bonding:record primary when modify it via sysfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / realtek / 8139cp.c
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
18
19 See the file COPYING in this distribution for more information.
20
21 Contributors:
22
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
26
27 TODO:
28 * Test Tx checksumming thoroughly
29
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
42
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
46
47 */
48
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
54
55
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99
100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
101 NETIF_MSG_PROBE | \
102 NETIF_MSG_LINK)
103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE (0xff + 1)
106 #define CP_REGS_VER 1 /* version 1 */
107 #define CP_RX_RING_SIZE 64
108 #define CP_TX_RING_SIZE 64
109 #define CP_RING_BYTES \
110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
112 CP_STATS_SIZE)
113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP) \
116 (((CP)->tx_tail <= (CP)->tx_head) ? \
117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
118 (CP)->tx_tail - (CP)->tx_head - 1)
119
120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY 32
122
123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
128
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT (6*HZ)
131
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
134 #define CP_MAX_MTU 4096
135
136 enum {
137 /* NIC register offsets */
138 MAC0 = 0x00, /* Ethernet hardware address. */
139 MAR0 = 0x08, /* Multicast filter. */
140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
143 Cmd = 0x37, /* Command register */
144 IntrMask = 0x3C, /* Interrupt mask */
145 IntrStatus = 0x3E, /* Interrupt status */
146 TxConfig = 0x40, /* Tx configuration */
147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
148 RxConfig = 0x44, /* Rx configuration */
149 RxMissed = 0x4C, /* 24 bits valid, write clears */
150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 Config1 = 0x52, /* Config1 */
152 Config3 = 0x59, /* Config3 */
153 Config4 = 0x5A, /* Config4 */
154 MultiIntr = 0x5C, /* Multiple interrupt select */
155 BasicModeCtrl = 0x62, /* MII BMCR */
156 BasicModeStatus = 0x64, /* MII BMSR */
157 NWayAdvert = 0x66, /* MII ADVERTISE */
158 NWayLPAR = 0x68, /* MII LPA */
159 NWayExpansion = 0x6A, /* MII Expansion */
160 Config5 = 0xD8, /* Config5 */
161 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
162 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
163 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
164 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
165 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
166 TxThresh = 0xEC, /* Early Tx threshold */
167 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
168 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
169
170 /* Tx and Rx status descriptors */
171 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
172 RingEnd = (1 << 30), /* End of descriptor ring */
173 FirstFrag = (1 << 29), /* First segment of a packet */
174 LastFrag = (1 << 28), /* Final segment of a packet */
175 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
176 MSSShift = 16, /* MSS value position */
177 MSSMask = 0xfff, /* MSS value: 11 bits */
178 TxError = (1 << 23), /* Tx error summary */
179 RxError = (1 << 20), /* Rx error summary */
180 IPCS = (1 << 18), /* Calculate IP checksum */
181 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
182 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
183 TxVlanTag = (1 << 17), /* Add VLAN tag */
184 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
185 IPFail = (1 << 15), /* IP checksum failed */
186 UDPFail = (1 << 14), /* UDP/IP checksum failed */
187 TCPFail = (1 << 13), /* TCP/IP checksum failed */
188 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
189 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
190 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
191 RxProtoTCP = 1,
192 RxProtoUDP = 2,
193 RxProtoIP = 3,
194 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
195 TxOWC = (1 << 22), /* Tx Out-of-window collision */
196 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
197 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
198 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
199 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
200 RxErrFrame = (1 << 27), /* Rx frame alignment error */
201 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
202 RxErrCRC = (1 << 18), /* Rx CRC error */
203 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
204 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
205 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
206
207 /* StatsAddr register */
208 DumpStats = (1 << 3), /* Begin stats dump */
209
210 /* RxConfig register */
211 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
212 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
213 AcceptErr = 0x20, /* Accept packets with CRC errors */
214 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
215 AcceptBroadcast = 0x08, /* Accept broadcast packets */
216 AcceptMulticast = 0x04, /* Accept multicast packets */
217 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
218 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
219
220 /* IntrMask / IntrStatus registers */
221 PciErr = (1 << 15), /* System error on the PCI bus */
222 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
223 LenChg = (1 << 13), /* Cable length change */
224 SWInt = (1 << 8), /* Software-requested interrupt */
225 TxEmpty = (1 << 7), /* No Tx descriptors available */
226 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
227 LinkChg = (1 << 5), /* Packet underrun, or link change */
228 RxEmpty = (1 << 4), /* No Rx descriptors available */
229 TxErr = (1 << 3), /* Tx error */
230 TxOK = (1 << 2), /* Tx packet sent */
231 RxErr = (1 << 1), /* Rx error */
232 RxOK = (1 << 0), /* Rx packet received */
233 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
234 but hardware likes to raise it */
235
236 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
237 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
238 RxErr | RxOK | IntrResvd,
239
240 /* C mode command register */
241 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
242 RxOn = (1 << 3), /* Rx mode enable */
243 TxOn = (1 << 2), /* Tx mode enable */
244
245 /* C+ mode command register */
246 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
247 RxChkSum = (1 << 5), /* Rx checksum offload enable */
248 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
249 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
250 CpRxOn = (1 << 1), /* Rx mode enable */
251 CpTxOn = (1 << 0), /* Tx mode enable */
252
253 /* Cfg9436 EEPROM control register */
254 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
255 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
256
257 /* TxConfig register */
258 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
259 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
260
261 /* Early Tx Threshold register */
262 TxThreshMask = 0x3f, /* Mask bits 5-0 */
263 TxThreshMax = 2048, /* Max early Tx threshold */
264
265 /* Config1 register */
266 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
267 LWACT = (1 << 4), /* LWAKE active mode */
268 PMEnable = (1 << 0), /* Enable various PM features of chip */
269
270 /* Config3 register */
271 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
272 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
273 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
274
275 /* Config4 register */
276 LWPTN = (1 << 1), /* LWAKE Pattern */
277 LWPME = (1 << 4), /* LANWAKE vs PMEB */
278
279 /* Config5 register */
280 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
281 MWF = (1 << 5), /* Accept Multicast wakeup frame */
282 UWF = (1 << 4), /* Accept Unicast wakeup frame */
283 LANWake = (1 << 1), /* Enable LANWake signal */
284 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
285
286 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
287 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
288 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
289 };
290
291 static const unsigned int cp_rx_config =
292 (RX_FIFO_THRESH << RxCfgFIFOShift) |
293 (RX_DMA_BURST << RxCfgDMAShift);
294
295 struct cp_desc {
296 __le32 opts1;
297 __le32 opts2;
298 __le64 addr;
299 };
300
301 struct cp_dma_stats {
302 __le64 tx_ok;
303 __le64 rx_ok;
304 __le64 tx_err;
305 __le32 rx_err;
306 __le16 rx_fifo;
307 __le16 frame_align;
308 __le32 tx_ok_1col;
309 __le32 tx_ok_mcol;
310 __le64 rx_ok_phys;
