Merge 4.14.23 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / ethernet / netronome / nfp / nfp_net_common.c
1 /*
2 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 *
4 * This software is dual licensed under the GNU General License Version 2,
5 * June 1991 as shown in the file COPYING in the top-level directory of this
6 * source tree or the BSD 2-Clause License provided below. You have the
7 * option to license this software under the complete terms of either license.
8 *
9 * The BSD 2-Clause License:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * 1. Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * 2. Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 /*
35 * nfp_net_common.c
36 * Netronome network device driver: Common functions between PF and VF
37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
38 * Jason McMullan <jason.mcmullan@netronome.com>
39 * Rolf Neugebauer <rolf.neugebauer@netronome.com>
40 * Brad Petrus <brad.petrus@netronome.com>
41 * Chris Telfer <chris.telfer@netronome.com>
42 */
43
44 #include <linux/bitfield.h>
45 #include <linux/bpf.h>
46 #include <linux/bpf_trace.h>
47 #include <linux/module.h>
48 #include <linux/kernel.h>
49 #include <linux/init.h>
50 #include <linux/fs.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/interrupt.h>
54 #include <linux/ip.h>
55 #include <linux/ipv6.h>
56 #include <linux/page_ref.h>
57 #include <linux/pci.h>
58 #include <linux/pci_regs.h>
59 #include <linux/msi.h>
60 #include <linux/ethtool.h>
61 #include <linux/log2.h>
62 #include <linux/if_vlan.h>
63 #include <linux/random.h>
64 #include <linux/vmalloc.h>
65 #include <linux/ktime.h>
66
67 #include <net/switchdev.h>
68 #include <net/vxlan.h>
69
70 #include "nfpcore/nfp_nsp.h"
71 #include "nfp_app.h"
72 #include "nfp_net_ctrl.h"
73 #include "nfp_net.h"
74 #include "nfp_net_sriov.h"
75 #include "nfp_port.h"
76
77 /**
78 * nfp_net_get_fw_version() - Read and parse the FW version
79 * @fw_ver: Output fw_version structure to read to
80 * @ctrl_bar: Mapped address of the control BAR
81 */
82 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
83 void __iomem *ctrl_bar)
84 {
85 u32 reg;
86
87 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
88 put_unaligned_le32(reg, fw_ver);
89 }
90
91 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
92 {
93 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
94 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
95 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
96 }
97
98 static void
99 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
100 {
101 dma_sync_single_for_device(dp->dev, dma_addr,
102 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
103 dp->rx_dma_dir);
104 }
105
106 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
107 {
108 dma_unmap_single_attrs(dp->dev, dma_addr,
109 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
110 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
111 }
112
113 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
114 unsigned int len)
115 {
116 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
117 len, dp->rx_dma_dir);
118 }
119
120 /* Firmware reconfig
121 *
122 * Firmware reconfig may take a while so we have two versions of it -
123 * synchronous and asynchronous (posted). All synchronous callers are holding
124 * RTNL so we don't have to worry about serializing them.
125 */
126 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
127 {
128 nn_writel(nn, NFP_NET_CFG_UPDATE, update);
129 /* ensure update is written before pinging HW */
130 nn_pci_flush(nn);
131 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
132 }
133
134 /* Pass 0 as update to run posted reconfigs. */
135 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
136 {
137 update |= nn->reconfig_posted;
138 nn->reconfig_posted = 0;
139
140 nfp_net_reconfig_start(nn, update);
141
142 nn->reconfig_timer_active = true;
143 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
144 }
145
146 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
147 {
148 u32 reg;
149
150 reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
151 if (reg == 0)
152 return true;
153 if (reg & NFP_NET_CFG_UPDATE_ERR) {
154 nn_err(nn, "Reconfig error: 0x%08x\n", reg);
155 return true;
156 } else if (last_check) {
157 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
158 return true;
159 }
160
161 return false;
162 }
163
164 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
165 {
166 bool timed_out = false;
167
168 /* Poll update field, waiting for NFP to ack the config */
169 while (!nfp_net_reconfig_check_done(nn, timed_out)) {
170 msleep(1);
171 timed_out = time_is_before_eq_jiffies(deadline);
172 }
173
174 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
175 return -EIO;
176
177 return timed_out ? -EIO : 0;
178 }
179
180 static void nfp_net_reconfig_timer(unsigned long data)
181 {
182 struct nfp_net *nn = (void *)data;
183
184 spin_lock_bh(&nn->reconfig_lock);
185
186 nn->reconfig_timer_active = false;
187
188 /* If sync caller is present it will take over from us */
189 if (nn->reconfig_sync_present)
190 goto done;
191
192 /* Read reconfig status and report errors */
193 nfp_net_reconfig_check_done(nn, true);
194
195 if (nn->reconfig_posted)
196 nfp_net_reconfig_start_async(nn, 0);
197 done:
198 spin_unlock_bh(&nn->reconfig_lock);
199 }
200
201 /**
202 * nfp_net_reconfig_post() - Post async reconfig request
203 * @nn: NFP Net device to reconfigure
204 * @update: The value for the update field in the BAR config
205 *
206 * Record FW reconfiguration request. Reconfiguration will be kicked off
207 * whenever reconfiguration machinery is idle. Multiple requests can be
208 * merged together!
209 */
210 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
211 {
212 spin_lock_bh(&nn->reconfig_lock);
213
214 /* Sync caller will kick off async reconf when it's done, just post */
215 if (nn->reconfig_sync_present) {
216 nn->reconfig_posted |= update;
217 goto done;
218 }
219
220 /* Opportunistically check if the previous command is done */
221 if (!nn->reconfig_timer_active ||
222 nfp_net_reconfig_check_done(nn, false))
223 nfp_net_reconfig_start_async(nn, update);
224 else
225 nn->reconfig_posted |= update;
226 done:
227 spin_unlock_bh(&nn->reconfig_lock);
228 }
229
230 /**
231 * nfp_net_reconfig() - Reconfigure the firmware
232 * @nn: NFP Net device to reconfigure
233 * @update: The value for the update field in the BAR config
234 *
235 * Write the update word to the BAR and ping the reconfig queue. The
236 * poll until the firmware has acknowledged the update by zeroing the
237 * update word.
238 *
239 * Return: Negative errno on error, 0 on success
240 */
241 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
242 {
243 bool cancelled_timer = false;
244 u32 pre_posted_requests;
245 int ret;
246
247 spin_lock_bh(&nn->reconfig_lock);
248
249 nn->reconfig_sync_present = true;
250
251 if (nn->reconfig_timer_active) {
252 del_timer(&nn->reconfig_timer);
253 nn->reconfig_timer_active = false;
254 cancelled_timer = true;
255 }
256 pre_posted_requests = nn->reconfig_posted;
257 nn->reconfig_posted = 0;
258
259 spin_unlock_bh(&nn->reconfig_lock);
260
261 if (cancelled_timer)
262 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
263
264 /* Run the posted reconfigs which were issued before we started */
265 if (pre_posted_requests) {
266 nfp_net_reconfig_start(nn, pre_posted_requests);
267 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
268 }
269
270 nfp_net_reconfig_start(nn, update);
271 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
272
273 spin_lock_bh(&nn->reconfig_lock);
274
275 if (nn->reconfig_posted)
276 nfp_net_reconfig_start_async(nn, 0);
277
278 nn->reconfig_sync_present = false;
279
280 spin_unlock_bh(&nn->reconfig_lock);
281
282 return ret;
283 }
284
285 /**
286 * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox
287 * @nn: NFP Net device to reconfigure
288 * @mbox_cmd: The value for the mailbox command
289 *
290 * Helper function for mailbox updates
291 *
292 * Return: Negative errno on error, 0 on success
293 */
294 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd)
295 {
296 int ret;
297
298 nn_writeq(nn, NFP_NET_CFG_MBOX_CMD, mbox_cmd);
299
300 ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
301 if (ret) {
302 nn_err(nn, "Mailbox update error\n");
303 return ret;
304 }
305
306 return -nn_readl(nn, NFP_NET_CFG_MBOX_RET);
307 }
308
309 /* Interrupt configuration and handling
310 */
311
312 /**
313 * nfp_net_irq_unmask() - Unmask automasked interrupt
314 * @nn: NFP Network structure
315 * @entry_nr: MSI-X table entry
316 *
317 * Clear the ICR for the IRQ entry.
318 */
319 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
320 {
321 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
322 nn_pci_flush(nn);
323 }
324
325 /**
326 * nfp_net_irqs_alloc() - allocates MSI-X irqs
327 * @pdev: PCI device structure
328 * @irq_entries: Array to be initialized and used to hold the irq entries
329 * @min_irqs: Minimal acceptable number of interrupts
330 * @wanted_irqs: Target number of interrupts to allocate
331 *
332 * Return: Number of irqs obtained or 0 on error.
333 */
334 unsigned int
335 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
336 unsigned int min_irqs, unsigned int wanted_irqs)
337 {
338 unsigned int i;
339 int got_irqs;
340
341 for (i = 0; i < wanted_irqs; i++)
342 irq_entries[i].entry = i;
343
344 got_irqs = pci_enable_msix_range(pdev, irq_entries,
345 min_irqs, wanted_irqs);
346 if (got_irqs < 0) {
347 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
348 min_irqs, wanted_irqs, got_irqs);
349 return 0;
350 }
351
352 if (got_irqs < wanted_irqs)
353 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
354 wanted_irqs, got_irqs);
355
356 return got_irqs;
357 }
358
359 /**
360 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
361 * @nn: NFP Network structure
362 * @irq_entries: Table of allocated interrupts
363 * @n: Size of @irq_entries (number of entries to grab)
364 *
365 * After interrupts are allocated with nfp_net_irqs_alloc() this function
366 * should be called to assign them to a specific netdev (port).
367 */
368 void
369 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
370 unsigned int n)
371 {
372 struct nfp_net_dp *dp = &nn->dp;
373
374 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
375 dp->num_r_vecs = nn->max_r_vecs;
376
377 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
378
379 if (dp->num_rx_rings > dp->num_r_vecs ||
380 dp->num_tx_rings > dp->num_r_vecs)
381 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
382 dp->num_rx_rings, dp->num_tx_rings,
383 dp->num_r_vecs);
384
385 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
386 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
387 dp->num_stack_tx_rings = dp->num_tx_rings;
388 }
389
390 /**
391 * nfp_net_irqs_disable() - Disable interrupts
392 * @pdev: PCI device structure
393 *
394 * Undoes what @nfp_net_irqs_alloc() does.
395 */
396 void nfp_net_irqs_disable(struct pci_dev *pdev)
397 {
398 pci_disable_msix(pdev);
399 }
400
401 /**
402 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
403 * @irq: Interrupt
404 * @data: Opaque data structure
405 *
406 * Return: Indicate if the interrupt has been handled.
407 */
408 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
409 {
410 struct nfp_net_r_vector *r_vec = data;
411
412 napi_schedule_irqoff(&r_vec->napi);
413
414 /* The FW auto-masks any interrupt, either via the MASK bit in
415 * the MSI-X table or via the per entry ICR field. So there
416 * is no need to disable interrupts here.
417 */
418 return IRQ_HANDLED;
419 }
420
421 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
422 {
423 struct nfp_net_r_vector *r_vec = data;
424
425 tasklet_schedule(&r_vec->tasklet);
426
427 return IRQ_HANDLED;
428 }
429
430 /**
431 * nfp_net_read_link_status() - Reread link status from control BAR
432 * @nn: NFP Network structure
433 */
434 static void nfp_net_read_link_status(struct nfp_net *nn)
435 {
436 unsigned long flags;
437 bool link_up;
438 u32 sts;
439
440 spin_lock_irqsave(&nn->link_status_lock, flags);
441
442 sts = nn_readl(nn, NFP_NET_CFG_STS);
443 link_up = !!(sts & NFP_NET_CFG_STS_LINK);
444
445 if (nn->link_up == link_up)
446 goto out;
447
448 nn->link_up = link_up;
449 if (nn->port)
450 set_bit(NFP_PORT_CHANGED, &nn->port->flags);
451
452 if (nn->link_up) {
453 netif_carrier_on(nn->dp.netdev);
454 netdev_info(nn->dp.netdev, "NIC Link is Up\n");
455 } else {
456 netif_carrier_off(nn->dp.netdev);
457 netdev_info(nn->dp.netdev, "NIC Link is Down\n");
458 }
459 out:
460 spin_unlock_irqrestore(&nn->link_status_lock, flags);
461 }
462
463 /**
464 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
465 * @irq: Interrupt
466 * @data: Opaque data structure
467 *
468 * Return: Indicate if the interrupt has been handled.
469 */
470 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
471 {
472 struct nfp_net *nn = data;
473 struct msix_entry *entry;
474
475 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
476
477 nfp_net_read_link_status(nn);
478
479 nfp_net_irq_unmask(nn, entry->entry);
480
481 return IRQ_HANDLED;
482 }
483
484 /**
485 * nfp_net_irq_exn() - Interrupt service routine for exceptions
486 * @irq: Interrupt
487 * @data: Opaque data structure
488 *
489 * Return: Indicate if the interrupt has been handled.
490 */
491 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
492 {
493 struct nfp_net *nn = data;
494
495 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
496 /* XXX TO BE IMPLEMENTED */
497 return IRQ_HANDLED;
498 }
499
500 /**
501 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
502 * @tx_ring: TX ring structure
503 * @r_vec: IRQ vector servicing this ring
504 * @idx: Ring index
505 * @is_xdp: Is this an XDP TX ring?
