bonding:record primary when modify it via sysfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / sfc / falcon.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2010 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "spi.h"
23 #include "nic.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "phy.h"
27 #include "workarounds.h"
28
29 /* Hardware control for SFC4000 (aka Falcon). */
30
31 static const unsigned int
32 /* "Large" EEPROM device: Atmel AT25640 or similar
33 * 8 KB, 16-bit address, 32 B write block */
34 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
35 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
36 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
37 /* Default flash device: Atmel AT25F1024
38 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
39 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
40 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
41 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
42 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
43 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
44
45 /**************************************************************************
46 *
47 * I2C bus - this is a bit-bashing interface using GPIO pins
48 * Note that it uses the output enables to tristate the outputs
49 * SDA is the data pin and SCL is the clock
50 *
51 **************************************************************************
52 */
53 static void falcon_setsda(void *data, int state)
54 {
55 struct efx_nic *efx = (struct efx_nic *)data;
56 efx_oword_t reg;
57
58 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
59 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
60 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
61 }
62
63 static void falcon_setscl(void *data, int state)
64 {
65 struct efx_nic *efx = (struct efx_nic *)data;
66 efx_oword_t reg;
67
68 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
69 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
70 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
71 }
72
73 static int falcon_getsda(void *data)
74 {
75 struct efx_nic *efx = (struct efx_nic *)data;
76 efx_oword_t reg;
77
78 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
79 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
80 }
81
82 static int falcon_getscl(void *data)
83 {
84 struct efx_nic *efx = (struct efx_nic *)data;
85 efx_oword_t reg;
86
87 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
88 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
89 }
90
91 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
92 .setsda = falcon_setsda,
93 .setscl = falcon_setscl,
94 .getsda = falcon_getsda,
95 .getscl = falcon_getscl,
96 .udelay = 5,
97 /* Wait up to 50 ms for slave to let us pull SCL high */
98 .timeout = DIV_ROUND_UP(HZ, 20),
99 };
100
101 static void falcon_push_irq_moderation(struct efx_channel *channel)
102 {
103 efx_dword_t timer_cmd;
104 struct efx_nic *efx = channel->efx;
105
106 /* Set timer register */
107 if (channel->irq_moderation) {
108 EFX_POPULATE_DWORD_2(timer_cmd,
109 FRF_AB_TC_TIMER_MODE,
110 FFE_BB_TIMER_MODE_INT_HLDOFF,
111 FRF_AB_TC_TIMER_VAL,
112 channel->irq_moderation - 1);
113 } else {
114 EFX_POPULATE_DWORD_2(timer_cmd,
115 FRF_AB_TC_TIMER_MODE,
116 FFE_BB_TIMER_MODE_DIS,
117 FRF_AB_TC_TIMER_VAL, 0);
118 }
119 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
120 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
121 channel->channel);
122 }
123
124 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
125
126 static void falcon_prepare_flush(struct efx_nic *efx)
127 {
128 falcon_deconfigure_mac_wrapper(efx);
129
130 /* Wait for the tx and rx fifo's to get to the next packet boundary
131 * (~1ms without back-pressure), then to drain the remainder of the
132 * fifo's at data path speeds (negligible), with a healthy margin. */
133 msleep(10);
134 }
135
136 /* Acknowledge a legacy interrupt from Falcon
137 *
138 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
139 *
140 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
141 * BIU. Interrupt acknowledge is read sensitive so must write instead
142 * (then read to ensure the BIU collector is flushed)
143 *
144 * NB most hardware supports MSI interrupts
145 */
146 inline void falcon_irq_ack_a1(struct efx_nic *efx)
147 {
148 efx_dword_t reg;
149
150 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
151 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
152 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
153 }
154
155
156 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
157 {
158 struct efx_nic *efx = dev_id;
159 efx_oword_t *int_ker = efx->irq_status.addr;
160 int syserr;
161 int queues;
162
163 /* Check to see if this is our interrupt. If it isn't, we
164 * exit without having touched the hardware.
165 */
166 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
167 netif_vdbg(efx, intr, efx->net_dev,
168 "IRQ %d on CPU %d not for me\n", irq,
169 raw_smp_processor_id());
170 return IRQ_NONE;
171 }
172 efx->last_irq_cpu = raw_smp_processor_id();
173 netif_vdbg(efx, intr, efx->net_dev,
174 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
175 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
176
177 /* Check to see if we have a serious error condition */
178 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
179 if (unlikely(syserr))
180 return efx_nic_fatal_interrupt(efx);
181
182 /* Determine interrupting queues, clear interrupt status
183 * register and acknowledge the device interrupt.
184 */
185 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
186 queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
187 EFX_ZERO_OWORD(*int_ker);
188 wmb(); /* Ensure the vector is cleared before interrupt ack */
189 falcon_irq_ack_a1(efx);
190
191 if (queues & 1)
192 efx_schedule_channel_irq(efx_get_channel(efx, 0));
193 if (queues & 2)
194 efx_schedule_channel_irq(efx_get_channel(efx, 1));
195 return IRQ_HANDLED;
196 }
197 /**************************************************************************
198 *
199 * EEPROM/flash
200 *
201 **************************************************************************
202 */
203
204 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
205
206 static int falcon_spi_poll(struct efx_nic *efx)
207 {
208 efx_oword_t reg;
209 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
210 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
211 }
212
213 /* Wait for SPI command completion */
214 static int falcon_spi_wait(struct efx_nic *efx)
215 {
216 /* Most commands will finish quickly, so we start polling at
217 * very short intervals. Sometimes the command may have to
218 * wait for VPD or expansion ROM access outside of our
219 * control, so we allow up to 100 ms. */
220 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
221 int i;
222
223 for (i = 0; i < 10; i++) {
224 if (!falcon_spi_poll(efx))
