net: vlan: prepare for 802.1ad VLAN filtering offload
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3 Intel 82599 Virtual Function driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/types.h>
36 #include <linux/bitops.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/vmalloc.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/sctp.h>
46 #include <linux/ipv6.h>
47 #include <linux/slab.h>
48 #include <net/checksum.h>
49 #include <net/ip6_checksum.h>
50 #include <linux/ethtool.h>
51 #include <linux/if.h>
52 #include <linux/if_vlan.h>
53 #include <linux/prefetch.h>
54
55 #include "ixgbevf.h"
56
57 const char ixgbevf_driver_name[] = "ixgbevf";
58 static const char ixgbevf_driver_string[] =
59 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
60
61 #define DRV_VERSION "2.7.12-k"
62 const char ixgbevf_driver_version[] = DRV_VERSION;
63 static char ixgbevf_copyright[] =
64 "Copyright (c) 2009 - 2012 Intel Corporation.";
65
66 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
67 [board_82599_vf] = &ixgbevf_82599_vf_info,
68 [board_X540_vf] = &ixgbevf_X540_vf_info,
69 };
70
71 /* ixgbevf_pci_tbl - PCI Device ID Table
72 *
73 * Wildcard entries (PCI_ANY_ID) should come last
74 * Last entry must be all 0s
75 *
76 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
77 * Class, Class Mask, private data (not used) }
78 */
79 static DEFINE_PCI_DEVICE_TABLE(ixgbevf_pci_tbl) = {
80 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
81 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
82 /* required last entry */
83 {0, }
84 };
85 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
86
87 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
88 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91
92 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
93 static int debug = -1;
94 module_param(debug, int, 0);
95 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
96
97 /* forward decls */
98 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
99 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
100
101 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
102 struct ixgbevf_ring *rx_ring,
103 u32 val)
104 {
105 /*
106 * Force memory writes to complete before letting h/w
107 * know there are new descriptors to fetch. (Only
108 * applicable for weak-ordered memory model archs,
109 * such as IA-64).
110 */
111 wmb();
112 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
113 }
114
115 /**
116 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
117 * @adapter: pointer to adapter struct
118 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
119 * @queue: queue to map the corresponding interrupt to
120 * @msix_vector: the vector to map to the corresponding queue
121 */
122 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
123 u8 queue, u8 msix_vector)
124 {
125 u32 ivar, index;
126 struct ixgbe_hw *hw = &adapter->hw;
127 if (direction == -1) {
128 /* other causes */
129 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
130 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
131 ivar &= ~0xFF;
132 ivar |= msix_vector;
133 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
134 } else {
135 /* tx or rx causes */
136 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
137 index = ((16 * (queue & 1)) + (8 * direction));
138 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
139 ivar &= ~(0xFF << index);
140 ivar |= (msix_vector << index);
141 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
142 }
143 }
144
145 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
146 struct ixgbevf_tx_buffer
147 *tx_buffer_info)
148 {
149 if (tx_buffer_info->dma) {
150 if (tx_buffer_info->mapped_as_page)
151 dma_unmap_page(tx_ring->dev,
152 tx_buffer_info->dma,
153 tx_buffer_info->length,
154 DMA_TO_DEVICE);
155 else
156 dma_unmap_single(tx_ring->dev,
157 tx_buffer_info->dma,
158 tx_buffer_info->length,
159 DMA_TO_DEVICE);
160 tx_buffer_info->dma = 0;
161 }
162 if (tx_buffer_info->skb) {
163 dev_kfree_skb_any(tx_buffer_info->skb);
164 tx_buffer_info->skb = NULL;
165 }
166 tx_buffer_info->time_stamp = 0;
167 /* tx_buffer_info must be completely set up in the transmit path */
168 }
169
170 #define IXGBE_MAX_TXD_PWR 14
171 #define IXGBE_MAX_DATA_PER_TXD (1 << IXGBE_MAX_TXD_PWR)
172
173 /* Tx Descriptors needed, worst case */
174 #define TXD_USE_COUNT(S) DIV_ROUND_UP((S), IXGBE_MAX_DATA_PER_TXD)
175 #define DESC_NEEDED (MAX_SKB_FRAGS + 4)
