Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / neterion / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
4 *
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
53 ************************************************************************/
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
83
84 #include <asm/div64.h>
85 #include <asm/irq.h>
86
87 /* local include */
88 #include "s2io.h"
89 #include "s2io-regs.h"
90
91 #define DRV_VERSION "2.0.26.28"
92
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name[] = "Neterion";
95 static const char s2io_driver_version[] = DRV_VERSION;
96
97 static const int rxd_size[2] = {32, 48};
98 static const int rxd_count[2] = {127, 85};
99
100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101 {
102 int ret;
103
104 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106
107 return ret;
108 }
109
110 /*
111 * Cards with following subsystem_id have a link state indication
112 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113 * macro below identifies these cards given the subsystem_id.
114 */
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
116 (dev_type == XFRAME_I_DEVICE) ? \
117 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
118 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122
123 static inline int is_s2io_card_up(const struct s2io_nic *sp)
124 {
125 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 }
127
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130 "Register test\t(offline)",
131 "Eeprom test\t(offline)",
132 "Link test\t(online)",
133 "RLDRAM test\t(offline)",
134 "BIST Test\t(offline)"
135 };
136
137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138 {"tmac_frms"},
139 {"tmac_data_octets"},
140 {"tmac_drop_frms"},
141 {"tmac_mcst_frms"},
142 {"tmac_bcst_frms"},
143 {"tmac_pause_ctrl_frms"},
144 {"tmac_ttl_octets"},
145 {"tmac_ucst_frms"},
146 {"tmac_nucst_frms"},
147 {"tmac_any_err_frms"},
148 {"tmac_ttl_less_fb_octets"},
149 {"tmac_vld_ip_octets"},
150 {"tmac_vld_ip"},
151 {"tmac_drop_ip"},
152 {"tmac_icmp"},
153 {"tmac_rst_tcp"},
154 {"tmac_tcp"},
155 {"tmac_udp"},
156 {"rmac_vld_frms"},
157 {"rmac_data_octets"},
158 {"rmac_fcs_err_frms"},
159 {"rmac_drop_frms"},
160 {"rmac_vld_mcst_frms"},
161 {"rmac_vld_bcst_frms"},
162 {"rmac_in_rng_len_err_frms"},
163 {"rmac_out_rng_len_err_frms"},
164 {"rmac_long_frms"},
165 {"rmac_pause_ctrl_frms"},
166 {"rmac_unsup_ctrl_frms"},
167 {"rmac_ttl_octets"},
168 {"rmac_accepted_ucst_frms"},
169 {"rmac_accepted_nucst_frms"},
170 {"rmac_discarded_frms"},
171 {"rmac_drop_events"},
172 {"rmac_ttl_less_fb_octets"},
173 {"rmac_ttl_frms"},
174 {"rmac_usized_frms"},
175 {"rmac_osized_frms"},
176 {"rmac_frag_frms"},
177 {"rmac_jabber_frms"},
178 {"rmac_ttl_64_frms"},
179 {"rmac_ttl_65_127_frms"},
180 {"rmac_ttl_128_255_frms"},
181 {"rmac_ttl_256_511_frms"},
182 {"rmac_ttl_512_1023_frms"},
183 {"rmac_ttl_1024_1518_frms"},
184 {"rmac_ip"},
185 {"rmac_ip_octets"},
186 {"rmac_hdr_err_ip"},
187 {"rmac_drop_ip"},
188 {"rmac_icmp"},
189 {"rmac_tcp"},
190 {"rmac_udp"},
191 {"rmac_err_drp_udp"},
192 {"rmac_xgmii_err_sym"},
193 {"rmac_frms_q0"},
194 {"rmac_frms_q1"},
195 {"rmac_frms_q2"},
196 {"rmac_frms_q3"},
197 {"rmac_frms_q4"},
198 {"rmac_frms_q5"},
199 {"rmac_frms_q6"},
200 {"rmac_frms_q7"},
201 {"rmac_full_q0"},
202 {"rmac_full_q1"},
203 {"rmac_full_q2"},
204 {"rmac_full_q3"},
205 {"rmac_full_q4"},
206 {"rmac_full_q5"},
207 {"rmac_full_q6"},
208 {"rmac_full_q7"},
209 {"rmac_pause_cnt"},
210 {"rmac_xgmii_data_err_cnt"},
211 {"rmac_xgmii_ctrl_err_cnt"},
212 {"rmac_accepted_ip"},
213 {"rmac_err_tcp"},
214 {"rd_req_cnt"},
215 {"new_rd_req_cnt"},
216 {"new_rd_req_rtry_cnt"},
217 {"rd_rtry_cnt"},
218 {"wr_rtry_rd_ack_cnt"},
219 {"wr_req_cnt"},
220 {"new_wr_req_cnt"},
221 {"new_wr_req_rtry_cnt"},
222 {"wr_rtry_cnt"},
223 {"wr_disc_cnt"},
224 {"rd_rtry_wr_ack_cnt"},
225 {"txp_wr_cnt"},
226 {"txd_rd_cnt"},
227 {"txd_wr_cnt"},
228 {"rxd_rd_cnt"},
229 {"rxd_wr_cnt"},
230 {"txf_rd_cnt"},
231 {"rxf_wr_cnt"}
232 };
233
234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235 {"rmac_ttl_1519_4095_frms"},
236 {"rmac_ttl_4096_8191_frms"},
237 {"rmac_ttl_8192_max_frms"},
238 {"rmac_ttl_gt_max_frms"},
239 {"rmac_osized_alt_frms"},
240 {"rmac_jabber_alt_frms"},
241 {"rmac_gt_max_alt_frms"},
242 {"rmac_vlan_frms"},
243 {"rmac_len_discard"},
244 {"rmac_fcs_discard"},
245 {"rmac_pf_discard"},
246 {"rmac_da_discard"},
247 {"rmac_red_discard"},
248 {"rmac_rts_discard"},
249 {"rmac_ingm_full_discard"},
250 {"link_fault_cnt"}
251 };
252
253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254 {"\n DRIVER STATISTICS"},
255 {"single_bit_ecc_errs"},
256 {"double_bit_ecc_errs"},
257 {"parity_err_cnt"},
258 {"serious_err_cnt"},
259 {"soft_reset_cnt"},
260 {"fifo_full_cnt"},
261 {"ring_0_full_cnt"},
262 {"ring_1_full_cnt"},
263 {"ring_2_full_cnt"},
264 {"ring_3_full_cnt"},
265 {"ring_4_full_cnt"},
266 {"ring_5_full_cnt"},
267 {"ring_6_full_cnt"},
268 {"ring_7_full_cnt"},
269 {"alarm_transceiver_temp_high"},
270 {"alarm_transceiver_temp_low"},
271 {"alarm_laser_bias_current_high"},
272 {"alarm_laser_bias_current_low"},
273 {"alarm_laser_output_power_high"},
274 {"alarm_laser_output_power_low"},
275 {"warn_transceiver_temp_high"},
276 {"warn_transceiver_temp_low"},
277 {"warn_laser_bias_current_high"},
278 {"warn_laser_bias_current_low"},
279 {"warn_laser_output_power_high"},
280 {"warn_laser_output_power_low"},
281 {"lro_aggregated_pkts"},
282 {"lro_flush_both_count"},
283 {"lro_out_of_sequence_pkts"},
284 {"lro_flush_due_to_max_pkts"},
285 {"lro_avg_aggr_pkts"},
286 {"mem_alloc_fail_cnt"},
287 {"pci_map_fail_cnt"},
288 {"watchdog_timer_cnt"},
289 {"mem_allocated"},
290 {"mem_freed"},
291 {"link_up_cnt"},
292 {"link_down_cnt"},
293 {"link_up_time"},
294 {"link_down_time"},
295 {"tx_tcode_buf_abort_cnt"},
296 {"tx_tcode_desc_abort_cnt"},
297 {"tx_tcode_parity_err_cnt"},
298 {"tx_tcode_link_loss_cnt"},
299 {"tx_tcode_list_proc_err_cnt"},
300 {"rx_tcode_parity_err_cnt"},
301 {"rx_tcode_abort_cnt"},
302 {"rx_tcode_parity_abort_cnt"},
303 {"rx_tcode_rda_fail_cnt"},
304 {"rx_tcode_unkn_prot_cnt"},
305 {"rx_tcode_fcs_err_cnt"},
306 {"rx_tcode_buf_size_err_cnt"},
307 {"rx_tcode_rxd_corrupt_cnt"},
308 {"rx_tcode_unkn_err_cnt"},
309 {"tda_err_cnt"},
310 {"pfc_err_cnt"},
311 {"pcc_err_cnt"},
312 {"tti_err_cnt"},
313 {"tpa_err_cnt"},
314 {"sm_err_cnt"},
315 {"lso_err_cnt"},
316 {"mac_tmac_err_cnt"},
317 {"mac_rmac_err_cnt"},
318 {"xgxs_txgxs_err_cnt"},
319 {"xgxs_rxgxs_err_cnt"},
320 {"rc_err_cnt"},
321 {"prc_pcix_err_cnt"},
322 {"rpa_err_cnt"},
323 {"rda_err_cnt"},
324 {"rti_err_cnt"},
325 {"mc_err_cnt"}
326 };
327
328 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
331
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337
338 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
340
341 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
342 init_timer(&timer); \
343 timer.function = handle; \
344 timer.data = (unsigned long)arg; \
345 mod_timer(&timer, (jiffies + exp)) \
346
347 /* copy mac addr to def_mac_addr array */
348 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
349 {
350 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
351 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
352 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
353 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
354 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
355 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
356 }
357
358 /*
359 * Constants to be programmed into the Xena's registers, to configure
360 * the XAUI.
361 */
362
363 #define END_SIGN 0x0
364 static const u64 herc_act_dtx_cfg[] = {
365 /* Set address */
366 0x8000051536750000ULL, 0x80000515367500E0ULL,
367 /* Write data */
368 0x8000051536750004ULL, 0x80000515367500E4ULL,
369 /* Set address */
370 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
371 /* Write data */
372 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
373 /* Set address */
374 0x801205150D440000ULL, 0x801205150D4400E0ULL,
375 /* Write data */
376 0x801205150D440004ULL, 0x801205150D4400E4ULL,
377 /* Set address */
378 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
379 /* Write data */
380 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
381 /* Done */
382 END_SIGN
383 };
384
385 static const u64 xena_dtx_cfg[] = {
386 /* Set address */
387 0x8000051500000000ULL, 0x80000515000000E0ULL,
388 /* Write data */
389 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
390 /* Set address */
391 0x8001051500000000ULL, 0x80010515000000E0ULL,
392 /* Write data */
393 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
394 /* Set address */
395 0x8002051500000000ULL, 0x80020515000000E0ULL,
396 /* Write data */
397 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
398 END_SIGN
399 };
400
401 /*
402 * Constants for Fixing the MacAddress problem seen mostly on
403 * Alpha machines.
404 */
405 static const u64 fix_mac[] = {
406 0x0060000000000000ULL, 0x0060600000000000ULL,
407 0x0040600000000000ULL, 0x0000600000000000ULL,
408 0x0020600000000000ULL, 0x0060600000000000ULL,
409 0x0020600000000000ULL, 0x0060600000000000ULL,
410 0x0020600000000000ULL, 0x0060600000000000ULL,
411 0x0020600000000000ULL, 0x0060600000000000ULL,
412 0x0020600000000000ULL, 0x0060600000000000ULL,
413 0x0020600000000000ULL, 0x0060600000000000ULL,
414 0x0020600000000000ULL, 0x0060600000000000ULL,
415 0x0020600000000000ULL, 0x0060600000000000ULL,
416 0x0020600000000000ULL, 0x0060600000000000ULL,
417 0x0020600000000000ULL, 0x0060600000000000ULL,
418 0x0020600000000000ULL, 0x0000600000000000ULL,
419 0x0040600000000000ULL, 0x0060600000000000ULL,
420 END_SIGN
421 };
422
423 MODULE_LICENSE("GPL");
424 MODULE_VERSION(DRV_VERSION);
425
426
427 /* Module Loadable parameters. */
428 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
429 S2IO_PARM_INT(rx_ring_num, 1);
430 S2IO_PARM_INT(multiq, 0);
431 S2IO_PARM_INT(rx_ring_mode, 1);
432 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
433 S2IO_PARM_INT(rmac_pause_time, 0x100);
434 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
435 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
436 S2IO_PARM_INT(shared_splits, 0);
437 S2IO_PARM_INT(tmac_util_period, 5);
438 S2IO_PARM_INT(rmac_util_period, 5);
439 S2IO_PARM_INT(l3l4hdr_size, 128);
440 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
441 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
442 /* Frequency of Rx desc syncs expressed as power of 2 */
443 S2IO_PARM_INT(rxsync_frequency, 3);
444 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
445 S2IO_PARM_INT(intr_type, 2);
446 /* Large receive offload feature */
447
448 /* Max pkts to be aggregated by LRO at one time. If not specified,
449 * aggregation happens until we hit max IP pkt size(64K)
450 */
451 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
452 S2IO_PARM_INT(indicate_max_pkts, 0);
453
454 S2IO_PARM_INT(napi, 1);
455 S2IO_PARM_INT(ufo, 0);
456 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
457
458 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
459 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
460 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
461 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
462 static unsigned int rts_frm_len[MAX_RX_RINGS] =
463 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
464
465 module_param_array(tx_fifo_len, uint, NULL, 0);
466 module_param_array(rx_ring_sz, uint, NULL, 0);
467 module_param_array(rts_frm_len, uint, NULL, 0);
468
469 /*
470 * S2IO device table.
471 * This table lists all the devices that this driver supports.
472 */
473 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
474 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
475 PCI_ANY_ID, PCI_ANY_ID},
476 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
477 PCI_ANY_ID, PCI_ANY_ID},
478 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
479 PCI_ANY_ID, PCI_ANY_ID},
480 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
481 PCI_ANY_ID, PCI_ANY_ID},
482 {0,}
483 };
484
485 MODULE_DEVICE_TABLE(pci, s2io_tbl);
486
487 static const struct pci_error_handlers s2io_err_handler = {
488 .error_detected = s2io_io_error_detected,
489 .slot_reset = s2io_io_slot_reset,
490 .resume = s2io_io_resume,
491 };
492
493 static struct pci_driver s2io_driver = {
494 .name = "S2IO",
495 .id_table = s2io_tbl,
496 .probe = s2io_init_nic,
497 .remove = s2io_rem_nic,
498 .err_handler = &s2io_err_handler,
499 };
500
501 /* A simplifier macro used both by init and free shared_mem Fns(). */
502 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
503
504 /* netqueue manipulation helper functions */
505 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
506 {
507 if (!sp->config.multiq) {
508 int i;
509
510 for (i = 0; i < sp->config.tx_fifo_num; i++)
511 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
512 }
513 netif_tx_stop_all_queues(sp->dev);
514 }
515
516 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
517 {
518 if (!sp->config.multiq)
519 sp->mac_control.fifos[fifo_no].queue_state =
520 FIFO_QUEUE_STOP;
521
522 netif_tx_stop_all_queues(sp->dev);
523 }
524
525 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
526 {
527 if (!sp->config.multiq) {
528 int i;
529
530 for (i = 0; i < sp->config.tx_fifo_num; i++)
531 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
532 }
533 netif_tx_start_all_queues(sp->dev);
534 }
535
536 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
537 {
538 if (!sp->config.multiq)
539 sp->mac_control.fifos[fifo_no].queue_state =
540 FIFO_QUEUE_START;
541
542 netif_tx_start_all_queues(sp->dev);
543 }
544
545 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
546 {
547 if (!sp->config.multiq) {
548 int i;
549
550 for (i = 0; i < sp->config.tx_fifo_num; i++)
551 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
552 }
553 netif_tx_wake_all_queues(sp->dev);
554 }
555
556 static inline void s2io_wake_tx_queue(
557 struct fifo_info *fifo, int cnt, u8 multiq)
558 {
559
560 if (multiq) {
561 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
562 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
563 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
564 if (netif_queue_stopped(fifo->dev)) {
565 fifo->queue_state = FIFO_QUEUE_START;
566 netif_wake_queue(fifo->dev);
567 }
568 }
569 }
570
571 /**
572 * init_shared_mem - Allocation and Initialization of Memory
573 * @nic: Device private variable.
574 * Description: The function allocates all the memory areas shared
575 * between the NIC and the driver. This includes Tx descriptors,
576 * Rx descriptors and the statistics block.
577 */
578
579 static int init_shared_mem(struct s2io_nic *nic)
580 {
581 u32 size;
582 void *tmp_v_addr, *tmp_v_addr_next;
583 dma_addr_t tmp_p_addr, tmp_p_addr_next;
584 struct RxD_block *pre_rxd_blk = NULL;
585 int i, j, blk_cnt;
586 int lst_size, lst_per_page;
587 struct net_device *dev = nic->dev;
588 unsigned long tmp;
589 struct buffAdd *ba;
590 struct config_param *config = &nic->config;
591 struct mac_info *mac_control = &nic->mac_control;
592 unsigned long long mem_allocated = 0;
593
594 /* Allocation and initialization of TXDLs in FIFOs */
595 size = 0;
596 for (i = 0; i < config->tx_fifo_num; i++) {
597 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
598
599 size += tx_cfg->fifo_len;
600 }
601 if (size > MAX_AVAILABLE_TXDS) {
602 DBG_PRINT(ERR_DBG,
603 "Too many TxDs requested: %d, max supported: %d\n",
604 size, MAX_AVAILABLE_TXDS);
605 return -EINVAL;
606 }
607
608 size = 0;
609 for (i = 0; i < config->tx_fifo_num; i++) {
610 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
611
612 size = tx_cfg->fifo_len;
613 /*
614 * Legal values are from 2 to 8192
615 */
616 if (size < 2) {
617 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
618 "Valid lengths are 2 through 8192\n",
619 i, size);
620 return -EINVAL;
621 }
622 }
623
624 lst_size = (sizeof(struct TxD) * config->max_txds);
625 lst_per_page = PAGE_SIZE / lst_size;
626
627 for (i = 0; i < config->tx_fifo_num; i++) {
628 struct fifo_info *fifo = &mac_control->fifos[i];
629 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
630 int fifo_len = tx_cfg->fifo_len;
631 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
632
633 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
634 if (!fifo->list_info) {
635 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
636 return -ENOMEM;
637 }
638 mem_allocated += list_holder_size;
639 }
640 for (i = 0; i < config->tx_fifo_num; i++) {
641 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
642 lst_per_page);
643 struct fifo_info *fifo = &mac_control->fifos[i];
644 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
645
646 fifo->tx_curr_put_info.offset = 0;
647 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
648 fifo->tx_curr_get_info.offset = 0;
649 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
650 fifo->fifo_no = i;
651 fifo->nic = nic;
652 fifo->max_txds = MAX_SKB_FRAGS + 2;
653 fifo->dev = dev;
654
655 for (j = 0; j < page_num; j++) {
656 int k = 0;
657 dma_addr_t tmp_p;
658 void *tmp_v;
659 tmp_v = pci_alloc_consistent(nic->pdev,
660 PAGE_SIZE, &tmp_p);
661 if (!tmp_v) {
662 DBG_PRINT(INFO_DBG,
663 "pci_alloc_consistent failed for TxDL\n");
664 return -ENOMEM;
665 }
666 /* If we got a zero DMA address(can happen on
667 * certain platforms like PPC), reallocate.
668 * Store virtual address of page we don't want,
669 * to be freed later.
670 */
671 if (!tmp_p) {
672 mac_control->zerodma_virt_addr = tmp_v;
673 DBG_PRINT(INIT_DBG,
674 "%s: Zero DMA address for TxDL. "
675 "Virtual address %p\n",
676 dev->name, tmp_v);
677 tmp_v = pci_alloc_consistent(nic->pdev,
678 PAGE_SIZE, &tmp_p);
679 if (!tmp_v) {
680 DBG_PRINT(INFO_DBG,
681 "pci_alloc_consistent failed for TxDL\n");
682 return -ENOMEM;
683 }
684 mem_allocated += PAGE_SIZE;
685 }
686 while (k < lst_per_page) {
687 int l = (j * lst_per_page) + k;
688 if (l == tx_cfg->fifo_len)
689 break;
690 fifo->list_info[l].list_virt_addr =
691 tmp_v + (k * lst_size);
692 fifo->list_info[l].list_phy_addr =
693 tmp_p + (k * lst_size);
694 k++;
695 }
696 }
697 }
698
699 for (i = 0; i < config->tx_fifo_num; i++) {
700 struct fifo_info *fifo = &mac_control->fifos[i];
701 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
702
703 size = tx_cfg->fifo_len;
704 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
705 if (!fifo->ufo_in_band_v)
706 return -ENOMEM;
707 mem_allocated += (size * sizeof(u64));
708 }
709
710 /* Allocation and initialization of RXDs in Rings */
711 size = 0;
712 for (i = 0; i < config->rx_ring_num; i++) {
713 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
714 struct ring_info *ring = &mac_control->rings[i];
715
716 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
717 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
718 "multiple of RxDs per Block\n",
719 dev->name, i);
720 return FAILURE;
721 }
722 size += rx_cfg->num_rxd;
723 ring->block_count = rx_cfg->num_rxd /
724 (rxd_count[nic->rxd_mode] + 1);
725 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
726 }
727 if (nic->rxd_mode == RXD_MODE_1)
728 size = (size * (sizeof(struct RxD1)));
729 else
730 size = (size * (sizeof(struct RxD3)));
731
732 for (i = 0; i < config->rx_ring_num; i++) {
733 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
734 struct ring_info *ring = &mac_control->rings[i];
735
736 ring->rx_curr_get_info.block_index = 0;
737 ring->rx_curr_get_info.offset = 0;
738 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
739 ring->rx_curr_put_info.block_index = 0;
740 ring->rx_curr_put_info.offset = 0;
741 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
742 ring->nic = nic;
743 ring->ring_no = i;
744
745 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
746 /* Allocating all the Rx blocks */
747 for (j = 0; j < blk_cnt; j++) {
748 struct rx_block_info *rx_blocks;
749 int l;
750
751 rx_blocks = &ring->rx_blocks[j];
752 size = SIZE_OF_BLOCK; /* size is always page size */
753 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
754 &tmp_p_addr);
755 if (tmp_v_addr == NULL) {
756 /*
757 * In case of failure, free_shared_mem()
758 * is called, which should free any
759 * memory that was alloced till the
760 * failure happened.
761 */
762 rx_blocks->block_virt_addr = tmp_v_addr;
763 return -ENOMEM;
764 }
765 mem_allocated += size;
766 memset(tmp_v_addr, 0, size);
767
768 size = sizeof(struct rxd_info) *
769 rxd_count[nic->rxd_mode];
770 rx_blocks->block_virt_addr = tmp_v_addr;
771 rx_blocks->block_dma_addr = tmp_p_addr;
772 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
773 if (!rx_blocks->rxds)
774 return -ENOMEM;
775 mem_allocated += size;
776 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
777 rx_blocks->rxds[l].virt_addr =
778 rx_blocks->block_virt_addr +
779 (rxd_size[nic->rxd_mode] * l);
780 rx_blocks->rxds[l].dma_addr =
781 rx_blocks->block_dma_addr +
782 (rxd_size[nic->rxd_mode] * l);
783 }
784 }
785 /* Interlinking all Rx Blocks */
786 for (j = 0; j < blk_cnt; j++) {
787 int next = (j + 1) % blk_cnt;
788 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
789 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
790 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
791 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
792
793 pre_rxd_blk = tmp_v_addr;
794 pre_rxd_blk->reserved_2_pNext_RxD_block =
795 (unsigned long)tmp_v_addr_next;
796 pre_rxd_blk->pNext_RxD_Blk_physical =
797 (u64)tmp_p_addr_next;
798 }
799 }
800 if (nic->rxd_mode == RXD_MODE_3B) {
801 /*
802 * Allocation of Storages for buffer addresses in 2BUFF mode
803 * and the buffers as well.
804 */
805 for (i = 0; i < config->rx_ring_num; i++) {
806 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
807 struct ring_info *ring = &mac_control->rings[i];
808
809 blk_cnt = rx_cfg->num_rxd /
810 (rxd_count[nic->rxd_mode] + 1);
811 size = sizeof(struct buffAdd *) * blk_cnt;
812 ring->ba = kmalloc(size, GFP_KERNEL);
813 if (!ring->ba)
814 return -ENOMEM;
815 mem_allocated += size;
816 for (j = 0; j < blk_cnt; j++) {
817 int k = 0;
818
819 size = sizeof(struct buffAdd) *
820 (rxd_count[nic->rxd_mode] + 1);
821 ring->ba[j] = kmalloc(size, GFP_KERNEL);
822 if (!ring->ba[j])
823 return -ENOMEM;
824 mem_allocated += size;
825 while (k != rxd_count[nic->rxd_mode]) {
826 ba = &ring->ba[j][k];
827 size = BUF0_LEN + ALIGN_SIZE;
828 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
829 if (!ba->ba_0_org)
830 return -ENOMEM;
831 mem_allocated += size;
832 tmp = (unsigned long)ba->ba_0_org;
833 tmp += ALIGN_SIZE;
834 tmp &= ~((unsigned long)ALIGN_SIZE);
835 ba->ba_0 = (void *)tmp;
836
837 size = BUF1_LEN + ALIGN_SIZE;
838 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
839 if (!ba->ba_1_org)
840 return -ENOMEM;
841 mem_allocated += size;
842 tmp = (unsigned long)ba->ba_1_org;
843 tmp += ALIGN_SIZE;
844 tmp &= ~((unsigned long)ALIGN_SIZE);
845 ba->ba_1 = (void *)tmp;
846 k++;
847 }
848 }
849 }
850 }
851
852 /* Allocation and initialization of Statistics block */
853 size = sizeof(struct stat_block);
854 mac_control->stats_mem =
855 pci_alloc_consistent(nic->pdev, size,
856 &mac_control->stats_mem_phy);
857
858 if (!mac_control->stats_mem) {
859 /*
860 * In case of failure, free_shared_mem() is called, which
861 * should free any memory that was alloced till the
862 * failure happened.
863 */
864 return -ENOMEM;
865 }
866 mem_allocated += size;
867 mac_control->stats_mem_sz = size;
868
869 tmp_v_addr = mac_control->stats_mem;
870 mac_control->stats_info = tmp_v_addr;
871 memset(tmp_v_addr, 0, size);
872 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
873 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
874 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
875 return SUCCESS;
876 }
877
878 /**
879 * free_shared_mem - Free the allocated Memory
880 * @nic: Device private variable.
881 * Description: This function is to free all memory locations allocated by
882 * the init_shared_mem() function and return it to the kernel.
883 */
884
885 static void free_shared_mem(struct s2io_nic *nic)
886 {
887 int i, j, blk_cnt, size;
888 void *tmp_v_addr;
889 dma_addr_t tmp_p_addr;
890 int lst_size, lst_per_page;
891 struct net_device *dev;
892 int page_num = 0;
893 struct config_param *config;
894 struct mac_info *mac_control;
895 struct stat_block *stats;
896 struct swStat *swstats;
897
898 if (!nic)
899 return;
900
901 dev = nic->dev;
902
903 config = &nic->config;
904 mac_control = &nic->mac_control;
905 stats = mac_control->stats_info;
906 swstats = &stats->sw_stat;
907
908 lst_size = sizeof(struct TxD) * config->max_txds;
909 lst_per_page = PAGE_SIZE / lst_size;
910
911 for (i = 0; i < config->tx_fifo_num; i++) {
912 struct fifo_info *fifo = &mac_control->fifos[i];
913 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
914
915 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
916 for (j = 0; j < page_num; j++) {
917 int mem_blks = (j * lst_per_page);
918 struct list_info_hold *fli;
919
920 if (!fifo->list_info)
921 return;
922
923 fli = &fifo->list_info[mem_blks];
924 if (!fli->list_virt_addr)
925 break;
926 pci_free_consistent(nic->pdev, PAGE_SIZE,
927 fli->list_virt_addr,
928 fli->list_phy_addr);
929 swstats->mem_freed += PAGE_SIZE;
930 }
931 /* If we got a zero DMA address during allocation,
932 * free the page now
933 */
934 if (mac_control->zerodma_virt_addr) {
935 pci_free_consistent(nic->pdev, PAGE_SIZE,
936 mac_control->zerodma_virt_addr,
937 (dma_addr_t)0);
938 DBG_PRINT(INIT_DBG,
939 "%s: Freeing TxDL with zero DMA address. "
940 "Virtual address %p\n",
941 dev->name, mac_control->zerodma_virt_addr);
942 swstats->mem_freed += PAGE_SIZE;
943 }
944 kfree(fifo->list_info);
945 swstats->mem_freed += tx_cfg->fifo_len *
946 sizeof(struct list_info_hold);
947 }
948
949 size = SIZE_OF_BLOCK;
950 for (i = 0; i < config->rx_ring_num; i++) {
951 struct ring_info *ring = &mac_control->rings[i];
952
953 blk_cnt = ring->block_count;
954 for (j = 0; j < blk_cnt; j++) {
955 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
956 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
957 if (tmp_v_addr == NULL)
958 break;
959 pci_free_consistent(nic->pdev, size,
960 tmp_v_addr, tmp_p_addr);
961 swstats->mem_freed += size;
962 kfree(ring->rx_blocks[j].rxds);
963 swstats->mem_freed += sizeof(struct rxd_info) *
964 rxd_count[nic->rxd_mode];
965 }
966 }
967
968 if (nic->rxd_mode == RXD_MODE_3B) {
969 /* Freeing buffer storage addresses in 2BUFF mode. */
970 for (i = 0; i < config->rx_ring_num; i++) {
971 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
972 struct ring_info *ring = &mac_control->rings[i];
973
974 blk_cnt = rx_cfg->num_rxd /
975 (rxd_count[nic->rxd_mode] + 1);
976 for (j = 0; j < blk_cnt; j++) {
977 int k = 0;
978 if (!ring->ba[j])
979 continue;
980 while (k != rxd_count[nic->rxd_mode]) {
981 struct buffAdd *ba = &ring->ba[j][k];
982 kfree(ba->ba_0_org);
983 swstats->mem_freed +=
984 BUF0_LEN + ALIGN_SIZE;
985 kfree(ba->ba_1_org);
986 swstats->mem_freed +=
987 BUF1_LEN + ALIGN_SIZE;
988 k++;
989 }
990 kfree(ring->ba[j]);
991 swstats->mem_freed += sizeof(struct buffAdd) *
992 (rxd_count[nic->rxd_mode] + 1);
993 }
994 kfree(ring->ba);
995 swstats->mem_freed += sizeof(struct buffAdd *) *
996 blk_cnt;
997 }
998 }
999
1000 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1001 struct fifo_info *fifo = &mac_control->fifos[i];
1002 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1003
1004 if (fifo->ufo_in_band_v) {
1005 swstats->mem_freed += tx_cfg->fifo_len *
1006 sizeof(u64);
1007 kfree(fifo->ufo_in_band_v);
1008 }
1009 }
1010
1011 if (mac_control->stats_mem) {
1012 swstats->mem_freed += mac_control->stats_mem_sz;
1013 pci_free_consistent(nic->pdev,
1014 mac_control->stats_mem_sz,
1015 mac_control->stats_mem,
1016 mac_control->stats_mem_phy);
1017 }
1018 }
1019
1020 /**
1021 * s2io_verify_pci_mode -
1022 */
1023
1024 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1025 {
1026 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1027 register u64 val64 = 0;
1028 int mode;
1029
1030 val64 = readq(&bar0->pci_mode);
1031 mode = (u8)GET_PCI_MODE(val64);
1032
1033 if (val64 & PCI_MODE_UNKNOWN_MODE)
1034 return -1; /* Unknown PCI mode */
1035 return mode;
1036 }
1037
1038 #define NEC_VENID 0x1033
1039 #define NEC_DEVID 0x0125
1040 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1041 {
1042 struct pci_dev *tdev = NULL;
1043 for_each_pci_dev(tdev) {
1044 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1045 if (tdev->bus == s2io_pdev->bus->parent) {
1046 pci_dev_put(tdev);
1047 return 1;
1048 }
1049 }
1050 }
1051 return 0;
1052 }
1053
1054 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1055 /**
1056 * s2io_print_pci_mode -
1057 */
1058 static int s2io_print_pci_mode(struct s2io_nic *nic)
1059 {
1060 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1061 register u64 val64 = 0;
1062 int mode;
1063 struct config_param *config = &nic->config;
1064 const char *pcimode;
1065
1066 val64 = readq(&bar0->pci_mode);
1067 mode = (u8)GET_PCI_MODE(val64);
1068
1069 if (val64 & PCI_MODE_UNKNOWN_MODE)
1070 return -1; /* Unknown PCI mode */
1071
1072 config->bus_speed = bus_speed[mode];
1073
1074 if (s2io_on_nec_bridge(nic->pdev)) {
1075 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1076 nic->dev->name);
1077 return mode;
1078 }
1079
1080 switch (mode) {
1081 case PCI_MODE_PCI_33:
1082 pcimode = "33MHz PCI bus";
1083 break;
1084 case PCI_MODE_PCI_66:
1085 pcimode = "66MHz PCI bus";
1086 break;
1087 case PCI_MODE_PCIX_M1_66:
1088 pcimode = "66MHz PCIX(M1) bus";
1089 break;
1090 case PCI_MODE_PCIX_M1_100:
1091 pcimode = "100MHz PCIX(M1) bus";
1092 break;
1093 case PCI_MODE_PCIX_M1_133:
1094 pcimode = "133MHz PCIX(M1) bus";
1095 break;
1096 case PCI_MODE_PCIX_M2_66:
1097 pcimode = "133MHz PCIX(M2) bus";
1098 break;
1099 case PCI_MODE_PCIX_M2_100:
1100 pcimode = "200MHz PCIX(M2) bus";
1101 break;
1102 case PCI_MODE_PCIX_M2_133:
1103 pcimode = "266MHz PCIX(M2) bus";
1104 break;
1105 default:
1106 pcimode = "unsupported bus!";
1107 mode = -1;
1108 }
1109
1110 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1111 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1112
1113 return mode;
1114 }
1115
1116 /**
1117 * init_tti - Initialization transmit traffic interrupt scheme
1118 * @nic: device private variable
1119 * @link: link status (UP/DOWN) used to enable/disable continuous
1120 * transmit interrupts
1121 * Description: The function configures transmit traffic interrupts
1122 * Return Value: SUCCESS on success and
1123 * '-1' on failure
1124 */
1125
1126 static int init_tti(struct s2io_nic *nic, int link)
1127 {
1128 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1129 register u64 val64 = 0;
1130 int i;
1131 struct config_param *config = &nic->config;
1132
1133 for (i = 0; i < config->tx_fifo_num; i++) {
1134 /*
1135 * TTI Initialization. Default Tx timer gets us about
1136 * 250 interrupts per sec. Continuous interrupts are enabled
1137 * by default.