311 __le64 rx_ok_bcast;
312 __le32 rx_ok_mcast;
313 __le16 tx_abort;
314 __le16 tx_underrun;
315 } __packed;
316
317 struct cp_extra_stats {
318 unsigned long rx_frags;
319 };
320
321 struct cp_private {
322 void __iomem *regs;
323 struct net_device *dev;
324 spinlock_t lock;
325 u32 msg_enable;
326
327 struct napi_struct napi;
328
329 struct pci_dev *pdev;
330 u32 rx_config;
331 u16 cpcmd;
332
333 struct cp_extra_stats cp_stats;
334
335 unsigned rx_head ____cacheline_aligned;
336 unsigned rx_tail;
337 struct cp_desc *rx_ring;
338 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
339
340 unsigned tx_head ____cacheline_aligned;
341 unsigned tx_tail;
342 struct cp_desc *tx_ring;
343 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
344
345 unsigned rx_buf_sz;
346 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
347
348 dma_addr_t ring_dma;
349
350 struct mii_if_info mii_if;
351 };
352
353 #define cpr8(reg) readb(cp->regs + (reg))
354 #define cpr16(reg) readw(cp->regs + (reg))
355 #define cpr32(reg) readl(cp->regs + (reg))
356 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
357 #define cpw16(reg,val) writew((val), cp->regs + (reg))
358 #define cpw32(reg,val) writel((val), cp->regs + (reg))
359 #define cpw8_f(reg,val) do { \
360 writeb((val), cp->regs + (reg)); \
361 readb(cp->regs + (reg)); \
362 } while (0)
363 #define cpw16_f(reg,val) do { \
364 writew((val), cp->regs + (reg)); \
365 readw(cp->regs + (reg)); \
366 } while (0)
367 #define cpw32_f(reg,val) do { \
368 writel((val), cp->regs + (reg)); \
369 readl(cp->regs + (reg)); \
370 } while (0)
371
372
373 static void __cp_set_rx_mode (struct net_device *dev);
374 static void cp_tx (struct cp_private *cp);
375 static void cp_clean_rings (struct cp_private *cp);
376 #ifdef CONFIG_NET_POLL_CONTROLLER
377 static void cp_poll_controller(struct net_device *dev);
378 #endif
379 static int cp_get_eeprom_len(struct net_device *dev);
380 static int cp_get_eeprom(struct net_device *dev,
381 struct ethtool_eeprom *eeprom, u8 *data);
382 static int cp_set_eeprom(struct net_device *dev,
383 struct ethtool_eeprom *eeprom, u8 *data);
384
385 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
386 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
387 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
388 { },
389 };
390 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
391
392 static struct {
393 const char str[ETH_GSTRING_LEN];
394 } ethtool_stats_keys[] = {
395 { "tx_ok" },
396 { "rx_ok" },
397 { "tx_err" },
398 { "rx_err" },
399 { "rx_fifo" },
400 { "frame_align" },
401 { "tx_ok_1col" },
402 { "tx_ok_mcol" },
403 { "rx_ok_phys" },
404 { "rx_ok_bcast" },
405 { "rx_ok_mcast" },
406 { "tx_abort" },
407 { "tx_underrun" },
408 { "rx_frags" },
409 };
410
411
412 static inline void cp_set_rxbufsize (struct cp_private *cp)
413 {
414 unsigned int mtu = cp->dev->mtu;
415
416 if (mtu > ETH_DATA_LEN)
417 /* MTU + ethernet header + FCS + optional VLAN tag */
418 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
419 else
420 cp->rx_buf_sz = PKT_BUF_SZ;
421 }
422
423 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
424 struct cp_desc *desc)
425 {
426 u32 opts2 = le32_to_cpu(desc->opts2);
427
428 skb->protocol = eth_type_trans (skb, cp->dev);
429
430 cp->dev->stats.rx_packets++;
431 cp->dev->stats.rx_bytes += skb->len;
432
433 if (opts2 & RxVlanTagged)
434 __vlan_hwaccel_put_tag(skb, swab16(opts2 & 0xffff));
435
436 napi_gro_receive(&cp->napi, skb);
437 }
438
439 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
440 u32 status, u32 len)
441 {
442 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
443 rx_tail, status, len);
444 cp->dev->stats.rx_errors++;
445 if (status & RxErrFrame)
446 cp->dev->stats.rx_frame_errors++;
447 if (status & RxErrCRC)
448 cp->dev->stats.rx_crc_errors++;
449 if ((status & RxErrRunt) || (status & RxErrLong))
450 cp->dev->stats.rx_length_errors++;
451 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
452 cp->dev->stats.rx_length_errors++;
453 if (status & RxErrFIFO)
454 cp->dev->stats.rx_fifo_errors++;
455 }
456
457 static inline unsigned int cp_rx_csum_ok (u32 status)
458 {
459 unsigned int protocol = (status >> 16) & 0x3;
460
461 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
462 ((protocol == RxProtoUDP) && !(status & UDPFail)))
463 return 1;
464 else
465 return 0;
466 }
467
468 static int cp_rx_poll(struct napi_struct *napi, int budget)
469 {
470 struct cp_private *cp = container_of(napi, struct cp_private, napi);
471 struct net_device *dev = cp->dev;
472 unsigned int rx_tail = cp->rx_tail;
473 int rx;
474
475 rx_status_loop:
476 rx = 0;
477 cpw16(IntrStatus, cp_rx_intr_mask);
478
479 while (1) {
480 u32 status, len;
481 dma_addr_t mapping;
482 struct sk_buff *skb, *new_skb;
483 struct cp_desc *desc;
484 const unsigned buflen = cp->rx_buf_sz;
485
486 skb = cp->rx_skb[rx_tail];
487 BUG_ON(!skb);
488
489 desc = &cp->rx_ring[rx_tail];
490 status = le32_to_cpu(desc->opts1);
491 if (status & DescOwn)
492 break;
493
494 len = (status & 0x1fff) - 4;
495 mapping = le64_to_cpu(desc->addr);
496
497 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
498 /* we don't support incoming fragmented frames.
499 * instead, we attempt to ensure that the
500 * pre-allocated RX skbs are properly sized such
501 * that RX fragments are never encountered
502 */
503 cp_rx_err_acct(cp, rx_tail, status, len);
504 dev->stats.rx_dropped++;
505 cp->cp_stats.rx_frags++;
506 goto rx_next;
507 }
508
509 if (status & (RxError | RxErrFIFO)) {
510 cp_rx_err_acct(cp, rx_tail, status, len);
511 goto rx_next;
512 }
513
514 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
515 rx_tail, status, len);
516
517 new_skb = netdev_alloc_skb_ip_align(dev, buflen);
518 if (!new_skb) {
519 dev->stats.rx_dropped++;
520 goto rx_next;
521 }
522
523 dma_unmap_single(&cp->pdev->dev, mapping,
524 buflen, PCI_DMA_FROMDEVICE);
525
526 /* Handle checksum offloading for incoming packets. */
527 if (cp_rx_csum_ok(status))
528 skb->ip_summed = CHECKSUM_UNNECESSARY;
529 else
530 skb_checksum_none_assert(skb);
531
532 skb_put(skb, len);
533
534 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
535 PCI_DMA_FROMDEVICE);
536 cp->rx_skb[rx_tail] = new_skb;
537
538 cp_rx_skb(cp, skb, desc);
539 rx++;
540
541 rx_next:
542 cp->rx_ring[rx_tail].opts2 = 0;
543 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544 if (rx_tail == (CP_RX_RING_SIZE - 1))
545 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546 cp->rx_buf_sz);
547 else
548 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549 rx_tail = NEXT_RX(rx_tail);
550
551 if (rx >= budget)
552 break;
553 }
554
555 cp->rx_tail = rx_tail;
556
557 /* if we did not reach work limit, then we're done with
558 * this round of polling
559 */
560 if (rx < budget) {
561 unsigned long flags;
562
563 if (cpr16(IntrStatus) & cp_rx_intr_mask)
564 goto rx_status_loop;
565
566 napi_gro_flush(napi);
567 spin_lock_irqsave(&cp->lock, flags);
568 __napi_complete(napi);
569 cpw16_f(IntrMask, cp_intr_mask);
570 spin_unlock_irqrestore(&cp->lock, flags);
571 }
572
573 return rx;
574 }
575
576 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
577 {
578 struct net_device *dev = dev_instance;
579 struct cp_private *cp;
580 u16 status;
581
582 if (unlikely(dev == NULL))
583 return IRQ_NONE;
584 cp = netdev_priv(dev);
585
586 status = cpr16(IntrStatus);
587 if (!status || (status == 0xFFFF))
588 return IRQ_NONE;
589
590 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
591 status, cpr8(Cmd), cpr16(CpCmd));
592
593 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
594
595 spin_lock(&cp->lock);
596
597 /* close possible race's with dev_close */
598 if (unlikely(!netif_running(dev))) {
599 cpw16(IntrMask, 0);
600 spin_unlock(&cp->lock);
601 return IRQ_HANDLED;
602 }
603
604 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
605 if (napi_schedule_prep(&cp->napi)) {
606 cpw16_f(IntrMask, cp_norx_intr_mask);
607 __napi_schedule(&cp->napi);
608 }
609
610 if (status & (TxOK | TxErr | TxEmpty | SWInt))
611 cp_tx(cp);
612 if (status & LinkChg)
613 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
614
615 spin_unlock(&cp->lock);
616
617 if (status & PciErr) {
618 u16 pci_status;
619
620 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
621 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
622 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
623 status, pci_status);
624
625 /* TODO: reset hardware */
626 }
627
628 return IRQ_HANDLED;
629 }
630
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 /*
633 * Polling receive - used by netconsole and other diagnostic tools
634 * to allow network i/o with interrupts disabled.
