net: vlan: prepare for 802.1ad VLAN filtering offload
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/pagemap.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/dmapool.h>
20 #include <linux/mempool.h>
21 #include <linux/spinlock.h>
22 #include <linux/kthread.h>
23 #include <linux/interrupt.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_vlan.h>
38 #include <linux/skbuff.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/prefetch.h>
43 #include <net/ip6_checksum.h>
44
45 #include "qlge.h"
46
47 char qlge_driver_name[] = DRV_NAME;
48 const char qlge_driver_version[] = DRV_VERSION;
49
50 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51 MODULE_DESCRIPTION(DRV_STRING " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54
55 static const u32 default_msg =
56 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57 /* NETIF_MSG_TIMER | */
58 NETIF_MSG_IFDOWN |
59 NETIF_MSG_IFUP |
60 NETIF_MSG_RX_ERR |
61 NETIF_MSG_TX_ERR |
62 /* NETIF_MSG_TX_QUEUED | */
63 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
64 /* NETIF_MSG_PKTDATA | */
65 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
67 static int debug = -1; /* defaults above */
68 module_param(debug, int, 0664);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 #define MSIX_IRQ 0
72 #define MSI_IRQ 1
73 #define LEG_IRQ 2
74 static int qlge_irq_type = MSIX_IRQ;
75 module_param(qlge_irq_type, int, 0664);
76 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77
78 static int qlge_mpi_coredump;
79 module_param(qlge_mpi_coredump, int, 0);
80 MODULE_PARM_DESC(qlge_mpi_coredump,
81 "Option to enable MPI firmware dump. "
82 "Default is OFF - Do Not allocate memory. ");
83
84 static int qlge_force_coredump;
85 module_param(qlge_force_coredump, int, 0);
86 MODULE_PARM_DESC(qlge_force_coredump,
87 "Option to allow force of firmware core dump. "
88 "Default is OFF - Do not allow.");
89
90 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
92 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
93 /* required last entry */
94 {0,}
95 };
96
97 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
99 static int ql_wol(struct ql_adapter *qdev);
100 static void qlge_set_multicast_list(struct net_device *ndev);
101
102 /* This hardware semaphore causes exclusive access to
103 * resources shared between the NIC driver, MPI firmware,
104 * FCOE firmware and the FC driver.
105 */
106 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
107 {
108 u32 sem_bits = 0;
109
110 switch (sem_mask) {
111 case SEM_XGMAC0_MASK:
112 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
113 break;
114 case SEM_XGMAC1_MASK:
115 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
116 break;
117 case SEM_ICB_MASK:
118 sem_bits = SEM_SET << SEM_ICB_SHIFT;
119 break;
120 case SEM_MAC_ADDR_MASK:
121 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
122 break;
123 case SEM_FLASH_MASK:
124 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
125 break;
126 case SEM_PROBE_MASK:
127 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
128 break;
129 case SEM_RT_IDX_MASK:
130 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
131 break;
132 case SEM_PROC_REG_MASK:
133 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
134 break;
135 default:
136 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
137 return -EINVAL;
138 }
139
140 ql_write32(qdev, SEM, sem_bits | sem_mask);
141 return !(ql_read32(qdev, SEM) & sem_bits);
142 }
143
144 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
145 {
146 unsigned int wait_count = 30;
147 do {
148 if (!ql_sem_trylock(qdev, sem_mask))
149 return 0;
150 udelay(100);
151 } while (--wait_count);
152 return -ETIMEDOUT;
153 }
154
155 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
156 {
157 ql_write32(qdev, SEM, sem_mask);
158 ql_read32(qdev, SEM); /* flush */
159 }
160
161 /* This function waits for a specific bit to come ready
162 * in a given register. It is used mostly by the initialize
163 * process, but is also used in kernel thread API such as
164 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
165 */
166 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
167 {
168 u32 temp;
169 int count = UDELAY_COUNT;
170
171 while (count) {
172 temp = ql_read32(qdev, reg);
173
174 /* check for errors */
175 if (temp & err_bit) {
176 netif_alert(qdev, probe, qdev->ndev,
177 "register 0x%.08x access error, value = 0x%.08x!.\n",
178 reg, temp);
179 return -EIO;
180 } else if (temp & bit)
181 return 0;
182 udelay(UDELAY_DELAY);
183 count--;
184 }
185 netif_alert(qdev, probe, qdev->ndev,
186 "Timed out waiting for reg %x to come ready.\n", reg);
187 return -ETIMEDOUT;
188 }
189
190 /* The CFG register is used to download TX and RX control blocks
191 * to the chip. This function waits for an operation to complete.
192 */
193 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
194 {
195 int count = UDELAY_COUNT;
196 u32 temp;
197
198 while (count) {
199 temp = ql_read32(qdev, CFG);
200 if (temp & CFG_LE)
201 return -EIO;
202 if (!(temp & bit))
203 return 0;
204 udelay(UDELAY_DELAY);
205 count--;
206 }
207 return -ETIMEDOUT;
208 }
209
210
211 /* Used to issue init control blocks to hw. Maps control block,
212 * sets address, triggers download, waits for completion.
213 */
214 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
215 u16 q_id)
216 {
217 u64 map;
218 int status = 0;
219 int direction;
220 u32 mask;
221 u32 value;
222
223 direction =
224 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
225 PCI_DMA_FROMDEVICE;
226
227 map = pci_map_single(qdev->pdev, ptr, size, direction);
228 if (pci_dma_mapping_error(qdev->pdev, map)) {
229 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
230 return -ENOMEM;
231 }
232
233 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
234 if (status)
235 return status;
236
237 status = ql_wait_cfg(qdev, bit);
238 if (status) {
239 netif_err(qdev, ifup, qdev->ndev,
240 "Timed out waiting for CFG to come ready.\n");
241 goto exit;
242 }
243
244 ql_write32(qdev, ICB_L, (u32) map);
245 ql_write32(qdev, ICB_H, (u32) (map >> 32));
246
247 mask = CFG_Q_MASK | (bit << 16);
248 value = bit | (q_id << CFG_Q_SHIFT);
249 ql_write32(qdev, CFG, (mask | value));
250
251 /*
252 * Wait for the bit to clear after signaling hw.
253 */
254 status = ql_wait_cfg(qdev, bit);
255 exit:
256 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
257 pci_unmap_single(qdev->pdev, map, size, direction);
258 return status;
259 }
260
261 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
262 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
263 u32 *value)
264 {
265 u32 offset = 0;
266 int status;
267
268 switch (type) {
269 case MAC_ADDR_TYPE_MULTI_MAC:
270 case MAC_ADDR_TYPE_CAM_MAC:
271 {
272 status =
273 ql_wait_reg_rdy(qdev,
274 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
275 if (status)
276 goto exit;
277 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278 (index << MAC_ADDR_IDX_SHIFT) | /* index */
279 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280 status =
281 ql_wait_reg_rdy(qdev,
282 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
283 if (status)
284 goto exit;
285 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286 status =
287 ql_wait_reg_rdy(qdev,
288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev,
296 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 if (type == MAC_ADDR_TYPE_CAM_MAC) {
301 status =
302 ql_wait_reg_rdy(qdev,
303 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
304 if (status)
305 goto exit;
306 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
307 (index << MAC_ADDR_IDX_SHIFT) | /* index */
308 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
309 status =
310 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
311 MAC_ADDR_MR, 0);
312 if (status)
313 goto exit;
314 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
315 }
316 break;
317 }
318 case MAC_ADDR_TYPE_VLAN:
319 case MAC_ADDR_TYPE_MULTI_FLTR:
320 default:
321 netif_crit(qdev, ifup, qdev->ndev,
322 "Address type %d not yet supported.\n", type);
323 status = -EPERM;
324 }
325 exit:
326 return status;
327 }
328
329 /* Set up a MAC, multicast or VLAN address for the
330 * inbound frame matching.
331 */
332 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
333 u16 index)
334 {
335 u32 offset = 0;
336 int status = 0;
337
338 switch (type) {
339 case MAC_ADDR_TYPE_MULTI_MAC:
340 {
341 u32 upper = (addr[0] << 8) | addr[1];
342 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
343 (addr[4] << 8) | (addr[5]);
344
345 status =
346 ql_wait_reg_rdy(qdev,
347 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
348 if (status)
349 goto exit;
350 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
351 (index << MAC_ADDR_IDX_SHIFT) |
352 type | MAC_ADDR_E);
353 ql_write32(qdev, MAC_ADDR_DATA, lower);
354 status =
355 ql_wait_reg_rdy(qdev,
356 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
357 if (status)
358 goto exit;
359 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
360 (index << MAC_ADDR_IDX_SHIFT) |
361 type | MAC_ADDR_E);
362
363 ql_write32(qdev, MAC_ADDR_DATA, upper);
364 status =
365 ql_wait_reg_rdy(qdev,
366 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367 if (status)
368 goto exit;
369 break;
370 }
371 case MAC_ADDR_TYPE_CAM_MAC:
372 {
373 u32 cam_output;
374 u32 upper = (addr[0] << 8) | addr[1];
375 u32 lower =
376 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
377 (addr[5]);
378 status =
379 ql_wait_reg_rdy(qdev,
380 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
381 if (status)
382 goto exit;
383 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384 (index << MAC_ADDR_IDX_SHIFT) | /* index */
385 type); /* type */
386 ql_write32(qdev, MAC_ADDR_DATA, lower);
387 status =
388 ql_wait_reg_rdy(qdev,
389 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
390 if (status)
391 goto exit;
392 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
393 (index << MAC_ADDR_IDX_SHIFT) | /* index */
394 type); /* type */
395 ql_write32(qdev, MAC_ADDR_DATA, upper);
396 status =
397 ql_wait_reg_rdy(qdev,
398 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
399 if (status)
400 goto exit;
401 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
402 (index << MAC_ADDR_IDX_SHIFT) | /* index */
403 type); /* type */
404 /* This field should also include the queue id
405 and possibly the function id. Right now we hardcode
406 the route field to NIC core.
407 */
408 cam_output = (CAM_OUT_ROUTE_NIC |
409 (qdev->
410 func << CAM_OUT_FUNC_SHIFT) |
411 (0 << CAM_OUT_CQ_ID_SHIFT));
412 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
413 cam_output |= CAM_OUT_RV;
414 /* route to NIC core */
415 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
416 break;
417 }
418 case MAC_ADDR_TYPE_VLAN:
419 {
420 u32 enable_bit = *((u32 *) &addr[0]);
421 /* For VLAN, the addr actually holds a bit that
422 * either enables or disables the vlan id we are
423 * addressing. It's either MAC_ADDR_E on or off.
424 * That's bit-27 we're talking about.
425 */
426 status =
427 ql_wait_reg_rdy(qdev,
428 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
429 if (status)
430 goto exit;
431 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
432 (index << MAC_ADDR_IDX_SHIFT) | /* index */
433 type | /* type */
434 enable_bit); /* enable/disable */
435 break;
436 }
437 case MAC_ADDR_TYPE_MULTI_FLTR:
438 default:
439 netif_crit(qdev, ifup, qdev->ndev,
440 "Address type %d not yet supported.\n", type);
441 status = -EPERM;
442 }
443 exit:
444 return status;
445 }
446
447 /* Set or clear MAC address in hardware. We sometimes
448 * have to clear it to prevent wrong frame routing
449 * especially in a bonding environment.
450 */
451 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
452 {
453 int status;
454 char zero_mac_addr[ETH_ALEN];
455 char *addr;
456
457 if (set) {
458 addr = &qdev->current_mac_addr[0];
459 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
460 "Set Mac addr %pM\n", addr);
461 } else {
462 memset(zero_mac_addr, 0, ETH_ALEN);
463 addr = &zero_mac_addr[0];
464 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
465 "Clearing MAC address\n");
466 }
467 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
468 if (status)
469 return status;
470 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
471 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
473 if (status)
474 netif_err(qdev, ifup, qdev->ndev,
475 "Failed to init mac address.\n");
476 return status;
477 }
478
479 void ql_link_on(struct ql_adapter *qdev)
480 {
481 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
482 netif_carrier_on(qdev->ndev);
483 ql_set_mac_addr(qdev, 1);
484 }
485
486 void ql_link_off(struct ql_adapter *qdev)
487 {
488 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
489 netif_carrier_off(qdev->ndev);
490 ql_set_mac_addr(qdev, 0);
491 }
492
493 /* Get a specific frame routing value from the CAM.
494 * Used for debug and reg dump.
495 */
496 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497 {
498 int status = 0;
499
500 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
501 if (status)
502 goto exit;
503
504 ql_write32(qdev, RT_IDX,
505 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
506 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
507 if (status)
508 goto exit;
509 *value = ql_read32(qdev, RT_DATA);
510 exit:
511 return status;
512 }
513
514 /* The NIC function for this chip has 16 routing indexes. Each one can be used
515 * to route different frame types to various inbound queues. We send broadcast/
516 * multicast/error frames to the default queue for slow handling,
517 * and CAM hit/RSS frames to the fast handling queues.
518 */
519 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520 int enable)
521 {
522 int status = -EINVAL; /* Return error if no mask match. */
523 u32 value = 0;
524
525 switch (mask) {
526 case RT_IDX_CAM_HIT:
527 {
528 value = RT_IDX_DST_CAM_Q | /* dest */
529 RT_IDX_TYPE_NICQ | /* type */
530 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
531 break;
532 }
533 case RT_IDX_VALID: /* Promiscuous Mode frames. */
534 {
535 value = RT_IDX_DST_DFLT_Q | /* dest */
536 RT_IDX_TYPE_NICQ | /* type */
537 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
538 break;
539 }
540 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
541 {
542 value = RT_IDX_DST_DFLT_Q | /* dest */
543 RT_IDX_TYPE_NICQ | /* type */
544 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
545 break;
546 }
547 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
548 {
549 value = RT_IDX_DST_DFLT_Q | /* dest */
550 RT_IDX_TYPE_NICQ | /* type */
551 (RT_IDX_IP_CSUM_ERR_SLOT <<
552 RT_IDX_IDX_SHIFT); /* index */
553 break;
554 }
555 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
556 {
557 value = RT_IDX_DST_DFLT_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
560 RT_IDX_IDX_SHIFT); /* index */
561 break;
562 }
563 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
564 {
565 value = RT_IDX_DST_DFLT_Q | /* dest */
566 RT_IDX_TYPE_NICQ | /* type */
567 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
568 break;
569 }
570 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
571 {
572 value = RT_IDX_DST_DFLT_Q | /* dest */
573 RT_IDX_TYPE_NICQ | /* type */
574 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
575 break;
576 }
577 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
578 {
579 value = RT_IDX_DST_DFLT_Q | /* dest */
580 RT_IDX_TYPE_NICQ | /* type */
581 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
582 break;
583 }
584 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
585 {
586 value = RT_IDX_DST_RSS | /* dest */
587 RT_IDX_TYPE_NICQ | /* type */
588 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
589 break;
590 }
591 case 0: /* Clear the E-bit on an entry. */
592 {
593 value = RT_IDX_DST_DFLT_Q | /* dest */
594 RT_IDX_TYPE_NICQ | /* type */
595 (index << RT_IDX_IDX_SHIFT);/* index */
596 break;
597 }
598 default:
599 netif_err(qdev, ifup, qdev->ndev,
600 "Mask type %d not yet supported.\n", mask);
601 status = -EPERM;
602 goto exit;
603 }
604
605 if (value) {
606 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
607 if (status)
608 goto exit;
609 value |= (enable ? RT_IDX_E : 0);
610 ql_write32(qdev, RT_IDX, value);
611 ql_write32(qdev, RT_DATA, enable ? mask : 0);
612 }
613 exit:
614 return status;
615 }
616
617 static void ql_enable_interrupts(struct ql_adapter *qdev)
618 {
619 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
620 }
621
622 static void ql_disable_interrupts(struct ql_adapter *qdev)
623 {
624 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
625 }
626
627 /* If we're running with multiple MSI-X vectors then we enable on the fly.
628 * Otherwise, we may have multiple outstanding workers and don't want to
629 * enable until the last one finishes. In this case, the irq_cnt gets
630 * incremented every time we queue a worker and decremented every time
631 * a worker finishes. Once it hits zero we enable the interrupt.
632 */
633 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
634 {
635 u32 var = 0;
636 unsigned long hw_flags = 0;
637 struct intr_context *ctx = qdev->intr_context + intr;
638
639 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
640 /* Always enable if we're MSIX multi interrupts and
641 * it's not the default (zeroeth) interrupt.
642 */
643 ql_write32(qdev, INTR_EN,
644 ctx->intr_en_mask);
645 var = ql_read32(qdev, STS);
646 return var;
647 }
648
649 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
650 if (atomic_dec_and_test(&ctx->irq_cnt)) {
651 ql_write32(qdev, INTR_EN,
652 ctx->intr_en_mask);
653 var = ql_read32(qdev, STS);
654 }
655 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
656 return var;
657 }
658
659 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
660 {
661 u32 var = 0;
662 struct intr_context *ctx;
663
664 /* HW disables for us if we're MSIX multi interrupts and
665 * it's not the default (zeroeth) interrupt.
666 */
667 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
668 return 0;
669
670 ctx = qdev->intr_context + intr;
671 spin_lock(&qdev->hw_lock);
672 if (!atomic_read(&ctx->irq_cnt)) {
673 ql_write32(qdev, INTR_EN,
674 ctx->intr_dis_mask);
675 var = ql_read32(qdev, STS);
676 }
677 atomic_inc(&ctx->irq_cnt);
678 spin_unlock(&qdev->hw_lock);
679 return var;
680 }
681
682 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
683 {
684 int i;
685 for (i = 0; i < qdev->intr_count; i++) {
686 /* The enable call does a atomic_dec_and_test
687 * and enables only if the result is zero.
688 * So we precharge it here.
