bonding:record primary when modify it via sysfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / sfc / rx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
19 #include <net/ip.h>
20 #include <net/checksum.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26
27 /* Number of RX descriptors pushed at once. */
28 #define EFX_RX_BATCH 8
29
30 /* Maximum size of a buffer sharing a page */
31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
32
33 /* Size of buffer allocated for skb header area. */
34 #define EFX_SKB_HEADERS 64u
35
36 /*
37 * rx_alloc_method - RX buffer allocation method
38 *
39 * This driver supports two methods for allocating and using RX buffers:
40 * each RX buffer may be backed by an skb or by an order-n page.
41 *
42 * When GRO is in use then the second method has a lower overhead,
43 * since we don't have to allocate then free skbs on reassembled frames.
44 *
45 * Values:
46 * - RX_ALLOC_METHOD_AUTO = 0
47 * - RX_ALLOC_METHOD_SKB = 1
48 * - RX_ALLOC_METHOD_PAGE = 2
49 *
50 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
51 * controlled by the parameters below.
52 *
53 * - Since pushing and popping descriptors are separated by the rx_queue
54 * size, so the watermarks should be ~rxd_size.
55 * - The performance win by using page-based allocation for GRO is less
56 * than the performance hit of using page-based allocation of non-GRO,
57 * so the watermarks should reflect this.
58 *
59 * Per channel we maintain a single variable, updated by each channel:
60 *
61 * rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
62 * RX_ALLOC_FACTOR_SKB)
63 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
64 * limits the hysteresis), and update the allocation strategy:
65 *
66 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
67 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
68 */
69 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
70
71 #define RX_ALLOC_LEVEL_GRO 0x2000
72 #define RX_ALLOC_LEVEL_MAX 0x3000
73 #define RX_ALLOC_FACTOR_GRO 1
74 #define RX_ALLOC_FACTOR_SKB (-2)
75
76 /* This is the percentage fill level below which new RX descriptors
77 * will be added to the RX descriptor ring.
78 */
79 static unsigned int rx_refill_threshold;
80
81 /*
82 * RX maximum head room required.
83 *
84 * This must be at least 1 to prevent overflow and at least 2 to allow
85 * pipelined receives.
86 */
87 #define EFX_RXD_HEAD_ROOM 2
88
89 /* Offset of ethernet header within page */
90 static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
91 struct efx_rx_buffer *buf)
92 {
93 /* Offset is always within one page, so we don't need to consider
94 * the page order.
95 */
96 return ((unsigned int) buf->dma_addr & (PAGE_SIZE - 1)) +
97 efx->type->rx_buffer_hash_size;
98 }
99 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
100 {
101 return PAGE_SIZE << efx->rx_buffer_order;
102 }
103
104 static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
105 {
106 if (buf->flags & EFX_RX_BUF_PAGE)
107 return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
108 else
109 return (u8 *)buf->u.skb->data + efx->type->rx_buffer_hash_size;
110 }
111
112 static inline u32 efx_rx_buf_hash(const u8 *eh)
113 {
114 /* The ethernet header is always directly after any hash. */
115 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
116 return __le32_to_cpup((const __le32 *)(eh - 4));
117 #else
118 const u8 *data = eh - 4;
119 return (u32)data[0] |
120 (u32)data[1] << 8 |
121 (u32)data[2] << 16 |
122 (u32)data[3] << 24;
123 #endif
124 }
125
126 /**
127 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
128 *
129 * @rx_queue: Efx RX queue
130 *
131 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
132 * struct efx_rx_buffer for each one. Return a negative error code or 0
133 * on success. May fail having only inserted fewer than EFX_RX_BATCH
134 * buffers.