506 */
507 static void
508 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
509 struct nfp_net_r_vector *r_vec, unsigned int idx,
510 bool is_xdp)
511 {
512 struct nfp_net *nn = r_vec->nfp_net;
513
514 tx_ring->idx = idx;
515 tx_ring->r_vec = r_vec;
516 tx_ring->is_xdp = is_xdp;
517 u64_stats_init(&tx_ring->r_vec->tx_sync);
518
519 tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
520 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
521 }
522
523 /**
524 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
525 * @rx_ring: RX ring structure
526 * @r_vec: IRQ vector servicing this ring
527 * @idx: Ring index
528 */
529 static void
530 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
531 struct nfp_net_r_vector *r_vec, unsigned int idx)
532 {
533 struct nfp_net *nn = r_vec->nfp_net;
534
535 rx_ring->idx = idx;
536 rx_ring->r_vec = r_vec;
537 u64_stats_init(&rx_ring->r_vec->rx_sync);
538
539 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
540 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
541 }
542
543 /**
544 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
545 * @nn: NFP Network structure
546 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
547 * @format: printf-style format to construct the interrupt name
548 * @name: Pointer to allocated space for interrupt name
549 * @name_sz: Size of space for interrupt name
550 * @vector_idx: Index of MSI-X vector used for this interrupt
551 * @handler: IRQ handler to register for this interrupt
552 */
553 static int
554 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
555 const char *format, char *name, size_t name_sz,
556 unsigned int vector_idx, irq_handler_t handler)
557 {
558 struct msix_entry *entry;
559 int err;
560
561 entry = &nn->irq_entries[vector_idx];
562
563 snprintf(name, name_sz, format, nfp_net_name(nn));
564 err = request_irq(entry->vector, handler, 0, name, nn);
565 if (err) {
566 nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
567 entry->vector, err);
568 return err;
569 }
570 nn_writeb(nn, ctrl_offset, entry->entry);
571
572 return 0;
573 }
574
575 /**
576 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
577 * @nn: NFP Network structure
578 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
579 * @vector_idx: Index of MSI-X vector used for this interrupt
580 */
581 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
582 unsigned int vector_idx)
583 {
584 nn_writeb(nn, ctrl_offset, 0xff);
585 free_irq(nn->irq_entries[vector_idx].vector, nn);
586 }
587
588 /* Transmit
589 *
590 * One queue controller peripheral queue is used for transmit. The
591 * driver en-queues packets for transmit by advancing the write
592 * pointer. The device indicates that packets have transmitted by
593 * advancing the read pointer. The driver maintains a local copy of
594 * the read and write pointer in @struct nfp_net_tx_ring. The driver
595 * keeps @wr_p in sync with the queue controller write pointer and can
596 * determine how many packets have been transmitted by comparing its
597 * copy of the read pointer @rd_p with the read pointer maintained by
598 * the queue controller peripheral.
599 */
600
601 /**
602 * nfp_net_tx_full() - Check if the TX ring is full
603 * @tx_ring: TX ring to check
604 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1)
605 *
606 * This function checks, based on the *host copy* of read/write
607 * pointer if a given TX ring is full. The real TX queue may have
608 * some newly made available slots.
609 *
610 * Return: True if the ring is full.
611 */
612 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
613 {
614 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
615 }
616
617 /* Wrappers for deciding when to stop and restart TX queues */
618 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
619 {
620 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
621 }
622
623 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
624 {
625 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
626 }
627
628 /**
629 * nfp_net_tx_ring_stop() - stop tx ring
630 * @nd_q: netdev queue
631 * @tx_ring: driver tx queue structure
632 *
633 * Safely stop TX ring. Remember that while we are running .start_xmit()
634 * someone else may be cleaning the TX ring completions so we need to be
635 * extra careful here.
636 */
637 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
638 struct nfp_net_tx_ring *tx_ring)
639 {
640 netif_tx_stop_queue(nd_q);
641
642 /* We can race with the TX completion out of NAPI so recheck */
643 smp_mb();
644 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
645 netif_tx_start_queue(nd_q);
646 }
647
648 /**
649 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
650 * @r_vec: per-ring structure
651 * @txbuf: Pointer to driver soft TX descriptor
652 * @txd: Pointer to HW TX descriptor
653 * @skb: Pointer to SKB
654 *
655 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
656 * Return error on packet header greater than maximum supported LSO header size.
657 */
658 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
659 struct nfp_net_tx_buf *txbuf,
660 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
661 {
662 u32 hdrlen;
663 u16 mss;
664
665 if (!skb_is_gso(skb))
666 return;
667
668 if (!skb->encapsulation) {
669 txd->l3_offset = skb_network_offset(skb);
670 txd->l4_offset = skb_transport_offset(skb);
671 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
672 } else {
673 txd->l3_offset = skb_inner_network_offset(skb);
674 txd->l4_offset = skb_inner_transport_offset(skb);
675 hdrlen = skb_inner_transport_header(skb) - skb->data +
676 inner_tcp_hdrlen(skb);
677 }
678
679 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
680 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
681
682 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
683 txd->lso_hdrlen = hdrlen;
684 txd->mss = cpu_to_le16(mss);
685 txd->flags |= PCIE_DESC_TX_LSO;
686
687 u64_stats_update_begin(&r_vec->tx_sync);
688 r_vec->tx_lso++;
689 u64_stats_update_end(&r_vec->tx_sync);
690 }
691
692 /**
693 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
694 * @dp: NFP Net data path struct
695 * @r_vec: per-ring structure
696 * @txbuf: Pointer to driver soft TX descriptor
697 * @txd: Pointer to TX descriptor
698 * @skb: Pointer to SKB
699 *
700 * This function sets the TX checksum flags in the TX descriptor based
701 * on the configuration and the protocol of the packet to be transmitted.
702 */
703 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
704 struct nfp_net_r_vector *r_vec,
705 struct nfp_net_tx_buf *txbuf,
706 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
707 {
708 struct ipv6hdr *ipv6h;
709 struct iphdr *iph;
710 u8 l4_hdr;
711
712 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
713 return;
714
715 if (skb->ip_summed != CHECKSUM_PARTIAL)
716 return;
717
718 txd->flags |= PCIE_DESC_TX_CSUM;
719 if (skb->encapsulation)
720 txd->flags |= PCIE_DESC_TX_ENCAP;
721
722 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
723 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
724
725 if (iph->version == 4) {
726 txd->flags |= PCIE_DESC_TX_IP4_CSUM;
727 l4_hdr = iph->protocol;
728 } else if (ipv6h->version == 6) {
729 l4_hdr = ipv6h->nexthdr;
730 } else {
731 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
732 return;
733 }
734
735 switch (l4_hdr) {
736 case IPPROTO_TCP:
737 txd->flags |= PCIE_DESC_TX_TCP_CSUM;
738 break;
739 case IPPROTO_UDP:
740 txd->flags |= PCIE_DESC_TX_UDP_CSUM;
741 break;
742 default:
743 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
744 return;
745 }
746
747 u64_stats_update_begin(&r_vec->tx_sync);
748 if (skb->encapsulation)
749 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
750 else
751 r_vec->hw_csum_tx += txbuf->pkt_cnt;
752 u64_stats_update_end(&r_vec->tx_sync);
753 }
754
755 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
756 {
757 wmb();
758 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
759 tx_ring->wr_ptr_add = 0;
760 }
761
762 static int nfp_net_prep_port_id(struct sk_buff *skb)
763 {
764 struct metadata_dst *md_dst = skb_metadata_dst(skb);
765 unsigned char *data;
766
767 if (likely(!md_dst))
768 return 0;
769 if (unlikely(md_dst->type != METADATA_HW_PORT_MUX))
770 return 0;
771
772 if (unlikely(skb_cow_head(skb, 8)))
773 return -ENOMEM;
774
775 data = skb_push(skb, 8);
776 put_unaligned_be32(NFP_NET_META_PORTID, data);
777 put_unaligned_be32(md_dst->u.port_info.port_id, data + 4);
778
779 return 8;
780 }
781
782 /**
783 * nfp_net_tx() - Main transmit entry point
784 * @skb: SKB to transmit
785 * @netdev: netdev structure
786 *
787 * Return: NETDEV_TX_OK on success.
788 */
789 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
790 {
791 struct nfp_net *nn = netdev_priv(netdev);
792 const struct skb_frag_struct *frag;
793 struct nfp_net_tx_desc *txd, txdg;
794 int f, nr_frags, wr_idx, md_bytes;
795 struct nfp_net_tx_ring *tx_ring;
796 struct nfp_net_r_vector *r_vec;
797 struct nfp_net_tx_buf *txbuf;
798 struct netdev_queue *nd_q;
799 struct nfp_net_dp *dp;
800 dma_addr_t dma_addr;
801 unsigned int fsize;
802 u16 qidx;
803
804 dp = &nn->dp;
805 qidx = skb_get_queue_mapping(skb);
806 tx_ring = &dp->tx_rings[qidx];
807 r_vec = tx_ring->r_vec;
808 nd_q = netdev_get_tx_queue(dp->netdev, qidx);
809
810 nr_frags = skb_shinfo(skb)->nr_frags;
811
812 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
813 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
814 qidx, tx_ring->wr_p, tx_ring->rd_p);
815 netif_tx_stop_queue(nd_q);
816 nfp_net_tx_xmit_more_flush(tx_ring);
817 u64_stats_update_begin(&r_vec->tx_sync);
818 r_vec->tx_busy++;
819 u64_stats_update_end(&r_vec->tx_sync);
820 return NETDEV_TX_BUSY;
821 }
822
823 md_bytes = nfp_net_prep_port_id(skb);
824 if (unlikely(md_bytes < 0)) {
825 nfp_net_tx_xmit_more_flush(tx_ring);
826 dev_kfree_skb_any(skb);
827 return NETDEV_TX_OK;
828 }
829
830 /* Start with the head skbuf */
831 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
832 DMA_TO_DEVICE);
833 if (dma_mapping_error(dp->dev, dma_addr))
834 goto err_free;
835
836 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
837
838 /* Stash the soft descriptor of the head then initialize it */
839 txbuf = &tx_ring->txbufs[wr_idx];
840 txbuf->skb = skb;
841 txbuf->dma_addr = dma_addr;
842 txbuf->fidx = -1;
843 txbuf->pkt_cnt = 1;
844 txbuf->real_len = skb->len;
845
846 /* Build TX descriptor */
847 txd = &tx_ring->txds[wr_idx];
848 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
849 txd->dma_len = cpu_to_le16(skb_headlen(skb));
850 nfp_desc_set_dma_addr(txd, dma_addr);
851 txd->data_len = cpu_to_le16(skb->len);
852
853 txd->flags = 0;
854 txd->mss = 0;
855 txd->lso_hdrlen = 0;
856
857 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
858 nfp_net_tx_tso(r_vec, txbuf, txd, skb);
859 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
860 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
861 txd->flags |= PCIE_DESC_TX_VLAN;
862 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
863 }
864
865 /* Gather DMA */
866 if (nr_frags > 0) {
867 /* all descs must match except for in addr, length and eop */
868 txdg = *txd;
869
870 for (f = 0; f < nr_frags; f++) {
871 frag = &skb_shinfo(skb)->frags[f];
872 fsize = skb_frag_size(frag);
873
874 dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
875 fsize, DMA_TO_DEVICE);
876 if (dma_mapping_error(dp->dev, dma_addr))
877 goto err_unmap;
878
879 wr_idx = D_IDX(tx_ring, wr_idx + 1);
880 tx_ring->txbufs[wr_idx].skb = skb;
881 tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
882 tx_ring->txbufs[wr_idx].fidx = f;
883
884 txd = &tx_ring->txds[wr_idx];
885 *txd = txdg;
886 txd->dma_len = cpu_to_le16(fsize);
887 nfp_desc_set_dma_addr(txd, dma_addr);
888 txd->offset_eop |=
889 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
890 }
891
892 u64_stats_update_begin(&r_vec->tx_sync);
893 r_vec->tx_gather++;
894 u64_stats_update_end(&r_vec->tx_sync);
895 }
896
897 netdev_tx_sent_queue(nd_q, txbuf->real_len);
898
899 skb_tx_timestamp(skb);
900
901 tx_ring->wr_p += nr_frags + 1;
902 if (nfp_net_tx_ring_should_stop(tx_ring))
903 nfp_net_tx_ring_stop(nd_q, tx_ring);
904
905 tx_ring->wr_ptr_add += nr_frags + 1;
906 if (!skb->xmit_more || netif_xmit_stopped(nd_q))
907 nfp_net_tx_xmit_more_flush(tx_ring);
908
909 return NETDEV_TX_OK;
910
911 err_unmap:
912 while (--f >= 0) {
913 frag = &skb_shinfo(skb)->frags[f];
914 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
915 skb_frag_size(frag), DMA_TO_DEVICE);
916 tx_ring->txbufs[wr_idx].skb = NULL;
917 tx_ring->txbufs[wr_idx].dma_addr = 0;
918 tx_ring->txbufs[wr_idx].fidx = -2;
919 wr_idx = wr_idx - 1;
920 if (wr_idx < 0)
921 wr_idx += tx_ring->cnt;
922 }
923 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
924 skb_headlen(skb), DMA_TO_DEVICE);
925 tx_ring->txbufs[wr_idx].skb = NULL;
926 tx_ring->txbufs[wr_idx].dma_addr = 0;
927 tx_ring->txbufs[wr_idx].fidx = -2;
928 err_free:
929 nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
930 nfp_net_tx_xmit_more_flush(tx_ring);
931 u64_stats_update_begin(&r_vec->tx_sync);
932 r_vec->tx_errors++;
933 u64_stats_update_end(&r_vec->tx_sync);
934 dev_kfree_skb_any(skb);
935 return NETDEV_TX_OK;
936 }
937
938 /**
939 * nfp_net_tx_complete() - Handled completed TX packets
940 * @tx_ring: TX ring structure
941 *
942 * Return: Number of completed TX descriptors
943 */
944 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
945 {
946 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