689 */
690 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
691 i == 0))
692 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
693 ql_enable_completion_interrupt(qdev, i);
694 }
695
696 }
697
698 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
699 {
700 int status, i;
701 u16 csum = 0;
702 __le16 *flash = (__le16 *)&qdev->flash;
703
704 status = strncmp((char *)&qdev->flash, str, 4);
705 if (status) {
706 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
707 return status;
708 }
709
710 for (i = 0; i < size; i++)
711 csum += le16_to_cpu(*flash++);
712
713 if (csum)
714 netif_err(qdev, ifup, qdev->ndev,
715 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
716
717 return csum;
718 }
719
720 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
721 {
722 int status = 0;
723 /* wait for reg to come ready */
724 status = ql_wait_reg_rdy(qdev,
725 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
726 if (status)
727 goto exit;
728 /* set up for reg read */
729 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
730 /* wait for reg to come ready */
731 status = ql_wait_reg_rdy(qdev,
732 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
733 if (status)
734 goto exit;
735 /* This data is stored on flash as an array of
736 * __le32. Since ql_read32() returns cpu endian
737 * we need to swap it back.
738 */
739 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
740 exit:
741 return status;
742 }
743
744 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
745 {
746 u32 i, size;
747 int status;
748 __le32 *p = (__le32 *)&qdev->flash;
749 u32 offset;
750 u8 mac_addr[6];
751
752 /* Get flash offset for function and adjust
753 * for dword access.
754 */
755 if (!qdev->port)
756 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
757 else
758 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
759
760 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
761 return -ETIMEDOUT;
762
763 size = sizeof(struct flash_params_8000) / sizeof(u32);
764 for (i = 0; i < size; i++, p++) {
765 status = ql_read_flash_word(qdev, i+offset, p);
766 if (status) {
767 netif_err(qdev, ifup, qdev->ndev,
768 "Error reading flash.\n");
769 goto exit;
770 }
771 }
772
773 status = ql_validate_flash(qdev,
774 sizeof(struct flash_params_8000) / sizeof(u16),
775 "8000");
776 if (status) {
777 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
778 status = -EINVAL;
779 goto exit;
780 }
781
782 /* Extract either manufacturer or BOFM modified
783 * MAC address.
784 */
785 if (qdev->flash.flash_params_8000.data_type1 == 2)
786 memcpy(mac_addr,
787 qdev->flash.flash_params_8000.mac_addr1,
788 qdev->ndev->addr_len);
789 else
790 memcpy(mac_addr,
791 qdev->flash.flash_params_8000.mac_addr,
792 qdev->ndev->addr_len);
793
794 if (!is_valid_ether_addr(mac_addr)) {
795 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
796 status = -EINVAL;
797 goto exit;
798 }
799
800 memcpy(qdev->ndev->dev_addr,
801 mac_addr,
802 qdev->ndev->addr_len);
803
804 exit:
805 ql_sem_unlock(qdev, SEM_FLASH_MASK);
806 return status;
807 }
808
809 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
810 {
811 int i;
812 int status;
813 __le32 *p = (__le32 *)&qdev->flash;
814 u32 offset = 0;
815 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
816
817 /* Second function's parameters follow the first
818 * function's.
819 */
820 if (qdev->port)
821 offset = size;
822
823 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
824 return -ETIMEDOUT;
825
826 for (i = 0; i < size; i++, p++) {
827 status = ql_read_flash_word(qdev, i+offset, p);
828 if (status) {
829 netif_err(qdev, ifup, qdev->ndev,
830 "Error reading flash.\n");
831 goto exit;
832 }
833
834 }
835
836 status = ql_validate_flash(qdev,
837 sizeof(struct flash_params_8012) / sizeof(u16),
838 "8012");
839 if (status) {
840 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
841 status = -EINVAL;
842 goto exit;
843 }
844
845 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
846 status = -EINVAL;
847 goto exit;
848 }
849
850 memcpy(qdev->ndev->dev_addr,
851 qdev->flash.flash_params_8012.mac_addr,
852 qdev->ndev->addr_len);
853
854 exit:
855 ql_sem_unlock(qdev, SEM_FLASH_MASK);
856 return status;
857 }
858
859 /* xgmac register are located behind the xgmac_addr and xgmac_data
860 * register pair. Each read/write requires us to wait for the ready
861 * bit before reading/writing the data.
862 */
863 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
864 {
865 int status;
866 /* wait for reg to come ready */
867 status = ql_wait_reg_rdy(qdev,
868 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
869 if (status)
870 return status;
871 /* write the data to the data reg */
872 ql_write32(qdev, XGMAC_DATA, data);
873 /* trigger the write */
874 ql_write32(qdev, XGMAC_ADDR, reg);
875 return status;
876 }
877
878 /* xgmac register are located behind the xgmac_addr and xgmac_data
879 * register pair. Each read/write requires us to wait for the ready
880 * bit before reading/writing the data.
881 */
882 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
883 {
884 int status = 0;
885 /* wait for reg to come ready */
886 status = ql_wait_reg_rdy(qdev,
887 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
888 if (status)
889 goto exit;
890 /* set up for reg read */
891 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
892 /* wait for reg to come ready */
893 status = ql_wait_reg_rdy(qdev,
894 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
895 if (status)
896 goto exit;
897 /* get the data */
898 *data = ql_read32(qdev, XGMAC_DATA);
899 exit:
900 return status;
901 }
902
903 /* This is used for reading the 64-bit statistics regs. */
904 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
905 {
906 int status = 0;
907 u32 hi = 0;
908 u32 lo = 0;
909
910 status = ql_read_xgmac_reg(qdev, reg, &lo);
911 if (status)
912 goto exit;
913
914 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
915 if (status)
916 goto exit;
917
918 *data = (u64) lo | ((u64) hi << 32);
919
920 exit:
921 return status;
922 }
923
924 static int ql_8000_port_initialize(struct ql_adapter *qdev)
925 {
926 int status;
927 /*
928 * Get MPI firmware version for driver banner
929 * and ethool info.
930 */
931 status = ql_mb_about_fw(qdev);
932 if (status)
933 goto exit;
934 status = ql_mb_get_fw_state(qdev);
935 if (status)
936 goto exit;
937 /* Wake up a worker to get/set the TX/RX frame sizes. */
938 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
939 exit:
940 return status;
941 }
942
943 /* Take the MAC Core out of reset.
944 * Enable statistics counting.
945 * Take the transmitter/receiver out of reset.
946 * This functionality may be done in the MPI firmware at a
947 * later date.
948 */
949 static int ql_8012_port_initialize(struct ql_adapter *qdev)
950 {
951 int status = 0;
952 u32 data;
953
954 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
955 /* Another function has the semaphore, so
956 * wait for the port init bit to come ready.
957 */
958 netif_info(qdev, link, qdev->ndev,
959 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
960 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
961 if (status) {
962 netif_crit(qdev, link, qdev->ndev,
963 "Port initialize timed out.\n");
964 }
965 return status;
966 }
967
968 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
969 /* Set the core reset. */
970 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
971 if (status)
972 goto end;
973 data |= GLOBAL_CFG_RESET;
974 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
975 if (status)
976 goto end;
977
978 /* Clear the core reset and turn on jumbo for receiver. */
979 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
980 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
981 data |= GLOBAL_CFG_TX_STAT_EN;
982 data |= GLOBAL_CFG_RX_STAT_EN;
983 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
984 if (status)
985 goto end;
986
987 /* Enable transmitter, and clear it's reset. */
988 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
989 if (status)
990 goto end;
991 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
992 data |= TX_CFG_EN; /* Enable the transmitter. */
993 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
994 if (status)
995 goto end;
996
997 /* Enable receiver and clear it's reset. */
998 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
999 if (status)
1000 goto end;
1001 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1002 data |= RX_CFG_EN; /* Enable the receiver. */
1003 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1004 if (status)
1005 goto end;
1006
1007 /* Turn on jumbo. */
1008 status =
1009 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1010 if (status)
1011 goto end;
1012 status =
1013 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1014 if (status)
1015 goto end;
1016
1017 /* Signal to the world that the port is enabled. */
1018 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1019 end:
1020 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1021 return status;
1022 }
1023
1024 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1025 {
1026 return PAGE_SIZE << qdev->lbq_buf_order;
1027 }
1028
1029 /* Get the next large buffer. */
1030 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1031 {
1032 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1033 rx_ring->lbq_curr_idx++;
1034 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1035 rx_ring->lbq_curr_idx = 0;
1036 rx_ring->lbq_free_cnt++;
1037 return lbq_desc;
1038 }
1039
1040 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1041 struct rx_ring *rx_ring)
1042 {
1043 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1044
1045 pci_dma_sync_single_for_cpu(qdev->pdev,
1046 dma_unmap_addr(lbq_desc, mapaddr),
1047 rx_ring->lbq_buf_size,
1048 PCI_DMA_FROMDEVICE);
1049
1050 /* If it's the last chunk of our master page then
1051 * we unmap it.
1052 */
1053 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1054 == ql_lbq_block_size(qdev))
1055 pci_unmap_page(qdev->pdev,
1056 lbq_desc->p.pg_chunk.map,
1057 ql_lbq_block_size(qdev),
1058 PCI_DMA_FROMDEVICE);
1059 return lbq_desc;
1060 }
1061
1062 /* Get the next small buffer. */
1063 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1064 {
1065 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1066 rx_ring->sbq_curr_idx++;
1067 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1068 rx_ring->sbq_curr_idx = 0;
1069 rx_ring->sbq_free_cnt++;
1070 return sbq_desc;
1071 }
1072
1073 /* Update an rx ring index. */
1074 static void ql_update_cq(struct rx_ring *rx_ring)
1075 {
1076 rx_ring->cnsmr_idx++;
1077 rx_ring->curr_entry++;
1078 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1079 rx_ring->cnsmr_idx = 0;
1080 rx_ring->curr_entry = rx_ring->cq_base;
1081 }
1082 }
1083
1084 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1085 {
1086 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1087 }
1088
1089 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1090 struct bq_desc *lbq_desc)
1091 {
1092 if (!rx_ring->pg_chunk.page) {
1093 u64 map;
1094 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1095 GFP_ATOMIC,
1096 qdev->lbq_buf_order);
1097 if (unlikely(!rx_ring->pg_chunk.page)) {
1098 netif_err(qdev, drv, qdev->ndev,
1099 "page allocation failed.\n");
1100 return -ENOMEM;
1101 }
1102 rx_ring->pg_chunk.offset = 0;
1103 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104 0, ql_lbq_block_size(qdev),
1105 PCI_DMA_FROMDEVICE);
1106 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107 __free_pages(rx_ring->pg_chunk.page,
1108 qdev->lbq_buf_order);
1109 netif_err(qdev, drv, qdev->ndev,
1110 "PCI mapping failed.\n");
1111 return -ENOMEM;
1112 }
1113 rx_ring->pg_chunk.map = map;
1114 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1115 }
1116
1117 /* Copy the current master pg_chunk info
1118 * to the current descriptor.
1119 */
1120 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1121
1122 /* Adjust the master page chunk for next
1123 * buffer get.
1124 */
1125 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1126 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1127 rx_ring->pg_chunk.page = NULL;
1128 lbq_desc->p.pg_chunk.last_flag = 1;
1129 } else {
1130 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1131 get_page(rx_ring->pg_chunk.page);
1132 lbq_desc->p.pg_chunk.last_flag = 0;
1133 }
1134 return 0;
1135 }
1136 /* Process (refill) a large buffer queue. */
1137 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1138 {
1139 u32 clean_idx = rx_ring->lbq_clean_idx;
1140 u32 start_idx = clean_idx;
1141 struct bq_desc *lbq_desc;
1142 u64 map;
1143 int i;
1144
1145 while (rx_ring->lbq_free_cnt > 32) {
1146 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1147 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1148 "lbq: try cleaning clean_idx = %d.\n",
1149 clean_idx);
1150 lbq_desc = &rx_ring->lbq[clean_idx];
1151 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1152 rx_ring->lbq_clean_idx = clean_idx;
1153 netif_err(qdev, ifup, qdev->ndev,
1154 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1155 i, clean_idx);
1156 return;
1157 }
1158
1159 map = lbq_desc->p.pg_chunk.map +
1160 lbq_desc->p.pg_chunk.offset;
1161 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1162 dma_unmap_len_set(lbq_desc, maplen,
1163 rx_ring->lbq_buf_size);
1164 *lbq_desc->addr = cpu_to_le64(map);
1165
1166 pci_dma_sync_single_for_device(qdev->pdev, map,
1167 rx_ring->lbq_buf_size,
1168 PCI_DMA_FROMDEVICE);
1169 clean_idx++;
1170 if (clean_idx == rx_ring->lbq_len)
1171 clean_idx = 0;
1172 }
1173
1174 rx_ring->lbq_clean_idx = clean_idx;
1175 rx_ring->lbq_prod_idx += 16;
1176 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1177 rx_ring->lbq_prod_idx = 0;
1178 rx_ring->lbq_free_cnt -= 16;
1179 }
1180
1181 if (start_idx != clean_idx) {
1182 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1183 "lbq: updating prod idx = %d.\n",
1184 rx_ring->lbq_prod_idx);
1185 ql_write_db_reg(rx_ring->lbq_prod_idx,
1186 rx_ring->lbq_prod_idx_db_reg);
1187 }
1188 }
1189
1190 /* Process (refill) a small buffer queue. */
1191 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1192 {
1193 u32 clean_idx = rx_ring->sbq_clean_idx;
1194 u32 start_idx = clean_idx;
1195 struct bq_desc *sbq_desc;
1196 u64 map;
1197 int i;
1198
1199 while (rx_ring->sbq_free_cnt > 16) {
1200 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1201 sbq_desc = &rx_ring->sbq[clean_idx];
1202 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1203 "sbq: try cleaning clean_idx = %d.\n",
1204 clean_idx);
1205 if (sbq_desc->p.skb == NULL) {
1206 netif_printk(qdev, rx_status, KERN_DEBUG,
1207 qdev->ndev,
1208 "sbq: getting new skb for index %d.\n",
1209 sbq_desc->index);
1210 sbq_desc->p.skb =
1211 netdev_alloc_skb(qdev->ndev,
1212 SMALL_BUFFER_SIZE);
1213 if (sbq_desc->p.skb == NULL) {
1214 rx_ring->sbq_clean_idx = clean_idx;
1215 return;
1216 }
1217 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1218 map = pci_map_single(qdev->pdev,
1219 sbq_desc->p.skb->data,
1220 rx_ring->sbq_buf_size,
1221 PCI_DMA_FROMDEVICE);
1222 if (pci_dma_mapping_error(qdev->pdev, map)) {
1223 netif_err(qdev, ifup, qdev->ndev,
1224 "PCI mapping failed.\n");
1225 rx_ring->sbq_clean_idx = clean_idx;
1226 dev_kfree_skb_any(sbq_desc->p.skb);
1227 sbq_desc->p.skb = NULL;
1228 return;
1229 }
1230 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1231 dma_unmap_len_set(sbq_desc, maplen,
1232 rx_ring->sbq_buf_size);
1233 *sbq_desc->addr = cpu_to_le64(map);
1234 }
1235
1236 clean_idx++;
1237 if (clean_idx == rx_ring->sbq_len)
1238 clean_idx = 0;
1239 }
1240 rx_ring->sbq_clean_idx = clean_idx;
1241 rx_ring->sbq_prod_idx += 16;
1242 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1243 rx_ring->sbq_prod_idx = 0;
1244 rx_ring->sbq_free_cnt -= 16;
1245 }
1246
1247 if (start_idx != clean_idx) {
1248 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1249 "sbq: updating prod idx = %d.\n",
1250 rx_ring->sbq_prod_idx);
1251 ql_write_db_reg(rx_ring->sbq_prod_idx,
1252 rx_ring->sbq_prod_idx_db_reg);
1253 }
1254 }
1255
1256 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1257 struct rx_ring *rx_ring)
1258 {
1259 ql_update_sbq(qdev, rx_ring);
1260 ql_update_lbq(qdev, rx_ring);
1261 }
1262
1263 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1264 * fails at some stage, or from the interrupt when a tx completes.
1265 */
1266 static void ql_unmap_send(struct ql_adapter *qdev,
1267 struct tx_ring_desc *tx_ring_desc, int mapped)
1268 {
1269 int i;
1270 for (i = 0; i < mapped; i++) {
1271 if (i == 0 || (i == 7 && mapped > 7)) {
1272 /*
1273 * Unmap the skb->data area, or the
1274 * external sglist (AKA the Outbound
1275 * Address List (OAL)).
1276 * If its the zeroeth element, then it's
1277 * the skb->data area. If it's the 7th
1278 * element and there is more than 6 frags,
1279 * then its an OAL.
1280 */
1281 if (i == 7) {
1282 netif_printk(qdev, tx_done, KERN_DEBUG,
1283 qdev->ndev,
1284 "unmapping OAL area.\n");
1285 }
1286 pci_unmap_single(qdev->pdev,
1287 dma_unmap_addr(&tx_ring_desc->map[i],
1288 mapaddr),
1289 dma_unmap_len(&tx_ring_desc->map[i],
1290 maplen),
1291 PCI_DMA_TODEVICE);
1292 } else {
1293 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1294 "unmapping frag %d.\n", i);
1295 pci_unmap_page(qdev->pdev,
1296 dma_unmap_addr(&tx_ring_desc->map[i],
1297 mapaddr),
1298 dma_unmap_len(&tx_ring_desc->map[i],
1299 maplen), PCI_DMA_TODEVICE);
1300 }
1301 }
1302
1303 }
1304
1305 /* Map the buffers for this transmit. This will return
1306 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1307 */
1308 static int ql_map_send(struct ql_adapter *qdev,
1309 struct ob_mac_iocb_req *mac_iocb_ptr,
1310 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1311 {
1312 int len = skb_headlen(skb);
1313 dma_addr_t map;
1314 int frag_idx, err, map_idx = 0;
1315 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1316 int frag_cnt = skb_shinfo(skb)->nr_frags;
1317
1318 if (frag_cnt) {
1319 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1320 "frag_cnt = %d.\n", frag_cnt);
1321 }
1322 /*
1323 * Map the skb buffer first.
1324 */
1325 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1326
1327 err = pci_dma_mapping_error(qdev->pdev, map);
1328 if (err) {
1329 netif_err(qdev, tx_queued, qdev->ndev,
1330 "PCI mapping failed with error: %d\n", err);
1331
1332 return NETDEV_TX_BUSY;
1333 }
1334
1335 tbd->len = cpu_to_le32(len);
1336 tbd->addr = cpu_to_le64(map);
1337 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1338 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1339 map_idx++;
1340
1341 /*
1342 * This loop fills the remainder of the 8 address descriptors
1343 * in the IOCB. If there are more than 7 fragments, then the
1344 * eighth address desc will point to an external list (OAL).