135 */
136 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
137 {
138 struct efx_nic *efx = rx_queue->efx;
139 struct net_device *net_dev = efx->net_dev;
140 struct efx_rx_buffer *rx_buf;
141 struct sk_buff *skb;
142 int skb_len = efx->rx_buffer_len;
143 unsigned index, count;
144
145 for (count = 0; count < EFX_RX_BATCH; ++count) {
146 index = rx_queue->added_count & rx_queue->ptr_mask;
147 rx_buf = efx_rx_buffer(rx_queue, index);
148
149 rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
150 if (unlikely(!skb))
151 return -ENOMEM;
152
153 /* Adjust the SKB for padding */
154 skb_reserve(skb, NET_IP_ALIGN);
155 rx_buf->len = skb_len - NET_IP_ALIGN;
156 rx_buf->flags = 0;
157
158 rx_buf->dma_addr = pci_map_single(efx->pci_dev,
159 skb->data, rx_buf->len,
160 PCI_DMA_FROMDEVICE);
161 if (unlikely(pci_dma_mapping_error(efx->pci_dev,
162 rx_buf->dma_addr))) {
163 dev_kfree_skb_any(skb);
164 rx_buf->u.skb = NULL;
165 return -EIO;
166 }
167
168 ++rx_queue->added_count;
169 ++rx_queue->alloc_skb_count;
170 }
171
172 return 0;
173 }
174
175 /**
176 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
177 *
178 * @rx_queue: Efx RX queue
179 *
180 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
181 * and populates struct efx_rx_buffers for each one. Return a negative error
182 * code or 0 on success. If a single page can be split between two buffers,
183 * then the page will either be inserted fully, or not at at all.
184 */
185 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
186 {
187 struct efx_nic *efx = rx_queue->efx;
188 struct efx_rx_buffer *rx_buf;
189 struct page *page;
190 void *page_addr;
191 struct efx_rx_page_state *state;
192 dma_addr_t dma_addr;
193 unsigned index, count;
194
195 /* We can split a page between two buffers */
196 BUILD_BUG_ON(EFX_RX_BATCH & 1);
197
198 for (count = 0; count < EFX_RX_BATCH; ++count) {
199 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
200 efx->rx_buffer_order);
201 if (unlikely(page == NULL))
202 return -ENOMEM;
203 dma_addr = pci_map_page(efx->pci_dev, page, 0,
204 efx_rx_buf_size(efx),
205 PCI_DMA_FROMDEVICE);
206 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
207 __free_pages(page, efx->rx_buffer_order);
208 return -EIO;
209 }
210 page_addr = page_address(page);
211 state = page_addr;
212 state->refcnt = 0;
213 state->dma_addr = dma_addr;
214
215 page_addr += sizeof(struct efx_rx_page_state);
216 dma_addr += sizeof(struct efx_rx_page_state);
217
218 split:
219 index = rx_queue->added_count & rx_queue->ptr_mask;
220 rx_buf = efx_rx_buffer(rx_queue, index);
221 rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
222 rx_buf->u.page = page;
223 rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
224 rx_buf->flags = EFX_RX_BUF_PAGE;
225 ++rx_queue->added_count;
226 ++rx_queue->alloc_page_count;
227 ++state->refcnt;
228
229 if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
230 /* Use the second half of the page */
231 get_page(page);
232 dma_addr += (PAGE_SIZE >> 1);
233 page_addr += (PAGE_SIZE >> 1);
234 ++count;
235 goto split;
236 }
237 }
238
239 return 0;
240 }
241
242 static void efx_unmap_rx_buffer(struct efx_nic *efx,
243 struct efx_rx_buffer *rx_buf)
244 {
245 if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
246 struct efx_rx_page_state *state;
247
248 state = page_address(rx_buf->u.page);
249 if (--state->refcnt == 0) {
250 pci_unmap_page(efx->pci_dev,