635 */
636 static void cp_poll_controller(struct net_device *dev)
637 {
638 struct cp_private *cp = netdev_priv(dev);
639 const int irq = cp->pdev->irq;
640
641 disable_irq(irq);
642 cp_interrupt(irq, dev);
643 enable_irq(irq);
644 }
645 #endif
646
647 static void cp_tx (struct cp_private *cp)
648 {
649 unsigned tx_head = cp->tx_head;
650 unsigned tx_tail = cp->tx_tail;
651
652 while (tx_tail != tx_head) {
653 struct cp_desc *txd = cp->tx_ring + tx_tail;
654 struct sk_buff *skb;
655 u32 status;
656
657 rmb();
658 status = le32_to_cpu(txd->opts1);
659 if (status & DescOwn)
660 break;
661
662 skb = cp->tx_skb[tx_tail];
663 BUG_ON(!skb);
664
665 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
666 le32_to_cpu(txd->opts1) & 0xffff,
667 PCI_DMA_TODEVICE);
668
669 if (status & LastFrag) {
670 if (status & (TxError | TxFIFOUnder)) {
671 netif_dbg(cp, tx_err, cp->dev,
672 "tx err, status 0x%x\n", status);
673 cp->dev->stats.tx_errors++;
674 if (status & TxOWC)
675 cp->dev->stats.tx_window_errors++;
676 if (status & TxMaxCol)
677 cp->dev->stats.tx_aborted_errors++;
678 if (status & TxLinkFail)
679 cp->dev->stats.tx_carrier_errors++;
680 if (status & TxFIFOUnder)
681 cp->dev->stats.tx_fifo_errors++;
682 } else {
683 cp->dev->stats.collisions +=
684 ((status >> TxColCntShift) & TxColCntMask);
685 cp->dev->stats.tx_packets++;
686 cp->dev->stats.tx_bytes += skb->len;
687 netif_dbg(cp, tx_done, cp->dev,
688 "tx done, slot %d\n", tx_tail);
689 }
690 dev_kfree_skb_irq(skb);
691 }
692
693 cp->tx_skb[tx_tail] = NULL;
694
695 tx_tail = NEXT_TX(tx_tail);
696 }
697
698 cp->tx_tail = tx_tail;
699
700 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
701 netif_wake_queue(cp->dev);
702 }
703
704 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
705 {
706 return vlan_tx_tag_present(skb) ?
707 TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
708 }
709
710 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
711 struct net_device *dev)
712 {
713 struct cp_private *cp = netdev_priv(dev);
714 unsigned entry;
715 u32 eor, flags;
716 unsigned long intr_flags;
717 __le32 opts2;
718 int mss = 0;
719
720 spin_lock_irqsave(&cp->lock, intr_flags);
721
722 /* This is a hard error, log it. */
723 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
724 netif_stop_queue(dev);
725 spin_unlock_irqrestore(&cp->lock, intr_flags);
726 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
727 return NETDEV_TX_BUSY;
728 }
729
730 entry = cp->tx_head;
731 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
732 mss = skb_shinfo(skb)->gso_size;
733
734 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
735
736 if (skb_shinfo(skb)->nr_frags == 0) {
737 struct cp_desc *txd = &cp->tx_ring[entry];
738 u32 len;
739 dma_addr_t mapping;
740
741 len = skb->len;
742 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
743 txd->opts2 = opts2;
744 txd->addr = cpu_to_le64(mapping);
745 wmb();
746
747 flags = eor | len | DescOwn | FirstFrag | LastFrag;
748
749 if (mss)
750 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
751 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
752 const struct iphdr *ip = ip_hdr(skb);
753 if (ip->protocol == IPPROTO_TCP)
754 flags |= IPCS | TCPCS;
755 else if (ip->protocol == IPPROTO_UDP)
756 flags |= IPCS | UDPCS;
757 else
758 WARN_ON(1); /* we need a WARN() */
759 }
760
761 txd->opts1 = cpu_to_le32(flags);
762 wmb();
763
764 cp->tx_skb[entry] = skb;
765 entry = NEXT_TX(entry);
766 } else {
767 struct cp_desc *txd;
768 u32 first_len, first_eor;
769 dma_addr_t first_mapping;
770 int frag, first_entry = entry;
771 const struct iphdr *ip = ip_hdr(skb);
772
773 /* We must give this initial chunk to the device last.
774 * Otherwise we could race with the device.
775 */
776 first_eor = eor;
777 first_len = skb_headlen(skb);
778 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
779 first_len, PCI_DMA_TODEVICE);
780 cp->tx_skb[entry] = skb;
781 entry = NEXT_TX(entry);
782
783 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
784 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
785 u32 len;
786 u32 ctrl;
787 dma_addr_t mapping;
788
789 len = skb_frag_size(this_frag);
790 mapping = dma_map_single(&cp->pdev->dev,
791 skb_frag_address(this_frag),
792 len, PCI_DMA_TODEVICE);
793 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
794
795 ctrl = eor | len | DescOwn;
796
797 if (mss)
798 ctrl |= LargeSend |
799 ((mss & MSSMask) << MSSShift);
800 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
801 if (ip->protocol == IPPROTO_TCP)
802 ctrl |= IPCS | TCPCS;
803 else if (ip->protocol == IPPROTO_UDP)
804 ctrl |= IPCS | UDPCS;
805 else
806 BUG();
807 }
808
809 if (frag == skb_shinfo(skb)->nr_frags - 1)
810 ctrl |= LastFrag;
811
812 txd = &cp->tx_ring[entry];
813 txd->opts2 = opts2;
814 txd->addr = cpu_to_le64(mapping);
815 wmb();
816
817 txd->opts1 = cpu_to_le32(ctrl);
818 wmb();
819
820 cp->tx_skb[entry] = skb;
821 entry = NEXT_TX(entry);
822 }
823
824 txd = &cp->tx_ring[first_entry];
825 txd->opts2 = opts2;
826 txd->addr = cpu_to_le64(first_mapping);
827 wmb();
828
829 if (skb->ip_summed == CHECKSUM_PARTIAL) {
830 if (ip->protocol == IPPROTO_TCP)
831 txd->opts1 = cpu_to_le32(first_eor | first_len |
832 FirstFrag | DescOwn |
833 IPCS | TCPCS);
834 else if (ip->protocol == IPPROTO_UDP)
835 txd->opts1 = cpu_to_le32(first_eor | first_len |
836 FirstFrag | DescOwn |
837 IPCS | UDPCS);
838 else
839 BUG();
840 } else
841 txd->opts1 = cpu_to_le32(first_eor | first_len |
842 FirstFrag | DescOwn);
843 wmb();
844 }
845 cp->tx_head = entry;
846 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
847 entry, skb->len);
848 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
849 netif_stop_queue(dev);
850
851 spin_unlock_irqrestore(&cp->lock, intr_flags);
852
853 cpw8(TxPoll, NormalTxPoll);
854
855 return NETDEV_TX_OK;
856 }
857
858 /* Set or clear the multicast filter for this adaptor.