1345 * When this happens, the remainder of the frags will be stored
1346 * in this list.
1347 */
1348 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1349 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1350 tbd++;
1351 if (frag_idx == 6 && frag_cnt > 7) {
1352 /* Let's tack on an sglist.
1353 * Our control block will now
1354 * look like this:
1355 * iocb->seg[0] = skb->data
1356 * iocb->seg[1] = frag[0]
1357 * iocb->seg[2] = frag[1]
1358 * iocb->seg[3] = frag[2]
1359 * iocb->seg[4] = frag[3]
1360 * iocb->seg[5] = frag[4]
1361 * iocb->seg[6] = frag[5]
1362 * iocb->seg[7] = ptr to OAL (external sglist)
1363 * oal->seg[0] = frag[6]
1364 * oal->seg[1] = frag[7]
1365 * oal->seg[2] = frag[8]
1366 * oal->seg[3] = frag[9]
1367 * oal->seg[4] = frag[10]
1368 * etc...
1369 */
1370 /* Tack on the OAL in the eighth segment of IOCB. */
1371 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1372 sizeof(struct oal),
1373 PCI_DMA_TODEVICE);
1374 err = pci_dma_mapping_error(qdev->pdev, map);
1375 if (err) {
1376 netif_err(qdev, tx_queued, qdev->ndev,
1377 "PCI mapping outbound address list with error: %d\n",
1378 err);
1379 goto map_error;
1380 }
1381
1382 tbd->addr = cpu_to_le64(map);
1383 /*
1384 * The length is the number of fragments
1385 * that remain to be mapped times the length
1386 * of our sglist (OAL).
1387 */
1388 tbd->len =
1389 cpu_to_le32((sizeof(struct tx_buf_desc) *
1390 (frag_cnt - frag_idx)) | TX_DESC_C);
1391 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1392 map);
1393 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1394 sizeof(struct oal));
1395 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1396 map_idx++;
1397 }
1398
1399 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1400 DMA_TO_DEVICE);
1401
1402 err = dma_mapping_error(&qdev->pdev->dev, map);
1403 if (err) {
1404 netif_err(qdev, tx_queued, qdev->ndev,
1405 "PCI mapping frags failed with error: %d.\n",
1406 err);
1407 goto map_error;
1408 }
1409
1410 tbd->addr = cpu_to_le64(map);
1411 tbd->len = cpu_to_le32(skb_frag_size(frag));
1412 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1413 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1414 skb_frag_size(frag));
1415
1416 }
1417 /* Save the number of segments we've mapped. */
1418 tx_ring_desc->map_cnt = map_idx;
1419 /* Terminate the last segment. */
1420 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1421 return NETDEV_TX_OK;
1422
1423 map_error:
1424 /*
1425 * If the first frag mapping failed, then i will be zero.
1426 * This causes the unmap of the skb->data area. Otherwise
1427 * we pass in the number of frags that mapped successfully
1428 * so they can be umapped.
1429 */
1430 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1431 return NETDEV_TX_BUSY;
1432 }
1433
1434 /* Categorizing receive firmware frame errors */
1435 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err)
1436 {
1437 struct nic_stats *stats = &qdev->nic_stats;
1438
1439 stats->rx_err_count++;
1440
1441 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1442 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1443 stats->rx_code_err++;
1444 break;
1445 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1446 stats->rx_oversize_err++;
1447 break;
1448 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1449 stats->rx_undersize_err++;
1450 break;
1451 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1452 stats->rx_preamble_err++;
1453 break;
1454 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1455 stats->rx_frame_len_err++;
1456 break;
1457 case IB_MAC_IOCB_RSP_ERR_CRC:
1458 stats->rx_crc_err++;
1459 default:
1460 break;
1461 }
1462 }
1463
1464 /* Process an inbound completion from an rx ring. */
1465 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1466 struct rx_ring *rx_ring,
1467 struct ib_mac_iocb_rsp *ib_mac_rsp,
1468 u32 length,
1469 u16 vlan_id)
1470 {
1471 struct sk_buff *skb;
1472 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1473 struct napi_struct *napi = &rx_ring->napi;
1474
1475 napi->dev = qdev->ndev;
1476
1477 skb = napi_get_frags(napi);
1478 if (!skb) {
1479 netif_err(qdev, drv, qdev->ndev,
1480 "Couldn't get an skb, exiting.\n");
1481 rx_ring->rx_dropped++;
1482 put_page(lbq_desc->p.pg_chunk.page);
1483 return;
1484 }
1485 prefetch(lbq_desc->p.pg_chunk.va);
1486 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1487 lbq_desc->p.pg_chunk.page,
1488 lbq_desc->p.pg_chunk.offset,
1489 length);
1490
1491 skb->len += length;
1492 skb->data_len += length;
1493 skb->truesize += length;
1494 skb_shinfo(skb)->nr_frags++;
1495
1496 rx_ring->rx_packets++;
1497 rx_ring->rx_bytes += length;
1498 skb->ip_summed = CHECKSUM_UNNECESSARY;
1499 skb_record_rx_queue(skb, rx_ring->cq_id);
1500 if (vlan_id != 0xffff)
1501 __vlan_hwaccel_put_tag(skb, vlan_id);
1502 napi_gro_frags(napi);
1503 }
1504
1505 /* Process an inbound completion from an rx ring. */
1506 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1507 struct rx_ring *rx_ring,
1508 struct ib_mac_iocb_rsp *ib_mac_rsp,
1509 u32 length,
1510 u16 vlan_id)
1511 {
1512 struct net_device *ndev = qdev->ndev;
1513 struct sk_buff *skb = NULL;
1514 void *addr;
1515 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1516 struct napi_struct *napi = &rx_ring->napi;
1517
1518 skb = netdev_alloc_skb(ndev, length);
1519 if (!skb) {
1520 rx_ring->rx_dropped++;
1521 put_page(lbq_desc->p.pg_chunk.page);
1522 return;
1523 }
1524
1525 addr = lbq_desc->p.pg_chunk.va;
1526 prefetch(addr);
1527
1528 /* The max framesize filter on this chip is set higher than
1529 * MTU since FCoE uses 2k frames.
1530 */
1531 if (skb->len > ndev->mtu + ETH_HLEN) {
1532 netif_err(qdev, drv, qdev->ndev,
1533 "Segment too small, dropping.\n");
1534 rx_ring->rx_dropped++;
1535 goto err_out;
1536 }
1537 memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
1538 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1539 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1540 length);
1541 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1542 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1543 length-ETH_HLEN);
1544 skb->len += length-ETH_HLEN;
1545 skb->data_len += length-ETH_HLEN;
1546 skb->truesize += length-ETH_HLEN;
1547
1548 rx_ring->rx_packets++;
1549 rx_ring->rx_bytes += skb->len;
1550 skb->protocol = eth_type_trans(skb, ndev);
1551 skb_checksum_none_assert(skb);
1552
1553 if ((ndev->features & NETIF_F_RXCSUM) &&
1554 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1555 /* TCP frame. */
1556 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1557 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1558 "TCP checksum done!\n");
1559 skb->ip_summed = CHECKSUM_UNNECESSARY;
1560 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1561 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1562 /* Unfragmented ipv4 UDP frame. */
1563 struct iphdr *iph =
1564 (struct iphdr *) ((u8 *)addr + ETH_HLEN);
1565 if (!(iph->frag_off &
1566 htons(IP_MF|IP_OFFSET))) {
1567 skb->ip_summed = CHECKSUM_UNNECESSARY;
1568 netif_printk(qdev, rx_status, KERN_DEBUG,
1569 qdev->ndev,
1570 "UDP checksum done!\n");
1571 }
1572 }
1573 }
1574
1575 skb_record_rx_queue(skb, rx_ring->cq_id);
1576 if (vlan_id != 0xffff)
1577 __vlan_hwaccel_put_tag(skb, vlan_id);
1578 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1579 napi_gro_receive(napi, skb);
1580 else
1581 netif_receive_skb(skb);
1582 return;
1583 err_out:
1584 dev_kfree_skb_any(skb);
1585 put_page(lbq_desc->p.pg_chunk.page);
1586 }
1587
1588 /* Process an inbound completion from an rx ring. */
1589 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1590 struct rx_ring *rx_ring,
1591 struct ib_mac_iocb_rsp *ib_mac_rsp,
1592 u32 length,
1593 u16 vlan_id)
1594 {
1595 struct net_device *ndev = qdev->ndev;
1596 struct sk_buff *skb = NULL;
1597 struct sk_buff *new_skb = NULL;
1598 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1599
1600 skb = sbq_desc->p.skb;
1601 /* Allocate new_skb and copy */
1602 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1603 if (new_skb == NULL) {
1604 rx_ring->rx_dropped++;
1605 return;
1606 }
1607 skb_reserve(new_skb, NET_IP_ALIGN);
1608 memcpy(skb_put(new_skb, length), skb->data, length);
1609 skb = new_skb;
1610
1611 /* loopback self test for ethtool */
1612 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1613 ql_check_lb_frame(qdev, skb);
1614 dev_kfree_skb_any(skb);
1615 return;
1616 }
1617
1618 /* The max framesize filter on this chip is set higher than
1619 * MTU since FCoE uses 2k frames.
1620 */
1621 if (skb->len > ndev->mtu + ETH_HLEN) {
1622 dev_kfree_skb_any(skb);
1623 rx_ring->rx_dropped++;
1624 return;
1625 }
1626
1627 prefetch(skb->data);
1628 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1629 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1630 "%s Multicast.\n",
1631 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1632 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1633 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1634 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1635 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1636 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1637 }
1638 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1639 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1640 "Promiscuous Packet.\n");
1641
1642 rx_ring->rx_packets++;
1643 rx_ring->rx_bytes += skb->len;
1644 skb->protocol = eth_type_trans(skb, ndev);
1645 skb_checksum_none_assert(skb);
1646
1647 /* If rx checksum is on, and there are no
1648 * csum or frame errors.
1649 */
1650 if ((ndev->features & NETIF_F_RXCSUM) &&
1651 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1652 /* TCP frame. */
1653 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1654 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1655 "TCP checksum done!\n");
1656 skb->ip_summed = CHECKSUM_UNNECESSARY;
1657 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1658 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1659 /* Unfragmented ipv4 UDP frame. */
1660 struct iphdr *iph = (struct iphdr *) skb->data;
1661 if (!(iph->frag_off &
1662 htons(IP_MF|IP_OFFSET))) {
1663 skb->ip_summed = CHECKSUM_UNNECESSARY;
1664 netif_printk(qdev, rx_status, KERN_DEBUG,
1665 qdev->ndev,
1666 "UDP checksum done!\n");
1667 }
1668 }
1669 }
1670
1671 skb_record_rx_queue(skb, rx_ring->cq_id);
1672 if (vlan_id != 0xffff)
1673 __vlan_hwaccel_put_tag(skb, vlan_id);
1674 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1675 napi_gro_receive(&rx_ring->napi, skb);
1676 else
1677 netif_receive_skb(skb);
1678 }
1679
1680 static void ql_realign_skb(struct sk_buff *skb, int len)
1681 {
1682 void *temp_addr = skb->data;
1683
1684 /* Undo the skb_reserve(skb,32) we did before
1685 * giving to hardware, and realign data on
1686 * a 2-byte boundary.
1687 */
1688 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1689 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1690 skb_copy_to_linear_data(skb, temp_addr,
1691 (unsigned int)len);
1692 }
1693
1694 /*
1695 * This function builds an skb for the given inbound
1696 * completion. It will be rewritten for readability in the near
1697 * future, but for not it works well.
1698 */
1699 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1700 struct rx_ring *rx_ring,
1701 struct ib_mac_iocb_rsp *ib_mac_rsp)
1702 {
1703 struct bq_desc *lbq_desc;
1704 struct bq_desc *sbq_desc;
1705 struct sk_buff *skb = NULL;
1706 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1707 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1708
1709 /*
1710 * Handle the header buffer if present.
1711 */
1712 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1713 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1714 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1715 "Header of %d bytes in small buffer.\n", hdr_len);
1716 /*
1717 * Headers fit nicely into a small buffer.
1718 */
1719 sbq_desc = ql_get_curr_sbuf(rx_ring);
1720 pci_unmap_single(qdev->pdev,
1721 dma_unmap_addr(sbq_desc, mapaddr),
1722 dma_unmap_len(sbq_desc, maplen),
1723 PCI_DMA_FROMDEVICE);
1724 skb = sbq_desc->p.skb;
1725 ql_realign_skb(skb, hdr_len);
1726 skb_put(skb, hdr_len);
1727 sbq_desc->p.skb = NULL;
1728 }
1729
1730 /*
1731 * Handle the data buffer(s).
1732 */
1733 if (unlikely(!length)) { /* Is there data too? */
1734 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1735 "No Data buffer in this packet.\n");
1736 return skb;
1737 }
1738
1739 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1740 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1741 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1742 "Headers in small, data of %d bytes in small, combine them.\n",
1743 length);
1744 /*
1745 * Data is less than small buffer size so it's
1746 * stuffed in a small buffer.
1747 * For this case we append the data
1748 * from the "data" small buffer to the "header" small
1749 * buffer.
1750 */
1751 sbq_desc = ql_get_curr_sbuf(rx_ring);
1752 pci_dma_sync_single_for_cpu(qdev->pdev,
1753 dma_unmap_addr
1754 (sbq_desc, mapaddr),
1755 dma_unmap_len
1756 (sbq_desc, maplen),
1757 PCI_DMA_FROMDEVICE);
1758 memcpy(skb_put(skb, length),
1759 sbq_desc->p.skb->data, length);
1760 pci_dma_sync_single_for_device(qdev->pdev,
1761 dma_unmap_addr
1762 (sbq_desc,
1763 mapaddr),
1764 dma_unmap_len
1765 (sbq_desc,
1766 maplen),
1767 PCI_DMA_FROMDEVICE);
1768 } else {
1769 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1770 "%d bytes in a single small buffer.\n",
1771 length);
1772 sbq_desc = ql_get_curr_sbuf(rx_ring);
1773 skb = sbq_desc->p.skb;
1774 ql_realign_skb(skb, length);
1775 skb_put(skb, length);
1776 pci_unmap_single(qdev->pdev,
1777 dma_unmap_addr(sbq_desc,
1778 mapaddr),
1779 dma_unmap_len(sbq_desc,
1780 maplen),
1781 PCI_DMA_FROMDEVICE);
1782 sbq_desc->p.skb = NULL;
1783 }
1784 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1785 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1786 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1787 "Header in small, %d bytes in large. Chain large to small!\n",
1788 length);
1789 /*
1790 * The data is in a single large buffer. We
1791 * chain it to the header buffer's skb and let
1792 * it rip.
1793 */
1794 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1795 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1796 "Chaining page at offset = %d, for %d bytes to skb.\n",
1797 lbq_desc->p.pg_chunk.offset, length);
1798 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1799 lbq_desc->p.pg_chunk.offset,
1800 length);
1801 skb->len += length;
1802 skb->data_len += length;
1803 skb->truesize += length;
1804 } else {
1805 /*
1806 * The headers and data are in a single large buffer. We
1807 * copy it to a new skb and let it go. This can happen with
1808 * jumbo mtu on a non-TCP/UDP frame.
1809 */
1810 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1811 skb = netdev_alloc_skb(qdev->ndev, length);
1812 if (skb == NULL) {
1813 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1814 "No skb available, drop the packet.\n");
1815 return NULL;
1816 }
1817 pci_unmap_page(qdev->pdev,
1818 dma_unmap_addr(lbq_desc,
1819 mapaddr),
1820 dma_unmap_len(lbq_desc, maplen),
1821 PCI_DMA_FROMDEVICE);
1822 skb_reserve(skb, NET_IP_ALIGN);
1823 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1824 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1825 length);
1826 skb_fill_page_desc(skb, 0,
1827 lbq_desc->p.pg_chunk.page,
1828 lbq_desc->p.pg_chunk.offset,
1829 length);
1830 skb->len += length;
1831 skb->data_len += length;
1832 skb->truesize += length;
1833 length -= length;
1834 __pskb_pull_tail(skb,
1835 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1836 VLAN_ETH_HLEN : ETH_HLEN);
1837 }
1838 } else {
1839 /*
1840 * The data is in a chain of large buffers
1841 * pointed to by a small buffer. We loop
1842 * thru and chain them to the our small header
1843 * buffer's skb.
1844 * frags: There are 18 max frags and our small
1845 * buffer will hold 32 of them. The thing is,
1846 * we'll use 3 max for our 9000 byte jumbo
1847 * frames. If the MTU goes up we could
1848 * eventually be in trouble.
1849 */
1850 int size, i = 0;
1851 sbq_desc = ql_get_curr_sbuf(rx_ring);
1852 pci_unmap_single(qdev->pdev,
1853 dma_unmap_addr(sbq_desc, mapaddr),
1854 dma_unmap_len(sbq_desc, maplen),
1855 PCI_DMA_FROMDEVICE);
1856 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1857 /*
1858 * This is an non TCP/UDP IP frame, so
1859 * the headers aren't split into a small
1860 * buffer. We have to use the small buffer
1861 * that contains our sg list as our skb to
1862 * send upstairs. Copy the sg list here to
1863 * a local buffer and use it to find the
1864 * pages to chain.
1865 */
1866 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1867 "%d bytes of headers & data in chain of large.\n",
1868 length);
1869 skb = sbq_desc->p.skb;
1870 sbq_desc->p.skb = NULL;
1871 skb_reserve(skb, NET_IP_ALIGN);
1872 }
1873 while (length > 0) {
1874 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1875 size = (length < rx_ring->lbq_buf_size) ? length :
1876 rx_ring->lbq_buf_size;
1877
1878 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1879 "Adding page %d to skb for %d bytes.\n",
1880 i, size);
1881 skb_fill_page_desc(skb, i,
1882 lbq_desc->p.pg_chunk.page,
1883 lbq_desc->p.pg_chunk.offset,
1884 size);
1885 skb->len += size;
1886 skb->data_len += size;
1887 skb->truesize += size;
1888 length -= size;
1889 i++;
1890 }
1891 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1892 VLAN_ETH_HLEN : ETH_HLEN);
1893 }
1894 return skb;
1895 }
1896
1897 /* Process an inbound completion from an rx ring. */
1898 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1899 struct rx_ring *rx_ring,
1900 struct ib_mac_iocb_rsp *ib_mac_rsp,
1901 u16 vlan_id)
1902 {
1903 struct net_device *ndev = qdev->ndev;
1904 struct sk_buff *skb = NULL;
1905
1906 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1907
1908 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1909 if (unlikely(!skb)) {
1910 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1911 "No skb available, drop packet.\n");
1912 rx_ring->rx_dropped++;
1913 return;
1914 }
1915
1916 /* The max framesize filter on this chip is set higher than
1917 * MTU since FCoE uses 2k frames.