1138 */
1139 if (nic->device_type == XFRAME_II_DEVICE) {
1140 int count = (nic->config.bus_speed * 125)/2;
1141 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1142 } else
1143 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1144
1145 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1146 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1147 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1148 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1149 if (i == 0)
1150 if (use_continuous_tx_intrs && (link == LINK_UP))
1151 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1152 writeq(val64, &bar0->tti_data1_mem);
1153
1154 if (nic->config.intr_type == MSI_X) {
1155 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1156 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1157 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1158 TTI_DATA2_MEM_TX_UFC_D(0x300);
1159 } else {
1160 if ((nic->config.tx_steering_type ==
1161 TX_DEFAULT_STEERING) &&
1162 (config->tx_fifo_num > 1) &&
1163 (i >= nic->udp_fifo_idx) &&
1164 (i < (nic->udp_fifo_idx +
1165 nic->total_udp_fifos)))
1166 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1167 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1168 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1169 TTI_DATA2_MEM_TX_UFC_D(0x120);
1170 else
1171 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1172 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1173 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1174 TTI_DATA2_MEM_TX_UFC_D(0x80);
1175 }
1176
1177 writeq(val64, &bar0->tti_data2_mem);
1178
1179 val64 = TTI_CMD_MEM_WE |
1180 TTI_CMD_MEM_STROBE_NEW_CMD |
1181 TTI_CMD_MEM_OFFSET(i);
1182 writeq(val64, &bar0->tti_command_mem);
1183
1184 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1185 TTI_CMD_MEM_STROBE_NEW_CMD,
1186 S2IO_BIT_RESET) != SUCCESS)
1187 return FAILURE;
1188 }
1189
1190 return SUCCESS;
1191 }
1192
1193 /**
1194 * init_nic - Initialization of hardware
1195 * @nic: device private variable
1196 * Description: The function sequentially configures every block
1197 * of the H/W from their reset values.
1198 * Return Value: SUCCESS on success and
1199 * '-1' on failure (endian settings incorrect).
1200 */
1201
1202 static int init_nic(struct s2io_nic *nic)
1203 {
1204 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1205 struct net_device *dev = nic->dev;
1206 register u64 val64 = 0;
1207 void __iomem *add;
1208 u32 time;
1209 int i, j;
1210 int dtx_cnt = 0;
1211 unsigned long long mem_share;
1212 int mem_size;
1213 struct config_param *config = &nic->config;
1214 struct mac_info *mac_control = &nic->mac_control;
1215
1216 /* to set the swapper controle on the card */
1217 if (s2io_set_swapper(nic)) {
1218 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1219 return -EIO;
1220 }
1221
1222 /*
1223 * Herc requires EOI to be removed from reset before XGXS, so..
1224 */
1225 if (nic->device_type & XFRAME_II_DEVICE) {
1226 val64 = 0xA500000000ULL;
1227 writeq(val64, &bar0->sw_reset);
1228 msleep(500);
1229 val64 = readq(&bar0->sw_reset);
1230 }
1231
1232 /* Remove XGXS from reset state */
1233 val64 = 0;
1234 writeq(val64, &bar0->sw_reset);
1235 msleep(500);
1236 val64 = readq(&bar0->sw_reset);
1237
1238 /* Ensure that it's safe to access registers by checking
1239 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1240 */
1241 if (nic->device_type == XFRAME_II_DEVICE) {
1242 for (i = 0; i < 50; i++) {
1243 val64 = readq(&bar0->adapter_status);
1244 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1245 break;
1246 msleep(10);
1247 }
1248 if (i == 50)
1249 return -ENODEV;
1250 }
1251
1252 /* Enable Receiving broadcasts */
1253 add = &bar0->mac_cfg;
1254 val64 = readq(&bar0->mac_cfg);
1255 val64 |= MAC_RMAC_BCAST_ENABLE;
1256 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1257 writel((u32)val64, add);
1258 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1259 writel((u32) (val64 >> 32), (add + 4));
1260
1261 /* Read registers in all blocks */
1262 val64 = readq(&bar0->mac_int_mask);
1263 val64 = readq(&bar0->mc_int_mask);
1264 val64 = readq(&bar0->xgxs_int_mask);
1265
1266 /* Set MTU */
1267 val64 = dev->mtu;
1268 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1269
1270 if (nic->device_type & XFRAME_II_DEVICE) {
1271 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1272 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1273 &bar0->dtx_control, UF);
1274 if (dtx_cnt & 0x1)
1275 msleep(1); /* Necessary!! */
1276 dtx_cnt++;
1277 }
1278 } else {
1279 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1280 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1281 &bar0->dtx_control, UF);
1282 val64 = readq(&bar0->dtx_control);
1283 dtx_cnt++;
1284 }
1285 }
1286
1287 /* Tx DMA Initialization */
1288 val64 = 0;
1289 writeq(val64, &bar0->tx_fifo_partition_0);
1290 writeq(val64, &bar0->tx_fifo_partition_1);
1291 writeq(val64, &bar0->tx_fifo_partition_2);
1292 writeq(val64, &bar0->tx_fifo_partition_3);
1293
1294 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1295 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1296
1297 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1298 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1299
1300 if (i == (config->tx_fifo_num - 1)) {
1301 if (i % 2 == 0)
1302 i++;
1303 }
1304
1305 switch (i) {
1306 case 1:
1307 writeq(val64, &bar0->tx_fifo_partition_0);
1308 val64 = 0;
1309 j = 0;
1310 break;
1311 case 3:
1312 writeq(val64, &bar0->tx_fifo_partition_1);
1313 val64 = 0;
1314 j = 0;
1315 break;
1316 case 5:
1317 writeq(val64, &bar0->tx_fifo_partition_2);
1318 val64 = 0;
1319 j = 0;
1320 break;
1321 case 7:
1322 writeq(val64, &bar0->tx_fifo_partition_3);
1323 val64 = 0;
1324 j = 0;
1325 break;
1326 default:
1327 j++;
1328 break;
1329 }
1330 }
1331
1332 /*
1333 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1334 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1335 */
1336 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1337 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1338
1339 val64 = readq(&bar0->tx_fifo_partition_0);
1340 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1341 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1342
1343 /*
1344 * Initialization of Tx_PA_CONFIG register to ignore packet
1345 * integrity checking.
1346 */
1347 val64 = readq(&bar0->tx_pa_cfg);
1348 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1349 TX_PA_CFG_IGNORE_SNAP_OUI |
1350 TX_PA_CFG_IGNORE_LLC_CTRL |
1351 TX_PA_CFG_IGNORE_L2_ERR;
1352 writeq(val64, &bar0->tx_pa_cfg);
1353
1354 /* Rx DMA intialization. */
1355 val64 = 0;
1356 for (i = 0; i < config->rx_ring_num; i++) {
1357 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1358
1359 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1360 }
1361 writeq(val64, &bar0->rx_queue_priority);
1362
1363 /*
1364 * Allocating equal share of memory to all the
1365 * configured Rings.
1366 */
1367 val64 = 0;
1368 if (nic->device_type & XFRAME_II_DEVICE)
1369 mem_size = 32;
1370 else
1371 mem_size = 64;
1372
1373 for (i = 0; i < config->rx_ring_num; i++) {
1374 switch (i) {
1375 case 0:
1376 mem_share = (mem_size / config->rx_ring_num +
1377 mem_size % config->rx_ring_num);
1378 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1379 continue;
1380 case 1:
1381 mem_share = (mem_size / config->rx_ring_num);
1382 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1383 continue;
1384 case 2:
1385 mem_share = (mem_size / config->rx_ring_num);
1386 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1387 continue;
1388 case 3:
1389 mem_share = (mem_size / config->rx_ring_num);
1390 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1391 continue;
1392 case 4:
1393 mem_share = (mem_size / config->rx_ring_num);
1394 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1395 continue;
1396 case 5:
1397 mem_share = (mem_size / config->rx_ring_num);
1398 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1399 continue;
1400 case 6:
1401 mem_share = (mem_size / config->rx_ring_num);
1402 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1403 continue;
1404 case 7:
1405 mem_share = (mem_size / config->rx_ring_num);
1406 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1407 continue;
1408 }
1409 }
1410 writeq(val64, &bar0->rx_queue_cfg);
1411
1412 /*
1413 * Filling Tx round robin registers
1414 * as per the number of FIFOs for equal scheduling priority
1415 */
1416 switch (config->tx_fifo_num) {
1417 case 1:
1418 val64 = 0x0;
1419 writeq(val64, &bar0->tx_w_round_robin_0);
1420 writeq(val64, &bar0->tx_w_round_robin_1);
1421 writeq(val64, &bar0->tx_w_round_robin_2);
1422 writeq(val64, &bar0->tx_w_round_robin_3);
1423 writeq(val64, &bar0->tx_w_round_robin_4);
1424 break;
1425 case 2:
1426 val64 = 0x0001000100010001ULL;
1427 writeq(val64, &bar0->tx_w_round_robin_0);
1428 writeq(val64, &bar0->tx_w_round_robin_1);
1429 writeq(val64, &bar0->tx_w_round_robin_2);
1430 writeq(val64, &bar0->tx_w_round_robin_3);
1431 val64 = 0x0001000100000000ULL;
1432 writeq(val64, &bar0->tx_w_round_robin_4);
1433 break;
1434 case 3:
1435 val64 = 0x0001020001020001ULL;
1436 writeq(val64, &bar0->tx_w_round_robin_0);
1437 val64 = 0x0200010200010200ULL;
1438 writeq(val64, &bar0->tx_w_round_robin_1);
1439 val64 = 0x0102000102000102ULL;
1440 writeq(val64, &bar0->tx_w_round_robin_2);
1441 val64 = 0x0001020001020001ULL;
1442 writeq(val64, &bar0->tx_w_round_robin_3);
1443 val64 = 0x0200010200000000ULL;
1444 writeq(val64, &bar0->tx_w_round_robin_4);
1445 break;
1446 case 4:
1447 val64 = 0x0001020300010203ULL;
1448 writeq(val64, &bar0->tx_w_round_robin_0);
1449 writeq(val64, &bar0->tx_w_round_robin_1);
1450 writeq(val64, &bar0->tx_w_round_robin_2);
1451 writeq(val64, &bar0->tx_w_round_robin_3);
1452 val64 = 0x0001020300000000ULL;
1453 writeq(val64, &bar0->tx_w_round_robin_4);
1454 break;
1455 case 5:
1456 val64 = 0x0001020304000102ULL;
1457 writeq(val64, &bar0->tx_w_round_robin_0);
1458 val64 = 0x0304000102030400ULL;
1459 writeq(val64, &bar0->tx_w_round_robin_1);
1460 val64 = 0x0102030400010203ULL;
1461 writeq(val64, &bar0->tx_w_round_robin_2);
1462 val64 = 0x0400010203040001ULL;
1463 writeq(val64, &bar0->tx_w_round_robin_3);
1464 val64 = 0x0203040000000000ULL;
1465 writeq(val64, &bar0->tx_w_round_robin_4);
1466 break;
1467 case 6:
1468 val64 = 0x0001020304050001ULL;
1469 writeq(val64, &bar0->tx_w_round_robin_0);
1470 val64 = 0x0203040500010203ULL;
1471 writeq(val64, &bar0->tx_w_round_robin_1);
1472 val64 = 0x0405000102030405ULL;
1473 writeq(val64, &bar0->tx_w_round_robin_2);
1474 val64 = 0x0001020304050001ULL;
1475 writeq(val64, &bar0->tx_w_round_robin_3);
1476 val64 = 0x0203040500000000ULL;
1477 writeq(val64, &bar0->tx_w_round_robin_4);
1478 break;
1479 case 7:
1480 val64 = 0x0001020304050600ULL;
1481 writeq(val64, &bar0->tx_w_round_robin_0);
1482 val64 = 0x0102030405060001ULL;
1483 writeq(val64, &bar0->tx_w_round_robin_1);
1484 val64 = 0x0203040506000102ULL;
1485 writeq(val64, &bar0->tx_w_round_robin_2);
1486 val64 = 0x0304050600010203ULL;
1487 writeq(val64, &bar0->tx_w_round_robin_3);
1488 val64 = 0x0405060000000000ULL;
1489 writeq(val64, &bar0->tx_w_round_robin_4);
1490 break;
1491 case 8:
1492 val64 = 0x0001020304050607ULL;
1493 writeq(val64, &bar0->tx_w_round_robin_0);
1494 writeq(val64, &bar0->tx_w_round_robin_1);
1495 writeq(val64, &bar0->tx_w_round_robin_2);
1496 writeq(val64, &bar0->tx_w_round_robin_3);
1497 val64 = 0x0001020300000000ULL;
1498 writeq(val64, &bar0->tx_w_round_robin_4);
1499 break;
1500 }
1501
1502 /* Enable all configured Tx FIFO partitions */
1503 val64 = readq(&bar0->tx_fifo_partition_0);
1504 val64 |= (TX_FIFO_PARTITION_EN);
1505 writeq(val64, &bar0->tx_fifo_partition_0);
1506
1507 /* Filling the Rx round robin registers as per the
1508 * number of Rings and steering based on QoS with
1509 * equal priority.
1510 */
1511 switch (config->rx_ring_num) {
1512 case 1:
1513 val64 = 0x0;
1514 writeq(val64, &bar0->rx_w_round_robin_0);
1515 writeq(val64, &bar0->rx_w_round_robin_1);
1516 writeq(val64, &bar0->rx_w_round_robin_2);
1517 writeq(val64, &bar0->rx_w_round_robin_3);
1518 writeq(val64, &bar0->rx_w_round_robin_4);
1519
1520 val64 = 0x8080808080808080ULL;
1521 writeq(val64, &bar0->rts_qos_steering);
1522 break;
1523 case 2:
1524 val64 = 0x0001000100010001ULL;
1525 writeq(val64, &bar0->rx_w_round_robin_0);
1526 writeq(val64, &bar0->rx_w_round_robin_1);
1527 writeq(val64, &bar0->rx_w_round_robin_2);
1528 writeq(val64, &bar0->rx_w_round_robin_3);
1529 val64 = 0x0001000100000000ULL;
1530 writeq(val64, &bar0->rx_w_round_robin_4);
1531
1532 val64 = 0x8080808040404040ULL;
1533 writeq(val64, &bar0->rts_qos_steering);
1534 break;
1535 case 3:
1536 val64 = 0x0001020001020001ULL;
1537 writeq(val64, &bar0->rx_w_round_robin_0);
1538 val64 = 0x0200010200010200ULL;
1539 writeq(val64, &bar0->rx_w_round_robin_1);
1540 val64 = 0x0102000102000102ULL;
1541 writeq(val64, &bar0->rx_w_round_robin_2);
1542 val64 = 0x0001020001020001ULL;
1543 writeq(val64, &bar0->rx_w_round_robin_3);
1544 val64 = 0x0200010200000000ULL;
1545 writeq(val64, &bar0->rx_w_round_robin_4);
1546
1547 val64 = 0x8080804040402020ULL;
1548 writeq(val64, &bar0->rts_qos_steering);
1549 break;
1550 case 4:
1551 val64 = 0x0001020300010203ULL;
1552 writeq(val64, &bar0->rx_w_round_robin_0);
1553 writeq(val64, &bar0->rx_w_round_robin_1);
1554 writeq(val64, &bar0->rx_w_round_robin_2);
1555 writeq(val64, &bar0->rx_w_round_robin_3);
1556 val64 = 0x0001020300000000ULL;
1557 writeq(val64, &bar0->rx_w_round_robin_4);
1558
1559 val64 = 0x8080404020201010ULL;
1560 writeq(val64, &bar0->rts_qos_steering);
1561 break;
1562 case 5:
1563 val64 = 0x0001020304000102ULL;
1564 writeq(val64, &bar0->rx_w_round_robin_0);
1565 val64 = 0x0304000102030400ULL;
1566 writeq(val64, &bar0->rx_w_round_robin_1);
1567 val64 = 0x0102030400010203ULL;
1568 writeq(val64, &bar0->rx_w_round_robin_2);
1569 val64 = 0x0400010203040001ULL;
1570 writeq(val64, &bar0->rx_w_round_robin_3);
1571 val64 = 0x0203040000000000ULL;
1572 writeq(val64, &bar0->rx_w_round_robin_4);
1573
1574 val64 = 0x8080404020201008ULL;
1575 writeq(val64, &bar0->rts_qos_steering);
1576 break;
1577 case 6:
1578 val64 = 0x0001020304050001ULL;
1579 writeq(val64, &bar0->rx_w_round_robin_0);
1580 val64 = 0x0203040500010203ULL;
1581 writeq(val64, &bar0->rx_w_round_robin_1);
1582 val64 = 0x0405000102030405ULL;
1583 writeq(val64, &bar0->rx_w_round_robin_2);
1584 val64 = 0x0001020304050001ULL;
1585 writeq(val64, &bar0->rx_w_round_robin_3);
1586 val64 = 0x0203040500000000ULL;
1587 writeq(val64, &bar0->rx_w_round_robin_4);
1588
1589 val64 = 0x8080404020100804ULL;
1590 writeq(val64, &bar0->rts_qos_steering);
1591 break;
1592 case 7:
1593 val64 = 0x0001020304050600ULL;
1594 writeq(val64, &bar0->rx_w_round_robin_0);
1595 val64 = 0x0102030405060001ULL;
1596 writeq(val64, &bar0->rx_w_round_robin_1);
1597 val64 = 0x0203040506000102ULL;
1598 writeq(val64, &bar0->rx_w_round_robin_2);
1599 val64 = 0x0304050600010203ULL;
1600 writeq(val64, &bar0->rx_w_round_robin_3);
1601 val64 = 0x0405060000000000ULL;
1602 writeq(val64, &bar0->rx_w_round_robin_4);
1603
1604 val64 = 0x8080402010080402ULL;
1605 writeq(val64, &bar0->rts_qos_steering);
1606 break;
1607 case 8:
1608 val64 = 0x0001020304050607ULL;
1609 writeq(val64, &bar0->rx_w_round_robin_0);
1610 writeq(val64, &bar0->rx_w_round_robin_1);
1611 writeq(val64, &bar0->rx_w_round_robin_2);
1612 writeq(val64, &bar0->rx_w_round_robin_3);
1613 val64 = 0x0001020300000000ULL;
1614 writeq(val64, &bar0->rx_w_round_robin_4);
1615
1616 val64 = 0x8040201008040201ULL;
1617 writeq(val64, &bar0->rts_qos_steering);
1618 break;
1619 }
1620
1621 /* UDP Fix */
1622 val64 = 0;
1623 for (i = 0; i < 8; i++)
1624 writeq(val64, &bar0->rts_frm_len_n[i]);
1625
1626 /* Set the default rts frame length for the rings configured */
1627 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1628 for (i = 0 ; i < config->rx_ring_num ; i++)
1629 writeq(val64, &bar0->rts_frm_len_n[i]);
1630
1631 /* Set the frame length for the configured rings
1632 * desired by the user
1633 */
1634 for (i = 0; i < config->rx_ring_num; i++) {
1635 /* If rts_frm_len[i] == 0 then it is assumed that user not
1636 * specified frame length steering.
1637 * If the user provides the frame length then program
1638 * the rts_frm_len register for those values or else
1639 * leave it as it is.
1640 */
1641 if (rts_frm_len[i] != 0) {
1642 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1643 &bar0->rts_frm_len_n[i]);
1644 }
1645 }
1646
1647 /* Disable differentiated services steering logic */
1648 for (i = 0; i < 64; i++) {
1649 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1650 DBG_PRINT(ERR_DBG,
1651 "%s: rts_ds_steer failed on codepoint %d\n",
1652 dev->name, i);
1653 return -ENODEV;
1654 }
1655 }
1656
1657 /* Program statistics memory */
1658 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1659
1660 if (nic->device_type == XFRAME_II_DEVICE) {
1661 val64 = STAT_BC(0x320);
1662 writeq(val64, &bar0->stat_byte_cnt);
1663 }
1664
1665 /*
1666 * Initializing the sampling rate for the device to calculate the
1667 * bandwidth utilization.
1668 */
1669 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1670 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1671 writeq(val64, &bar0->mac_link_util);
1672
1673 /*
1674 * Initializing the Transmit and Receive Traffic Interrupt
1675 * Scheme.
1676 */
1677
1678 /* Initialize TTI */
1679 if (SUCCESS != init_tti(nic, nic->last_link_state))
1680 return -ENODEV;
1681
1682 /* RTI Initialization */
1683 if (nic->device_type == XFRAME_II_DEVICE) {
1684 /*
1685 * Programmed to generate Apprx 500 Intrs per
1686 * second
1687 */
1688 int count = (nic->config.bus_speed * 125)/4;
1689 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1690 } else
1691 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1692 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1693 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1694 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1695 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1696
1697 writeq(val64, &bar0->rti_data1_mem);
1698
1699 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1700 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1701 if (nic->config.intr_type == MSI_X)
1702 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1703 RTI_DATA2_MEM_RX_UFC_D(0x40));
1704 else
1705 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1706 RTI_DATA2_MEM_RX_UFC_D(0x80));
1707 writeq(val64, &bar0->rti_data2_mem);
1708
1709 for (i = 0; i < config->rx_ring_num; i++) {
1710 val64 = RTI_CMD_MEM_WE |
1711 RTI_CMD_MEM_STROBE_NEW_CMD |
1712 RTI_CMD_MEM_OFFSET(i);
1713 writeq(val64, &bar0->rti_command_mem);
1714
1715 /*
1716 * Once the operation completes, the Strobe bit of the
1717 * command register will be reset. We poll for this
1718 * particular condition. We wait for a maximum of 500ms
1719 * for the operation to complete, if it's not complete
1720 * by then we return error.
1721 */
1722 time = 0;
1723 while (true) {
1724 val64 = readq(&bar0->rti_command_mem);
1725 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1726 break;
1727
1728 if (time > 10) {
1729 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1730 dev->name);
1731 return -ENODEV;
1732 }
1733 time++;
1734 msleep(50);
1735 }
1736 }
1737
1738 /*
1739 * Initializing proper values as Pause threshold into all
1740 * the 8 Queues on Rx side.
1741 */
1742 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1743 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1744
1745 /* Disable RMAC PAD STRIPPING */
1746 add = &bar0->mac_cfg;
1747 val64 = readq(&bar0->mac_cfg);
1748 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1749 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1750 writel((u32) (val64), add);
1751 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1752 writel((u32) (val64 >> 32), (add + 4));
1753 val64 = readq(&bar0->mac_cfg);
1754
1755 /* Enable FCS stripping by adapter */
1756 add = &bar0->mac_cfg;
1757 val64 = readq(&bar0->mac_cfg);
1758 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1759 if (nic->device_type == XFRAME_II_DEVICE)
1760 writeq(val64, &bar0->mac_cfg);
1761 else {
1762 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1763 writel((u32) (val64), add);
1764 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1765 writel((u32) (val64 >> 32), (add + 4));
1766 }
1767
1768 /*
1769 * Set the time value to be inserted in the pause frame
1770 * generated by xena.
1771 */
1772 val64 = readq(&bar0->rmac_pause_cfg);
1773 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1774 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1775 writeq(val64, &bar0->rmac_pause_cfg);
1776
1777 /*
1778 * Set the Threshold Limit for Generating the pause frame
1779 * If the amount of data in any Queue exceeds ratio of
1780 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1781 * pause frame is generated
1782 */
1783 val64 = 0;
1784 for (i = 0; i < 4; i++) {
1785 val64 |= (((u64)0xFF00 |
1786 nic->mac_control.mc_pause_threshold_q0q3)
1787 << (i * 2 * 8));
1788 }
1789 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1790
1791 val64 = 0;
1792 for (i = 0; i < 4; i++) {
1793 val64 |= (((u64)0xFF00 |
1794 nic->mac_control.mc_pause_threshold_q4q7)
1795 << (i * 2 * 8));
1796 }
1797 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1798
1799 /*
1800 * TxDMA will stop Read request if the number of read split has
1801 * exceeded the limit pointed by shared_splits
1802 */
1803 val64 = readq(&bar0->pic_control);
1804 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1805 writeq(val64, &bar0->pic_control);
1806
1807 if (nic->config.bus_speed == 266) {
1808 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1809 writeq(0x0, &bar0->read_retry_delay);
1810 writeq(0x0, &bar0->write_retry_delay);
1811 }
1812
1813 /*
1814 * Programming the Herc to split every write transaction
1815 * that does not start on an ADB to reduce disconnects.
1816 */
1817 if (nic->device_type == XFRAME_II_DEVICE) {
1818 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1819 MISC_LINK_STABILITY_PRD(3);
1820 writeq(val64, &bar0->misc_control);
1821 val64 = readq(&bar0->pic_control2);
1822 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1823 writeq(val64, &bar0->pic_control2);
1824 }
1825 if (strstr(nic->product_name, "CX4")) {
1826 val64 = TMAC_AVG_IPG(0x17);
1827 writeq(val64, &bar0->tmac_avg_ipg);
1828 }
1829
1830 return SUCCESS;
1831 }
1832 #define LINK_UP_DOWN_INTERRUPT 1
1833 #define MAC_RMAC_ERR_TIMER 2
1834
1835 static int s2io_link_fault_indication(struct s2io_nic *nic)
1836 {
1837 if (nic->device_type == XFRAME_II_DEVICE)
1838 return LINK_UP_DOWN_INTERRUPT;
1839 else
1840 return MAC_RMAC_ERR_TIMER;
1841 }
1842
1843 /**
1844 * do_s2io_write_bits - update alarm bits in alarm register
1845 * @value: alarm bits
1846 * @flag: interrupt status
1847 * @addr: address value
1848 * Description: update alarm bits in alarm register
1849 * Return Value:
1850 * NONE.
1851 */
1852 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1853 {
1854 u64 temp64;
1855
1856 temp64 = readq(addr);
1857
1858 if (flag == ENABLE_INTRS)
1859 temp64 &= ~((u64)value);
1860 else
1861 temp64 |= ((u64)value);
1862 writeq(temp64, addr);
1863 }
1864
1865 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1866 {
1867 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1868 register u64 gen_int_mask = 0;
1869 u64 interruptible;
1870
1871 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1872 if (mask & TX_DMA_INTR) {
1873 gen_int_mask |= TXDMA_INT_M;
1874
1875 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1876 TXDMA_PCC_INT | TXDMA_TTI_INT |
1877 TXDMA_LSO_INT | TXDMA_TPA_INT |
1878 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1879
1880 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1881 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1882 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1883 &bar0->pfc_err_mask);
1884
1885 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1886 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1887 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1888
1889 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1890 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1891 PCC_N_SERR | PCC_6_COF_OV_ERR |
1892 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1893 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1894 PCC_TXB_ECC_SG_ERR,
1895 flag, &bar0->pcc_err_mask);
1896
1897 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1898 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1899
1900 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1901 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1902 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1903 flag, &bar0->lso_err_mask);
1904
1905 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1906 flag, &bar0->tpa_err_mask);
1907
1908 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1909 }
1910
1911 if (mask & TX_MAC_INTR) {
1912 gen_int_mask |= TXMAC_INT_M;
1913 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1914 &bar0->mac_int_mask);
1915 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1916 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1917 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1918 flag, &bar0->mac_tmac_err_mask);
1919 }
1920
1921 if (mask & TX_XGXS_INTR) {
1922 gen_int_mask |= TXXGXS_INT_M;
1923 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1924 &bar0->xgxs_int_mask);
1925 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1926 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1927 flag, &bar0->xgxs_txgxs_err_mask);
1928 }
1929
1930 if (mask & RX_DMA_INTR) {
1931 gen_int_mask |= RXDMA_INT_M;
1932 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1933 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1934 flag, &bar0->rxdma_int_mask);
1935 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1936 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1937 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1938 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1939 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1940 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1941 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1942 &bar0->prc_pcix_err_mask);
1943 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1944 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1945 &bar0->rpa_err_mask);
1946 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1947 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1948 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1949 RDA_FRM_ECC_SG_ERR |
1950 RDA_MISC_ERR|RDA_PCIX_ERR,
1951 flag, &bar0->rda_err_mask);
1952 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1953 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1954 flag, &bar0->rti_err_mask);
1955 }
1956
1957 if (mask & RX_MAC_INTR) {
1958 gen_int_mask |= RXMAC_INT_M;
1959 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1960 &bar0->mac_int_mask);
1961 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1962 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1963 RMAC_DOUBLE_ECC_ERR);
1964 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1965 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1966 do_s2io_write_bits(interruptible,
1967 flag, &bar0->mac_rmac_err_mask);
1968 }
1969
1970 if (mask & RX_XGXS_INTR) {
1971 gen_int_mask |= RXXGXS_INT_M;
1972 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1973 &bar0->xgxs_int_mask);
1974 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1975 &bar0->xgxs_rxgxs_err_mask);
1976 }
1977
1978 if (mask & MC_INTR) {
1979 gen_int_mask |= MC_INT_M;
1980 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1981 flag, &bar0->mc_int_mask);
1982 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1983 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1984 &bar0->mc_err_mask);
1985 }
1986 nic->general_int_mask = gen_int_mask;
1987
1988 /* Remove this line when alarm interrupts are enabled */
1989 nic->general_int_mask = 0;
1990 }
1991
1992 /**
1993 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1994 * @nic: device private variable,
1995 * @mask: A mask indicating which Intr block must be modified and,
1996 * @flag: A flag indicating whether to enable or disable the Intrs.
1997 * Description: This function will either disable or enable the interrupts
1998 * depending on the flag argument. The mask argument can be used to
1999 * enable/disable any Intr block.
2000 * Return Value: NONE.
2001 */
2002
2003 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2004 {
2005 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2006 register u64 temp64 = 0, intr_mask = 0;
2007
2008 intr_mask = nic->general_int_mask;
2009
2010 /* Top level interrupt classification */
2011 /* PIC Interrupts */
2012 if (mask & TX_PIC_INTR) {
2013 /* Enable PIC Intrs in the general intr mask register */
2014 intr_mask |= TXPIC_INT_M;
2015 if (flag == ENABLE_INTRS) {
2016 /*
2017 * If Hercules adapter enable GPIO otherwise
2018 * disable all PCIX, Flash, MDIO, IIC and GPIO
2019 * interrupts for now.
2020 * TODO
2021 */
2022 if (s2io_link_fault_indication(nic) ==
2023 LINK_UP_DOWN_INTERRUPT) {
2024 do_s2io_write_bits(PIC_INT_GPIO, flag,
2025 &bar0->pic_int_mask);
2026 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2027 &bar0->gpio_int_mask);
2028 } else
2029 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2030 } else if (flag == DISABLE_INTRS) {
2031 /*
2032 * Disable PIC Intrs in the general
2033 * intr mask register
2034 */
2035 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2036 }
2037 }
2038
2039 /* Tx traffic interrupts */
2040 if (mask & TX_TRAFFIC_INTR) {
2041 intr_mask |= TXTRAFFIC_INT_M;
2042 if (flag == ENABLE_INTRS) {
2043 /*
2044 * Enable all the Tx side interrupts
2045 * writing 0 Enables all 64 TX interrupt levels
2046 */
2047 writeq(0x0, &bar0->tx_traffic_mask);
2048 } else if (flag == DISABLE_INTRS) {
2049 /*
2050 * Disable Tx Traffic Intrs in the general intr mask
2051 * register.
2052 */
2053 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2054 }
2055 }
2056
2057 /* Rx traffic interrupts */
2058 if (mask & RX_TRAFFIC_INTR) {
2059 intr_mask |= RXTRAFFIC_INT_M;
2060 if (flag == ENABLE_INTRS) {
2061 /* writing 0 Enables all 8 RX interrupt levels */
2062 writeq(0x0, &bar0->rx_traffic_mask);
2063 } else if (flag == DISABLE_INTRS) {
2064 /*
2065 * Disable Rx Traffic Intrs in the general intr mask
2066 * register.
2067 */
2068 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2069 }
2070 }
2071
2072 temp64 = readq(&bar0->general_int_mask);
2073 if (flag == ENABLE_INTRS)
2074 temp64 &= ~((u64)intr_mask);
2075 else
2076 temp64 = DISABLE_ALL_INTRS;
2077 writeq(temp64, &bar0->general_int_mask);
2078
2079 nic->general_int_mask = readq(&bar0->general_int_mask);
2080 }
2081
2082 /**
2083 * verify_pcc_quiescent- Checks for PCC quiescent state
2084 * Return: 1 If PCC is quiescence
2085 * 0 If PCC is not quiescence
2086 */
2087 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2088 {
2089 int ret = 0, herc;
2090 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2091 u64 val64 = readq(&bar0->adapter_status);
2092
2093 herc = (sp->device_type == XFRAME_II_DEVICE);
2094
2095 if (flag == false) {
2096 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2097 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2098 ret = 1;
2099 } else {
2100 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2101 ret = 1;
2102 }
2103 } else {
2104 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2105 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2106 ADAPTER_STATUS_RMAC_PCC_IDLE))
2107 ret = 1;
2108 } else {
2109 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2110 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2111 ret = 1;
2112 }
2113 }
2114
2115 return ret;
2116 }
2117 /**
2118 * verify_xena_quiescence - Checks whether the H/W is ready
2119 * Description: Returns whether the H/W is ready to go or not. Depending
2120 * on whether adapter enable bit was written or not the comparison
2121 * differs and the calling function passes the input argument flag to
2122 * indicate this.