859 This routine is not state sensitive and need not be SMP locked. */
860
861 static void __cp_set_rx_mode (struct net_device *dev)
862 {
863 struct cp_private *cp = netdev_priv(dev);
864 u32 mc_filter[2]; /* Multicast hash filter */
865 int rx_mode;
866
867 /* Note: do not reorder, GCC is clever about common statements. */
868 if (dev->flags & IFF_PROMISC) {
869 /* Unconditionally log net taps. */
870 rx_mode =
871 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
872 AcceptAllPhys;
873 mc_filter[1] = mc_filter[0] = 0xffffffff;
874 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
875 (dev->flags & IFF_ALLMULTI)) {
876 /* Too many to filter perfectly -- accept all multicasts. */
877 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
878 mc_filter[1] = mc_filter[0] = 0xffffffff;
879 } else {
880 struct netdev_hw_addr *ha;
881 rx_mode = AcceptBroadcast | AcceptMyPhys;
882 mc_filter[1] = mc_filter[0] = 0;
883 netdev_for_each_mc_addr(ha, dev) {
884 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
885
886 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
887 rx_mode |= AcceptMulticast;
888 }
889 }
890
891 /* We can safely update without stopping the chip. */
892 cp->rx_config = cp_rx_config | rx_mode;
893 cpw32_f(RxConfig, cp->rx_config);
894
895 cpw32_f (MAR0 + 0, mc_filter[0]);
896 cpw32_f (MAR0 + 4, mc_filter[1]);
897 }
898
899 static void cp_set_rx_mode (struct net_device *dev)
900 {
901 unsigned long flags;
902 struct cp_private *cp = netdev_priv(dev);
903
904 spin_lock_irqsave (&cp->lock, flags);
905 __cp_set_rx_mode(dev);
906 spin_unlock_irqrestore (&cp->lock, flags);
907 }
908
909 static void __cp_get_stats(struct cp_private *cp)
910 {
911 /* only lower 24 bits valid; write any value to clear */
912 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
913 cpw32 (RxMissed, 0);
914 }
915
916 static struct net_device_stats *cp_get_stats(struct net_device *dev)
917 {
918 struct cp_private *cp = netdev_priv(dev);
919 unsigned long flags;
920
921 /* The chip only need report frame silently dropped. */
922 spin_lock_irqsave(&cp->lock, flags);
923 if (netif_running(dev) && netif_device_present(dev))
924 __cp_get_stats(cp);
925 spin_unlock_irqrestore(&cp->lock, flags);
926
927 return &dev->stats;
928 }
929
930 static void cp_stop_hw (struct cp_private *cp)
931 {
932 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
933 cpw16_f(IntrMask, 0);
934 cpw8(Cmd, 0);
935 cpw16_f(CpCmd, 0);
936 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
937
938 cp->rx_tail = 0;
939 cp->tx_head = cp->tx_tail = 0;
940 }
941
942 static void cp_reset_hw (struct cp_private *cp)
943 {
944 unsigned work = 1000;
945
946 cpw8(Cmd, CmdReset);
947
948 while (work--) {
949 if (!(cpr8(Cmd) & CmdReset))
950 return;
951
952 schedule_timeout_uninterruptible(10);
953 }
954
955 netdev_err(cp->dev, "hardware reset timeout\n");
956 }
957
958 static inline void cp_start_hw (struct cp_private *cp)
959 {
960 cpw16(CpCmd, cp->cpcmd);
961 cpw8(Cmd, RxOn | TxOn);
962 }
963
964 static void cp_enable_irq(struct cp_private *cp)
965 {
966 cpw16_f(IntrMask, cp_intr_mask);
967 }
968
969 static void cp_init_hw (struct cp_private *cp)
970 {
971 struct net_device *dev = cp->dev;
972 dma_addr_t ring_dma;
973
974 cp_reset_hw(cp);
975
976 cpw8_f (Cfg9346, Cfg9346_Unlock);
977
978 /* Restore our idea of the MAC address. */
979 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
980 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
981
982 cpw32_f(HiTxRingAddr, 0);
983 cpw32_f(HiTxRingAddr + 4, 0);
984
985 ring_dma = cp->ring_dma;
986 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
987 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
988
989 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
990 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
991 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
992
993 cp_start_hw(cp);
994 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
995
996 __cp_set_rx_mode(dev);
997 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
998
999 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1000 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1001 cpw8(Config3, PARMEnable);
1002 cp->wol_enabled = 0;
1003
1004 cpw8(Config5, cpr8(Config5) & PMEStatus);
1005
1006 cpw16(MultiIntr, 0);
1007
1008 cpw8_f(Cfg9346, Cfg9346_Lock);
1009 }
1010
1011 static int cp_refill_rx(struct cp_private *cp)
1012 {
1013 struct net_device *dev = cp->dev;
1014 unsigned i;
1015
1016 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1017 struct sk_buff *skb;
1018 dma_addr_t mapping;
1019
1020 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1021 if (!skb)
1022 goto err_out;
1023
1024 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1025 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1026 cp->rx_skb[i] = skb;
1027
1028 cp->rx_ring[i].opts2 = 0;
1029 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1030 if (i == (CP_RX_RING_SIZE - 1))
1031 cp->rx_ring[i].opts1 =
1032 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1033 else
1034 cp->rx_ring[i].opts1 =
1035 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1036 }
1037
1038 return 0;
1039
1040 err_out:
1041 cp_clean_rings(cp);
1042 return -ENOMEM;
1043 }
1044
1045 static void cp_init_rings_index (struct cp_private *cp)
1046 {
1047 cp->rx_tail = 0;
1048 cp->tx_head = cp->tx_tail = 0;
1049 }
1050
1051 static int cp_init_rings (struct cp_private *cp)
1052 {
1053 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1054 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1055
1056 cp_init_rings_index(cp);
1057
1058 return cp_refill_rx (cp);
1059 }
1060
1061 static int cp_alloc_rings (struct cp_private *cp)
1062 {
1063 void *mem;
1064
1065 mem = dma_alloc_coherent(&cp->pdev->dev, CP_RING_BYTES,
1066 &cp->ring_dma, GFP_KERNEL);
1067 if (!mem)
1068 return -ENOMEM;
1069
1070 cp->rx_ring = mem;
1071 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1072
1073 return cp_init_rings(cp);
1074 }
1075
1076 static void cp_clean_rings (struct cp_private *cp)
1077 {
1078 struct cp_desc *desc;
1079 unsigned i;
1080
1081 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1082 if (cp->rx_skb[i]) {
1083 desc = cp->rx_ring + i;
1084 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1085 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1086 dev_kfree_skb(cp->rx_skb[i]);
1087 }
1088 }
1089
1090 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1091 if (cp->tx_skb[i]) {
1092 struct sk_buff *skb = cp->tx_skb[i];
1093
1094 desc = cp->tx_ring + i;
1095 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1096 le32_to_cpu(desc->opts1) & 0xffff,
1097 PCI_DMA_TODEVICE);
1098 if (le32_to_cpu(desc->opts1) & LastFrag)
1099 dev_kfree_skb(skb);
1100 cp->dev->stats.tx_dropped++;
1101 }
1102 }