225 return 0;
226 udelay(10);
227 }
228
229 for (;;) {
230 if (!falcon_spi_poll(efx))
231 return 0;
232 if (time_after_eq(jiffies, timeout)) {
233 netif_err(efx, hw, efx->net_dev,
234 "timed out waiting for SPI\n");
235 return -ETIMEDOUT;
236 }
237 schedule_timeout_uninterruptible(1);
238 }
239 }
240
241 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
242 unsigned int command, int address,
243 const void *in, void *out, size_t len)
244 {
245 bool addressed = (address >= 0);
246 bool reading = (out != NULL);
247 efx_oword_t reg;
248 int rc;
249
250 /* Input validation */
251 if (len > FALCON_SPI_MAX_LEN)
252 return -EINVAL;
253
254 /* Check that previous command is not still running */
255 rc = falcon_spi_poll(efx);
256 if (rc)
257 return rc;
258
259 /* Program address register, if we have an address */
260 if (addressed) {
261 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
262 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
263 }
264
265 /* Program data register, if we have data */
266 if (in != NULL) {
267 memcpy(&reg, in, len);
268 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
269 }
270
271 /* Issue read/write command */
272 EFX_POPULATE_OWORD_7(reg,
273 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
274 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
275 FRF_AB_EE_SPI_HCMD_DABCNT, len,
276 FRF_AB_EE_SPI_HCMD_READ, reading,
277 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
278 FRF_AB_EE_SPI_HCMD_ADBCNT,
279 (addressed ? spi->addr_len : 0),
280 FRF_AB_EE_SPI_HCMD_ENC, command);
281 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
282
283 /* Wait for read/write to complete */
284 rc = falcon_spi_wait(efx);
285 if (rc)
286 return rc;
287
288 /* Read data */
289 if (out != NULL) {
290 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
291 memcpy(out, &reg, len);
292 }
293
294 return 0;
295 }
296
297 static size_t
298 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
299 {
300 return min(FALCON_SPI_MAX_LEN,
301 (spi->block_size - (start & (spi->block_size - 1))));
302 }
303
304 static inline u8
305 efx_spi_munge_command(const struct efx_spi_device *spi,
306 const u8 command, const unsigned int address)
307 {
308 return command | (((address >> 8) & spi->munge_address) << 3);
309 }
310
311 /* Wait up to 10 ms for buffered write completion */
312 int
313 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
314 {
315 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
316 u8 status;
317 int rc;
318
319 for (;;) {
320 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
321 &status, sizeof(status));
322 if (rc)
323 return rc;
324 if (!(status & SPI_STATUS_NRDY))
325 return 0;
326 if (time_after_eq(jiffies, timeout)) {
327 netif_err(efx, hw, efx->net_dev,
328 "SPI write timeout on device %d"
329 " last status=0x%02x\n",
330 spi->device_id, status);
331 return -ETIMEDOUT;
332 }
333 schedule_timeout_uninterruptible(1);
334 }
335 }
336
337 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
338 loff_t start, size_t len, size_t *retlen, u8 *buffer)
339 {
340 size_t block_len, pos = 0;
341 unsigned int command;
342 int rc = 0;
343
344 while (pos < len) {
345 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
346
347 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
348 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
349 buffer + pos, block_len);
350 if (rc)
351 break;
352 pos += block_len;
353
354 /* Avoid locking up the system */
355 cond_resched();
356 if (signal_pending(current)) {
357 rc = -EINTR;
358 break;
359 }
360 }
361
362 if (retlen)
363 *retlen = pos;
364 return rc;
365 }
366
367 int
368 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
369 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
370 {
371 u8 verify_buffer[FALCON_SPI_MAX_LEN];
372 size_t block_len, pos = 0;
373 unsigned int command;
374 int rc = 0;
375
376 while (pos < len) {
377 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
378 if (rc)
379 break;
380
381 block_len = min(len - pos,
382 falcon_spi_write_limit(spi, start + pos));
383 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
384 rc = falcon_spi_cmd(efx, spi, command, start + pos,
385 buffer + pos, NULL, block_len);
386 if (rc)
387 break;
388
389 rc = falcon_spi_wait_write(efx, spi);
390 if (rc)
391 break;
392
393 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
394 rc = falcon_spi_cmd(efx, spi, command, start + pos,
395 NULL, verify_buffer, block_len);
396 if (memcmp(verify_buffer, buffer + pos, block_len)) {
397 rc = -EIO;
398 break;
399 }
400
401 pos += block_len;
402
403 /* Avoid locking up the system */
404 cond_resched();
405 if (signal_pending(current)) {
406 rc = -EINTR;
407 break;
408 }
409 }
410
411 if (retlen)
412 *retlen = pos;
413 return rc;
414 }
415
416 /**************************************************************************
417 *
418 * MAC wrapper
419 *
420 **************************************************************************
421 */
422
423 static void falcon_push_multicast_hash(struct efx_nic *efx)
424 {
425 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
426
427 WARN_ON(!mutex_is_locked(&efx->mac_lock));
428
429 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
430 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
431 }
432
433 static void falcon_reset_macs(struct efx_nic *efx)
434 {
435 struct falcon_nic_data *nic_data = efx->nic_data;
436 efx_oword_t reg, mac_ctrl;
437 int count;
438
439 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
440 /* It's not safe to use GLB_CTL_REG to reset the
441 * macs, so instead use the internal MAC resets
442 */
443 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
444 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
445
446 for (count = 0; count < 10000; count++) {
447 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
448 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
449 0)
450 return;
451 udelay(10);
452 }
453
454 netif_err(efx, hw, efx->net_dev,
455 "timed out waiting for XMAC core reset\n");
456 }
457
458 /* Mac stats will fail whist the TX fifo is draining */
459 WARN_ON(nic_data->stats_disable_count == 0);
460
461 efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
462 EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
463 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
464
465 efx_reado(efx, &reg, FR_AB_GLB_CTL);
466 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
467 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
468 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
469 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
470
471 count = 0;
472 while (1) {
473 efx_reado(efx, &reg, FR_AB_GLB_CTL);
474 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
475 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
476 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
477 netif_dbg(efx, hw, efx->net_dev,