2123 * Return: 1 If xena is quiescence
2124 * 0 If Xena is not quiescence
2125 */
2126
2127 static int verify_xena_quiescence(struct s2io_nic *sp)
2128 {
2129 int mode;
2130 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2131 u64 val64 = readq(&bar0->adapter_status);
2132 mode = s2io_verify_pci_mode(sp);
2133
2134 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2135 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2136 return 0;
2137 }
2138 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2139 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2140 return 0;
2141 }
2142 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2143 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2144 return 0;
2145 }
2146 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2147 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2148 return 0;
2149 }
2150 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2151 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2152 return 0;
2153 }
2154 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2155 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2156 return 0;
2157 }
2158 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2159 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2160 return 0;
2161 }
2162 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2163 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2164 return 0;
2165 }
2166
2167 /*
2168 * In PCI 33 mode, the P_PLL is not used, and therefore,
2169 * the the P_PLL_LOCK bit in the adapter_status register will
2170 * not be asserted.
2171 */
2172 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2173 sp->device_type == XFRAME_II_DEVICE &&
2174 mode != PCI_MODE_PCI_33) {
2175 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2176 return 0;
2177 }
2178 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2179 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2180 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2181 return 0;
2182 }
2183 return 1;
2184 }
2185
2186 /**
2187 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2188 * @sp: Pointer to device specifc structure
2189 * Description :
2190 * New procedure to clear mac address reading problems on Alpha platforms
2191 *
2192 */
2193
2194 static void fix_mac_address(struct s2io_nic *sp)
2195 {
2196 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2197 int i = 0;
2198
2199 while (fix_mac[i] != END_SIGN) {
2200 writeq(fix_mac[i++], &bar0->gpio_control);
2201 udelay(10);
2202 (void) readq(&bar0->gpio_control);
2203 }
2204 }
2205
2206 /**
2207 * start_nic - Turns the device on
2208 * @nic : device private variable.
2209 * Description:
2210 * This function actually turns the device on. Before this function is
2211 * called,all Registers are configured from their reset states
2212 * and shared memory is allocated but the NIC is still quiescent. On
2213 * calling this function, the device interrupts are cleared and the NIC is
2214 * literally switched on by writing into the adapter control register.
2215 * Return Value:
2216 * SUCCESS on success and -1 on failure.
2217 */
2218
2219 static int start_nic(struct s2io_nic *nic)
2220 {
2221 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2222 struct net_device *dev = nic->dev;
2223 register u64 val64 = 0;
2224 u16 subid, i;
2225 struct config_param *config = &nic->config;
2226 struct mac_info *mac_control = &nic->mac_control;
2227
2228 /* PRC Initialization and configuration */
2229 for (i = 0; i < config->rx_ring_num; i++) {
2230 struct ring_info *ring = &mac_control->rings[i];
2231
2232 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2233 &bar0->prc_rxd0_n[i]);
2234
2235 val64 = readq(&bar0->prc_ctrl_n[i]);
2236 if (nic->rxd_mode == RXD_MODE_1)
2237 val64 |= PRC_CTRL_RC_ENABLED;
2238 else
2239 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2240 if (nic->device_type == XFRAME_II_DEVICE)
2241 val64 |= PRC_CTRL_GROUP_READS;
2242 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2243 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2244 writeq(val64, &bar0->prc_ctrl_n[i]);
2245 }
2246
2247 if (nic->rxd_mode == RXD_MODE_3B) {
2248 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2249 val64 = readq(&bar0->rx_pa_cfg);
2250 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2251 writeq(val64, &bar0->rx_pa_cfg);
2252 }
2253
2254 if (vlan_tag_strip == 0) {
2255 val64 = readq(&bar0->rx_pa_cfg);
2256 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2257 writeq(val64, &bar0->rx_pa_cfg);
2258 nic->vlan_strip_flag = 0;
2259 }
2260
2261 /*
2262 * Enabling MC-RLDRAM. After enabling the device, we timeout
2263 * for around 100ms, which is approximately the time required
2264 * for the device to be ready for operation.
2265 */
2266 val64 = readq(&bar0->mc_rldram_mrs);
2267 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2268 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2269 val64 = readq(&bar0->mc_rldram_mrs);
2270
2271 msleep(100); /* Delay by around 100 ms. */
2272
2273 /* Enabling ECC Protection. */
2274 val64 = readq(&bar0->adapter_control);
2275 val64 &= ~ADAPTER_ECC_EN;
2276 writeq(val64, &bar0->adapter_control);
2277
2278 /*
2279 * Verify if the device is ready to be enabled, if so enable
2280 * it.
2281 */
2282 val64 = readq(&bar0->adapter_status);
2283 if (!verify_xena_quiescence(nic)) {
2284 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2285 "Adapter status reads: 0x%llx\n",
2286 dev->name, (unsigned long long)val64);
2287 return FAILURE;
2288 }
2289
2290 /*
2291 * With some switches, link might be already up at this point.
2292 * Because of this weird behavior, when we enable laser,
2293 * we may not get link. We need to handle this. We cannot
2294 * figure out which switch is misbehaving. So we are forced to
2295 * make a global change.
2296 */
2297
2298 /* Enabling Laser. */
2299 val64 = readq(&bar0->adapter_control);
2300 val64 |= ADAPTER_EOI_TX_ON;
2301 writeq(val64, &bar0->adapter_control);
2302
2303 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2304 /*
2305 * Dont see link state interrupts initially on some switches,
2306 * so directly scheduling the link state task here.
2307 */
2308 schedule_work(&nic->set_link_task);
2309 }
2310 /* SXE-002: Initialize link and activity LED */
2311 subid = nic->pdev->subsystem_device;
2312 if (((subid & 0xFF) >= 0x07) &&
2313 (nic->device_type == XFRAME_I_DEVICE)) {
2314 val64 = readq(&bar0->gpio_control);
2315 val64 |= 0x0000800000000000ULL;
2316 writeq(val64, &bar0->gpio_control);
2317 val64 = 0x0411040400000000ULL;
2318 writeq(val64, (void __iomem *)bar0 + 0x2700);
2319 }
2320
2321 return SUCCESS;
2322 }
2323 /**
2324 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2325 */
2326 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2327 struct TxD *txdlp, int get_off)
2328 {
2329 struct s2io_nic *nic = fifo_data->nic;
2330 struct sk_buff *skb;
2331 struct TxD *txds;
2332 u16 j, frg_cnt;
2333
2334 txds = txdlp;
2335 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2336 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2337 sizeof(u64), PCI_DMA_TODEVICE);
2338 txds++;
2339 }
2340
2341 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2342 if (!skb) {
2343 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2344 return NULL;
2345 }
2346 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2347 skb_headlen(skb), PCI_DMA_TODEVICE);
2348 frg_cnt = skb_shinfo(skb)->nr_frags;
2349 if (frg_cnt) {
2350 txds++;
2351 for (j = 0; j < frg_cnt; j++, txds++) {
2352 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2353 if (!txds->Buffer_Pointer)
2354 break;
2355 pci_unmap_page(nic->pdev,
2356 (dma_addr_t)txds->Buffer_Pointer,
2357 skb_frag_size(frag), PCI_DMA_TODEVICE);
2358 }
2359 }
2360 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2361 return skb;
2362 }
2363
2364 /**
2365 * free_tx_buffers - Free all queued Tx buffers
2366 * @nic : device private variable.
2367 * Description:
2368 * Free all queued Tx buffers.
2369 * Return Value: void
2370 */
2371
2372 static void free_tx_buffers(struct s2io_nic *nic)
2373 {
2374 struct net_device *dev = nic->dev;
2375 struct sk_buff *skb;
2376 struct TxD *txdp;
2377 int i, j;
2378 int cnt = 0;
2379 struct config_param *config = &nic->config;
2380 struct mac_info *mac_control = &nic->mac_control;
2381 struct stat_block *stats = mac_control->stats_info;
2382 struct swStat *swstats = &stats->sw_stat;
2383
2384 for (i = 0; i < config->tx_fifo_num; i++) {
2385 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2386 struct fifo_info *fifo = &mac_control->fifos[i];
2387 unsigned long flags;
2388
2389 spin_lock_irqsave(&fifo->tx_lock, flags);
2390 for (j = 0; j < tx_cfg->fifo_len; j++) {
2391 txdp = fifo->list_info[j].list_virt_addr;
2392 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2393 if (skb) {
2394 swstats->mem_freed += skb->truesize;
2395 dev_kfree_skb(skb);
2396 cnt++;
2397 }
2398 }
2399 DBG_PRINT(INTR_DBG,
2400 "%s: forcibly freeing %d skbs on FIFO%d\n",
2401 dev->name, cnt, i);
2402 fifo->tx_curr_get_info.offset = 0;
2403 fifo->tx_curr_put_info.offset = 0;
2404 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2405 }
2406 }
2407
2408 /**
2409 * stop_nic - To stop the nic
2410 * @nic ; device private variable.
2411 * Description:
2412 * This function does exactly the opposite of what the start_nic()
2413 * function does. This function is called to stop the device.
2414 * Return Value:
2415 * void.
2416 */
2417
2418 static void stop_nic(struct s2io_nic *nic)
2419 {
2420 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2421 register u64 val64 = 0;
2422 u16 interruptible;
2423
2424 /* Disable all interrupts */
2425 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2426 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2427 interruptible |= TX_PIC_INTR;
2428 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2429
2430 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2431 val64 = readq(&bar0->adapter_control);
2432 val64 &= ~(ADAPTER_CNTL_EN);
2433 writeq(val64, &bar0->adapter_control);
2434 }
2435
2436 /**
2437 * fill_rx_buffers - Allocates the Rx side skbs
2438 * @ring_info: per ring structure
2439 * @from_card_up: If this is true, we will map the buffer to get
2440 * the dma address for buf0 and buf1 to give it to the card.
2441 * Else we will sync the already mapped buffer to give it to the card.
2442 * Description:
2443 * The function allocates Rx side skbs and puts the physical
2444 * address of these buffers into the RxD buffer pointers, so that the NIC
2445 * can DMA the received frame into these locations.
2446 * The NIC supports 3 receive modes, viz
2447 * 1. single buffer,
2448 * 2. three buffer and
2449 * 3. Five buffer modes.
2450 * Each mode defines how many fragments the received frame will be split
2451 * up into by the NIC. The frame is split into L3 header, L4 Header,
2452 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2453 * is split into 3 fragments. As of now only single buffer mode is
2454 * supported.
2455 * Return Value:
2456 * SUCCESS on success or an appropriate -ve value on failure.
2457 */
2458 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2459 int from_card_up)
2460 {
2461 struct sk_buff *skb;
2462 struct RxD_t *rxdp;
2463 int off, size, block_no, block_no1;
2464 u32 alloc_tab = 0;
2465 u32 alloc_cnt;
2466 u64 tmp;
2467 struct buffAdd *ba;
2468 struct RxD_t *first_rxdp = NULL;
2469 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2470 int rxd_index = 0;
2471 struct RxD1 *rxdp1;
2472 struct RxD3 *rxdp3;
2473 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2474
2475 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2476
2477 block_no1 = ring->rx_curr_get_info.block_index;
2478 while (alloc_tab < alloc_cnt) {
2479 block_no = ring->rx_curr_put_info.block_index;
2480
2481 off = ring->rx_curr_put_info.offset;
2482
2483 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2484
2485 rxd_index = off + 1;
2486 if (block_no)
2487 rxd_index += (block_no * ring->rxd_count);
2488
2489 if ((block_no == block_no1) &&
2490 (off == ring->rx_curr_get_info.offset) &&
2491 (rxdp->Host_Control)) {
2492 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2493 ring->dev->name);
2494 goto end;
2495 }
2496 if (off && (off == ring->rxd_count)) {
2497 ring->rx_curr_put_info.block_index++;
2498 if (ring->rx_curr_put_info.block_index ==
2499 ring->block_count)
2500 ring->rx_curr_put_info.block_index = 0;
2501 block_no = ring->rx_curr_put_info.block_index;
2502 off = 0;
2503 ring->rx_curr_put_info.offset = off;
2504 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2505 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2506 ring->dev->name, rxdp);
2507
2508 }
2509
2510 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2511 ((ring->rxd_mode == RXD_MODE_3B) &&
2512 (rxdp->Control_2 & s2BIT(0)))) {
2513 ring->rx_curr_put_info.offset = off;
2514 goto end;
2515 }
2516 /* calculate size of skb based on ring mode */
2517 size = ring->mtu +
2518 HEADER_ETHERNET_II_802_3_SIZE +
2519 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2520 if (ring->rxd_mode == RXD_MODE_1)
2521 size += NET_IP_ALIGN;
2522 else
2523 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2524
2525 /* allocate skb */
2526 skb = netdev_alloc_skb(nic->dev, size);
2527 if (!skb) {
2528 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2529 ring->dev->name);
2530 if (first_rxdp) {
2531 wmb();
2532 first_rxdp->Control_1 |= RXD_OWN_XENA;
2533 }
2534 swstats->mem_alloc_fail_cnt++;
2535
2536 return -ENOMEM ;
2537 }
2538 swstats->mem_allocated += skb->truesize;
2539
2540 if (ring->rxd_mode == RXD_MODE_1) {
2541 /* 1 buffer mode - normal operation mode */
2542 rxdp1 = (struct RxD1 *)rxdp;
2543 memset(rxdp, 0, sizeof(struct RxD1));
2544 skb_reserve(skb, NET_IP_ALIGN);
2545 rxdp1->Buffer0_ptr =
2546 pci_map_single(ring->pdev, skb->data,
2547 size - NET_IP_ALIGN,
2548 PCI_DMA_FROMDEVICE);
2549 if (pci_dma_mapping_error(nic->pdev,
2550 rxdp1->Buffer0_ptr))
2551 goto pci_map_failed;
2552
2553 rxdp->Control_2 =
2554 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2555 rxdp->Host_Control = (unsigned long)skb;
2556 } else if (ring->rxd_mode == RXD_MODE_3B) {
2557 /*
2558 * 2 buffer mode -
2559 * 2 buffer mode provides 128
2560 * byte aligned receive buffers.
2561 */
2562
2563 rxdp3 = (struct RxD3 *)rxdp;
2564 /* save buffer pointers to avoid frequent dma mapping */
2565 Buffer0_ptr = rxdp3->Buffer0_ptr;
2566 Buffer1_ptr = rxdp3->Buffer1_ptr;
2567 memset(rxdp, 0, sizeof(struct RxD3));
2568 /* restore the buffer pointers for dma sync*/
2569 rxdp3->Buffer0_ptr = Buffer0_ptr;
2570 rxdp3->Buffer1_ptr = Buffer1_ptr;
2571
2572 ba = &ring->ba[block_no][off];
2573 skb_reserve(skb, BUF0_LEN);
2574 tmp = (u64)(unsigned long)skb->data;
2575 tmp += ALIGN_SIZE;
2576 tmp &= ~ALIGN_SIZE;
2577 skb->data = (void *) (unsigned long)tmp;
2578 skb_reset_tail_pointer(skb);
2579
2580 if (from_card_up) {
2581 rxdp3->Buffer0_ptr =
2582 pci_map_single(ring->pdev, ba->ba_0,
2583 BUF0_LEN,
2584 PCI_DMA_FROMDEVICE);
2585 if (pci_dma_mapping_error(nic->pdev,
2586 rxdp3->Buffer0_ptr))
2587 goto pci_map_failed;
2588 } else
2589 pci_dma_sync_single_for_device(ring->pdev,
2590 (dma_addr_t)rxdp3->Buffer0_ptr,
2591 BUF0_LEN,
2592 PCI_DMA_FROMDEVICE);
2593
2594 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2595 if (ring->rxd_mode == RXD_MODE_3B) {
2596 /* Two buffer mode */
2597
2598 /*
2599 * Buffer2 will have L3/L4 header plus
2600 * L4 payload
2601 */
2602 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2603 skb->data,
2604 ring->mtu + 4,
2605 PCI_DMA_FROMDEVICE);
2606
2607 if (pci_dma_mapping_error(nic->pdev,
2608 rxdp3->Buffer2_ptr))
2609 goto pci_map_failed;
2610
2611 if (from_card_up) {
2612 rxdp3->Buffer1_ptr =
2613 pci_map_single(ring->pdev,
2614 ba->ba_1,
2615 BUF1_LEN,
2616 PCI_DMA_FROMDEVICE);
2617
2618 if (pci_dma_mapping_error(nic->pdev,
2619 rxdp3->Buffer1_ptr)) {
2620 pci_unmap_single(ring->pdev,
2621 (dma_addr_t)(unsigned long)
2622 skb->data,
2623 ring->mtu + 4,
2624 PCI_DMA_FROMDEVICE);
2625 goto pci_map_failed;
2626 }
2627 }
2628 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2629 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2630 (ring->mtu + 4);
2631 }
2632 rxdp->Control_2 |= s2BIT(0);
2633 rxdp->Host_Control = (unsigned long) (skb);
2634 }
2635 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2636 rxdp->Control_1 |= RXD_OWN_XENA;
2637 off++;
2638 if (off == (ring->rxd_count + 1))
2639 off = 0;
2640 ring->rx_curr_put_info.offset = off;
2641
2642 rxdp->Control_2 |= SET_RXD_MARKER;
2643 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2644 if (first_rxdp) {
2645 wmb();
2646 first_rxdp->Control_1 |= RXD_OWN_XENA;
2647 }
2648 first_rxdp = rxdp;
2649 }
2650 ring->rx_bufs_left += 1;
2651 alloc_tab++;
2652 }
2653
2654 end:
2655 /* Transfer ownership of first descriptor to adapter just before
2656 * exiting. Before that, use memory barrier so that ownership
2657 * and other fields are seen by adapter correctly.
2658 */
2659 if (first_rxdp) {
2660 wmb();
2661 first_rxdp->Control_1 |= RXD_OWN_XENA;
2662 }
2663
2664 return SUCCESS;
2665
2666 pci_map_failed:
2667 swstats->pci_map_fail_cnt++;
2668 swstats->mem_freed += skb->truesize;
2669 dev_kfree_skb_irq(skb);
2670 return -ENOMEM;
2671 }
2672
2673 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2674 {
2675 struct net_device *dev = sp->dev;
2676 int j;
2677 struct sk_buff *skb;
2678 struct RxD_t *rxdp;
2679 struct RxD1 *rxdp1;
2680 struct RxD3 *rxdp3;
2681 struct mac_info *mac_control = &sp->mac_control;
2682 struct stat_block *stats = mac_control->stats_info;
2683 struct swStat *swstats = &stats->sw_stat;
2684
2685 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2686 rxdp = mac_control->rings[ring_no].
2687 rx_blocks[blk].rxds[j].virt_addr;
2688 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2689 if (!skb)
2690 continue;
2691 if (sp->rxd_mode == RXD_MODE_1) {
2692 rxdp1 = (struct RxD1 *)rxdp;
2693 pci_unmap_single(sp->pdev,
2694 (dma_addr_t)rxdp1->Buffer0_ptr,
2695 dev->mtu +
2696 HEADER_ETHERNET_II_802_3_SIZE +
2697 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2698 PCI_DMA_FROMDEVICE);
2699 memset(rxdp, 0, sizeof(struct RxD1));
2700 } else if (sp->rxd_mode == RXD_MODE_3B) {
2701 rxdp3 = (struct RxD3 *)rxdp;
2702 pci_unmap_single(sp->pdev,
2703 (dma_addr_t)rxdp3->Buffer0_ptr,
2704 BUF0_LEN,
2705 PCI_DMA_FROMDEVICE);
2706 pci_unmap_single(sp->pdev,
2707 (dma_addr_t)rxdp3->Buffer1_ptr,
2708 BUF1_LEN,
2709 PCI_DMA_FROMDEVICE);
2710 pci_unmap_single(sp->pdev,
2711 (dma_addr_t)rxdp3->Buffer2_ptr,
2712 dev->mtu + 4,
2713 PCI_DMA_FROMDEVICE);
2714 memset(rxdp, 0, sizeof(struct RxD3));
2715 }
2716 swstats->mem_freed += skb->truesize;
2717 dev_kfree_skb(skb);
2718 mac_control->rings[ring_no].rx_bufs_left -= 1;
2719 }
2720 }
2721
2722 /**
2723 * free_rx_buffers - Frees all Rx buffers
2724 * @sp: device private variable.
2725 * Description:
2726 * This function will free all Rx buffers allocated by host.
2727 * Return Value:
2728 * NONE.
2729 */
2730
2731 static void free_rx_buffers(struct s2io_nic *sp)
2732 {
2733 struct net_device *dev = sp->dev;
2734 int i, blk = 0, buf_cnt = 0;
2735 struct config_param *config = &sp->config;
2736 struct mac_info *mac_control = &sp->mac_control;
2737
2738 for (i = 0; i < config->rx_ring_num; i++) {
2739 struct ring_info *ring = &mac_control->rings[i];
2740
2741 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2742 free_rxd_blk(sp, i, blk);
2743
2744 ring->rx_curr_put_info.block_index = 0;
2745 ring->rx_curr_get_info.block_index = 0;
2746 ring->rx_curr_put_info.offset = 0;
2747 ring->rx_curr_get_info.offset = 0;
2748 ring->rx_bufs_left = 0;
2749 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2750 dev->name, buf_cnt, i);
2751 }
2752 }
2753
2754 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2755 {
2756 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2757 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2758 ring->dev->name);
2759 }
2760 return 0;
2761 }
2762
2763 /**
2764 * s2io_poll - Rx interrupt handler for NAPI support
2765 * @napi : pointer to the napi structure.
2766 * @budget : The number of packets that were budgeted to be processed
2767 * during one pass through the 'Poll" function.
2768 * Description:
2769 * Comes into picture only if NAPI support has been incorporated. It does
2770 * the same thing that rx_intr_handler does, but not in a interrupt context
2771 * also It will process only a given number of packets.
2772 * Return value:
2773 * 0 on success and 1 if there are No Rx packets to be processed.
2774 */
2775
2776 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2777 {
2778 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2779 struct net_device *dev = ring->dev;
2780 int pkts_processed = 0;
2781 u8 __iomem *addr = NULL;
2782 u8 val8 = 0;
2783 struct s2io_nic *nic = netdev_priv(dev);
2784 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2785 int budget_org = budget;
2786
2787 if (unlikely(!is_s2io_card_up(nic)))
2788 return 0;
2789
2790 pkts_processed = rx_intr_handler(ring, budget);
2791 s2io_chk_rx_buffers(nic, ring);
2792
2793 if (pkts_processed < budget_org) {
2794 napi_complete(napi);
2795 /*Re Enable MSI-Rx Vector*/
2796 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2797 addr += 7 - ring->ring_no;
2798 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2799 writeb(val8, addr);
2800 val8 = readb(addr);
2801 }
2802 return pkts_processed;
2803 }
2804
2805 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2806 {
2807 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2808 int pkts_processed = 0;
2809 int ring_pkts_processed, i;
2810 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2811 int budget_org = budget;
2812 struct config_param *config = &nic->config;
2813 struct mac_info *mac_control = &nic->mac_control;
2814
2815 if (unlikely(!is_s2io_card_up(nic)))
2816 return 0;
2817
2818 for (i = 0; i < config->rx_ring_num; i++) {
2819 struct ring_info *ring = &mac_control->rings[i];
2820 ring_pkts_processed = rx_intr_handler(ring, budget);
2821 s2io_chk_rx_buffers(nic, ring);
2822 pkts_processed += ring_pkts_processed;
2823 budget -= ring_pkts_processed;
2824 if (budget <= 0)
2825 break;
2826 }
2827 if (pkts_processed < budget_org) {
2828 napi_complete(napi);
2829 /* Re enable the Rx interrupts for the ring */
2830 writeq(0, &bar0->rx_traffic_mask);
2831 readl(&bar0->rx_traffic_mask);
2832 }
2833 return pkts_processed;
2834 }
2835
2836 #ifdef CONFIG_NET_POLL_CONTROLLER
2837 /**
2838 * s2io_netpoll - netpoll event handler entry point
2839 * @dev : pointer to the device structure.
2840 * Description:
2841 * This function will be called by upper layer to check for events on the
2842 * interface in situations where interrupts are disabled. It is used for
2843 * specific in-kernel networking tasks, such as remote consoles and kernel
2844 * debugging over the network (example netdump in RedHat).
2845 */
2846 static void s2io_netpoll(struct net_device *dev)
2847 {
2848 struct s2io_nic *nic = netdev_priv(dev);
2849 const int irq = nic->pdev->irq;
2850 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2851 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2852 int i;
2853 struct config_param *config = &nic->config;
2854 struct mac_info *mac_control = &nic->mac_control;
2855
2856 if (pci_channel_offline(nic->pdev))
2857 return;
2858
2859 disable_irq(irq);
2860
2861 writeq(val64, &bar0->rx_traffic_int);
2862 writeq(val64, &bar0->tx_traffic_int);
2863
2864 /* we need to free up the transmitted skbufs or else netpoll will
2865 * run out of skbs and will fail and eventually netpoll application such
2866 * as netdump will fail.
2867 */
2868 for (i = 0; i < config->tx_fifo_num; i++)
2869 tx_intr_handler(&mac_control->fifos[i]);
2870
2871 /* check for received packet and indicate up to network */
2872 for (i = 0; i < config->rx_ring_num; i++) {
2873 struct ring_info *ring = &mac_control->rings[i];
2874
2875 rx_intr_handler(ring, 0);
2876 }
2877
2878 for (i = 0; i < config->rx_ring_num; i++) {
2879 struct ring_info *ring = &mac_control->rings[i];
2880
2881 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2882 DBG_PRINT(INFO_DBG,
2883 "%s: Out of memory in Rx Netpoll!!\n",
2884 dev->name);
2885 break;
2886 }
2887 }
2888 enable_irq(irq);
2889 }
2890 #endif
2891
2892 /**
2893 * rx_intr_handler - Rx interrupt handler
2894 * @ring_info: per ring structure.
2895 * @budget: budget for napi processing.
2896 * Description:
2897 * If the interrupt is because of a received frame or if the
2898 * receive ring contains fresh as yet un-processed frames,this function is
2899 * called. It picks out the RxD at which place the last Rx processing had
2900 * stopped and sends the skb to the OSM's Rx handler and then increments
2901 * the offset.
2902 * Return Value:
2903 * No. of napi packets processed.
2904 */
2905 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2906 {
2907 int get_block, put_block;
2908 struct rx_curr_get_info get_info, put_info;
2909 struct RxD_t *rxdp;
2910 struct sk_buff *skb;
2911 int pkt_cnt = 0, napi_pkts = 0;
2912 int i;
2913 struct RxD1 *rxdp1;
2914 struct RxD3 *rxdp3;
2915
2916 get_info = ring_data->rx_curr_get_info;
2917 get_block = get_info.block_index;
2918 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2919 put_block = put_info.block_index;
2920 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2921
2922 while (RXD_IS_UP2DT(rxdp)) {
2923 /*
2924 * If your are next to put index then it's
2925 * FIFO full condition
2926 */
2927 if ((get_block == put_block) &&
2928 (get_info.offset + 1) == put_info.offset) {
2929 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2930 ring_data->dev->name);
2931 break;
2932 }
2933 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2934 if (skb == NULL) {
2935 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2936 ring_data->dev->name);
2937 return 0;
2938 }
2939 if (ring_data->rxd_mode == RXD_MODE_1) {
2940 rxdp1 = (struct RxD1 *)rxdp;
2941 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2942 rxdp1->Buffer0_ptr,
2943 ring_data->mtu +
2944 HEADER_ETHERNET_II_802_3_SIZE +
2945 HEADER_802_2_SIZE +
2946 HEADER_SNAP_SIZE,
2947 PCI_DMA_FROMDEVICE);
2948 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2949 rxdp3 = (struct RxD3 *)rxdp;
2950 pci_dma_sync_single_for_cpu(ring_data->pdev,
2951 (dma_addr_t)rxdp3->Buffer0_ptr,
2952 BUF0_LEN,
2953 PCI_DMA_FROMDEVICE);
2954 pci_unmap_single(ring_data->pdev,
2955 (dma_addr_t)rxdp3->Buffer2_ptr,
2956 ring_data->mtu + 4,
2957 PCI_DMA_FROMDEVICE);
2958 }
2959 prefetch(skb->data);
2960 rx_osm_handler(ring_data, rxdp);
2961 get_info.offset++;
2962 ring_data->rx_curr_get_info.offset = get_info.offset;
2963 rxdp = ring_data->rx_blocks[get_block].
2964 rxds[get_info.offset].virt_addr;
2965 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2966 get_info.offset = 0;
2967 ring_data->rx_curr_get_info.offset = get_info.offset;
2968 get_block++;
2969 if (get_block == ring_data->block_count)
2970 get_block = 0;
2971 ring_data->rx_curr_get_info.block_index = get_block;
2972 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2973 }
2974
2975 if (ring_data->nic->config.napi) {
2976 budget--;
2977 napi_pkts++;
2978 if (!budget)
2979 break;
2980 }
2981 pkt_cnt++;
2982 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2983 break;
2984 }
2985 if (ring_data->lro) {
2986 /* Clear all LRO sessions before exiting */
2987 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2988 struct lro *lro = &ring_data->lro0_n[i];
2989 if (lro->in_use) {
2990 update_L3L4_header(ring_data->nic, lro);
2991 queue_rx_frame(lro->parent, lro->vlan_tag);
2992 clear_lro_session(lro);
2993 }
2994 }
2995 }
2996 return napi_pkts;
2997 }
2998
2999 /**
3000 * tx_intr_handler - Transmit interrupt handler
3001 * @nic : device private variable
3002 * Description:
3003 * If an interrupt was raised to indicate DMA complete of the
3004 * Tx packet, this function is called. It identifies the last TxD
3005 * whose buffer was freed and frees all skbs whose data have already
3006 * DMA'ed into the NICs internal memory.