176
177 static void ixgbevf_tx_timeout(struct net_device *netdev);
178
179 /**
180 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
181 * @q_vector: board private structure
182 * @tx_ring: tx ring to clean
183 **/
184 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
185 struct ixgbevf_ring *tx_ring)
186 {
187 struct ixgbevf_adapter *adapter = q_vector->adapter;
188 union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
189 struct ixgbevf_tx_buffer *tx_buffer_info;
190 unsigned int i, count = 0;
191 unsigned int total_bytes = 0, total_packets = 0;
192
193 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
194 return true;
195
196 i = tx_ring->next_to_clean;
197 tx_buffer_info = &tx_ring->tx_buffer_info[i];
198 eop_desc = tx_buffer_info->next_to_watch;
199
200 do {
201 bool cleaned = false;
202
203 /* if next_to_watch is not set then there is no work pending */
204 if (!eop_desc)
205 break;
206
207 /* prevent any other reads prior to eop_desc */
208 read_barrier_depends();
209
210 /* if DD is not set pending work has not been completed */
211 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
212 break;
213
214 /* clear next_to_watch to prevent false hangs */
215 tx_buffer_info->next_to_watch = NULL;
216
217 for ( ; !cleaned; count++) {
218 struct sk_buff *skb;
219 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
220 cleaned = (tx_desc == eop_desc);
221 skb = tx_buffer_info->skb;
222
223 if (cleaned && skb) {
224 unsigned int segs, bytecount;
225
226 /* gso_segs is currently only valid for tcp */
227 segs = skb_shinfo(skb)->gso_segs ?: 1;
228 /* multiply data chunks by size of headers */
229 bytecount = ((segs - 1) * skb_headlen(skb)) +
230 skb->len;
231 total_packets += segs;
232 total_bytes += bytecount;
233 }
234
235 ixgbevf_unmap_and_free_tx_resource(tx_ring,
236 tx_buffer_info);
237
238 tx_desc->wb.status = 0;
239
240 i++;
241 if (i == tx_ring->count)
242 i = 0;
243
244 tx_buffer_info = &tx_ring->tx_buffer_info[i];
245 }
246
247 eop_desc = tx_buffer_info->next_to_watch;
248 } while (count < tx_ring->count);
249
250 tx_ring->next_to_clean = i;
251
252 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
253 if (unlikely(count && netif_carrier_ok(tx_ring->netdev) &&
254 (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
255 /* Make sure that anybody stopping the queue after this
256 * sees the new next_to_clean.
257 */
258 smp_mb();
259 if (__netif_subqueue_stopped(tx_ring->netdev,
260 tx_ring->queue_index) &&
261 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
262 netif_wake_subqueue(tx_ring->netdev,
263 tx_ring->queue_index);
264 ++adapter->restart_queue;
265 }
266 }
267
268 u64_stats_update_begin(&tx_ring->syncp);
269 tx_ring->total_bytes += total_bytes;
270 tx_ring->total_packets += total_packets;
271 u64_stats_update_end(&tx_ring->syncp);
272 q_vector->tx.total_bytes += total_bytes;
273 q_vector->tx.total_packets += total_packets;
274
275 return count < tx_ring->count;
276 }
277
278 /**
279 * ixgbevf_receive_skb - Send a completed packet up the stack
280 * @q_vector: structure containing interrupt and ring information
281 * @skb: packet to send up
282 * @status: hardware indication of status of receive
283 * @rx_desc: rx descriptor
284 **/
285 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
286 struct sk_buff *skb, u8 status,
287 union ixgbe_adv_rx_desc *rx_desc)
288 {
289 struct ixgbevf_adapter *adapter = q_vector->adapter;
290 bool is_vlan = (status & IXGBE_RXD_STAT_VP);
291 u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
292
293 if (is_vlan && test_bit(tag & VLAN_VID_MASK, adapter->active_vlans))
294 __vlan_hwaccel_put_tag(skb, tag);
295
296 if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
297 napi_gro_receive(&q_vector->napi, skb);
298 else
299 netif_rx(skb);
300 }
301
302 /**
303 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
304 * @ring: pointer to Rx descriptor ring structure
305 * @status_err: hardware indication of status of receive
306 * @skb: skb currently being received and modified
307 **/
308 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
309 u32 status_err, struct sk_buff *skb)
310 {
311 skb_checksum_none_assert(skb);
312
313 /* Rx csum disabled */
314 if (!(ring->netdev->features & NETIF_F_RXCSUM))
315 return;
316
317 /* if IP and error */
318 if ((status_err & IXGBE_RXD_STAT_IPCS) &&
319 (status_err & IXGBE_RXDADV_ERR_IPE)) {
320 ring->hw_csum_rx_error++;
321 return;
322 }
323