1103
1104 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1105 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1106
1107 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1108 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1109 }
1110
1111 static void cp_free_rings (struct cp_private *cp)
1112 {
1113 cp_clean_rings(cp);
1114 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1115 cp->ring_dma);
1116 cp->rx_ring = NULL;
1117 cp->tx_ring = NULL;
1118 }
1119
1120 static int cp_open (struct net_device *dev)
1121 {
1122 struct cp_private *cp = netdev_priv(dev);
1123 const int irq = cp->pdev->irq;
1124 int rc;
1125
1126 netif_dbg(cp, ifup, dev, "enabling interface\n");
1127
1128 rc = cp_alloc_rings(cp);
1129 if (rc)
1130 return rc;
1131
1132 napi_enable(&cp->napi);
1133
1134 cp_init_hw(cp);
1135
1136 rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1137 if (rc)
1138 goto err_out_hw;
1139
1140 cp_enable_irq(cp);
1141
1142 netif_carrier_off(dev);
1143 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1144 netif_start_queue(dev);
1145
1146 return 0;
1147
1148 err_out_hw:
1149 napi_disable(&cp->napi);
1150 cp_stop_hw(cp);
1151 cp_free_rings(cp);
1152 return rc;
1153 }
1154
1155 static int cp_close (struct net_device *dev)
1156 {
1157 struct cp_private *cp = netdev_priv(dev);
1158 unsigned long flags;
1159
1160 napi_disable(&cp->napi);
1161
1162 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1163
1164 spin_lock_irqsave(&cp->lock, flags);
1165
1166 netif_stop_queue(dev);
1167 netif_carrier_off(dev);
1168
1169 cp_stop_hw(cp);
1170
1171 spin_unlock_irqrestore(&cp->lock, flags);
1172
1173 free_irq(cp->pdev->irq, dev);
1174
1175 cp_free_rings(cp);
1176 return 0;
1177 }
1178
1179 static void cp_tx_timeout(struct net_device *dev)
1180 {
1181 struct cp_private *cp = netdev_priv(dev);
1182 unsigned long flags;
1183 int rc;
1184
1185 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1186 cpr8(Cmd), cpr16(CpCmd),
1187 cpr16(IntrStatus), cpr16(IntrMask));
1188
1189 spin_lock_irqsave(&cp->lock, flags);
1190
1191 cp_stop_hw(cp);
1192 cp_clean_rings(cp);
1193 rc = cp_init_rings(cp);
1194 cp_start_hw(cp);
1195
1196 netif_wake_queue(dev);
1197
1198 spin_unlock_irqrestore(&cp->lock, flags);
1199 }
1200
1201 #ifdef BROKEN
1202 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1203 {
1204 struct cp_private *cp = netdev_priv(dev);
1205 int rc;
1206 unsigned long flags;
1207
1208 /* check for invalid MTU, according to hardware limits */
1209 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1210 return -EINVAL;
1211
1212 /* if network interface not up, no need for complexity */
1213 if (!netif_running(dev)) {
1214 dev->mtu = new_mtu;
1215 cp_set_rxbufsize(cp); /* set new rx buf size */
1216 return 0;
1217 }
1218
1219 spin_lock_irqsave(&cp->lock, flags);
1220
1221 cp_stop_hw(cp); /* stop h/w and free rings */
1222 cp_clean_rings(cp);
1223
1224 dev->mtu = new_mtu;
1225 cp_set_rxbufsize(cp); /* set new rx buf size */
1226
1227 rc = cp_init_rings(cp); /* realloc and restart h/w */
1228 cp_start_hw(cp);
1229
1230 spin_unlock_irqrestore(&cp->lock, flags);
1231
1232 return rc;
1233 }
1234 #endif /* BROKEN */
1235
1236 static const char mii_2_8139_map[8] = {
1237 BasicModeCtrl,
1238 BasicModeStatus,
1239 0,
1240 0,
1241 NWayAdvert,
1242 NWayLPAR,
1243 NWayExpansion,
1244 0
1245 };
1246
1247 static int mdio_read(struct net_device *dev, int phy_id, int location)
1248 {
1249 struct cp_private *cp = netdev_priv(dev);
1250
1251 return location < 8 && mii_2_8139_map[location] ?
1252 readw(cp->regs + mii_2_8139_map[location]) : 0;
1253 }
1254
1255
1256 static void mdio_write(struct net_device *dev, int phy_id, int location,
1257 int value)
1258 {
1259 struct cp_private *cp = netdev_priv(dev);
1260
1261 if (location == 0) {
1262 cpw8(Cfg9346, Cfg9346_Unlock);
1263 cpw16(BasicModeCtrl, value);
1264 cpw8(Cfg9346, Cfg9346_Lock);
1265 } else if (location < 8 && mii_2_8139_map[location])
1266 cpw16(mii_2_8139_map[location], value);
1267 }
1268
1269 /* Set the ethtool Wake-on-LAN settings */
1270 static int netdev_set_wol (struct cp_private *cp,
1271 const struct ethtool_wolinfo *wol)
1272 {
1273 u8 options;
1274
1275 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1276 /* If WOL is being disabled, no need for complexity */
1277 if (wol->wolopts) {
1278 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1279 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1280 }
1281
1282 cpw8 (Cfg9346, Cfg9346_Unlock);
1283 cpw8 (Config3, options);
1284 cpw8 (Cfg9346, Cfg9346_Lock);
1285
1286 options = 0; /* Paranoia setting */
1287 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1288 /* If WOL is being disabled, no need for complexity */
1289 if (wol->wolopts) {
1290 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1291 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1292 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1293 }
1294
1295 cpw8 (Config5, options);
1296
1297 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1298
1299 return 0;
1300 }
1301
1302 /* Get the ethtool Wake-on-LAN settings */
1303 static void netdev_get_wol (struct cp_private *cp,
1304 struct ethtool_wolinfo *wol)
1305 {
1306 u8 options;
1307
1308 wol->wolopts = 0; /* Start from scratch */
1309 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1310 WAKE_MCAST | WAKE_UCAST;
1311 /* We don't need to go on if WOL is disabled */
1312 if (!cp->wol_enabled) return;
1313
1314 options = cpr8 (Config3);
1315 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1316 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1317
1318 options = 0; /* Paranoia setting */
1319 options = cpr8 (Config5);
1320 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1321 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1322 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1323 }
1324
1325 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1326 {
1327 struct cp_private *cp = netdev_priv(dev);
1328
1329 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1330 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1331 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1332 }
1333
1334 static void cp_get_ringparam(struct net_device *dev,
1335 struct ethtool_ringparam *ring)
1336 {
1337 ring->rx_max_pending = CP_RX_RING_SIZE;
1338 ring->tx_max_pending = CP_TX_RING_SIZE;
1339 ring->rx_pending = CP_RX_RING_SIZE;
1340 ring->tx_pending = CP_TX_RING_SIZE;
1341 }
1342
1343 static int cp_get_regs_len(struct net_device *dev)
1344 {
1345 return CP_REGS_SIZE;
1346 }
1347
1348 static int cp_get_sset_count (struct net_device *dev, int sset)
1349 {
1350 switch (sset) {
1351 case ETH_SS_STATS:
1352 return CP_NUM_STATS;
1353 default:
1354 return -EOPNOTSUPP;
1355 }
1356 }
1357