1918 */
1919 if (skb->len > ndev->mtu + ETH_HLEN) {
1920 dev_kfree_skb_any(skb);
1921 rx_ring->rx_dropped++;
1922 return;
1923 }
1924
1925 /* loopback self test for ethtool */
1926 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1927 ql_check_lb_frame(qdev, skb);
1928 dev_kfree_skb_any(skb);
1929 return;
1930 }
1931
1932 prefetch(skb->data);
1933 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1934 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1935 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1936 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1937 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1938 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1939 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1940 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1941 rx_ring->rx_multicast++;
1942 }
1943 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1944 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1945 "Promiscuous Packet.\n");
1946 }
1947
1948 skb->protocol = eth_type_trans(skb, ndev);
1949 skb_checksum_none_assert(skb);
1950
1951 /* If rx checksum is on, and there are no
1952 * csum or frame errors.
1953 */
1954 if ((ndev->features & NETIF_F_RXCSUM) &&
1955 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1956 /* TCP frame. */
1957 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1958 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1959 "TCP checksum done!\n");
1960 skb->ip_summed = CHECKSUM_UNNECESSARY;
1961 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1962 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1963 /* Unfragmented ipv4 UDP frame. */
1964 struct iphdr *iph = (struct iphdr *) skb->data;
1965 if (!(iph->frag_off &
1966 htons(IP_MF|IP_OFFSET))) {
1967 skb->ip_summed = CHECKSUM_UNNECESSARY;
1968 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1969 "TCP checksum done!\n");
1970 }
1971 }
1972 }
1973
1974 rx_ring->rx_packets++;
1975 rx_ring->rx_bytes += skb->len;
1976 skb_record_rx_queue(skb, rx_ring->cq_id);
1977 if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
1978 __vlan_hwaccel_put_tag(skb, vlan_id);
1979 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1980 napi_gro_receive(&rx_ring->napi, skb);
1981 else
1982 netif_receive_skb(skb);
1983 }
1984
1985 /* Process an inbound completion from an rx ring. */
1986 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
1987 struct rx_ring *rx_ring,
1988 struct ib_mac_iocb_rsp *ib_mac_rsp)
1989 {
1990 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1991 u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1992 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
1993 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
1994
1995 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1996
1997 /* Frame error, so drop the packet. */
1998 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1999 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2);
2000 return (unsigned long)length;
2001 }
2002
2003 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2004 /* The data and headers are split into
2005 * separate buffers.
2006 */
2007 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2008 vlan_id);
2009 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2010 /* The data fit in a single small buffer.
2011 * Allocate a new skb, copy the data and
2012 * return the buffer to the free pool.
2013 */
2014 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2015 length, vlan_id);
2016 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2017 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2018 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2019 /* TCP packet in a page chunk that's been checksummed.
2020 * Tack it on to our GRO skb and let it go.
2021 */
2022 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2023 length, vlan_id);
2024 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2025 /* Non-TCP packet in a page chunk. Allocate an
2026 * skb, tack it on frags, and send it up.
2027 */
2028 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2029 length, vlan_id);
2030 } else {
2031 /* Non-TCP/UDP large frames that span multiple buffers
2032 * can be processed corrrectly by the split frame logic.
2033 */
2034 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2035 vlan_id);
2036 }
2037
2038 return (unsigned long)length;
2039 }
2040
2041 /* Process an outbound completion from an rx ring. */
2042 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2043 struct ob_mac_iocb_rsp *mac_rsp)
2044 {
2045 struct tx_ring *tx_ring;
2046 struct tx_ring_desc *tx_ring_desc;
2047
2048 QL_DUMP_OB_MAC_RSP(mac_rsp);
2049 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2050 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2051 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2052 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2053 tx_ring->tx_packets++;
2054 dev_kfree_skb(tx_ring_desc->skb);
2055 tx_ring_desc->skb = NULL;
2056
2057 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2058 OB_MAC_IOCB_RSP_S |
2059 OB_MAC_IOCB_RSP_L |
2060 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2061 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2062 netif_warn(qdev, tx_done, qdev->ndev,
2063 "Total descriptor length did not match transfer length.\n");
2064 }
2065 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2066 netif_warn(qdev, tx_done, qdev->ndev,
2067 "Frame too short to be valid, not sent.\n");
2068 }
2069 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2070 netif_warn(qdev, tx_done, qdev->ndev,
2071 "Frame too long, but sent anyway.\n");
2072 }
2073 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2074 netif_warn(qdev, tx_done, qdev->ndev,
2075 "PCI backplane error. Frame not sent.\n");
2076 }
2077 }
2078 atomic_inc(&tx_ring->tx_count);
2079 }
2080
2081 /* Fire up a handler to reset the MPI processor. */
2082 void ql_queue_fw_error(struct ql_adapter *qdev)
2083 {
2084 ql_link_off(qdev);
2085 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2086 }
2087
2088 void ql_queue_asic_error(struct ql_adapter *qdev)
2089 {
2090 ql_link_off(qdev);
2091 ql_disable_interrupts(qdev);
2092 /* Clear adapter up bit to signal the recovery
2093 * process that it shouldn't kill the reset worker
2094 * thread
2095 */
2096 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2097 /* Set asic recovery bit to indicate reset process that we are
2098 * in fatal error recovery process rather than normal close
2099 */
2100 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2101 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2102 }
2103
2104 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2105 struct ib_ae_iocb_rsp *ib_ae_rsp)
2106 {
2107 switch (ib_ae_rsp->event) {
2108 case MGMT_ERR_EVENT:
2109 netif_err(qdev, rx_err, qdev->ndev,
2110 "Management Processor Fatal Error.\n");
2111 ql_queue_fw_error(qdev);
2112 return;
2113
2114 case CAM_LOOKUP_ERR_EVENT:
2115 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2116 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2117 ql_queue_asic_error(qdev);
2118 return;
2119
2120 case SOFT_ECC_ERROR_EVENT:
2121 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2122 ql_queue_asic_error(qdev);
2123 break;
2124
2125 case PCI_ERR_ANON_BUF_RD:
2126 netdev_err(qdev->ndev, "PCI error occurred when reading "
2127 "anonymous buffers from rx_ring %d.\n",
2128 ib_ae_rsp->q_id);
2129 ql_queue_asic_error(qdev);
2130 break;
2131
2132 default:
2133 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2134 ib_ae_rsp->event);
2135 ql_queue_asic_error(qdev);
2136 break;
2137 }
2138 }
2139
2140 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2141 {
2142 struct ql_adapter *qdev = rx_ring->qdev;
2143 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2144 struct ob_mac_iocb_rsp *net_rsp = NULL;
2145 int count = 0;
2146
2147 struct tx_ring *tx_ring;
2148 /* While there are entries in the completion queue. */
2149 while (prod != rx_ring->cnsmr_idx) {
2150
2151 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2152 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2153 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2154
2155 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2156 rmb();
2157 switch (net_rsp->opcode) {
2158
2159 case OPCODE_OB_MAC_TSO_IOCB:
2160 case OPCODE_OB_MAC_IOCB:
2161 ql_process_mac_tx_intr(qdev, net_rsp);
2162 break;
2163 default:
2164 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2165 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2166 net_rsp->opcode);
2167 }
2168 count++;
2169 ql_update_cq(rx_ring);
2170 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2171 }
2172 if (!net_rsp)
2173 return 0;
2174 ql_write_cq_idx(rx_ring);
2175 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2176 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2177 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2178 /*
2179 * The queue got stopped because the tx_ring was full.
2180 * Wake it up, because it's now at least 25% empty.
2181 */
2182 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2183 }
2184
2185 return count;
2186 }
2187
2188 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2189 {
2190 struct ql_adapter *qdev = rx_ring->qdev;
2191 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2192 struct ql_net_rsp_iocb *net_rsp;
2193 int count = 0;
2194
2195 /* While there are entries in the completion queue. */
2196 while (prod != rx_ring->cnsmr_idx) {
2197
2198 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2199 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2200 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2201
2202 net_rsp = rx_ring->curr_entry;
2203 rmb();
2204 switch (net_rsp->opcode) {
2205 case OPCODE_IB_MAC_IOCB:
2206 ql_process_mac_rx_intr(qdev, rx_ring,
2207 (struct ib_mac_iocb_rsp *)
2208 net_rsp);
2209 break;
2210
2211 case OPCODE_IB_AE_IOCB:
2212 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2213 net_rsp);
2214 break;
2215 default:
2216 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2217 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2218 net_rsp->opcode);
2219 break;
2220 }
2221 count++;
2222 ql_update_cq(rx_ring);
2223 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2224 if (count == budget)
2225 break;
2226 }
2227 ql_update_buffer_queues(qdev, rx_ring);
2228 ql_write_cq_idx(rx_ring);
2229 return count;
2230 }
2231
2232 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2233 {
2234 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2235 struct ql_adapter *qdev = rx_ring->qdev;
2236 struct rx_ring *trx_ring;
2237 int i, work_done = 0;
2238 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2239
2240 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2241 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2242
2243 /* Service the TX rings first. They start
2244 * right after the RSS rings. */
2245 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2246 trx_ring = &qdev->rx_ring[i];
2247 /* If this TX completion ring belongs to this vector and
2248 * it's not empty then service it.
2249 */
2250 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2251 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2252 trx_ring->cnsmr_idx)) {
2253 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2254 "%s: Servicing TX completion ring %d.\n",
2255 __func__, trx_ring->cq_id);
2256 ql_clean_outbound_rx_ring(trx_ring);
2257 }
2258 }
2259
2260 /*
2261 * Now service the RSS ring if it's active.
2262 */
2263 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2264 rx_ring->cnsmr_idx) {
2265 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2266 "%s: Servicing RX completion ring %d.\n",
2267 __func__, rx_ring->cq_id);
2268 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2269 }
2270
2271 if (work_done < budget) {
2272 napi_complete(napi);
2273 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2274 }
2275 return work_done;
2276 }
2277
2278 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2279 {
2280 struct ql_adapter *qdev = netdev_priv(ndev);
2281
2282 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2283 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2284 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2285 } else {
2286 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2287 }
2288 }
2289
2290 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2291 netdev_features_t features)
2292 {
2293 /*
2294 * Since there is no support for separate rx/tx vlan accel
2295 * enable/disable make sure tx flag is always in same state as rx.
2296 */
2297 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2298 features |= NETIF_F_HW_VLAN_CTAG_TX;
2299 else
2300 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2301
2302 return features;
2303 }
2304
2305 static int qlge_set_features(struct net_device *ndev,
2306 netdev_features_t features)
2307 {
2308 netdev_features_t changed = ndev->features ^ features;
2309
2310 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2311 qlge_vlan_mode(ndev, features);
2312
2313 return 0;
2314 }
2315
2316 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2317 {
2318 u32 enable_bit = MAC_ADDR_E;
2319 int err;
2320
2321 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2322 MAC_ADDR_TYPE_VLAN, vid);
2323 if (err)
2324 netif_err(qdev, ifup, qdev->ndev,
2325 "Failed to init vlan address.\n");
2326 return err;
2327 }
2328
2329 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2330 {
2331 struct ql_adapter *qdev = netdev_priv(ndev);
2332 int status;
2333 int err;
2334
2335 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2336 if (status)
2337 return status;
2338
2339 err = __qlge_vlan_rx_add_vid(qdev, vid);
2340 set_bit(vid, qdev->active_vlans);
2341
2342 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2343
2344 return err;
2345 }
2346
2347 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2348 {
2349 u32 enable_bit = 0;
2350 int err;
2351
2352 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2353 MAC_ADDR_TYPE_VLAN, vid);
2354 if (err)
2355 netif_err(qdev, ifup, qdev->ndev,
2356 "Failed to clear vlan address.\n");
2357 return err;
2358 }
2359
2360 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2361 {
2362 struct ql_adapter *qdev = netdev_priv(ndev);
2363 int status;
2364 int err;
2365
2366 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2367 if (status)
2368 return status;
2369
2370 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2371 clear_bit(vid, qdev->active_vlans);
2372
2373 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2374
2375 return err;
2376 }
2377
2378 static void qlge_restore_vlan(struct ql_adapter *qdev)
2379 {
2380 int status;
2381 u16 vid;
2382
2383 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2384 if (status)
2385 return;
2386
2387 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2388 __qlge_vlan_rx_add_vid(qdev, vid);
2389
2390 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2391 }
2392
2393 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2394 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2395 {
2396 struct rx_ring *rx_ring = dev_id;
2397 napi_schedule(&rx_ring->napi);
2398 return IRQ_HANDLED;
2399 }
2400
2401 /* This handles a fatal error, MPI activity, and the default
2402 * rx_ring in an MSI-X multiple vector environment.
2403 * In MSI/Legacy environment it also process the rest of
2404 * the rx_rings.
2405 */
2406 static irqreturn_t qlge_isr(int irq, void *dev_id)
2407 {
2408 struct rx_ring *rx_ring = dev_id;
2409 struct ql_adapter *qdev = rx_ring->qdev;
2410 struct intr_context *intr_context = &qdev->intr_context[0];
2411 u32 var;
2412 int work_done = 0;
2413
2414 spin_lock(&qdev->hw_lock);
2415 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2416 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2417 "Shared Interrupt, Not ours!\n");
2418 spin_unlock(&qdev->hw_lock);
2419 return IRQ_NONE;
2420 }
2421 spin_unlock(&qdev->hw_lock);
2422
2423 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2424
2425 /*
2426 * Check for fatal error.
2427 */
2428 if (var & STS_FE) {
2429 ql_queue_asic_error(qdev);
2430 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2431 var = ql_read32(qdev, ERR_STS);
2432 netdev_err(qdev->ndev, "Resetting chip. "
2433 "Error Status Register = 0x%x\n", var);
2434 return IRQ_HANDLED;
2435 }
2436
2437 /*
2438 * Check MPI processor activity.
2439 */
2440 if ((var & STS_PI) &&
2441 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2442 /*
2443 * We've got an async event or mailbox completion.
2444 * Handle it and clear the source of the interrupt.
2445 */
2446 netif_err(qdev, intr, qdev->ndev,
2447 "Got MPI processor interrupt.\n");
2448 ql_disable_completion_interrupt(qdev, intr_context->intr);
2449 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2450 queue_delayed_work_on(smp_processor_id(),
2451 qdev->workqueue, &qdev->mpi_work, 0);
2452 work_done++;
2453 }
2454
2455 /*
2456 * Get the bit-mask that shows the active queues for this
2457 * pass. Compare it to the queues that this irq services
2458 * and call napi if there's a match.
2459 */
2460 var = ql_read32(qdev, ISR1);
2461 if (var & intr_context->irq_mask) {
2462 netif_info(qdev, intr, qdev->ndev,
2463 "Waking handler for rx_ring[0].\n");
2464 ql_disable_completion_interrupt(qdev, intr_context->intr);
2465 napi_schedule(&rx_ring->napi);
2466 work_done++;
2467 }
2468 ql_enable_completion_interrupt(qdev, intr_context->intr);
2469 return work_done ? IRQ_HANDLED : IRQ_NONE;
2470 }
2471
2472 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2473 {
2474
2475 if (skb_is_gso(skb)) {
2476 int err;
2477 if (skb_header_cloned(skb)) {
2478 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (err)
2480 return err;
2481 }
2482
2483 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2484 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2485 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2486 mac_iocb_ptr->total_hdrs_len =
2487 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2488 mac_iocb_ptr->net_trans_offset =
2489 cpu_to_le16(skb_network_offset(skb) |
2490 skb_transport_offset(skb)
2491 << OB_MAC_TRANSPORT_HDR_SHIFT);
2492 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2493 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2494 if (likely(skb->protocol == htons(ETH_P_IP))) {
2495 struct iphdr *iph = ip_hdr(skb);
2496 iph->check = 0;
2497 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2498 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2499 iph->daddr, 0,
2500 IPPROTO_TCP,
2501 0);
2502 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2503 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2504 tcp_hdr(skb)->check =
2505 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2506 &ipv6_hdr(skb)->daddr,
2507 0, IPPROTO_TCP, 0);
2508 }
2509 return 1;
2510 }
2511 return 0;
2512 }
2513
2514 static void ql_hw_csum_setup(struct sk_buff *skb,
2515 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2516 {
2517 int len;
2518 struct iphdr *iph = ip_hdr(skb);
2519 __sum16 *check;
2520 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2521 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2522 mac_iocb_ptr->net_trans_offset =
2523 cpu_to_le16(skb_network_offset(skb) |
2524 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2525
2526 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2527 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2528 if (likely(iph->protocol == IPPROTO_TCP)) {
2529 check = &(tcp_hdr(skb)->check);
2530 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2531 mac_iocb_ptr->total_hdrs_len =
2532 cpu_to_le16(skb_transport_offset(skb) +
2533 (tcp_hdr(skb)->doff << 2));
2534 } else {
2535 check = &(udp_hdr(skb)->check);
2536 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2537 mac_iocb_ptr->total_hdrs_len =
2538 cpu_to_le16(skb_transport_offset(skb) +
2539 sizeof(struct udphdr));
2540 }
2541 *check = ~csum_tcpudp_magic(iph->saddr,
2542 iph->daddr, len, iph->protocol, 0);
2543 }
2544
2545 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2546 {
2547 struct tx_ring_desc *tx_ring_desc;
2548 struct ob_mac_iocb_req *mac_iocb_ptr;
2549 struct ql_adapter *qdev = netdev_priv(ndev);
2550 int tso;
2551 struct tx_ring *tx_ring;
2552 u32 tx_ring_idx = (u32) skb->queue_mapping;
2553
2554 tx_ring = &qdev->tx_ring[tx_ring_idx];
2555
2556 if (skb_padto(skb, ETH_ZLEN))
2557 return NETDEV_TX_OK;
2558
2559 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2560 netif_info(qdev, tx_queued, qdev->ndev,
2561 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2562 __func__, tx_ring_idx);
2563 netif_stop_subqueue(ndev, tx_ring->wq_id);
2564 tx_ring->tx_errors++;
2565 return NETDEV_TX_BUSY;
2566 }
2567 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2568 mac_iocb_ptr = tx_ring_desc->queue_entry;
2569 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2570
2571 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2572 mac_iocb_ptr->tid = tx_ring_desc->index;
2573 /* We use the upper 32-bits to store the tx queue for this IO.
