274
275 from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
276 from_lo = used;
277 from_hi = 0;
278 memcpy(inbuf + used, req->from_buf, req->length);
279 used += req->length;
280 }
281
282 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
283 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_LO,
284 from_lo);
285 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_HI,
286 from_hi);
287 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
288 req->length);
289
290 ++req;
291 record += MC_CMD_MEMCPY_IN_RECORD_LEN;
292 }
293
294 rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
295 out:
296 kfree(inbuf);
297
298 mb(); /* Don't write source/read dest before DMA is complete */
299
300 return rc;
301 }
302
303 /* The TX filter is entirely controlled by this driver, and is modified
304 * underneath the feet of the VF
305 */
306 static void efx_sriov_reset_tx_filter(struct efx_vf *vf)
307 {
308 struct efx_nic *efx = vf->efx;
309 struct efx_filter_spec filter;
310 u16 vlan;
311 int rc;
312
313 if (vf->tx_filter_id != -1) {
314 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
315 vf->tx_filter_id);
316 netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
317 vf->pci_name, vf->tx_filter_id);
318 vf->tx_filter_id = -1;
319 }
320
321 if (is_zero_ether_addr(vf->addr.mac_addr))
322 return;
323
324 /* Turn on TX filtering automatically if not explicitly
325 * enabled or disabled.
326 */
327 if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
328 vf->tx_filter_mode = VF_TX_FILTER_ON;
329
330 vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
331 efx_filter_init_tx(&filter, abs_index(vf, 0));
332 rc = efx_filter_set_eth_local(&filter,
333 vlan ? vlan : EFX_FILTER_VID_UNSPEC,
334 vf->addr.mac_addr);
335 BUG_ON(rc);
336
337 rc = efx_filter_insert_filter(efx, &filter, true);
338 if (rc < 0) {
339 netif_warn(efx, hw, efx->net_dev,
340 "Unable to migrate tx filter for vf %s\n",
341 vf->pci_name);
342 } else {
343 netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
344 vf->pci_name, rc);
345 vf->tx_filter_id = rc;
346 }
347 }
348
349 /* The RX filter is managed here on behalf of the VF driver */
350 static void efx_sriov_reset_rx_filter(struct efx_vf *vf)
351 {
352 struct efx_nic *efx = vf->efx;
353 struct efx_filter_spec filter;
354 u16 vlan;
355 int rc;
356
357 if (vf->rx_filter_id != -1) {
358 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
359 vf->rx_filter_id);
360 netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
361 vf->pci_name, vf->rx_filter_id);
362 vf->rx_filter_id = -1;
363 }
364
365 if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
366 return;
367
368 vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
369 efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
370 vf->rx_filter_flags,
371 abs_index(vf, vf->rx_filter_qid));
372 rc = efx_filter_set_eth_local(&filter,
373 vlan ? vlan : EFX_FILTER_VID_UNSPEC,
374 vf->addr.mac_addr);
375 BUG_ON(rc);
376
377 rc = efx_filter_insert_filter(efx, &filter, true);
378 if (rc < 0) {
379 netif_warn(efx, hw, efx->net_dev,
380 "Unable to insert rx filter for vf %s\n",
381 vf->pci_name);
382 } else {
383 netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
384 vf->pci_name, rc);
385 vf->rx_filter_id = rc;
386 }
387 }
388
389 static void __efx_sriov_update_vf_addr(struct efx_vf *vf)
390 {
391 efx_sriov_reset_tx_filter(vf);
392 efx_sriov_reset_rx_filter(vf);
393 queue_work(vfdi_workqueue, &vf->efx->peer_work);
394 }
395
396 /* Push the peer list to this VF. The caller must hold status_lock to interlock
397 * with VFDI requests, and they must be serialised against manipulation of
398 * local_page_list, either by acquiring local_lock or by running from
399 * efx_sriov_peer_work()
400 */
401 static void __efx_sriov_push_vf_status(struct efx_vf *vf)
402 {
403 struct efx_nic *efx = vf->efx;
404 struct vfdi_status *status = efx->vfdi_status.addr;
405 struct efx_memcpy_req copy[4];
406 struct efx_endpoint_page *epp;
407 unsigned int pos, count;
408 unsigned data_offset;
409 efx_qword_t event;
410
411 WARN_ON(!mutex_is_locked(&vf->status_lock));
412 WARN_ON(!vf->status_addr);
413
414 status->local = vf->addr;
415 status->generation_end = ++status->generation_start;
416
417 memset(copy, '\0', sizeof(copy));
418 /* Write generation_start */
419 copy[0].from_buf = &status->generation_start;
420 copy[0].to_rid = vf->pci_rid;
421 copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
422 generation_start);
423 copy[0].length = sizeof(status->generation_start);
424 /* DMA the rest of the structure (excluding the generations). This
425 * assumes that the non-generation portion of vfdi_status is in
426 * one chunk starting at the version member.
427 */
428 data_offset = offsetof(struct vfdi_status, version);
429 copy[1].from_rid = efx->pci_dev->devfn;
430 copy[1].from_addr = efx->vfdi_status.dma_addr + data_offset;
431 copy[1].to_rid = vf->pci_rid;
432 copy[1].to_addr = vf->status_addr + data_offset;
433 copy[1].length = status->length - data_offset;
434
435 /* Copy the peer pages */
436 pos = 2;
437 count = 0;
438 list_for_each_entry(epp, &efx->local_page_list, link) {
439 if (count == vf->peer_page_count) {
440 /* The VF driver will know they need to provide more
441 * pages because peer_addr_count is too large.