947 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
948 const struct skb_frag_struct *frag;
949 struct netdev_queue *nd_q;
950 u32 done_pkts = 0, done_bytes = 0;
951 struct sk_buff *skb;
952 int todo, nr_frags;
953 u32 qcp_rd_p;
954 int fidx;
955 int idx;
956
957 if (tx_ring->wr_p == tx_ring->rd_p)
958 return;
959
960 /* Work out how many descriptors have been transmitted */
961 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
962
963 if (qcp_rd_p == tx_ring->qcp_rd_p)
964 return;
965
966 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
967
968 while (todo--) {
969 idx = D_IDX(tx_ring, tx_ring->rd_p++);
970
971 skb = tx_ring->txbufs[idx].skb;
972 if (!skb)
973 continue;
974
975 nr_frags = skb_shinfo(skb)->nr_frags;
976 fidx = tx_ring->txbufs[idx].fidx;
977
978 if (fidx == -1) {
979 /* unmap head */
980 dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
981 skb_headlen(skb), DMA_TO_DEVICE);
982
983 done_pkts += tx_ring->txbufs[idx].pkt_cnt;
984 done_bytes += tx_ring->txbufs[idx].real_len;
985 } else {
986 /* unmap fragment */
987 frag = &skb_shinfo(skb)->frags[fidx];
988 dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
989 skb_frag_size(frag), DMA_TO_DEVICE);
990 }
991
992 /* check for last gather fragment */
993 if (fidx == nr_frags - 1)
994 dev_consume_skb_any(skb);
995
996 tx_ring->txbufs[idx].dma_addr = 0;
997 tx_ring->txbufs[idx].skb = NULL;
998 tx_ring->txbufs[idx].fidx = -2;
999 }
1000
1001 tx_ring->qcp_rd_p = qcp_rd_p;
1002
1003 u64_stats_update_begin(&r_vec->tx_sync);
1004 r_vec->tx_bytes += done_bytes;
1005 r_vec->tx_pkts += done_pkts;
1006 u64_stats_update_end(&r_vec->tx_sync);
1007
1008 if (!dp->netdev)
1009 return;
1010
1011 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1012 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1013 if (nfp_net_tx_ring_should_wake(tx_ring)) {
1014 /* Make sure TX thread will see updated tx_ring->rd_p */
1015 smp_mb();
1016
1017 if (unlikely(netif_tx_queue_stopped(nd_q)))
1018 netif_tx_wake_queue(nd_q);
1019 }
1020
1021 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1022 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1023 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1024 }
1025
1026 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1027 {
1028 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1029 u32 done_pkts = 0, done_bytes = 0;
1030 bool done_all;
1031 int idx, todo;
1032 u32 qcp_rd_p;
1033
1034 /* Work out how many descriptors have been transmitted */
1035 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1036
1037 if (qcp_rd_p == tx_ring->qcp_rd_p)
1038 return true;
1039
1040 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1041
1042 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1043 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1044
1045 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1046
1047 done_pkts = todo;
1048 while (todo--) {
1049 idx = D_IDX(tx_ring, tx_ring->rd_p);
1050 tx_ring->rd_p++;
1051
1052 done_bytes += tx_ring->txbufs[idx].real_len;
1053 }
1054
1055 u64_stats_update_begin(&r_vec->tx_sync);
1056 r_vec->tx_bytes += done_bytes;
1057 r_vec->tx_pkts += done_pkts;
1058 u64_stats_update_end(&r_vec->tx_sync);
1059
1060 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1061 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1062 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1063
1064 return done_all;
1065 }
1066
1067 /**
1068 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1069 * @dp: NFP Net data path struct
1070 * @tx_ring: TX ring structure
1071 *
1072 * Assumes that the device is stopped
1073 */
1074 static void
1075 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1076 {
1077 const struct skb_frag_struct *frag;
1078 struct netdev_queue *nd_q;
1079
1080 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1081 struct nfp_net_tx_buf *tx_buf;
1082 struct sk_buff *skb;
1083 int idx, nr_frags;
1084
1085 idx = D_IDX(tx_ring, tx_ring->rd_p);
1086 tx_buf = &tx_ring->txbufs[idx];
1087
1088 skb = tx_ring->txbufs[idx].skb;
1089 nr_frags = skb_shinfo(skb)->nr_frags;
1090
1091 if (tx_buf->fidx == -1) {
1092 /* unmap head */
1093 dma_unmap_single(dp->dev, tx_buf->dma_addr,
1094 skb_headlen(skb), DMA_TO_DEVICE);
1095 } else {
1096 /* unmap fragment */
1097 frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1098 dma_unmap_page(dp->dev, tx_buf->dma_addr,
1099 skb_frag_size(frag), DMA_TO_DEVICE);
1100 }
1101
1102 /* check for last gather fragment */
1103 if (tx_buf->fidx == nr_frags - 1)
1104 dev_kfree_skb_any(skb);
1105
1106 tx_buf->dma_addr = 0;
1107 tx_buf->skb = NULL;
1108 tx_buf->fidx = -2;
1109
1110 tx_ring->qcp_rd_p++;
1111 tx_ring->rd_p++;
1112 }
1113
1114 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
1115 tx_ring->wr_p = 0;
1116 tx_ring->rd_p = 0;
1117 tx_ring->qcp_rd_p = 0;
1118 tx_ring->wr_ptr_add = 0;
1119
1120 if (tx_ring->is_xdp || !dp->netdev)
1121 return;
1122
1123 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1124 netdev_tx_reset_queue(nd_q);
1125 }
1126
1127 static void nfp_net_tx_timeout(struct net_device *netdev)
1128 {
1129 struct nfp_net *nn = netdev_priv(netdev);
1130 int i;
1131
1132 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1133 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1134 continue;
1135 nn_warn(nn, "TX timeout on ring: %d\n", i);
1136 }
1137 nn_warn(nn, "TX watchdog timeout\n");
1138 }
1139
1140 /* Receive processing
1141 */
1142 static unsigned int
1143 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1144 {
1145 unsigned int fl_bufsz;
1146
1147 fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1148 fl_bufsz += dp->rx_dma_off;
1149 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1150 fl_bufsz += NFP_NET_MAX_PREPEND;
1151 else
1152 fl_bufsz += dp->rx_offset;
1153 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1154
1155 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1156 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1157
1158 return fl_bufsz;
1159 }
1160
1161 static void
1162 nfp_net_free_frag(void *frag, bool xdp)
1163 {
1164 if (!xdp)
1165 skb_free_frag(frag);
1166 else
1167 __free_page(virt_to_page(frag));
1168 }
1169
1170 /**
1171 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1172 * @dp: NFP Net data path struct
1173 * @dma_addr: Pointer to storage for DMA address (output param)
1174 *
1175 * This function will allcate a new page frag, map it for DMA.
1176 *
1177 * Return: allocated page frag or NULL on failure.
1178 */
1179 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1180 {
1181 void *frag;
1182
1183 if (!dp->xdp_prog) {
1184 frag = netdev_alloc_frag(dp->fl_bufsz);
1185 } else {
1186 struct page *page;
1187
1188 page = alloc_page(GFP_KERNEL | __GFP_COLD);
1189 frag = page ? page_address(page) : NULL;
1190 }
1191 if (!frag) {
1192 nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1193 return NULL;
1194 }
1195
1196 *dma_addr = nfp_net_dma_map_rx(dp, frag);
1197 if (dma_mapping_error(dp->dev, *dma_addr)) {
1198 nfp_net_free_frag(frag, dp->xdp_prog);
1199 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1200 return NULL;
1201 }
1202
1203 return frag;
1204 }
1205
1206 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1207 {
1208 void *frag;
1209
1210 if (!dp->xdp_prog) {
1211 frag = napi_alloc_frag(dp->fl_bufsz);
1212 } else {
1213 struct page *page;
1214
1215 page = alloc_page(GFP_ATOMIC | __GFP_COLD);
1216 frag = page ? page_address(page) : NULL;
1217 }
1218 if (!frag) {
1219 nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1220 return NULL;
1221 }
1222
1223 *dma_addr = nfp_net_dma_map_rx(dp, frag);
1224 if (dma_mapping_error(dp->dev, *dma_addr)) {
1225 nfp_net_free_frag(frag, dp->xdp_prog);
1226 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1227 return NULL;
1228 }
1229
1230 return frag;
1231 }
1232
1233 /**
1234 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1235 * @dp: NFP Net data path struct
1236 * @rx_ring: RX ring structure
1237 * @frag: page fragment buffer
1238 * @dma_addr: DMA address of skb mapping
1239 */
1240 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1241 struct nfp_net_rx_ring *rx_ring,
1242 void *frag, dma_addr_t dma_addr)
1243 {
1244 unsigned int wr_idx;
1245
1246 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1247
1248 nfp_net_dma_sync_dev_rx(dp, dma_addr);
1249
1250 /* Stash SKB and DMA address away */
1251 rx_ring->rxbufs[wr_idx].frag = frag;
1252 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1253
1254 /* Fill freelist descriptor */
1255 rx_ring->rxds[wr_idx].fld.reserved = 0;
1256 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1257 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1258 dma_addr + dp->rx_dma_off);
1259
1260 rx_ring->wr_p++;
1261 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1262 /* Update write pointer of the freelist queue. Make
1263 * sure all writes are flushed before telling the hardware.
1264 */
1265 wmb();
1266 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1267 }
1268 }
1269
1270 /**
1271 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1272 * @rx_ring: RX ring structure
1273 *
1274 * Warning: Do *not* call if ring buffers were never put on the FW freelist
1275 * (i.e. device was not enabled)!
1276 */
1277 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1278 {
1279 unsigned int wr_idx, last_idx;
1280
1281 /* Move the empty entry to the end of the list */
1282 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1283 last_idx = rx_ring->cnt - 1;
1284 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1285 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1286 rx_ring->rxbufs[last_idx].dma_addr = 0;
1287 rx_ring->rxbufs[last_idx].frag = NULL;
1288
1289 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
1290 rx_ring->wr_p = 0;
1291 rx_ring->rd_p = 0;
1292 }
1293
1294 /**
1295 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1296 * @dp: NFP Net data path struct
1297 * @rx_ring: RX ring to remove buffers from
1298 *
1299 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1300 * entries. After device is disabled nfp_net_rx_ring_reset() must be called
1301 * to restore required ring geometry.
1302 */
1303 static void
1304 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1305 struct nfp_net_rx_ring *rx_ring)
1306 {
1307 unsigned int i;
1308
1309 for (i = 0; i < rx_ring->cnt - 1; i++) {
1310 /* NULL skb can only happen when initial filling of the ring
1311 * fails to allocate enough buffers and calls here to free
1312 * already allocated ones.
1313 */
1314 if (!rx_ring->rxbufs[i].frag)
1315 continue;
1316
1317 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1318 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1319 rx_ring->rxbufs[i].dma_addr = 0;
1320 rx_ring->rxbufs[i].frag = NULL;
1321 }
1322 }
1323
1324 /**
1325 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1326 * @dp: NFP Net data path struct
1327 * @rx_ring: RX ring to remove buffers from
1328 */
1329 static int
1330 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1331 struct nfp_net_rx_ring *rx_ring)
1332 {
1333 struct nfp_net_rx_buf *rxbufs;
1334 unsigned int i;
1335
1336 rxbufs = rx_ring->rxbufs;
1337
1338 for (i = 0; i < rx_ring->cnt - 1; i++) {
1339 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1340 if (!rxbufs[i].frag) {
1341 nfp_net_rx_ring_bufs_free(dp, rx_ring);
1342 return -ENOMEM;
1343 }
1344 }
1345
1346 return 0;
1347 }
1348
1349 /**
1350 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1351 * @dp: NFP Net data path struct
1352 * @rx_ring: RX ring to fill
1353 */
1354 static void
1355 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1356 struct nfp_net_rx_ring *rx_ring)
1357 {
1358 unsigned int i;
1359
1360 for (i = 0; i < rx_ring->cnt - 1; i++)
1361 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1362 rx_ring->rxbufs[i].dma_addr);
1363 }
1364
1365 /**
1366 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1367 * @flags: RX descriptor flags field in CPU byte order
1368 */
1369 static int nfp_net_rx_csum_has_errors(u16 flags)
1370 {
1371 u16 csum_all_checked, csum_all_ok;
1372
1373 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1374 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1375
1376 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1377 }
1378
1379 /**
1380 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1381 * @dp: NFP Net data path struct
1382 * @r_vec: per-ring structure
1383 * @rxd: Pointer to RX descriptor
1384 * @meta: Parsed metadata prepend
1385 * @skb: Pointer to SKB
1386 */
1387 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1388 struct nfp_net_r_vector *r_vec,
1389 struct nfp_net_rx_desc *rxd,
1390 struct nfp_meta_parsed *meta, struct sk_buff *skb)
1391 {
1392 skb_checksum_none_assert(skb);
1393
1394 if (!(dp->netdev->features & NETIF_F_RXCSUM))
1395 return;
1396
1397 if (meta->csum_type) {
1398 skb->ip_summed = meta->csum_type;
1399 skb->csum = meta->csum;
1400 u64_stats_update_begin(&r_vec->rx_sync);
1401 r_vec->hw_csum_rx_ok++;
1402 u64_stats_update_end(&r_vec->rx_sync);
1403 return;
1404 }
1405
1406 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1407 u64_stats_update_begin(&r_vec->rx_sync);
1408 r_vec->hw_csum_rx_error++;
1409 u64_stats_update_end(&r_vec->rx_sync);
1410 return;
1411 }
1412
1413 /* Assume that the firmware will never report inner CSUM_OK unless outer
1414 * L4 headers were successfully parsed. FW will always report zero UDP
1415 * checksum as CSUM_OK.