1358 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1359 {
1360 struct cp_private *cp = netdev_priv(dev);
1361 int rc;
1362 unsigned long flags;
1363
1364 spin_lock_irqsave(&cp->lock, flags);
1365 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1366 spin_unlock_irqrestore(&cp->lock, flags);
1367
1368 return rc;
1369 }
1370
1371 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1372 {
1373 struct cp_private *cp = netdev_priv(dev);
1374 int rc;
1375 unsigned long flags;
1376
1377 spin_lock_irqsave(&cp->lock, flags);
1378 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1379 spin_unlock_irqrestore(&cp->lock, flags);
1380
1381 return rc;
1382 }
1383
1384 static int cp_nway_reset(struct net_device *dev)
1385 {
1386 struct cp_private *cp = netdev_priv(dev);
1387 return mii_nway_restart(&cp->mii_if);
1388 }
1389
1390 static u32 cp_get_msglevel(struct net_device *dev)
1391 {
1392 struct cp_private *cp = netdev_priv(dev);
1393 return cp->msg_enable;
1394 }
1395
1396 static void cp_set_msglevel(struct net_device *dev, u32 value)
1397 {
1398 struct cp_private *cp = netdev_priv(dev);
1399 cp->msg_enable = value;
1400 }
1401
1402 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1403 {
1404 struct cp_private *cp = netdev_priv(dev);
1405 unsigned long flags;
1406
1407 if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1408 return 0;
1409
1410 spin_lock_irqsave(&cp->lock, flags);
1411
1412 if (features & NETIF_F_RXCSUM)
1413 cp->cpcmd |= RxChkSum;
1414 else
1415 cp->cpcmd &= ~RxChkSum;
1416
1417 if (features & NETIF_F_HW_VLAN_RX)
1418 cp->cpcmd |= RxVlanOn;
1419 else
1420 cp->cpcmd &= ~RxVlanOn;
1421
1422 cpw16_f(CpCmd, cp->cpcmd);
1423 spin_unlock_irqrestore(&cp->lock, flags);
1424
1425 return 0;
1426 }
1427
1428 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1429 void *p)
1430 {
1431 struct cp_private *cp = netdev_priv(dev);
1432 unsigned long flags;
1433
1434 if (regs->len < CP_REGS_SIZE)
1435 return /* -EINVAL */;
1436
1437 regs->version = CP_REGS_VER;
1438
1439 spin_lock_irqsave(&cp->lock, flags);
1440 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1441 spin_unlock_irqrestore(&cp->lock, flags);
1442 }
1443
1444 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1445 {
1446 struct cp_private *cp = netdev_priv(dev);
1447 unsigned long flags;
1448
1449 spin_lock_irqsave (&cp->lock, flags);
1450 netdev_get_wol (cp, wol);
1451 spin_unlock_irqrestore (&cp->lock, flags);
1452 }
1453
1454 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1455 {
1456 struct cp_private *cp = netdev_priv(dev);
1457 unsigned long flags;
1458 int rc;
1459
1460 spin_lock_irqsave (&cp->lock, flags);
1461 rc = netdev_set_wol (cp, wol);
1462 spin_unlock_irqrestore (&cp->lock, flags);
1463
1464 return rc;
1465 }
1466
1467 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1468 {
1469 switch (stringset) {
1470 case ETH_SS_STATS:
1471 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1472 break;
1473 default:
1474 BUG();
1475 break;
1476 }
1477 }
1478
1479 static void cp_get_ethtool_stats (struct net_device *dev,
1480 struct ethtool_stats *estats, u64 *tmp_stats)
1481 {
1482 struct cp_private *cp = netdev_priv(dev);
1483 struct cp_dma_stats *nic_stats;
1484 dma_addr_t dma;
1485 int i;
1486
1487 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1488 &dma, GFP_KERNEL);
1489 if (!nic_stats)
1490 return;
1491
1492 /* begin NIC statistics dump */
1493 cpw32(StatsAddr + 4, (u64)dma >> 32);
1494 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1495 cpr32(StatsAddr);
1496
1497 for (i = 0; i < 1000; i++) {
1498 if ((cpr32(StatsAddr) & DumpStats) == 0)
1499 break;
1500 udelay(10);
1501 }
1502 cpw32(StatsAddr, 0);
1503 cpw32(StatsAddr + 4, 0);
1504 cpr32(StatsAddr);
1505
1506 i = 0;
1507 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1508 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1509 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1510 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1511 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1512 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1513 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1514 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1515 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1516 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1517 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1518 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1519 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1520 tmp_stats[i++] = cp->cp_stats.rx_frags;
1521 BUG_ON(i != CP_NUM_STATS);
1522
1523 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1524 }
1525
1526 static const struct ethtool_ops cp_ethtool_ops = {
1527 .get_drvinfo = cp_get_drvinfo,
1528 .get_regs_len = cp_get_regs_len,
1529 .get_sset_count = cp_get_sset_count,
1530 .get_settings = cp_get_settings,
1531 .set_settings = cp_set_settings,
1532 .nway_reset = cp_nway_reset,
1533 .get_link = ethtool_op_get_link,
1534 .get_msglevel = cp_get_msglevel,
1535 .set_msglevel = cp_set_msglevel,
1536 .get_regs = cp_get_regs,
1537 .get_wol = cp_get_wol,
1538 .set_wol = cp_set_wol,
1539 .get_strings = cp_get_strings,
1540 .get_ethtool_stats = cp_get_ethtool_stats,
1541 .get_eeprom_len = cp_get_eeprom_len,
1542 .get_eeprom = cp_get_eeprom,
1543 .set_eeprom = cp_set_eeprom,
1544 .get_ringparam = cp_get_ringparam,
1545 };
1546
1547 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1548 {
1549 struct cp_private *cp = netdev_priv(dev);
1550 int rc;
1551 unsigned long flags;
1552
1553 if (!netif_running(dev))
1554 return -EINVAL;
1555
1556 spin_lock_irqsave(&cp->lock, flags);
1557 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1558 spin_unlock_irqrestore(&cp->lock, flags);
1559 return rc;
1560 }
1561
1562 static int cp_set_mac_address(struct net_device *dev, void *p)
1563 {
1564 struct cp_private *cp = netdev_priv(dev);
1565 struct sockaddr *addr = p;
1566
1567 if (!is_valid_ether_addr(addr->sa_data))
1568 return -EADDRNOTAVAIL;
1569
1570 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1571
1572 spin_lock_irq(&cp->lock);
1573
1574 cpw8_f(Cfg9346, Cfg9346_Unlock);
1575 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1576 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1577 cpw8_f(Cfg9346, Cfg9346_Lock);
1578
1579 spin_unlock_irq(&cp->lock);
1580
1581 return 0;
1582 }
1583
1584 /* Serial EEPROM section. */
1585
1586 /* EEPROM_Ctrl bits. */
1587 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1588 #define EE_CS 0x08 /* EEPROM chip select. */
1589 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1590 #define EE_WRITE_0 0x00
1591 #define EE_WRITE_1 0x02
1592 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1593 #define EE_ENB (0x80 | EE_CS)
1594
1595 /* Delay between EEPROM clock transitions.