442 */
443 break;
444 }
445 copy[pos].from_buf = NULL;
446 copy[pos].from_rid = efx->pci_dev->devfn;
447 copy[pos].from_addr = epp->addr;
448 copy[pos].to_rid = vf->pci_rid;
449 copy[pos].to_addr = vf->peer_page_addrs[count];
450 copy[pos].length = EFX_PAGE_SIZE;
451
452 if (++pos == ARRAY_SIZE(copy)) {
453 efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
454 pos = 0;
455 }
456 ++count;
457 }
458
459 /* Write generation_end */
460 copy[pos].from_buf = &status->generation_end;
461 copy[pos].to_rid = vf->pci_rid;
462 copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
463 generation_end);
464 copy[pos].length = sizeof(status->generation_end);
465 efx_sriov_memcpy(efx, copy, pos + 1);
466
467 /* Notify the guest */
468 EFX_POPULATE_QWORD_3(event,
469 FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
470 VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
471 VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
472 ++vf->msg_seqno;
473 efx_generate_event(efx, EFX_VI_BASE + vf->index * efx_vf_size(efx),
474 &event);
475 }
476
477 static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset,
478 u64 *addr, unsigned count)
479 {
480 efx_qword_t buf;
481 unsigned pos;
482
483 for (pos = 0; pos < count; ++pos) {
484 EFX_POPULATE_QWORD_3(buf,
485 FRF_AZ_BUF_ADR_REGION, 0,
486 FRF_AZ_BUF_ADR_FBUF,
487 addr ? addr[pos] >> 12 : 0,
488 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
489 efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
490 &buf, offset + pos);
491 }
492 }
493
494 static bool bad_vf_index(struct efx_nic *efx, unsigned index)
495 {
496 return index >= efx_vf_size(efx);
497 }
498
499 static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
500 {
501 unsigned max_buf_count = max_entry_count *
502 sizeof(efx_qword_t) / EFX_BUF_SIZE;
503
504 return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
505 }
506
507 /* Check that VI specified by per-port index belongs to a VF.
508 * Optionally set VF index and VI index within the VF.
509 */
510 static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
511 struct efx_vf **vf_out, unsigned *rel_index_out)
512 {
513 unsigned vf_i;
514
515 if (abs_index < EFX_VI_BASE)
516 return true;
517 vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
518 if (vf_i >= efx->vf_init_count)
519 return true;
520
521 if (vf_out)
522 *vf_out = efx->vf + vf_i;
523 if (rel_index_out)
524 *rel_index_out = abs_index % efx_vf_size(efx);
525 return false;
526 }
527
528 static int efx_vfdi_init_evq(struct efx_vf *vf)
529 {
530 struct efx_nic *efx = vf->efx;
531 struct vfdi_req *req = vf->buf.addr;
532 unsigned vf_evq = req->u.init_evq.index;
533 unsigned buf_count = req->u.init_evq.buf_count;
534 unsigned abs_evq = abs_index(vf, vf_evq);
535 unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
536 efx_oword_t reg;
537
538 if (bad_vf_index(efx, vf_evq) ||
539 bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
540 if (net_ratelimit())
541 netif_err(efx, hw, efx->net_dev,
542 "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
543 vf->pci_name, vf_evq, buf_count);
544 return VFDI_RC_EINVAL;
545 }
546
547 efx_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
548
549 EFX_POPULATE_OWORD_3(reg,
550 FRF_CZ_TIMER_Q_EN, 1,
551 FRF_CZ_HOST_NOTIFY_MODE, 0,
552 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
553 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
554 EFX_POPULATE_OWORD_3(reg,
555 FRF_AZ_EVQ_EN, 1,
556 FRF_AZ_EVQ_SIZE, __ffs(buf_count),
557 FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
558 efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
559
560 if (vf_evq == 0) {
561 memcpy(vf->evq0_addrs, req->u.init_evq.addr,
562 buf_count * sizeof(u64));
563 vf->evq0_count = buf_count;
564 }
565
566 return VFDI_RC_SUCCESS;
567 }
568
569 static int efx_vfdi_init_rxq(struct efx_vf *vf)
570 {
571 struct efx_nic *efx = vf->efx;
572 struct vfdi_req *req = vf->buf.addr;
573 unsigned vf_rxq = req->u.init_rxq.index;
574 unsigned vf_evq = req->u.init_rxq.evq;
575 unsigned buf_count = req->u.init_rxq.buf_count;
576 unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
577 unsigned label;
578 efx_oword_t reg;
579
580 if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
581 bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
582 if (net_ratelimit())
583 netif_err(efx, hw, efx->net_dev,
584 "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
585 "buf_count %d\n", vf->pci_name, vf_rxq,
586 vf_evq, buf_count);
587 return VFDI_RC_EINVAL;
588 }
589 if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
590 ++vf->rxq_count;
591 efx_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
592
593 label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
594 EFX_POPULATE_OWORD_6(reg,
595 FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
596 FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
597 FRF_AZ_RX_DESCQ_LABEL, label,
598 FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
599 FRF_AZ_RX_DESCQ_JUMBO,
600 !!(req->u.init_rxq.flags &
601 VFDI_RXQ_FLAG_SCATTER_EN),
602 FRF_AZ_RX_DESCQ_EN, 1);