2574 * When we get the completion we can use it to establish the context.
2575 */
2576 mac_iocb_ptr->txq_idx = tx_ring_idx;
2577 tx_ring_desc->skb = skb;
2578
2579 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2580
2581 if (vlan_tx_tag_present(skb)) {
2582 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2583 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2584 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2585 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2586 }
2587 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2588 if (tso < 0) {
2589 dev_kfree_skb_any(skb);
2590 return NETDEV_TX_OK;
2591 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2592 ql_hw_csum_setup(skb,
2593 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2594 }
2595 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2596 NETDEV_TX_OK) {
2597 netif_err(qdev, tx_queued, qdev->ndev,
2598 "Could not map the segments.\n");
2599 tx_ring->tx_errors++;
2600 return NETDEV_TX_BUSY;
2601 }
2602 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2603 tx_ring->prod_idx++;
2604 if (tx_ring->prod_idx == tx_ring->wq_len)
2605 tx_ring->prod_idx = 0;
2606 wmb();
2607
2608 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2609 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2610 "tx queued, slot %d, len %d\n",
2611 tx_ring->prod_idx, skb->len);
2612
2613 atomic_dec(&tx_ring->tx_count);
2614
2615 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2616 netif_stop_subqueue(ndev, tx_ring->wq_id);
2617 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2618 /*
2619 * The queue got stopped because the tx_ring was full.
2620 * Wake it up, because it's now at least 25% empty.
2621 */
2622 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2623 }
2624 return NETDEV_TX_OK;
2625 }
2626
2627
2628 static void ql_free_shadow_space(struct ql_adapter *qdev)
2629 {
2630 if (qdev->rx_ring_shadow_reg_area) {
2631 pci_free_consistent(qdev->pdev,
2632 PAGE_SIZE,
2633 qdev->rx_ring_shadow_reg_area,
2634 qdev->rx_ring_shadow_reg_dma);
2635 qdev->rx_ring_shadow_reg_area = NULL;
2636 }
2637 if (qdev->tx_ring_shadow_reg_area) {
2638 pci_free_consistent(qdev->pdev,
2639 PAGE_SIZE,
2640 qdev->tx_ring_shadow_reg_area,
2641 qdev->tx_ring_shadow_reg_dma);
2642 qdev->tx_ring_shadow_reg_area = NULL;
2643 }
2644 }
2645
2646 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2647 {
2648 qdev->rx_ring_shadow_reg_area =
2649 pci_alloc_consistent(qdev->pdev,
2650 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2651 if (qdev->rx_ring_shadow_reg_area == NULL) {
2652 netif_err(qdev, ifup, qdev->ndev,
2653 "Allocation of RX shadow space failed.\n");
2654 return -ENOMEM;
2655 }
2656 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2657 qdev->tx_ring_shadow_reg_area =
2658 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2659 &qdev->tx_ring_shadow_reg_dma);
2660 if (qdev->tx_ring_shadow_reg_area == NULL) {
2661 netif_err(qdev, ifup, qdev->ndev,
2662 "Allocation of TX shadow space failed.\n");
2663 goto err_wqp_sh_area;
2664 }
2665 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2666 return 0;
2667
2668 err_wqp_sh_area:
2669 pci_free_consistent(qdev->pdev,
2670 PAGE_SIZE,
2671 qdev->rx_ring_shadow_reg_area,
2672 qdev->rx_ring_shadow_reg_dma);
2673 return -ENOMEM;
2674 }
2675
2676 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2677 {
2678 struct tx_ring_desc *tx_ring_desc;
2679 int i;
2680 struct ob_mac_iocb_req *mac_iocb_ptr;
2681
2682 mac_iocb_ptr = tx_ring->wq_base;
2683 tx_ring_desc = tx_ring->q;
2684 for (i = 0; i < tx_ring->wq_len; i++) {
2685 tx_ring_desc->index = i;
2686 tx_ring_desc->skb = NULL;
2687 tx_ring_desc->queue_entry = mac_iocb_ptr;
2688 mac_iocb_ptr++;
2689 tx_ring_desc++;
2690 }
2691 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2692 }
2693
2694 static void ql_free_tx_resources(struct ql_adapter *qdev,
2695 struct tx_ring *tx_ring)
2696 {
2697 if (tx_ring->wq_base) {
2698 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2699 tx_ring->wq_base, tx_ring->wq_base_dma);
2700 tx_ring->wq_base = NULL;
2701 }
2702 kfree(tx_ring->q);
2703 tx_ring->q = NULL;
2704 }
2705
2706 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2707 struct tx_ring *tx_ring)
2708 {
2709 tx_ring->wq_base =
2710 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2711 &tx_ring->wq_base_dma);
2712
2713 if ((tx_ring->wq_base == NULL) ||
2714 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2715 goto pci_alloc_err;
2716
2717 tx_ring->q =
2718 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2719 if (tx_ring->q == NULL)
2720 goto err;
2721
2722 return 0;
2723 err:
2724 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2725 tx_ring->wq_base, tx_ring->wq_base_dma);
2726 tx_ring->wq_base = NULL;
2727 pci_alloc_err:
2728 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2729 return -ENOMEM;
2730 }
2731
2732 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2733 {
2734 struct bq_desc *lbq_desc;
2735
2736 uint32_t curr_idx, clean_idx;
2737
2738 curr_idx = rx_ring->lbq_curr_idx;
2739 clean_idx = rx_ring->lbq_clean_idx;
2740 while (curr_idx != clean_idx) {
2741 lbq_desc = &rx_ring->lbq[curr_idx];
2742
2743 if (lbq_desc->p.pg_chunk.last_flag) {
2744 pci_unmap_page(qdev->pdev,
2745 lbq_desc->p.pg_chunk.map,
2746 ql_lbq_block_size(qdev),
2747 PCI_DMA_FROMDEVICE);
2748 lbq_desc->p.pg_chunk.last_flag = 0;
2749 }
2750
2751 put_page(lbq_desc->p.pg_chunk.page);
2752 lbq_desc->p.pg_chunk.page = NULL;
2753
2754 if (++curr_idx == rx_ring->lbq_len)
2755 curr_idx = 0;
2756
2757 }
2758 }
2759
2760 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2761 {
2762 int i;
2763 struct bq_desc *sbq_desc;
2764
2765 for (i = 0; i < rx_ring->sbq_len; i++) {
2766 sbq_desc = &rx_ring->sbq[i];
2767 if (sbq_desc == NULL) {
2768 netif_err(qdev, ifup, qdev->ndev,
2769 "sbq_desc %d is NULL.\n", i);
2770 return;
2771 }
2772 if (sbq_desc->p.skb) {
2773 pci_unmap_single(qdev->pdev,
2774 dma_unmap_addr(sbq_desc, mapaddr),
2775 dma_unmap_len(sbq_desc, maplen),
2776 PCI_DMA_FROMDEVICE);
2777 dev_kfree_skb(sbq_desc->p.skb);
2778 sbq_desc->p.skb = NULL;
2779 }
2780 }
2781 }
2782
2783 /* Free all large and small rx buffers associated
2784 * with the completion queues for this device.
2785 */
2786 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2787 {
2788 int i;
2789 struct rx_ring *rx_ring;
2790
2791 for (i = 0; i < qdev->rx_ring_count; i++) {
2792 rx_ring = &qdev->rx_ring[i];
2793 if (rx_ring->lbq)
2794 ql_free_lbq_buffers(qdev, rx_ring);
2795 if (rx_ring->sbq)
2796 ql_free_sbq_buffers(qdev, rx_ring);
2797 }
2798 }
2799
2800 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2801 {
2802 struct rx_ring *rx_ring;
2803 int i;
2804
2805 for (i = 0; i < qdev->rx_ring_count; i++) {
2806 rx_ring = &qdev->rx_ring[i];
2807 if (rx_ring->type != TX_Q)
2808 ql_update_buffer_queues(qdev, rx_ring);
2809 }
2810 }
2811
2812 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2813 struct rx_ring *rx_ring)
2814 {
2815 int i;
2816 struct bq_desc *lbq_desc;
2817 __le64 *bq = rx_ring->lbq_base;
2818
2819 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2820 for (i = 0; i < rx_ring->lbq_len; i++) {
2821 lbq_desc = &rx_ring->lbq[i];
2822 memset(lbq_desc, 0, sizeof(*lbq_desc));
2823 lbq_desc->index = i;
2824 lbq_desc->addr = bq;
2825 bq++;
2826 }
2827 }
2828
2829 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2830 struct rx_ring *rx_ring)
2831 {
2832 int i;
2833 struct bq_desc *sbq_desc;
2834 __le64 *bq = rx_ring->sbq_base;
2835
2836 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2837 for (i = 0; i < rx_ring->sbq_len; i++) {
2838 sbq_desc = &rx_ring->sbq[i];
2839 memset(sbq_desc, 0, sizeof(*sbq_desc));
2840 sbq_desc->index = i;
2841 sbq_desc->addr = bq;
2842 bq++;
2843 }
2844 }
2845
2846 static void ql_free_rx_resources(struct ql_adapter *qdev,
2847 struct rx_ring *rx_ring)
2848 {
2849 /* Free the small buffer queue. */
2850 if (rx_ring->sbq_base) {
2851 pci_free_consistent(qdev->pdev,
2852 rx_ring->sbq_size,
2853 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2854 rx_ring->sbq_base = NULL;
2855 }
2856
2857 /* Free the small buffer queue control blocks. */
2858 kfree(rx_ring->sbq);
2859 rx_ring->sbq = NULL;
2860
2861 /* Free the large buffer queue. */
2862 if (rx_ring->lbq_base) {
2863 pci_free_consistent(qdev->pdev,
2864 rx_ring->lbq_size,
2865 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2866 rx_ring->lbq_base = NULL;
2867 }
2868
2869 /* Free the large buffer queue control blocks. */
2870 kfree(rx_ring->lbq);
2871 rx_ring->lbq = NULL;
2872
2873 /* Free the rx queue. */
2874 if (rx_ring->cq_base) {
2875 pci_free_consistent(qdev->pdev,
2876 rx_ring->cq_size,
2877 rx_ring->cq_base, rx_ring->cq_base_dma);
2878 rx_ring->cq_base = NULL;
2879 }
2880 }
2881
2882 /* Allocate queues and buffers for this completions queue based
2883 * on the values in the parameter structure. */
2884 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2885 struct rx_ring *rx_ring)
2886 {
2887
2888 /*
2889 * Allocate the completion queue for this rx_ring.
2890 */
2891 rx_ring->cq_base =
2892 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2893 &rx_ring->cq_base_dma);
2894
2895 if (rx_ring->cq_base == NULL) {
2896 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2897 return -ENOMEM;
2898 }
2899
2900 if (rx_ring->sbq_len) {
2901 /*
2902 * Allocate small buffer queue.
2903 */
2904 rx_ring->sbq_base =
2905 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2906 &rx_ring->sbq_base_dma);
2907
2908 if (rx_ring->sbq_base == NULL) {
2909 netif_err(qdev, ifup, qdev->ndev,
2910 "Small buffer queue allocation failed.\n");
2911 goto err_mem;
2912 }
2913
2914 /*
2915 * Allocate small buffer queue control blocks.
2916 */
2917 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
2918 sizeof(struct bq_desc),
2919 GFP_KERNEL);
2920 if (rx_ring->sbq == NULL)
2921 goto err_mem;
2922
2923 ql_init_sbq_ring(qdev, rx_ring);
2924 }
2925
2926 if (rx_ring->lbq_len) {
2927 /*
2928 * Allocate large buffer queue.
2929 */
2930 rx_ring->lbq_base =
2931 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2932 &rx_ring->lbq_base_dma);
2933
2934 if (rx_ring->lbq_base == NULL) {
2935 netif_err(qdev, ifup, qdev->ndev,
2936 "Large buffer queue allocation failed.\n");
2937 goto err_mem;
2938 }
2939 /*
2940 * Allocate large buffer queue control blocks.
2941 */
2942 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
2943 sizeof(struct bq_desc),
2944 GFP_KERNEL);
2945 if (rx_ring->lbq == NULL)
2946 goto err_mem;
2947
2948 ql_init_lbq_ring(qdev, rx_ring);
2949 }
2950
2951 return 0;
2952
2953 err_mem:
2954 ql_free_rx_resources(qdev, rx_ring);
2955 return -ENOMEM;
2956 }
2957
2958 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2959 {
2960 struct tx_ring *tx_ring;
2961 struct tx_ring_desc *tx_ring_desc;
2962 int i, j;
2963
2964 /*
2965 * Loop through all queues and free
2966 * any resources.
2967 */
2968 for (j = 0; j < qdev->tx_ring_count; j++) {
2969 tx_ring = &qdev->tx_ring[j];
2970 for (i = 0; i < tx_ring->wq_len; i++) {
2971 tx_ring_desc = &tx_ring->q[i];
2972 if (tx_ring_desc && tx_ring_desc->skb) {
2973 netif_err(qdev, ifdown, qdev->ndev,
2974 "Freeing lost SKB %p, from queue %d, index %d.\n",
2975 tx_ring_desc->skb, j,
2976 tx_ring_desc->index);
2977 ql_unmap_send(qdev, tx_ring_desc,
2978 tx_ring_desc->map_cnt);
2979 dev_kfree_skb(tx_ring_desc->skb);
2980 tx_ring_desc->skb = NULL;
2981 }
2982 }
2983 }
2984 }
2985
2986 static void ql_free_mem_resources(struct ql_adapter *qdev)
2987 {
2988 int i;
2989
2990 for (i = 0; i < qdev->tx_ring_count; i++)
2991 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2992 for (i = 0; i < qdev->rx_ring_count; i++)
2993 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2994 ql_free_shadow_space(qdev);
2995 }
2996
2997 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2998 {
2999 int i;
3000
3001 /* Allocate space for our shadow registers and such. */
3002 if (ql_alloc_shadow_space(qdev))
3003 return -ENOMEM;
3004
3005 for (i = 0; i < qdev->rx_ring_count; i++) {
3006 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3007 netif_err(qdev, ifup, qdev->ndev,
3008 "RX resource allocation failed.\n");
3009 goto err_mem;
3010 }
3011 }
3012 /* Allocate tx queue resources */
3013 for (i = 0; i < qdev->tx_ring_count; i++) {
3014 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3015 netif_err(qdev, ifup, qdev->ndev,
3016 "TX resource allocation failed.\n");
3017 goto err_mem;
3018 }
3019 }
3020 return 0;
3021
3022 err_mem:
3023 ql_free_mem_resources(qdev);
3024 return -ENOMEM;
3025 }
3026
3027 /* Set up the rx ring control block and pass it to the chip.
3028 * The control block is defined as
3029 * "Completion Queue Initialization Control Block", or cqicb.
3030 */
3031 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3032 {
3033 struct cqicb *cqicb = &rx_ring->cqicb;
3034 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3035 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3036 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3037 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3038 void __iomem *doorbell_area =
3039 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3040 int err = 0;
3041 u16 bq_len;
3042 u64 tmp;
3043 __le64 *base_indirect_ptr;
3044 int page_entries;
3045
3046 /* Set up the shadow registers for this ring. */
3047 rx_ring->prod_idx_sh_reg = shadow_reg;
3048 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3049 *rx_ring->prod_idx_sh_reg = 0;
3050 shadow_reg += sizeof(u64);
3051 shadow_reg_dma += sizeof(u64);
3052 rx_ring->lbq_base_indirect = shadow_reg;
3053 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3054 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3055 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3056 rx_ring->sbq_base_indirect = shadow_reg;
3057 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3058
3059 /* PCI doorbell mem area + 0x00 for consumer index register */
3060 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3061 rx_ring->cnsmr_idx = 0;
3062 rx_ring->curr_entry = rx_ring->cq_base;
3063
3064 /* PCI doorbell mem area + 0x04 for valid register */
3065 rx_ring->valid_db_reg = doorbell_area + 0x04;
3066
3067 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3068 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3069
3070 /* PCI doorbell mem area + 0x1c */
3071 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3072
3073 memset((void *)cqicb, 0, sizeof(struct cqicb));
3074 cqicb->msix_vect = rx_ring->irq;
3075
3076 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3077 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3078
3079 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3080
3081 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3082
3083 /*
3084 * Set up the control block load flags.
3085 */
3086 cqicb->flags = FLAGS_LC | /* Load queue base address */
3087 FLAGS_LV | /* Load MSI-X vector */
3088 FLAGS_LI; /* Load irq delay values */
3089 if (rx_ring->lbq_len) {
3090 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3091 tmp = (u64)rx_ring->lbq_base_dma;
3092 base_indirect_ptr = rx_ring->lbq_base_indirect;
3093 page_entries = 0;
3094 do {
3095 *base_indirect_ptr = cpu_to_le64(tmp);
3096 tmp += DB_PAGE_SIZE;
3097 base_indirect_ptr++;
3098 page_entries++;
3099 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3100 cqicb->lbq_addr =
3101 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3102 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3103 (u16) rx_ring->lbq_buf_size;
3104 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3105 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3106 (u16) rx_ring->lbq_len;
3107 cqicb->lbq_len = cpu_to_le16(bq_len);
3108 rx_ring->lbq_prod_idx = 0;
3109 rx_ring->lbq_curr_idx = 0;
3110 rx_ring->lbq_clean_idx = 0;
3111 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3112 }
3113 if (rx_ring->sbq_len) {
3114 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3115 tmp = (u64)rx_ring->sbq_base_dma;
3116 base_indirect_ptr = rx_ring->sbq_base_indirect;
3117 page_entries = 0;
3118 do {
3119 *base_indirect_ptr = cpu_to_le64(tmp);
3120 tmp += DB_PAGE_SIZE;
3121 base_indirect_ptr++;
3122 page_entries++;
3123 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3124 cqicb->sbq_addr =
3125 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3126 cqicb->sbq_buf_size =
3127 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3128 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3129 (u16) rx_ring->sbq_len;
3130 cqicb->sbq_len = cpu_to_le16(bq_len);
3131 rx_ring->sbq_prod_idx = 0;
3132 rx_ring->sbq_curr_idx = 0;
3133 rx_ring->sbq_clean_idx = 0;
3134 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3135 }
3136 switch (rx_ring->type) {
3137 case TX_Q:
3138 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3139 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3140 break;
3141 case RX_Q:
3142 /* Inbound completion handling rx_rings run in
3143 * separate NAPI contexts.