478 "Completed MAC reset after %d loops\n",
479 count);
480 break;
481 }
482 if (count > 20) {
483 netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
484 break;
485 }
486 count++;
487 udelay(10);
488 }
489
490 /* Ensure the correct MAC is selected before statistics
491 * are re-enabled by the caller */
492 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
493
494 falcon_setup_xaui(efx);
495 }
496
497 void falcon_drain_tx_fifo(struct efx_nic *efx)
498 {
499 efx_oword_t reg;
500
501 if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
502 (efx->loopback_mode != LOOPBACK_NONE))
503 return;
504
505 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
506 /* There is no point in draining more than once */
507 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
508 return;
509
510 falcon_reset_macs(efx);
511 }
512
513 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
514 {
515 efx_oword_t reg;
516
517 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
518 return;
519
520 /* Isolate the MAC -> RX */
521 efx_reado(efx, &reg, FR_AZ_RX_CFG);
522 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
523 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
524
525 /* Isolate TX -> MAC */
526 falcon_drain_tx_fifo(efx);
527 }
528
529 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
530 {
531 struct efx_link_state *link_state = &efx->link_state;
532 efx_oword_t reg;
533 int link_speed, isolate;
534
535 isolate = !!ACCESS_ONCE(efx->reset_pending);
536
537 switch (link_state->speed) {
538 case 10000: link_speed = 3; break;
539 case 1000: link_speed = 2; break;
540 case 100: link_speed = 1; break;
541 default: link_speed = 0; break;
542 }
543 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
544 * as advertised. Disable to ensure packets are not
545 * indefinitely held and TX queue can be flushed at any point
546 * while the link is down. */
547 EFX_POPULATE_OWORD_5(reg,
548 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
549 FRF_AB_MAC_BCAD_ACPT, 1,
550 FRF_AB_MAC_UC_PROM, efx->promiscuous,
551 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
552 FRF_AB_MAC_SPEED, link_speed);
553 /* On B0, MAC backpressure can be disabled and packets get
554 * discarded. */
555 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
556 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
557 !link_state->up || isolate);
558 }
559
560 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
561
562 /* Restore the multicast hash registers. */
563 falcon_push_multicast_hash(efx);
564
565 efx_reado(efx, &reg, FR_AZ_RX_CFG);
566 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
567 * initialisation but it may read back as 0) */
568 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
569 /* Unisolate the MAC -> RX */
570 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
571 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
572 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
573 }
574
575 static void falcon_stats_request(struct efx_nic *efx)
576 {
577 struct falcon_nic_data *nic_data = efx->nic_data;
578 efx_oword_t reg;
579
580 WARN_ON(nic_data->stats_pending);
581 WARN_ON(nic_data->stats_disable_count);
582
583 if (nic_data->stats_dma_done == NULL)
584 return; /* no mac selected */
585
586 *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
587 nic_data->stats_pending = true;
588 wmb(); /* ensure done flag is clear */
589
590 /* Initiate DMA transfer of stats */
591 EFX_POPULATE_OWORD_2(reg,
592 FRF_AB_MAC_STAT_DMA_CMD, 1,
593 FRF_AB_MAC_STAT_DMA_ADR,
594 efx->stats_buffer.dma_addr);
595 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
596
597 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
598 }
599
600 static void falcon_stats_complete(struct efx_nic *efx)
601 {
602 struct falcon_nic_data *nic_data = efx->nic_data;
603
604 if (!nic_data->stats_pending)
605 return;
606
607 nic_data->stats_pending = false;
608 if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
609 rmb(); /* read the done flag before the stats */
610 falcon_update_stats_xmac(efx);
611 } else {
612 netif_err(efx, hw, efx->net_dev,
613 "timed out waiting for statistics\n");
614 }
615 }
616
617 static void falcon_stats_timer_func(unsigned long context)
618 {
619 struct efx_nic *efx = (struct efx_nic *)context;
620 struct falcon_nic_data *nic_data = efx->nic_data;
621
622 spin_lock(&efx->stats_lock);
623
624 falcon_stats_complete(efx);
625 if (nic_data->stats_disable_count == 0)
626 falcon_stats_request(efx);
627
628 spin_unlock(&efx->stats_lock);
629 }
630
631 static bool falcon_loopback_link_poll(struct efx_nic *efx)
632 {
633 struct efx_link_state old_state = efx->link_state;
634
635 WARN_ON(!mutex_is_locked(&efx->mac_lock));
636 WARN_ON(!LOOPBACK_INTERNAL(efx));
637
638 efx->link_state.fd = true;
639 efx->link_state.fc = efx->wanted_fc;
640 efx->link_state.up = true;
641 efx->link_state.speed = 10000;
642
643 return !efx_link_state_equal(&efx->link_state, &old_state);
644 }
645
646 static int falcon_reconfigure_port(struct efx_nic *efx)
647 {
648 int rc;
649
650 WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
651
652 /* Poll the PHY link state *before* reconfiguring it. This means we
653 * will pick up the correct speed (in loopback) to select the correct
654 * MAC.
655 */
656 if (LOOPBACK_INTERNAL(efx))
657 falcon_loopback_link_poll(efx);
658 else
659 efx->phy_op->poll(efx);
660
661 falcon_stop_nic_stats(efx);
662 falcon_deconfigure_mac_wrapper(efx);
663
664 falcon_reset_macs(efx);
665
666 efx->phy_op->reconfigure(efx);
667 rc = falcon_reconfigure_xmac(efx);
668 BUG_ON(rc);
669
670 falcon_start_nic_stats(efx);
671
672 /* Synchronise efx->link_state with the kernel */
673 efx_link_status_changed(efx);
674
675 return 0;
676 }
677
678 /**************************************************************************
679 *
680 * PHY access via GMII
681 *
682 **************************************************************************
683 */
684
685 /* Wait for GMII access to complete */
686 static int falcon_gmii_wait(struct efx_nic *efx)
687 {
688 efx_oword_t md_stat;
689 int count;
690
691 /* wait up to 50ms - taken max from datasheet */
692 for (count = 0; count < 5000; count++) {
693 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
694 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
695 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
696 EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
697 netif_err(efx, hw, efx->net_dev,
698 "error from GMII access "
699 EFX_OWORD_FMT"\n",
700 EFX_OWORD_VAL(md_stat));
701 return -EIO;
702 }
703 return 0;
704 }
705 udelay(10);
706 }
707 netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
708 return -ETIMEDOUT;
709 }
710
711 /* Write an MDIO register of a PHY connected to Falcon. */
712 static int falcon_mdio_write(struct net_device *net_dev,
713 int prtad, int devad, u16 addr, u16 value)
714 {