603 efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
604 abs_index(vf, vf_rxq));
605
606 return VFDI_RC_SUCCESS;
607 }
608
609 static int efx_vfdi_init_txq(struct efx_vf *vf)
610 {
611 struct efx_nic *efx = vf->efx;
612 struct vfdi_req *req = vf->buf.addr;
613 unsigned vf_txq = req->u.init_txq.index;
614 unsigned vf_evq = req->u.init_txq.evq;
615 unsigned buf_count = req->u.init_txq.buf_count;
616 unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
617 unsigned label, eth_filt_en;
618 efx_oword_t reg;
619
620 if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
621 vf_txq >= vf_max_tx_channels ||
622 bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
623 if (net_ratelimit())
624 netif_err(efx, hw, efx->net_dev,
625 "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
626 "buf_count %d\n", vf->pci_name, vf_txq,
627 vf_evq, buf_count);
628 return VFDI_RC_EINVAL;
629 }
630
631 mutex_lock(&vf->txq_lock);
632 if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
633 ++vf->txq_count;
634 mutex_unlock(&vf->txq_lock);
635 efx_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
636
637 eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
638
639 label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
640 EFX_POPULATE_OWORD_8(reg,
641 FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
642 FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
643 FRF_AZ_TX_DESCQ_EN, 1,
644 FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
645 FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
646 FRF_AZ_TX_DESCQ_LABEL, label,
647 FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
648 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
649 efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
650 abs_index(vf, vf_txq));
651
652 return VFDI_RC_SUCCESS;
653 }
654
655 /* Returns true when efx_vfdi_fini_all_queues should wake */
656 static bool efx_vfdi_flush_wake(struct efx_vf *vf)
657 {
658 /* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
659 smp_mb();
660
661 return (!vf->txq_count && !vf->rxq_count) ||
662 atomic_read(&vf->rxq_retry_count);
663 }
664
665 static void efx_vfdi_flush_clear(struct efx_vf *vf)
666 {
667 memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
668 vf->txq_count = 0;
669 memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
670 vf->rxq_count = 0;
671 memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
672 atomic_set(&vf->rxq_retry_count, 0);
673 }
674
675 static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
676 {
677 struct efx_nic *efx = vf->efx;
678 efx_oword_t reg;
679 unsigned count = efx_vf_size(efx);
680 unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
681 unsigned timeout = HZ;
682 unsigned index, rxqs_count;
683 __le32 *rxqs;
684 int rc;
685
686 rxqs = kmalloc(count * sizeof(*rxqs), GFP_KERNEL);
687 if (rxqs == NULL)
688 return VFDI_RC_ENOMEM;
689
690 rtnl_lock();
691 if (efx->fc_disable++ == 0)
692 efx_mcdi_set_mac(efx);
693 rtnl_unlock();
694
695 /* Flush all the initialized queues */
696 rxqs_count = 0;
697 for (index = 0; index < count; ++index) {
698 if (test_bit(index, vf->txq_mask)) {
699 EFX_POPULATE_OWORD_2(reg,
700 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
701 FRF_AZ_TX_FLUSH_DESCQ,
702 vf_offset + index);
703 efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
704 }
705 if (test_bit(index, vf->rxq_mask))
706 rxqs[rxqs_count++] = cpu_to_le32(vf_offset + index);
707 }
708
709 atomic_set(&vf->rxq_retry_count, 0);
710 while (timeout && (vf->rxq_count || vf->txq_count)) {
711 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, (u8 *)rxqs,
712 rxqs_count * sizeof(*rxqs), NULL, 0, NULL);
713 WARN_ON(rc < 0);
714
715 timeout = wait_event_timeout(vf->flush_waitq,
716 efx_vfdi_flush_wake(vf),
717 timeout);
718 rxqs_count = 0;
719 for (index = 0; index < count; ++index) {
720 if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
721 atomic_dec(&vf->rxq_retry_count);
722 rxqs[rxqs_count++] =
723 cpu_to_le32(vf_offset + index);
724 }
725 }
726 }
727
728 rtnl_lock();
729 if (--efx->fc_disable == 0)
730 efx_mcdi_set_mac(efx);
731 rtnl_unlock();
732
733 /* Irrespective of success/failure, fini the queues */
734 EFX_ZERO_OWORD(reg);
735 for (index = 0; index < count; ++index) {
736 efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
737 vf_offset + index);
738 efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
739 vf_offset + index);
740 efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
741 vf_offset + index);
742 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
743 vf_offset + index);
744 }
745 efx_sriov_bufs(efx, vf->buftbl_base, NULL,
746 EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
747 kfree(rxqs);
748 efx_vfdi_flush_clear(vf);
749
750 vf->evq0_count = 0;
751
752 return timeout ? 0 : VFDI_RC_ETIMEDOUT;
753 }
754
755 static int efx_vfdi_insert_filter(struct efx_vf *vf)
756 {
757 struct efx_nic *efx = vf->efx;
758 struct vfdi_req *req = vf->buf.addr;
759 unsigned vf_rxq = req->u.mac_filter.rxq;
760 unsigned flags;
761
762 if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
763 if (net_ratelimit())