324 if (!(status_err & IXGBE_RXD_STAT_L4CS))
325 return;
326
327 if (status_err & IXGBE_RXDADV_ERR_TCPE) {
328 ring->hw_csum_rx_error++;
329 return;
330 }
331
332 /* It must be a TCP or UDP packet with a valid checksum */
333 skb->ip_summed = CHECKSUM_UNNECESSARY;
334 ring->hw_csum_rx_good++;
335 }
336
337 /**
338 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
339 * @adapter: address of board private structure
340 **/
341 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
342 struct ixgbevf_ring *rx_ring,
343 int cleaned_count)
344 {
345 struct pci_dev *pdev = adapter->pdev;
346 union ixgbe_adv_rx_desc *rx_desc;
347 struct ixgbevf_rx_buffer *bi;
348 unsigned int i = rx_ring->next_to_use;
349
350 bi = &rx_ring->rx_buffer_info[i];
351
352 while (cleaned_count--) {
353 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
354
355 if (!bi->skb) {
356 struct sk_buff *skb;
357
358 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
359 rx_ring->rx_buf_len);
360 if (!skb) {
361 adapter->alloc_rx_buff_failed++;
362 goto no_buffers;
363 }
364 bi->skb = skb;
365
366 bi->dma = dma_map_single(&pdev->dev, skb->data,
367 rx_ring->rx_buf_len,
368 DMA_FROM_DEVICE);
369 if (dma_mapping_error(&pdev->dev, bi->dma)) {
370 dev_kfree_skb(skb);
371 bi->skb = NULL;
372 dev_err(&pdev->dev, "RX DMA map failed\n");
373 break;
374 }
375 }
376 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
377
378 i++;
379 if (i == rx_ring->count)
380 i = 0;
381 bi = &rx_ring->rx_buffer_info[i];
382 }
383
384 no_buffers:
385 if (rx_ring->next_to_use != i) {
386 rx_ring->next_to_use = i;
387 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
388 }
389 }
390
391 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
392 u32 qmask)
393 {
394 struct ixgbe_hw *hw = &adapter->hw;
395
396 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
397 }
398
399 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
400 struct ixgbevf_ring *rx_ring,
401 int budget)
402 {
403 struct ixgbevf_adapter *adapter = q_vector->adapter;
404 struct pci_dev *pdev = adapter->pdev;
405 union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
406 struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
407 struct sk_buff *skb;
408 unsigned int i;
409 u32 len, staterr;
410 int cleaned_count = 0;
411 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
412
413 i = rx_ring->next_to_clean;
414 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
415 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
416 rx_buffer_info = &rx_ring->rx_buffer_info[i];
417
418 while (staterr & IXGBE_RXD_STAT_DD) {
419 if (!budget)
420 break;
421 budget--;
422
423 rmb(); /* read descriptor and rx_buffer_info after status DD */
424 len = le16_to_cpu(rx_desc->wb.upper.length);
425 skb = rx_buffer_info->skb;
426 prefetch(skb->data - NET_IP_ALIGN);
427 rx_buffer_info->skb = NULL;
428
429 if (rx_buffer_info->dma) {
430 dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
431 rx_ring->rx_buf_len,
432 DMA_FROM_DEVICE);
433 rx_buffer_info->dma = 0;
434 skb_put(skb, len);
435 }
436
437 i++;
438 if (i == rx_ring->count)
439 i = 0;
440
441 next_rxd = IXGBEVF_RX_DESC(rx_ring, i);
442 prefetch(next_rxd);
443 cleaned_count++;
444
445 next_buffer = &rx_ring->rx_buffer_info[i];
446
447 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
448 skb->next = next_buffer->skb;
449 IXGBE_CB(skb->next)->prev = skb;
450 adapter->non_eop_descs++;
451 goto next_desc;
452 }
453
454 /* we should not be chaining buffers, if we did drop the skb */
455 if (IXGBE_CB(skb)->prev) {
456 do {
457 struct sk_buff *this = skb;
458 skb = IXGBE_CB(skb)->prev;
459 dev_kfree_skb(this);
460 } while (skb);
461 goto next_desc;
462 }
463
464 /* ERR_MASK will only have valid bits if EOP set */
465 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
466 dev_kfree_skb_irq(skb);
467 goto next_desc;
468 }
469
470 ixgbevf_rx_checksum(rx_ring, staterr, skb);
471
472 /* probably a little skewed due to removing CRC */
473 total_rx_bytes += skb->len;
474 total_rx_packets++;
475
476 /*
477 * Work around issue of some types of VM to VM loop back
478 * packets not getting split correctly
479 */
480 if (staterr & IXGBE_RXD_STAT_LB) {
481 u32 header_fixup_len = skb_headlen(skb);
482 if (header_fixup_len < 14)
483 skb_push(skb, header_fixup_len);
484 }
485 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
486
487 /* Workaround hardware that can't do proper VEPA multicast
488 * source pruning.