1416 */
1417 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1418 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1419 __skb_incr_checksum_unnecessary(skb);
1420 u64_stats_update_begin(&r_vec->rx_sync);
1421 r_vec->hw_csum_rx_ok++;
1422 u64_stats_update_end(&r_vec->rx_sync);
1423 }
1424
1425 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1426 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1427 __skb_incr_checksum_unnecessary(skb);
1428 u64_stats_update_begin(&r_vec->rx_sync);
1429 r_vec->hw_csum_rx_inner_ok++;
1430 u64_stats_update_end(&r_vec->rx_sync);
1431 }
1432 }
1433
1434 static void
1435 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1436 unsigned int type, __be32 *hash)
1437 {
1438 if (!(netdev->features & NETIF_F_RXHASH))
1439 return;
1440
1441 switch (type) {
1442 case NFP_NET_RSS_IPV4:
1443 case NFP_NET_RSS_IPV6:
1444 case NFP_NET_RSS_IPV6_EX:
1445 meta->hash_type = PKT_HASH_TYPE_L3;
1446 break;
1447 default:
1448 meta->hash_type = PKT_HASH_TYPE_L4;
1449 break;
1450 }
1451
1452 meta->hash = get_unaligned_be32(hash);
1453 }
1454
1455 static void
1456 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1457 void *data, struct nfp_net_rx_desc *rxd)
1458 {
1459 struct nfp_net_rx_hash *rx_hash = data;
1460
1461 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1462 return;
1463
1464 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1465 &rx_hash->hash);
1466 }
1467
1468 static void *
1469 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1470 void *data, int meta_len)
1471 {
1472 u32 meta_info;
1473
1474 meta_info = get_unaligned_be32(data);
1475 data += 4;
1476
1477 while (meta_info) {
1478 switch (meta_info & NFP_NET_META_FIELD_MASK) {
1479 case NFP_NET_META_HASH:
1480 meta_info >>= NFP_NET_META_FIELD_SIZE;
1481 nfp_net_set_hash(netdev, meta,
1482 meta_info & NFP_NET_META_FIELD_MASK,
1483 (__be32 *)data);
1484 data += 4;
1485 break;
1486 case NFP_NET_META_MARK:
1487 meta->mark = get_unaligned_be32(data);
1488 data += 4;
1489 break;
1490 case NFP_NET_META_PORTID:
1491 meta->portid = get_unaligned_be32(data);
1492 data += 4;
1493 break;
1494 case NFP_NET_META_CSUM:
1495 meta->csum_type = CHECKSUM_COMPLETE;
1496 meta->csum =
1497 (__force __wsum)__get_unaligned_cpu32(data);
1498 data += 4;
1499 break;
1500 default:
1501 return NULL;
1502 }
1503
1504 meta_info >>= NFP_NET_META_FIELD_SIZE;
1505 }
1506
1507 return data;
1508 }
1509
1510 static void
1511 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1512 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1513 struct sk_buff *skb)
1514 {
1515 u64_stats_update_begin(&r_vec->rx_sync);
1516 r_vec->rx_drops++;
1517 u64_stats_update_end(&r_vec->rx_sync);
1518
1519 /* skb is build based on the frag, free_skb() would free the frag
1520 * so to be able to reuse it we need an extra ref.
1521 */
1522 if (skb && rxbuf && skb->head == rxbuf->frag)
1523 page_ref_inc(virt_to_head_page(rxbuf->frag));
1524 if (rxbuf)
1525 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1526 if (skb)
1527 dev_kfree_skb_any(skb);
1528 }
1529
1530 static bool
1531 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1532 struct nfp_net_tx_ring *tx_ring,
1533 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1534 unsigned int pkt_len, bool *completed)
1535 {
1536 struct nfp_net_tx_buf *txbuf;
1537 struct nfp_net_tx_desc *txd;
1538 int wr_idx;
1539
1540 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1541 if (!*completed) {
1542 nfp_net_xdp_complete(tx_ring);
1543 *completed = true;
1544 }
1545
1546 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1547 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1548 NULL);
1549 return false;
1550 }
1551 }
1552
1553 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1554
1555 /* Stash the soft descriptor of the head then initialize it */
1556 txbuf = &tx_ring->txbufs[wr_idx];
1557
1558 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1559
1560 txbuf->frag = rxbuf->frag;
1561 txbuf->dma_addr = rxbuf->dma_addr;
1562 txbuf->fidx = -1;
1563 txbuf->pkt_cnt = 1;
1564 txbuf->real_len = pkt_len;
1565
1566 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1567 pkt_len, DMA_BIDIRECTIONAL);
1568
1569 /* Build TX descriptor */
1570 txd = &tx_ring->txds[wr_idx];
1571 txd->offset_eop = PCIE_DESC_TX_EOP;
1572 txd->dma_len = cpu_to_le16(pkt_len);
1573 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1574 txd->data_len = cpu_to_le16(pkt_len);
1575
1576 txd->flags = 0;
1577 txd->mss = 0;
1578 txd->lso_hdrlen = 0;
1579
1580 tx_ring->wr_p++;
1581 tx_ring->wr_ptr_add++;
1582 return true;
1583 }
1584
1585 static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start,
1586 unsigned int *off, unsigned int *len)
1587 {
1588 struct xdp_buff xdp;
1589 void *orig_data;
1590 int ret;
1591
1592 xdp.data_hard_start = hard_start;
1593 xdp.data = data + *off;
1594 xdp.data_end = data + *off + *len;
1595
1596 orig_data = xdp.data;
1597 ret = bpf_prog_run_xdp(prog, &xdp);
1598
1599 *len -= xdp.data - orig_data;
1600 *off += xdp.data - orig_data;
1601
1602 return ret;
1603 }
1604
1605 /**
1606 * nfp_net_rx() - receive up to @budget packets on @rx_ring
1607 * @rx_ring: RX ring to receive from
1608 * @budget: NAPI budget
1609 *
1610 * Note, this function is separated out from the napi poll function to
1611 * more cleanly separate packet receive code from other bookkeeping
1612 * functions performed in the napi poll function.
1613 *
1614 * Return: Number of packets received.
1615 */
1616 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1617 {
1618 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1619 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1620 struct nfp_net_tx_ring *tx_ring;
1621 struct bpf_prog *xdp_prog;
1622 bool xdp_tx_cmpl = false;
1623 unsigned int true_bufsz;
1624 struct sk_buff *skb;
1625 int pkts_polled = 0;
1626 int idx;
1627
1628 rcu_read_lock();
1629 xdp_prog = READ_ONCE(dp->xdp_prog);
1630 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1631 tx_ring = r_vec->xdp_ring;
1632
1633 while (pkts_polled < budget) {
1634 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1635 struct nfp_net_rx_buf *rxbuf;
1636 struct nfp_net_rx_desc *rxd;
1637 struct nfp_meta_parsed meta;
1638 struct net_device *netdev;
1639 dma_addr_t new_dma_addr;
1640 void *new_frag;
1641
1642 idx = D_IDX(rx_ring, rx_ring->rd_p);
1643
1644 rxd = &rx_ring->rxds[idx];
1645 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1646 break;
1647
1648 /* Memory barrier to ensure that we won't do other reads
1649 * before the DD bit.
1650 */
1651 dma_rmb();
1652
1653 memset(&meta, 0, sizeof(meta));
1654
1655 rx_ring->rd_p++;
1656 pkts_polled++;
1657
1658 rxbuf = &rx_ring->rxbufs[idx];
1659 /* < meta_len >
1660 * <-- [rx_offset] -->
1661 * ---------------------------------------------------------
1662 * | [XX] | metadata | packet | XXXX |
1663 * ---------------------------------------------------------
1664 * <---------------- data_len --------------->
1665 *
1666 * The rx_offset is fixed for all packets, the meta_len can vary
1667 * on a packet by packet basis. If rx_offset is set to zero
1668 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1669 * buffer and is immediately followed by the packet (no [XX]).
1670 */
1671 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1672 data_len = le16_to_cpu(rxd->rxd.data_len);
1673 pkt_len = data_len - meta_len;
1674
1675 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1676 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1677 pkt_off += meta_len;
1678 else
1679 pkt_off += dp->rx_offset;
1680 meta_off = pkt_off - meta_len;
1681
1682 /* Stats update */
1683 u64_stats_update_begin(&r_vec->rx_sync);
1684 r_vec->rx_pkts++;
1685 r_vec->rx_bytes += pkt_len;
1686 u64_stats_update_end(&r_vec->rx_sync);
1687
1688 if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1689 (dp->rx_offset && meta_len > dp->rx_offset))) {
1690 nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1691 meta_len);
1692 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1693 continue;
1694 }
1695
1696 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1697 data_len);
1698
1699 if (!dp->chained_metadata_format) {
1700 nfp_net_set_hash_desc(dp->netdev, &meta,
1701 rxbuf->frag + meta_off, rxd);
1702 } else if (meta_len) {
1703 void *end;
1704
1705 end = nfp_net_parse_meta(dp->netdev, &meta,
1706 rxbuf->frag + meta_off,
1707 meta_len);
1708 if (unlikely(end != rxbuf->frag + pkt_off)) {
1709 nn_dp_warn(dp, "invalid RX packet metadata\n");
1710 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1711 NULL);
1712 continue;
1713 }
1714 }
1715
1716 if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1717 dp->bpf_offload_xdp) && !meta.portid) {
1718 unsigned int dma_off;
1719 void *hard_start;
1720 int act;
1721
1722 hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1723
1724 act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start,
1725 &pkt_off, &pkt_len);
1726 switch (act) {
1727 case XDP_PASS:
1728 break;
1729 case XDP_TX:
1730 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1731 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1732 tx_ring, rxbuf,
1733 dma_off,
1734 pkt_len,
1735 &xdp_tx_cmpl)))
1736 trace_xdp_exception(dp->netdev,
1737 xdp_prog, act);
1738 continue;
1739 default:
1740 bpf_warn_invalid_xdp_action(act);
1741 /* fall through */
1742 case XDP_ABORTED:
1743 trace_xdp_exception(dp->netdev, xdp_prog, act);
1744 /* fall through */
1745 case XDP_DROP:
1746 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1747 rxbuf->dma_addr);
1748 continue;
1749 }
1750 }
1751
1752 skb = build_skb(rxbuf->frag, true_bufsz);
1753 if (unlikely(!skb)) {
1754 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1755 continue;
1756 }
1757 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1758 if (unlikely(!new_frag)) {
1759 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1760 continue;
1761 }
1762
1763 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1764
1765 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1766
1767 if (likely(!meta.portid)) {
1768 netdev = dp->netdev;
1769 } else {
1770 struct nfp_net *nn;
1771
1772 nn = netdev_priv(dp->netdev);
1773 netdev = nfp_app_repr_get(nn->app, meta.portid);
1774 if (unlikely(!netdev)) {
1775 nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1776 continue;
1777 }
1778 nfp_repr_inc_rx_stats(netdev, pkt_len);
1779 }
1780
1781 skb_reserve(skb, pkt_off);
1782 skb_put(skb, pkt_len);
1783
1784 skb->mark = meta.mark;
1785 skb_set_hash(skb, meta.hash, meta.hash_type);
1786
1787 skb_record_rx_queue(skb, rx_ring->idx);
1788 skb->protocol = eth_type_trans(skb, netdev);
1789
1790 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1791
1792 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1793 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1794 le16_to_cpu(rxd->rxd.vlan));
1795
1796 napi_gro_receive(&rx_ring->r_vec->napi, skb);
1797 }
1798
1799 if (xdp_prog) {
1800 if (tx_ring->wr_ptr_add)
1801 nfp_net_tx_xmit_more_flush(tx_ring);
1802 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1803 !xdp_tx_cmpl)
1804 if (!nfp_net_xdp_complete(tx_ring))
1805 pkts_polled = budget;
1806 }
1807 rcu_read_unlock();
1808
1809 return pkts_polled;
1810 }
1811
1812 /**
1813 * nfp_net_poll() - napi poll function
1814 * @napi: NAPI structure
1815 * @budget: NAPI budget
1816 *
1817 * Return: number of packets polled.