764 netif_err(efx, hw, efx->net_dev,
765 "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
766 "flags 0x%x\n", vf->pci_name, vf_rxq,
767 req->u.mac_filter.flags);
768 return VFDI_RC_EINVAL;
769 }
770
771 flags = 0;
772 if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
773 flags |= EFX_FILTER_FLAG_RX_RSS;
774 if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
775 flags |= EFX_FILTER_FLAG_RX_SCATTER;
776 vf->rx_filter_flags = flags;
777 vf->rx_filter_qid = vf_rxq;
778 vf->rx_filtering = true;
779
780 efx_sriov_reset_rx_filter(vf);
781 queue_work(vfdi_workqueue, &efx->peer_work);
782
783 return VFDI_RC_SUCCESS;
784 }
785
786 static int efx_vfdi_remove_all_filters(struct efx_vf *vf)
787 {
788 vf->rx_filtering = false;
789 efx_sriov_reset_rx_filter(vf);
790 queue_work(vfdi_workqueue, &vf->efx->peer_work);
791
792 return VFDI_RC_SUCCESS;
793 }
794
795 static int efx_vfdi_set_status_page(struct efx_vf *vf)
796 {
797 struct efx_nic *efx = vf->efx;
798 struct vfdi_req *req = vf->buf.addr;
799 u64 page_count = req->u.set_status_page.peer_page_count;
800 u64 max_page_count =
801 (EFX_PAGE_SIZE -
802 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
803 / sizeof(req->u.set_status_page.peer_page_addr[0]);
804
805 if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
806 if (net_ratelimit())
807 netif_err(efx, hw, efx->net_dev,
808 "ERROR: Invalid SET_STATUS_PAGE from %s\n",
809 vf->pci_name);
810 return VFDI_RC_EINVAL;
811 }
812
813 mutex_lock(&efx->local_lock);
814 mutex_lock(&vf->status_lock);
815 vf->status_addr = req->u.set_status_page.dma_addr;
816
817 kfree(vf->peer_page_addrs);
818 vf->peer_page_addrs = NULL;
819 vf->peer_page_count = 0;
820
821 if (page_count) {
822 vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
823 GFP_KERNEL);
824 if (vf->peer_page_addrs) {
825 memcpy(vf->peer_page_addrs,
826 req->u.set_status_page.peer_page_addr,
827 page_count * sizeof(u64));
828 vf->peer_page_count = page_count;
829 }
830 }
831
832 __efx_sriov_push_vf_status(vf);
833 mutex_unlock(&vf->status_lock);
834 mutex_unlock(&efx->local_lock);
835
836 return VFDI_RC_SUCCESS;
837 }
838
839 static int efx_vfdi_clear_status_page(struct efx_vf *vf)
840 {
841 mutex_lock(&vf->status_lock);
842 vf->status_addr = 0;
843 mutex_unlock(&vf->status_lock);
844
845 return VFDI_RC_SUCCESS;
846 }
847
848 typedef int (*efx_vfdi_op_t)(struct efx_vf *vf);
849
850 static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
851 [VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
852 [VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
853 [VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
854 [VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
855 [VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
856 [VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
857 [VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
858 [VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
859 };
860
861 static void efx_sriov_vfdi(struct work_struct *work)
862 {
863 struct efx_vf *vf = container_of(work, struct efx_vf, req);
864 struct efx_nic *efx = vf->efx;
865 struct vfdi_req *req = vf->buf.addr;
866 struct efx_memcpy_req copy[2];
867 int rc;
868
869 /* Copy this page into the local address space */
870 memset(copy, '\0', sizeof(copy));
871 copy[0].from_rid = vf->pci_rid;
872 copy[0].from_addr = vf->req_addr;
873 copy[0].to_rid = efx->pci_dev->devfn;
874 copy[0].to_addr = vf->buf.dma_addr;
875 copy[0].length = EFX_PAGE_SIZE;
876 rc = efx_sriov_memcpy(efx, copy, 1);
877 if (rc) {
878 /* If we can't get the request, we can't reply to the caller */
879 if (net_ratelimit())
880 netif_err(efx, hw, efx->net_dev,
881 "ERROR: Unable to fetch VFDI request from %s rc %d\n",
882 vf->pci_name, -rc);
883 vf->busy = false;
884 return;
885 }
886
887 if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
888 rc = vfdi_ops[req->op](vf);
889 if (rc == 0) {
890 netif_dbg(efx, hw, efx->net_dev,
891 "vfdi request %d from %s ok\n",
892 req->op, vf->pci_name);
893 }
894 } else {
895 netif_dbg(efx, hw, efx->net_dev,
896 "ERROR: Unrecognised request %d from VF %s addr "
897 "%llx\n", req->op, vf->pci_name,
898 (unsigned long long)vf->req_addr);
899 rc = VFDI_RC_EOPNOTSUPP;
900 }
901
902 /* Allow subsequent VF requests */
903 vf->busy = false;
904 smp_wmb();
905
906 /* Respond to the request */
907 req->rc = rc;
908 req->op = VFDI_OP_RESPONSE;
909
910 memset(copy, '\0', sizeof(copy));
911 copy[0].from_buf = &req->rc;
912 copy[0].to_rid = vf->pci_rid;
913 copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
914 copy[0].length = sizeof(req->rc);
915 copy[1].from_buf = &req->op;
916 copy[1].to_rid = vf->pci_rid;
917 copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
918 copy[1].length = sizeof(req->op);
919
920 (void) efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
921 }
922
923
924
925 /* After a reset the event queues inside the guests no longer exist. Fill the
926 * event ring in guest memory with VFDI reset events, then (re-initialise) the
927 * event queue to raise an interrupt. The guest driver will then recover.