3144 */
3145 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3146 64);
3147 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3148 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3149 break;
3150 default:
3151 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3152 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3153 }
3154 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3155 CFG_LCQ, rx_ring->cq_id);
3156 if (err) {
3157 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3158 return err;
3159 }
3160 return err;
3161 }
3162
3163 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3164 {
3165 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3166 void __iomem *doorbell_area =
3167 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3168 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3169 (tx_ring->wq_id * sizeof(u64));
3170 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3171 (tx_ring->wq_id * sizeof(u64));
3172 int err = 0;
3173
3174 /*
3175 * Assign doorbell registers for this tx_ring.
3176 */
3177 /* TX PCI doorbell mem area for tx producer index */
3178 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3179 tx_ring->prod_idx = 0;
3180 /* TX PCI doorbell mem area + 0x04 */
3181 tx_ring->valid_db_reg = doorbell_area + 0x04;
3182
3183 /*
3184 * Assign shadow registers for this tx_ring.
3185 */
3186 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3187 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3188
3189 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3190 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3191 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3192 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3193 wqicb->rid = 0;
3194 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3195
3196 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3197
3198 ql_init_tx_ring(qdev, tx_ring);
3199
3200 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3201 (u16) tx_ring->wq_id);
3202 if (err) {
3203 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3204 return err;
3205 }
3206 return err;
3207 }
3208
3209 static void ql_disable_msix(struct ql_adapter *qdev)
3210 {
3211 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3212 pci_disable_msix(qdev->pdev);
3213 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3214 kfree(qdev->msi_x_entry);
3215 qdev->msi_x_entry = NULL;
3216 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3217 pci_disable_msi(qdev->pdev);
3218 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3219 }
3220 }
3221
3222 /* We start by trying to get the number of vectors
3223 * stored in qdev->intr_count. If we don't get that
3224 * many then we reduce the count and try again.
3225 */
3226 static void ql_enable_msix(struct ql_adapter *qdev)
3227 {
3228 int i, err;
3229
3230 /* Get the MSIX vectors. */
3231 if (qlge_irq_type == MSIX_IRQ) {
3232 /* Try to alloc space for the msix struct,
3233 * if it fails then go to MSI/legacy.
3234 */
3235 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3236 sizeof(struct msix_entry),
3237 GFP_KERNEL);
3238 if (!qdev->msi_x_entry) {
3239 qlge_irq_type = MSI_IRQ;
3240 goto msi;
3241 }
3242
3243 for (i = 0; i < qdev->intr_count; i++)
3244 qdev->msi_x_entry[i].entry = i;
3245
3246 /* Loop to get our vectors. We start with
3247 * what we want and settle for what we get.
3248 */
3249 do {
3250 err = pci_enable_msix(qdev->pdev,
3251 qdev->msi_x_entry, qdev->intr_count);
3252 if (err > 0)
3253 qdev->intr_count = err;
3254 } while (err > 0);
3255
3256 if (err < 0) {
3257 kfree(qdev->msi_x_entry);
3258 qdev->msi_x_entry = NULL;
3259 netif_warn(qdev, ifup, qdev->ndev,
3260 "MSI-X Enable failed, trying MSI.\n");
3261 qdev->intr_count = 1;
3262 qlge_irq_type = MSI_IRQ;
3263 } else if (err == 0) {
3264 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3265 netif_info(qdev, ifup, qdev->ndev,
3266 "MSI-X Enabled, got %d vectors.\n",
3267 qdev->intr_count);
3268 return;
3269 }
3270 }
3271 msi:
3272 qdev->intr_count = 1;
3273 if (qlge_irq_type == MSI_IRQ) {
3274 if (!pci_enable_msi(qdev->pdev)) {
3275 set_bit(QL_MSI_ENABLED, &qdev->flags);
3276 netif_info(qdev, ifup, qdev->ndev,
3277 "Running with MSI interrupts.\n");
3278 return;
3279 }
3280 }
3281 qlge_irq_type = LEG_IRQ;
3282 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3283 "Running with legacy interrupts.\n");
3284 }
3285
3286 /* Each vector services 1 RSS ring and and 1 or more
3287 * TX completion rings. This function loops through
3288 * the TX completion rings and assigns the vector that
3289 * will service it. An example would be if there are
3290 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3291 * This would mean that vector 0 would service RSS ring 0
3292 * and TX completion rings 0,1,2 and 3. Vector 1 would
3293 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3294 */
3295 static void ql_set_tx_vect(struct ql_adapter *qdev)
3296 {
3297 int i, j, vect;
3298 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3299
3300 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3301 /* Assign irq vectors to TX rx_rings.*/
3302 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3303 i < qdev->rx_ring_count; i++) {
3304 if (j == tx_rings_per_vector) {
3305 vect++;
3306 j = 0;
3307 }
3308 qdev->rx_ring[i].irq = vect;
3309 j++;
3310 }
3311 } else {
3312 /* For single vector all rings have an irq
3313 * of zero.
3314 */
3315 for (i = 0; i < qdev->rx_ring_count; i++)
3316 qdev->rx_ring[i].irq = 0;
3317 }
3318 }
3319
3320 /* Set the interrupt mask for this vector. Each vector
3321 * will service 1 RSS ring and 1 or more TX completion
3322 * rings. This function sets up a bit mask per vector
3323 * that indicates which rings it services.
3324 */
3325 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3326 {
3327 int j, vect = ctx->intr;
3328 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3329
3330 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3331 /* Add the RSS ring serviced by this vector
3332 * to the mask.
3333 */
3334 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3335 /* Add the TX ring(s) serviced by this vector
3336 * to the mask. */
3337 for (j = 0; j < tx_rings_per_vector; j++) {
3338 ctx->irq_mask |=
3339 (1 << qdev->rx_ring[qdev->rss_ring_count +
3340 (vect * tx_rings_per_vector) + j].cq_id);
3341 }
3342 } else {
3343 /* For single vector we just shift each queue's
3344 * ID into the mask.
3345 */
3346 for (j = 0; j < qdev->rx_ring_count; j++)
3347 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3348 }
3349 }
3350
3351 /*
3352 * Here we build the intr_context structures based on
3353 * our rx_ring count and intr vector count.
3354 * The intr_context structure is used to hook each vector
3355 * to possibly different handlers.
3356 */
3357 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3358 {
3359 int i = 0;
3360 struct intr_context *intr_context = &qdev->intr_context[0];
3361
3362 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3363 /* Each rx_ring has it's
3364 * own intr_context since we have separate
3365 * vectors for each queue.
3366 */
3367 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3368 qdev->rx_ring[i].irq = i;
3369 intr_context->intr = i;
3370 intr_context->qdev = qdev;
3371 /* Set up this vector's bit-mask that indicates
3372 * which queues it services.
3373 */
3374 ql_set_irq_mask(qdev, intr_context);
3375 /*
3376 * We set up each vectors enable/disable/read bits so
3377 * there's no bit/mask calculations in the critical path.
3378 */
3379 intr_context->intr_en_mask =
3380 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3381 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3382 | i;
3383 intr_context->intr_dis_mask =
3384 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3385 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3386 INTR_EN_IHD | i;
3387 intr_context->intr_read_mask =
3388 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3389 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3390 i;
3391 if (i == 0) {
3392 /* The first vector/queue handles
3393 * broadcast/multicast, fatal errors,
3394 * and firmware events. This in addition
3395 * to normal inbound NAPI processing.
3396 */
3397 intr_context->handler = qlge_isr;
3398 sprintf(intr_context->name, "%s-rx-%d",
3399 qdev->ndev->name, i);
3400 } else {
3401 /*
3402 * Inbound queues handle unicast frames only.
3403 */
3404 intr_context->handler = qlge_msix_rx_isr;
3405 sprintf(intr_context->name, "%s-rx-%d",
3406 qdev->ndev->name, i);
3407 }
3408 }
3409 } else {
3410 /*
3411 * All rx_rings use the same intr_context since
3412 * there is only one vector.
3413 */
3414 intr_context->intr = 0;
3415 intr_context->qdev = qdev;
3416 /*
3417 * We set up each vectors enable/disable/read bits so
3418 * there's no bit/mask calculations in the critical path.
3419 */
3420 intr_context->intr_en_mask =
3421 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3422 intr_context->intr_dis_mask =
3423 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3424 INTR_EN_TYPE_DISABLE;
3425 intr_context->intr_read_mask =
3426 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3427 /*
3428 * Single interrupt means one handler for all rings.
3429 */
3430 intr_context->handler = qlge_isr;
3431 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3432 /* Set up this vector's bit-mask that indicates
3433 * which queues it services. In this case there is
3434 * a single vector so it will service all RSS and
3435 * TX completion rings.
3436 */
3437 ql_set_irq_mask(qdev, intr_context);
3438 }
3439 /* Tell the TX completion rings which MSIx vector
3440 * they will be using.
3441 */
3442 ql_set_tx_vect(qdev);
3443 }
3444
3445 static void ql_free_irq(struct ql_adapter *qdev)
3446 {
3447 int i;
3448 struct intr_context *intr_context = &qdev->intr_context[0];
3449
3450 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3451 if (intr_context->hooked) {
3452 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3453 free_irq(qdev->msi_x_entry[i].vector,
3454 &qdev->rx_ring[i]);
3455 } else {
3456 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3457 }
3458 }
3459 }
3460 ql_disable_msix(qdev);
3461 }
3462
3463 static int ql_request_irq(struct ql_adapter *qdev)
3464 {
3465 int i;
3466 int status = 0;
3467 struct pci_dev *pdev = qdev->pdev;
3468 struct intr_context *intr_context = &qdev->intr_context[0];
3469
3470 ql_resolve_queues_to_irqs(qdev);
3471
3472 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3473 atomic_set(&intr_context->irq_cnt, 0);
3474 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3475 status = request_irq(qdev->msi_x_entry[i].vector,
3476 intr_context->handler,
3477 0,
3478 intr_context->name,
3479 &qdev->rx_ring[i]);
3480 if (status) {
3481 netif_err(qdev, ifup, qdev->ndev,
3482 "Failed request for MSIX interrupt %d.\n",
3483 i);
3484 goto err_irq;
3485 }
3486 } else {
3487 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3488 "trying msi or legacy interrupts.\n");
3489 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3490 "%s: irq = %d.\n", __func__, pdev->irq);
3491 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3492 "%s: context->name = %s.\n", __func__,
3493 intr_context->name);
3494 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3495 "%s: dev_id = 0x%p.\n", __func__,
3496 &qdev->rx_ring[0]);
3497 status =
3498 request_irq(pdev->irq, qlge_isr,
3499 test_bit(QL_MSI_ENABLED,
3500 &qdev->
3501 flags) ? 0 : IRQF_SHARED,
3502 intr_context->name, &qdev->rx_ring[0]);
3503 if (status)
3504 goto err_irq;
3505
3506 netif_err(qdev, ifup, qdev->ndev,
3507 "Hooked intr %d, queue type %s, with name %s.\n",
3508 i,
3509 qdev->rx_ring[0].type == DEFAULT_Q ?
3510 "DEFAULT_Q" :
3511 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3512 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3513 intr_context->name);
3514 }
3515 intr_context->hooked = 1;
3516 }
3517 return status;
3518 err_irq:
3519 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3520 ql_free_irq(qdev);
3521 return status;
3522 }
3523
3524 static int ql_start_rss(struct ql_adapter *qdev)
3525 {
3526 static const u8 init_hash_seed[] = {
3527 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3528 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3529 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3530 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3531 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3532 };
3533 struct ricb *ricb = &qdev->ricb;
3534 int status = 0;
3535 int i;
3536 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3537
3538 memset((void *)ricb, 0, sizeof(*ricb));
3539
3540 ricb->base_cq = RSS_L4K;
3541 ricb->flags =
3542 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3543 ricb->mask = cpu_to_le16((u16)(0x3ff));
3544
3545 /*
3546 * Fill out the Indirection Table.
3547 */
3548 for (i = 0; i < 1024; i++)
3549 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3550
3551 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3552 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3553
3554 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3555 if (status) {
3556 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3557 return status;
3558 }
3559 return status;
3560 }
3561
3562 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3563 {
3564 int i, status = 0;
3565
3566 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3567 if (status)
3568 return status;
3569 /* Clear all the entries in the routing table. */
3570 for (i = 0; i < 16; i++) {
3571 status = ql_set_routing_reg(qdev, i, 0, 0);
3572 if (status) {
3573 netif_err(qdev, ifup, qdev->ndev,
3574 "Failed to init routing register for CAM packets.\n");
3575 break;
3576 }
3577 }
3578 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3579 return status;
3580 }
3581
3582 /* Initialize the frame-to-queue routing. */
3583 static int ql_route_initialize(struct ql_adapter *qdev)
3584 {
3585 int status = 0;
3586
3587 /* Clear all the entries in the routing table. */
3588 status = ql_clear_routing_entries(qdev);
3589 if (status)
3590 return status;
3591
3592 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3593 if (status)
3594 return status;
3595
3596 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3597 RT_IDX_IP_CSUM_ERR, 1);
3598 if (status) {
3599 netif_err(qdev, ifup, qdev->ndev,
3600 "Failed to init routing register "
3601 "for IP CSUM error packets.\n");
3602 goto exit;
3603 }
3604 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3605 RT_IDX_TU_CSUM_ERR, 1);
3606 if (status) {
3607 netif_err(qdev, ifup, qdev->ndev,
3608 "Failed to init routing register "
3609 "for TCP/UDP CSUM error packets.\n");
3610 goto exit;
3611 }
3612 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3613 if (status) {
3614 netif_err(qdev, ifup, qdev->ndev,
3615 "Failed to init routing register for broadcast packets.\n");
3616 goto exit;
3617 }
3618 /* If we have more than one inbound queue, then turn on RSS in the
3619 * routing block.
3620 */
3621 if (qdev->rss_ring_count > 1) {
3622 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3623 RT_IDX_RSS_MATCH, 1);
3624 if (status) {
3625 netif_err(qdev, ifup, qdev->ndev,
3626 "Failed to init routing register for MATCH RSS packets.\n");
3627 goto exit;
3628 }
3629 }
3630
3631 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3632 RT_IDX_CAM_HIT, 1);
3633 if (status)
3634 netif_err(qdev, ifup, qdev->ndev,
3635 "Failed to init routing register for CAM packets.\n");
3636 exit:
3637 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3638 return status;
3639 }
3640
3641 int ql_cam_route_initialize(struct ql_adapter *qdev)
3642 {
3643 int status, set;
3644
3645 /* If check if the link is up and use to
3646 * determine if we are setting or clearing
3647 * the MAC address in the CAM.
3648 */
3649 set = ql_read32(qdev, STS);
3650 set &= qdev->port_link_up;
3651 status = ql_set_mac_addr(qdev, set);
3652 if (status) {
3653 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3654 return status;
3655 }
3656
3657 status = ql_route_initialize(qdev);
3658 if (status)
3659 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3660
3661 return status;
3662 }
3663
3664 static int ql_adapter_initialize(struct ql_adapter *qdev)
3665 {
3666 u32 value, mask;
3667 int i;
3668 int status = 0;
3669
3670 /*
3671 * Set up the System register to halt on errors.
3672 */
3673 value = SYS_EFE | SYS_FAE;
3674 mask = value << 16;
3675 ql_write32(qdev, SYS, mask | value);
3676
3677 /* Set the default queue, and VLAN behavior. */
3678 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3679 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3680 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3681
3682 /* Set the MPI interrupt to enabled. */
3683 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3684
3685 /* Enable the function, set pagesize, enable error checking. */
3686 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3687 FSC_EC | FSC_VM_PAGE_4K;
3688 value |= SPLT_SETTING;
3689
3690 /* Set/clear header splitting. */
3691 mask = FSC_VM_PAGESIZE_MASK |
3692 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3693 ql_write32(qdev, FSC, mask | value);
3694
3695 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3696
3697 /* Set RX packet routing to use port/pci function on which the
3698 * packet arrived on in addition to usual frame routing.
3699 * This is helpful on bonding where both interfaces can have
3700 * the same MAC address.
3701 */
3702 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3703 /* Reroute all packets to our Interface.
3704 * They may have been routed to MPI firmware
3705 * due to WOL.
3706 */
3707 value = ql_read32(qdev, MGMT_RCV_CFG);
3708 value &= ~MGMT_RCV_CFG_RM;
3709 mask = 0xffff0000;
3710
3711 /* Sticky reg needs clearing due to WOL. */
3712 ql_write32(qdev, MGMT_RCV_CFG, mask);
3713 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3714
3715 /* Default WOL is enable on Mezz cards */
3716 if (qdev->pdev->subsystem_device == 0x0068 ||
3717 qdev->pdev->subsystem_device == 0x0180)
3718 qdev->wol = WAKE_MAGIC;
3719
3720 /* Start up the rx queues. */
3721 for (i = 0; i < qdev->rx_ring_count; i++) {
3722 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3723 if (status) {
3724 netif_err(qdev, ifup, qdev->ndev,
3725 "Failed to start rx ring[%d].\n", i);
3726 return status;
3727 }
3728 }
3729
3730 /* If there is more than one inbound completion queue
3731 * then download a RICB to configure RSS.