715 struct efx_nic *efx = netdev_priv(net_dev);
716 struct falcon_nic_data *nic_data = efx->nic_data;
717 efx_oword_t reg;
718 int rc;
719
720 netif_vdbg(efx, hw, efx->net_dev,
721 "writing MDIO %d register %d.%d with 0x%04x\n",
722 prtad, devad, addr, value);
723
724 mutex_lock(&nic_data->mdio_lock);
725
726 /* Check MDIO not currently being accessed */
727 rc = falcon_gmii_wait(efx);
728 if (rc)
729 goto out;
730
731 /* Write the address/ID register */
732 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
733 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
734
735 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
736 FRF_AB_MD_DEV_ADR, devad);
737 efx_writeo(efx, &reg, FR_AB_MD_ID);
738
739 /* Write data */
740 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
741 efx_writeo(efx, &reg, FR_AB_MD_TXD);
742
743 EFX_POPULATE_OWORD_2(reg,
744 FRF_AB_MD_WRC, 1,
745 FRF_AB_MD_GC, 0);
746 efx_writeo(efx, &reg, FR_AB_MD_CS);
747
748 /* Wait for data to be written */
749 rc = falcon_gmii_wait(efx);
750 if (rc) {
751 /* Abort the write operation */
752 EFX_POPULATE_OWORD_2(reg,
753 FRF_AB_MD_WRC, 0,
754 FRF_AB_MD_GC, 1);
755 efx_writeo(efx, &reg, FR_AB_MD_CS);
756 udelay(10);
757 }
758
759 out:
760 mutex_unlock(&nic_data->mdio_lock);
761 return rc;
762 }
763
764 /* Read an MDIO register of a PHY connected to Falcon. */
765 static int falcon_mdio_read(struct net_device *net_dev,
766 int prtad, int devad, u16 addr)
767 {
768 struct efx_nic *efx = netdev_priv(net_dev);
769 struct falcon_nic_data *nic_data = efx->nic_data;
770 efx_oword_t reg;
771 int rc;
772
773 mutex_lock(&nic_data->mdio_lock);
774
775 /* Check MDIO not currently being accessed */
776 rc = falcon_gmii_wait(efx);
777 if (rc)
778 goto out;
779
780 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
781 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
782
783 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
784 FRF_AB_MD_DEV_ADR, devad);
785 efx_writeo(efx, &reg, FR_AB_MD_ID);
786
787 /* Request data to be read */
788 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
789 efx_writeo(efx, &reg, FR_AB_MD_CS);
790
791 /* Wait for data to become available */
792 rc = falcon_gmii_wait(efx);
793 if (rc == 0) {
794 efx_reado(efx, &reg, FR_AB_MD_RXD);
795 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
796 netif_vdbg(efx, hw, efx->net_dev,
797 "read from MDIO %d register %d.%d, got %04x\n",
798 prtad, devad, addr, rc);
799 } else {
800 /* Abort the read operation */
801 EFX_POPULATE_OWORD_2(reg,
802 FRF_AB_MD_RIC, 0,
803 FRF_AB_MD_GC, 1);
804 efx_writeo(efx, &reg, FR_AB_MD_CS);
805
806 netif_dbg(efx, hw, efx->net_dev,
807 "read from MDIO %d register %d.%d, got error %d\n",
808 prtad, devad, addr, rc);
809 }
810
811 out:
812 mutex_unlock(&nic_data->mdio_lock);
813 return rc;
814 }
815
816 /* This call is responsible for hooking in the MAC and PHY operations */
817 static int falcon_probe_port(struct efx_nic *efx)
818 {
819 struct falcon_nic_data *nic_data = efx->nic_data;
820 int rc;
821
822 switch (efx->phy_type) {
823 case PHY_TYPE_SFX7101:
824 efx->phy_op = &falcon_sfx7101_phy_ops;
825 break;
826 case PHY_TYPE_QT2022C2:
827 case PHY_TYPE_QT2025C:
828 efx->phy_op = &falcon_qt202x_phy_ops;
829 break;
830 case PHY_TYPE_TXC43128:
831 efx->phy_op = &falcon_txc_phy_ops;
832 break;
833 default:
834 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
835 efx->phy_type);
836 return -ENODEV;
837 }
838
839 /* Fill out MDIO structure and loopback modes */
840 mutex_init(&nic_data->mdio_lock);
841 efx->mdio.mdio_read = falcon_mdio_read;
842 efx->mdio.mdio_write = falcon_mdio_write;
843 rc = efx->phy_op->probe(efx);
844 if (rc != 0)
845 return rc;
846
847 /* Initial assumption */
848 efx->link_state.speed = 10000;
849 efx->link_state.fd = true;
850
851 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
852 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
853 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
854 else
855 efx->wanted_fc = EFX_FC_RX;
856 if (efx->mdio.mmds & MDIO_DEVS_AN)
857 efx->wanted_fc |= EFX_FC_AUTO;
858
859 /* Allocate buffer for stats */
860 rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
861 FALCON_MAC_STATS_SIZE);
862 if (rc)
863 return rc;
864 netif_dbg(efx, probe, efx->net_dev,
865 "stats buffer at %llx (virt %p phys %llx)\n",
866 (u64)efx->stats_buffer.dma_addr,
867 efx->stats_buffer.addr,
868 (u64)virt_to_phys(efx->stats_buffer.addr));
869 nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset;
870
871 return 0;
872 }
873
874 static void falcon_remove_port(struct efx_nic *efx)
875 {
876 efx->phy_op->remove(efx);
877 efx_nic_free_buffer(efx, &efx->stats_buffer);
878 }
879
880 /* Global events are basically PHY events */
881 static bool
882 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
883 {
884 struct efx_nic *efx = channel->efx;
885 struct falcon_nic_data *nic_data = efx->nic_data;
886
887 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
888 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
889 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
890 /* Ignored */
891 return true;
892
893 if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
894 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
895 nic_data->xmac_poll_required = true;
896 return true;
897 }
898
899 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
900 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
901 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
902 netif_err(efx, rx_err, efx->net_dev,
903 "channel %d seen global RX_RESET event. Resetting.\n",
904 channel->channel);
905
906 atomic_inc(&efx->rx_reset);
907 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
908 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
909 return true;
910 }
911
912 return false;
913 }
914
915 /**************************************************************************
916 *
917 * Falcon test code
918 *
919 **************************************************************************/
920
921 static int
922 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
923 {
924 struct falcon_nic_data *nic_data = efx->nic_data;
925 struct falcon_nvconfig *nvconfig;
926 struct efx_spi_device *spi;
927 void *region;
928 int rc, magic_num, struct_ver;
929 __le16 *word, *limit;
930 u32 csum;
931
932 if (efx_spi_present(&nic_data->spi_flash))
933 spi = &nic_data->spi_flash;
934 else if (efx_spi_present(&nic_data->spi_eeprom))
935 spi = &nic_data->spi_eeprom;
936 else
937 return -EINVAL;
938
939 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
940 if (!region)
941 return -ENOMEM;
942 nvconfig = region + FALCON_NVCONFIG_OFFSET;
943
944 mutex_lock(&nic_data->spi_lock);
945 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
946 mutex_unlock(&nic_data->spi_lock);
947 if (rc) {
948 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
949 efx_spi_present(&nic_data->spi_flash) ?