1596 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1597 */
1598
1599 #define eeprom_delay() readb(ee_addr)
1600
1601 /* The EEPROM commands include the alway-set leading bit. */
1602 #define EE_EXTEND_CMD (4)
1603 #define EE_WRITE_CMD (5)
1604 #define EE_READ_CMD (6)
1605 #define EE_ERASE_CMD (7)
1606
1607 #define EE_EWDS_ADDR (0)
1608 #define EE_WRAL_ADDR (1)
1609 #define EE_ERAL_ADDR (2)
1610 #define EE_EWEN_ADDR (3)
1611
1612 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1613
1614 static void eeprom_cmd_start(void __iomem *ee_addr)
1615 {
1616 writeb (EE_ENB & ~EE_CS, ee_addr);
1617 writeb (EE_ENB, ee_addr);
1618 eeprom_delay ();
1619 }
1620
1621 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1622 {
1623 int i;
1624
1625 /* Shift the command bits out. */
1626 for (i = cmd_len - 1; i >= 0; i--) {
1627 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1628 writeb (EE_ENB | dataval, ee_addr);
1629 eeprom_delay ();
1630 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1631 eeprom_delay ();
1632 }
1633 writeb (EE_ENB, ee_addr);
1634 eeprom_delay ();
1635 }
1636
1637 static void eeprom_cmd_end(void __iomem *ee_addr)
1638 {
1639 writeb(0, ee_addr);
1640 eeprom_delay ();
1641 }
1642
1643 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1644 int addr_len)
1645 {
1646 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1647
1648 eeprom_cmd_start(ee_addr);
1649 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1650 eeprom_cmd_end(ee_addr);
1651 }
1652
1653 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1654 {
1655 int i;
1656 u16 retval = 0;
1657 void __iomem *ee_addr = ioaddr + Cfg9346;
1658 int read_cmd = location | (EE_READ_CMD << addr_len);
1659
1660 eeprom_cmd_start(ee_addr);
1661 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1662
1663 for (i = 16; i > 0; i--) {
1664 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1665 eeprom_delay ();
1666 retval =
1667 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1668 0);
1669 writeb (EE_ENB, ee_addr);
1670 eeprom_delay ();
1671 }
1672
1673 eeprom_cmd_end(ee_addr);
1674
1675 return retval;
1676 }
1677
1678 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1679 int addr_len)
1680 {
1681 int i;
1682 void __iomem *ee_addr = ioaddr + Cfg9346;
1683 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1684
1685 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1686
1687 eeprom_cmd_start(ee_addr);
1688 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1689 eeprom_cmd(ee_addr, val, 16);
1690 eeprom_cmd_end(ee_addr);
1691
1692 eeprom_cmd_start(ee_addr);
1693 for (i = 0; i < 20000; i++)
1694 if (readb(ee_addr) & EE_DATA_READ)
1695 break;
1696 eeprom_cmd_end(ee_addr);
1697
1698 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1699 }
1700
1701 static int cp_get_eeprom_len(struct net_device *dev)
1702 {
1703 struct cp_private *cp = netdev_priv(dev);
1704 int size;
1705
1706 spin_lock_irq(&cp->lock);
1707 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1708 spin_unlock_irq(&cp->lock);
1709
1710 return size;
1711 }
1712
1713 static int cp_get_eeprom(struct net_device *dev,
1714 struct ethtool_eeprom *eeprom, u8 *data)
1715 {
1716 struct cp_private *cp = netdev_priv(dev);
1717 unsigned int addr_len;
1718 u16 val;
1719 u32 offset = eeprom->offset >> 1;
1720 u32 len = eeprom->len;
1721 u32 i = 0;
1722
1723 eeprom->magic = CP_EEPROM_MAGIC;
1724
1725 spin_lock_irq(&cp->lock);
1726
1727 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1728
1729 if (eeprom->offset & 1) {
1730 val = read_eeprom(cp->regs, offset, addr_len);
1731 data[i++] = (u8)(val >> 8);
1732 offset++;
1733 }
1734
1735 while (i < len - 1) {
1736 val = read_eeprom(cp->regs, offset, addr_len);
1737 data[i++] = (u8)val;
1738 data[i++] = (u8)(val >> 8);
1739 offset++;
1740 }
1741
1742 if (i < len) {
1743 val = read_eeprom(cp->regs, offset, addr_len);
1744 data[i] = (u8)val;
1745 }
1746
1747 spin_unlock_irq(&cp->lock);
1748 return 0;
1749 }
1750
1751 static int cp_set_eeprom(struct net_device *dev,
1752 struct ethtool_eeprom *eeprom, u8 *data)
1753 {
1754 struct cp_private *cp = netdev_priv(dev);
1755 unsigned int addr_len;
1756 u16 val;
1757 u32 offset = eeprom->offset >> 1;
1758 u32 len = eeprom->len;
1759 u32 i = 0;
1760
1761 if (eeprom->magic != CP_EEPROM_MAGIC)
1762 return -EINVAL;
1763
1764 spin_lock_irq(&cp->lock);
1765
1766 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1767
1768 if (eeprom->offset & 1) {
1769 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1770 val |= (u16)data[i++] << 8;
1771 write_eeprom(cp->regs, offset, val, addr_len);
1772 offset++;
1773 }
1774
1775 while (i < len - 1) {
1776 val = (u16)data[i++];
1777 val |= (u16)data[i++] << 8;
1778 write_eeprom(cp->regs, offset, val, addr_len);
1779 offset++;
1780 }
1781
1782 if (i < len) {
1783 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1784 val |= (u16)data[i];
1785 write_eeprom(cp->regs, offset, val, addr_len);
1786 }
1787
1788 spin_unlock_irq(&cp->lock);
1789 return 0;
1790 }
1791
1792 /* Put the board into D3cold state and wait for WakeUp signal */
1793 static void cp_set_d3_state (struct cp_private *cp)
1794 {
1795 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1796 pci_set_power_state (cp->pdev, PCI_D3hot);
1797 }
1798
1799 static const struct net_device_ops cp_netdev_ops = {
1800 .ndo_open = cp_open,
1801 .ndo_stop = cp_close,
1802 .ndo_validate_addr = eth_validate_addr,
1803 .ndo_set_mac_address = cp_set_mac_address,
1804 .ndo_set_rx_mode = cp_set_rx_mode,
1805 .ndo_get_stats = cp_get_stats,
1806 .ndo_do_ioctl = cp_ioctl,
1807 .ndo_start_xmit = cp_start_xmit,
1808 .ndo_tx_timeout = cp_tx_timeout,
1809 .ndo_set_features = cp_set_features,
1810 #ifdef BROKEN
1811 .ndo_change_mtu = cp_change_mtu,
1812 #endif
1813
1814 #ifdef CONFIG_NET_POLL_CONTROLLER
1815 .ndo_poll_controller = cp_poll_controller,
1816 #endif
1817 };
1818
1819 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1820 {
1821 struct net_device *dev;
1822 struct cp_private *cp;
1823 int rc;
1824 void __iomem *regs;
1825 resource_size_t pciaddr;
1826 unsigned int addr_len, i, pci_using_dac;
1827
1828 #ifndef MODULE
1829 static int version_printed;
1830 if (version_printed++ == 0)
1831 pr_info("%s", version);
1832 #endif
1833
1834 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1835 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1836 dev_info(&pdev->dev,