3732 */
3733 if (qdev->rss_ring_count > 1) {
3734 status = ql_start_rss(qdev);
3735 if (status) {
3736 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3737 return status;
3738 }
3739 }
3740
3741 /* Start up the tx queues. */
3742 for (i = 0; i < qdev->tx_ring_count; i++) {
3743 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3744 if (status) {
3745 netif_err(qdev, ifup, qdev->ndev,
3746 "Failed to start tx ring[%d].\n", i);
3747 return status;
3748 }
3749 }
3750
3751 /* Initialize the port and set the max framesize. */
3752 status = qdev->nic_ops->port_initialize(qdev);
3753 if (status)
3754 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3755
3756 /* Set up the MAC address and frame routing filter. */
3757 status = ql_cam_route_initialize(qdev);
3758 if (status) {
3759 netif_err(qdev, ifup, qdev->ndev,
3760 "Failed to init CAM/Routing tables.\n");
3761 return status;
3762 }
3763
3764 /* Start NAPI for the RSS queues. */
3765 for (i = 0; i < qdev->rss_ring_count; i++)
3766 napi_enable(&qdev->rx_ring[i].napi);
3767
3768 return status;
3769 }
3770
3771 /* Issue soft reset to chip. */
3772 static int ql_adapter_reset(struct ql_adapter *qdev)
3773 {
3774 u32 value;
3775 int status = 0;
3776 unsigned long end_jiffies;
3777
3778 /* Clear all the entries in the routing table. */
3779 status = ql_clear_routing_entries(qdev);
3780 if (status) {
3781 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3782 return status;
3783 }
3784
3785 end_jiffies = jiffies +
3786 max((unsigned long)1, usecs_to_jiffies(30));
3787
3788 /* Check if bit is set then skip the mailbox command and
3789 * clear the bit, else we are in normal reset process.
3790 */
3791 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3792 /* Stop management traffic. */
3793 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3794
3795 /* Wait for the NIC and MGMNT FIFOs to empty. */
3796 ql_wait_fifo_empty(qdev);
3797 } else
3798 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3799
3800 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3801
3802 do {
3803 value = ql_read32(qdev, RST_FO);
3804 if ((value & RST_FO_FR) == 0)
3805 break;
3806 cpu_relax();
3807 } while (time_before(jiffies, end_jiffies));
3808
3809 if (value & RST_FO_FR) {
3810 netif_err(qdev, ifdown, qdev->ndev,
3811 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3812 status = -ETIMEDOUT;
3813 }
3814
3815 /* Resume management traffic. */
3816 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3817 return status;
3818 }
3819
3820 static void ql_display_dev_info(struct net_device *ndev)
3821 {
3822 struct ql_adapter *qdev = netdev_priv(ndev);
3823
3824 netif_info(qdev, probe, qdev->ndev,
3825 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3826 "XG Roll = %d, XG Rev = %d.\n",
3827 qdev->func,
3828 qdev->port,
3829 qdev->chip_rev_id & 0x0000000f,
3830 qdev->chip_rev_id >> 4 & 0x0000000f,
3831 qdev->chip_rev_id >> 8 & 0x0000000f,
3832 qdev->chip_rev_id >> 12 & 0x0000000f);
3833 netif_info(qdev, probe, qdev->ndev,
3834 "MAC address %pM\n", ndev->dev_addr);
3835 }
3836
3837 static int ql_wol(struct ql_adapter *qdev)
3838 {
3839 int status = 0;
3840 u32 wol = MB_WOL_DISABLE;
3841
3842 /* The CAM is still intact after a reset, but if we
3843 * are doing WOL, then we may need to program the
3844 * routing regs. We would also need to issue the mailbox
3845 * commands to instruct the MPI what to do per the ethtool
3846 * settings.
3847 */
3848
3849 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3850 WAKE_MCAST | WAKE_BCAST)) {
3851 netif_err(qdev, ifdown, qdev->ndev,
3852 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3853 qdev->wol);
3854 return -EINVAL;
3855 }
3856
3857 if (qdev->wol & WAKE_MAGIC) {
3858 status = ql_mb_wol_set_magic(qdev, 1);
3859 if (status) {
3860 netif_err(qdev, ifdown, qdev->ndev,
3861 "Failed to set magic packet on %s.\n",
3862 qdev->ndev->name);
3863 return status;
3864 } else
3865 netif_info(qdev, drv, qdev->ndev,
3866 "Enabled magic packet successfully on %s.\n",
3867 qdev->ndev->name);
3868
3869 wol |= MB_WOL_MAGIC_PKT;
3870 }
3871
3872 if (qdev->wol) {
3873 wol |= MB_WOL_MODE_ON;
3874 status = ql_mb_wol_mode(qdev, wol);
3875 netif_err(qdev, drv, qdev->ndev,
3876 "WOL %s (wol code 0x%x) on %s\n",
3877 (status == 0) ? "Successfully set" : "Failed",
3878 wol, qdev->ndev->name);
3879 }
3880
3881 return status;
3882 }
3883
3884 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3885 {
3886
3887 /* Don't kill the reset worker thread if we
3888 * are in the process of recovery.
3889 */
3890 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3891 cancel_delayed_work_sync(&qdev->asic_reset_work);
3892 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3893 cancel_delayed_work_sync(&qdev->mpi_work);
3894 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3895 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3896 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3897 }
3898
3899 static int ql_adapter_down(struct ql_adapter *qdev)
3900 {
3901 int i, status = 0;
3902
3903 ql_link_off(qdev);
3904
3905 ql_cancel_all_work_sync(qdev);
3906
3907 for (i = 0; i < qdev->rss_ring_count; i++)
3908 napi_disable(&qdev->rx_ring[i].napi);
3909
3910 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3911
3912 ql_disable_interrupts(qdev);
3913
3914 ql_tx_ring_clean(qdev);
3915
3916 /* Call netif_napi_del() from common point.
3917 */
3918 for (i = 0; i < qdev->rss_ring_count; i++)
3919 netif_napi_del(&qdev->rx_ring[i].napi);
3920
3921 status = ql_adapter_reset(qdev);
3922 if (status)
3923 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3924 qdev->func);
3925 ql_free_rx_buffers(qdev);
3926
3927 return status;
3928 }
3929
3930 static int ql_adapter_up(struct ql_adapter *qdev)
3931 {
3932 int err = 0;
3933
3934 err = ql_adapter_initialize(qdev);
3935 if (err) {
3936 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
3937 goto err_init;
3938 }
3939 set_bit(QL_ADAPTER_UP, &qdev->flags);
3940 ql_alloc_rx_buffers(qdev);
3941 /* If the port is initialized and the
3942 * link is up the turn on the carrier.
3943 */
3944 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3945 (ql_read32(qdev, STS) & qdev->port_link_up))
3946 ql_link_on(qdev);
3947 /* Restore rx mode. */
3948 clear_bit(QL_ALLMULTI, &qdev->flags);
3949 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3950 qlge_set_multicast_list(qdev->ndev);
3951
3952 /* Restore vlan setting. */
3953 qlge_restore_vlan(qdev);
3954
3955 ql_enable_interrupts(qdev);
3956 ql_enable_all_completion_interrupts(qdev);
3957 netif_tx_start_all_queues(qdev->ndev);
3958
3959 return 0;
3960 err_init:
3961 ql_adapter_reset(qdev);
3962 return err;
3963 }
3964
3965 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3966 {
3967 ql_free_mem_resources(qdev);
3968 ql_free_irq(qdev);
3969 }
3970
3971 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3972 {
3973 int status = 0;
3974
3975 if (ql_alloc_mem_resources(qdev)) {
3976 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
3977 return -ENOMEM;
3978 }
3979 status = ql_request_irq(qdev);
3980 return status;
3981 }
3982
3983 static int qlge_close(struct net_device *ndev)
3984 {
3985 struct ql_adapter *qdev = netdev_priv(ndev);
3986
3987 /* If we hit pci_channel_io_perm_failure
3988 * failure condition, then we already
3989 * brought the adapter down.
3990 */
3991 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
3992 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
3993 clear_bit(QL_EEH_FATAL, &qdev->flags);
3994 return 0;
3995 }
3996
3997 /*
3998 * Wait for device to recover from a reset.
3999 * (Rarely happens, but possible.)
4000 */
4001 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4002 msleep(1);
4003 ql_adapter_down(qdev);
4004 ql_release_adapter_resources(qdev);
4005 return 0;
4006 }
4007
4008 static int ql_configure_rings(struct ql_adapter *qdev)
4009 {
4010 int i;
4011 struct rx_ring *rx_ring;
4012 struct tx_ring *tx_ring;
4013 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4014 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4015 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4016
4017 qdev->lbq_buf_order = get_order(lbq_buf_len);
4018
4019 /* In a perfect world we have one RSS ring for each CPU
4020 * and each has it's own vector. To do that we ask for
4021 * cpu_cnt vectors. ql_enable_msix() will adjust the
4022 * vector count to what we actually get. We then
4023 * allocate an RSS ring for each.
4024 * Essentially, we are doing min(cpu_count, msix_vector_count).
4025 */
4026 qdev->intr_count = cpu_cnt;
4027 ql_enable_msix(qdev);
4028 /* Adjust the RSS ring count to the actual vector count. */
4029 qdev->rss_ring_count = qdev->intr_count;
4030 qdev->tx_ring_count = cpu_cnt;
4031 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4032
4033 for (i = 0; i < qdev->tx_ring_count; i++) {
4034 tx_ring = &qdev->tx_ring[i];
4035 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4036 tx_ring->qdev = qdev;
4037 tx_ring->wq_id = i;
4038 tx_ring->wq_len = qdev->tx_ring_size;
4039 tx_ring->wq_size =
4040 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4041
4042 /*
4043 * The completion queue ID for the tx rings start
4044 * immediately after the rss rings.
4045 */
4046 tx_ring->cq_id = qdev->rss_ring_count + i;
4047 }
4048
4049 for (i = 0; i < qdev->rx_ring_count; i++) {
4050 rx_ring = &qdev->rx_ring[i];
4051 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4052 rx_ring->qdev = qdev;
4053 rx_ring->cq_id = i;
4054 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4055 if (i < qdev->rss_ring_count) {
4056 /*
4057 * Inbound (RSS) queues.
4058 */
4059 rx_ring->cq_len = qdev->rx_ring_size;
4060 rx_ring->cq_size =
4061 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4062 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4063 rx_ring->lbq_size =
4064 rx_ring->lbq_len * sizeof(__le64);
4065 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4066 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4067 rx_ring->sbq_size =
4068 rx_ring->sbq_len * sizeof(__le64);
4069 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4070 rx_ring->type = RX_Q;
4071 } else {
4072 /*
4073 * Outbound queue handles outbound completions only.
4074 */
4075 /* outbound cq is same size as tx_ring it services. */
4076 rx_ring->cq_len = qdev->tx_ring_size;
4077 rx_ring->cq_size =
4078 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4079 rx_ring->lbq_len = 0;
4080 rx_ring->lbq_size = 0;
4081 rx_ring->lbq_buf_size = 0;
4082 rx_ring->sbq_len = 0;
4083 rx_ring->sbq_size = 0;
4084 rx_ring->sbq_buf_size = 0;
4085 rx_ring->type = TX_Q;
4086 }
4087 }
4088 return 0;
4089 }
4090
4091 static int qlge_open(struct net_device *ndev)
4092 {
4093 int err = 0;
4094 struct ql_adapter *qdev = netdev_priv(ndev);
4095
4096 err = ql_adapter_reset(qdev);
4097 if (err)
4098 return err;
4099
4100 err = ql_configure_rings(qdev);
4101 if (err)
4102 return err;
4103
4104 err = ql_get_adapter_resources(qdev);
4105 if (err)
4106 goto error_up;
4107
4108 err = ql_adapter_up(qdev);
4109 if (err)
4110 goto error_up;
4111
4112 return err;
4113
4114 error_up:
4115 ql_release_adapter_resources(qdev);
4116 return err;
4117 }
4118
4119 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4120 {
4121 struct rx_ring *rx_ring;
4122 int i, status;
4123 u32 lbq_buf_len;
4124
4125 /* Wait for an outstanding reset to complete. */
4126 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4127 int i = 3;
4128 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4129 netif_err(qdev, ifup, qdev->ndev,
4130 "Waiting for adapter UP...\n");
4131 ssleep(1);
4132 }
4133
4134 if (!i) {
4135 netif_err(qdev, ifup, qdev->ndev,
4136 "Timed out waiting for adapter UP\n");
4137 return -ETIMEDOUT;
4138 }
4139 }
4140
4141 status = ql_adapter_down(qdev);
4142 if (status)
4143 goto error;
4144
4145 /* Get the new rx buffer size. */
4146 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4147 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4148 qdev->lbq_buf_order = get_order(lbq_buf_len);
4149
4150 for (i = 0; i < qdev->rss_ring_count; i++) {
4151 rx_ring = &qdev->rx_ring[i];
4152 /* Set the new size. */
4153 rx_ring->lbq_buf_size = lbq_buf_len;
4154 }
4155
4156 status = ql_adapter_up(qdev);
4157 if (status)
4158 goto error;
4159
4160 return status;
4161 error:
4162 netif_alert(qdev, ifup, qdev->ndev,
4163 "Driver up/down cycle failed, closing device.\n");
4164 set_bit(QL_ADAPTER_UP, &qdev->flags);
4165 dev_close(qdev->ndev);
4166 return status;
4167 }
4168
4169 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4170 {
4171 struct ql_adapter *qdev = netdev_priv(ndev);
4172 int status;
4173
4174 if (ndev->mtu == 1500 && new_mtu == 9000) {
4175 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4176 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4177 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4178 } else
4179 return -EINVAL;
4180
4181 queue_delayed_work(qdev->workqueue,
4182 &qdev->mpi_port_cfg_work, 3*HZ);
4183
4184 ndev->mtu = new_mtu;
4185
4186 if (!netif_running(qdev->ndev)) {
4187 return 0;
4188 }
4189
4190 status = ql_change_rx_buffers(qdev);
4191 if (status) {
4192 netif_err(qdev, ifup, qdev->ndev,
4193 "Changing MTU failed.\n");
4194 }
4195
4196 return status;
4197 }
4198
4199 static struct net_device_stats *qlge_get_stats(struct net_device
4200 *ndev)
4201 {
4202 struct ql_adapter *qdev = netdev_priv(ndev);
4203 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4204 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4205 unsigned long pkts, mcast, dropped, errors, bytes;
4206 int i;
4207
4208 /* Get RX stats. */
4209 pkts = mcast = dropped = errors = bytes = 0;
4210 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4211 pkts += rx_ring->rx_packets;
4212 bytes += rx_ring->rx_bytes;
4213 dropped += rx_ring->rx_dropped;
4214 errors += rx_ring->rx_errors;
4215 mcast += rx_ring->rx_multicast;
4216 }
4217 ndev->stats.rx_packets = pkts;
4218 ndev->stats.rx_bytes = bytes;
4219 ndev->stats.rx_dropped = dropped;
4220 ndev->stats.rx_errors = errors;
4221 ndev->stats.multicast = mcast;
4222
4223 /* Get TX stats. */
4224 pkts = errors = bytes = 0;
4225 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4226 pkts += tx_ring->tx_packets;
4227 bytes += tx_ring->tx_bytes;
4228 errors += tx_ring->tx_errors;
4229 }
4230 ndev->stats.tx_packets = pkts;
4231 ndev->stats.tx_bytes = bytes;
4232 ndev->stats.tx_errors = errors;
4233 return &ndev->stats;
4234 }
4235
4236 static void qlge_set_multicast_list(struct net_device *ndev)
4237 {
4238 struct ql_adapter *qdev = netdev_priv(ndev);
4239 struct netdev_hw_addr *ha;
4240 int i, status;
4241
4242 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4243 if (status)
4244 return;
4245 /*
4246 * Set or clear promiscuous mode if a
4247 * transition is taking place.
4248 */
4249 if (ndev->flags & IFF_PROMISC) {
4250 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4251 if (ql_set_routing_reg
4252 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4253 netif_err(qdev, hw, qdev->ndev,
4254 "Failed to set promiscuous mode.\n");
4255 } else {
4256 set_bit(QL_PROMISCUOUS, &qdev->flags);
4257 }
4258 }
4259 } else {
4260 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4261 if (ql_set_routing_reg
4262 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4263 netif_err(qdev, hw, qdev->ndev,
4264 "Failed to clear promiscuous mode.\n");
4265 } else {
4266 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4267 }
4268 }
4269 }
4270
4271 /*
4272 * Set or clear all multicast mode if a
4273 * transition is taking place.
4274 */
4275 if ((ndev->flags & IFF_ALLMULTI) ||
4276 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4277 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4278 if (ql_set_routing_reg
4279 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4280 netif_err(qdev, hw, qdev->ndev,
4281 "Failed to set all-multi mode.\n");
4282 } else {
4283 set_bit(QL_ALLMULTI, &qdev->flags);
4284 }
4285 }
4286 } else {
4287 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4288 if (ql_set_routing_reg
4289 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4290 netif_err(qdev, hw, qdev->ndev,
4291 "Failed to clear all-multi mode.\n");
4292 } else {
4293 clear_bit(QL_ALLMULTI, &qdev->flags);
4294 }
4295 }
4296 }
4297
4298 if (!netdev_mc_empty(ndev)) {
4299 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4300 if (status)
4301 goto exit;
4302 i = 0;
4303 netdev_for_each_mc_addr(ha, ndev) {
4304 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4305 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4306 netif_err(qdev, hw, qdev->ndev,
4307 "Failed to loadmulticast address.\n");
4308 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4309 goto exit;
4310 }
4311 i++;
4312 }
4313 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4314 if (ql_set_routing_reg
4315 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4316 netif_err(qdev, hw, qdev->ndev,
4317 "Failed to set multicast match mode.\n");
4318 } else {
4319 set_bit(QL_ALLMULTI, &qdev->flags);
4320 }
4321 }
4322 exit:
4323 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4324 }
4325
4326 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4327 {
4328 struct ql_adapter *qdev = netdev_priv(ndev);
4329 struct sockaddr *addr = p;
4330 int status;
4331
4332 if (!is_valid_ether_addr(addr->sa_data))
4333 return -EADDRNOTAVAIL;
4334 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4335 /* Update local copy of current mac address. */
4336 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4337
4338 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4339 if (status)
4340 return status;
4341 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4342 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4343 if (status)
4344 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4345 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4346 return status;
4347 }
4348
4349 static void qlge_tx_timeout(struct net_device *ndev)
4350 {
4351 struct ql_adapter *qdev = netdev_priv(ndev);
4352 ql_queue_asic_error(qdev);
4353 }
4354
4355 static void ql_asic_reset_work(struct work_struct *work)
4356 {
4357 struct ql_adapter *qdev =
4358 container_of(work, struct ql_adapter, asic_reset_work.work);
4359 int status;
4360 rtnl_lock();
4361 status = ql_adapter_down(qdev);
4362 if (status)
4363 goto error;
4364
4365 status = ql_adapter_up(qdev);
4366 if (status)
4367 goto error;
4368
4369 /* Restore rx mode. */
4370 clear_bit(QL_ALLMULTI, &qdev->flags);
4371 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4372 qlge_set_multicast_list(qdev->ndev);
4373
4374 rtnl_unlock();
4375 return;
4376 error:
4377 netif_alert(qdev, ifup, qdev->ndev,
4378 "Driver up/down cycle failed, closing device\n");
4379
4380 set_bit(QL_ADAPTER_UP, &qdev->flags);
4381 dev_close(qdev->ndev);
4382 rtnl_unlock();
4383 }
4384
4385 static const struct nic_operations qla8012_nic_ops = {
4386 .get_flash = ql_get_8012_flash_params,
4387 .port_initialize = ql_8012_port_initialize,
4388 };
4389
4390 static const struct nic_operations qla8000_nic_ops = {
4391 .get_flash = ql_get_8000_flash_params,
4392 .port_initialize = ql_8000_port_initialize,
4393 };
4394
4395 /* Find the pcie function number for the other NIC
4396 * on this chip. Since both NIC functions share a
4397 * common firmware we have the lowest enabled function
4398 * do any common work. Examples would be resetting
4399 * after a fatal firmware error, or doing a firmware
4400 * coredump.