251 state->dma_addr,
252 efx_rx_buf_size(efx),
253 PCI_DMA_FROMDEVICE);
254 }
255 } else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
256 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
257 rx_buf->len, PCI_DMA_FROMDEVICE);
258 }
259 }
260
261 static void efx_free_rx_buffer(struct efx_nic *efx,
262 struct efx_rx_buffer *rx_buf)
263 {
264 if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
265 __free_pages(rx_buf->u.page, efx->rx_buffer_order);
266 rx_buf->u.page = NULL;
267 } else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
268 dev_kfree_skb_any(rx_buf->u.skb);
269 rx_buf->u.skb = NULL;
270 }
271 }
272
273 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
274 struct efx_rx_buffer *rx_buf)
275 {
276 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
277 efx_free_rx_buffer(rx_queue->efx, rx_buf);
278 }
279
280 /* Attempt to resurrect the other receive buffer that used to share this page,
281 * which had previously been passed up to the kernel and freed. */
282 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
283 struct efx_rx_buffer *rx_buf)
284 {
285 struct efx_rx_page_state *state = page_address(rx_buf->u.page);
286 struct efx_rx_buffer *new_buf;
287 unsigned fill_level, index;
288
289 /* +1 because efx_rx_packet() incremented removed_count. +1 because
290 * we'd like to insert an additional descriptor whilst leaving
291 * EFX_RXD_HEAD_ROOM for the non-recycle path */
292 fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
293 if (unlikely(fill_level > rx_queue->max_fill)) {
294 /* We could place "state" on a list, and drain the list in
295 * efx_fast_push_rx_descriptors(). For now, this will do. */
296 return;
297 }
298
299 ++state->refcnt;
300 get_page(rx_buf->u.page);
301
302 index = rx_queue->added_count & rx_queue->ptr_mask;
303 new_buf = efx_rx_buffer(rx_queue, index);
304 new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
305 new_buf->u.page = rx_buf->u.page;
306 new_buf->len = rx_buf->len;
307 new_buf->flags = EFX_RX_BUF_PAGE;
308 ++rx_queue->added_count;
309 }
310
311 /* Recycle the given rx buffer directly back into the rx_queue. There is
312 * always room to add this buffer, because we've just popped a buffer. */
313 static void efx_recycle_rx_buffer(struct efx_channel *channel,
314 struct efx_rx_buffer *rx_buf)
315 {
316 struct efx_nic *efx = channel->efx;
317 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
318 struct efx_rx_buffer *new_buf;
319 unsigned index;
320
321 rx_buf->flags &= EFX_RX_BUF_PAGE;
322
323 if ((rx_buf->flags & EFX_RX_BUF_PAGE) &&
324 efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
325 page_count(rx_buf->u.page) == 1)
326 efx_resurrect_rx_buffer(rx_queue, rx_buf);
327
328 index = rx_queue->added_count & rx_queue->ptr_mask;
329 new_buf = efx_rx_buffer(rx_queue, index);
330
331 memcpy(new_buf, rx_buf, sizeof(*new_buf));
332 rx_buf->u.page = NULL;
333 ++rx_queue->added_count;
334 }
335
336 /**
337 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
338 * @rx_queue: RX descriptor queue
339 * This will aim to fill the RX descriptor queue up to
340 * @rx_queue->@max_fill. If there is insufficient atomic
341 * memory to do so, a slow fill will be scheduled.
342 *
343 * The caller must provide serialisation (none is used here). In practise,
344 * this means this function must run from the NAPI handler, or be called
345 * when NAPI is disabled.