928 */
929 static void efx_sriov_reset_vf(struct efx_vf *vf, struct efx_buffer *buffer)
930 {
931 struct efx_nic *efx = vf->efx;
932 struct efx_memcpy_req copy_req[4];
933 efx_qword_t event;
934 unsigned int pos, count, k, buftbl, abs_evq;
935 efx_oword_t reg;
936 efx_dword_t ptr;
937 int rc;
938
939 BUG_ON(buffer->len != EFX_PAGE_SIZE);
940
941 if (!vf->evq0_count)
942 return;
943 BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
944
945 mutex_lock(&vf->status_lock);
946 EFX_POPULATE_QWORD_3(event,
947 FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
948 VFDI_EV_SEQ, vf->msg_seqno,
949 VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
950 vf->msg_seqno++;
951 for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
952 memcpy(buffer->addr + pos, &event, sizeof(event));
953
954 for (pos = 0; pos < vf->evq0_count; pos += count) {
955 count = min_t(unsigned, vf->evq0_count - pos,
956 ARRAY_SIZE(copy_req));
957 for (k = 0; k < count; k++) {
958 copy_req[k].from_buf = NULL;
959 copy_req[k].from_rid = efx->pci_dev->devfn;
960 copy_req[k].from_addr = buffer->dma_addr;
961 copy_req[k].to_rid = vf->pci_rid;
962 copy_req[k].to_addr = vf->evq0_addrs[pos + k];
963 copy_req[k].length = EFX_PAGE_SIZE;
964 }
965 rc = efx_sriov_memcpy(efx, copy_req, count);
966 if (rc) {
967 if (net_ratelimit())
968 netif_err(efx, hw, efx->net_dev,
969 "ERROR: Unable to notify %s of reset"
970 ": %d\n", vf->pci_name, -rc);
971 break;
972 }
973 }
974
975 /* Reinitialise, arm and trigger evq0 */
976 abs_evq = abs_index(vf, 0);
977 buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
978 efx_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
979
980 EFX_POPULATE_OWORD_3(reg,
981 FRF_CZ_TIMER_Q_EN, 1,
982 FRF_CZ_HOST_NOTIFY_MODE, 0,
983 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
984 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
985 EFX_POPULATE_OWORD_3(reg,
986 FRF_AZ_EVQ_EN, 1,
987 FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
988 FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
989 efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
990 EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
991 efx_writed_table(efx, &ptr, FR_BZ_EVQ_RPTR, abs_evq);
992
993 mutex_unlock(&vf->status_lock);
994 }
995
996 static void efx_sriov_reset_vf_work(struct work_struct *work)
997 {
998 struct efx_vf *vf = container_of(work, struct efx_vf, req);
999 struct efx_nic *efx = vf->efx;
1000 struct efx_buffer buf;
1001
1002 if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE)) {
1003 efx_sriov_reset_vf(vf, &buf);
1004 efx_nic_free_buffer(efx, &buf);
1005 }
1006 }
1007
1008 static void efx_sriov_handle_no_channel(struct efx_nic *efx)
1009 {
1010 netif_err(efx, drv, efx->net_dev,
1011 "ERROR: IOV requires MSI-X and 1 additional interrupt"
1012 "vector. IOV disabled\n");
1013 efx->vf_count = 0;
1014 }
1015
1016 static int efx_sriov_probe_channel(struct efx_channel *channel)
1017 {
1018 channel->efx->vfdi_channel = channel;
1019 return 0;
1020 }
1021
1022 static void
1023 efx_sriov_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
1024 {
1025 snprintf(buf, len, "%s-iov", channel->efx->name);
1026 }
1027
1028 static const struct efx_channel_type efx_sriov_channel_type = {
1029 .handle_no_channel = efx_sriov_handle_no_channel,
1030 .pre_probe = efx_sriov_probe_channel,
1031 .get_name = efx_sriov_get_channel_name,
1032 /* no copy operation; channel must not be reallocated */
1033 .keep_eventq = true,
1034 };
1035
1036 void efx_sriov_probe(struct efx_nic *efx)
1037 {
1038 unsigned count;
1039
1040 if (!max_vfs)
1041 return;
1042
1043 if (efx_sriov_cmd(efx, false, &efx->vi_scale, &count))
1044 return;
1045 if (count > 0 && count > max_vfs)
1046 count = max_vfs;
1047
1048 /* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1049 efx->vf_count = count;
1050
1051 efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_sriov_channel_type;
1052 }
1053
1054 /* Copy the list of individual addresses into the vfdi_status.peers
1055 * array and auxillary pages, protected by %local_lock. Drop that lock
1056 * and then broadcast the address list to every VF.
1057 */
1058 static void efx_sriov_peer_work(struct work_struct *data)
1059 {
1060 struct efx_nic *efx = container_of(data, struct efx_nic, peer_work);
1061 struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
1062 struct efx_vf *vf;
1063 struct efx_local_addr *local_addr;
1064 struct vfdi_endpoint *peer;
1065 struct efx_endpoint_page *epp;
1066 struct list_head pages;
1067 unsigned int peer_space;
1068 unsigned int peer_count;
1069 unsigned int pos;
1070
1071 mutex_lock(&efx->local_lock);
1072
1073 /* Move the existing peer pages off %local_page_list */
1074 INIT_LIST_HEAD(&pages);
1075 list_splice_tail_init(&efx->local_page_list, &pages);
1076
1077 /* Populate the VF addresses starting from entry 1 (entry 0 is
1078 * the PF address)
1079 */
1080 peer = vfdi_status->peers + 1;
1081 peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1082 peer_count = 1;
1083 for (pos = 0; pos < efx->vf_count; ++pos) {