950 "flash" : "EEPROM");
951 rc = -EIO;
952 goto out;
953 }
954
955 magic_num = le16_to_cpu(nvconfig->board_magic_num);
956 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
957
958 rc = -EINVAL;
959 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
960 netif_err(efx, hw, efx->net_dev,
961 "NVRAM bad magic 0x%x\n", magic_num);
962 goto out;
963 }
964 if (struct_ver < 2) {
965 netif_err(efx, hw, efx->net_dev,
966 "NVRAM has ancient version 0x%x\n", struct_ver);
967 goto out;
968 } else if (struct_ver < 4) {
969 word = &nvconfig->board_magic_num;
970 limit = (__le16 *) (nvconfig + 1);
971 } else {
972 word = region;
973 limit = region + FALCON_NVCONFIG_END;
974 }
975 for (csum = 0; word < limit; ++word)
976 csum += le16_to_cpu(*word);
977
978 if (~csum & 0xffff) {
979 netif_err(efx, hw, efx->net_dev,
980 "NVRAM has incorrect checksum\n");
981 goto out;
982 }
983
984 rc = 0;
985 if (nvconfig_out)
986 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
987
988 out:
989 kfree(region);
990 return rc;
991 }
992
993 static int falcon_test_nvram(struct efx_nic *efx)
994 {
995 return falcon_read_nvram(efx, NULL);
996 }
997
998 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
999 { FR_AZ_ADR_REGION,
1000 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1001 { FR_AZ_RX_CFG,
1002 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1003 { FR_AZ_TX_CFG,
1004 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1005 { FR_AZ_TX_RESERVED,
1006 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1007 { FR_AB_MAC_CTRL,
1008 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1009 { FR_AZ_SRM_TX_DC_CFG,
1010 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1011 { FR_AZ_RX_DC_CFG,
1012 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1013 { FR_AZ_RX_DC_PF_WM,
1014 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1015 { FR_BZ_DP_CTRL,
1016 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1017 { FR_AB_GM_CFG2,
1018 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1019 { FR_AB_GMF_CFG0,
1020 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1021 { FR_AB_XM_GLB_CFG,
1022 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1023 { FR_AB_XM_TX_CFG,
1024 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1025 { FR_AB_XM_RX_CFG,
1026 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1027 { FR_AB_XM_RX_PARAM,
1028 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1029 { FR_AB_XM_FC,
1030 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1031 { FR_AB_XM_ADR_LO,
1032 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1033 { FR_AB_XX_SD_CTL,
1034 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1035 };
1036
1037 static int falcon_b0_test_registers(struct efx_nic *efx)
1038 {
1039 return efx_nic_test_registers(efx, falcon_b0_register_tests,
1040 ARRAY_SIZE(falcon_b0_register_tests));
1041 }
1042
1043 /**************************************************************************
1044 *
1045 * Device reset
1046 *
1047 **************************************************************************
1048 */
1049
1050 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1051 {
1052 switch (reason) {
1053 case RESET_TYPE_RX_RECOVERY:
1054 case RESET_TYPE_RX_DESC_FETCH:
1055 case RESET_TYPE_TX_DESC_FETCH:
1056 case RESET_TYPE_TX_SKIP:
1057 /* These can occasionally occur due to hardware bugs.
1058 * We try to reset without disrupting the link.
1059 */
1060 return RESET_TYPE_INVISIBLE;
1061 default:
1062 return RESET_TYPE_ALL;
1063 }
1064 }
1065
1066 static int falcon_map_reset_flags(u32 *flags)
1067 {
1068 enum {
1069 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1070 ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1071 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1072 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1073 };
1074
1075 if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1076 *flags &= ~FALCON_RESET_WORLD;
1077 return RESET_TYPE_WORLD;
1078 }
1079
1080 if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1081 *flags &= ~FALCON_RESET_ALL;
1082 return RESET_TYPE_ALL;
1083 }
1084
1085 if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1086 *flags &= ~FALCON_RESET_INVISIBLE;
1087 return RESET_TYPE_INVISIBLE;
1088 }
1089
1090 return -EINVAL;
1091 }
1092
1093 /* Resets NIC to known state. This routine must be called in process
1094 * context and is allowed to sleep. */
1095 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1096 {
1097 struct falcon_nic_data *nic_data = efx->nic_data;
1098 efx_oword_t glb_ctl_reg_ker;
1099 int rc;
1100
1101 netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1102 RESET_TYPE(method));
1103
1104 /* Initiate device reset */
1105 if (method == RESET_TYPE_WORLD) {
1106 rc = pci_save_state(efx->pci_dev);
1107 if (rc) {
1108 netif_err(efx, drv, efx->net_dev,
1109 "failed to backup PCI state of primary "
1110 "function prior to hardware reset\n");
1111 goto fail1;
1112 }
1113 if (efx_nic_is_dual_func(efx)) {
1114 rc = pci_save_state(nic_data->pci_dev2);
1115 if (rc) {
1116 netif_err(efx, drv, efx->net_dev,
1117 "failed to backup PCI state of "
1118 "secondary function prior to "
1119 "hardware reset\n");
1120 goto fail2;
1121 }
1122 }
1123
1124 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1125 FRF_AB_EXT_PHY_RST_DUR,
1126 FFE_AB_EXT_PHY_RST_DUR_10240US,
1127 FRF_AB_SWRST, 1);
1128 } else {
1129 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1130 /* exclude PHY from "invisible" reset */
1131 FRF_AB_EXT_PHY_RST_CTL,
1132 method == RESET_TYPE_INVISIBLE,
1133 /* exclude EEPROM/flash and PCIe */
1134 FRF_AB_PCIE_CORE_RST_CTL, 1,
1135 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1136 FRF_AB_PCIE_SD_RST_CTL, 1,
1137 FRF_AB_EE_RST_CTL, 1,
1138 FRF_AB_EXT_PHY_RST_DUR,
1139 FFE_AB_EXT_PHY_RST_DUR_10240US,
1140 FRF_AB_SWRST, 1);
1141 }
1142 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1143
1144 netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1145 schedule_timeout_uninterruptible(HZ / 20);
1146
1147 /* Restore PCI configuration if needed */
1148 if (method == RESET_TYPE_WORLD) {
1149 if (efx_nic_is_dual_func(efx))
1150 pci_restore_state(nic_data->pci_dev2);
1151 pci_restore_state(efx->pci_dev);
1152 netif_dbg(efx, drv, efx->net_dev,
1153 "successfully restored PCI config\n");
1154 }
1155
1156 /* Assert that reset complete */
1157 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1158 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1159 rc = -ETIMEDOUT;
1160 netif_err(efx, hw, efx->net_dev,
1161 "timed out waiting for hardware reset\n");
1162 goto fail3;
1163 }
1164 netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1165
1166 return 0;
1167
1168 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1169 fail2:
1170 pci_restore_state(efx->pci_dev);
1171 fail1:
1172 fail3:
1173 return rc;
1174 }
1175
1176 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1177 {
1178 struct falcon_nic_data *nic_data = efx->nic_data;
1179 int rc;
1180
1181 mutex_lock(&nic_data->spi_lock);
1182 rc = __falcon_reset_hw(efx, method);
1183 mutex_unlock(&nic_data->spi_lock);
1184
1185 return rc;
1186 }
1187
1188 static void falcon_monitor(struct efx_nic *efx)
1189 {
1190 bool link_changed;
1191 int rc;
1192
1193 BUG_ON(!mutex_is_locked(&efx->mac_lock));
1194
1195 rc = falcon_board(efx)->type->monitor(efx);
1196 if (rc) {
1197 netif_err(efx, hw, efx->net_dev,
1198 "Board sensor %s; shutting down PHY\n",
1199 (rc == -ERANGE) ? "reported fault" : "failed");
1200 efx->phy_mode |= PHY_MODE_LOW_POWER;
1201 rc = __efx_reconfigure_port(efx);
1202 WARN_ON(rc);
1203 }
1204
1205 if (LOOPBACK_INTERNAL(efx))
1206 link_changed = falcon_loopback_link_poll(efx);
1207 else
1208 link_changed = efx->phy_op->poll(efx);
1209
1210 if (link_changed) {
1211 falcon_stop_nic_stats(efx);
1212 falcon_deconfigure_mac_wrapper(efx);
1213
1214 falcon_reset_macs(efx);
1215 rc = falcon_reconfigure_xmac(efx);
1216 BUG_ON(rc);
1217
1218 falcon_start_nic_stats(efx);
1219
1220 efx_link_status_changed(efx);
1221 }
1222
1223 falcon_poll_xmac(efx);
1224 }
1225
1226 /* Zeroes out the SRAM contents. This routine must be called in
1227 * process context and is allowed to sleep.