1818 */
1819 static int nfp_net_poll(struct napi_struct *napi, int budget)
1820 {
1821 struct nfp_net_r_vector *r_vec =
1822 container_of(napi, struct nfp_net_r_vector, napi);
1823 unsigned int pkts_polled = 0;
1824
1825 if (r_vec->tx_ring)
1826 nfp_net_tx_complete(r_vec->tx_ring);
1827 if (r_vec->rx_ring)
1828 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1829
1830 if (pkts_polled < budget)
1831 if (napi_complete_done(napi, pkts_polled))
1832 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1833
1834 return pkts_polled;
1835 }
1836
1837 /* Control device data path
1838 */
1839
1840 static bool
1841 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1842 struct sk_buff *skb, bool old)
1843 {
1844 unsigned int real_len = skb->len, meta_len = 0;
1845 struct nfp_net_tx_ring *tx_ring;
1846 struct nfp_net_tx_buf *txbuf;
1847 struct nfp_net_tx_desc *txd;
1848 struct nfp_net_dp *dp;
1849 dma_addr_t dma_addr;
1850 int wr_idx;
1851
1852 dp = &r_vec->nfp_net->dp;
1853 tx_ring = r_vec->tx_ring;
1854
1855 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1856 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1857 goto err_free;
1858 }
1859
1860 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1861 u64_stats_update_begin(&r_vec->tx_sync);
1862 r_vec->tx_busy++;
1863 u64_stats_update_end(&r_vec->tx_sync);
1864 if (!old)
1865 __skb_queue_tail(&r_vec->queue, skb);
1866 else
1867 __skb_queue_head(&r_vec->queue, skb);
1868 return true;
1869 }
1870
1871 if (nfp_app_ctrl_has_meta(nn->app)) {
1872 if (unlikely(skb_headroom(skb) < 8)) {
1873 nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1874 goto err_free;
1875 }
1876 meta_len = 8;
1877 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1878 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1879 }
1880
1881 /* Start with the head skbuf */
1882 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1883 DMA_TO_DEVICE);
1884 if (dma_mapping_error(dp->dev, dma_addr))
1885 goto err_dma_warn;
1886
1887 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1888
1889 /* Stash the soft descriptor of the head then initialize it */
1890 txbuf = &tx_ring->txbufs[wr_idx];
1891 txbuf->skb = skb;
1892 txbuf->dma_addr = dma_addr;
1893 txbuf->fidx = -1;
1894 txbuf->pkt_cnt = 1;
1895 txbuf->real_len = real_len;
1896
1897 /* Build TX descriptor */
1898 txd = &tx_ring->txds[wr_idx];
1899 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
1900 txd->dma_len = cpu_to_le16(skb_headlen(skb));
1901 nfp_desc_set_dma_addr(txd, dma_addr);
1902 txd->data_len = cpu_to_le16(skb->len);
1903
1904 txd->flags = 0;
1905 txd->mss = 0;
1906 txd->lso_hdrlen = 0;
1907
1908 tx_ring->wr_p++;
1909 tx_ring->wr_ptr_add++;
1910 nfp_net_tx_xmit_more_flush(tx_ring);
1911
1912 return false;
1913
1914 err_dma_warn:
1915 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1916 err_free:
1917 u64_stats_update_begin(&r_vec->tx_sync);
1918 r_vec->tx_errors++;
1919 u64_stats_update_end(&r_vec->tx_sync);
1920 dev_kfree_skb_any(skb);
1921 return false;
1922 }
1923
1924 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
1925 {
1926 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
1927 bool ret;
1928
1929 spin_lock_bh(&r_vec->lock);
1930 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
1931 spin_unlock_bh(&r_vec->lock);
1932
1933 return ret;
1934 }
1935
1936 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1937 {
1938 struct sk_buff *skb;
1939
1940 while ((skb = __skb_dequeue(&r_vec->queue)))
1941 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1942 return;
1943 }
1944
1945 static bool
1946 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1947 {
1948 u32 meta_type, meta_tag;
1949
1950 if (!nfp_app_ctrl_has_meta(nn->app))
1951 return !meta_len;
1952
1953 if (meta_len != 8)
1954 return false;
1955
1956 meta_type = get_unaligned_be32(data);
1957 meta_tag = get_unaligned_be32(data + 4);
1958
1959 return (meta_type == NFP_NET_META_PORTID &&
1960 meta_tag == NFP_META_PORT_ID_CTRL);
1961 }
1962
1963 static bool
1964 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1965 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1966 {
1967 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1968 struct nfp_net_rx_buf *rxbuf;
1969 struct nfp_net_rx_desc *rxd;
1970 dma_addr_t new_dma_addr;
1971 struct sk_buff *skb;
1972 void *new_frag;
1973 int idx;
1974
1975 idx = D_IDX(rx_ring, rx_ring->rd_p);
1976
1977 rxd = &rx_ring->rxds[idx];
1978 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1979 return false;
1980
1981 /* Memory barrier to ensure that we won't do other reads
1982 * before the DD bit.
1983 */
1984 dma_rmb();
1985
1986 rx_ring->rd_p++;
1987
1988 rxbuf = &rx_ring->rxbufs[idx];
1989 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1990 data_len = le16_to_cpu(rxd->rxd.data_len);
1991 pkt_len = data_len - meta_len;
1992
1993 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1994 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1995 pkt_off += meta_len;
1996 else
1997 pkt_off += dp->rx_offset;
1998 meta_off = pkt_off - meta_len;
1999
2000 /* Stats update */
2001 u64_stats_update_begin(&r_vec->rx_sync);
2002 r_vec->rx_pkts++;
2003 r_vec->rx_bytes += pkt_len;
2004 u64_stats_update_end(&r_vec->rx_sync);
2005
2006 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len);
2007
2008 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2009 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2010 meta_len);
2011 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2012 return true;
2013 }
2014
2015 skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2016 if (unlikely(!skb)) {
2017 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2018 return true;
2019 }
2020 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2021 if (unlikely(!new_frag)) {
2022 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2023 return true;
2024 }
2025
2026 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2027
2028 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2029
2030 skb_reserve(skb, pkt_off);
2031 skb_put(skb, pkt_len);
2032
2033 nfp_app_ctrl_rx(nn->app, skb);
2034
2035 return true;
2036 }
2037
2038 static void nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2039 {
2040 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2041 struct nfp_net *nn = r_vec->nfp_net;
2042 struct nfp_net_dp *dp = &nn->dp;
2043
2044 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring))
2045 continue;
2046 }
2047
2048 static void nfp_ctrl_poll(unsigned long arg)
2049 {
2050 struct nfp_net_r_vector *r_vec = (void *)arg;
2051
2052 spin_lock_bh(&r_vec->lock);
2053 nfp_net_tx_complete(r_vec->tx_ring);
2054 __nfp_ctrl_tx_queued(r_vec);
2055 spin_unlock_bh(&r_vec->lock);
2056
2057 nfp_ctrl_rx(r_vec);
2058
2059 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2060 }
2061
2062 /* Setup and Configuration
2063 */
2064
2065 /**
2066 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2067 * @nn: NFP Network structure
2068 */
2069 static void nfp_net_vecs_init(struct nfp_net *nn)
2070 {
2071 struct nfp_net_r_vector *r_vec;
2072 int r;
2073
2074 nn->lsc_handler = nfp_net_irq_lsc;
2075 nn->exn_handler = nfp_net_irq_exn;
2076
2077 for (r = 0; r < nn->max_r_vecs; r++) {
2078 struct msix_entry *entry;
2079
2080 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2081
2082 r_vec = &nn->r_vecs[r];
2083 r_vec->nfp_net = nn;
2084 r_vec->irq_entry = entry->entry;
2085 r_vec->irq_vector = entry->vector;
2086
2087 if (nn->dp.netdev) {
2088 r_vec->handler = nfp_net_irq_rxtx;
2089 } else {
2090 r_vec->handler = nfp_ctrl_irq_rxtx;
2091
2092 __skb_queue_head_init(&r_vec->queue);
2093 spin_lock_init(&r_vec->lock);
2094 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2095 (unsigned long)r_vec);
2096 tasklet_disable(&r_vec->tasklet);
2097 }
2098
2099 cpumask_set_cpu(r, &r_vec->affinity_mask);
2100 }
2101 }
2102
2103 /**
2104 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2105 * @tx_ring: TX ring to free
2106 */
2107 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2108 {
2109 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2110 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2111
2112 kfree(tx_ring->txbufs);
2113
2114 if (tx_ring->txds)
2115 dma_free_coherent(dp->dev, tx_ring->size,
2116 tx_ring->txds, tx_ring->dma);
2117
2118 tx_ring->cnt = 0;
2119 tx_ring->txbufs = NULL;
2120 tx_ring->txds = NULL;
2121 tx_ring->dma = 0;
2122 tx_ring->size = 0;
2123 }
2124
2125 /**
2126 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2127 * @dp: NFP Net data path struct
2128 * @tx_ring: TX Ring structure to allocate
2129 *
2130 * Return: 0 on success, negative errno otherwise.
2131 */
2132 static int
2133 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2134 {
2135 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2136 int sz;
2137
2138 tx_ring->cnt = dp->txd_cnt;
2139
2140 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
2141 tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
2142 &tx_ring->dma, GFP_KERNEL);
2143 if (!tx_ring->txds)
2144 goto err_alloc;
2145
2146 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
2147 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
2148 if (!tx_ring->txbufs)
2149 goto err_alloc;
2150
2151 if (!tx_ring->is_xdp && dp->netdev)
2152 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2153 tx_ring->idx);
2154
2155 return 0;
2156
2157 err_alloc:
2158 nfp_net_tx_ring_free(tx_ring);
2159 return -ENOMEM;
2160 }
2161
2162 static void
2163 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2164 struct nfp_net_tx_ring *tx_ring)
2165 {
2166 unsigned int i;
2167
2168 if (!tx_ring->is_xdp)
2169 return;
2170
2171 for (i = 0; i < tx_ring->cnt; i++) {
2172 if (!tx_ring->txbufs[i].frag)
2173 return;
2174
2175 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2176 __free_page(virt_to_page(tx_ring->txbufs[i].frag));
2177 }
2178 }
2179
2180 static int
2181 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2182 struct nfp_net_tx_ring *tx_ring)
2183 {
2184 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2185 unsigned int i;
2186
2187 if (!tx_ring->is_xdp)
2188 return 0;
2189
2190 for (i = 0; i < tx_ring->cnt; i++) {
2191 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2192 if (!txbufs[i].frag) {
2193 nfp_net_tx_ring_bufs_free(dp, tx_ring);
2194 return -ENOMEM;
2195 }
2196 }
2197
2198 return 0;
2199 }
2200
2201 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2202 {
2203 unsigned int r;
2204
2205 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2206 GFP_KERNEL);
2207 if (!dp->tx_rings)
2208 return -ENOMEM;
2209
2210 for (r = 0; r < dp->num_tx_rings; r++) {
2211 int bias = 0;
2212
2213 if (r >= dp->num_stack_tx_rings)
2214 bias = dp->num_stack_tx_rings;
2215
2216 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2217 r, bias);
2218
2219 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2220 goto err_free_prev;
2221
2222 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2223 goto err_free_ring;
2224 }
2225
2226 return 0;
2227
2228 err_free_prev:
2229 while (r--) {
2230 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2231 err_free_ring:
2232 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2233 }
2234 kfree(dp->tx_rings);
2235 return -ENOMEM;
2236 }
2237
2238 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2239 {
2240 unsigned int r;
2241
2242 for (r = 0; r < dp->num_tx_rings; r++) {
2243 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2244 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2245 }
2246
2247 kfree(dp->tx_rings);
2248 }
2249
2250 /**
2251 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2252 * @rx_ring: RX ring to free
2253 */
2254 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2255 {
2256 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2257 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2258
2259 kfree(rx_ring->rxbufs);
2260
2261 if (rx_ring->rxds)
2262 dma_free_coherent(dp->dev, rx_ring->size,
2263 rx_ring->rxds, rx_ring->dma);
2264
2265 rx_ring->cnt = 0;
2266 rx_ring->rxbufs = NULL;
2267 rx_ring->rxds = NULL;
2268 rx_ring->dma = 0;
2269 rx_ring->size = 0;
2270 }
2271
2272 /**
2273 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2274 * @dp: NFP Net data path struct
2275 * @rx_ring: RX ring to allocate
2276 *
2277 * Return: 0 on success, negative errno otherwise.