1084 vf = efx->vf + pos;
1085
1086 mutex_lock(&vf->status_lock);
1087 if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1088 *peer++ = vf->addr;
1089 ++peer_count;
1090 --peer_space;
1091 BUG_ON(peer_space == 0);
1092 }
1093 mutex_unlock(&vf->status_lock);
1094 }
1095
1096 /* Fill the remaining addresses */
1097 list_for_each_entry(local_addr, &efx->local_addr_list, link) {
1098 memcpy(peer->mac_addr, local_addr->addr, ETH_ALEN);
1099 peer->tci = 0;
1100 ++peer;
1101 ++peer_count;
1102 if (--peer_space == 0) {
1103 if (list_empty(&pages)) {
1104 epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1105 if (!epp)
1106 break;
1107 epp->ptr = dma_alloc_coherent(
1108 &efx->pci_dev->dev, EFX_PAGE_SIZE,
1109 &epp->addr, GFP_KERNEL);
1110 if (!epp->ptr) {
1111 kfree(epp);
1112 break;
1113 }
1114 } else {
1115 epp = list_first_entry(
1116 &pages, struct efx_endpoint_page, link);
1117 list_del(&epp->link);
1118 }
1119
1120 list_add_tail(&epp->link, &efx->local_page_list);
1121 peer = (struct vfdi_endpoint *)epp->ptr;
1122 peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1123 }
1124 }
1125 vfdi_status->peer_count = peer_count;
1126 mutex_unlock(&efx->local_lock);
1127
1128 /* Free any now unused endpoint pages */
1129 while (!list_empty(&pages)) {
1130 epp = list_first_entry(
1131 &pages, struct efx_endpoint_page, link);
1132 list_del(&epp->link);
1133 dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1134 epp->ptr, epp->addr);
1135 kfree(epp);
1136 }
1137
1138 /* Finally, push the pages */
1139 for (pos = 0; pos < efx->vf_count; ++pos) {
1140 vf = efx->vf + pos;
1141
1142 mutex_lock(&vf->status_lock);
1143 if (vf->status_addr)
1144 __efx_sriov_push_vf_status(vf);
1145 mutex_unlock(&vf->status_lock);
1146 }
1147 }
1148
1149 static void efx_sriov_free_local(struct efx_nic *efx)
1150 {
1151 struct efx_local_addr *local_addr;
1152 struct efx_endpoint_page *epp;
1153
1154 while (!list_empty(&efx->local_addr_list)) {
1155 local_addr = list_first_entry(&efx->local_addr_list,
1156 struct efx_local_addr, link);
1157 list_del(&local_addr->link);
1158 kfree(local_addr);
1159 }
1160
1161 while (!list_empty(&efx->local_page_list)) {
1162 epp = list_first_entry(&efx->local_page_list,
1163 struct efx_endpoint_page, link);
1164 list_del(&epp->link);
1165 dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1166 epp->ptr, epp->addr);
1167 kfree(epp);
1168 }
1169 }
1170
1171 static int efx_sriov_vf_alloc(struct efx_nic *efx)
1172 {
1173 unsigned index;
1174 struct efx_vf *vf;
1175
1176 efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL);
1177 if (!efx->vf)
1178 return -ENOMEM;
1179
1180 for (index = 0; index < efx->vf_count; ++index) {
1181 vf = efx->vf + index;
1182
1183 vf->efx = efx;
1184 vf->index = index;
1185 vf->rx_filter_id = -1;
1186 vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1187 vf->tx_filter_id = -1;
1188 INIT_WORK(&vf->req, efx_sriov_vfdi);
1189 INIT_WORK(&vf->reset_work, efx_sriov_reset_vf_work);
1190 init_waitqueue_head(&vf->flush_waitq);
1191 mutex_init(&vf->status_lock);
1192 mutex_init(&vf->txq_lock);
1193 }
1194
1195 return 0;
1196 }
1197
1198 static void efx_sriov_vfs_fini(struct efx_nic *efx)
1199 {
1200 struct efx_vf *vf;
1201 unsigned int pos;
1202
1203 for (pos = 0; pos < efx->vf_count; ++pos) {
1204 vf = efx->vf + pos;
1205
1206 efx_nic_free_buffer(efx, &vf->buf);
1207 kfree(vf->peer_page_addrs);
1208 vf->peer_page_addrs = NULL;
1209 vf->peer_page_count = 0;
1210
1211 vf->evq0_count = 0;
1212 }
1213 }
1214
1215 static int efx_sriov_vfs_init(struct efx_nic *efx)
1216 {
1217 struct pci_dev *pci_dev = efx->pci_dev;
1218 unsigned index, devfn, sriov, buftbl_base;
1219 u16 offset, stride;
1220 struct efx_vf *vf;
1221 int rc;
1222
1223 sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1224 if (!sriov)
1225 return -ENOENT;
1226
1227 pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1228 pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1229
1230 buftbl_base = efx->vf_buftbl_base;
1231 devfn = pci_dev->devfn + offset;
1232 for (index = 0; index < efx->vf_count; ++index) {
1233 vf = efx->vf + index;
1234
1235 /* Reserve buffer entries */
1236 vf->buftbl_base = buftbl_base;
1237 buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1238
1239 vf->pci_rid = devfn;
1240 snprintf(vf->pci_name, sizeof(vf->pci_name),
1241 "%04x:%02x:%02x.%d",
1242 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1243 PCI_SLOT(devfn), PCI_FUNC(devfn));
1244
1245 rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE);
1246 if (rc)
1247 goto fail;
1248
1249 devfn += stride;
1250 }
1251
1252 return 0;
1253
1254 fail:
1255 efx_sriov_vfs_fini(efx);
1256 return rc;
1257 }
1258
1259 int efx_sriov_init(struct efx_nic *efx)
1260 {
1261 struct net_device *net_dev = efx->net_dev;
1262 struct vfdi_status *vfdi_status;
1263 int rc;
1264
1265 /* Ensure there's room for vf_channel */
1266 BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1267 /* Ensure that VI_BASE is aligned on VI_SCALE */
1268 BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1269