3007 * Return Value:
3008 * NONE
3009 */
3010
3011 static void tx_intr_handler(struct fifo_info *fifo_data)
3012 {
3013 struct s2io_nic *nic = fifo_data->nic;
3014 struct tx_curr_get_info get_info, put_info;
3015 struct sk_buff *skb = NULL;
3016 struct TxD *txdlp;
3017 int pkt_cnt = 0;
3018 unsigned long flags = 0;
3019 u8 err_mask;
3020 struct stat_block *stats = nic->mac_control.stats_info;
3021 struct swStat *swstats = &stats->sw_stat;
3022
3023 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3024 return;
3025
3026 get_info = fifo_data->tx_curr_get_info;
3027 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3028 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3029 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3030 (get_info.offset != put_info.offset) &&
3031 (txdlp->Host_Control)) {
3032 /* Check for TxD errors */
3033 if (txdlp->Control_1 & TXD_T_CODE) {
3034 unsigned long long err;
3035 err = txdlp->Control_1 & TXD_T_CODE;
3036 if (err & 0x1) {
3037 swstats->parity_err_cnt++;
3038 }
3039
3040 /* update t_code statistics */
3041 err_mask = err >> 48;
3042 switch (err_mask) {
3043 case 2:
3044 swstats->tx_buf_abort_cnt++;
3045 break;
3046
3047 case 3:
3048 swstats->tx_desc_abort_cnt++;
3049 break;
3050
3051 case 7:
3052 swstats->tx_parity_err_cnt++;
3053 break;
3054
3055 case 10:
3056 swstats->tx_link_loss_cnt++;
3057 break;
3058
3059 case 15:
3060 swstats->tx_list_proc_err_cnt++;
3061 break;
3062 }
3063 }
3064
3065 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3066 if (skb == NULL) {
3067 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3068 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3069 __func__);
3070 return;
3071 }
3072 pkt_cnt++;
3073
3074 /* Updating the statistics block */
3075 swstats->mem_freed += skb->truesize;
3076 dev_kfree_skb_irq(skb);
3077
3078 get_info.offset++;
3079 if (get_info.offset == get_info.fifo_len + 1)
3080 get_info.offset = 0;
3081 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3082 fifo_data->tx_curr_get_info.offset = get_info.offset;
3083 }
3084
3085 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3086
3087 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3088 }
3089
3090 /**
3091 * s2io_mdio_write - Function to write in to MDIO registers
3092 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3093 * @addr : address value
3094 * @value : data value
3095 * @dev : pointer to net_device structure
3096 * Description:
3097 * This function is used to write values to the MDIO registers
3098 * NONE
3099 */
3100 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3101 struct net_device *dev)
3102 {
3103 u64 val64;
3104 struct s2io_nic *sp = netdev_priv(dev);
3105 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3106
3107 /* address transaction */
3108 val64 = MDIO_MMD_INDX_ADDR(addr) |
3109 MDIO_MMD_DEV_ADDR(mmd_type) |
3110 MDIO_MMS_PRT_ADDR(0x0);
3111 writeq(val64, &bar0->mdio_control);
3112 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3113 writeq(val64, &bar0->mdio_control);
3114 udelay(100);
3115
3116 /* Data transaction */
3117 val64 = MDIO_MMD_INDX_ADDR(addr) |
3118 MDIO_MMD_DEV_ADDR(mmd_type) |
3119 MDIO_MMS_PRT_ADDR(0x0) |
3120 MDIO_MDIO_DATA(value) |
3121 MDIO_OP(MDIO_OP_WRITE_TRANS);
3122 writeq(val64, &bar0->mdio_control);
3123 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3124 writeq(val64, &bar0->mdio_control);
3125 udelay(100);
3126
3127 val64 = MDIO_MMD_INDX_ADDR(addr) |
3128 MDIO_MMD_DEV_ADDR(mmd_type) |
3129 MDIO_MMS_PRT_ADDR(0x0) |
3130 MDIO_OP(MDIO_OP_READ_TRANS);
3131 writeq(val64, &bar0->mdio_control);
3132 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3133 writeq(val64, &bar0->mdio_control);
3134 udelay(100);
3135 }
3136
3137 /**
3138 * s2io_mdio_read - Function to write in to MDIO registers
3139 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3140 * @addr : address value
3141 * @dev : pointer to net_device structure
3142 * Description:
3143 * This function is used to read values to the MDIO registers
3144 * NONE
3145 */
3146 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3147 {
3148 u64 val64 = 0x0;
3149 u64 rval64 = 0x0;
3150 struct s2io_nic *sp = netdev_priv(dev);
3151 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3152
3153 /* address transaction */
3154 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3155 | MDIO_MMD_DEV_ADDR(mmd_type)
3156 | MDIO_MMS_PRT_ADDR(0x0));
3157 writeq(val64, &bar0->mdio_control);
3158 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3159 writeq(val64, &bar0->mdio_control);
3160 udelay(100);
3161
3162 /* Data transaction */
3163 val64 = MDIO_MMD_INDX_ADDR(addr) |
3164 MDIO_MMD_DEV_ADDR(mmd_type) |
3165 MDIO_MMS_PRT_ADDR(0x0) |
3166 MDIO_OP(MDIO_OP_READ_TRANS);
3167 writeq(val64, &bar0->mdio_control);
3168 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3169 writeq(val64, &bar0->mdio_control);
3170 udelay(100);
3171
3172 /* Read the value from regs */
3173 rval64 = readq(&bar0->mdio_control);
3174 rval64 = rval64 & 0xFFFF0000;
3175 rval64 = rval64 >> 16;
3176 return rval64;
3177 }
3178
3179 /**
3180 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3181 * @counter : counter value to be updated
3182 * @flag : flag to indicate the status
3183 * @type : counter type
3184 * Description:
3185 * This function is to check the status of the xpak counters value
3186 * NONE
3187 */
3188
3189 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3190 u16 flag, u16 type)
3191 {
3192 u64 mask = 0x3;
3193 u64 val64;
3194 int i;
3195 for (i = 0; i < index; i++)
3196 mask = mask << 0x2;
3197
3198 if (flag > 0) {
3199 *counter = *counter + 1;
3200 val64 = *regs_stat & mask;
3201 val64 = val64 >> (index * 0x2);
3202 val64 = val64 + 1;
3203 if (val64 == 3) {
3204 switch (type) {
3205 case 1:
3206 DBG_PRINT(ERR_DBG,
3207 "Take Xframe NIC out of service.\n");
3208 DBG_PRINT(ERR_DBG,
3209 "Excessive temperatures may result in premature transceiver failure.\n");
3210 break;
3211 case 2:
3212 DBG_PRINT(ERR_DBG,
3213 "Take Xframe NIC out of service.\n");
3214 DBG_PRINT(ERR_DBG,
3215 "Excessive bias currents may indicate imminent laser diode failure.\n");
3216 break;
3217 case 3:
3218 DBG_PRINT(ERR_DBG,
3219 "Take Xframe NIC out of service.\n");
3220 DBG_PRINT(ERR_DBG,
3221 "Excessive laser output power may saturate far-end receiver.\n");
3222 break;
3223 default:
3224 DBG_PRINT(ERR_DBG,
3225 "Incorrect XPAK Alarm type\n");
3226 }
3227 val64 = 0x0;
3228 }
3229 val64 = val64 << (index * 0x2);
3230 *regs_stat = (*regs_stat & (~mask)) | (val64);
3231
3232 } else {
3233 *regs_stat = *regs_stat & (~mask);
3234 }
3235 }
3236
3237 /**
3238 * s2io_updt_xpak_counter - Function to update the xpak counters
3239 * @dev : pointer to net_device struct
3240 * Description:
3241 * This function is to upate the status of the xpak counters value
3242 * NONE
3243 */
3244 static void s2io_updt_xpak_counter(struct net_device *dev)
3245 {
3246 u16 flag = 0x0;
3247 u16 type = 0x0;
3248 u16 val16 = 0x0;
3249 u64 val64 = 0x0;
3250 u64 addr = 0x0;
3251
3252 struct s2io_nic *sp = netdev_priv(dev);
3253 struct stat_block *stats = sp->mac_control.stats_info;
3254 struct xpakStat *xstats = &stats->xpak_stat;
3255
3256 /* Check the communication with the MDIO slave */
3257 addr = MDIO_CTRL1;
3258 val64 = 0x0;
3259 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3260 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3261 DBG_PRINT(ERR_DBG,
3262 "ERR: MDIO slave access failed - Returned %llx\n",
3263 (unsigned long long)val64);
3264 return;
3265 }
3266
3267 /* Check for the expected value of control reg 1 */
3268 if (val64 != MDIO_CTRL1_SPEED10G) {
3269 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3270 "Returned: %llx- Expected: 0x%x\n",
3271 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3272 return;
3273 }
3274
3275 /* Loading the DOM register to MDIO register */
3276 addr = 0xA100;
3277 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3278 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3279
3280 /* Reading the Alarm flags */
3281 addr = 0xA070;
3282 val64 = 0x0;
3283 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3284
3285 flag = CHECKBIT(val64, 0x7);
3286 type = 1;
3287 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3288 &xstats->xpak_regs_stat,
3289 0x0, flag, type);
3290
3291 if (CHECKBIT(val64, 0x6))
3292 xstats->alarm_transceiver_temp_low++;
3293
3294 flag = CHECKBIT(val64, 0x3);
3295 type = 2;
3296 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3297 &xstats->xpak_regs_stat,
3298 0x2, flag, type);
3299
3300 if (CHECKBIT(val64, 0x2))
3301 xstats->alarm_laser_bias_current_low++;
3302
3303 flag = CHECKBIT(val64, 0x1);
3304 type = 3;
3305 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3306 &xstats->xpak_regs_stat,
3307 0x4, flag, type);
3308
3309 if (CHECKBIT(val64, 0x0))
3310 xstats->alarm_laser_output_power_low++;
3311
3312 /* Reading the Warning flags */
3313 addr = 0xA074;
3314 val64 = 0x0;
3315 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3316
3317 if (CHECKBIT(val64, 0x7))
3318 xstats->warn_transceiver_temp_high++;
3319
3320 if (CHECKBIT(val64, 0x6))
3321 xstats->warn_transceiver_temp_low++;
3322
3323 if (CHECKBIT(val64, 0x3))
3324 xstats->warn_laser_bias_current_high++;
3325
3326 if (CHECKBIT(val64, 0x2))
3327 xstats->warn_laser_bias_current_low++;
3328
3329 if (CHECKBIT(val64, 0x1))
3330 xstats->warn_laser_output_power_high++;
3331
3332 if (CHECKBIT(val64, 0x0))
3333 xstats->warn_laser_output_power_low++;
3334 }
3335
3336 /**
3337 * wait_for_cmd_complete - waits for a command to complete.
3338 * @sp : private member of the device structure, which is a pointer to the
3339 * s2io_nic structure.
3340 * Description: Function that waits for a command to Write into RMAC
3341 * ADDR DATA registers to be completed and returns either success or
3342 * error depending on whether the command was complete or not.
3343 * Return value:
3344 * SUCCESS on success and FAILURE on failure.
3345 */
3346
3347 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3348 int bit_state)
3349 {
3350 int ret = FAILURE, cnt = 0, delay = 1;
3351 u64 val64;
3352
3353 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3354 return FAILURE;
3355
3356 do {
3357 val64 = readq(addr);
3358 if (bit_state == S2IO_BIT_RESET) {
3359 if (!(val64 & busy_bit)) {
3360 ret = SUCCESS;
3361 break;
3362 }
3363 } else {
3364 if (val64 & busy_bit) {
3365 ret = SUCCESS;
3366 break;
3367 }
3368 }
3369
3370 if (in_interrupt())
3371 mdelay(delay);
3372 else
3373 msleep(delay);
3374
3375 if (++cnt >= 10)
3376 delay = 50;
3377 } while (cnt < 20);
3378 return ret;
3379 }
3380 /**
3381 * check_pci_device_id - Checks if the device id is supported
3382 * @id : device id
3383 * Description: Function to check if the pci device id is supported by driver.
3384 * Return value: Actual device id if supported else PCI_ANY_ID
3385 */
3386 static u16 check_pci_device_id(u16 id)
3387 {
3388 switch (id) {
3389 case PCI_DEVICE_ID_HERC_WIN:
3390 case PCI_DEVICE_ID_HERC_UNI:
3391 return XFRAME_II_DEVICE;
3392 case PCI_DEVICE_ID_S2IO_UNI:
3393 case PCI_DEVICE_ID_S2IO_WIN:
3394 return XFRAME_I_DEVICE;
3395 default:
3396 return PCI_ANY_ID;
3397 }
3398 }
3399
3400 /**
3401 * s2io_reset - Resets the card.
3402 * @sp : private member of the device structure.
3403 * Description: Function to Reset the card. This function then also
3404 * restores the previously saved PCI configuration space registers as
3405 * the card reset also resets the configuration space.
3406 * Return value:
3407 * void.
3408 */
3409
3410 static void s2io_reset(struct s2io_nic *sp)
3411 {
3412 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3413 u64 val64;
3414 u16 subid, pci_cmd;
3415 int i;
3416 u16 val16;
3417 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3418 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3419 struct stat_block *stats;
3420 struct swStat *swstats;
3421
3422 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3423 __func__, pci_name(sp->pdev));
3424
3425 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3426 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3427
3428 val64 = SW_RESET_ALL;
3429 writeq(val64, &bar0->sw_reset);
3430 if (strstr(sp->product_name, "CX4"))
3431 msleep(750);
3432 msleep(250);
3433 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3434
3435 /* Restore the PCI state saved during initialization. */
3436 pci_restore_state(sp->pdev);
3437 pci_save_state(sp->pdev);
3438 pci_read_config_word(sp->pdev, 0x2, &val16);
3439 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3440 break;
3441 msleep(200);
3442 }
3443
3444 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3445 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3446
3447 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3448
3449 s2io_init_pci(sp);
3450
3451 /* Set swapper to enable I/O register access */
3452 s2io_set_swapper(sp);
3453
3454 /* restore mac_addr entries */
3455 do_s2io_restore_unicast_mc(sp);
3456
3457 /* Restore the MSIX table entries from local variables */
3458 restore_xmsi_data(sp);
3459
3460 /* Clear certain PCI/PCI-X fields after reset */
3461 if (sp->device_type == XFRAME_II_DEVICE) {
3462 /* Clear "detected parity error" bit */
3463 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3464
3465 /* Clearing PCIX Ecc status register */
3466 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3467
3468 /* Clearing PCI_STATUS error reflected here */
3469 writeq(s2BIT(62), &bar0->txpic_int_reg);
3470 }
3471
3472 /* Reset device statistics maintained by OS */
3473 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3474
3475 stats = sp->mac_control.stats_info;
3476 swstats = &stats->sw_stat;
3477
3478 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3479 up_cnt = swstats->link_up_cnt;
3480 down_cnt = swstats->link_down_cnt;
3481 up_time = swstats->link_up_time;
3482 down_time = swstats->link_down_time;
3483 reset_cnt = swstats->soft_reset_cnt;
3484 mem_alloc_cnt = swstats->mem_allocated;
3485 mem_free_cnt = swstats->mem_freed;
3486 watchdog_cnt = swstats->watchdog_timer_cnt;
3487
3488 memset(stats, 0, sizeof(struct stat_block));
3489
3490 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3491 swstats->link_up_cnt = up_cnt;
3492 swstats->link_down_cnt = down_cnt;
3493 swstats->link_up_time = up_time;
3494 swstats->link_down_time = down_time;
3495 swstats->soft_reset_cnt = reset_cnt;
3496 swstats->mem_allocated = mem_alloc_cnt;
3497 swstats->mem_freed = mem_free_cnt;
3498 swstats->watchdog_timer_cnt = watchdog_cnt;
3499
3500 /* SXE-002: Configure link and activity LED to turn it off */
3501 subid = sp->pdev->subsystem_device;
3502 if (((subid & 0xFF) >= 0x07) &&
3503 (sp->device_type == XFRAME_I_DEVICE)) {
3504 val64 = readq(&bar0->gpio_control);
3505 val64 |= 0x0000800000000000ULL;
3506 writeq(val64, &bar0->gpio_control);
3507 val64 = 0x0411040400000000ULL;
3508 writeq(val64, (void __iomem *)bar0 + 0x2700);
3509 }
3510
3511 /*
3512 * Clear spurious ECC interrupts that would have occurred on
3513 * XFRAME II cards after reset.
3514 */
3515 if (sp->device_type == XFRAME_II_DEVICE) {
3516 val64 = readq(&bar0->pcc_err_reg);
3517 writeq(val64, &bar0->pcc_err_reg);
3518 }
3519
3520 sp->device_enabled_once = false;
3521 }
3522
3523 /**
3524 * s2io_set_swapper - to set the swapper controle on the card
3525 * @sp : private member of the device structure,
3526 * pointer to the s2io_nic structure.
3527 * Description: Function to set the swapper control on the card
3528 * correctly depending on the 'endianness' of the system.
3529 * Return value:
3530 * SUCCESS on success and FAILURE on failure.
3531 */
3532
3533 static int s2io_set_swapper(struct s2io_nic *sp)
3534 {
3535 struct net_device *dev = sp->dev;
3536 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3537 u64 val64, valt, valr;
3538
3539 /*
3540 * Set proper endian settings and verify the same by reading
3541 * the PIF Feed-back register.
3542 */
3543
3544 val64 = readq(&bar0->pif_rd_swapper_fb);
3545 if (val64 != 0x0123456789ABCDEFULL) {
3546 int i = 0;
3547 static const u64 value[] = {
3548 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3549 0x8100008181000081ULL, /* FE=1, SE=0 */
3550 0x4200004242000042ULL, /* FE=0, SE=1 */
3551 0 /* FE=0, SE=0 */
3552 };
3553
3554 while (i < 4) {
3555 writeq(value[i], &bar0->swapper_ctrl);
3556 val64 = readq(&bar0->pif_rd_swapper_fb);
3557 if (val64 == 0x0123456789ABCDEFULL)
3558 break;
3559 i++;
3560 }
3561 if (i == 4) {
3562 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3563 "feedback read %llx\n",
3564 dev->name, (unsigned long long)val64);
3565 return FAILURE;
3566 }
3567 valr = value[i];
3568 } else {
3569 valr = readq(&bar0->swapper_ctrl);
3570 }
3571
3572 valt = 0x0123456789ABCDEFULL;
3573 writeq(valt, &bar0->xmsi_address);
3574 val64 = readq(&bar0->xmsi_address);
3575
3576 if (val64 != valt) {
3577 int i = 0;
3578 static const u64 value[] = {
3579 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3580 0x0081810000818100ULL, /* FE=1, SE=0 */
3581 0x0042420000424200ULL, /* FE=0, SE=1 */
3582 0 /* FE=0, SE=0 */
3583 };
3584
3585 while (i < 4) {
3586 writeq((value[i] | valr), &bar0->swapper_ctrl);
3587 writeq(valt, &bar0->xmsi_address);
3588 val64 = readq(&bar0->xmsi_address);
3589 if (val64 == valt)
3590 break;
3591 i++;
3592 }
3593 if (i == 4) {
3594 unsigned long long x = val64;
3595 DBG_PRINT(ERR_DBG,
3596 "Write failed, Xmsi_addr reads:0x%llx\n", x);
3597 return FAILURE;
3598 }
3599 }
3600 val64 = readq(&bar0->swapper_ctrl);
3601 val64 &= 0xFFFF000000000000ULL;
3602
3603 #ifdef __BIG_ENDIAN
3604 /*
3605 * The device by default set to a big endian format, so a
3606 * big endian driver need not set anything.
3607 */
3608 val64 |= (SWAPPER_CTRL_TXP_FE |
3609 SWAPPER_CTRL_TXP_SE |
3610 SWAPPER_CTRL_TXD_R_FE |
3611 SWAPPER_CTRL_TXD_W_FE |
3612 SWAPPER_CTRL_TXF_R_FE |
3613 SWAPPER_CTRL_RXD_R_FE |
3614 SWAPPER_CTRL_RXD_W_FE |
3615 SWAPPER_CTRL_RXF_W_FE |
3616 SWAPPER_CTRL_XMSI_FE |
3617 SWAPPER_CTRL_STATS_FE |
3618 SWAPPER_CTRL_STATS_SE);
3619 if (sp->config.intr_type == INTA)
3620 val64 |= SWAPPER_CTRL_XMSI_SE;
3621 writeq(val64, &bar0->swapper_ctrl);
3622 #else
3623 /*
3624 * Initially we enable all bits to make it accessible by the
3625 * driver, then we selectively enable only those bits that
3626 * we want to set.
3627 */
3628 val64 |= (SWAPPER_CTRL_TXP_FE |
3629 SWAPPER_CTRL_TXP_SE |
3630 SWAPPER_CTRL_TXD_R_FE |
3631 SWAPPER_CTRL_TXD_R_SE |
3632 SWAPPER_CTRL_TXD_W_FE |
3633 SWAPPER_CTRL_TXD_W_SE |
3634 SWAPPER_CTRL_TXF_R_FE |
3635 SWAPPER_CTRL_RXD_R_FE |
3636 SWAPPER_CTRL_RXD_R_SE |
3637 SWAPPER_CTRL_RXD_W_FE |
3638 SWAPPER_CTRL_RXD_W_SE |
3639 SWAPPER_CTRL_RXF_W_FE |
3640 SWAPPER_CTRL_XMSI_FE |
3641 SWAPPER_CTRL_STATS_FE |
3642 SWAPPER_CTRL_STATS_SE);
3643 if (sp->config.intr_type == INTA)
3644 val64 |= SWAPPER_CTRL_XMSI_SE;
3645 writeq(val64, &bar0->swapper_ctrl);
3646 #endif
3647 val64 = readq(&bar0->swapper_ctrl);
3648
3649 /*
3650 * Verifying if endian settings are accurate by reading a
3651 * feedback register.
3652 */
3653 val64 = readq(&bar0->pif_rd_swapper_fb);
3654 if (val64 != 0x0123456789ABCDEFULL) {
3655 /* Endian settings are incorrect, calls for another dekko. */
3656 DBG_PRINT(ERR_DBG,
3657 "%s: Endian settings are wrong, feedback read %llx\n",
3658 dev->name, (unsigned long long)val64);
3659 return FAILURE;
3660 }
3661
3662 return SUCCESS;
3663 }
3664
3665 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3666 {
3667 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3668 u64 val64;
3669 int ret = 0, cnt = 0;
3670
3671 do {
3672 val64 = readq(&bar0->xmsi_access);
3673 if (!(val64 & s2BIT(15)))
3674 break;
3675 mdelay(1);
3676 cnt++;
3677 } while (cnt < 5);
3678 if (cnt == 5) {
3679 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3680 ret = 1;
3681 }
3682
3683 return ret;
3684 }
3685
3686 static void restore_xmsi_data(struct s2io_nic *nic)
3687 {
3688 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3689 u64 val64;
3690 int i, msix_index;
3691
3692 if (nic->device_type == XFRAME_I_DEVICE)
3693 return;
3694
3695 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3696 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3697 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3698 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3699 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3700 writeq(val64, &bar0->xmsi_access);
3701 if (wait_for_msix_trans(nic, msix_index)) {
3702 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3703 __func__, msix_index);
3704 continue;
3705 }
3706 }
3707 }
3708
3709 static void store_xmsi_data(struct s2io_nic *nic)
3710 {
3711 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3712 u64 val64, addr, data;
3713 int i, msix_index;
3714
3715 if (nic->device_type == XFRAME_I_DEVICE)
3716 return;
3717
3718 /* Store and display */
3719 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3720 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3721 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3722 writeq(val64, &bar0->xmsi_access);
3723 if (wait_for_msix_trans(nic, msix_index)) {
3724 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3725 __func__, msix_index);
3726 continue;
3727 }
3728 addr = readq(&bar0->xmsi_address);
3729 data = readq(&bar0->xmsi_data);
3730 if (addr && data) {
3731 nic->msix_info[i].addr = addr;
3732 nic->msix_info[i].data = data;
3733 }
3734 }
3735 }
3736
3737 static int s2io_enable_msi_x(struct s2io_nic *nic)
3738 {
3739 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3740 u64 rx_mat;
3741 u16 msi_control; /* Temp variable */
3742 int ret, i, j, msix_indx = 1;
3743 int size;
3744 struct stat_block *stats = nic->mac_control.stats_info;
3745 struct swStat *swstats = &stats->sw_stat;
3746
3747 size = nic->num_entries * sizeof(struct msix_entry);
3748 nic->entries = kzalloc(size, GFP_KERNEL);
3749 if (!nic->entries) {
3750 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3751 __func__);
3752 swstats->mem_alloc_fail_cnt++;
3753 return -ENOMEM;
3754 }
3755 swstats->mem_allocated += size;
3756
3757 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3758 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3759 if (!nic->s2io_entries) {
3760 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3761 __func__);
3762 swstats->mem_alloc_fail_cnt++;
3763 kfree(nic->entries);
3764 swstats->mem_freed
3765 += (nic->num_entries * sizeof(struct msix_entry));
3766 return -ENOMEM;
3767 }
3768 swstats->mem_allocated += size;
3769
3770 nic->entries[0].entry = 0;
3771 nic->s2io_entries[0].entry = 0;
3772 nic->s2io_entries[0].in_use = MSIX_FLG;
3773 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3774 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3775
3776 for (i = 1; i < nic->num_entries; i++) {
3777 nic->entries[i].entry = ((i - 1) * 8) + 1;
3778 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3779 nic->s2io_entries[i].arg = NULL;
3780 nic->s2io_entries[i].in_use = 0;
3781 }
3782
3783 rx_mat = readq(&bar0->rx_mat);
3784 for (j = 0; j < nic->config.rx_ring_num; j++) {
3785 rx_mat |= RX_MAT_SET(j, msix_indx);
3786 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3787 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3788 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3789 msix_indx += 8;
3790 }
3791 writeq(rx_mat, &bar0->rx_mat);
3792 readq(&bar0->rx_mat);
3793
3794 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3795 /* We fail init if error or we get less vectors than min required */
3796 if (ret) {
3797 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3798 kfree(nic->entries);
3799 swstats->mem_freed += nic->num_entries *
3800 sizeof(struct msix_entry);
3801 kfree(nic->s2io_entries);
3802 swstats->mem_freed += nic->num_entries *
3803 sizeof(struct s2io_msix_entry);
3804 nic->entries = NULL;
3805 nic->s2io_entries = NULL;
3806 return -ENOMEM;
3807 }
3808
3809 /*
3810 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3811 * in the herc NIC. (Temp change, needs to be removed later)
3812 */
3813 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3814 msi_control |= 0x1; /* Enable MSI */
3815 pci_write_config_word(nic->pdev, 0x42, msi_control);
3816
3817 return 0;
3818 }
3819
3820 /* Handle software interrupt used during MSI(X) test */
3821 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3822 {
3823 struct s2io_nic *sp = dev_id;
3824
3825 sp->msi_detected = 1;
3826 wake_up(&sp->msi_wait);
3827
3828 return IRQ_HANDLED;
3829 }
3830
3831 /* Test interrupt path by forcing a a software IRQ */
3832 static int s2io_test_msi(struct s2io_nic *sp)
3833 {
3834 struct pci_dev *pdev = sp->pdev;
3835 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3836 int err;
3837 u64 val64, saved64;
3838
3839 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3840 sp->name, sp);
3841 if (err) {
3842 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3843 sp->dev->name, pci_name(pdev), pdev->irq);
3844 return err;
3845 }
3846
3847 init_waitqueue_head(&sp->msi_wait);
3848 sp->msi_detected = 0;
3849
3850 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3851 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3852 val64 |= SCHED_INT_CTRL_TIMER_EN;
3853 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3854 writeq(val64, &bar0->scheduled_int_ctrl);
3855
3856 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3857
3858 if (!sp->msi_detected) {
3859 /* MSI(X) test failed, go back to INTx mode */
3860 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3861 "using MSI(X) during test\n",
3862 sp->dev->name, pci_name(pdev));
3863
3864 err = -EOPNOTSUPP;
3865 }
3866
3867 free_irq(sp->entries[1].vector, sp);
3868
3869 writeq(saved64, &bar0->scheduled_int_ctrl);
3870
3871 return err;
3872 }
3873
3874 static void remove_msix_isr(struct s2io_nic *sp)
3875 {
3876 int i;
3877 u16 msi_control;
3878
3879 for (i = 0; i < sp->num_entries; i++) {
3880 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3881 int vector = sp->entries[i].vector;
3882 void *arg = sp->s2io_entries[i].arg;
3883 free_irq(vector, arg);
3884 }
3885 }
3886
3887 kfree(sp->entries);
3888 kfree(sp->s2io_entries);
3889 sp->entries = NULL;
3890 sp->s2io_entries = NULL;
3891
3892 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3893 msi_control &= 0xFFFE; /* Disable MSI */
3894 pci_write_config_word(sp->pdev, 0x42, msi_control);
3895
3896 pci_disable_msix(sp->pdev);
3897 }
3898
3899 static void remove_inta_isr(struct s2io_nic *sp)
3900 {
3901 free_irq(sp->pdev->irq, sp->dev);
3902 }
3903
3904 /* ********************************************************* *
3905 * Functions defined below concern the OS part of the driver *
3906 * ********************************************************* */
3907
3908 /**
3909 * s2io_open - open entry point of the driver
3910 * @dev : pointer to the device structure.
3911 * Description:
3912 * This function is the open entry point of the driver. It mainly calls a
3913 * function to allocate Rx buffers and inserts them into the buffer
3914 * descriptors and then enables the Rx part of the NIC.
3915 * Return value:
3916 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3917 * file on failure.
3918 */
3919
3920 static int s2io_open(struct net_device *dev)
3921 {
3922 struct s2io_nic *sp = netdev_priv(dev);
3923 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3924 int err = 0;
3925
3926 /*
3927 * Make sure you have link off by default every time
3928 * Nic is initialized
3929 */
3930 netif_carrier_off(dev);
3931 sp->last_link_state = 0;
3932
3933 /* Initialize H/W and enable interrupts */
3934 err = s2io_card_up(sp);
3935 if (err) {
3936 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3937 dev->name);
3938 goto hw_init_failed;
3939 }
3940
3941 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3942 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3943 s2io_card_down(sp);
3944 err = -ENODEV;
3945 goto hw_init_failed;
3946 }
3947 s2io_start_all_tx_queue(sp);
3948 return 0;
3949
3950 hw_init_failed:
3951 if (sp->config.intr_type == MSI_X) {
3952 if (sp->entries) {
3953 kfree(sp->entries);
3954 swstats->mem_freed += sp->num_entries *
3955 sizeof(struct msix_entry);
3956 }
3957 if (sp->s2io_entries) {
3958 kfree(sp->s2io_entries);
3959 swstats->mem_freed += sp->num_entries *
3960 sizeof(struct s2io_msix_entry);
3961 }
3962 }
3963 return err;
3964 }
3965
3966 /**
3967 * s2io_close -close entry point of the driver
3968 * @dev : device pointer.
3969 * Description:
3970 * This is the stop entry point of the driver. It needs to undo exactly
3971 * whatever was done by the open entry point,thus it's usually referred to
3972 * as the close function.Among other things this function mainly stops the
3973 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3974 * Return value:
3975 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3976 * file on failure.
3977 */
3978
3979 static int s2io_close(struct net_device *dev)
3980 {
3981 struct s2io_nic *sp = netdev_priv(dev);
3982 struct config_param *config = &sp->config;
3983 u64 tmp64;
3984 int offset;
3985
3986 /* Return if the device is already closed *
3987 * Can happen when s2io_card_up failed in change_mtu *
3988 */
3989 if (!is_s2io_card_up(sp))
3990 return 0;
3991
3992 s2io_stop_all_tx_queue(sp);
3993 /* delete all populated mac entries */
3994 for (offset = 1; offset < config->max_mc_addr; offset++) {
3995 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3996 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3997 do_s2io_delete_unicast_mc(sp, tmp64);
3998 }
3999
4000 s2io_card_down(sp);
4001
4002 return 0;
4003 }
4004
4005 /**
4006 * s2io_xmit - Tx entry point of te driver
4007 * @skb : the socket buffer containing the Tx data.
4008 * @dev : device pointer.
4009 * Description :
4010 * This function is the Tx entry point of the driver. S2IO NIC supports
4011 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4012 * NOTE: when device can't queue the pkt,just the trans_start variable will
4013 * not be upadted.
4014 * Return value:
4015 * 0 on success & 1 on failure.
4016 */
4017
4018 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4019 {
4020 struct s2io_nic *sp = netdev_priv(dev);
4021 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4022 register u64 val64;
4023 struct TxD *txdp;
4024 struct TxFIFO_element __iomem *tx_fifo;
4025 unsigned long flags = 0;
4026 u16 vlan_tag = 0;
4027 struct fifo_info *fifo = NULL;
4028 int do_spin_lock = 1;
4029 int offload_type;
4030 int enable_per_list_interrupt = 0;
4031 struct config_param *config = &sp->config;
4032 struct mac_info *mac_control = &sp->mac_control;
4033 struct stat_block *stats = mac_control->stats_info;
4034 struct swStat *swstats = &stats->sw_stat;
4035
4036 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4037
4038 if (unlikely(skb->len <= 0)) {
4039 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4040 dev_kfree_skb_any(skb);
4041 return NETDEV_TX_OK;
4042 }
4043
4044 if (!is_s2io_card_up(sp)) {
4045 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4046 dev->name);
4047 dev_kfree_skb(skb);
4048 return NETDEV_TX_OK;
4049 }
4050
4051 queue = 0;
4052 if (vlan_tx_tag_present(skb))
4053 vlan_tag = vlan_tx_tag_get(skb);
4054 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4055 if (skb->protocol == htons(ETH_P_IP)) {
4056 struct iphdr *ip;
4057 struct tcphdr *th;
4058 ip = ip_hdr(skb);
4059
4060 if (!ip_is_fragment(ip)) {
4061 th = (struct tcphdr *)(((unsigned char *)ip) +
4062 ip->ihl*4);
4063
4064 if (ip->protocol == IPPROTO_TCP) {
4065 queue_len = sp->total_tcp_fifos;
4066 queue = (ntohs(th->source) +
4067 ntohs(th->dest)) &
4068 sp->fifo_selector[queue_len - 1];
4069 if (queue >= queue_len)
4070 queue = queue_len - 1;
4071 } else if (ip->protocol == IPPROTO_UDP) {
4072 queue_len = sp->total_udp_fifos;
4073 queue = (ntohs(th->source) +
4074 ntohs(th->dest)) &
4075 sp->fifo_selector[queue_len - 1];
4076 if (queue >= queue_len)
4077 queue = queue_len - 1;
4078 queue += sp->udp_fifo_idx;
4079 if (skb->len > 1024)
4080 enable_per_list_interrupt = 1;
4081 do_spin_lock = 0;
4082 }
4083 }
4084 }
4085 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4086 /* get fifo number based on skb->priority value */
4087 queue = config->fifo_mapping
4088 [skb->priority & (MAX_TX_FIFOS - 1)];
4089 fifo = &mac_control->fifos[queue];
4090
4091 if (do_spin_lock)
4092 spin_lock_irqsave(&fifo->tx_lock, flags);
4093 else {
4094 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4095 return NETDEV_TX_LOCKED;
4096 }
4097
4098 if (sp->config.multiq) {
4099 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4100 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4101 return NETDEV_TX_BUSY;
4102 }
4103 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4104 if (netif_queue_stopped(dev)) {
4105 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4106 return NETDEV_TX_BUSY;
4107 }
4108 }
4109
4110 put_off = (u16)fifo->tx_curr_put_info.offset;
4111 get_off = (u16)fifo->tx_curr_get_info.offset;
4112 txdp = fifo->list_info[put_off].list_virt_addr;
4113
4114 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4115 /* Avoid "put" pointer going beyond "get" pointer */
4116 if (txdp->Host_Control ||
4117 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4118 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4119 s2io_stop_tx_queue(sp, fifo->fifo_no);
4120 dev_kfree_skb(skb);
4121 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4122 return NETDEV_TX_OK;
4123 }
4124
4125 offload_type = s2io_offload_type(skb);
4126 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4127 txdp->Control_1 |= TXD_TCP_LSO_EN;
4128 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4129 }
4130 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4131 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4132 TXD_TX_CKO_TCP_EN |
4133 TXD_TX_CKO_UDP_EN);
4134 }
4135 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4136 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4137 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4138 if (enable_per_list_interrupt)
4139 if (put_off & (queue_len >> 5))
4140 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4141 if (vlan_tag) {
4142 txdp->Control_2 |= TXD_VLAN_ENABLE;
4143 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4144 }
4145
4146 frg_len = skb_headlen(skb);
4147 if (offload_type == SKB_GSO_UDP) {
4148 int ufo_size;
4149
4150 ufo_size = s2io_udp_mss(skb);
4151 ufo_size &= ~7;
4152 txdp->Control_1 |= TXD_UFO_EN;
4153 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4154 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4155 #ifdef __BIG_ENDIAN
4156 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4157 fifo->ufo_in_band_v[put_off] =
4158 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4159 #else
4160 fifo->ufo_in_band_v[put_off] =
4161 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4162 #endif
4163 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4164 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4165 fifo->ufo_in_band_v,
4166 sizeof(u64),
4167 PCI_DMA_TODEVICE);
4168 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4169 goto pci_map_failed;
4170 txdp++;
4171 }
4172
4173 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4174 frg_len, PCI_DMA_TODEVICE);
4175 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4176 goto pci_map_failed;
4177
4178 txdp->Host_Control = (unsigned long)skb;
4179 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4180 if (offload_type == SKB_GSO_UDP)
4181 txdp->Control_1 |= TXD_UFO_EN;
4182
4183 frg_cnt = skb_shinfo(skb)->nr_frags;
4184 /* For fragmented SKB. */
4185 for (i = 0; i < frg_cnt; i++) {
4186 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4187 /* A '0' length fragment will be ignored */
4188 if (!skb_frag_size(frag))
4189 continue;
4190 txdp++;
4191 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4192 frag, 0,
4193 skb_frag_size(frag),
4194 DMA_TO_DEVICE);
4195 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4196 if (offload_type == SKB_GSO_UDP)
4197 txdp->Control_1 |= TXD_UFO_EN;
4198 }
4199 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4200
4201 if (offload_type == SKB_GSO_UDP)
4202 frg_cnt++; /* as Txd0 was used for inband header */
4203
4204 tx_fifo = mac_control->tx_FIFO_start[queue];
4205 val64 = fifo->list_info[put_off].list_phy_addr;
4206 writeq(val64, &tx_fifo->TxDL_Pointer);
4207
4208 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4209 TX_FIFO_LAST_LIST);
4210 if (offload_type)
4211 val64 |= TX_FIFO_SPECIAL_FUNC;
4212
4213 writeq(val64, &tx_fifo->List_Control);
4214
4215 mmiowb();
4216
4217 put_off++;
4218 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4219 put_off = 0;
4220 fifo->tx_curr_put_info.offset = put_off;
4221
4222 /* Avoid "put" pointer going beyond "get" pointer */
4223 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4224 swstats->fifo_full_cnt++;
4225 DBG_PRINT(TX_DBG,
4226 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4227 put_off, get_off);
4228 s2io_stop_tx_queue(sp, fifo->fifo_no);
4229 }
4230 swstats->mem_allocated += skb->truesize;
4231 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4232
4233 if (sp->config.intr_type == MSI_X)
4234 tx_intr_handler(fifo);
4235
4236 return NETDEV_TX_OK;
4237
4238 pci_map_failed:
4239 swstats->pci_map_fail_cnt++;
4240 s2io_stop_tx_queue(sp, fifo->fifo_no);
4241 swstats->mem_freed += skb->truesize;
4242 dev_kfree_skb(skb);
4243 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4244 return NETDEV_TX_OK;
4245 }
4246
4247 static void
4248 s2io_alarm_handle(unsigned long data)
4249 {
4250 struct s2io_nic *sp = (struct s2io_nic *)data;
4251 struct net_device *dev = sp->dev;
4252
4253 s2io_handle_errors(dev);
4254 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4255 }
4256
4257 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4258 {
4259 struct ring_info *ring = (struct ring_info *)dev_id;
4260 struct s2io_nic *sp = ring->nic;
4261 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4262
4263 if (unlikely(!is_s2io_card_up(sp)))
4264 return IRQ_HANDLED;
4265
4266 if (sp->config.napi) {
4267 u8 __iomem *addr = NULL;
4268 u8 val8 = 0;
4269
4270 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4271 addr += (7 - ring->ring_no);
4272 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4273 writeb(val8, addr);
4274 val8 = readb(addr);
4275 napi_schedule(&ring->napi);
4276 } else {
4277 rx_intr_handler(ring, 0);
4278 s2io_chk_rx_buffers(sp, ring);
4279 }
4280
4281 return IRQ_HANDLED;
4282 }
4283
4284 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4285 {
4286 int i;
4287 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4288 struct s2io_nic *sp = fifos->nic;
4289 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4290 struct config_param *config = &sp->config;
4291 u64 reason;
4292
4293 if (unlikely(!is_s2io_card_up(sp)))
4294 return IRQ_NONE;
4295
4296 reason = readq(&bar0->general_int_status);
4297 if (unlikely(reason == S2IO_MINUS_ONE))
4298 /* Nothing much can be done. Get out */
4299 return IRQ_HANDLED;
4300
4301 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4302 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4303
4304 if (reason & GEN_INTR_TXPIC)
4305 s2io_txpic_intr_handle(sp);
4306
4307 if (reason & GEN_INTR_TXTRAFFIC)
4308 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4309
4310 for (i = 0; i < config->tx_fifo_num; i++)
4311 tx_intr_handler(&fifos[i]);
4312
4313 writeq(sp->general_int_mask, &bar0->general_int_mask);
4314 readl(&bar0->general_int_status);
4315 return IRQ_HANDLED;
4316 }
4317 /* The interrupt was not raised by us */
4318 return IRQ_NONE;
4319 }
4320
4321 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4322 {
4323 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4324 u64 val64;
4325
4326 val64 = readq(&bar0->pic_int_status);
4327 if (val64 & PIC_INT_GPIO) {
4328 val64 = readq(&bar0->gpio_int_reg);
4329 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4330 (val64 & GPIO_INT_REG_LINK_UP)) {
4331 /*
4332 * This is unstable state so clear both up/down
4333 * interrupt and adapter to re-evaluate the link state.