489 */
490 if ((skb->pkt_type & (PACKET_BROADCAST | PACKET_MULTICAST)) &&
491 !(compare_ether_addr(adapter->netdev->dev_addr,
492 eth_hdr(skb)->h_source))) {
493 dev_kfree_skb_irq(skb);
494 goto next_desc;
495 }
496
497 ixgbevf_receive_skb(q_vector, skb, staterr, rx_desc);
498
499 next_desc:
500 rx_desc->wb.upper.status_error = 0;
501
502 /* return some buffers to hardware, one at a time is too slow */
503 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
504 ixgbevf_alloc_rx_buffers(adapter, rx_ring,
505 cleaned_count);
506 cleaned_count = 0;
507 }
508
509 /* use prefetched values */
510 rx_desc = next_rxd;
511 rx_buffer_info = &rx_ring->rx_buffer_info[i];
512
513 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
514 }
515
516 rx_ring->next_to_clean = i;
517 cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
518
519 if (cleaned_count)
520 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
521
522 u64_stats_update_begin(&rx_ring->syncp);
523 rx_ring->total_packets += total_rx_packets;
524 rx_ring->total_bytes += total_rx_bytes;
525 u64_stats_update_end(&rx_ring->syncp);
526 q_vector->rx.total_packets += total_rx_packets;
527 q_vector->rx.total_bytes += total_rx_bytes;
528
529 return !!budget;
530 }
531
532 /**
533 * ixgbevf_poll - NAPI polling calback
534 * @napi: napi struct with our devices info in it
535 * @budget: amount of work driver is allowed to do this pass, in packets
536 *
537 * This function will clean more than one or more rings associated with a
538 * q_vector.
539 **/
540 static int ixgbevf_poll(struct napi_struct *napi, int budget)
541 {
542 struct ixgbevf_q_vector *q_vector =
543 container_of(napi, struct ixgbevf_q_vector, napi);
544 struct ixgbevf_adapter *adapter = q_vector->adapter;
545 struct ixgbevf_ring *ring;
546 int per_ring_budget;
547 bool clean_complete = true;
548
549 ixgbevf_for_each_ring(ring, q_vector->tx)
550 clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring);
551
552 /* attempt to distribute budget to each queue fairly, but don't allow
553 * the budget to go below 1 because we'll exit polling */
554 if (q_vector->rx.count > 1)
555 per_ring_budget = max(budget/q_vector->rx.count, 1);
556 else
557 per_ring_budget = budget;
558
559 adapter->flags |= IXGBE_FLAG_IN_NETPOLL;
560 ixgbevf_for_each_ring(ring, q_vector->rx)
561 clean_complete &= ixgbevf_clean_rx_irq(q_vector, ring,
562 per_ring_budget);
563 adapter->flags &= ~IXGBE_FLAG_IN_NETPOLL;
564
565 /* If all work not completed, return budget and keep polling */
566 if (!clean_complete)
567 return budget;
568 /* all work done, exit the polling mode */
569 napi_complete(napi);
570 if (adapter->rx_itr_setting & 1)
571 ixgbevf_set_itr(q_vector);
572 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
573 ixgbevf_irq_enable_queues(adapter,
574 1 << q_vector->v_idx);
575
576 return 0;
577 }
578
579 /**
580 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
581 * @q_vector: structure containing interrupt and ring information
582 */
583 static void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
584 {
585 struct ixgbevf_adapter *adapter = q_vector->adapter;
586 struct ixgbe_hw *hw = &adapter->hw;
587 int v_idx = q_vector->v_idx;
588 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
589
590 /*
591 * set the WDIS bit to not clear the timer bits and cause an
592 * immediate assertion of the interrupt
593 */
594 itr_reg |= IXGBE_EITR_CNT_WDIS;
595
596 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
597 }
598
599 /**
600 * ixgbevf_configure_msix - Configure MSI-X hardware
601 * @adapter: board private structure
602 *
603 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
604 * interrupts.