1270 if (efx->vf_count == 0)
1271 return 0;
1272
1273 rc = efx_sriov_cmd(efx, true, NULL, NULL);
1274 if (rc)
1275 goto fail_cmd;
1276
1277 rc = efx_nic_alloc_buffer(efx, &efx->vfdi_status, sizeof(*vfdi_status));
1278 if (rc)
1279 goto fail_status;
1280 vfdi_status = efx->vfdi_status.addr;
1281 memset(vfdi_status, 0, sizeof(*vfdi_status));
1282 vfdi_status->version = 1;
1283 vfdi_status->length = sizeof(*vfdi_status);
1284 vfdi_status->max_tx_channels = vf_max_tx_channels;
1285 vfdi_status->vi_scale = efx->vi_scale;
1286 vfdi_status->rss_rxq_count = efx->rss_spread;
1287 vfdi_status->peer_count = 1 + efx->vf_count;
1288 vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1289
1290 rc = efx_sriov_vf_alloc(efx);
1291 if (rc)
1292 goto fail_alloc;
1293
1294 mutex_init(&efx->local_lock);
1295 INIT_WORK(&efx->peer_work, efx_sriov_peer_work);
1296 INIT_LIST_HEAD(&efx->local_addr_list);
1297 INIT_LIST_HEAD(&efx->local_page_list);
1298
1299 rc = efx_sriov_vfs_init(efx);
1300 if (rc)
1301 goto fail_vfs;
1302
1303 rtnl_lock();
1304 memcpy(vfdi_status->peers[0].mac_addr,
1305 net_dev->dev_addr, ETH_ALEN);
1306 efx->vf_init_count = efx->vf_count;
1307 rtnl_unlock();
1308
1309 efx_sriov_usrev(efx, true);
1310
1311 /* At this point we must be ready to accept VFDI requests */
1312
1313 rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1314 if (rc)
1315 goto fail_pci;
1316
1317 netif_info(efx, probe, net_dev,
1318 "enabled SR-IOV for %d VFs, %d VI per VF\n",
1319 efx->vf_count, efx_vf_size(efx));
1320 return 0;
1321
1322 fail_pci:
1323 efx_sriov_usrev(efx, false);
1324 rtnl_lock();
1325 efx->vf_init_count = 0;
1326 rtnl_unlock();
1327 efx_sriov_vfs_fini(efx);
1328 fail_vfs:
1329 cancel_work_sync(&efx->peer_work);
1330 efx_sriov_free_local(efx);
1331 kfree(efx->vf);
1332 fail_alloc:
1333 efx_nic_free_buffer(efx, &efx->vfdi_status);
1334 fail_status:
1335 efx_sriov_cmd(efx, false, NULL, NULL);
1336 fail_cmd:
1337 return rc;
1338 }
1339
1340 void efx_sriov_fini(struct efx_nic *efx)
1341 {
1342 struct efx_vf *vf;
1343 unsigned int pos;
1344
1345 if (efx->vf_init_count == 0)
1346 return;
1347
1348 /* Disable all interfaces to reconfiguration */
1349 BUG_ON(efx->vfdi_channel->enabled);
1350 efx_sriov_usrev(efx, false);
1351 rtnl_lock();
1352 efx->vf_init_count = 0;
1353 rtnl_unlock();
1354
1355 /* Flush all reconfiguration work */
1356 for (pos = 0; pos < efx->vf_count; ++pos) {
1357 vf = efx->vf + pos;
1358 cancel_work_sync(&vf->req);
1359 cancel_work_sync(&vf->reset_work);
1360 }
1361 cancel_work_sync(&efx->peer_work);
1362
1363 pci_disable_sriov(efx->pci_dev);
1364
1365 /* Tear down back-end state */
1366 efx_sriov_vfs_fini(efx);
1367 efx_sriov_free_local(efx);
1368 kfree(efx->vf);
1369 efx_nic_free_buffer(efx, &efx->vfdi_status);
1370 efx_sriov_cmd(efx, false, NULL, NULL);
1371 }
1372
1373 void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1374 {
1375 struct efx_nic *efx = channel->efx;
1376 struct efx_vf *vf;
1377 unsigned qid, seq, type, data;
1378
1379 qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1380
1381 /* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1382 BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1383 seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1384 type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1385 data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1386
1387 netif_vdbg(efx, hw, efx->net_dev,
1388 "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1389 qid, seq, type, data);
1390
1391 if (map_vi_index(efx, qid, &vf, NULL))
1392 return;
1393 if (vf->busy)
1394 goto error;
1395
1396 if (type == VFDI_EV_TYPE_REQ_WORD0) {
1397 /* Resynchronise */
1398 vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1399 vf->req_seqno = seq + 1;
1400 vf->req_addr = 0;
1401 } else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1402 goto error;
1403
1404 switch (vf->req_type) {
1405 case VFDI_EV_TYPE_REQ_WORD0:
1406 case VFDI_EV_TYPE_REQ_WORD1:
1407 case VFDI_EV_TYPE_REQ_WORD2:
1408 vf->req_addr |= (u64)data << (vf->req_type << 4);
1409 ++vf->req_type;
1410 return;
1411
1412 case VFDI_EV_TYPE_REQ_WORD3:
1413 vf->req_addr |= (u64)data << 48;
1414 vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1415 vf->busy = true;
1416 queue_work(vfdi_workqueue, &vf->req);
1417 return;
1418 }
1419
1420 error:
1421 if (net_ratelimit())
1422 netif_err(efx, hw, efx->net_dev,
1423 "ERROR: Screaming VFDI request from %s\n",
1424 vf->pci_name);
1425 /* Reset the request and sequence number */
1426 vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1427 vf->req_seqno = seq + 1;
1428 }
1429
1430 void efx_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1431 {
1432 struct efx_vf *vf;
1433
1434 if (vf_i > efx->vf_init_count)
1435 return;
1436 vf = efx->vf + vf_i;
1437 netif_info(efx, hw, efx->net_dev,
1438 "FLR on VF %s\n", vf->pci_name);
1439
1440 vf->status_addr = 0;
1441 efx_vfdi_remove_all_filters(vf);
1442 efx_vfdi_flush_clear(vf);
1443
1444 vf->evq0_count = 0;
1445 }
1446
1447 void efx_sriov_mac_address_changed(struct efx_nic *efx)