346 */
347 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
348 {
349 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
350 unsigned fill_level;
351 int space, rc = 0;
352
353 /* Calculate current fill level, and exit if we don't need to fill */
354 fill_level = (rx_queue->added_count - rx_queue->removed_count);
355 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
356 if (fill_level >= rx_queue->fast_fill_trigger)
357 goto out;
358
359 /* Record minimum fill level */
360 if (unlikely(fill_level < rx_queue->min_fill)) {
361 if (fill_level)
362 rx_queue->min_fill = fill_level;
363 }
364
365 space = rx_queue->max_fill - fill_level;
366 EFX_BUG_ON_PARANOID(space < EFX_RX_BATCH);
367
368 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
369 "RX queue %d fast-filling descriptor ring from"
370 " level %d to level %d using %s allocation\n",
371 efx_rx_queue_index(rx_queue), fill_level,
372 rx_queue->max_fill,
373 channel->rx_alloc_push_pages ? "page" : "skb");
374
375 do {
376 if (channel->rx_alloc_push_pages)
377 rc = efx_init_rx_buffers_page(rx_queue);
378 else
379 rc = efx_init_rx_buffers_skb(rx_queue);
380 if (unlikely(rc)) {
381 /* Ensure that we don't leave the rx queue empty */
382 if (rx_queue->added_count == rx_queue->removed_count)
383 efx_schedule_slow_fill(rx_queue);
384 goto out;
385 }
386 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
387
388 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
389 "RX queue %d fast-filled descriptor ring "
390 "to level %d\n", efx_rx_queue_index(rx_queue),
391 rx_queue->added_count - rx_queue->removed_count);
392
393 out:
394 if (rx_queue->notified_count != rx_queue->added_count)
395 efx_nic_notify_rx_desc(rx_queue);
396 }
397
398 void efx_rx_slow_fill(unsigned long context)
399 {
400 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
401
402 /* Post an event to cause NAPI to run and refill the queue */
403 efx_nic_generate_fill_event(rx_queue);
404 ++rx_queue->slow_fill_count;
405 }
406
407 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
408 struct efx_rx_buffer *rx_buf,
409 int len, bool *leak_packet)
410 {
411 struct efx_nic *efx = rx_queue->efx;
412 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
413
414 if (likely(len <= max_len))
415 return;
416
417 /* The packet must be discarded, but this is only a fatal error
418 * if the caller indicated it was
419 */
420 rx_buf->flags |= EFX_RX_PKT_DISCARD;
421
422 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
423 if (net_ratelimit())
424 netif_err(efx, rx_err, efx->net_dev,
425 " RX queue %d seriously overlength "
426 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
427 efx_rx_queue_index(rx_queue), len, max_len,
428 efx->type->rx_buffer_padding);
429 /* If this buffer was skb-allocated, then the meta
430 * data at the end of the skb will be trashed. So
431 * we have no choice but to leak the fragment.
432 */
433 *leak_packet = !(rx_buf->flags & EFX_RX_BUF_PAGE);
434 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
435 } else {
436 if (net_ratelimit())
437 netif_err(efx, rx_err, efx->net_dev,
438 " RX queue %d overlength RX event "
439 "(0x%x > 0x%x)\n",
440 efx_rx_queue_index(rx_queue), len, max_len);
441 }
442
443 efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
444 }
445
446 /* Pass a received packet up through GRO. GRO can handle pages
447 * regardless of checksum state and skbs with a good checksum.
448 */
449 static void efx_rx_packet_gro(struct efx_channel *channel,
450 struct efx_rx_buffer *rx_buf,
451 const u8 *eh)
452 {
453 struct napi_struct *napi = &channel->napi_str;
454 gro_result_t gro_result;
455
456 if (rx_buf->flags & EFX_RX_BUF_PAGE) {
457 struct efx_nic *efx = channel->efx;
458 struct page *page = rx_buf->u.page;
459 struct sk_buff *skb;
460
461 rx_buf->u.page = NULL;
462
463 skb = napi_get_frags(napi);
464 if (!skb) {
465 put_page(page);
466 return;
467 }
468
469 if (efx->net_dev->features & NETIF_F_RXHASH)
470 skb->rxhash = efx_rx_buf_hash(eh);
471
472 skb_fill_page_desc(skb, 0, page,
473 efx_rx_buf_offset(efx, rx_buf), rx_buf->len);
474
475 skb->len = rx_buf->len;
476 skb->data_len = rx_buf->len;
477 skb->truesize += rx_buf->len;
478 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
479 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
480
481 skb_record_rx_queue(skb, channel->channel);
482
483 gro_result = napi_gro_frags(napi);
484 } else {
485 struct sk_buff *skb = rx_buf->u.skb;
486
487 EFX_BUG_ON_PARANOID(!(rx_buf->flags & EFX_RX_PKT_CSUMMED));
488 rx_buf->u.skb = NULL;
489 skb->ip_summed = CHECKSUM_UNNECESSARY;
490
491 gro_result = napi_gro_receive(napi, skb);
492 }
493
494 if (gro_result == GRO_NORMAL) {
495 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
496 } else if (gro_result != GRO_DROP) {
497 channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
498 channel->irq_mod_score += 2;
499 }
500 }
501
502 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
503 unsigned int len, u16 flags)
504 {
505 struct efx_nic *efx = rx_queue->efx;
506 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
507 struct efx_rx_buffer *rx_buf;
508 bool leak_packet = false;
509
510 rx_buf = efx_rx_buffer(rx_queue, index);
511 rx_buf->flags |= flags;
512
513 /* This allows the refill path to post another buffer.