4401 */
4402 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4403 {
4404 int status = 0;
4405 u32 temp;
4406 u32 nic_func1, nic_func2;
4407
4408 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4409 &temp);
4410 if (status)
4411 return status;
4412
4413 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4414 MPI_TEST_NIC_FUNC_MASK);
4415 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4416 MPI_TEST_NIC_FUNC_MASK);
4417
4418 if (qdev->func == nic_func1)
4419 qdev->alt_func = nic_func2;
4420 else if (qdev->func == nic_func2)
4421 qdev->alt_func = nic_func1;
4422 else
4423 status = -EIO;
4424
4425 return status;
4426 }
4427
4428 static int ql_get_board_info(struct ql_adapter *qdev)
4429 {
4430 int status;
4431 qdev->func =
4432 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4433 if (qdev->func > 3)
4434 return -EIO;
4435
4436 status = ql_get_alt_pcie_func(qdev);
4437 if (status)
4438 return status;
4439
4440 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4441 if (qdev->port) {
4442 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4443 qdev->port_link_up = STS_PL1;
4444 qdev->port_init = STS_PI1;
4445 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4446 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4447 } else {
4448 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4449 qdev->port_link_up = STS_PL0;
4450 qdev->port_init = STS_PI0;
4451 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4452 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4453 }
4454 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4455 qdev->device_id = qdev->pdev->device;
4456 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4457 qdev->nic_ops = &qla8012_nic_ops;
4458 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4459 qdev->nic_ops = &qla8000_nic_ops;
4460 return status;
4461 }
4462
4463 static void ql_release_all(struct pci_dev *pdev)
4464 {
4465 struct net_device *ndev = pci_get_drvdata(pdev);
4466 struct ql_adapter *qdev = netdev_priv(ndev);
4467
4468 if (qdev->workqueue) {
4469 destroy_workqueue(qdev->workqueue);
4470 qdev->workqueue = NULL;
4471 }
4472
4473 if (qdev->reg_base)
4474 iounmap(qdev->reg_base);
4475 if (qdev->doorbell_area)
4476 iounmap(qdev->doorbell_area);
4477 vfree(qdev->mpi_coredump);
4478 pci_release_regions(pdev);
4479 pci_set_drvdata(pdev, NULL);
4480 }
4481
4482 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4483 int cards_found)
4484 {
4485 struct ql_adapter *qdev = netdev_priv(ndev);
4486 int err = 0;
4487
4488 memset((void *)qdev, 0, sizeof(*qdev));
4489 err = pci_enable_device(pdev);
4490 if (err) {
4491 dev_err(&pdev->dev, "PCI device enable failed.\n");
4492 return err;
4493 }
4494
4495 qdev->ndev = ndev;
4496 qdev->pdev = pdev;
4497 pci_set_drvdata(pdev, ndev);
4498
4499 /* Set PCIe read request size */
4500 err = pcie_set_readrq(pdev, 4096);
4501 if (err) {
4502 dev_err(&pdev->dev, "Set readrq failed.\n");
4503 goto err_out1;
4504 }
4505
4506 err = pci_request_regions(pdev, DRV_NAME);
4507 if (err) {
4508 dev_err(&pdev->dev, "PCI region request failed.\n");
4509 return err;
4510 }
4511
4512 pci_set_master(pdev);
4513 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4514 set_bit(QL_DMA64, &qdev->flags);
4515 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4516 } else {
4517 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4518 if (!err)
4519 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4520 }
4521
4522 if (err) {
4523 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4524 goto err_out2;
4525 }
4526
4527 /* Set PCIe reset type for EEH to fundamental. */
4528 pdev->needs_freset = 1;
4529 pci_save_state(pdev);
4530 qdev->reg_base =
4531 ioremap_nocache(pci_resource_start(pdev, 1),
4532 pci_resource_len(pdev, 1));
4533 if (!qdev->reg_base) {
4534 dev_err(&pdev->dev, "Register mapping failed.\n");
4535 err = -ENOMEM;
4536 goto err_out2;
4537 }
4538
4539 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4540 qdev->doorbell_area =
4541 ioremap_nocache(pci_resource_start(pdev, 3),
4542 pci_resource_len(pdev, 3));
4543 if (!qdev->doorbell_area) {
4544 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4545 err = -ENOMEM;
4546 goto err_out2;
4547 }
4548
4549 err = ql_get_board_info(qdev);
4550 if (err) {
4551 dev_err(&pdev->dev, "Register access failed.\n");
4552 err = -EIO;
4553 goto err_out2;
4554 }
4555 qdev->msg_enable = netif_msg_init(debug, default_msg);
4556 spin_lock_init(&qdev->hw_lock);
4557 spin_lock_init(&qdev->stats_lock);
4558
4559 if (qlge_mpi_coredump) {
4560 qdev->mpi_coredump =
4561 vmalloc(sizeof(struct ql_mpi_coredump));
4562 if (qdev->mpi_coredump == NULL) {
4563 err = -ENOMEM;
4564 goto err_out2;
4565 }
4566 if (qlge_force_coredump)
4567 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4568 }
4569 /* make sure the EEPROM is good */
4570 err = qdev->nic_ops->get_flash(qdev);
4571 if (err) {
4572 dev_err(&pdev->dev, "Invalid FLASH.\n");
4573 goto err_out2;
4574 }
4575
4576 /* Keep local copy of current mac address. */
4577 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4578
4579 /* Set up the default ring sizes. */
4580 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4581 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4582
4583 /* Set up the coalescing parameters. */
4584 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4585 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4586 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4587 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4588
4589 /*
4590 * Set up the operating parameters.
4591 */
4592 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4593 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4594 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4595 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4596 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4597 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4598 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4599 init_completion(&qdev->ide_completion);
4600 mutex_init(&qdev->mpi_mutex);
4601
4602 if (!cards_found) {
4603 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4604 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4605 DRV_NAME, DRV_VERSION);
4606 }
4607 return 0;
4608 err_out2:
4609 ql_release_all(pdev);
4610 err_out1:
4611 pci_disable_device(pdev);
4612 return err;
4613 }
4614
4615 static const struct net_device_ops qlge_netdev_ops = {
4616 .ndo_open = qlge_open,
4617 .ndo_stop = qlge_close,
4618 .ndo_start_xmit = qlge_send,
4619 .ndo_change_mtu = qlge_change_mtu,
4620 .ndo_get_stats = qlge_get_stats,
4621 .ndo_set_rx_mode = qlge_set_multicast_list,
4622 .ndo_set_mac_address = qlge_set_mac_address,
4623 .ndo_validate_addr = eth_validate_addr,
4624 .ndo_tx_timeout = qlge_tx_timeout,
4625 .ndo_fix_features = qlge_fix_features,
4626 .ndo_set_features = qlge_set_features,
4627 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4628 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4629 };
4630
4631 static void ql_timer(unsigned long data)
4632 {
4633 struct ql_adapter *qdev = (struct ql_adapter *)data;
4634 u32 var = 0;
4635
4636 var = ql_read32(qdev, STS);
4637 if (pci_channel_offline(qdev->pdev)) {
4638 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4639 return;
4640 }
4641
4642 mod_timer(&qdev->timer, jiffies + (5*HZ));
4643 }
4644
4645 static int qlge_probe(struct pci_dev *pdev,
4646 const struct pci_device_id *pci_entry)
4647 {
4648 struct net_device *ndev = NULL;
4649 struct ql_adapter *qdev = NULL;
4650 static int cards_found = 0;
4651 int err = 0;
4652
4653 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4654 min(MAX_CPUS, netif_get_num_default_rss_queues()));
4655 if (!ndev)
4656 return -ENOMEM;
4657
4658 err = ql_init_device(pdev, ndev, cards_found);
4659 if (err < 0) {
4660 free_netdev(ndev);
4661 return err;
4662 }
4663
4664 qdev = netdev_priv(ndev);
4665 SET_NETDEV_DEV(ndev, &pdev->dev);
4666 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4667 NETIF_F_TSO | NETIF_F_TSO_ECN |
4668 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_RXCSUM;
4669 ndev->features = ndev->hw_features |
4670 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
4671 ndev->vlan_features = ndev->hw_features;
4672
4673 if (test_bit(QL_DMA64, &qdev->flags))
4674 ndev->features |= NETIF_F_HIGHDMA;
4675
4676 /*
4677 * Set up net_device structure.
4678 */
4679 ndev->tx_queue_len = qdev->tx_ring_size;
4680 ndev->irq = pdev->irq;
4681
4682 ndev->netdev_ops = &qlge_netdev_ops;
4683 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4684 ndev->watchdog_timeo = 10 * HZ;
4685
4686 err = register_netdev(ndev);
4687 if (err) {
4688 dev_err(&pdev->dev, "net device registration failed.\n");
4689 ql_release_all(pdev);
4690 pci_disable_device(pdev);
4691 return err;
4692 }
4693 /* Start up the timer to trigger EEH if
4694 * the bus goes dead
4695 */
4696 init_timer_deferrable(&qdev->timer);
4697 qdev->timer.data = (unsigned long)qdev;
4698 qdev->timer.function = ql_timer;
4699 qdev->timer.expires = jiffies + (5*HZ);
4700 add_timer(&qdev->timer);
4701 ql_link_off(qdev);
4702 ql_display_dev_info(ndev);
4703 atomic_set(&qdev->lb_count, 0);
4704 cards_found++;
4705 return 0;
4706 }
4707
4708 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4709 {
4710 return qlge_send(skb, ndev);
4711 }
4712
4713 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4714 {
4715 return ql_clean_inbound_rx_ring(rx_ring, budget);
4716 }
4717
4718 static void qlge_remove(struct pci_dev *pdev)
4719 {
4720 struct net_device *ndev = pci_get_drvdata(pdev);
4721 struct ql_adapter *qdev = netdev_priv(ndev);
4722 del_timer_sync(&qdev->timer);
4723 ql_cancel_all_work_sync(qdev);
4724 unregister_netdev(ndev);
4725 ql_release_all(pdev);
4726 pci_disable_device(pdev);
4727 free_netdev(ndev);
4728 }
4729
4730 /* Clean up resources without touching hardware. */
4731 static void ql_eeh_close(struct net_device *ndev)
4732 {
4733 int i;
4734 struct ql_adapter *qdev = netdev_priv(ndev);
4735
4736 if (netif_carrier_ok(ndev)) {
4737 netif_carrier_off(ndev);
4738 netif_stop_queue(ndev);
4739 }
4740
4741 /* Disabling the timer */
4742 del_timer_sync(&qdev->timer);
4743 ql_cancel_all_work_sync(qdev);
4744
4745 for (i = 0; i < qdev->rss_ring_count; i++)
4746 netif_napi_del(&qdev->rx_ring[i].napi);
4747
4748 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4749 ql_tx_ring_clean(qdev);
4750 ql_free_rx_buffers(qdev);
4751 ql_release_adapter_resources(qdev);
4752 }
4753
4754 /*
4755 * This callback is called by the PCI subsystem whenever
4756 * a PCI bus error is detected.
4757 */
4758 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4759 enum pci_channel_state state)
4760 {
4761 struct net_device *ndev = pci_get_drvdata(pdev);
4762 struct ql_adapter *qdev = netdev_priv(ndev);
4763
4764 switch (state) {
4765 case pci_channel_io_normal:
4766 return PCI_ERS_RESULT_CAN_RECOVER;
4767 case pci_channel_io_frozen:
4768 netif_device_detach(ndev);
4769 if (netif_running(ndev))
4770 ql_eeh_close(ndev);
4771 pci_disable_device(pdev);
4772 return PCI_ERS_RESULT_NEED_RESET;
4773 case pci_channel_io_perm_failure:
4774 dev_err(&pdev->dev,
4775 "%s: pci_channel_io_perm_failure.\n", __func__);
4776 ql_eeh_close(ndev);
4777 set_bit(QL_EEH_FATAL, &qdev->flags);
4778 return PCI_ERS_RESULT_DISCONNECT;
4779 }
4780
4781 /* Request a slot reset. */
4782 return PCI_ERS_RESULT_NEED_RESET;
4783 }
4784
4785 /*
4786 * This callback is called after the PCI buss has been reset.
4787 * Basically, this tries to restart the card from scratch.
4788 * This is a shortened version of the device probe/discovery code,
4789 * it resembles the first-half of the () routine.
4790 */
4791 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4792 {
4793 struct net_device *ndev = pci_get_drvdata(pdev);
4794 struct ql_adapter *qdev = netdev_priv(ndev);
4795
4796 pdev->error_state = pci_channel_io_normal;
4797
4798 pci_restore_state(pdev);
4799 if (pci_enable_device(pdev)) {
4800 netif_err(qdev, ifup, qdev->ndev,
4801 "Cannot re-enable PCI device after reset.\n");
4802 return PCI_ERS_RESULT_DISCONNECT;
4803 }
4804 pci_set_master(pdev);
4805
4806 if (ql_adapter_reset(qdev)) {
4807 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4808 set_bit(QL_EEH_FATAL, &qdev->flags);
4809 return PCI_ERS_RESULT_DISCONNECT;
4810 }
4811
4812 return PCI_ERS_RESULT_RECOVERED;
4813 }
4814
4815 static void qlge_io_resume(struct pci_dev *pdev)
4816 {
4817 struct net_device *ndev = pci_get_drvdata(pdev);
4818 struct ql_adapter *qdev = netdev_priv(ndev);
4819 int err = 0;
4820
4821 if (netif_running(ndev)) {
4822 err = qlge_open(ndev);
4823 if (err) {
4824 netif_err(qdev, ifup, qdev->ndev,
4825 "Device initialization failed after reset.\n");
4826 return;
4827 }
4828 } else {
4829 netif_err(qdev, ifup, qdev->ndev,
4830 "Device was not running prior to EEH.\n");
4831 }
4832 mod_timer(&qdev->timer, jiffies + (5*HZ));
4833 netif_device_attach(ndev);
4834 }
4835
4836 static const struct pci_error_handlers qlge_err_handler = {
4837 .error_detected = qlge_io_error_detected,
4838 .slot_reset = qlge_io_slot_reset,
4839 .resume = qlge_io_resume,
4840 };
4841
4842 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4843 {
4844 struct net_device *ndev = pci_get_drvdata(pdev);
4845 struct ql_adapter *qdev = netdev_priv(ndev);
4846 int err;
4847
4848 netif_device_detach(ndev);
4849 del_timer_sync(&qdev->timer);
4850
4851 if (netif_running(ndev)) {
4852 err = ql_adapter_down(qdev);
4853 if (!err)
4854 return err;
4855 }
4856
4857 ql_wol(qdev);
4858 err = pci_save_state(pdev);
4859 if (err)
4860 return err;
4861
4862 pci_disable_device(pdev);
4863
4864 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4865
4866 return 0;
4867 }
4868
4869 #ifdef CONFIG_PM
4870 static int qlge_resume(struct pci_dev *pdev)
4871 {
4872 struct net_device *ndev = pci_get_drvdata(pdev);
4873 struct ql_adapter *qdev = netdev_priv(ndev);
4874 int err;
4875
4876 pci_set_power_state(pdev, PCI_D0);
4877 pci_restore_state(pdev);
4878 err = pci_enable_device(pdev);
4879 if (err) {
4880 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4881 return err;
4882 }
4883 pci_set_master(pdev);
4884
4885 pci_enable_wake(pdev, PCI_D3hot, 0);
4886 pci_enable_wake(pdev, PCI_D3cold, 0);
4887
4888 if (netif_running(ndev)) {
4889 err = ql_adapter_up(qdev);
4890 if (err)
4891 return err;
4892 }
4893
4894 mod_timer(&qdev->timer, jiffies + (5*HZ));
4895 netif_device_attach(ndev);
4896
4897 return 0;
4898 }
4899 #endif /* CONFIG_PM */
4900
4901 static void qlge_shutdown(struct pci_dev *pdev)
4902 {
4903 qlge_suspend(pdev, PMSG_SUSPEND);
4904 }
4905
4906 static struct pci_driver qlge_driver = {
4907 .name = DRV_NAME,
4908 .id_table = qlge_pci_tbl,
4909 .probe = qlge_probe,
4910 .remove = qlge_remove,
4911 #ifdef CONFIG_PM
4912 .suspend = qlge_suspend,
4913 .resume = qlge_resume,
4914 #endif
4915 .shutdown = qlge_shutdown,
4916 .err_handler = &qlge_err_handler
4917 };
4918
4919 static int __init qlge_init_module(void)
4920 {
4921 return pci_register_driver(&qlge_driver);
4922 }
4923
4924 static void __exit qlge_exit(void)
4925 {
4926 pci_unregister_driver(&qlge_driver);
4927 }
4928
4929 module_init(qlge_init_module);
4930 module_exit(qlge_exit);