1228 */
1229 static int falcon_reset_sram(struct efx_nic *efx)
1230 {
1231 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1232 int count;
1233
1234 /* Set the SRAM wake/sleep GPIO appropriately. */
1235 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1236 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1237 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1238 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1239
1240 /* Initiate SRAM reset */
1241 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1242 FRF_AZ_SRM_INIT_EN, 1,
1243 FRF_AZ_SRM_NB_SZ, 0);
1244 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1245
1246 /* Wait for SRAM reset to complete */
1247 count = 0;
1248 do {
1249 netif_dbg(efx, hw, efx->net_dev,
1250 "waiting for SRAM reset (attempt %d)...\n", count);
1251
1252 /* SRAM reset is slow; expect around 16ms */
1253 schedule_timeout_uninterruptible(HZ / 50);
1254
1255 /* Check for reset complete */
1256 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1257 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1258 netif_dbg(efx, hw, efx->net_dev,
1259 "SRAM reset complete\n");
1260
1261 return 0;
1262 }
1263 } while (++count < 20); /* wait up to 0.4 sec */
1264
1265 netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1266 return -ETIMEDOUT;
1267 }
1268
1269 static void falcon_spi_device_init(struct efx_nic *efx,
1270 struct efx_spi_device *spi_device,
1271 unsigned int device_id, u32 device_type)
1272 {
1273 if (device_type != 0) {
1274 spi_device->device_id = device_id;
1275 spi_device->size =
1276 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1277 spi_device->addr_len =
1278 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1279 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1280 spi_device->addr_len == 1);
1281 spi_device->erase_command =
1282 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1283 spi_device->erase_size =
1284 1 << SPI_DEV_TYPE_FIELD(device_type,
1285 SPI_DEV_TYPE_ERASE_SIZE);
1286 spi_device->block_size =
1287 1 << SPI_DEV_TYPE_FIELD(device_type,
1288 SPI_DEV_TYPE_BLOCK_SIZE);
1289 } else {
1290 spi_device->size = 0;
1291 }
1292 }
1293
1294 /* Extract non-volatile configuration */
1295 static int falcon_probe_nvconfig(struct efx_nic *efx)
1296 {
1297 struct falcon_nic_data *nic_data = efx->nic_data;
1298 struct falcon_nvconfig *nvconfig;
1299 int rc;
1300
1301 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1302 if (!nvconfig)
1303 return -ENOMEM;
1304
1305 rc = falcon_read_nvram(efx, nvconfig);
1306 if (rc)
1307 goto out;
1308
1309 efx->phy_type = nvconfig->board_v2.port0_phy_type;
1310 efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
1311
1312 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1313 falcon_spi_device_init(
1314 efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1315 le32_to_cpu(nvconfig->board_v3
1316 .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
1317 falcon_spi_device_init(
1318 efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1319 le32_to_cpu(nvconfig->board_v3
1320 .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
1321 }
1322
1323 /* Read the MAC addresses */
1324 memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
1325
1326 netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1327 efx->phy_type, efx->mdio.prtad);
1328
1329 rc = falcon_probe_board(efx,
1330 le16_to_cpu(nvconfig->board_v2.board_revision));
1331 out:
1332 kfree(nvconfig);
1333 return rc;
1334 }
1335
1336 static void falcon_dimension_resources(struct efx_nic *efx)
1337 {
1338 efx->rx_dc_base = 0x20000;
1339 efx->tx_dc_base = 0x26000;
1340 }
1341
1342 /* Probe all SPI devices on the NIC */
1343 static void falcon_probe_spi_devices(struct efx_nic *efx)
1344 {
1345 struct falcon_nic_data *nic_data = efx->nic_data;
1346 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1347 int boot_dev;
1348
1349 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1350 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1351 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1352
1353 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1354 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1355 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1356 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1357 boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1358 "flash" : "EEPROM");
1359 } else {
1360 /* Disable VPD and set clock dividers to safe
1361 * values for initial programming. */
1362 boot_dev = -1;
1363 netif_dbg(efx, probe, efx->net_dev,
1364 "Booted from internal ASIC settings;"
1365 " setting SPI config\n");
1366 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1367 /* 125 MHz / 7 ~= 20 MHz */
1368 FRF_AB_EE_SF_CLOCK_DIV, 7,
1369 /* 125 MHz / 63 ~= 2 MHz */
1370 FRF_AB_EE_EE_CLOCK_DIV, 63);
1371 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1372 }
1373
1374 mutex_init(&nic_data->spi_lock);
1375
1376 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1377 falcon_spi_device_init(efx, &nic_data->spi_flash,
1378 FFE_AB_SPI_DEVICE_FLASH,
1379 default_flash_type);
1380 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1381 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
1382 FFE_AB_SPI_DEVICE_EEPROM,
1383 large_eeprom_type);
1384 }
1385
1386 static int falcon_probe_nic(struct efx_nic *efx)
1387 {
1388 struct falcon_nic_data *nic_data;
1389 struct falcon_board *board;
1390 int rc;
1391
1392 /* Allocate storage for hardware specific data */
1393 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1394 if (!nic_data)
1395 return -ENOMEM;
1396 efx->nic_data = nic_data;
1397
1398 rc = -ENODEV;
1399
1400 if (efx_nic_fpga_ver(efx) != 0) {
1401 netif_err(efx, probe, efx->net_dev,
1402 "Falcon FPGA not supported\n");
1403 goto fail1;
1404 }
1405
1406 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1407 efx_oword_t nic_stat;
1408 struct pci_dev *dev;
1409 u8 pci_rev = efx->pci_dev->revision;
1410
1411 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1412 netif_err(efx, probe, efx->net_dev,
1413 "Falcon rev A0 not supported\n");
1414 goto fail1;
1415 }
1416 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1417 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1418 netif_err(efx, probe, efx->net_dev,
1419 "Falcon rev A1 1G not supported\n");
1420 goto fail1;
1421 }
1422 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1423 netif_err(efx, probe, efx->net_dev,
1424 "Falcon rev A1 PCI-X not supported\n");
1425 goto fail1;
1426 }
1427
1428 dev = pci_dev_get(efx->pci_dev);