514 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
515 * isn't overwritten yet.
516 */
517 rx_queue->removed_count++;
518
519 /* Validate the length encoded in the event vs the descriptor pushed */
520 efx_rx_packet__check_len(rx_queue, rx_buf, len, &leak_packet);
521
522 netif_vdbg(efx, rx_status, efx->net_dev,
523 "RX queue %d received id %x at %llx+%x %s%s\n",
524 efx_rx_queue_index(rx_queue), index,
525 (unsigned long long)rx_buf->dma_addr, len,
526 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
527 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
528
529 /* Discard packet, if instructed to do so */
530 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
531 if (unlikely(leak_packet))
532 channel->n_skbuff_leaks++;
533 else
534 efx_recycle_rx_buffer(channel, rx_buf);
535
536 /* Don't hold off the previous receive */
537 rx_buf = NULL;
538 goto out;
539 }
540
541 /* Release card resources - assumes all RX buffers consumed in-order
542 * per RX queue
543 */
544 efx_unmap_rx_buffer(efx, rx_buf);
545
546 /* Prefetch nice and early so data will (hopefully) be in cache by
547 * the time we look at it.
548 */
549 prefetch(efx_rx_buf_eh(efx, rx_buf));
550
551 /* Pipeline receives so that we give time for packet headers to be
552 * prefetched into cache.
553 */
554 rx_buf->len = len - efx->type->rx_buffer_hash_size;
555 out:
556 if (channel->rx_pkt)
557 __efx_rx_packet(channel, channel->rx_pkt);
558 channel->rx_pkt = rx_buf;
559 }
560
561 static void efx_rx_deliver(struct efx_channel *channel,
562 struct efx_rx_buffer *rx_buf)
563 {
564 struct sk_buff *skb;
565
566 /* We now own the SKB */
567 skb = rx_buf->u.skb;
568 rx_buf->u.skb = NULL;
569
570 /* Set the SKB flags */
571 skb_checksum_none_assert(skb);
572
573 /* Pass the packet up */
574 netif_receive_skb(skb);
575
576 /* Update allocation strategy method */
577 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
578 }
579
580 /* Handle a received packet. Second half: Touches packet payload. */
581 void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf)
582 {
583 struct efx_nic *efx = channel->efx;
584 u8 *eh = efx_rx_buf_eh(efx, rx_buf);
585
586 /* If we're in loopback test, then pass the packet directly to the
587 * loopback layer, and free the rx_buf here
588 */
589 if (unlikely(efx->loopback_selftest)) {
590 efx_loopback_rx_packet(efx, eh, rx_buf->len);
591 efx_free_rx_buffer(efx, rx_buf);
592 return;
593 }
594
595 if (!(rx_buf->flags & EFX_RX_BUF_PAGE)) {
596 struct sk_buff *skb = rx_buf->u.skb;
597
598 prefetch(skb_shinfo(skb));
599
600 skb_reserve(skb, efx->type->rx_buffer_hash_size);
601 skb_put(skb, rx_buf->len);
602
603 if (efx->net_dev->features & NETIF_F_RXHASH)
604 skb->rxhash = efx_rx_buf_hash(eh);
605
606 /* Move past the ethernet header. rx_buf->data still points
607 * at the ethernet header */
608 skb->protocol = eth_type_trans(skb, efx->net_dev);
609
610 skb_record_rx_queue(skb, channel->channel);
611 }
612
613 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
614 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
615
616 if (likely(rx_buf->flags & (EFX_RX_BUF_PAGE | EFX_RX_PKT_CSUMMED)))
617 efx_rx_packet_gro(channel, rx_buf, eh);
618 else
619 efx_rx_deliver(channel, rx_buf);
620 }
621
622 void efx_rx_strategy(struct efx_channel *channel)
623 {
624 enum efx_rx_alloc_method method = rx_alloc_method;
625
626 /* Only makes sense to use page based allocation if GRO is enabled */
627 if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
628 method = RX_ALLOC_METHOD_SKB;