1837 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1838 pdev->vendor, pdev->device, pdev->revision);
1839 return -ENODEV;
1840 }
1841
1842 dev = alloc_etherdev(sizeof(struct cp_private));
1843 if (!dev)
1844 return -ENOMEM;
1845 SET_NETDEV_DEV(dev, &pdev->dev);
1846
1847 cp = netdev_priv(dev);
1848 cp->pdev = pdev;
1849 cp->dev = dev;
1850 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1851 spin_lock_init (&cp->lock);
1852 cp->mii_if.dev = dev;
1853 cp->mii_if.mdio_read = mdio_read;
1854 cp->mii_if.mdio_write = mdio_write;
1855 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1856 cp->mii_if.phy_id_mask = 0x1f;
1857 cp->mii_if.reg_num_mask = 0x1f;
1858 cp_set_rxbufsize(cp);
1859
1860 rc = pci_enable_device(pdev);
1861 if (rc)
1862 goto err_out_free;
1863
1864 rc = pci_set_mwi(pdev);
1865 if (rc)
1866 goto err_out_disable;
1867
1868 rc = pci_request_regions(pdev, DRV_NAME);
1869 if (rc)
1870 goto err_out_mwi;
1871
1872 pciaddr = pci_resource_start(pdev, 1);
1873 if (!pciaddr) {
1874 rc = -EIO;
1875 dev_err(&pdev->dev, "no MMIO resource\n");
1876 goto err_out_res;
1877 }
1878 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1879 rc = -EIO;
1880 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1881 (unsigned long long)pci_resource_len(pdev, 1));
1882 goto err_out_res;
1883 }
1884
1885 /* Configure DMA attributes. */
1886 if ((sizeof(dma_addr_t) > 4) &&
1887 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1888 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1889 pci_using_dac = 1;
1890 } else {
1891 pci_using_dac = 0;
1892
1893 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1894 if (rc) {
1895 dev_err(&pdev->dev,
1896 "No usable DMA configuration, aborting\n");
1897 goto err_out_res;
1898 }
1899 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1900 if (rc) {
1901 dev_err(&pdev->dev,
1902 "No usable consistent DMA configuration, aborting\n");
1903 goto err_out_res;
1904 }
1905 }
1906
1907 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1908 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1909
1910 dev->features |= NETIF_F_RXCSUM;
1911 dev->hw_features |= NETIF_F_RXCSUM;
1912
1913 regs = ioremap(pciaddr, CP_REGS_SIZE);
1914 if (!regs) {
1915 rc = -EIO;
1916 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1917 (unsigned long long)pci_resource_len(pdev, 1),
1918 (unsigned long long)pciaddr);
1919 goto err_out_res;
1920 }
1921 cp->regs = regs;
1922
1923 cp_stop_hw(cp);
1924
1925 /* read MAC address from EEPROM */
1926 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1927 for (i = 0; i < 3; i++)
1928 ((__le16 *) (dev->dev_addr))[i] =
1929 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1930 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1931
1932 dev->netdev_ops = &cp_netdev_ops;
1933 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1934 dev->ethtool_ops = &cp_ethtool_ops;
1935 dev->watchdog_timeo = TX_TIMEOUT;
1936
1937 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1938
1939 if (pci_using_dac)
1940 dev->features |= NETIF_F_HIGHDMA;
1941
1942 /* disabled by default until verified */
1943 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1944 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1945 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1946 NETIF_F_HIGHDMA;
1947
1948 rc = register_netdev(dev);
1949 if (rc)
1950 goto err_out_iomap;
1951
1952 netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
1953 regs, dev->dev_addr, pdev->irq);
1954
1955 pci_set_drvdata(pdev, dev);
1956
1957 /* enable busmastering and memory-write-invalidate */
1958 pci_set_master(pdev);
1959
1960 if (cp->wol_enabled)
1961 cp_set_d3_state (cp);
1962
1963 return 0;
1964
1965 err_out_iomap:
1966 iounmap(regs);
1967 err_out_res:
1968 pci_release_regions(pdev);
1969 err_out_mwi:
1970 pci_clear_mwi(pdev);
1971 err_out_disable:
1972 pci_disable_device(pdev);
1973 err_out_free:
1974 free_netdev(dev);
1975 return rc;
1976 }
1977
1978 static void cp_remove_one (struct pci_dev *pdev)
1979 {
1980 struct net_device *dev = pci_get_drvdata(pdev);
1981 struct cp_private *cp = netdev_priv(dev);
1982
1983 unregister_netdev(dev);
1984 iounmap(cp->regs);
1985 if (cp->wol_enabled)
1986 pci_set_power_state (pdev, PCI_D0);
1987 pci_release_regions(pdev);
1988 pci_clear_mwi(pdev);
1989 pci_disable_device(pdev);
1990 pci_set_drvdata(pdev, NULL);
1991 free_netdev(dev);
1992 }
1993
1994 #ifdef CONFIG_PM
1995 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
1996 {
1997 struct net_device *dev = pci_get_drvdata(pdev);
1998 struct cp_private *cp = netdev_priv(dev);
1999 unsigned long flags;
2000
2001 if (!netif_running(dev))
2002 return 0;
2003
2004 netif_device_detach (dev);
2005 netif_stop_queue (dev);
2006
2007 spin_lock_irqsave (&cp->lock, flags);
2008
2009 /* Disable Rx and Tx */
2010 cpw16 (IntrMask, 0);
2011 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2012
2013 spin_unlock_irqrestore (&cp->lock, flags);
2014
2015 pci_save_state(pdev);
2016 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2017 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2018
2019 return 0;
2020 }
2021
2022 static int cp_resume (struct pci_dev *pdev)
2023 {
2024 struct net_device *dev = pci_get_drvdata (pdev);
2025 struct cp_private *cp = netdev_priv(dev);
2026 unsigned long flags;
2027
2028 if (!netif_running(dev))
2029 return 0;
2030
2031 netif_device_attach (dev);
2032
2033 pci_set_power_state(pdev, PCI_D0);
2034 pci_restore_state(pdev);
2035 pci_enable_wake(pdev, PCI_D0, 0);
2036
2037 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2038 cp_init_rings_index (cp);
2039 cp_init_hw (cp);
2040 cp_enable_irq(cp);
2041 netif_start_queue (dev);
2042
2043 spin_lock_irqsave (&cp->lock, flags);
2044
2045 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2046
2047 spin_unlock_irqrestore (&cp->lock, flags);
2048
2049 return 0;
2050 }
2051 #endif /* CONFIG_PM */
2052
2053 static struct pci_driver cp_driver = {
2054 .name = DRV_NAME,
2055 .id_table = cp_pci_tbl,
2056 .probe = cp_init_one,
2057 .remove = cp_remove_one,
2058 #ifdef CONFIG_PM
2059 .resume = cp_resume,
2060 .suspend = cp_suspend,
2061 #endif
2062 };
2063
2064 static int __init cp_init (void)
2065 {
2066 #ifdef MODULE
2067 pr_info("%s", version);
2068 #endif
2069 return pci_register_driver(&cp_driver);
2070 }
2071
2072 static void __exit cp_exit (void)
2073 {
2074 pci_unregister_driver (&cp_driver);
2075 }
2076
2077 module_init(cp_init);
2078 module_exit(cp_exit);