1448 {
1449 struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
1450
1451 if (!efx->vf_init_count)
1452 return;
1453 memcpy(vfdi_status->peers[0].mac_addr,
1454 efx->net_dev->dev_addr, ETH_ALEN);
1455 queue_work(vfdi_workqueue, &efx->peer_work);
1456 }
1457
1458 void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1459 {
1460 struct efx_vf *vf;
1461 unsigned queue, qid;
1462
1463 queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1464 if (map_vi_index(efx, queue, &vf, &qid))
1465 return;
1466 /* Ignore flush completions triggered by an FLR */
1467 if (!test_bit(qid, vf->txq_mask))
1468 return;
1469
1470 __clear_bit(qid, vf->txq_mask);
1471 --vf->txq_count;
1472
1473 if (efx_vfdi_flush_wake(vf))
1474 wake_up(&vf->flush_waitq);
1475 }
1476
1477 void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1478 {
1479 struct efx_vf *vf;
1480 unsigned ev_failed, queue, qid;
1481
1482 queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1483 ev_failed = EFX_QWORD_FIELD(*event,
1484 FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1485 if (map_vi_index(efx, queue, &vf, &qid))
1486 return;
1487 if (!test_bit(qid, vf->rxq_mask))
1488 return;
1489
1490 if (ev_failed) {
1491 set_bit(qid, vf->rxq_retry_mask);
1492 atomic_inc(&vf->rxq_retry_count);
1493 } else {
1494 __clear_bit(qid, vf->rxq_mask);
1495 --vf->rxq_count;
1496 }
1497 if (efx_vfdi_flush_wake(vf))
1498 wake_up(&vf->flush_waitq);
1499 }
1500
1501 /* Called from napi. Schedule the reset work item */
1502 void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1503 {
1504 struct efx_vf *vf;
1505 unsigned int rel;
1506
1507 if (map_vi_index(efx, dmaq, &vf, &rel))
1508 return;
1509
1510 if (net_ratelimit())
1511 netif_err(efx, hw, efx->net_dev,
1512 "VF %d DMA Q %d reports descriptor fetch error.\n",
1513 vf->index, rel);
1514 queue_work(vfdi_workqueue, &vf->reset_work);
1515 }
1516
1517 /* Reset all VFs */
1518 void efx_sriov_reset(struct efx_nic *efx)
1519 {
1520 unsigned int vf_i;
1521 struct efx_buffer buf;
1522 struct efx_vf *vf;
1523
1524 ASSERT_RTNL();
1525
1526 if (efx->vf_init_count == 0)
1527 return;
1528
1529 efx_sriov_usrev(efx, true);
1530 (void)efx_sriov_cmd(efx, true, NULL, NULL);
1531
1532 if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE))
1533 return;
1534
1535 for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1536 vf = efx->vf + vf_i;
1537 efx_sriov_reset_vf(vf, &buf);
1538 }
1539
1540 efx_nic_free_buffer(efx, &buf);
1541 }
1542
1543 int efx_init_sriov(void)
1544 {
1545 /* A single threaded workqueue is sufficient. efx_sriov_vfdi() and
1546 * efx_sriov_peer_work() spend almost all their time sleeping for
1547 * MCDI to complete anyway
1548 */
1549 vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1550 if (!vfdi_workqueue)
1551 return -ENOMEM;
1552
1553 return 0;
1554 }
1555
1556 void efx_fini_sriov(void)
1557 {
1558 destroy_workqueue(vfdi_workqueue);
1559 }
1560
1561 int efx_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac)
1562 {
1563 struct efx_nic *efx = netdev_priv(net_dev);
1564 struct efx_vf *vf;
1565
1566 if (vf_i >= efx->vf_init_count)
1567 return -EINVAL;
1568 vf = efx->vf + vf_i;
1569
1570 mutex_lock(&vf->status_lock);
1571 memcpy(vf->addr.mac_addr, mac, ETH_ALEN);
1572 __efx_sriov_update_vf_addr(vf);
1573 mutex_unlock(&vf->status_lock);
1574
1575 return 0;
1576 }
1577
1578 int efx_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i,
1579 u16 vlan, u8 qos)
1580 {
1581 struct efx_nic *efx = netdev_priv(net_dev);
1582 struct efx_vf *vf;
1583 u16 tci;
1584
1585 if (vf_i >= efx->vf_init_count)
1586 return -EINVAL;
1587 vf = efx->vf + vf_i;
1588
1589 mutex_lock(&vf->status_lock);
1590 tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1591 vf->addr.tci = htons(tci);
1592 __efx_sriov_update_vf_addr(vf);
1593 mutex_unlock(&vf->status_lock);
1594
1595 return 0;
1596 }
1597
1598 int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i,
1599 bool spoofchk)
1600 {
1601 struct efx_nic *efx = netdev_priv(net_dev);
1602 struct efx_vf *vf;
1603 int rc;
1604
1605 if (vf_i >= efx->vf_init_count)
1606 return -EINVAL;
1607 vf = efx->vf + vf_i;
1608
1609 mutex_lock(&vf->txq_lock);
1610 if (vf->txq_count == 0) {
1611 vf->tx_filter_mode =
1612 spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1613 rc = 0;
1614 } else {
1615 /* This cannot be changed while TX queues are running */
1616 rc = -EBUSY;
1617 }
1618 mutex_unlock(&vf->txq_lock);
1619 return rc;
1620 }
1621
1622 int efx_sriov_get_vf_config(struct net_device *net_dev, int vf_i,
1623 struct ifla_vf_info *ivi)
1624 {
1625 struct efx_nic *efx = netdev_priv(net_dev);
1626 struct efx_vf *vf;
1627 u16 tci;
1628
1629 if (vf_i >= efx->vf_init_count)
1630 return -EINVAL;
1631 vf = efx->vf + vf_i;
1632
1633 ivi->vf = vf_i;
1634 memcpy(ivi->mac, vf->addr.mac_addr, ETH_ALEN);
1635 ivi->tx_rate = 0;
1636 tci = ntohs(vf->addr.tci);
1637 ivi->vlan = tci & VLAN_VID_MASK;
1638 ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1639 ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1640
1641 return 0;
1642 }
1643