1429 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
1430 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
1431 dev))) {
1432 if (dev->bus == efx->pci_dev->bus &&
1433 dev->devfn == efx->pci_dev->devfn + 1) {
1434 nic_data->pci_dev2 = dev;
1435 break;
1436 }
1437 }
1438 if (!nic_data->pci_dev2) {
1439 netif_err(efx, probe, efx->net_dev,
1440 "failed to find secondary function\n");
1441 rc = -ENODEV;
1442 goto fail2;
1443 }
1444 }
1445
1446 /* Now we can reset the NIC */
1447 rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
1448 if (rc) {
1449 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1450 goto fail3;
1451 }
1452
1453 /* Allocate memory for INT_KER */
1454 rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1455 if (rc)
1456 goto fail4;
1457 BUG_ON(efx->irq_status.dma_addr & 0x0f);
1458
1459 netif_dbg(efx, probe, efx->net_dev,
1460 "INT_KER at %llx (virt %p phys %llx)\n",
1461 (u64)efx->irq_status.dma_addr,
1462 efx->irq_status.addr,
1463 (u64)virt_to_phys(efx->irq_status.addr));
1464
1465 falcon_probe_spi_devices(efx);
1466
1467 /* Read in the non-volatile configuration */
1468 rc = falcon_probe_nvconfig(efx);
1469 if (rc) {
1470 if (rc == -EINVAL)
1471 netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
1472 goto fail5;
1473 }
1474
1475 efx->timer_quantum_ns = 4968; /* 621 cycles */
1476
1477 /* Initialise I2C adapter */
1478 board = falcon_board(efx);
1479 board->i2c_adap.owner = THIS_MODULE;
1480 board->i2c_data = falcon_i2c_bit_operations;
1481 board->i2c_data.data = efx;
1482 board->i2c_adap.algo_data = &board->i2c_data;
1483 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1484 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1485 sizeof(board->i2c_adap.name));
1486 rc = i2c_bit_add_bus(&board->i2c_adap);
1487 if (rc)
1488 goto fail5;
1489
1490 rc = falcon_board(efx)->type->init(efx);
1491 if (rc) {
1492 netif_err(efx, probe, efx->net_dev,
1493 "failed to initialise board\n");
1494 goto fail6;
1495 }
1496
1497 nic_data->stats_disable_count = 1;
1498 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1499 (unsigned long)efx);
1500
1501 return 0;
1502
1503 fail6:
1504 BUG_ON(i2c_del_adapter(&board->i2c_adap));
1505 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1506 fail5:
1507 efx_nic_free_buffer(efx, &efx->irq_status);
1508 fail4:
1509 fail3:
1510 if (nic_data->pci_dev2) {
1511 pci_dev_put(nic_data->pci_dev2);
1512 nic_data->pci_dev2 = NULL;
1513 }
1514 fail2:
1515 fail1:
1516 kfree(efx->nic_data);
1517 return rc;
1518 }
1519
1520 static void falcon_init_rx_cfg(struct efx_nic *efx)
1521 {
1522 /* Prior to Siena the RX DMA engine will split each frame at
1523 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1524 * be so large that that never happens. */
1525 const unsigned huge_buf_size = (3 * 4096) >> 5;
1526 /* RX control FIFO thresholds (32 entries) */
1527 const unsigned ctrl_xon_thr = 20;
1528 const unsigned ctrl_xoff_thr = 25;
1529 efx_oword_t reg;
1530
1531 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1532 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1533 /* Data FIFO size is 5.5K */
1534 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1535 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1536 huge_buf_size);
1537 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
1538 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
1539 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1540 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1541 } else {
1542 /* Data FIFO size is 80K; register fields moved */
1543 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1544 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1545 huge_buf_size);
1546 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
1547 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
1548 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
1549 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1550 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1551 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1552
1553 /* Enable hash insertion. This is broken for the
1554 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1555 * IPv4 hashes. */
1556 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1557 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1558 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1559 }
1560 /* Always enable XOFF signal from RX FIFO. We enable
1561 * or disable transmission of pause frames at the MAC. */
1562 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1563 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1564 }
1565
1566 /* This call performs hardware-specific global initialisation, such as
1567 * defining the descriptor cache sizes and number of RSS channels.
1568 * It does not set up any buffers, descriptor rings or event queues.
1569 */
1570 static int falcon_init_nic(struct efx_nic *efx)
1571 {
1572 efx_oword_t temp;
1573 int rc;
1574
1575 /* Use on-chip SRAM */
1576 efx_reado(efx, &temp, FR_AB_NIC_STAT);
1577 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1578 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1579
1580 rc = falcon_reset_sram(efx);
1581 if (rc)
1582 return rc;
1583
1584 /* Clear the parity enables on the TX data fifos as
1585 * they produce false parity errors because of timing issues
1586 */
1587 if (EFX_WORKAROUND_5129(efx)) {
1588 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1589 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1590 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1591 }
1592
1593 if (EFX_WORKAROUND_7244(efx)) {
1594 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1595 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1596 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1597 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1598 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1599 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1600 }
1601
1602 /* XXX This is documented only for Falcon A0/A1 */
1603 /* Setup RX. Wait for descriptor is broken and must
1604 * be disabled. RXDP recovery shouldn't be needed, but is.
1605 */
1606 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1607 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1608 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1609 if (EFX_WORKAROUND_5583(efx))
1610 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1611 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1612
1613 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1614 * descriptors (which is bad).