4334 */
4335 val64 |= GPIO_INT_REG_LINK_DOWN;
4336 val64 |= GPIO_INT_REG_LINK_UP;
4337 writeq(val64, &bar0->gpio_int_reg);
4338 val64 = readq(&bar0->gpio_int_mask);
4339 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4340 GPIO_INT_MASK_LINK_DOWN);
4341 writeq(val64, &bar0->gpio_int_mask);
4342 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4343 val64 = readq(&bar0->adapter_status);
4344 /* Enable Adapter */
4345 val64 = readq(&bar0->adapter_control);
4346 val64 |= ADAPTER_CNTL_EN;
4347 writeq(val64, &bar0->adapter_control);
4348 val64 |= ADAPTER_LED_ON;
4349 writeq(val64, &bar0->adapter_control);
4350 if (!sp->device_enabled_once)
4351 sp->device_enabled_once = 1;
4352
4353 s2io_link(sp, LINK_UP);
4354 /*
4355 * unmask link down interrupt and mask link-up
4356 * intr
4357 */
4358 val64 = readq(&bar0->gpio_int_mask);
4359 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4360 val64 |= GPIO_INT_MASK_LINK_UP;
4361 writeq(val64, &bar0->gpio_int_mask);
4362
4363 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4364 val64 = readq(&bar0->adapter_status);
4365 s2io_link(sp, LINK_DOWN);
4366 /* Link is down so unmaks link up interrupt */
4367 val64 = readq(&bar0->gpio_int_mask);
4368 val64 &= ~GPIO_INT_MASK_LINK_UP;
4369 val64 |= GPIO_INT_MASK_LINK_DOWN;
4370 writeq(val64, &bar0->gpio_int_mask);
4371
4372 /* turn off LED */
4373 val64 = readq(&bar0->adapter_control);
4374 val64 = val64 & (~ADAPTER_LED_ON);
4375 writeq(val64, &bar0->adapter_control);
4376 }
4377 }
4378 val64 = readq(&bar0->gpio_int_mask);
4379 }
4380
4381 /**
4382 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4383 * @value: alarm bits
4384 * @addr: address value
4385 * @cnt: counter variable
4386 * Description: Check for alarm and increment the counter
4387 * Return Value:
4388 * 1 - if alarm bit set
4389 * 0 - if alarm bit is not set
4390 */
4391 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4392 unsigned long long *cnt)
4393 {
4394 u64 val64;
4395 val64 = readq(addr);
4396 if (val64 & value) {
4397 writeq(val64, addr);
4398 (*cnt)++;
4399 return 1;
4400 }
4401 return 0;
4402
4403 }
4404
4405 /**
4406 * s2io_handle_errors - Xframe error indication handler
4407 * @nic: device private variable
4408 * Description: Handle alarms such as loss of link, single or
4409 * double ECC errors, critical and serious errors.
4410 * Return Value:
4411 * NONE
4412 */
4413 static void s2io_handle_errors(void *dev_id)
4414 {
4415 struct net_device *dev = (struct net_device *)dev_id;
4416 struct s2io_nic *sp = netdev_priv(dev);
4417 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4418 u64 temp64 = 0, val64 = 0;
4419 int i = 0;
4420
4421 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4422 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4423
4424 if (!is_s2io_card_up(sp))
4425 return;
4426
4427 if (pci_channel_offline(sp->pdev))
4428 return;
4429
4430 memset(&sw_stat->ring_full_cnt, 0,
4431 sizeof(sw_stat->ring_full_cnt));
4432
4433 /* Handling the XPAK counters update */
4434 if (stats->xpak_timer_count < 72000) {
4435 /* waiting for an hour */
4436 stats->xpak_timer_count++;
4437 } else {
4438 s2io_updt_xpak_counter(dev);
4439 /* reset the count to zero */
4440 stats->xpak_timer_count = 0;
4441 }
4442
4443 /* Handling link status change error Intr */
4444 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4445 val64 = readq(&bar0->mac_rmac_err_reg);
4446 writeq(val64, &bar0->mac_rmac_err_reg);
4447 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4448 schedule_work(&sp->set_link_task);
4449 }
4450
4451 /* In case of a serious error, the device will be Reset. */
4452 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4453 &sw_stat->serious_err_cnt))
4454 goto reset;
4455
4456 /* Check for data parity error */
4457 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4458 &sw_stat->parity_err_cnt))
4459 goto reset;
4460
4461 /* Check for ring full counter */
4462 if (sp->device_type == XFRAME_II_DEVICE) {
4463 val64 = readq(&bar0->ring_bump_counter1);
4464 for (i = 0; i < 4; i++) {
4465 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4466 temp64 >>= 64 - ((i+1)*16);
4467 sw_stat->ring_full_cnt[i] += temp64;
4468 }
4469
4470 val64 = readq(&bar0->ring_bump_counter2);
4471 for (i = 0; i < 4; i++) {
4472 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4473 temp64 >>= 64 - ((i+1)*16);
4474 sw_stat->ring_full_cnt[i+4] += temp64;
4475 }
4476 }
4477
4478 val64 = readq(&bar0->txdma_int_status);
4479 /*check for pfc_err*/
4480 if (val64 & TXDMA_PFC_INT) {
4481 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4482 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4483 PFC_PCIX_ERR,
4484 &bar0->pfc_err_reg,
4485 &sw_stat->pfc_err_cnt))
4486 goto reset;
4487 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4488 &bar0->pfc_err_reg,
4489 &sw_stat->pfc_err_cnt);
4490 }
4491
4492 /*check for tda_err*/
4493 if (val64 & TXDMA_TDA_INT) {
4494 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4495 TDA_SM0_ERR_ALARM |
4496 TDA_SM1_ERR_ALARM,
4497 &bar0->tda_err_reg,
4498 &sw_stat->tda_err_cnt))
4499 goto reset;
4500 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4501 &bar0->tda_err_reg,
4502 &sw_stat->tda_err_cnt);
4503 }
4504 /*check for pcc_err*/
4505 if (val64 & TXDMA_PCC_INT) {
4506 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4507 PCC_N_SERR | PCC_6_COF_OV_ERR |
4508 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4509 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4510 PCC_TXB_ECC_DB_ERR,
4511 &bar0->pcc_err_reg,
4512 &sw_stat->pcc_err_cnt))
4513 goto reset;
4514 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4515 &bar0->pcc_err_reg,
4516 &sw_stat->pcc_err_cnt);
4517 }
4518
4519 /*check for tti_err*/
4520 if (val64 & TXDMA_TTI_INT) {
4521 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4522 &bar0->tti_err_reg,
4523 &sw_stat->tti_err_cnt))
4524 goto reset;
4525 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4526 &bar0->tti_err_reg,
4527 &sw_stat->tti_err_cnt);
4528 }
4529
4530 /*check for lso_err*/
4531 if (val64 & TXDMA_LSO_INT) {
4532 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4533 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4534 &bar0->lso_err_reg,
4535 &sw_stat->lso_err_cnt))
4536 goto reset;
4537 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4538 &bar0->lso_err_reg,
4539 &sw_stat->lso_err_cnt);
4540 }
4541
4542 /*check for tpa_err*/
4543 if (val64 & TXDMA_TPA_INT) {
4544 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4545 &bar0->tpa_err_reg,
4546 &sw_stat->tpa_err_cnt))
4547 goto reset;
4548 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4549 &bar0->tpa_err_reg,
4550 &sw_stat->tpa_err_cnt);
4551 }
4552
4553 /*check for sm_err*/
4554 if (val64 & TXDMA_SM_INT) {
4555 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4556 &bar0->sm_err_reg,
4557 &sw_stat->sm_err_cnt))
4558 goto reset;
4559 }
4560
4561 val64 = readq(&bar0->mac_int_status);
4562 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4563 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4564 &bar0->mac_tmac_err_reg,
4565 &sw_stat->mac_tmac_err_cnt))
4566 goto reset;
4567 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4568 TMAC_DESC_ECC_SG_ERR |
4569 TMAC_DESC_ECC_DB_ERR,
4570 &bar0->mac_tmac_err_reg,
4571 &sw_stat->mac_tmac_err_cnt);
4572 }
4573
4574 val64 = readq(&bar0->xgxs_int_status);
4575 if (val64 & XGXS_INT_STATUS_TXGXS) {
4576 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4577 &bar0->xgxs_txgxs_err_reg,
4578 &sw_stat->xgxs_txgxs_err_cnt))
4579 goto reset;
4580 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4581 &bar0->xgxs_txgxs_err_reg,
4582 &sw_stat->xgxs_txgxs_err_cnt);
4583 }
4584
4585 val64 = readq(&bar0->rxdma_int_status);
4586 if (val64 & RXDMA_INT_RC_INT_M) {
4587 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4588 RC_FTC_ECC_DB_ERR |
4589 RC_PRCn_SM_ERR_ALARM |
4590 RC_FTC_SM_ERR_ALARM,
4591 &bar0->rc_err_reg,
4592 &sw_stat->rc_err_cnt))
4593 goto reset;
4594 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4595 RC_FTC_ECC_SG_ERR |
4596 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4597 &sw_stat->rc_err_cnt);
4598 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4599 PRC_PCI_AB_WR_Rn |
4600 PRC_PCI_AB_F_WR_Rn,
4601 &bar0->prc_pcix_err_reg,
4602 &sw_stat->prc_pcix_err_cnt))
4603 goto reset;
4604 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4605 PRC_PCI_DP_WR_Rn |
4606 PRC_PCI_DP_F_WR_Rn,
4607 &bar0->prc_pcix_err_reg,
4608 &sw_stat->prc_pcix_err_cnt);
4609 }
4610
4611 if (val64 & RXDMA_INT_RPA_INT_M) {
4612 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4613 &bar0->rpa_err_reg,
4614 &sw_stat->rpa_err_cnt))
4615 goto reset;
4616 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4617 &bar0->rpa_err_reg,
4618 &sw_stat->rpa_err_cnt);
4619 }
4620
4621 if (val64 & RXDMA_INT_RDA_INT_M) {
4622 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4623 RDA_FRM_ECC_DB_N_AERR |
4624 RDA_SM1_ERR_ALARM |
4625 RDA_SM0_ERR_ALARM |
4626 RDA_RXD_ECC_DB_SERR,
4627 &bar0->rda_err_reg,
4628 &sw_stat->rda_err_cnt))
4629 goto reset;
4630 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4631 RDA_FRM_ECC_SG_ERR |
4632 RDA_MISC_ERR |
4633 RDA_PCIX_ERR,
4634 &bar0->rda_err_reg,
4635 &sw_stat->rda_err_cnt);
4636 }
4637
4638 if (val64 & RXDMA_INT_RTI_INT_M) {
4639 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4640 &bar0->rti_err_reg,
4641 &sw_stat->rti_err_cnt))
4642 goto reset;
4643 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4644 &bar0->rti_err_reg,
4645 &sw_stat->rti_err_cnt);
4646 }
4647
4648 val64 = readq(&bar0->mac_int_status);
4649 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4650 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4651 &bar0->mac_rmac_err_reg,
4652 &sw_stat->mac_rmac_err_cnt))
4653 goto reset;
4654 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4655 RMAC_SINGLE_ECC_ERR |
4656 RMAC_DOUBLE_ECC_ERR,
4657 &bar0->mac_rmac_err_reg,
4658 &sw_stat->mac_rmac_err_cnt);
4659 }
4660
4661 val64 = readq(&bar0->xgxs_int_status);
4662 if (val64 & XGXS_INT_STATUS_RXGXS) {
4663 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4664 &bar0->xgxs_rxgxs_err_reg,
4665 &sw_stat->xgxs_rxgxs_err_cnt))
4666 goto reset;
4667 }
4668
4669 val64 = readq(&bar0->mc_int_status);
4670 if (val64 & MC_INT_STATUS_MC_INT) {
4671 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4672 &bar0->mc_err_reg,
4673 &sw_stat->mc_err_cnt))
4674 goto reset;
4675
4676 /* Handling Ecc errors */
4677 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4678 writeq(val64, &bar0->mc_err_reg);
4679 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4680 sw_stat->double_ecc_errs++;
4681 if (sp->device_type != XFRAME_II_DEVICE) {
4682 /*
4683 * Reset XframeI only if critical error
4684 */
4685 if (val64 &
4686 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4687 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4688 goto reset;
4689 }
4690 } else
4691 sw_stat->single_ecc_errs++;
4692 }
4693 }
4694 return;
4695
4696 reset:
4697 s2io_stop_all_tx_queue(sp);
4698 schedule_work(&sp->rst_timer_task);
4699 sw_stat->soft_reset_cnt++;
4700 }
4701
4702 /**
4703 * s2io_isr - ISR handler of the device .
4704 * @irq: the irq of the device.
4705 * @dev_id: a void pointer to the dev structure of the NIC.
4706 * Description: This function is the ISR handler of the device. It
4707 * identifies the reason for the interrupt and calls the relevant
4708 * service routines. As a contongency measure, this ISR allocates the
4709 * recv buffers, if their numbers are below the panic value which is
4710 * presently set to 25% of the original number of rcv buffers allocated.
4711 * Return value:
4712 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4713 * IRQ_NONE: will be returned if interrupt is not from our device
4714 */
4715 static irqreturn_t s2io_isr(int irq, void *dev_id)
4716 {
4717 struct net_device *dev = (struct net_device *)dev_id;
4718 struct s2io_nic *sp = netdev_priv(dev);
4719 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4720 int i;
4721 u64 reason = 0;
4722 struct mac_info *mac_control;
4723 struct config_param *config;
4724
4725 /* Pretend we handled any irq's from a disconnected card */
4726 if (pci_channel_offline(sp->pdev))
4727 return IRQ_NONE;
4728
4729 if (!is_s2io_card_up(sp))
4730 return IRQ_NONE;
4731
4732 config = &sp->config;
4733 mac_control = &sp->mac_control;
4734
4735 /*
4736 * Identify the cause for interrupt and call the appropriate
4737 * interrupt handler. Causes for the interrupt could be;
4738 * 1. Rx of packet.
4739 * 2. Tx complete.
4740 * 3. Link down.
4741 */
4742 reason = readq(&bar0->general_int_status);
4743
4744 if (unlikely(reason == S2IO_MINUS_ONE))
4745 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4746
4747 if (reason &
4748 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4749 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4750
4751 if (config->napi) {
4752 if (reason & GEN_INTR_RXTRAFFIC) {
4753 napi_schedule(&sp->napi);
4754 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4755 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4756 readl(&bar0->rx_traffic_int);
4757 }
4758 } else {
4759 /*
4760 * rx_traffic_int reg is an R1 register, writing all 1's
4761 * will ensure that the actual interrupt causing bit
4762 * get's cleared and hence a read can be avoided.
4763 */
4764 if (reason & GEN_INTR_RXTRAFFIC)
4765 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4766
4767 for (i = 0; i < config->rx_ring_num; i++) {
4768 struct ring_info *ring = &mac_control->rings[i];
4769
4770 rx_intr_handler(ring, 0);
4771 }
4772 }
4773
4774 /*
4775 * tx_traffic_int reg is an R1 register, writing all 1's
4776 * will ensure that the actual interrupt causing bit get's
4777 * cleared and hence a read can be avoided.
4778 */
4779 if (reason & GEN_INTR_TXTRAFFIC)
4780 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4781
4782 for (i = 0; i < config->tx_fifo_num; i++)
4783 tx_intr_handler(&mac_control->fifos[i]);
4784
4785 if (reason & GEN_INTR_TXPIC)
4786 s2io_txpic_intr_handle(sp);
4787
4788 /*
4789 * Reallocate the buffers from the interrupt handler itself.
4790 */
4791 if (!config->napi) {
4792 for (i = 0; i < config->rx_ring_num; i++) {
4793 struct ring_info *ring = &mac_control->rings[i];
4794
4795 s2io_chk_rx_buffers(sp, ring);
4796 }
4797 }
4798 writeq(sp->general_int_mask, &bar0->general_int_mask);
4799 readl(&bar0->general_int_status);
4800
4801 return IRQ_HANDLED;
4802
4803 } else if (!reason) {
4804 /* The interrupt was not raised by us */
4805 return IRQ_NONE;
4806 }
4807
4808 return IRQ_HANDLED;
4809 }
4810
4811 /**
4812 * s2io_updt_stats -
4813 */
4814 static void s2io_updt_stats(struct s2io_nic *sp)
4815 {
4816 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4817 u64 val64;
4818 int cnt = 0;
4819
4820 if (is_s2io_card_up(sp)) {
4821 /* Apprx 30us on a 133 MHz bus */
4822 val64 = SET_UPDT_CLICKS(10) |
4823 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4824 writeq(val64, &bar0->stat_cfg);
4825 do {
4826 udelay(100);
4827 val64 = readq(&bar0->stat_cfg);
4828 if (!(val64 & s2BIT(0)))
4829 break;
4830 cnt++;
4831 if (cnt == 5)
4832 break; /* Updt failed */
4833 } while (1);
4834 }
4835 }
4836
4837 /**
4838 * s2io_get_stats - Updates the device statistics structure.
4839 * @dev : pointer to the device structure.
4840 * Description:
4841 * This function updates the device statistics structure in the s2io_nic
4842 * structure and returns a pointer to the same.
4843 * Return value:
4844 * pointer to the updated net_device_stats structure.
4845 */
4846 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4847 {
4848 struct s2io_nic *sp = netdev_priv(dev);
4849 struct mac_info *mac_control = &sp->mac_control;
4850 struct stat_block *stats = mac_control->stats_info;
4851 u64 delta;
4852
4853 /* Configure Stats for immediate updt */
4854 s2io_updt_stats(sp);
4855
4856 /* A device reset will cause the on-adapter statistics to be zero'ed.
4857 * This can be done while running by changing the MTU. To prevent the
4858 * system from having the stats zero'ed, the driver keeps a copy of the
4859 * last update to the system (which is also zero'ed on reset). This
4860 * enables the driver to accurately know the delta between the last
4861 * update and the current update.
4862 */
4863 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4864 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4865 sp->stats.rx_packets += delta;
4866 dev->stats.rx_packets += delta;
4867
4868 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4869 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4870 sp->stats.tx_packets += delta;
4871 dev->stats.tx_packets += delta;
4872
4873 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4874 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4875 sp->stats.rx_bytes += delta;
4876 dev->stats.rx_bytes += delta;
4877
4878 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4879 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4880 sp->stats.tx_bytes += delta;
4881 dev->stats.tx_bytes += delta;
4882
4883 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4884 sp->stats.rx_errors += delta;
4885 dev->stats.rx_errors += delta;
4886
4887 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4888 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4889 sp->stats.tx_errors += delta;
4890 dev->stats.tx_errors += delta;
4891
4892 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4893 sp->stats.rx_dropped += delta;
4894 dev->stats.rx_dropped += delta;
4895
4896 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4897 sp->stats.tx_dropped += delta;
4898 dev->stats.tx_dropped += delta;
4899
4900 /* The adapter MAC interprets pause frames as multicast packets, but
4901 * does not pass them up. This erroneously increases the multicast
4902 * packet count and needs to be deducted when the multicast frame count
4903 * is queried.
4904 */
4905 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4906 le32_to_cpu(stats->rmac_vld_mcst_frms);
4907 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4908 delta -= sp->stats.multicast;
4909 sp->stats.multicast += delta;
4910 dev->stats.multicast += delta;
4911
4912 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4913 le32_to_cpu(stats->rmac_usized_frms)) +
4914 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4915 sp->stats.rx_length_errors += delta;
4916 dev->stats.rx_length_errors += delta;
4917
4918 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4919 sp->stats.rx_crc_errors += delta;
4920 dev->stats.rx_crc_errors += delta;
4921
4922 return &dev->stats;
4923 }
4924
4925 /**
4926 * s2io_set_multicast - entry point for multicast address enable/disable.
4927 * @dev : pointer to the device structure
4928 * Description:
4929 * This function is a driver entry point which gets called by the kernel
4930 * whenever multicast addresses must be enabled/disabled. This also gets
4931 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4932 * determine, if multicast address must be enabled or if promiscuous mode
4933 * is to be disabled etc.
4934 * Return value:
4935 * void.
4936 */
4937
4938 static void s2io_set_multicast(struct net_device *dev)
4939 {
4940 int i, j, prev_cnt;
4941 struct netdev_hw_addr *ha;
4942 struct s2io_nic *sp = netdev_priv(dev);
4943 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4944 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4945 0xfeffffffffffULL;
4946 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4947 void __iomem *add;
4948 struct config_param *config = &sp->config;
4949
4950 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4951 /* Enable all Multicast addresses */
4952 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4953 &bar0->rmac_addr_data0_mem);
4954 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4955 &bar0->rmac_addr_data1_mem);
4956 val64 = RMAC_ADDR_CMD_MEM_WE |
4957 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4958 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4959 writeq(val64, &bar0->rmac_addr_cmd_mem);
4960 /* Wait till command completes */
4961 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4962 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4963 S2IO_BIT_RESET);
4964
4965 sp->m_cast_flg = 1;
4966 sp->all_multi_pos = config->max_mc_addr - 1;
4967 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4968 /* Disable all Multicast addresses */
4969 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4970 &bar0->rmac_addr_data0_mem);
4971 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4972 &bar0->rmac_addr_data1_mem);
4973 val64 = RMAC_ADDR_CMD_MEM_WE |
4974 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4975 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4976 writeq(val64, &bar0->rmac_addr_cmd_mem);
4977 /* Wait till command completes */
4978 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4979 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4980 S2IO_BIT_RESET);
4981
4982 sp->m_cast_flg = 0;
4983 sp->all_multi_pos = 0;
4984 }
4985
4986 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4987 /* Put the NIC into promiscuous mode */
4988 add = &bar0->mac_cfg;
4989 val64 = readq(&bar0->mac_cfg);
4990 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4991
4992 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4993 writel((u32)val64, add);
4994 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4995 writel((u32) (val64 >> 32), (add + 4));
4996
4997 if (vlan_tag_strip != 1) {
4998 val64 = readq(&bar0->rx_pa_cfg);
4999 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5000 writeq(val64, &bar0->rx_pa_cfg);
5001 sp->vlan_strip_flag = 0;
5002 }
5003
5004 val64 = readq(&bar0->mac_cfg);
5005 sp->promisc_flg = 1;
5006 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5007 dev->name);
5008 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5009 /* Remove the NIC from promiscuous mode */
5010 add = &bar0->mac_cfg;
5011 val64 = readq(&bar0->mac_cfg);
5012 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5013
5014 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5015 writel((u32)val64, add);
5016 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5017 writel((u32) (val64 >> 32), (add + 4));
5018
5019 if (vlan_tag_strip != 0) {
5020 val64 = readq(&bar0->rx_pa_cfg);
5021 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5022 writeq(val64, &bar0->rx_pa_cfg);
5023 sp->vlan_strip_flag = 1;
5024 }
5025
5026 val64 = readq(&bar0->mac_cfg);
5027 sp->promisc_flg = 0;
5028 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5029 }
5030
5031 /* Update individual M_CAST address list */
5032 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5033 if (netdev_mc_count(dev) >
5034 (config->max_mc_addr - config->max_mac_addr)) {
5035 DBG_PRINT(ERR_DBG,
5036 "%s: No more Rx filters can be added - "
5037 "please enable ALL_MULTI instead\n",
5038 dev->name);
5039 return;
5040 }
5041
5042 prev_cnt = sp->mc_addr_count;
5043 sp->mc_addr_count = netdev_mc_count(dev);
5044
5045 /* Clear out the previous list of Mc in the H/W. */
5046 for (i = 0; i < prev_cnt; i++) {
5047 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5048 &bar0->rmac_addr_data0_mem);
5049 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5050 &bar0->rmac_addr_data1_mem);
5051 val64 = RMAC_ADDR_CMD_MEM_WE |
5052 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5053 RMAC_ADDR_CMD_MEM_OFFSET
5054 (config->mc_start_offset + i);
5055 writeq(val64, &bar0->rmac_addr_cmd_mem);
5056
5057 /* Wait for command completes */
5058 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5059 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5060 S2IO_BIT_RESET)) {
5061 DBG_PRINT(ERR_DBG,
5062 "%s: Adding Multicasts failed\n",
5063 dev->name);
5064 return;
5065 }
5066 }
5067
5068 /* Create the new Rx filter list and update the same in H/W. */
5069 i = 0;
5070 netdev_for_each_mc_addr(ha, dev) {
5071 mac_addr = 0;
5072 for (j = 0; j < ETH_ALEN; j++) {
5073 mac_addr |= ha->addr[j];
5074 mac_addr <<= 8;
5075 }
5076 mac_addr >>= 8;
5077 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5078 &bar0->rmac_addr_data0_mem);
5079 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5080 &bar0->rmac_addr_data1_mem);
5081 val64 = RMAC_ADDR_CMD_MEM_WE |
5082 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5083 RMAC_ADDR_CMD_MEM_OFFSET
5084 (i + config->mc_start_offset);
5085 writeq(val64, &bar0->rmac_addr_cmd_mem);
5086
5087 /* Wait for command completes */
5088 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5089 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5090 S2IO_BIT_RESET)) {
5091 DBG_PRINT(ERR_DBG,
5092 "%s: Adding Multicasts failed\n",
5093 dev->name);
5094 return;
5095 }
5096 i++;
5097 }
5098 }
5099 }
5100
5101 /* read from CAM unicast & multicast addresses and store it in
5102 * def_mac_addr structure
5103 */
5104 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5105 {
5106 int offset;
5107 u64 mac_addr = 0x0;
5108 struct config_param *config = &sp->config;
5109
5110 /* store unicast & multicast mac addresses */
5111 for (offset = 0; offset < config->max_mc_addr; offset++) {
5112 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5113 /* if read fails disable the entry */
5114 if (mac_addr == FAILURE)
5115 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5116 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5117 }
5118 }
5119
5120 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5121 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5122 {
5123 int offset;
5124 struct config_param *config = &sp->config;
5125 /* restore unicast mac address */
5126 for (offset = 0; offset < config->max_mac_addr; offset++)
5127 do_s2io_prog_unicast(sp->dev,
5128 sp->def_mac_addr[offset].mac_addr);
5129
5130 /* restore multicast mac address */
5131 for (offset = config->mc_start_offset;
5132 offset < config->max_mc_addr; offset++)
5133 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5134 }
5135
5136 /* add a multicast MAC address to CAM */
5137 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5138 {
5139 int i;
5140 u64 mac_addr = 0;
5141 struct config_param *config = &sp->config;
5142
5143 for (i = 0; i < ETH_ALEN; i++) {
5144 mac_addr <<= 8;
5145 mac_addr |= addr[i];
5146 }
5147 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5148 return SUCCESS;
5149
5150 /* check if the multicast mac already preset in CAM */
5151 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5152 u64 tmp64;
5153 tmp64 = do_s2io_read_unicast_mc(sp, i);
5154 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5155 break;
5156
5157 if (tmp64 == mac_addr)
5158 return SUCCESS;
5159 }
5160 if (i == config->max_mc_addr) {
5161 DBG_PRINT(ERR_DBG,
5162 "CAM full no space left for multicast MAC\n");
5163 return FAILURE;
5164 }
5165 /* Update the internal structure with this new mac address */
5166 do_s2io_copy_mac_addr(sp, i, mac_addr);
5167
5168 return do_s2io_add_mac(sp, mac_addr, i);
5169 }
5170
5171 /* add MAC address to CAM */
5172 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5173 {
5174 u64 val64;
5175 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5176
5177 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5178 &bar0->rmac_addr_data0_mem);
5179
5180 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5181 RMAC_ADDR_CMD_MEM_OFFSET(off);
5182 writeq(val64, &bar0->rmac_addr_cmd_mem);
5183
5184 /* Wait till command completes */
5185 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5186 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5187 S2IO_BIT_RESET)) {
5188 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5189 return FAILURE;
5190 }
5191 return SUCCESS;
5192 }
5193 /* deletes a specified unicast/multicast mac entry from CAM */
5194 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5195 {
5196 int offset;
5197 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5198 struct config_param *config = &sp->config;
5199
5200 for (offset = 1;
5201 offset < config->max_mc_addr; offset++) {
5202 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5203 if (tmp64 == addr) {
5204 /* disable the entry by writing 0xffffffffffffULL */
5205 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5206 return FAILURE;
5207 /* store the new mac list from CAM */
5208 do_s2io_store_unicast_mc(sp);
5209 return SUCCESS;
5210 }
5211 }
5212 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5213 (unsigned long long)addr);
5214 return FAILURE;
5215 }
5216
5217 /* read mac entries from CAM */
5218 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5219 {
5220 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5221 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5222
5223 /* read mac addr */
5224 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5225 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5226 writeq(val64, &bar0->rmac_addr_cmd_mem);
5227
5228 /* Wait till command completes */
5229 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5230 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5231 S2IO_BIT_RESET)) {
5232 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5233 return FAILURE;
5234 }
5235 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5236
5237 return tmp64 >> 16;
5238 }
5239
5240 /**
5241 * s2io_set_mac_addr - driver entry point
5242 */
5243
5244 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5245 {
5246 struct sockaddr *addr = p;
5247
5248 if (!is_valid_ether_addr(addr->sa_data))
5249 return -EADDRNOTAVAIL;
5250
5251 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5252
5253 /* store the MAC address in CAM */
5254 return do_s2io_prog_unicast(dev, dev->dev_addr);
5255 }
5256 /**
5257 * do_s2io_prog_unicast - Programs the Xframe mac address
5258 * @dev : pointer to the device structure.
5259 * @addr: a uchar pointer to the new mac address which is to be set.
5260 * Description : This procedure will program the Xframe to receive
5261 * frames with new Mac Address
5262 * Return value: SUCCESS on success and an appropriate (-)ve integer
5263 * as defined in errno.h file on failure.
5264 */
5265
5266 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5267 {
5268 struct s2io_nic *sp = netdev_priv(dev);
5269 register u64 mac_addr = 0, perm_addr = 0;
5270 int i;
5271 u64 tmp64;
5272 struct config_param *config = &sp->config;
5273
5274 /*
5275 * Set the new MAC address as the new unicast filter and reflect this
5276 * change on the device address registered with the OS. It will be
5277 * at offset 0.