629 } else if (method == RX_ALLOC_METHOD_AUTO) {
630 /* Constrain the rx_alloc_level */
631 if (channel->rx_alloc_level < 0)
632 channel->rx_alloc_level = 0;
633 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
634 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
635
636 /* Decide on the allocation method */
637 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
638 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
639 }
640
641 /* Push the option */
642 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
643 }
644
645 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
646 {
647 struct efx_nic *efx = rx_queue->efx;
648 unsigned int entries;
649 int rc;
650
651 /* Create the smallest power-of-two aligned ring */
652 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
653 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
654 rx_queue->ptr_mask = entries - 1;
655
656 netif_dbg(efx, probe, efx->net_dev,
657 "creating RX queue %d size %#x mask %#x\n",
658 efx_rx_queue_index(rx_queue), efx->rxq_entries,
659 rx_queue->ptr_mask);
660
661 /* Allocate RX buffers */
662 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
663 GFP_KERNEL);
664 if (!rx_queue->buffer)
665 return -ENOMEM;
666
667 rc = efx_nic_probe_rx(rx_queue);
668 if (rc) {
669 kfree(rx_queue->buffer);
670 rx_queue->buffer = NULL;
671 }
672 return rc;
673 }
674
675 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
676 {
677 struct efx_nic *efx = rx_queue->efx;
678 unsigned int max_fill, trigger, max_trigger;
679
680 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
681 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
682
683 /* Initialise ptr fields */
684 rx_queue->added_count = 0;
685 rx_queue->notified_count = 0;
686 rx_queue->removed_count = 0;
687 rx_queue->min_fill = -1U;
688
689 /* Initialise limit fields */
690 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
691 max_trigger = max_fill - EFX_RX_BATCH;
692 if (rx_refill_threshold != 0) {
693 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
694 if (trigger > max_trigger)
695 trigger = max_trigger;
696 } else {
697 trigger = max_trigger;
698 }
699
700 rx_queue->max_fill = max_fill;
701 rx_queue->fast_fill_trigger = trigger;
702
703 /* Set up RX descriptor ring */
704 rx_queue->enabled = true;
705 efx_nic_init_rx(rx_queue);
706 }
707
708 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
709 {
710 int i;
711 struct efx_rx_buffer *rx_buf;
712
713 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
714 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
715
716 /* A flush failure might have left rx_queue->enabled */
717 rx_queue->enabled = false;
718
719 del_timer_sync(&rx_queue->slow_fill);
720 efx_nic_fini_rx(rx_queue);
721
722 /* Release RX buffers NB start at index 0 not current HW ptr */
723 if (rx_queue->buffer) {
724 for (i = 0; i <= rx_queue->ptr_mask; i++) {
725 rx_buf = efx_rx_buffer(rx_queue, i);
726 efx_fini_rx_buffer(rx_queue, rx_buf);
727 }
728 }
729 }
730
731 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
732 {
733 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
734 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
735
736 efx_nic_remove_rx(rx_queue);
737
738 kfree(rx_queue->buffer);
739 rx_queue->buffer = NULL;
740 }
741
742
743 module_param(rx_alloc_method, int, 0644);
744 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
745
746 module_param(rx_refill_threshold, uint, 0444);
747 MODULE_PARM_DESC(rx_refill_threshold,
748 "RX descriptor ring refill threshold (%)");
749