2278 */
2279 static int
2280 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2281 {
2282 int sz;
2283
2284 rx_ring->cnt = dp->rxd_cnt;
2285 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
2286 rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
2287 &rx_ring->dma, GFP_KERNEL);
2288 if (!rx_ring->rxds)
2289 goto err_alloc;
2290
2291 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
2292 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
2293 if (!rx_ring->rxbufs)
2294 goto err_alloc;
2295
2296 return 0;
2297
2298 err_alloc:
2299 nfp_net_rx_ring_free(rx_ring);
2300 return -ENOMEM;
2301 }
2302
2303 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2304 {
2305 unsigned int r;
2306
2307 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2308 GFP_KERNEL);
2309 if (!dp->rx_rings)
2310 return -ENOMEM;
2311
2312 for (r = 0; r < dp->num_rx_rings; r++) {
2313 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2314
2315 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2316 goto err_free_prev;
2317
2318 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2319 goto err_free_ring;
2320 }
2321
2322 return 0;
2323
2324 err_free_prev:
2325 while (r--) {
2326 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2327 err_free_ring:
2328 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2329 }
2330 kfree(dp->rx_rings);
2331 return -ENOMEM;
2332 }
2333
2334 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2335 {
2336 unsigned int r;
2337
2338 for (r = 0; r < dp->num_rx_rings; r++) {
2339 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2340 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2341 }
2342
2343 kfree(dp->rx_rings);
2344 }
2345
2346 static void
2347 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2348 struct nfp_net_r_vector *r_vec, int idx)
2349 {
2350 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2351 r_vec->tx_ring =
2352 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2353
2354 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2355 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2356 }
2357
2358 static int
2359 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2360 int idx)
2361 {
2362 int err;
2363
2364 /* Setup NAPI */
2365 if (nn->dp.netdev)
2366 netif_napi_add(nn->dp.netdev, &r_vec->napi,
2367 nfp_net_poll, NAPI_POLL_WEIGHT);
2368 else
2369 tasklet_enable(&r_vec->tasklet);
2370
2371 snprintf(r_vec->name, sizeof(r_vec->name),
2372 "%s-rxtx-%d", nfp_net_name(nn), idx);
2373 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2374 r_vec);
2375 if (err) {
2376 if (nn->dp.netdev)
2377 netif_napi_del(&r_vec->napi);
2378 else
2379 tasklet_disable(&r_vec->tasklet);
2380
2381 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2382 return err;
2383 }
2384 disable_irq(r_vec->irq_vector);
2385
2386 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2387
2388 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2389 r_vec->irq_entry);
2390
2391 return 0;
2392 }
2393
2394 static void
2395 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2396 {
2397 irq_set_affinity_hint(r_vec->irq_vector, NULL);
2398 if (nn->dp.netdev)
2399 netif_napi_del(&r_vec->napi);
2400 else
2401 tasklet_disable(&r_vec->tasklet);
2402
2403 free_irq(r_vec->irq_vector, r_vec);
2404 }
2405
2406 /**
2407 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2408 * @nn: NFP Net device to reconfigure
2409 */
2410 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2411 {
2412 int i;
2413
2414 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2415 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2416 get_unaligned_le32(nn->rss_itbl + i));
2417 }
2418
2419 /**
2420 * nfp_net_rss_write_key() - Write RSS hash key to device
2421 * @nn: NFP Net device to reconfigure
2422 */
2423 void nfp_net_rss_write_key(struct nfp_net *nn)
2424 {
2425 int i;
2426
2427 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2428 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2429 get_unaligned_le32(nn->rss_key + i));
2430 }
2431
2432 /**
2433 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2434 * @nn: NFP Net device to reconfigure
2435 */
2436 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2437 {
2438 u8 i;
2439 u32 factor;
2440 u32 value;
2441
2442 /* Compute factor used to convert coalesce '_usecs' parameters to
2443 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
2444 * count.
2445 */
2446 factor = nn->me_freq_mhz / 16;
2447
2448 /* copy RX interrupt coalesce parameters */
2449 value = (nn->rx_coalesce_max_frames << 16) |
2450 (factor * nn->rx_coalesce_usecs);
2451 for (i = 0; i < nn->dp.num_rx_rings; i++)
2452 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2453
2454 /* copy TX interrupt coalesce parameters */
2455 value = (nn->tx_coalesce_max_frames << 16) |
2456 (factor * nn->tx_coalesce_usecs);
2457 for (i = 0; i < nn->dp.num_tx_rings; i++)
2458 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2459 }
2460
2461 /**
2462 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2463 * @nn: NFP Net device to reconfigure
2464 * @addr: MAC address to write
2465 *
2466 * Writes the MAC address from the netdev to the device control BAR. Does not
2467 * perform the required reconfig. We do a bit of byte swapping dance because
2468 * firmware is LE.
2469 */
2470 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2471 {
2472 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2473 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2474 }
2475
2476 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2477 {
2478 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2479 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2480 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2481
2482 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2483 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2484 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2485 }
2486
2487 /**
2488 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2489 * @nn: NFP Net device to reconfigure
2490 */
2491 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2492 {
2493 u32 new_ctrl, update;
2494 unsigned int r;
2495 int err;
2496
2497 new_ctrl = nn->dp.ctrl;
2498 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2499 update = NFP_NET_CFG_UPDATE_GEN;
2500 update |= NFP_NET_CFG_UPDATE_MSIX;
2501 update |= NFP_NET_CFG_UPDATE_RING;
2502
2503 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2504 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2505
2506 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2507 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2508
2509 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2510 err = nfp_net_reconfig(nn, update);
2511 if (err)
2512 nn_err(nn, "Could not disable device: %d\n", err);
2513
2514 for (r = 0; r < nn->dp.num_rx_rings; r++)
2515 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2516 for (r = 0; r < nn->dp.num_tx_rings; r++)
2517 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2518 for (r = 0; r < nn->dp.num_r_vecs; r++)
2519 nfp_net_vec_clear_ring_data(nn, r);
2520
2521 nn->dp.ctrl = new_ctrl;
2522 }
2523
2524 static void
2525 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2526 struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2527 {
2528 /* Write the DMA address, size and MSI-X info to the device */
2529 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2530 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2531 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2532 }
2533
2534 static void
2535 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2536 struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2537 {
2538 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2539 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2540 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2541 }
2542
2543 /**
2544 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2545 * @nn: NFP Net device to reconfigure
2546 */
2547 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2548 {
2549 u32 bufsz, new_ctrl, update = 0;
2550 unsigned int r;
2551 int err;
2552
2553 new_ctrl = nn->dp.ctrl;
2554
2555 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2556 nfp_net_rss_write_key(nn);
2557 nfp_net_rss_write_itbl(nn);
2558 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2559 update |= NFP_NET_CFG_UPDATE_RSS;
2560 }
2561
2562 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2563 nfp_net_coalesce_write_cfg(nn);
2564 update |= NFP_NET_CFG_UPDATE_IRQMOD;
2565 }
2566
2567 for (r = 0; r < nn->dp.num_tx_rings; r++)
2568 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2569 for (r = 0; r < nn->dp.num_rx_rings; r++)
2570 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2571
2572 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2573 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2574
2575 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2576 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2577
2578 if (nn->dp.netdev)
2579 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2580
2581 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2582
2583 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2584 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2585
2586 /* Enable device */
2587 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2588 update |= NFP_NET_CFG_UPDATE_GEN;
2589 update |= NFP_NET_CFG_UPDATE_MSIX;
2590 update |= NFP_NET_CFG_UPDATE_RING;
2591 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2592 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2593
2594 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2595 err = nfp_net_reconfig(nn, update);
2596 if (err) {
2597 nfp_net_clear_config_and_disable(nn);
2598 return err;
2599 }
2600
2601 nn->dp.ctrl = new_ctrl;
2602
2603 for (r = 0; r < nn->dp.num_rx_rings; r++)
2604 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2605
2606 /* Since reconfiguration requests while NFP is down are ignored we
2607 * have to wipe the entire VXLAN configuration and reinitialize it.
2608 */
2609 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2610 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2611 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2612 udp_tunnel_get_rx_info(nn->dp.netdev);
2613 }
2614
2615 return 0;
2616 }
2617
2618 /**
2619 * nfp_net_close_stack() - Quiesce the stack (part of close)
2620 * @nn: NFP Net device to reconfigure
2621 */
2622 static void nfp_net_close_stack(struct nfp_net *nn)
2623 {
2624 unsigned int r;
2625
2626 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2627 netif_carrier_off(nn->dp.netdev);
2628 nn->link_up = false;
2629
2630 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2631 disable_irq(nn->r_vecs[r].irq_vector);
2632 napi_disable(&nn->r_vecs[r].napi);
2633 }
2634
2635 netif_tx_disable(nn->dp.netdev);
2636 }
2637
2638 /**
2639 * nfp_net_close_free_all() - Free all runtime resources
2640 * @nn: NFP Net device to reconfigure
2641 */
2642 static void nfp_net_close_free_all(struct nfp_net *nn)
2643 {
2644 unsigned int r;
2645
2646 nfp_net_tx_rings_free(&nn->dp);
2647 nfp_net_rx_rings_free(&nn->dp);
2648
2649 for (r = 0; r < nn->dp.num_r_vecs; r++)
2650 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2651
2652 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2653 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2654 }
2655
2656 /**
2657 * nfp_net_netdev_close() - Called when the device is downed
2658 * @netdev: netdev structure
2659 */
2660 static int nfp_net_netdev_close(struct net_device *netdev)
2661 {
2662 struct nfp_net *nn = netdev_priv(netdev);
2663
2664 /* Step 1: Disable RX and TX rings from the Linux kernel perspective
2665 */
2666 nfp_net_close_stack(nn);
2667
2668 /* Step 2: Tell NFP
2669 */
2670 nfp_net_clear_config_and_disable(nn);
2671 nfp_port_configure(netdev, false);
2672
2673 /* Step 3: Free resources
2674 */
2675 nfp_net_close_free_all(nn);
2676
2677 nn_dbg(nn, "%s down", netdev->name);
2678 return 0;
2679 }
2680
2681 void nfp_ctrl_close(struct nfp_net *nn)
2682 {
2683 int r;
2684
2685 rtnl_lock();
2686
2687 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2688 disable_irq(nn->r_vecs[r].irq_vector);
2689 tasklet_disable(&nn->r_vecs[r].tasklet);
2690 }
2691
2692 nfp_net_clear_config_and_disable(nn);
2693
2694 nfp_net_close_free_all(nn);
2695
2696 rtnl_unlock();
2697 }
2698
2699 /**
2700 * nfp_net_open_stack() - Start the device from stack's perspective
2701 * @nn: NFP Net device to reconfigure
2702 */
2703 static void nfp_net_open_stack(struct nfp_net *nn)
2704 {
2705 unsigned int r;
2706
2707 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2708 napi_enable(&nn->r_vecs[r].napi);
2709 enable_irq(nn->r_vecs[r].irq_vector);
2710 }
2711
2712 netif_tx_wake_all_queues(nn->dp.netdev);
2713
2714 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2715 nfp_net_read_link_status(nn);
2716 }
2717
2718 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2719 {
2720 int err, r;
2721
2722 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2723 nn->exn_name, sizeof(nn->exn_name),
2724 NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2725 if (err)
2726 return err;
2727 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2728 nn->lsc_name, sizeof(nn->lsc_name),
2729 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2730 if (err)
2731 goto err_free_exn;
2732 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2733
2734 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2735 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2736 if (err)
2737 goto err_cleanup_vec_p;
2738 }
2739
2740 err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2741 if (err)
2742 goto err_cleanup_vec;
2743
2744 err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2745 if (err)
2746 goto err_free_rx_rings;
2747
2748 for (r = 0; r < nn->max_r_vecs; r++)
2749 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2750
2751 return 0;
2752
2753 err_free_rx_rings:
2754 nfp_net_rx_rings_free(&nn->dp);
2755 err_cleanup_vec:
2756 r = nn->dp.num_r_vecs;
2757 err_cleanup_vec_p:
2758 while (r--)
2759 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2760 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2761 err_free_exn:
2762 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2763 return err;
2764 }
2765
2766 static int nfp_net_netdev_open(struct net_device *netdev)
2767 {
2768 struct nfp_net *nn = netdev_priv(netdev);
2769 int err;
2770
2771 /* Step 1: Allocate resources for rings and the like
2772 * - Request interrupts
2773 * - Allocate RX and TX ring resources
2774 * - Setup initial RSS table
2775 */
2776 err = nfp_net_open_alloc_all(nn);
2777 if (err)
2778 return err;
2779
2780 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2781 if (err)
2782 goto err_free_all;
2783
2784 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2785 if (err)
2786 goto err_free_all;
2787
2788 /* Step 2: Configure the NFP
2789 * - Ifup the physical interface if it exists
2790 * - Enable rings from 0 to tx_rings/rx_rings - 1.