5278 */
5279 for (i = 0; i < ETH_ALEN; i++) {
5280 mac_addr <<= 8;
5281 mac_addr |= addr[i];
5282 perm_addr <<= 8;
5283 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5284 }
5285
5286 /* check if the dev_addr is different than perm_addr */
5287 if (mac_addr == perm_addr)
5288 return SUCCESS;
5289
5290 /* check if the mac already preset in CAM */
5291 for (i = 1; i < config->max_mac_addr; i++) {
5292 tmp64 = do_s2io_read_unicast_mc(sp, i);
5293 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5294 break;
5295
5296 if (tmp64 == mac_addr) {
5297 DBG_PRINT(INFO_DBG,
5298 "MAC addr:0x%llx already present in CAM\n",
5299 (unsigned long long)mac_addr);
5300 return SUCCESS;
5301 }
5302 }
5303 if (i == config->max_mac_addr) {
5304 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5305 return FAILURE;
5306 }
5307 /* Update the internal structure with this new mac address */
5308 do_s2io_copy_mac_addr(sp, i, mac_addr);
5309
5310 return do_s2io_add_mac(sp, mac_addr, i);
5311 }
5312
5313 /**
5314 * s2io_ethtool_sset - Sets different link parameters.
5315 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5316 * @info: pointer to the structure with parameters given by ethtool to set
5317 * link information.
5318 * Description:
5319 * The function sets different link parameters provided by the user onto
5320 * the NIC.
5321 * Return value:
5322 * 0 on success.
5323 */
5324
5325 static int s2io_ethtool_sset(struct net_device *dev,
5326 struct ethtool_cmd *info)
5327 {
5328 struct s2io_nic *sp = netdev_priv(dev);
5329 if ((info->autoneg == AUTONEG_ENABLE) ||
5330 (ethtool_cmd_speed(info) != SPEED_10000) ||
5331 (info->duplex != DUPLEX_FULL))
5332 return -EINVAL;
5333 else {
5334 s2io_close(sp->dev);
5335 s2io_open(sp->dev);
5336 }
5337
5338 return 0;
5339 }
5340
5341 /**
5342 * s2io_ethtol_gset - Return link specific information.
5343 * @sp : private member of the device structure, pointer to the
5344 * s2io_nic structure.
5345 * @info : pointer to the structure with parameters given by ethtool
5346 * to return link information.
5347 * Description:
5348 * Returns link specific information like speed, duplex etc.. to ethtool.
5349 * Return value :
5350 * return 0 on success.
5351 */
5352
5353 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5354 {
5355 struct s2io_nic *sp = netdev_priv(dev);
5356 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5357 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5358 info->port = PORT_FIBRE;
5359
5360 /* info->transceiver */
5361 info->transceiver = XCVR_EXTERNAL;
5362
5363 if (netif_carrier_ok(sp->dev)) {
5364 ethtool_cmd_speed_set(info, SPEED_10000);
5365 info->duplex = DUPLEX_FULL;
5366 } else {
5367 ethtool_cmd_speed_set(info, -1);
5368 info->duplex = -1;
5369 }
5370
5371 info->autoneg = AUTONEG_DISABLE;
5372 return 0;
5373 }
5374
5375 /**
5376 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5377 * @sp : private member of the device structure, which is a pointer to the
5378 * s2io_nic structure.
5379 * @info : pointer to the structure with parameters given by ethtool to
5380 * return driver information.
5381 * Description:
5382 * Returns driver specefic information like name, version etc.. to ethtool.
5383 * Return value:
5384 * void
5385 */
5386
5387 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5388 struct ethtool_drvinfo *info)
5389 {
5390 struct s2io_nic *sp = netdev_priv(dev);
5391
5392 strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5393 strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5394 strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5395 info->regdump_len = XENA_REG_SPACE;
5396 info->eedump_len = XENA_EEPROM_SPACE;
5397 }
5398
5399 /**
5400 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5401 * @sp: private member of the device structure, which is a pointer to the
5402 * s2io_nic structure.
5403 * @regs : pointer to the structure with parameters given by ethtool for
5404 * dumping the registers.
5405 * @reg_space: The input argumnet into which all the registers are dumped.
5406 * Description:
5407 * Dumps the entire register space of xFrame NIC into the user given
5408 * buffer area.
5409 * Return value :
5410 * void .
5411 */
5412
5413 static void s2io_ethtool_gregs(struct net_device *dev,
5414 struct ethtool_regs *regs, void *space)
5415 {
5416 int i;
5417 u64 reg;
5418 u8 *reg_space = (u8 *)space;
5419 struct s2io_nic *sp = netdev_priv(dev);
5420
5421 regs->len = XENA_REG_SPACE;
5422 regs->version = sp->pdev->subsystem_device;
5423
5424 for (i = 0; i < regs->len; i += 8) {
5425 reg = readq(sp->bar0 + i);
5426 memcpy((reg_space + i), &reg, 8);
5427 }
5428 }
5429
5430 /*
5431 * s2io_set_led - control NIC led
5432 */
5433 static void s2io_set_led(struct s2io_nic *sp, bool on)
5434 {
5435 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5436 u16 subid = sp->pdev->subsystem_device;
5437 u64 val64;
5438
5439 if ((sp->device_type == XFRAME_II_DEVICE) ||
5440 ((subid & 0xFF) >= 0x07)) {
5441 val64 = readq(&bar0->gpio_control);
5442 if (on)
5443 val64 |= GPIO_CTRL_GPIO_0;
5444 else
5445 val64 &= ~GPIO_CTRL_GPIO_0;
5446
5447 writeq(val64, &bar0->gpio_control);
5448 } else {
5449 val64 = readq(&bar0->adapter_control);
5450 if (on)
5451 val64 |= ADAPTER_LED_ON;
5452 else
5453 val64 &= ~ADAPTER_LED_ON;
5454
5455 writeq(val64, &bar0->adapter_control);
5456 }
5457
5458 }
5459
5460 /**
5461 * s2io_ethtool_set_led - To physically identify the nic on the system.
5462 * @dev : network device
5463 * @state: led setting
5464 *
5465 * Description: Used to physically identify the NIC on the system.
5466 * The Link LED will blink for a time specified by the user for
5467 * identification.
5468 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5469 * identification is possible only if it's link is up.
5470 */
5471
5472 static int s2io_ethtool_set_led(struct net_device *dev,
5473 enum ethtool_phys_id_state state)
5474 {
5475 struct s2io_nic *sp = netdev_priv(dev);
5476 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5477 u16 subid = sp->pdev->subsystem_device;
5478
5479 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5480 u64 val64 = readq(&bar0->adapter_control);
5481 if (!(val64 & ADAPTER_CNTL_EN)) {
5482 pr_err("Adapter Link down, cannot blink LED\n");
5483 return -EAGAIN;
5484 }
5485 }
5486
5487 switch (state) {
5488 case ETHTOOL_ID_ACTIVE:
5489 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5490 return 1; /* cycle on/off once per second */
5491
5492 case ETHTOOL_ID_ON:
5493 s2io_set_led(sp, true);
5494 break;
5495
5496 case ETHTOOL_ID_OFF:
5497 s2io_set_led(sp, false);
5498 break;
5499
5500 case ETHTOOL_ID_INACTIVE:
5501 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5502 writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5503 }
5504
5505 return 0;
5506 }
5507
5508 static void s2io_ethtool_gringparam(struct net_device *dev,
5509 struct ethtool_ringparam *ering)
5510 {
5511 struct s2io_nic *sp = netdev_priv(dev);
5512 int i, tx_desc_count = 0, rx_desc_count = 0;
5513
5514 if (sp->rxd_mode == RXD_MODE_1) {
5515 ering->rx_max_pending = MAX_RX_DESC_1;
5516 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5517 } else {
5518 ering->rx_max_pending = MAX_RX_DESC_2;
5519 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5520 }
5521
5522 ering->tx_max_pending = MAX_TX_DESC;
5523
5524 for (i = 0; i < sp->config.rx_ring_num; i++)
5525 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5526 ering->rx_pending = rx_desc_count;
5527 ering->rx_jumbo_pending = rx_desc_count;
5528
5529 for (i = 0; i < sp->config.tx_fifo_num; i++)
5530 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5531 ering->tx_pending = tx_desc_count;
5532 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5533 }
5534
5535 /**
5536 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5537 * @sp : private member of the device structure, which is a pointer to the
5538 * s2io_nic structure.
5539 * @ep : pointer to the structure with pause parameters given by ethtool.
5540 * Description:
5541 * Returns the Pause frame generation and reception capability of the NIC.
5542 * Return value:
5543 * void
5544 */
5545 static void s2io_ethtool_getpause_data(struct net_device *dev,
5546 struct ethtool_pauseparam *ep)
5547 {
5548 u64 val64;
5549 struct s2io_nic *sp = netdev_priv(dev);
5550 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5551
5552 val64 = readq(&bar0->rmac_pause_cfg);
5553 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5554 ep->tx_pause = true;
5555 if (val64 & RMAC_PAUSE_RX_ENABLE)
5556 ep->rx_pause = true;
5557 ep->autoneg = false;
5558 }
5559
5560 /**
5561 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5562 * @sp : private member of the device structure, which is a pointer to the
5563 * s2io_nic structure.
5564 * @ep : pointer to the structure with pause parameters given by ethtool.
5565 * Description:
5566 * It can be used to set or reset Pause frame generation or reception
5567 * support of the NIC.
5568 * Return value:
5569 * int, returns 0 on Success
5570 */
5571
5572 static int s2io_ethtool_setpause_data(struct net_device *dev,
5573 struct ethtool_pauseparam *ep)
5574 {
5575 u64 val64;
5576 struct s2io_nic *sp = netdev_priv(dev);
5577 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5578
5579 val64 = readq(&bar0->rmac_pause_cfg);
5580 if (ep->tx_pause)
5581 val64 |= RMAC_PAUSE_GEN_ENABLE;
5582 else
5583 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5584 if (ep->rx_pause)
5585 val64 |= RMAC_PAUSE_RX_ENABLE;
5586 else
5587 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5588 writeq(val64, &bar0->rmac_pause_cfg);
5589 return 0;
5590 }
5591
5592 /**
5593 * read_eeprom - reads 4 bytes of data from user given offset.
5594 * @sp : private member of the device structure, which is a pointer to the
5595 * s2io_nic structure.
5596 * @off : offset at which the data must be written
5597 * @data : Its an output parameter where the data read at the given
5598 * offset is stored.
5599 * Description:
5600 * Will read 4 bytes of data from the user given offset and return the
5601 * read data.
5602 * NOTE: Will allow to read only part of the EEPROM visible through the
5603 * I2C bus.
5604 * Return value:
5605 * -1 on failure and 0 on success.
5606 */
5607
5608 #define S2IO_DEV_ID 5
5609 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5610 {
5611 int ret = -1;
5612 u32 exit_cnt = 0;
5613 u64 val64;
5614 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5615
5616 if (sp->device_type == XFRAME_I_DEVICE) {
5617 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5618 I2C_CONTROL_ADDR(off) |
5619 I2C_CONTROL_BYTE_CNT(0x3) |
5620 I2C_CONTROL_READ |
5621 I2C_CONTROL_CNTL_START;
5622 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5623
5624 while (exit_cnt < 5) {
5625 val64 = readq(&bar0->i2c_control);
5626 if (I2C_CONTROL_CNTL_END(val64)) {
5627 *data = I2C_CONTROL_GET_DATA(val64);
5628 ret = 0;
5629 break;
5630 }
5631 msleep(50);
5632 exit_cnt++;
5633 }
5634 }
5635
5636 if (sp->device_type == XFRAME_II_DEVICE) {
5637 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5638 SPI_CONTROL_BYTECNT(0x3) |
5639 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5640 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5641 val64 |= SPI_CONTROL_REQ;
5642 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5643 while (exit_cnt < 5) {
5644 val64 = readq(&bar0->spi_control);
5645 if (val64 & SPI_CONTROL_NACK) {
5646 ret = 1;
5647 break;
5648 } else if (val64 & SPI_CONTROL_DONE) {
5649 *data = readq(&bar0->spi_data);
5650 *data &= 0xffffff;
5651 ret = 0;
5652 break;
5653 }
5654 msleep(50);
5655 exit_cnt++;
5656 }
5657 }
5658 return ret;
5659 }
5660
5661 /**
5662 * write_eeprom - actually writes the relevant part of the data value.
5663 * @sp : private member of the device structure, which is a pointer to the
5664 * s2io_nic structure.
5665 * @off : offset at which the data must be written
5666 * @data : The data that is to be written
5667 * @cnt : Number of bytes of the data that are actually to be written into
5668 * the Eeprom. (max of 3)
5669 * Description:
5670 * Actually writes the relevant part of the data value into the Eeprom
5671 * through the I2C bus.
5672 * Return value:
5673 * 0 on success, -1 on failure.
5674 */
5675
5676 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5677 {
5678 int exit_cnt = 0, ret = -1;
5679 u64 val64;
5680 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5681
5682 if (sp->device_type == XFRAME_I_DEVICE) {
5683 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5684 I2C_CONTROL_ADDR(off) |
5685 I2C_CONTROL_BYTE_CNT(cnt) |
5686 I2C_CONTROL_SET_DATA((u32)data) |
5687 I2C_CONTROL_CNTL_START;
5688 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5689
5690 while (exit_cnt < 5) {
5691 val64 = readq(&bar0->i2c_control);
5692 if (I2C_CONTROL_CNTL_END(val64)) {
5693 if (!(val64 & I2C_CONTROL_NACK))
5694 ret = 0;
5695 break;
5696 }
5697 msleep(50);
5698 exit_cnt++;
5699 }
5700 }
5701
5702 if (sp->device_type == XFRAME_II_DEVICE) {
5703 int write_cnt = (cnt == 8) ? 0 : cnt;
5704 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5705
5706 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5707 SPI_CONTROL_BYTECNT(write_cnt) |
5708 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5709 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5710 val64 |= SPI_CONTROL_REQ;
5711 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5712 while (exit_cnt < 5) {
5713 val64 = readq(&bar0->spi_control);
5714 if (val64 & SPI_CONTROL_NACK) {
5715 ret = 1;
5716 break;
5717 } else if (val64 & SPI_CONTROL_DONE) {
5718 ret = 0;
5719 break;
5720 }
5721 msleep(50);
5722 exit_cnt++;
5723 }
5724 }
5725 return ret;
5726 }
5727 static void s2io_vpd_read(struct s2io_nic *nic)
5728 {
5729 u8 *vpd_data;
5730 u8 data;
5731 int i = 0, cnt, len, fail = 0;
5732 int vpd_addr = 0x80;
5733 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5734
5735 if (nic->device_type == XFRAME_II_DEVICE) {
5736 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5737 vpd_addr = 0x80;
5738 } else {
5739 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5740 vpd_addr = 0x50;
5741 }
5742 strcpy(nic->serial_num, "NOT AVAILABLE");
5743
5744 vpd_data = kmalloc(256, GFP_KERNEL);
5745 if (!vpd_data) {
5746 swstats->mem_alloc_fail_cnt++;
5747 return;
5748 }
5749 swstats->mem_allocated += 256;
5750
5751 for (i = 0; i < 256; i += 4) {
5752 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5753 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5754 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5755 for (cnt = 0; cnt < 5; cnt++) {
5756 msleep(2);
5757 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5758 if (data == 0x80)
5759 break;
5760 }
5761 if (cnt >= 5) {
5762 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5763 fail = 1;
5764 break;
5765 }
5766 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5767 (u32 *)&vpd_data[i]);
5768 }
5769
5770 if (!fail) {
5771 /* read serial number of adapter */
5772 for (cnt = 0; cnt < 252; cnt++) {
5773 if ((vpd_data[cnt] == 'S') &&
5774 (vpd_data[cnt+1] == 'N')) {
5775 len = vpd_data[cnt+2];
5776 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5777 memcpy(nic->serial_num,
5778 &vpd_data[cnt + 3],
5779 len);
5780 memset(nic->serial_num+len,
5781 0,
5782 VPD_STRING_LEN-len);
5783 break;
5784 }
5785 }
5786 }
5787 }
5788
5789 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5790 len = vpd_data[1];
5791 memcpy(nic->product_name, &vpd_data[3], len);
5792 nic->product_name[len] = 0;
5793 }
5794 kfree(vpd_data);
5795 swstats->mem_freed += 256;
5796 }
5797
5798 /**
5799 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5800 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5801 * @eeprom : pointer to the user level structure provided by ethtool,
5802 * containing all relevant information.
5803 * @data_buf : user defined value to be written into Eeprom.
5804 * Description: Reads the values stored in the Eeprom at given offset
5805 * for a given length. Stores these values int the input argument data
5806 * buffer 'data_buf' and returns these to the caller (ethtool.)
5807 * Return value:
5808 * int 0 on success
5809 */
5810
5811 static int s2io_ethtool_geeprom(struct net_device *dev,
5812 struct ethtool_eeprom *eeprom, u8 * data_buf)
5813 {
5814 u32 i, valid;
5815 u64 data;
5816 struct s2io_nic *sp = netdev_priv(dev);
5817
5818 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5819
5820 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5821 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5822
5823 for (i = 0; i < eeprom->len; i += 4) {
5824 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5825 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5826 return -EFAULT;
5827 }
5828 valid = INV(data);
5829 memcpy((data_buf + i), &valid, 4);
5830 }
5831 return 0;
5832 }
5833
5834 /**
5835 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5836 * @sp : private member of the device structure, which is a pointer to the
5837 * s2io_nic structure.
5838 * @eeprom : pointer to the user level structure provided by ethtool,
5839 * containing all relevant information.
5840 * @data_buf ; user defined value to be written into Eeprom.
5841 * Description:
5842 * Tries to write the user provided value in the Eeprom, at the offset
5843 * given by the user.
5844 * Return value:
5845 * 0 on success, -EFAULT on failure.
5846 */
5847
5848 static int s2io_ethtool_seeprom(struct net_device *dev,
5849 struct ethtool_eeprom *eeprom,
5850 u8 *data_buf)
5851 {
5852 int len = eeprom->len, cnt = 0;
5853 u64 valid = 0, data;
5854 struct s2io_nic *sp = netdev_priv(dev);
5855
5856 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5857 DBG_PRINT(ERR_DBG,
5858 "ETHTOOL_WRITE_EEPROM Err: "
5859 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5860 (sp->pdev->vendor | (sp->pdev->device << 16)),
5861 eeprom->magic);
5862 return -EFAULT;
5863 }
5864
5865 while (len) {
5866 data = (u32)data_buf[cnt] & 0x000000FF;
5867 if (data)
5868 valid = (u32)(data << 24);
5869 else
5870 valid = data;
5871
5872 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5873 DBG_PRINT(ERR_DBG,
5874 "ETHTOOL_WRITE_EEPROM Err: "
5875 "Cannot write into the specified offset\n");
5876 return -EFAULT;
5877 }
5878 cnt++;
5879 len--;
5880 }
5881
5882 return 0;
5883 }
5884
5885 /**
5886 * s2io_register_test - reads and writes into all clock domains.
5887 * @sp : private member of the device structure, which is a pointer to the
5888 * s2io_nic structure.
5889 * @data : variable that returns the result of each of the test conducted b
5890 * by the driver.
5891 * Description:
5892 * Read and write into all clock domains. The NIC has 3 clock domains,
5893 * see that registers in all the three regions are accessible.
5894 * Return value:
5895 * 0 on success.
5896 */
5897
5898 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5899 {
5900 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5901 u64 val64 = 0, exp_val;
5902 int fail = 0;
5903
5904 val64 = readq(&bar0->pif_rd_swapper_fb);
5905 if (val64 != 0x123456789abcdefULL) {
5906 fail = 1;
5907 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5908 }
5909
5910 val64 = readq(&bar0->rmac_pause_cfg);
5911 if (val64 != 0xc000ffff00000000ULL) {
5912 fail = 1;
5913 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5914 }
5915
5916 val64 = readq(&bar0->rx_queue_cfg);
5917 if (sp->device_type == XFRAME_II_DEVICE)
5918 exp_val = 0x0404040404040404ULL;
5919 else
5920 exp_val = 0x0808080808080808ULL;
5921 if (val64 != exp_val) {
5922 fail = 1;
5923 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5924 }
5925
5926 val64 = readq(&bar0->xgxs_efifo_cfg);
5927 if (val64 != 0x000000001923141EULL) {
5928 fail = 1;
5929 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5930 }
5931
5932 val64 = 0x5A5A5A5A5A5A5A5AULL;
5933 writeq(val64, &bar0->xmsi_data);
5934 val64 = readq(&bar0->xmsi_data);
5935 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5936 fail = 1;
5937 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5938 }
5939
5940 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5941 writeq(val64, &bar0->xmsi_data);
5942 val64 = readq(&bar0->xmsi_data);
5943 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5944 fail = 1;
5945 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5946 }
5947
5948 *data = fail;
5949 return fail;
5950 }
5951
5952 /**
5953 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5954 * @sp : private member of the device structure, which is a pointer to the
5955 * s2io_nic structure.
5956 * @data:variable that returns the result of each of the test conducted by
5957 * the driver.
5958 * Description:
5959 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5960 * register.
5961 * Return value:
5962 * 0 on success.
5963 */
5964
5965 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5966 {
5967 int fail = 0;
5968 u64 ret_data, org_4F0, org_7F0;
5969 u8 saved_4F0 = 0, saved_7F0 = 0;
5970 struct net_device *dev = sp->dev;
5971
5972 /* Test Write Error at offset 0 */
5973 /* Note that SPI interface allows write access to all areas
5974 * of EEPROM. Hence doing all negative testing only for Xframe I.
5975 */
5976 if (sp->device_type == XFRAME_I_DEVICE)
5977 if (!write_eeprom(sp, 0, 0, 3))
5978 fail = 1;
5979
5980 /* Save current values at offsets 0x4F0 and 0x7F0 */
5981 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5982 saved_4F0 = 1;
5983 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5984 saved_7F0 = 1;
5985
5986 /* Test Write at offset 4f0 */
5987 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5988 fail = 1;
5989 if (read_eeprom(sp, 0x4F0, &ret_data))
5990 fail = 1;
5991
5992 if (ret_data != 0x012345) {
5993 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5994 "Data written %llx Data read %llx\n",
5995 dev->name, (unsigned long long)0x12345,
5996 (unsigned long long)ret_data);
5997 fail = 1;
5998 }
5999
6000 /* Reset the EEPROM data go FFFF */
6001 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6002
6003 /* Test Write Request Error at offset 0x7c */
6004 if (sp->device_type == XFRAME_I_DEVICE)
6005 if (!write_eeprom(sp, 0x07C, 0, 3))
6006 fail = 1;
6007
6008 /* Test Write Request at offset 0x7f0 */
6009 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6010 fail = 1;
6011 if (read_eeprom(sp, 0x7F0, &ret_data))
6012 fail = 1;
6013
6014 if (ret_data != 0x012345) {
6015 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6016 "Data written %llx Data read %llx\n",
6017 dev->name, (unsigned long long)0x12345,
6018 (unsigned long long)ret_data);
6019 fail = 1;
6020 }
6021
6022 /* Reset the EEPROM data go FFFF */
6023 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6024
6025 if (sp->device_type == XFRAME_I_DEVICE) {
6026 /* Test Write Error at offset 0x80 */
6027 if (!write_eeprom(sp, 0x080, 0, 3))
6028 fail = 1;
6029
6030 /* Test Write Error at offset 0xfc */
6031 if (!write_eeprom(sp, 0x0FC, 0, 3))
6032 fail = 1;
6033
6034 /* Test Write Error at offset 0x100 */
6035 if (!write_eeprom(sp, 0x100, 0, 3))
6036 fail = 1;
6037
6038 /* Test Write Error at offset 4ec */
6039 if (!write_eeprom(sp, 0x4EC, 0, 3))
6040 fail = 1;
6041 }
6042
6043 /* Restore values at offsets 0x4F0 and 0x7F0 */
6044 if (saved_4F0)
6045 write_eeprom(sp, 0x4F0, org_4F0, 3);
6046 if (saved_7F0)
6047 write_eeprom(sp, 0x7F0, org_7F0, 3);
6048
6049 *data = fail;
6050 return fail;
6051 }
6052
6053 /**
6054 * s2io_bist_test - invokes the MemBist test of the card .
6055 * @sp : private member of the device structure, which is a pointer to the
6056 * s2io_nic structure.
6057 * @data:variable that returns the result of each of the test conducted by
6058 * the driver.
6059 * Description:
6060 * This invokes the MemBist test of the card. We give around
6061 * 2 secs time for the Test to complete. If it's still not complete
6062 * within this peiod, we consider that the test failed.
6063 * Return value:
6064 * 0 on success and -1 on failure.
6065 */
6066
6067 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6068 {
6069 u8 bist = 0;
6070 int cnt = 0, ret = -1;
6071
6072 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6073 bist |= PCI_BIST_START;
6074 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6075
6076 while (cnt < 20) {
6077 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6078 if (!(bist & PCI_BIST_START)) {
6079 *data = (bist & PCI_BIST_CODE_MASK);
6080 ret = 0;
6081 break;
6082 }
6083 msleep(100);
6084 cnt++;
6085 }
6086
6087 return ret;
6088 }
6089
6090 /**
6091 * s2io_link_test - verifies the link state of the nic
6092 * @sp ; private member of the device structure, which is a pointer to the
6093 * s2io_nic structure.
6094 * @data: variable that returns the result of each of the test conducted by
6095 * the driver.
6096 * Description:
6097 * The function verifies the link state of the NIC and updates the input
6098 * argument 'data' appropriately.
6099 * Return value:
6100 * 0 on success.
6101 */
6102
6103 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6104 {
6105 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6106 u64 val64;
6107
6108 val64 = readq(&bar0->adapter_status);
6109 if (!(LINK_IS_UP(val64)))
6110 *data = 1;
6111 else
6112 *data = 0;
6113
6114 return *data;
6115 }
6116
6117 /**
6118 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6119 * @sp: private member of the device structure, which is a pointer to the
6120 * s2io_nic structure.
6121 * @data: variable that returns the result of each of the test
6122 * conducted by the driver.
6123 * Description:
6124 * This is one of the offline test that tests the read and write
6125 * access to the RldRam chip on the NIC.
6126 * Return value:
6127 * 0 on success.
6128 */
6129
6130 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6131 {
6132 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6133 u64 val64;
6134 int cnt, iteration = 0, test_fail = 0;
6135
6136 val64 = readq(&bar0->adapter_control);
6137 val64 &= ~ADAPTER_ECC_EN;
6138 writeq(val64, &bar0->adapter_control);
6139
6140 val64 = readq(&bar0->mc_rldram_test_ctrl);
6141 val64 |= MC_RLDRAM_TEST_MODE;
6142 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6143
6144 val64 = readq(&bar0->mc_rldram_mrs);
6145 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6146 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6147
6148 val64 |= MC_RLDRAM_MRS_ENABLE;
6149 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6150
6151 while (iteration < 2) {
6152 val64 = 0x55555555aaaa0000ULL;
6153 if (iteration == 1)
6154 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6155 writeq(val64, &bar0->mc_rldram_test_d0);
6156
6157 val64 = 0xaaaa5a5555550000ULL;
6158 if (iteration == 1)
6159 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6160 writeq(val64, &bar0->mc_rldram_test_d1);
6161
6162 val64 = 0x55aaaaaaaa5a0000ULL;
6163 if (iteration == 1)
6164 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6165 writeq(val64, &bar0->mc_rldram_test_d2);
6166
6167 val64 = (u64) (0x0000003ffffe0100ULL);
6168 writeq(val64, &bar0->mc_rldram_test_add);
6169
6170 val64 = MC_RLDRAM_TEST_MODE |
6171 MC_RLDRAM_TEST_WRITE |
6172 MC_RLDRAM_TEST_GO;
6173 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6174
6175 for (cnt = 0; cnt < 5; cnt++) {
6176 val64 = readq(&bar0->mc_rldram_test_ctrl);
6177 if (val64 & MC_RLDRAM_TEST_DONE)
6178 break;
6179 msleep(200);
6180 }
6181
6182 if (cnt == 5)
6183 break;
6184
6185 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6186 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6187
6188 for (cnt = 0; cnt < 5; cnt++) {
6189 val64 = readq(&bar0->mc_rldram_test_ctrl);
6190 if (val64 & MC_RLDRAM_TEST_DONE)
6191 break;
6192 msleep(500);
6193 }
6194
6195 if (cnt == 5)
6196 break;
6197
6198 val64 = readq(&bar0->mc_rldram_test_ctrl);
6199 if (!(val64 & MC_RLDRAM_TEST_PASS))
6200 test_fail = 1;
6201
6202 iteration++;
6203 }
6204
6205 *data = test_fail;
6206
6207 /* Bring the adapter out of test mode */
6208 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6209
6210 return test_fail;
6211 }
6212
6213 /**
6214 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6215 * @sp : private member of the device structure, which is a pointer to the
6216 * s2io_nic structure.
6217 * @ethtest : pointer to a ethtool command specific structure that will be
6218 * returned to the user.
6219 * @data : variable that returns the result of each of the test
6220 * conducted by the driver.
6221 * Description:
6222 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6223 * the health of the card.
6224 * Return value:
6225 * void
6226 */
6227
6228 static void s2io_ethtool_test(struct net_device *dev,
6229 struct ethtool_test *ethtest,
6230 uint64_t *data)
6231 {
6232 struct s2io_nic *sp = netdev_priv(dev);
6233 int orig_state = netif_running(sp->dev);
6234
6235 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6236 /* Offline Tests. */
6237 if (orig_state)
6238 s2io_close(sp->dev);
6239
6240 if (s2io_register_test(sp, &data[0]))
6241 ethtest->flags |= ETH_TEST_FL_FAILED;
6242
6243 s2io_reset(sp);
6244
6245 if (s2io_rldram_test(sp, &data[3]))
6246 ethtest->flags |= ETH_TEST_FL_FAILED;
6247
6248 s2io_reset(sp);
6249
6250 if (s2io_eeprom_test(sp, &data[1]))
6251 ethtest->flags |= ETH_TEST_FL_FAILED;
6252
6253 if (s2io_bist_test(sp, &data[4]))
6254 ethtest->flags |= ETH_TEST_FL_FAILED;
6255
6256 if (orig_state)
6257 s2io_open(sp->dev);
6258
6259 data[2] = 0;
6260 } else {
6261 /* Online Tests. */
6262 if (!orig_state) {
6263 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6264 dev->name);
6265 data[0] = -1;
6266 data[1] = -1;
6267 data[2] = -1;
6268 data[3] = -1;
6269 data[4] = -1;
6270 }
6271
6272 if (s2io_link_test(sp, &data[2]))
6273 ethtest->flags |= ETH_TEST_FL_FAILED;
6274
6275 data[0] = 0;
6276 data[1] = 0;
6277 data[3] = 0;
6278 data[4] = 0;
6279 }
6280 }
6281
6282 static void s2io_get_ethtool_stats(struct net_device *dev,
6283 struct ethtool_stats *estats,
6284 u64 *tmp_stats)
6285 {
6286 int i = 0, k;
6287 struct s2io_nic *sp = netdev_priv(dev);
6288 struct stat_block *stats = sp->mac_control.stats_info;
6289 struct swStat *swstats = &stats->sw_stat;
6290 struct xpakStat *xstats = &stats->xpak_stat;
6291
6292 s2io_updt_stats(sp);
6293 tmp_stats[i++] =
6294 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6295 le32_to_cpu(stats->tmac_frms);
6296 tmp_stats[i++] =
6297 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6298 le32_to_cpu(stats->tmac_data_octets);
6299 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6300 tmp_stats[i++] =
6301 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6302 le32_to_cpu(stats->tmac_mcst_frms);
6303 tmp_stats[i++] =
6304 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6305 le32_to_cpu(stats->tmac_bcst_frms);
6306 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6307 tmp_stats[i++] =
6308 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6309 le32_to_cpu(stats->tmac_ttl_octets);
6310 tmp_stats[i++] =
6311 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6312 le32_to_cpu(stats->tmac_ucst_frms);
6313 tmp_stats[i++] =
6314 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6315 le32_to_cpu(stats->tmac_nucst_frms);
6316 tmp_stats[i++] =
6317 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6318 le32_to_cpu(stats->tmac_any_err_frms);
6319 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6320 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6321 tmp_stats[i++] =
6322 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6323 le32_to_cpu(stats->tmac_vld_ip);
6324 tmp_stats[i++] =
6325 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6326 le32_to_cpu(stats->tmac_drop_ip);
6327 tmp_stats[i++] =
6328 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6329 le32_to_cpu(stats->tmac_icmp);
6330 tmp_stats[i++] =
6331 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6332 le32_to_cpu(stats->tmac_rst_tcp);
6333 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6334 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6335 le32_to_cpu(stats->tmac_udp);
6336 tmp_stats[i++] =
6337 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6338 le32_to_cpu(stats->rmac_vld_frms);
6339 tmp_stats[i++] =
6340 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6341 le32_to_cpu(stats->rmac_data_octets);
6342 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6343 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6344 tmp_stats[i++] =
6345 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6346 le32_to_cpu(stats->rmac_vld_mcst_frms);
6347 tmp_stats[i++] =
6348 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6349 le32_to_cpu(stats->rmac_vld_bcst_frms);
6350 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6351 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6352 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6353 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6354 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6355 tmp_stats[i++] =
6356 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6357 le32_to_cpu(stats->rmac_ttl_octets);
6358 tmp_stats[i++] =
6359 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6360 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6361 tmp_stats[i++] =
6362 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6363 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6364 tmp_stats[i++] =
6365 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6366 le32_to_cpu(stats->rmac_discarded_frms);
6367 tmp_stats[i++] =
6368 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6369 << 32 | le32_to_cpu(stats->rmac_drop_events);
6370 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6371 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6372 tmp_stats[i++] =
6373 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6374 le32_to_cpu(stats->rmac_usized_frms);
6375 tmp_stats[i++] =
6376 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6377 le32_to_cpu(stats->rmac_osized_frms);
6378 tmp_stats[i++] =
6379 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6380 le32_to_cpu(stats->rmac_frag_frms);
6381 tmp_stats[i++] =
6382 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6383 le32_to_cpu(stats->rmac_jabber_frms);
6384 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6385 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6386 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6387 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6388 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6389 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6390 tmp_stats[i++] =
6391 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6392 le32_to_cpu(stats->rmac_ip);
6393 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6394 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6395 tmp_stats[i++] =
6396 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6397 le32_to_cpu(stats->rmac_drop_ip);
6398 tmp_stats[i++] =
6399 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6400 le32_to_cpu(stats->rmac_icmp);
6401 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6402 tmp_stats[i++] =
6403 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6404 le32_to_cpu(stats->rmac_udp);
6405 tmp_stats[i++] =
6406 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6407 le32_to_cpu(stats->rmac_err_drp_udp);
6408 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6409 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6410 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6412 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6413 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6417 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6418 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6419 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6420 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6421 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6422 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6423 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6424 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6425 tmp_stats[i++] =
6426 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6427 le32_to_cpu(stats->rmac_pause_cnt);
6428 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6429 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6430 tmp_stats[i++] =
6431 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6432 le32_to_cpu(stats->rmac_accepted_ip);
6433 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6434 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6435 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6436 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6437 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6438 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6439 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6440 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6441 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6442 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6443 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6444 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6445 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6446 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6447 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6452
6453 /* Enhanced statistics exist only for Hercules */
6454 if (sp->device_type == XFRAME_II_DEVICE) {
6455 tmp_stats[i++] =
6456 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6457 tmp_stats[i++] =
6458 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6459 tmp_stats[i++] =
6460 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6461 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6462 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6463 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6464 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6465 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6466 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6467 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6468 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6469 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6470 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6471 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6472 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6473 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6474 }
6475
6476 tmp_stats[i++] = 0;
6477 tmp_stats[i++] = swstats->single_ecc_errs;
6478 tmp_stats[i++] = swstats->double_ecc_errs;
6479 tmp_stats[i++] = swstats->parity_err_cnt;
6480 tmp_stats[i++] = swstats->serious_err_cnt;
6481 tmp_stats[i++] = swstats->soft_reset_cnt;
6482 tmp_stats[i++] = swstats->fifo_full_cnt;
6483 for (k = 0; k < MAX_RX_RINGS; k++)
6484 tmp_stats[i++] = swstats->ring_full_cnt[k];
6485 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6486 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6487 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6488 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6489 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6490 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6491 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6492 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6493 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6494 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6495 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6496 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6497 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6498 tmp_stats[i++] = swstats->sending_both;
6499 tmp_stats[i++] = swstats->outof_sequence_pkts;
6500 tmp_stats[i++] = swstats->flush_max_pkts;
6501 if (swstats->num_aggregations) {
6502 u64 tmp = swstats->sum_avg_pkts_aggregated;
6503 int count = 0;
6504 /*
6505 * Since 64-bit divide does not work on all platforms,
6506 * do repeated subtraction.