1615 */
1616 efx_reado(efx, &temp, FR_AZ_TX_CFG);
1617 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1618 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1619
1620 falcon_init_rx_cfg(efx);
1621
1622 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1623 /* Set hash key for IPv4 */
1624 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1625 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1626
1627 /* Set destination of both TX and RX Flush events */
1628 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1629 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1630 }
1631
1632 efx_nic_init_common(efx);
1633
1634 return 0;
1635 }
1636
1637 static void falcon_remove_nic(struct efx_nic *efx)
1638 {
1639 struct falcon_nic_data *nic_data = efx->nic_data;
1640 struct falcon_board *board = falcon_board(efx);
1641 int rc;
1642
1643 board->type->fini(efx);
1644
1645 /* Remove I2C adapter and clear it in preparation for a retry */
1646 rc = i2c_del_adapter(&board->i2c_adap);
1647 BUG_ON(rc);
1648 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1649
1650 efx_nic_free_buffer(efx, &efx->irq_status);
1651
1652 __falcon_reset_hw(efx, RESET_TYPE_ALL);
1653
1654 /* Release the second function after the reset */
1655 if (nic_data->pci_dev2) {
1656 pci_dev_put(nic_data->pci_dev2);
1657 nic_data->pci_dev2 = NULL;
1658 }
1659
1660 /* Tear down the private nic state */
1661 kfree(efx->nic_data);
1662 efx->nic_data = NULL;
1663 }
1664
1665 static void falcon_update_nic_stats(struct efx_nic *efx)
1666 {
1667 struct falcon_nic_data *nic_data = efx->nic_data;
1668 efx_oword_t cnt;
1669
1670 if (nic_data->stats_disable_count)
1671 return;
1672
1673 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1674 efx->n_rx_nodesc_drop_cnt +=
1675 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1676
1677 if (nic_data->stats_pending &&
1678 *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1679 nic_data->stats_pending = false;
1680 rmb(); /* read the done flag before the stats */
1681 falcon_update_stats_xmac(efx);
1682 }
1683 }
1684
1685 void falcon_start_nic_stats(struct efx_nic *efx)
1686 {
1687 struct falcon_nic_data *nic_data = efx->nic_data;
1688
1689 spin_lock_bh(&efx->stats_lock);
1690 if (--nic_data->stats_disable_count == 0)
1691 falcon_stats_request(efx);
1692 spin_unlock_bh(&efx->stats_lock);
1693 }
1694
1695 void falcon_stop_nic_stats(struct efx_nic *efx)
1696 {
1697 struct falcon_nic_data *nic_data = efx->nic_data;
1698 int i;
1699
1700 might_sleep();
1701
1702 spin_lock_bh(&efx->stats_lock);
1703 ++nic_data->stats_disable_count;
1704 spin_unlock_bh(&efx->stats_lock);
1705
1706 del_timer_sync(&nic_data->stats_timer);
1707
1708 /* Wait enough time for the most recent transfer to
1709 * complete. */
1710 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1711 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1712 break;
1713 msleep(1);
1714 }
1715
1716 spin_lock_bh(&efx->stats_lock);
1717 falcon_stats_complete(efx);
1718 spin_unlock_bh(&efx->stats_lock);
1719 }
1720
1721 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1722 {
1723 falcon_board(efx)->type->set_id_led(efx, mode);
1724 }
1725
1726 /**************************************************************************
1727 *
1728 * Wake on LAN
1729 *
1730 **************************************************************************
1731 */
1732
1733 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1734 {
1735 wol->supported = 0;
1736 wol->wolopts = 0;
1737 memset(&wol->sopass, 0, sizeof(wol->sopass));
1738 }
1739
1740 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1741 {
1742 if (type != 0)
1743 return -EINVAL;
1744 return 0;
1745 }
1746
1747 /**************************************************************************
1748 *
1749 * Revision-dependent attributes used by efx.c and nic.c
1750 *
1751 **************************************************************************
1752 */
1753
1754 const struct efx_nic_type falcon_a1_nic_type = {
1755 .probe = falcon_probe_nic,
1756 .remove = falcon_remove_nic,
1757 .init = falcon_init_nic,
1758 .dimension_resources = falcon_dimension_resources,
1759 .fini = efx_port_dummy_op_void,
1760 .monitor = falcon_monitor,
1761 .map_reset_reason = falcon_map_reset_reason,
1762 .map_reset_flags = falcon_map_reset_flags,
1763 .reset = falcon_reset_hw,
1764 .probe_port = falcon_probe_port,
1765 .remove_port = falcon_remove_port,
1766 .handle_global_event = falcon_handle_global_event,
1767 .prepare_flush = falcon_prepare_flush,
1768 .update_stats = falcon_update_nic_stats,
1769 .start_stats = falcon_start_nic_stats,
1770 .stop_stats = falcon_stop_nic_stats,
1771 .set_id_led = falcon_set_id_led,
1772 .push_irq_moderation = falcon_push_irq_moderation,
1773 .reconfigure_port = falcon_reconfigure_port,
1774 .reconfigure_mac = falcon_reconfigure_xmac,
1775 .check_mac_fault = falcon_xmac_check_fault,
1776 .get_wol = falcon_get_wol,
1777 .set_wol = falcon_set_wol,
1778 .resume_wol = efx_port_dummy_op_void,
1779 .test_nvram = falcon_test_nvram,
1780
1781 .revision = EFX_REV_FALCON_A1,
1782 .mem_map_size = 0x20000,
1783 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1784 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1785 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1786 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1787 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1788 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1789 .rx_buffer_padding = 0x24,
1790 .max_interrupt_mode = EFX_INT_MODE_MSI,
1791 .phys_addr_channels = 4,
1792 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
1793 .offload_features = NETIF_F_IP_CSUM,
1794 };
1795
1796 const struct efx_nic_type falcon_b0_nic_type = {
1797 .probe = falcon_probe_nic,
1798 .remove = falcon_remove_nic,
1799 .init = falcon_init_nic,
1800 .dimension_resources = falcon_dimension_resources,
1801 .fini = efx_port_dummy_op_void,
1802 .monitor = falcon_monitor,
1803 .map_reset_reason = falcon_map_reset_reason,
1804 .map_reset_flags = falcon_map_reset_flags,
1805 .reset = falcon_reset_hw,
1806 .probe_port = falcon_probe_port,
1807 .remove_port = falcon_remove_port,
1808 .handle_global_event = falcon_handle_global_event,
1809 .prepare_flush = falcon_prepare_flush,
1810 .update_stats = falcon_update_nic_stats,
1811 .start_stats = falcon_start_nic_stats,
1812 .stop_stats = falcon_stop_nic_stats,
1813 .set_id_led = falcon_set_id_led,
1814 .push_irq_moderation = falcon_push_irq_moderation,
1815 .reconfigure_port = falcon_reconfigure_port,
1816 .reconfigure_mac = falcon_reconfigure_xmac,
1817 .check_mac_fault = falcon_xmac_check_fault,
1818 .get_wol = falcon_get_wol,
1819 .set_wol = falcon_set_wol,
1820 .resume_wol = efx_port_dummy_op_void,
1821 .test_registers = falcon_b0_test_registers,
1822 .test_nvram = falcon_test_nvram,
1823
1824 .revision = EFX_REV_FALCON_B0,
1825 /* Map everything up to and including the RSS indirection
1826 * table. Don't map MSI-X table, MSI-X PBA since Linux
1827 * requires that they not be mapped. */
1828 .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1829 FR_BZ_RX_INDIRECTION_TBL_STEP *
1830 FR_BZ_RX_INDIRECTION_TBL_ROWS),
1831 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1832 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1833 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1834 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1835 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1836 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1837 .rx_buffer_hash_size = 0x10,
1838 .rx_buffer_padding = 0,
1839 .max_interrupt_mode = EFX_INT_MODE_MSIX,
1840 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1841 * interrupt handler only supports 32
1842 * channels */
1843 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
1844 .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
1845 };
1846