2791 * - Write MAC address (in case it changed)
2792 * - Set the MTU
2793 * - Set the Freelist buffer size
2794 * - Enable the FW
2795 */
2796 err = nfp_port_configure(netdev, true);
2797 if (err)
2798 goto err_free_all;
2799
2800 err = nfp_net_set_config_and_enable(nn);
2801 if (err)
2802 goto err_port_disable;
2803
2804 /* Step 3: Enable for kernel
2805 * - put some freelist descriptors on each RX ring
2806 * - enable NAPI on each ring
2807 * - enable all TX queues
2808 * - set link state
2809 */
2810 nfp_net_open_stack(nn);
2811
2812 return 0;
2813
2814 err_port_disable:
2815 nfp_port_configure(netdev, false);
2816 err_free_all:
2817 nfp_net_close_free_all(nn);
2818 return err;
2819 }
2820
2821 int nfp_ctrl_open(struct nfp_net *nn)
2822 {
2823 int err, r;
2824
2825 /* ring dumping depends on vNICs being opened/closed under rtnl */
2826 rtnl_lock();
2827
2828 err = nfp_net_open_alloc_all(nn);
2829 if (err)
2830 goto err_unlock;
2831
2832 err = nfp_net_set_config_and_enable(nn);
2833 if (err)
2834 goto err_free_all;
2835
2836 for (r = 0; r < nn->dp.num_r_vecs; r++)
2837 enable_irq(nn->r_vecs[r].irq_vector);
2838
2839 rtnl_unlock();
2840
2841 return 0;
2842
2843 err_free_all:
2844 nfp_net_close_free_all(nn);
2845 err_unlock:
2846 rtnl_unlock();
2847 return err;
2848 }
2849
2850 static void nfp_net_set_rx_mode(struct net_device *netdev)
2851 {
2852 struct nfp_net *nn = netdev_priv(netdev);
2853 u32 new_ctrl;
2854
2855 new_ctrl = nn->dp.ctrl;
2856
2857 if (netdev->flags & IFF_PROMISC) {
2858 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2859 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2860 else
2861 nn_warn(nn, "FW does not support promiscuous mode\n");
2862 } else {
2863 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2864 }
2865
2866 if (new_ctrl == nn->dp.ctrl)
2867 return;
2868
2869 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2870 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2871
2872 nn->dp.ctrl = new_ctrl;
2873 }
2874
2875 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
2876 {
2877 int i;
2878
2879 for (i = 0; i < sizeof(nn->rss_itbl); i++)
2880 nn->rss_itbl[i] =
2881 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2882 }
2883
2884 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
2885 {
2886 struct nfp_net_dp new_dp = *dp;
2887
2888 *dp = nn->dp;
2889 nn->dp = new_dp;
2890
2891 nn->dp.netdev->mtu = new_dp.mtu;
2892
2893 if (!netif_is_rxfh_configured(nn->dp.netdev))
2894 nfp_net_rss_init_itbl(nn);
2895 }
2896
2897 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2898 {
2899 unsigned int r;
2900 int err;
2901
2902 nfp_net_dp_swap(nn, dp);
2903
2904 for (r = 0; r < nn->max_r_vecs; r++)
2905 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2906
2907 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2908 if (err)
2909 return err;
2910
2911 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
2912 err = netif_set_real_num_tx_queues(nn->dp.netdev,
2913 nn->dp.num_stack_tx_rings);
2914 if (err)
2915 return err;
2916 }
2917
2918 return nfp_net_set_config_and_enable(nn);
2919 }
2920
2921 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
2922 {
2923 struct nfp_net_dp *new;
2924
2925 new = kmalloc(sizeof(*new), GFP_KERNEL);
2926 if (!new)
2927 return NULL;
2928
2929 *new = nn->dp;
2930
2931 /* Clear things which need to be recomputed */
2932 new->fl_bufsz = 0;
2933 new->tx_rings = NULL;
2934 new->rx_rings = NULL;
2935 new->num_r_vecs = 0;
2936 new->num_stack_tx_rings = 0;
2937
2938 return new;
2939 }
2940
2941 static int
2942 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
2943 struct netlink_ext_ack *extack)
2944 {
2945 /* XDP-enabled tests */
2946 if (!dp->xdp_prog)
2947 return 0;
2948 if (dp->fl_bufsz > PAGE_SIZE) {
2949 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2950 return -EINVAL;
2951 }
2952 if (dp->num_tx_rings > nn->max_tx_rings) {
2953 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2954 return -EINVAL;
2955 }
2956
2957 return 0;
2958 }
2959
2960 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
2961 struct netlink_ext_ack *extack)
2962 {
2963 int r, err;
2964
2965 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2966
2967 dp->num_stack_tx_rings = dp->num_tx_rings;
2968 if (dp->xdp_prog)
2969 dp->num_stack_tx_rings -= dp->num_rx_rings;
2970
2971 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2972
2973 err = nfp_net_check_config(nn, dp, extack);
2974 if (err)
2975 goto exit_free_dp;
2976
2977 if (!netif_running(dp->netdev)) {
2978 nfp_net_dp_swap(nn, dp);
2979 err = 0;
2980 goto exit_free_dp;
2981 }
2982
2983 /* Prepare new rings */
2984 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2985 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2986 if (err) {
2987 dp->num_r_vecs = r;
2988 goto err_cleanup_vecs;
2989 }
2990 }
2991
2992 err = nfp_net_rx_rings_prepare(nn, dp);
2993 if (err)
2994 goto err_cleanup_vecs;
2995
2996 err = nfp_net_tx_rings_prepare(nn, dp);
2997 if (err)
2998 goto err_free_rx;
2999
3000 /* Stop device, swap in new rings, try to start the firmware */
3001 nfp_net_close_stack(nn);
3002 nfp_net_clear_config_and_disable(nn);
3003
3004 err = nfp_net_dp_swap_enable(nn, dp);
3005 if (err) {
3006 int err2;
3007
3008 nfp_net_clear_config_and_disable(nn);
3009
3010 /* Try with old configuration and old rings */
3011 err2 = nfp_net_dp_swap_enable(nn, dp);
3012 if (err2)
3013 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3014 err, err2);
3015 }
3016 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3017 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3018
3019 nfp_net_rx_rings_free(dp);
3020 nfp_net_tx_rings_free(dp);
3021
3022 nfp_net_open_stack(nn);
3023 exit_free_dp:
3024 kfree(dp);
3025
3026 return err;
3027
3028 err_free_rx:
3029 nfp_net_rx_rings_free(dp);
3030 err_cleanup_vecs:
3031 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3032 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3033 kfree(dp);
3034 return err;
3035 }
3036
3037 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3038 {
3039 struct nfp_net *nn = netdev_priv(netdev);
3040 struct nfp_net_dp *dp;
3041
3042 dp = nfp_net_clone_dp(nn);
3043 if (!dp)
3044 return -ENOMEM;
3045
3046 dp->mtu = new_mtu;
3047
3048 return nfp_net_ring_reconfig(nn, dp, NULL);
3049 }
3050
3051 static int
3052 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3053 {
3054 struct nfp_net *nn = netdev_priv(netdev);
3055
3056 /* Priority tagged packets with vlan id 0 are processed by the
3057 * NFP as untagged packets
3058 */
3059 if (!vid)
3060 return 0;
3061
3062 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3063 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3064
3065 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD);
3066 }
3067
3068 static int
3069 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3070 {
3071 struct nfp_net *nn = netdev_priv(netdev);
3072
3073 /* Priority tagged packets with vlan id 0 are processed by the
3074 * NFP as untagged packets
3075 */
3076 if (!vid)
3077 return 0;
3078
3079 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3080 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3081
3082 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL);
3083 }
3084
3085 static void nfp_net_stat64(struct net_device *netdev,
3086 struct rtnl_link_stats64 *stats)
3087 {
3088 struct nfp_net *nn = netdev_priv(netdev);
3089 int r;
3090
3091 for (r = 0; r < nn->dp.num_r_vecs; r++) {
3092 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3093 u64 data[3];
3094 unsigned int start;
3095
3096 do {
3097 start = u64_stats_fetch_begin(&r_vec->rx_sync);
3098 data[0] = r_vec->rx_pkts;
3099 data[1] = r_vec->rx_bytes;
3100 data[2] = r_vec->rx_drops;
3101 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3102 stats->rx_packets += data[0];
3103 stats->rx_bytes += data[1];
3104 stats->rx_dropped += data[2];
3105
3106 do {
3107 start = u64_stats_fetch_begin(&r_vec->tx_sync);
3108 data[0] = r_vec->tx_pkts;
3109 data[1] = r_vec->tx_bytes;
3110 data[2] = r_vec->tx_errors;
3111 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3112 stats->tx_packets += data[0];
3113 stats->tx_bytes += data[1];
3114 stats->tx_errors += data[2];
3115 }
3116 }
3117
3118 static int nfp_net_set_features(struct net_device *netdev,
3119 netdev_features_t features)
3120 {
3121 netdev_features_t changed = netdev->features ^ features;
3122 struct nfp_net *nn = netdev_priv(netdev);
3123 u32 new_ctrl;
3124 int err;
3125
3126 /* Assume this is not called with features we have not advertised */
3127
3128 new_ctrl = nn->dp.ctrl;
3129
3130 if (changed & NETIF_F_RXCSUM) {
3131 if (features & NETIF_F_RXCSUM)
3132 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3133 else
3134 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3135 }
3136
3137 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3138 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3139 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3140 else
3141 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3142 }
3143
3144 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3145 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3146 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3147 NFP_NET_CFG_CTRL_LSO;
3148 else
3149 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3150 }
3151
3152 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3153 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3154 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3155 else
3156 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3157 }
3158
3159 if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3160 if (features & NETIF_F_HW_VLAN_CTAG_TX)
3161 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3162 else
3163 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3164 }
3165
3166 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3167 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3168 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3169 else
3170 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3171 }
3172
3173 if (changed & NETIF_F_SG) {
3174 if (features & NETIF_F_SG)
3175 new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3176 else
3177 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3178 }
3179
3180 if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) {
3181 nn_err(nn, "Cannot disable HW TC offload while in use\n");
3182 return -EBUSY;
3183 }
3184
3185 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3186 netdev->features, features, changed);
3187
3188 if (new_ctrl == nn->dp.ctrl)
3189 return 0;
3190
3191 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3192 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3193 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3194 if (err)
3195 return err;
3196
3197 nn->dp.ctrl = new_ctrl;
3198
3199 return 0;
3200 }
3201
3202 static netdev_features_t
3203 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3204 netdev_features_t features)
3205 {
3206 u8 l4_hdr;
3207
3208 /* We can't do TSO over double tagged packets (802.1AD) */
3209 features &= vlan_features_check(skb, features);
3210
3211 if (!skb->encapsulation)
3212 return features;
3213
3214 /* Ensure that inner L4 header offset fits into TX descriptor field */
3215 if (skb_is_gso(skb)) {
3216 u32 hdrlen;
3217
3218 hdrlen = skb_inner_transport_header(skb) - skb->data +
3219 inner_tcp_hdrlen(skb);
3220
3221 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
3222 features &= ~NETIF_F_GSO_MASK;
3223 }
3224
3225 /* VXLAN/GRE check */
3226 switch (vlan_get_protocol(skb)) {
3227 case htons(ETH_P_IP):
3228 l4_hdr = ip_hdr(skb)->protocol;
3229 break;
3230 case htons(ETH_P_IPV6):
3231 l4_hdr = ipv6_hdr(skb)->nexthdr;
3232 break;
3233 default:
3234 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3235 }
3236
3237 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3238 skb->inner_protocol != htons(ETH_P_TEB) ||
3239 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3240 (l4_hdr == IPPROTO_UDP &&
3241 (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3242 sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3243 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3244
3245 return features;
3246 }
3247
3248 /**
3249 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3250 * @nn: NFP Net device to reconfigure
3251 * @idx: Index into the port table where new port should be written
3252 * @port: UDP port to configure (pass zero to remove VXLAN port)
3253 */
3254 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3255 {
3256 int i;
3257
3258 nn->vxlan_ports[idx] = port;
3259
3260 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3261 return;
3262
3263 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3264 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3265 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3266 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3267 be16_to_cpu(nn->vxlan_ports[i]));
3268
3269 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3270 }
3271
3272 /**
3273 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3274 * @nn: NFP Network structure
3275 * @port: UDP port to look for
3276 *
3277 * Return: if the port is already in the table -- it's position;
3278 * if the port is not in the table -- free position to use;
3279 * if the table is full -- -ENOSPC.
3280 */
3281 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3282 {
3283 int i, free_idx = -ENOSPC;
3284
3285 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3286 if (nn->vxlan_ports[i] == port)
3287 return i;
3288 if (!nn->vxlan_usecnt[i])
3289 free_idx = i;
3290 }
3291
3292 return free_idx;
3293 }
3294
3295 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3296 struct udp_tunnel_info *ti)
3297 {
3298 struct nfp_net *nn = netdev_priv(netdev);
3299 int idx;
3300
3301 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3302 return;
3303
3304 idx = nfp_net_find_vxlan_idx(nn, ti->port);
3305 if (idx == -ENOSPC)
3306 return;
3307
3308 if (!nn->vxlan_usecnt[idx]++)
3309 nfp_net_set_vxlan_port(nn, idx, ti->port);
3310 }
3311
3312 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3313 struct udp_tunnel_info *ti)
3314 {
3315 struct nfp_net *nn = netdev_priv(netdev);
3316 int idx;
3317
3318 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3319 return;
3320
3321 idx = nfp_net_find_vxlan_idx(nn, ti->port);
3322 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3323 return;
3324
3325 if (!--nn->vxlan_usecnt[idx])
3326 nfp_net_set_vxlan_port(nn, idx, 0);
3327 }
3328
3329 static int
3330 nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog,
3331 struct netlink_ext_ack *extack)
3332 {
3333 struct nfp_net_dp *dp;
3334
3335 if (!prog == !nn->dp.xdp_prog) {
3336 WRITE_ONCE(nn->dp.xdp_prog, prog);
3337 return 0;
3338 }
3339
3340 dp = nfp_net_clone_dp(nn);
3341 if (!dp)
3342 return -ENOMEM;
3343
3344 dp->xdp_prog = prog;
3345 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3346 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3347 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3348
3349 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3350 return nfp_net_ring_reconfig(nn, dp, extack);
3351 }
3352
3353 static int
3354 nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags,
3355 struct netlink_ext_ack *extack)
3356 {
3357 struct bpf_prog *drv_prog, *offload_prog;
3358 int err;
3359
3360 if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES)
3361 return -EBUSY;
3362
3363 /* Load both when no flags set to allow easy activation of driver path
3364 * when program is replaced by one which can't be offloaded.