6507 */
6508 while (tmp >= swstats->num_aggregations) {
6509 tmp -= swstats->num_aggregations;
6510 count++;
6511 }
6512 tmp_stats[i++] = count;
6513 } else
6514 tmp_stats[i++] = 0;
6515 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6516 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6517 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6518 tmp_stats[i++] = swstats->mem_allocated;
6519 tmp_stats[i++] = swstats->mem_freed;
6520 tmp_stats[i++] = swstats->link_up_cnt;
6521 tmp_stats[i++] = swstats->link_down_cnt;
6522 tmp_stats[i++] = swstats->link_up_time;
6523 tmp_stats[i++] = swstats->link_down_time;
6524
6525 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6526 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6527 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6528 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6529 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6530
6531 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6532 tmp_stats[i++] = swstats->rx_abort_cnt;
6533 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6534 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6535 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6536 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6537 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6538 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6539 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6540 tmp_stats[i++] = swstats->tda_err_cnt;
6541 tmp_stats[i++] = swstats->pfc_err_cnt;
6542 tmp_stats[i++] = swstats->pcc_err_cnt;
6543 tmp_stats[i++] = swstats->tti_err_cnt;
6544 tmp_stats[i++] = swstats->tpa_err_cnt;
6545 tmp_stats[i++] = swstats->sm_err_cnt;
6546 tmp_stats[i++] = swstats->lso_err_cnt;
6547 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6548 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6549 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6550 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6551 tmp_stats[i++] = swstats->rc_err_cnt;
6552 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6553 tmp_stats[i++] = swstats->rpa_err_cnt;
6554 tmp_stats[i++] = swstats->rda_err_cnt;
6555 tmp_stats[i++] = swstats->rti_err_cnt;
6556 tmp_stats[i++] = swstats->mc_err_cnt;
6557 }
6558
6559 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6560 {
6561 return XENA_REG_SPACE;
6562 }
6563
6564
6565 static int s2io_get_eeprom_len(struct net_device *dev)
6566 {
6567 return XENA_EEPROM_SPACE;
6568 }
6569
6570 static int s2io_get_sset_count(struct net_device *dev, int sset)
6571 {
6572 struct s2io_nic *sp = netdev_priv(dev);
6573
6574 switch (sset) {
6575 case ETH_SS_TEST:
6576 return S2IO_TEST_LEN;
6577 case ETH_SS_STATS:
6578 switch (sp->device_type) {
6579 case XFRAME_I_DEVICE:
6580 return XFRAME_I_STAT_LEN;
6581 case XFRAME_II_DEVICE:
6582 return XFRAME_II_STAT_LEN;
6583 default:
6584 return 0;
6585 }
6586 default:
6587 return -EOPNOTSUPP;
6588 }
6589 }
6590
6591 static void s2io_ethtool_get_strings(struct net_device *dev,
6592 u32 stringset, u8 *data)
6593 {
6594 int stat_size = 0;
6595 struct s2io_nic *sp = netdev_priv(dev);
6596
6597 switch (stringset) {
6598 case ETH_SS_TEST:
6599 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6600 break;
6601 case ETH_SS_STATS:
6602 stat_size = sizeof(ethtool_xena_stats_keys);
6603 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6604 if (sp->device_type == XFRAME_II_DEVICE) {
6605 memcpy(data + stat_size,
6606 &ethtool_enhanced_stats_keys,
6607 sizeof(ethtool_enhanced_stats_keys));
6608 stat_size += sizeof(ethtool_enhanced_stats_keys);
6609 }
6610
6611 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6612 sizeof(ethtool_driver_stats_keys));
6613 }
6614 }
6615
6616 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6617 {
6618 struct s2io_nic *sp = netdev_priv(dev);
6619 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6620
6621 if (changed && netif_running(dev)) {
6622 int rc;
6623
6624 s2io_stop_all_tx_queue(sp);
6625 s2io_card_down(sp);
6626 dev->features = features;
6627 rc = s2io_card_up(sp);
6628 if (rc)
6629 s2io_reset(sp);
6630 else
6631 s2io_start_all_tx_queue(sp);
6632
6633 return rc ? rc : 1;
6634 }
6635
6636 return 0;
6637 }
6638
6639 static const struct ethtool_ops netdev_ethtool_ops = {
6640 .get_settings = s2io_ethtool_gset,
6641 .set_settings = s2io_ethtool_sset,
6642 .get_drvinfo = s2io_ethtool_gdrvinfo,
6643 .get_regs_len = s2io_ethtool_get_regs_len,
6644 .get_regs = s2io_ethtool_gregs,
6645 .get_link = ethtool_op_get_link,
6646 .get_eeprom_len = s2io_get_eeprom_len,
6647 .get_eeprom = s2io_ethtool_geeprom,
6648 .set_eeprom = s2io_ethtool_seeprom,
6649 .get_ringparam = s2io_ethtool_gringparam,
6650 .get_pauseparam = s2io_ethtool_getpause_data,
6651 .set_pauseparam = s2io_ethtool_setpause_data,
6652 .self_test = s2io_ethtool_test,
6653 .get_strings = s2io_ethtool_get_strings,
6654 .set_phys_id = s2io_ethtool_set_led,
6655 .get_ethtool_stats = s2io_get_ethtool_stats,
6656 .get_sset_count = s2io_get_sset_count,
6657 };
6658
6659 /**
6660 * s2io_ioctl - Entry point for the Ioctl
6661 * @dev : Device pointer.
6662 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6663 * a proprietary structure used to pass information to the driver.
6664 * @cmd : This is used to distinguish between the different commands that
6665 * can be passed to the IOCTL functions.
6666 * Description:
6667 * Currently there are no special functionality supported in IOCTL, hence
6668 * function always return EOPNOTSUPPORTED
6669 */
6670
6671 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6672 {
6673 return -EOPNOTSUPP;
6674 }
6675
6676 /**
6677 * s2io_change_mtu - entry point to change MTU size for the device.
6678 * @dev : device pointer.
6679 * @new_mtu : the new MTU size for the device.
6680 * Description: A driver entry point to change MTU size for the device.
6681 * Before changing the MTU the device must be stopped.
6682 * Return value:
6683 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6684 * file on failure.
6685 */
6686
6687 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6688 {
6689 struct s2io_nic *sp = netdev_priv(dev);
6690 int ret = 0;
6691
6692 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6693 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6694 return -EPERM;
6695 }
6696
6697 dev->mtu = new_mtu;
6698 if (netif_running(dev)) {
6699 s2io_stop_all_tx_queue(sp);
6700 s2io_card_down(sp);
6701 ret = s2io_card_up(sp);
6702 if (ret) {
6703 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6704 __func__);
6705 return ret;
6706 }
6707 s2io_wake_all_tx_queue(sp);
6708 } else { /* Device is down */
6709 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6710 u64 val64 = new_mtu;
6711
6712 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6713 }
6714
6715 return ret;
6716 }
6717
6718 /**
6719 * s2io_set_link - Set the LInk status
6720 * @data: long pointer to device private structue
6721 * Description: Sets the link status for the adapter
6722 */
6723
6724 static void s2io_set_link(struct work_struct *work)
6725 {
6726 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6727 set_link_task);
6728 struct net_device *dev = nic->dev;
6729 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6730 register u64 val64;
6731 u16 subid;
6732
6733 rtnl_lock();
6734
6735 if (!netif_running(dev))
6736 goto out_unlock;
6737
6738 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6739 /* The card is being reset, no point doing anything */
6740 goto out_unlock;
6741 }
6742
6743 subid = nic->pdev->subsystem_device;
6744 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6745 /*
6746 * Allow a small delay for the NICs self initiated
6747 * cleanup to complete.
6748 */
6749 msleep(100);
6750 }
6751
6752 val64 = readq(&bar0->adapter_status);
6753 if (LINK_IS_UP(val64)) {
6754 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6755 if (verify_xena_quiescence(nic)) {
6756 val64 = readq(&bar0->adapter_control);
6757 val64 |= ADAPTER_CNTL_EN;
6758 writeq(val64, &bar0->adapter_control);
6759 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6760 nic->device_type, subid)) {
6761 val64 = readq(&bar0->gpio_control);
6762 val64 |= GPIO_CTRL_GPIO_0;
6763 writeq(val64, &bar0->gpio_control);
6764 val64 = readq(&bar0->gpio_control);
6765 } else {
6766 val64 |= ADAPTER_LED_ON;
6767 writeq(val64, &bar0->adapter_control);
6768 }
6769 nic->device_enabled_once = true;
6770 } else {
6771 DBG_PRINT(ERR_DBG,
6772 "%s: Error: device is not Quiescent\n",
6773 dev->name);
6774 s2io_stop_all_tx_queue(nic);
6775 }
6776 }
6777 val64 = readq(&bar0->adapter_control);
6778 val64 |= ADAPTER_LED_ON;
6779 writeq(val64, &bar0->adapter_control);
6780 s2io_link(nic, LINK_UP);
6781 } else {
6782 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6783 subid)) {
6784 val64 = readq(&bar0->gpio_control);
6785 val64 &= ~GPIO_CTRL_GPIO_0;
6786 writeq(val64, &bar0->gpio_control);
6787 val64 = readq(&bar0->gpio_control);
6788 }
6789 /* turn off LED */
6790 val64 = readq(&bar0->adapter_control);
6791 val64 = val64 & (~ADAPTER_LED_ON);
6792 writeq(val64, &bar0->adapter_control);
6793 s2io_link(nic, LINK_DOWN);
6794 }
6795 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6796
6797 out_unlock:
6798 rtnl_unlock();
6799 }
6800
6801 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6802 struct buffAdd *ba,
6803 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6804 u64 *temp2, int size)
6805 {
6806 struct net_device *dev = sp->dev;
6807 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6808
6809 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6810 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6811 /* allocate skb */
6812 if (*skb) {
6813 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6814 /*
6815 * As Rx frame are not going to be processed,
6816 * using same mapped address for the Rxd
6817 * buffer pointer
6818 */
6819 rxdp1->Buffer0_ptr = *temp0;
6820 } else {
6821 *skb = netdev_alloc_skb(dev, size);
6822 if (!(*skb)) {
6823 DBG_PRINT(INFO_DBG,
6824 "%s: Out of memory to allocate %s\n",
6825 dev->name, "1 buf mode SKBs");
6826 stats->mem_alloc_fail_cnt++;
6827 return -ENOMEM ;
6828 }
6829 stats->mem_allocated += (*skb)->truesize;
6830 /* storing the mapped addr in a temp variable
6831 * such it will be used for next rxd whose
6832 * Host Control is NULL
6833 */
6834 rxdp1->Buffer0_ptr = *temp0 =
6835 pci_map_single(sp->pdev, (*skb)->data,
6836 size - NET_IP_ALIGN,
6837 PCI_DMA_FROMDEVICE);
6838 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6839 goto memalloc_failed;
6840 rxdp->Host_Control = (unsigned long) (*skb);
6841 }
6842 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6843 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6844 /* Two buffer Mode */
6845 if (*skb) {
6846 rxdp3->Buffer2_ptr = *temp2;
6847 rxdp3->Buffer0_ptr = *temp0;
6848 rxdp3->Buffer1_ptr = *temp1;
6849 } else {
6850 *skb = netdev_alloc_skb(dev, size);
6851 if (!(*skb)) {
6852 DBG_PRINT(INFO_DBG,
6853 "%s: Out of memory to allocate %s\n",
6854 dev->name,
6855 "2 buf mode SKBs");
6856 stats->mem_alloc_fail_cnt++;
6857 return -ENOMEM;
6858 }
6859 stats->mem_allocated += (*skb)->truesize;
6860 rxdp3->Buffer2_ptr = *temp2 =
6861 pci_map_single(sp->pdev, (*skb)->data,
6862 dev->mtu + 4,
6863 PCI_DMA_FROMDEVICE);
6864 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6865 goto memalloc_failed;
6866 rxdp3->Buffer0_ptr = *temp0 =
6867 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6868 PCI_DMA_FROMDEVICE);
6869 if (pci_dma_mapping_error(sp->pdev,
6870 rxdp3->Buffer0_ptr)) {
6871 pci_unmap_single(sp->pdev,
6872 (dma_addr_t)rxdp3->Buffer2_ptr,
6873 dev->mtu + 4,
6874 PCI_DMA_FROMDEVICE);
6875 goto memalloc_failed;
6876 }
6877 rxdp->Host_Control = (unsigned long) (*skb);
6878
6879 /* Buffer-1 will be dummy buffer not used */
6880 rxdp3->Buffer1_ptr = *temp1 =
6881 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6882 PCI_DMA_FROMDEVICE);
6883 if (pci_dma_mapping_error(sp->pdev,
6884 rxdp3->Buffer1_ptr)) {
6885 pci_unmap_single(sp->pdev,
6886 (dma_addr_t)rxdp3->Buffer0_ptr,
6887 BUF0_LEN, PCI_DMA_FROMDEVICE);
6888 pci_unmap_single(sp->pdev,
6889 (dma_addr_t)rxdp3->Buffer2_ptr,
6890 dev->mtu + 4,
6891 PCI_DMA_FROMDEVICE);
6892 goto memalloc_failed;
6893 }
6894 }
6895 }
6896 return 0;
6897
6898 memalloc_failed:
6899 stats->pci_map_fail_cnt++;
6900 stats->mem_freed += (*skb)->truesize;
6901 dev_kfree_skb(*skb);
6902 return -ENOMEM;
6903 }
6904
6905 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6906 int size)
6907 {
6908 struct net_device *dev = sp->dev;
6909 if (sp->rxd_mode == RXD_MODE_1) {
6910 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6911 } else if (sp->rxd_mode == RXD_MODE_3B) {
6912 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6913 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6914 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6915 }
6916 }
6917
6918 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6919 {
6920 int i, j, k, blk_cnt = 0, size;
6921 struct config_param *config = &sp->config;
6922 struct mac_info *mac_control = &sp->mac_control;
6923 struct net_device *dev = sp->dev;
6924 struct RxD_t *rxdp = NULL;
6925 struct sk_buff *skb = NULL;
6926 struct buffAdd *ba = NULL;
6927 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6928
6929 /* Calculate the size based on ring mode */
6930 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6931 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6932 if (sp->rxd_mode == RXD_MODE_1)
6933 size += NET_IP_ALIGN;
6934 else if (sp->rxd_mode == RXD_MODE_3B)
6935 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6936
6937 for (i = 0; i < config->rx_ring_num; i++) {
6938 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6939 struct ring_info *ring = &mac_control->rings[i];
6940
6941 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6942
6943 for (j = 0; j < blk_cnt; j++) {
6944 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6945 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6946 if (sp->rxd_mode == RXD_MODE_3B)
6947 ba = &ring->ba[j][k];
6948 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6949 &temp0_64,
6950 &temp1_64,
6951 &temp2_64,
6952 size) == -ENOMEM) {
6953 return 0;
6954 }
6955
6956 set_rxd_buffer_size(sp, rxdp, size);
6957 wmb();
6958 /* flip the Ownership bit to Hardware */
6959 rxdp->Control_1 |= RXD_OWN_XENA;
6960 }
6961 }
6962 }
6963 return 0;
6964
6965 }
6966
6967 static int s2io_add_isr(struct s2io_nic *sp)
6968 {
6969 int ret = 0;
6970 struct net_device *dev = sp->dev;
6971 int err = 0;
6972
6973 if (sp->config.intr_type == MSI_X)
6974 ret = s2io_enable_msi_x(sp);
6975 if (ret) {
6976 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6977 sp->config.intr_type = INTA;
6978 }
6979
6980 /*
6981 * Store the values of the MSIX table in
6982 * the struct s2io_nic structure
6983 */
6984 store_xmsi_data(sp);
6985
6986 /* After proper initialization of H/W, register ISR */
6987 if (sp->config.intr_type == MSI_X) {
6988 int i, msix_rx_cnt = 0;
6989
6990 for (i = 0; i < sp->num_entries; i++) {
6991 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6992 if (sp->s2io_entries[i].type ==
6993 MSIX_RING_TYPE) {
6994 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6995 dev->name, i);
6996 err = request_irq(sp->entries[i].vector,
6997 s2io_msix_ring_handle,
6998 0,
6999 sp->desc[i],
7000 sp->s2io_entries[i].arg);
7001 } else if (sp->s2io_entries[i].type ==
7002 MSIX_ALARM_TYPE) {
7003 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7004 dev->name, i);
7005 err = request_irq(sp->entries[i].vector,
7006 s2io_msix_fifo_handle,
7007 0,
7008 sp->desc[i],
7009 sp->s2io_entries[i].arg);
7010
7011 }
7012 /* if either data or addr is zero print it. */
7013 if (!(sp->msix_info[i].addr &&
7014 sp->msix_info[i].data)) {
7015 DBG_PRINT(ERR_DBG,
7016 "%s @Addr:0x%llx Data:0x%llx\n",
7017 sp->desc[i],
7018 (unsigned long long)
7019 sp->msix_info[i].addr,
7020 (unsigned long long)
7021 ntohl(sp->msix_info[i].data));
7022 } else
7023 msix_rx_cnt++;
7024 if (err) {
7025 remove_msix_isr(sp);
7026
7027 DBG_PRINT(ERR_DBG,
7028 "%s:MSI-X-%d registration "
7029 "failed\n", dev->name, i);
7030
7031 DBG_PRINT(ERR_DBG,
7032 "%s: Defaulting to INTA\n",
7033 dev->name);
7034 sp->config.intr_type = INTA;
7035 break;
7036 }
7037 sp->s2io_entries[i].in_use =
7038 MSIX_REGISTERED_SUCCESS;
7039 }
7040 }
7041 if (!err) {
7042 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7043 DBG_PRINT(INFO_DBG,
7044 "MSI-X-TX entries enabled through alarm vector\n");
7045 }
7046 }
7047 if (sp->config.intr_type == INTA) {
7048 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
7049 sp->name, dev);
7050 if (err) {
7051 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7052 dev->name);
7053 return -1;
7054 }
7055 }
7056 return 0;
7057 }
7058
7059 static void s2io_rem_isr(struct s2io_nic *sp)
7060 {
7061 if (sp->config.intr_type == MSI_X)
7062 remove_msix_isr(sp);
7063 else
7064 remove_inta_isr(sp);
7065 }
7066
7067 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7068 {
7069 int cnt = 0;
7070 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7071 register u64 val64 = 0;
7072 struct config_param *config;
7073 config = &sp->config;
7074
7075 if (!is_s2io_card_up(sp))
7076 return;
7077
7078 del_timer_sync(&sp->alarm_timer);
7079 /* If s2io_set_link task is executing, wait till it completes. */
7080 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7081 msleep(50);
7082 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7083
7084 /* Disable napi */
7085 if (sp->config.napi) {
7086 int off = 0;
7087 if (config->intr_type == MSI_X) {
7088 for (; off < sp->config.rx_ring_num; off++)
7089 napi_disable(&sp->mac_control.rings[off].napi);
7090 }
7091 else
7092 napi_disable(&sp->napi);
7093 }
7094
7095 /* disable Tx and Rx traffic on the NIC */
7096 if (do_io)
7097 stop_nic(sp);
7098
7099 s2io_rem_isr(sp);
7100
7101 /* stop the tx queue, indicate link down */
7102 s2io_link(sp, LINK_DOWN);
7103
7104 /* Check if the device is Quiescent and then Reset the NIC */
7105 while (do_io) {
7106 /* As per the HW requirement we need to replenish the
7107 * receive buffer to avoid the ring bump. Since there is
7108 * no intention of processing the Rx frame at this pointwe are
7109 * just setting the ownership bit of rxd in Each Rx
7110 * ring to HW and set the appropriate buffer size
7111 * based on the ring mode
7112 */
7113 rxd_owner_bit_reset(sp);
7114
7115 val64 = readq(&bar0->adapter_status);
7116 if (verify_xena_quiescence(sp)) {
7117 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7118 break;
7119 }
7120
7121 msleep(50);
7122 cnt++;
7123 if (cnt == 10) {
7124 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7125 "adapter status reads 0x%llx\n",
7126 (unsigned long long)val64);
7127 break;
7128 }
7129 }
7130 if (do_io)
7131 s2io_reset(sp);
7132
7133 /* Free all Tx buffers */
7134 free_tx_buffers(sp);
7135
7136 /* Free all Rx buffers */
7137 free_rx_buffers(sp);
7138
7139 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7140 }
7141
7142 static void s2io_card_down(struct s2io_nic *sp)
7143 {
7144 do_s2io_card_down(sp, 1);
7145 }
7146
7147 static int s2io_card_up(struct s2io_nic *sp)
7148 {
7149 int i, ret = 0;
7150 struct config_param *config;
7151 struct mac_info *mac_control;
7152 struct net_device *dev = sp->dev;
7153 u16 interruptible;
7154
7155 /* Initialize the H/W I/O registers */
7156 ret = init_nic(sp);
7157 if (ret != 0) {
7158 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7159 dev->name);
7160 if (ret != -EIO)
7161 s2io_reset(sp);
7162 return ret;
7163 }
7164
7165 /*
7166 * Initializing the Rx buffers. For now we are considering only 1
7167 * Rx ring and initializing buffers into 30 Rx blocks
7168 */
7169 config = &sp->config;
7170 mac_control = &sp->mac_control;
7171
7172 for (i = 0; i < config->rx_ring_num; i++) {
7173 struct ring_info *ring = &mac_control->rings[i];
7174
7175 ring->mtu = dev->mtu;
7176 ring->lro = !!(dev->features & NETIF_F_LRO);
7177 ret = fill_rx_buffers(sp, ring, 1);
7178 if (ret) {
7179 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7180 dev->name);
7181 s2io_reset(sp);
7182 free_rx_buffers(sp);
7183 return -ENOMEM;
7184 }
7185 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7186 ring->rx_bufs_left);
7187 }
7188
7189 /* Initialise napi */
7190 if (config->napi) {
7191 if (config->intr_type == MSI_X) {
7192 for (i = 0; i < sp->config.rx_ring_num; i++)
7193 napi_enable(&sp->mac_control.rings[i].napi);
7194 } else {
7195 napi_enable(&sp->napi);
7196 }
7197 }
7198
7199 /* Maintain the state prior to the open */
7200 if (sp->promisc_flg)
7201 sp->promisc_flg = 0;
7202 if (sp->m_cast_flg) {
7203 sp->m_cast_flg = 0;
7204 sp->all_multi_pos = 0;
7205 }
7206
7207 /* Setting its receive mode */
7208 s2io_set_multicast(dev);
7209
7210 if (dev->features & NETIF_F_LRO) {
7211 /* Initialize max aggregatable pkts per session based on MTU */
7212 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7213 /* Check if we can use (if specified) user provided value */
7214 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7215 sp->lro_max_aggr_per_sess = lro_max_pkts;
7216 }
7217
7218 /* Enable Rx Traffic and interrupts on the NIC */
7219 if (start_nic(sp)) {
7220 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7221 s2io_reset(sp);
7222 free_rx_buffers(sp);
7223 return -ENODEV;
7224 }
7225
7226 /* Add interrupt service routine */
7227 if (s2io_add_isr(sp) != 0) {
7228 if (sp->config.intr_type == MSI_X)
7229 s2io_rem_isr(sp);
7230 s2io_reset(sp);
7231 free_rx_buffers(sp);
7232 return -ENODEV;
7233 }
7234
7235 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7236
7237 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7238
7239 /* Enable select interrupts */
7240 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7241 if (sp->config.intr_type != INTA) {
7242 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7243 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7244 } else {
7245 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7246 interruptible |= TX_PIC_INTR;
7247 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7248 }
7249
7250 return 0;
7251 }
7252
7253 /**
7254 * s2io_restart_nic - Resets the NIC.
7255 * @data : long pointer to the device private structure
7256 * Description:
7257 * This function is scheduled to be run by the s2io_tx_watchdog
7258 * function after 0.5 secs to reset the NIC. The idea is to reduce
7259 * the run time of the watch dog routine which is run holding a
7260 * spin lock.
7261 */
7262
7263 static void s2io_restart_nic(struct work_struct *work)
7264 {
7265 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7266 struct net_device *dev = sp->dev;
7267
7268 rtnl_lock();
7269
7270 if (!netif_running(dev))
7271 goto out_unlock;
7272
7273 s2io_card_down(sp);
7274 if (s2io_card_up(sp)) {
7275 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7276 }
7277 s2io_wake_all_tx_queue(sp);
7278 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7279 out_unlock:
7280 rtnl_unlock();
7281 }
7282
7283 /**
7284 * s2io_tx_watchdog - Watchdog for transmit side.
7285 * @dev : Pointer to net device structure
7286 * Description:
7287 * This function is triggered if the Tx Queue is stopped
7288 * for a pre-defined amount of time when the Interface is still up.
7289 * If the Interface is jammed in such a situation, the hardware is
7290 * reset (by s2io_close) and restarted again (by s2io_open) to
7291 * overcome any problem that might have been caused in the hardware.
7292 * Return value:
7293 * void
7294 */
7295
7296 static void s2io_tx_watchdog(struct net_device *dev)
7297 {
7298 struct s2io_nic *sp = netdev_priv(dev);
7299 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7300
7301 if (netif_carrier_ok(dev)) {
7302 swstats->watchdog_timer_cnt++;
7303 schedule_work(&sp->rst_timer_task);
7304 swstats->soft_reset_cnt++;
7305 }
7306 }
7307
7308 /**
7309 * rx_osm_handler - To perform some OS related operations on SKB.
7310 * @sp: private member of the device structure,pointer to s2io_nic structure.
7311 * @skb : the socket buffer pointer.
7312 * @len : length of the packet
7313 * @cksum : FCS checksum of the frame.
7314 * @ring_no : the ring from which this RxD was extracted.
7315 * Description:
7316 * This function is called by the Rx interrupt serivce routine to perform
7317 * some OS related operations on the SKB before passing it to the upper
7318 * layers. It mainly checks if the checksum is OK, if so adds it to the
7319 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7320 * to the upper layer. If the checksum is wrong, it increments the Rx
7321 * packet error count, frees the SKB and returns error.
7322 * Return value:
7323 * SUCCESS on success and -1 on failure.
7324 */
7325 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7326 {
7327 struct s2io_nic *sp = ring_data->nic;
7328 struct net_device *dev = ring_data->dev;
7329 struct sk_buff *skb = (struct sk_buff *)
7330 ((unsigned long)rxdp->Host_Control);
7331 int ring_no = ring_data->ring_no;
7332 u16 l3_csum, l4_csum;
7333 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7334 struct lro *uninitialized_var(lro);
7335 u8 err_mask;
7336 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7337
7338 skb->dev = dev;
7339
7340 if (err) {
7341 /* Check for parity error */
7342 if (err & 0x1)
7343 swstats->parity_err_cnt++;
7344
7345 err_mask = err >> 48;
7346 switch (err_mask) {
7347 case 1:
7348 swstats->rx_parity_err_cnt++;
7349 break;
7350
7351 case 2:
7352 swstats->rx_abort_cnt++;
7353 break;
7354
7355 case 3:
7356 swstats->rx_parity_abort_cnt++;
7357 break;
7358
7359 case 4:
7360 swstats->rx_rda_fail_cnt++;
7361 break;
7362
7363 case 5:
7364 swstats->rx_unkn_prot_cnt++;
7365 break;
7366
7367 case 6:
7368 swstats->rx_fcs_err_cnt++;
7369 break;
7370
7371 case 7:
7372 swstats->rx_buf_size_err_cnt++;
7373 break;
7374
7375 case 8:
7376 swstats->rx_rxd_corrupt_cnt++;
7377 break;
7378
7379 case 15:
7380 swstats->rx_unkn_err_cnt++;
7381 break;
7382 }
7383 /*
7384 * Drop the packet if bad transfer code. Exception being
7385 * 0x5, which could be due to unsupported IPv6 extension header.
7386 * In this case, we let stack handle the packet.
7387 * Note that in this case, since checksum will be incorrect,
7388 * stack will validate the same.
7389 */
7390 if (err_mask != 0x5) {
7391 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7392 dev->name, err_mask);
7393 dev->stats.rx_crc_errors++;
7394 swstats->mem_freed
7395 += skb->truesize;
7396 dev_kfree_skb(skb);
7397 ring_data->rx_bufs_left -= 1;
7398 rxdp->Host_Control = 0;
7399 return 0;
7400 }
7401 }
7402
7403 rxdp->Host_Control = 0;
7404 if (sp->rxd_mode == RXD_MODE_1) {
7405 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7406
7407 skb_put(skb, len);
7408 } else if (sp->rxd_mode == RXD_MODE_3B) {
7409 int get_block = ring_data->rx_curr_get_info.block_index;
7410 int get_off = ring_data->rx_curr_get_info.offset;
7411 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7412 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7413 unsigned char *buff = skb_push(skb, buf0_len);
7414
7415 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7416 memcpy(buff, ba->ba_0, buf0_len);
7417 skb_put(skb, buf2_len);
7418 }
7419
7420 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7421 ((!ring_data->lro) ||
7422 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7423 (dev->features & NETIF_F_RXCSUM)) {
7424 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7425 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7426 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7427 /*
7428 * NIC verifies if the Checksum of the received
7429 * frame is Ok or not and accordingly returns
7430 * a flag in the RxD.
7431 */
7432 skb->ip_summed = CHECKSUM_UNNECESSARY;
7433 if (ring_data->lro) {
7434 u32 tcp_len = 0;
7435 u8 *tcp;
7436 int ret = 0;
7437
7438 ret = s2io_club_tcp_session(ring_data,
7439 skb->data, &tcp,
7440 &tcp_len, &lro,
7441 rxdp, sp);
7442 switch (ret) {
7443 case 3: /* Begin anew */
7444 lro->parent = skb;
7445 goto aggregate;
7446 case 1: /* Aggregate */
7447 lro_append_pkt(sp, lro, skb, tcp_len);
7448 goto aggregate;
7449 case 4: /* Flush session */
7450 lro_append_pkt(sp, lro, skb, tcp_len);
7451 queue_rx_frame(lro->parent,
7452 lro->vlan_tag);
7453 clear_lro_session(lro);
7454 swstats->flush_max_pkts++;
7455 goto aggregate;
7456 case 2: /* Flush both */
7457 lro->parent->data_len = lro->frags_len;
7458 swstats->sending_both++;
7459 queue_rx_frame(lro->parent,
7460 lro->vlan_tag);
7461 clear_lro_session(lro);
7462 goto send_up;
7463 case 0: /* sessions exceeded */
7464 case -1: /* non-TCP or not L2 aggregatable */
7465 case 5: /*
7466 * First pkt in session not
7467 * L3/L4 aggregatable
7468 */
7469 break;
7470 default:
7471 DBG_PRINT(ERR_DBG,
7472 "%s: Samadhana!!\n",
7473 __func__);
7474 BUG();
7475 }
7476 }
7477 } else {
7478 /*
7479 * Packet with erroneous checksum, let the
7480 * upper layers deal with it.
7481 */
7482 skb_checksum_none_assert(skb);
7483 }
7484 } else
7485 skb_checksum_none_assert(skb);
7486
7487 swstats->mem_freed += skb->truesize;
7488 send_up:
7489 skb_record_rx_queue(skb, ring_no);
7490 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7491 aggregate:
7492 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7493 return SUCCESS;
7494 }
7495
7496 /**
7497 * s2io_link - stops/starts the Tx queue.
7498 * @sp : private member of the device structure, which is a pointer to the
7499 * s2io_nic structure.
7500 * @link : inidicates whether link is UP/DOWN.
7501 * Description:
7502 * This function stops/starts the Tx queue depending on whether the link
7503 * status of the NIC is is down or up. This is called by the Alarm
7504 * interrupt handler whenever a link change interrupt comes up.
7505 * Return value:
7506 * void.
7507 */
7508
7509 static void s2io_link(struct s2io_nic *sp, int link)
7510 {
7511 struct net_device *dev = sp->dev;
7512 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7513
7514 if (link != sp->last_link_state) {
7515 init_tti(sp, link);
7516 if (link == LINK_DOWN) {
7517 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7518 s2io_stop_all_tx_queue(sp);
7519 netif_carrier_off(dev);
7520 if (swstats->link_up_cnt)
7521 swstats->link_up_time =
7522 jiffies - sp->start_time;
7523 swstats->link_down_cnt++;
7524 } else {
7525 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7526 if (swstats->link_down_cnt)
7527 swstats->link_down_time =
7528 jiffies - sp->start_time;
7529 swstats->link_up_cnt++;
7530 netif_carrier_on(dev);
7531 s2io_wake_all_tx_queue(sp);
7532 }
7533 }
7534 sp->last_link_state = link;
7535 sp->start_time = jiffies;
7536 }
7537
7538 /**
7539 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7540 * @sp : private member of the device structure, which is a pointer to the
7541 * s2io_nic structure.
7542 * Description:
7543 * This function initializes a few of the PCI and PCI-X configuration registers
7544 * with recommended values.
7545 * Return value:
7546 * void
7547 */
7548
7549 static void s2io_init_pci(struct s2io_nic *sp)
7550 {
7551 u16 pci_cmd = 0, pcix_cmd = 0;
7552
7553 /* Enable Data Parity Error Recovery in PCI-X command register. */
7554 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7555 &(pcix_cmd));
7556 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7557 (pcix_cmd | 1));
7558 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7559 &(pcix_cmd));
7560
7561 /* Set the PErr Response bit in PCI command register. */
7562 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7563 pci_write_config_word(sp->pdev, PCI_COMMAND,
7564 (pci_cmd | PCI_COMMAND_PARITY));
7565 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7566 }
7567
7568 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7569 u8 *dev_multiq)
7570 {
7571 int i;
7572
7573 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7574 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7575 "(%d) not supported\n", tx_fifo_num);
7576
7577 if (tx_fifo_num < 1)
7578 tx_fifo_num = 1;
7579 else
7580 tx_fifo_num = MAX_TX_FIFOS;
7581
7582 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7583 }
7584
7585 if (multiq)
7586 *dev_multiq = multiq;
7587
7588 if (tx_steering_type && (1 == tx_fifo_num)) {
7589 if (tx_steering_type != TX_DEFAULT_STEERING)
7590 DBG_PRINT(ERR_DBG,
7591 "Tx steering is not supported with "
7592 "one fifo. Disabling Tx steering.\n");
7593 tx_steering_type = NO_STEERING;
7594 }
7595
7596 if ((tx_steering_type < NO_STEERING) ||
7597 (tx_steering_type > TX_DEFAULT_STEERING)) {
7598 DBG_PRINT(ERR_DBG,
7599 "Requested transmit steering not supported\n");
7600 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7601 tx_steering_type = NO_STEERING;
7602 }
7603
7604 if (rx_ring_num > MAX_RX_RINGS) {
7605 DBG_PRINT(ERR_DBG,
7606 "Requested number of rx rings not supported\n");
7607 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7608 MAX_RX_RINGS);
7609 rx_ring_num = MAX_RX_RINGS;
7610 }
7611
7612 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7613 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7614 "Defaulting to INTA\n");
7615 *dev_intr_type = INTA;
7616 }
7617
7618 if ((*dev_intr_type == MSI_X) &&
7619 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7620 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7621 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7622 "Defaulting to INTA\n");
7623 *dev_intr_type = INTA;
7624 }
7625
7626 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7627 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7628 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7629 rx_ring_mode = 1;
7630 }
7631
7632 for (i = 0; i < MAX_RX_RINGS; i++)
7633 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7634 DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7635 "supported\nDefaulting to %d\n",
7636 MAX_RX_BLOCKS_PER_RING);
7637 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7638 }
7639
7640 return SUCCESS;
7641 }
7642
7643 /**
7644 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7645 * or Traffic class respectively.
7646 * @nic: device private variable
7647 * Description: The function configures the receive steering to
7648 * desired receive ring.
7649 * Return Value: SUCCESS on success and
7650 * '-1' on failure (endian settings incorrect).
7651 */
7652 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7653 {
7654 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7655 register u64 val64 = 0;
7656
7657 if (ds_codepoint > 63)
7658 return FAILURE;
7659
7660 val64 = RTS_DS_MEM_DATA(ring);
7661 writeq(val64, &bar0->rts_ds_mem_data);
7662
7663 val64 = RTS_DS_MEM_CTRL_WE |
7664 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7665 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7666
7667 writeq(val64, &bar0->rts_ds_mem_ctrl);
7668
7669 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7670 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7671 S2IO_BIT_RESET);
7672 }
7673
7674 static const struct net_device_ops s2io_netdev_ops = {
7675 .ndo_open = s2io_open,
7676 .ndo_stop = s2io_close,
7677 .ndo_get_stats = s2io_get_stats,
7678 .ndo_start_xmit = s2io_xmit,
7679 .ndo_validate_addr = eth_validate_addr,
7680 .ndo_set_rx_mode = s2io_set_multicast,
7681 .ndo_do_ioctl = s2io_ioctl,
7682 .ndo_set_mac_address = s2io_set_mac_addr,
7683 .ndo_change_mtu = s2io_change_mtu,
7684 .ndo_set_features = s2io_set_features,
7685 .ndo_tx_timeout = s2io_tx_watchdog,
7686 #ifdef CONFIG_NET_POLL_CONTROLLER
7687 .ndo_poll_controller = s2io_netpoll,
7688 #endif
7689 };
7690
7691 /**
7692 * s2io_init_nic - Initialization of the adapter .
7693 * @pdev : structure containing the PCI related information of the device.
7694 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7695 * Description:
7696 * The function initializes an adapter identified by the pci_dec structure.
7697 * All OS related initialization including memory and device structure and
7698 * initlaization of the device private variable is done. Also the swapper
7699 * control register is initialized to enable read and write into the I/O
7700 * registers of the device.
7701 * Return value:
7702 * returns 0 on success and negative on failure.
7703 */
7704
7705 static int
7706 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7707 {
7708 struct s2io_nic *sp;
7709 struct net_device *dev;
7710 int i, j, ret;
7711 int dma_flag = false;
7712 u32 mac_up, mac_down;
7713 u64 val64 = 0, tmp64 = 0;
7714 struct XENA_dev_config __iomem *bar0 = NULL;
7715 u16 subid;
7716 struct config_param *config;
7717 struct mac_info *mac_control;
7718 int mode;
7719 u8 dev_intr_type = intr_type;
7720 u8 dev_multiq = 0;
7721
7722 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7723 if (ret)
7724 return ret;
7725
7726 ret = pci_enable_device(pdev);
7727 if (ret) {
7728 DBG_PRINT(ERR_DBG,
7729 "%s: pci_enable_device failed\n", __func__);
7730 return ret;
7731 }
7732
7733 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7734 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7735 dma_flag = true;
7736 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7737 DBG_PRINT(ERR_DBG,
7738 "Unable to obtain 64bit DMA "
7739 "for consistent allocations\n");
7740 pci_disable_device(pdev);
7741 return -ENOMEM;
7742 }
7743 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7744 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7745 } else {
7746 pci_disable_device(pdev);
7747 return -ENOMEM;
7748 }
7749 ret = pci_request_regions(pdev, s2io_driver_name);
7750 if (ret) {
7751 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7752 __func__, ret);
7753 pci_disable_device(pdev);
7754 return -ENODEV;
7755 }
7756 if (dev_multiq)
7757 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7758 else
7759 dev = alloc_etherdev(sizeof(struct s2io_nic));
7760 if (dev == NULL) {
7761 pci_disable_device(pdev);
7762 pci_release_regions(pdev);
7763 return -ENODEV;
7764 }
7765
7766 pci_set_master(pdev);
7767 pci_set_drvdata(pdev, dev);
7768 SET_NETDEV_DEV(dev, &pdev->dev);
7769
7770 /* Private member variable initialized to s2io NIC structure */
7771 sp = netdev_priv(dev);
7772 sp->dev = dev;
7773 sp->pdev = pdev;
7774 sp->high_dma_flag = dma_flag;
7775 sp->device_enabled_once = false;
7776 if (rx_ring_mode == 1)
7777 sp->rxd_mode = RXD_MODE_1;
7778 if (rx_ring_mode == 2)
7779 sp->rxd_mode = RXD_MODE_3B;
7780
7781 sp->config.intr_type = dev_intr_type;
7782
7783 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7784 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7785 sp->device_type = XFRAME_II_DEVICE;
7786 else
7787 sp->device_type = XFRAME_I_DEVICE;
7788
7789
7790 /* Initialize some PCI/PCI-X fields of the NIC. */
7791 s2io_init_pci(sp);
7792
7793 /*
7794 * Setting the device configuration parameters.
7795 * Most of these parameters can be specified by the user during
7796 * module insertion as they are module loadable parameters. If
7797 * these parameters are not not specified during load time, they
7798 * are initialized with default values.
7799 */
7800 config = &sp->config;
7801 mac_control = &sp->mac_control;
7802
7803 config->napi = napi;
7804 config->tx_steering_type = tx_steering_type;
7805
7806 /* Tx side parameters. */
7807 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7808 config->tx_fifo_num = MAX_TX_FIFOS;
7809 else
7810 config->tx_fifo_num = tx_fifo_num;
7811
7812 /* Initialize the fifos used for tx steering */
7813 if (config->tx_fifo_num < 5) {
7814 if (config->tx_fifo_num == 1)
7815 sp->total_tcp_fifos = 1;
7816 else
7817 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7818 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7819 sp->total_udp_fifos = 1;
7820 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7821 } else {
7822 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7823 FIFO_OTHER_MAX_NUM);
7824 sp->udp_fifo_idx = sp->total_tcp_fifos;
7825 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7826 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7827 }
7828
7829 config->multiq = dev_multiq;
7830 for (i = 0; i < config->tx_fifo_num; i++) {
7831 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7832
7833 tx_cfg->fifo_len = tx_fifo_len[i];
7834 tx_cfg->fifo_priority = i;
7835 }
7836
7837 /* mapping the QoS priority to the configured fifos */
7838 for (i = 0; i < MAX_TX_FIFOS; i++)
7839 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7840
7841 /* map the hashing selector table to the configured fifos */
7842 for (i = 0; i < config->tx_fifo_num; i++)
7843 sp->fifo_selector[i] = fifo_selector[i];
7844
7845
7846 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7847 for (i = 0; i < config->tx_fifo_num; i++) {
7848 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7849
7850 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7851 if (tx_cfg->fifo_len < 65) {
7852 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7853 break;
7854 }
7855 }
7856 /* + 2 because one Txd for skb->data and one Txd for UFO */
7857 config->max_txds = MAX_SKB_FRAGS + 2;
7858
7859 /* Rx side parameters. */
7860 config->rx_ring_num = rx_ring_num;
7861 for (i = 0; i < config->rx_ring_num; i++) {
7862 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7863 struct ring_info *ring = &mac_control->rings[i];
7864
7865 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7866 rx_cfg->ring_priority = i;
7867 ring->rx_bufs_left = 0;
7868 ring->rxd_mode = sp->rxd_mode;
7869 ring->rxd_count = rxd_count[sp->rxd_mode];
7870 ring->pdev = sp->pdev;
7871 ring->dev = sp->dev;
7872 }
7873
7874 for (i = 0; i < rx_ring_num; i++) {
7875 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7876
7877 rx_cfg->ring_org = RING_ORG_BUFF1;
7878 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7879 }
7880
7881 /* Setting Mac Control parameters */
7882 mac_control->rmac_pause_time = rmac_pause_time;
7883 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7884 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7885
7886
7887 /* initialize the shared memory used by the NIC and the host */
7888 if (init_shared_mem(sp)) {
7889 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7890 ret = -ENOMEM;
7891 goto mem_alloc_failed;
7892 }
7893
7894 sp->bar0 = pci_ioremap_bar(pdev, 0);
7895 if (!sp->bar0) {
7896 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7897 dev->name);
7898 ret = -ENOMEM;
7899 goto bar0_remap_failed;
7900 }
7901
7902 sp->bar1 = pci_ioremap_bar(pdev, 2);
7903 if (!sp->bar1) {
7904 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7905 dev->name);
7906 ret = -ENOMEM;
7907 goto bar1_remap_failed;
7908 }
7909
7910 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7911 for (j = 0; j < MAX_TX_FIFOS; j++) {
7912 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7913 }
7914
7915 /* Driver entry points */
7916 dev->netdev_ops = &s2io_netdev_ops;
7917 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7918 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7919 NETIF_F_TSO | NETIF_F_TSO6 |
7920 NETIF_F_RXCSUM | NETIF_F_LRO;
7921 dev->features |= dev->hw_features |
7922 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7923 if (sp->device_type & XFRAME_II_DEVICE) {
7924 dev->hw_features |= NETIF_F_UFO;
7925 if (ufo)
7926 dev->features |= NETIF_F_UFO;
7927 }
7928 if (sp->high_dma_flag == true)
7929 dev->features |= NETIF_F_HIGHDMA;
7930 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7931 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7932 INIT_WORK(&sp->set_link_task, s2io_set_link);
7933
7934 pci_save_state(sp->pdev);
7935
7936 /* Setting swapper control on the NIC, for proper reset operation */
7937 if (s2io_set_swapper(sp)) {
7938 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7939 dev->name);
7940 ret = -EAGAIN;
7941 goto set_swap_failed;
7942 }
7943
7944 /* Verify if the Herc works on the slot its placed into */
7945 if (sp->device_type & XFRAME_II_DEVICE) {
7946 mode = s2io_verify_pci_mode(sp);
7947 if (mode < 0) {
7948 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7949 __func__);
7950 ret = -EBADSLT;
7951 goto set_swap_failed;
7952 }
7953 }
7954
7955 if (sp->config.intr_type == MSI_X) {
7956 sp->num_entries = config->rx_ring_num + 1;
7957 ret = s2io_enable_msi_x(sp);
7958
7959 if (!ret) {
7960 ret = s2io_test_msi(sp);
7961 /* rollback MSI-X, will re-enable during add_isr() */
7962 remove_msix_isr(sp);
7963 }
7964 if (ret) {
7965
7966 DBG_PRINT(ERR_DBG,
7967 "MSI-X requested but failed to enable\n");
7968 sp->config.intr_type = INTA;
7969 }
7970 }
7971
7972 if (config->intr_type == MSI_X) {
7973 for (i = 0; i < config->rx_ring_num ; i++) {
7974 struct ring_info *ring = &mac_control->rings[i];
7975
7976 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7977 }
7978 } else {
7979 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7980 }
7981
7982 /* Not needed for Herc */
7983 if (sp->device_type & XFRAME_I_DEVICE) {
7984 /*
7985 * Fix for all "FFs" MAC address problems observed on
7986 * Alpha platforms
7987 */
7988 fix_mac_address(sp);
7989 s2io_reset(sp);
7990 }
7991
7992 /*
7993 * MAC address initialization.
7994 * For now only one mac address will be read and used.
7995 */
7996 bar0 = sp->bar0;
7997 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7998 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7999 writeq(val64, &bar0->rmac_addr_cmd_mem);
8000 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8001 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8002 S2IO_BIT_RESET);
8003 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8004 mac_down = (u32)tmp64;
8005 mac_up = (u32) (tmp64 >> 32);
8006
8007 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8008 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8009 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8010 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8011 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8012 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8013
8014 /* Set the factory defined MAC address initially */
8015 dev->addr_len = ETH_ALEN;
8016 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8017
8018 /* initialize number of multicast & unicast MAC entries variables */
8019 if (sp->device_type == XFRAME_I_DEVICE) {
8020 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8021 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8022 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8023 } else if (sp->device_type == XFRAME_II_DEVICE) {
8024 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8025 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8026 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8027 }
8028
8029 /* store mac addresses from CAM to s2io_nic structure */
8030 do_s2io_store_unicast_mc(sp);
8031
8032 /* Configure MSIX vector for number of rings configured plus one */
8033 if ((sp->device_type == XFRAME_II_DEVICE) &&
8034 (config->intr_type == MSI_X))
8035 sp->num_entries = config->rx_ring_num + 1;
8036
8037 /* Store the values of the MSIX table in the s2io_nic structure */
8038 store_xmsi_data(sp);
8039 /* reset Nic and bring it to known state */
8040 s2io_reset(sp);
8041
8042 /*
8043 * Initialize link state flags
8044 * and the card state parameter
8045 */
8046 sp->state = 0;
8047
8048 /* Initialize spinlocks */
8049 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8050 struct fifo_info *fifo = &mac_control->fifos[i];
8051
8052 spin_lock_init(&fifo->tx_lock);
8053 }
8054
8055 /*
8056 * SXE-002: Configure link and activity LED to init state
8057 * on driver load.
8058 */
8059 subid = sp->pdev->subsystem_device;
8060 if ((subid & 0xFF) >= 0x07) {
8061 val64 = readq(&bar0->gpio_control);
8062 val64 |= 0x0000800000000000ULL;
8063 writeq(val64, &bar0->gpio_control);
8064 val64 = 0x0411040400000000ULL;
8065 writeq(val64, (void __iomem *)bar0 + 0x2700);
8066 val64 = readq(&bar0->gpio_control);
8067 }
8068
8069 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8070
8071 if (register_netdev(dev)) {
8072 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8073 ret = -ENODEV;
8074 goto register_failed;
8075 }
8076 s2io_vpd_read(sp);
8077 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8078 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8079 sp->product_name, pdev->revision);
8080 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8081 s2io_driver_version);
8082 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8083 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8084 if (sp->device_type & XFRAME_II_DEVICE) {
8085 mode = s2io_print_pci_mode(sp);
8086 if (mode < 0) {
8087 ret = -EBADSLT;
8088 unregister_netdev(dev);
8089 goto set_swap_failed;
8090 }
8091 }
8092 switch (sp->rxd_mode) {
8093 case RXD_MODE_1:
8094 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8095 dev->name);
8096 break;
8097 case RXD_MODE_3B:
8098 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8099 dev->name);
8100 break;
8101 }
8102
8103 switch (sp->config.napi) {
8104 case 0:
8105 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8106 break;
8107 case 1:
8108 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8109 break;
8110 }
8111
8112 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8113 sp->config.tx_fifo_num);
8114
8115 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8116 sp->config.rx_ring_num);
8117
8118 switch (sp->config.intr_type) {
8119 case INTA:
8120 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8121 break;
8122 case MSI_X:
8123 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8124 break;
8125 }
8126 if (sp->config.multiq) {
8127 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8128 struct fifo_info *fifo = &mac_control->fifos[i];
8129
8130 fifo->multiq = config->multiq;
8131 }
8132 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8133 dev->name);
8134 } else
8135 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8136 dev->name);
8137
8138 switch (sp->config.tx_steering_type) {
8139 case NO_STEERING:
8140 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8141 dev->name);
8142 break;
8143 case TX_PRIORITY_STEERING:
8144 DBG_PRINT(ERR_DBG,
8145 "%s: Priority steering enabled for transmit\n",
8146 dev->name);
8147 break;
8148 case TX_DEFAULT_STEERING:
8149 DBG_PRINT(ERR_DBG,
8150 "%s: Default steering enabled for transmit\n",
8151 dev->name);
8152 }
8153
8154 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8155 dev->name);
8156 if (ufo)
8157 DBG_PRINT(ERR_DBG,
8158 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8159 dev->name);
8160 /* Initialize device name */
8161 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8162
8163 if (vlan_tag_strip)
8164 sp->vlan_strip_flag = 1;
8165 else
8166 sp->vlan_strip_flag = 0;
8167
8168 /*
8169 * Make Link state as off at this point, when the Link change
8170 * interrupt comes the state will be automatically changed to
8171 * the right state.
8172 */
8173 netif_carrier_off(dev);
8174
8175 return 0;
8176
8177 register_failed:
8178 set_swap_failed:
8179 iounmap(sp->bar1);
8180 bar1_remap_failed:
8181 iounmap(sp->bar0);
8182 bar0_remap_failed:
8183 mem_alloc_failed:
8184 free_shared_mem(sp);
8185 pci_disable_device(pdev);
8186 pci_release_regions(pdev);
8187 pci_set_drvdata(pdev, NULL);
8188 free_netdev(dev);
8189
8190 return ret;
8191 }
8192
8193 /**
8194 * s2io_rem_nic - Free the PCI device
8195 * @pdev: structure containing the PCI related information of the device.
8196 * Description: This function is called by the Pci subsystem to release a
8197 * PCI device and free up all resource held up by the device. This could
8198 * be in response to a Hot plug event or when the driver is to be removed
8199 * from memory.
8200 */
8201
8202 static void s2io_rem_nic(struct pci_dev *pdev)
8203 {
8204 struct net_device *dev = pci_get_drvdata(pdev);
8205 struct s2io_nic *sp;
8206
8207 if (dev == NULL) {
8208 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8209 return;
8210 }
8211
8212 sp = netdev_priv(dev);
8213
8214 cancel_work_sync(&sp->rst_timer_task);
8215 cancel_work_sync(&sp->set_link_task);
8216
8217 unregister_netdev(dev);
8218
8219 free_shared_mem(sp);
8220 iounmap(sp->bar0);
8221 iounmap(sp->bar1);
8222 pci_release_regions(pdev);
8223 pci_set_drvdata(pdev, NULL);
8224 free_netdev(dev);
8225 pci_disable_device(pdev);
8226 }
8227
8228 /**
8229 * s2io_starter - Entry point for the driver
8230 * Description: This function is the entry point for the driver. It verifies
8231 * the module loadable parameters and initializes PCI configuration space.
8232 */
8233
8234 static int __init s2io_starter(void)
8235 {
8236 return pci_register_driver(&s2io_driver);
8237 }
8238
8239 /**
8240 * s2io_closer - Cleanup routine for the driver
8241 * Description: This function is the cleanup routine for the driver. It
8242 * unregisters the driver.
8243 */
8244
8245 static __exit void s2io_closer(void)
8246 {
8247 pci_unregister_driver(&s2io_driver);
8248 DBG_PRINT(INIT_DBG, "cleanup done\n");
8249 }
8250
8251 module_init(s2io_starter);
8252 module_exit(s2io_closer);
8253
8254 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8255 struct tcphdr **tcp, struct RxD_t *rxdp,
8256 struct s2io_nic *sp)
8257 {
8258 int ip_off;
8259 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8260
8261 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8262 DBG_PRINT(INIT_DBG,
8263 "%s: Non-TCP frames not supported for LRO\n",
8264 __func__);
8265 return -1;
8266 }
8267
8268 /* Checking for DIX type or DIX type with VLAN */
8269 if ((l2_type == 0) || (l2_type == 4)) {
8270 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8271 /*
8272 * If vlan stripping is disabled and the frame is VLAN tagged,
8273 * shift the offset by the VLAN header size bytes.
8274 */
8275 if ((!sp->vlan_strip_flag) &&
8276 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8277 ip_off += HEADER_VLAN_SIZE;
8278 } else {
8279 /* LLC, SNAP etc are considered non-mergeable */
8280 return -1;
8281 }
8282
8283 *ip = (struct iphdr *)(buffer + ip_off);
8284 ip_len = (u8)((*ip)->ihl);
8285 ip_len <<= 2;
8286 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8287
8288 return 0;
8289 }
8290
8291 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8292 struct tcphdr *tcp)
8293 {
8294 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8295 if ((lro->iph->saddr != ip->saddr) ||
8296 (lro->iph->daddr != ip->daddr) ||
8297 (lro->tcph->source != tcp->source) ||
8298 (lro->tcph->dest != tcp->dest))
8299 return -1;
8300 return 0;
8301 }
8302
8303 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8304 {
8305 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8306 }
8307
8308 static void initiate_new_session(struct lro *lro, u8 *l2h,
8309 struct iphdr *ip, struct tcphdr *tcp,
8310 u32 tcp_pyld_len, u16 vlan_tag)
8311 {
8312 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8313 lro->l2h = l2h;
8314 lro->iph = ip;
8315 lro->tcph = tcp;
8316 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8317 lro->tcp_ack = tcp->ack_seq;
8318 lro->sg_num = 1;
8319 lro->total_len = ntohs(ip->tot_len);
8320 lro->frags_len = 0;
8321 lro->vlan_tag = vlan_tag;
8322 /*
8323 * Check if we saw TCP timestamp.
8324 * Other consistency checks have already been done.
8325 */
8326 if (tcp->doff == 8) {
8327 __be32 *ptr;
8328 ptr = (__be32 *)(tcp+1);
8329 lro->saw_ts = 1;
8330 lro->cur_tsval = ntohl(*(ptr+1));
8331 lro->cur_tsecr = *(ptr+2);
8332 }
8333 lro->in_use = 1;
8334 }
8335
8336 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8337 {
8338 struct iphdr *ip = lro->iph;
8339 struct tcphdr *tcp = lro->tcph;
8340 __sum16 nchk;
8341 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8342
8343 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8344
8345 /* Update L3 header */
8346 ip->tot_len = htons(lro->total_len);
8347 ip->check = 0;
8348 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8349 ip->check = nchk;
8350
8351 /* Update L4 header */
8352 tcp->ack_seq = lro->tcp_ack;
8353 tcp->window = lro->window;
8354
8355 /* Update tsecr field if this session has timestamps enabled */
8356 if (lro->saw_ts) {
8357 __be32 *ptr = (__be32 *)(tcp + 1);
8358 *(ptr+2) = lro->cur_tsecr;
8359 }
8360
8361 /* Update counters required for calculation of
8362 * average no. of packets aggregated.
8363 */
8364 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8365 swstats->num_aggregations++;
8366 }
8367
8368 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8369 struct tcphdr *tcp, u32 l4_pyld)
8370 {
8371 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8372 lro->total_len += l4_pyld;
8373 lro->frags_len += l4_pyld;
8374 lro->tcp_next_seq += l4_pyld;
8375 lro->sg_num++;
8376
8377 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8378 lro->tcp_ack = tcp->ack_seq;
8379 lro->window = tcp->window;
8380
8381 if (lro->saw_ts) {
8382 __be32 *ptr;
8383 /* Update tsecr and tsval from this packet */
8384 ptr = (__be32 *)(tcp+1);
8385 lro->cur_tsval = ntohl(*(ptr+1));
8386 lro->cur_tsecr = *(ptr + 2);
8387 }
8388 }
8389
8390 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8391 struct tcphdr *tcp, u32 tcp_pyld_len)
8392 {
8393 u8 *ptr;
8394
8395 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8396
8397 if (!tcp_pyld_len) {
8398 /* Runt frame or a pure ack */
8399 return -1;
8400 }
8401
8402 if (ip->ihl != 5) /* IP has options */
8403 return -1;
8404
8405 /* If we see CE codepoint in IP header, packet is not mergeable */
8406 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8407 return -1;
8408
8409 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8410 if (tcp->urg || tcp->psh || tcp->rst ||
8411 tcp->syn || tcp->fin ||
8412 tcp->ece || tcp->cwr || !tcp->ack) {
8413 /*
8414 * Currently recognize only the ack control word and
8415 * any other control field being set would result in
8416 * flushing the LRO session
8417 */
8418 return -1;
8419 }
8420
8421 /*
8422 * Allow only one TCP timestamp option. Don't aggregate if
8423 * any other options are detected.
8424 */
8425 if (tcp->doff != 5 && tcp->doff != 8)
8426 return -1;
8427
8428 if (tcp->doff == 8) {
8429 ptr = (u8 *)(tcp + 1);
8430 while (*ptr == TCPOPT_NOP)
8431 ptr++;
8432 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8433 return -1;
8434
8435 /* Ensure timestamp value increases monotonically */
8436 if (l_lro)
8437 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8438 return -1;
8439
8440 /* timestamp echo reply should be non-zero */
8441 if (*((__be32 *)(ptr+6)) == 0)
8442 return -1;
8443 }
8444
8445 return 0;
8446 }
8447
8448 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8449 u8 **tcp, u32 *tcp_len, struct lro **lro,
8450 struct RxD_t *rxdp, struct s2io_nic *sp)
8451 {
8452 struct iphdr *ip;
8453 struct tcphdr *tcph;
8454 int ret = 0, i;
8455 u16 vlan_tag = 0;
8456 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8457
8458 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8459 rxdp, sp);
8460 if (ret)
8461 return ret;
8462
8463 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8464
8465 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8466 tcph = (struct tcphdr *)*tcp;
8467 *tcp_len = get_l4_pyld_length(ip, tcph);
8468 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8469 struct lro *l_lro = &ring_data->lro0_n[i];
8470 if (l_lro->in_use) {
8471 if (check_for_socket_match(l_lro, ip, tcph))
8472 continue;
8473 /* Sock pair matched */
8474 *lro = l_lro;
8475
8476 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8477 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8478 "expected 0x%x, actual 0x%x\n",
8479 __func__,
8480 (*lro)->tcp_next_seq,
8481 ntohl(tcph->seq));
8482
8483 swstats->outof_sequence_pkts++;
8484 ret = 2;
8485 break;
8486 }
8487
8488 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8489 *tcp_len))
8490 ret = 1; /* Aggregate */
8491 else
8492 ret = 2; /* Flush both */
8493 break;
8494 }
8495 }
8496
8497 if (ret == 0) {
8498 /* Before searching for available LRO objects,
8499 * check if the pkt is L3/L4 aggregatable. If not
8500 * don't create new LRO session. Just send this
8501 * packet up.
8502 */
8503 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8504 return 5;
8505
8506 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8507 struct lro *l_lro = &ring_data->lro0_n[i];
8508 if (!(l_lro->in_use)) {
8509 *lro = l_lro;
8510 ret = 3; /* Begin anew */
8511 break;
8512 }
8513 }
8514 }
8515
8516 if (ret == 0) { /* sessions exceeded */
8517 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8518 __func__);
8519 *lro = NULL;
8520 return ret;
8521 }
8522
8523 switch (ret) {
8524 case 3:
8525 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8526 vlan_tag);
8527 break;
8528 case 2:
8529 update_L3L4_header(sp, *lro);
8530 break;
8531 case 1:
8532 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8533 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8534 update_L3L4_header(sp, *lro);
8535 ret = 4; /* Flush the LRO */
8536 }
8537 break;
8538 default:
8539 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8540 break;
8541 }
8542
8543 return ret;
8544 }
8545
8546 static void clear_lro_session(struct lro *lro)
8547 {
8548 static u16 lro_struct_size = sizeof(struct lro);
8549
8550 memset(lro, 0, lro_struct_size);
8551 }
8552
8553 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8554 {
8555 struct net_device *dev = skb->dev;
8556 struct s2io_nic *sp = netdev_priv(dev);
8557
8558 skb->protocol = eth_type_trans(skb, dev);
8559 if (vlan_tag && sp->vlan_strip_flag)
8560 __vlan_hwaccel_put_tag(skb, vlan_tag);
8561 if (sp->config.napi)
8562 netif_receive_skb(skb);
8563 else
8564 netif_rx(skb);
8565 }
8566
8567 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8568 struct sk_buff *skb, u32 tcp_len)
8569 {
8570 struct sk_buff *first = lro->parent;
8571 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8572
8573 first->len += tcp_len;
8574 first->data_len = lro->frags_len;
8575 skb_pull(skb, (skb->len - tcp_len));
8576 if (skb_shinfo(first)->frag_list)
8577 lro->last_frag->next = skb;
8578 else
8579 skb_shinfo(first)->frag_list = skb;
8580 first->truesize += skb->truesize;
8581 lro->last_frag = skb;
8582 swstats->clubbed_frms_cnt++;
8583 }
8584
8585 /**
8586 * s2io_io_error_detected - called when PCI error is detected
8587 * @pdev: Pointer to PCI device
8588 * @state: The current pci connection state
8589 *
8590 * This function is called after a PCI bus error affecting
8591 * this device has been detected.
8592 */
8593 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8594 pci_channel_state_t state)
8595 {
8596 struct net_device *netdev = pci_get_drvdata(pdev);
8597 struct s2io_nic *sp = netdev_priv(netdev);
8598
8599 netif_device_detach(netdev);
8600
8601 if (state == pci_channel_io_perm_failure)
8602 return PCI_ERS_RESULT_DISCONNECT;
8603
8604 if (netif_running(netdev)) {
8605 /* Bring down the card, while avoiding PCI I/O */
8606 do_s2io_card_down(sp, 0);
8607 }
8608 pci_disable_device(pdev);
8609
8610 return PCI_ERS_RESULT_NEED_RESET;
8611 }
8612
8613 /**
8614 * s2io_io_slot_reset - called after the pci bus has been reset.
8615 * @pdev: Pointer to PCI device
8616 *
8617 * Restart the card from scratch, as if from a cold-boot.
8618 * At this point, the card has exprienced a hard reset,
8619 * followed by fixups by BIOS, and has its config space
8620 * set up identically to what it was at cold boot.
8621 */
8622 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8623 {
8624 struct net_device *netdev = pci_get_drvdata(pdev);
8625 struct s2io_nic *sp = netdev_priv(netdev);
8626
8627 if (pci_enable_device(pdev)) {
8628 pr_err("Cannot re-enable PCI device after reset.\n");
8629 return PCI_ERS_RESULT_DISCONNECT;
8630 }
8631
8632 pci_set_master(pdev);
8633 s2io_reset(sp);
8634
8635 return PCI_ERS_RESULT_RECOVERED;
8636 }
8637
8638 /**
8639 * s2io_io_resume - called when traffic can start flowing again.
8640 * @pdev: Pointer to PCI device
8641 *
8642 * This callback is called when the error recovery driver tells
8643 * us that its OK to resume normal operation.
8644 */
8645 static void s2io_io_resume(struct pci_dev *pdev)
8646 {
8647 struct net_device *netdev = pci_get_drvdata(pdev);
8648 struct s2io_nic *sp = netdev_priv(netdev);
8649
8650 if (netif_running(netdev)) {
8651 if (s2io_card_up(sp)) {
8652 pr_err("Can't bring device back up after reset.\n");
8653 return;
8654 }
8655
8656 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8657 s2io_card_down(sp);
8658 pr_err("Can't restore mac addr after reset.\n");
8659 return;
8660 }
8661 }
8662
8663 netif_device_attach(netdev);
8664 netif_tx_wake_all_queues(netdev);
8665 }