3365 */
3366 drv_prog = flags & XDP_FLAGS_HW_MODE ? NULL : prog;
3367 offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog;
3368
3369 err = nfp_net_xdp_setup_drv(nn, drv_prog, extack);
3370 if (err)
3371 return err;
3372
3373 err = nfp_app_xdp_offload(nn->app, nn, offload_prog);
3374 if (err && flags & XDP_FLAGS_HW_MODE)
3375 return err;
3376
3377 if (nn->xdp_prog)
3378 bpf_prog_put(nn->xdp_prog);
3379 nn->xdp_prog = prog;
3380 nn->xdp_flags = flags;
3381
3382 return 0;
3383 }
3384
3385 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
3386 {
3387 struct nfp_net *nn = netdev_priv(netdev);
3388
3389 switch (xdp->command) {
3390 case XDP_SETUP_PROG:
3391 case XDP_SETUP_PROG_HW:
3392 return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags,
3393 xdp->extack);
3394 case XDP_QUERY_PROG:
3395 xdp->prog_attached = !!nn->xdp_prog;
3396 if (nn->dp.bpf_offload_xdp)
3397 xdp->prog_attached = XDP_ATTACHED_HW;
3398 xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0;
3399 return 0;
3400 default:
3401 return -EINVAL;
3402 }
3403 }
3404
3405 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3406 {
3407 struct nfp_net *nn = netdev_priv(netdev);
3408 struct sockaddr *saddr = addr;
3409 int err;
3410
3411 err = eth_prepare_mac_addr_change(netdev, addr);
3412 if (err)
3413 return err;
3414
3415 nfp_net_write_mac_addr(nn, saddr->sa_data);
3416
3417 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3418 if (err)
3419 return err;
3420
3421 eth_commit_mac_addr_change(netdev, addr);
3422
3423 return 0;
3424 }
3425
3426 const struct net_device_ops nfp_net_netdev_ops = {
3427 .ndo_open = nfp_net_netdev_open,
3428 .ndo_stop = nfp_net_netdev_close,
3429 .ndo_start_xmit = nfp_net_tx,
3430 .ndo_get_stats64 = nfp_net_stat64,
3431 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid,
3432 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid,
3433 .ndo_set_vf_mac = nfp_app_set_vf_mac,
3434 .ndo_set_vf_vlan = nfp_app_set_vf_vlan,
3435 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk,
3436 .ndo_get_vf_config = nfp_app_get_vf_config,
3437 .ndo_set_vf_link_state = nfp_app_set_vf_link_state,
3438 .ndo_setup_tc = nfp_port_setup_tc,
3439 .ndo_tx_timeout = nfp_net_tx_timeout,
3440 .ndo_set_rx_mode = nfp_net_set_rx_mode,
3441 .ndo_change_mtu = nfp_net_change_mtu,
3442 .ndo_set_mac_address = nfp_net_set_mac_address,
3443 .ndo_set_features = nfp_net_set_features,
3444 .ndo_features_check = nfp_net_features_check,
3445 .ndo_get_phys_port_name = nfp_port_get_phys_port_name,
3446 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port,
3447 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port,
3448 .ndo_xdp = nfp_net_xdp,
3449 };
3450
3451 /**
3452 * nfp_net_info() - Print general info about the NIC
3453 * @nn: NFP Net device to reconfigure
3454 */
3455 void nfp_net_info(struct nfp_net *nn)
3456 {
3457 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3458 nn->dp.is_vf ? "VF " : "",
3459 nn->dp.num_tx_rings, nn->max_tx_rings,
3460 nn->dp.num_rx_rings, nn->max_rx_rings);
3461 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3462 nn->fw_ver.resv, nn->fw_ver.class,
3463 nn->fw_ver.major, nn->fw_ver.minor,
3464 nn->max_mtu);
3465 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3466 nn->cap,
3467 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
3468 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
3469 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
3470 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
3471 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
3472 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
3473 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
3474 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
3475 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
3476 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "",
3477 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "",
3478 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "",
3479 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "",
3480 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3481 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
3482 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3483 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "",
3484 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "",
3485 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "",
3486 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3487 "RXCSUM_COMPLETE " : "",
3488 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3489 nfp_app_extra_cap(nn->app, nn));
3490 }
3491
3492 /**
3493 * nfp_net_alloc() - Allocate netdev and related structure
3494 * @pdev: PCI device
3495 * @needs_netdev: Whether to allocate a netdev for this vNIC
3496 * @max_tx_rings: Maximum number of TX rings supported by device
3497 * @max_rx_rings: Maximum number of RX rings supported by device
3498 *
3499 * This function allocates a netdev device and fills in the initial
3500 * part of the @struct nfp_net structure. In case of control device
3501 * nfp_net structure is allocated without the netdev.
3502 *
3503 * Return: NFP Net device structure, or ERR_PTR on error.
3504 */
3505 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev,
3506 unsigned int max_tx_rings,
3507 unsigned int max_rx_rings)
3508 {
3509 struct nfp_net *nn;
3510
3511 if (needs_netdev) {
3512 struct net_device *netdev;
3513
3514 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3515 max_tx_rings, max_rx_rings);
3516 if (!netdev)
3517 return ERR_PTR(-ENOMEM);
3518
3519 SET_NETDEV_DEV(netdev, &pdev->dev);
3520 nn = netdev_priv(netdev);
3521 nn->dp.netdev = netdev;
3522 } else {
3523 nn = vzalloc(sizeof(*nn));
3524 if (!nn)
3525 return ERR_PTR(-ENOMEM);
3526 }
3527
3528 nn->dp.dev = &pdev->dev;
3529 nn->pdev = pdev;
3530
3531 nn->max_tx_rings = max_tx_rings;
3532 nn->max_rx_rings = max_rx_rings;
3533
3534 nn->dp.num_tx_rings = min_t(unsigned int,
3535 max_tx_rings, num_online_cpus());
3536 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3537 netif_get_num_default_rss_queues());
3538
3539 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3540 nn->dp.num_r_vecs = min_t(unsigned int,
3541 nn->dp.num_r_vecs, num_online_cpus());
3542
3543 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3544 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3545
3546 spin_lock_init(&nn->reconfig_lock);
3547 spin_lock_init(&nn->link_status_lock);
3548
3549 setup_timer(&nn->reconfig_timer,
3550 nfp_net_reconfig_timer, (unsigned long)nn);
3551
3552 return nn;
3553 }
3554
3555 /**
3556 * nfp_net_free() - Undo what @nfp_net_alloc() did
3557 * @nn: NFP Net device to reconfigure
3558 */
3559 void nfp_net_free(struct nfp_net *nn)
3560 {
3561 if (nn->xdp_prog)
3562 bpf_prog_put(nn->xdp_prog);
3563
3564 if (nn->dp.netdev)
3565 free_netdev(nn->dp.netdev);
3566 else
3567 vfree(nn);
3568 }
3569
3570 /**
3571 * nfp_net_rss_key_sz() - Get current size of the RSS key
3572 * @nn: NFP Net device instance
3573 *
3574 * Return: size of the RSS key for currently selected hash function.
3575 */
3576 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3577 {
3578 switch (nn->rss_hfunc) {
3579 case ETH_RSS_HASH_TOP:
3580 return NFP_NET_CFG_RSS_KEY_SZ;
3581 case ETH_RSS_HASH_XOR:
3582 return 0;
3583 case ETH_RSS_HASH_CRC32:
3584 return 4;
3585 }
3586
3587 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3588 return 0;
3589 }
3590
3591 /**
3592 * nfp_net_rss_init() - Set the initial RSS parameters
3593 * @nn: NFP Net device to reconfigure
3594 */
3595 static void nfp_net_rss_init(struct nfp_net *nn)
3596 {
3597 unsigned long func_bit, rss_cap_hfunc;
3598 u32 reg;
3599
3600 /* Read the RSS function capability and select first supported func */
3601 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3602 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3603 if (!rss_cap_hfunc)
3604 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3605 NFP_NET_CFG_RSS_TOEPLITZ);
3606
3607 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3608 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3609 dev_warn(nn->dp.dev,
3610 "Bad RSS config, defaulting to Toeplitz hash\n");
3611 func_bit = ETH_RSS_HASH_TOP_BIT;
3612 }
3613 nn->rss_hfunc = 1 << func_bit;
3614
3615 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3616
3617 nfp_net_rss_init_itbl(nn);
3618
3619 /* Enable IPv4/IPv6 TCP by default */
3620 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3621 NFP_NET_CFG_RSS_IPV6_TCP |
3622 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3623 NFP_NET_CFG_RSS_MASK;
3624 }
3625
3626 /**
3627 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3628 * @nn: NFP Net device to reconfigure
3629 */
3630 static void nfp_net_irqmod_init(struct nfp_net *nn)
3631 {
3632 nn->rx_coalesce_usecs = 50;
3633 nn->rx_coalesce_max_frames = 64;
3634 nn->tx_coalesce_usecs = 50;
3635 nn->tx_coalesce_max_frames = 64;
3636 }
3637
3638 static void nfp_net_netdev_init(struct nfp_net *nn)
3639 {
3640 struct net_device *netdev = nn->dp.netdev;
3641
3642 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3643
3644 netdev->mtu = nn->dp.mtu;
3645
3646 /* Advertise/enable offloads based on capabilities
3647 *
3648 * Note: netdev->features show the currently enabled features
3649 * and netdev->hw_features advertises which features are
3650 * supported. By default we enable most features.
3651 */
3652 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3653 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3654
3655 netdev->hw_features = NETIF_F_HIGHDMA;
3656 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3657 netdev->hw_features |= NETIF_F_RXCSUM;
3658 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3659 }
3660 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3661 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3662 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3663 }
3664 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3665 netdev->hw_features |= NETIF_F_SG;
3666 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3667 }
3668 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3669 nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3670 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3671 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3672 NFP_NET_CFG_CTRL_LSO;
3673 }
3674 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3675 netdev->hw_features |= NETIF_F_RXHASH;
3676 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
3677 nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3678 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3679 netdev->hw_features |= NETIF_F_GSO_GRE |
3680 NETIF_F_GSO_UDP_TUNNEL;
3681 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3682
3683 netdev->hw_enc_features = netdev->hw_features;
3684 }
3685
3686 netdev->vlan_features = netdev->hw_features;
3687
3688 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3689 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3690 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3691 }
3692 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
3693 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3694 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
3695 } else {
3696 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3697 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3698 }
3699 }
3700 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
3701 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3702 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3703 }
3704
3705 netdev->features = netdev->hw_features;
3706
3707 if (nfp_app_has_tc(nn->app))
3708 netdev->hw_features |= NETIF_F_HW_TC;
3709
3710 /* Advertise but disable TSO by default. */
3711 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3712 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3713
3714 /* Finalise the netdev setup */
3715 netdev->netdev_ops = &nfp_net_netdev_ops;
3716 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3717
3718 SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops);
3719
3720 /* MTU range: 68 - hw-specific max */
3721 netdev->min_mtu = ETH_MIN_MTU;
3722 netdev->max_mtu = nn->max_mtu;
3723
3724 netif_carrier_off(netdev);
3725
3726 nfp_net_set_ethtool_ops(netdev);
3727 }
3728
3729 /**
3730 * nfp_net_init() - Initialise/finalise the nfp_net structure
3731 * @nn: NFP Net device structure
3732 *
3733 * Return: 0 on success or negative errno on error.
3734 */
3735 int nfp_net_init(struct nfp_net *nn)
3736 {
3737 int err;
3738
3739 nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
3740
3741 /* Get some of the read-only fields from the BAR */
3742 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
3743 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
3744
3745 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
3746 * we allow use of non-chained metadata if RSS(v1) is the only
3747 * advertised capability requiring metadata.
3748 */
3749 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
3750 !nn->dp.netdev ||
3751 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
3752 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
3753 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
3754 * it has the same meaning as RSSv2.
3755 */
3756 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
3757 nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
3758
3759 /* Determine RX packet/metadata boundary offset */
3760 if (nn->fw_ver.major >= 2) {
3761 u32 reg;
3762
3763 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
3764 if (reg > NFP_NET_MAX_PREPEND) {
3765 nn_err(nn, "Invalid rx offset: %d\n", reg);
3766 return -EINVAL;
3767 }
3768 nn->dp.rx_offset = reg;
3769 } else {
3770 nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3771 }
3772
3773 /* Set default MTU and Freelist buffer size */
3774 if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
3775 nn->dp.mtu = nn->max_mtu;
3776 else
3777 nn->dp.mtu = NFP_NET_DEFAULT_MTU;
3778 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3779
3780 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3781 nfp_net_rss_init(nn);
3782 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
3783 NFP_NET_CFG_CTRL_RSS;
3784 }
3785
3786 /* Allow L2 Broadcast and Multicast through by default, if supported */
3787 if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3788 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3789 if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3790 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3791
3792 /* Allow IRQ moderation, if supported */
3793 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
3794 nfp_net_irqmod_init(nn);
3795 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3796 }
3797
3798 if (nn->dp.netdev)
3799 nfp_net_netdev_init(nn);
3800
3801 /* Stash the re-configuration queue away. First odd queue in TX Bar */
3802 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
3803
3804 /* Make sure the FW knows the netdev is supposed to be disabled here */
3805 nn_writel(nn, NFP_NET_CFG_CTRL, 0);
3806 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
3807 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
3808 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
3809 NFP_NET_CFG_UPDATE_GEN);
3810 if (err)
3811 return err;
3812
3813 nfp_net_vecs_init(nn);
3814
3815 if (!nn->dp.netdev)
3816 return 0;
3817 return register_netdev(nn->dp.netdev);
3818 }
3819
3820 /**
3821 * nfp_net_clean() - Undo what nfp_net_init() did.
3822 * @nn: NFP Net device structure
3823 */
3824 void nfp_net_clean(struct nfp_net *nn)
3825 {
3826 if (!nn->dp.netdev)
3827 return;
3828
3829 unregister_netdev(nn->dp.netdev);
3830 }