605 **/
606 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
607 {
608 struct ixgbevf_q_vector *q_vector;
609 int q_vectors, v_idx;
610
611 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
612 adapter->eims_enable_mask = 0;
613
614 /*
615 * Populate the IVAR table and set the ITR values to the
616 * corresponding register.
617 */
618 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
619 struct ixgbevf_ring *ring;
620 q_vector = adapter->q_vector[v_idx];
621
622 ixgbevf_for_each_ring(ring, q_vector->rx)
623 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
624
625 ixgbevf_for_each_ring(ring, q_vector->tx)
626 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
627
628 if (q_vector->tx.ring && !q_vector->rx.ring) {
629 /* tx only vector */
630 if (adapter->tx_itr_setting == 1)
631 q_vector->itr = IXGBE_10K_ITR;
632 else
633 q_vector->itr = adapter->tx_itr_setting;
634 } else {
635 /* rx or rx/tx vector */
636 if (adapter->rx_itr_setting == 1)
637 q_vector->itr = IXGBE_20K_ITR;
638 else
639 q_vector->itr = adapter->rx_itr_setting;
640 }
641
642 /* add q_vector eims value to global eims_enable_mask */
643 adapter->eims_enable_mask |= 1 << v_idx;
644
645 ixgbevf_write_eitr(q_vector);
646 }
647
648 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
649 /* setup eims_other and add value to global eims_enable_mask */
650 adapter->eims_other = 1 << v_idx;
651 adapter->eims_enable_mask |= adapter->eims_other;
652 }
653
654 enum latency_range {
655 lowest_latency = 0,
656 low_latency = 1,
657 bulk_latency = 2,
658 latency_invalid = 255
659 };
660
661 /**
662 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
663 * @q_vector: structure containing interrupt and ring information
664 * @ring_container: structure containing ring performance data
665 *
666 * Stores a new ITR value based on packets and byte
667 * counts during the last interrupt. The advantage of per interrupt
668 * computation is faster updates and more accurate ITR for the current
669 * traffic pattern. Constants in this function were computed
670 * based on theoretical maximum wire speed and thresholds were set based
671 * on testing data as well as attempting to minimize response time
672 * while increasing bulk throughput.
673 **/
674 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
675 struct ixgbevf_ring_container *ring_container)
676 {
677 int bytes = ring_container->total_bytes;
678 int packets = ring_container->total_packets;
679 u32 timepassed_us;
680 u64 bytes_perint;
681 u8 itr_setting = ring_container->itr;
682
683 if (packets == 0)
684 return;
685
686 /* simple throttlerate management
687 * 0-20MB/s lowest (100000 ints/s)
688 * 20-100MB/s low (20000 ints/s)
689 * 100-1249MB/s bulk (8000 ints/s)
690 */
691 /* what was last interrupt timeslice? */
692 timepassed_us = q_vector->itr >> 2;
693 bytes_perint = bytes / timepassed_us; /* bytes/usec */
694
695 switch (itr_setting) {
696 case lowest_latency:
697 if (bytes_perint > 10)
698 itr_setting = low_latency;
699 break;
700 case low_latency:
701 if (bytes_perint > 20)
702 itr_setting = bulk_latency;
703 else if (bytes_perint <= 10)
704 itr_setting = lowest_latency;
705 break;
706 case bulk_latency:
707 if (bytes_perint <= 20)
708 itr_setting = low_latency;
709 break;
710 }
711
712 /* clear work counters since we have the values we need */
713 ring_container->total_bytes = 0;
714 ring_container->total_packets = 0;
715
716 /* write updated itr to ring container */
717 ring_container->itr = itr_setting;
718 }
719
720 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
721 {
722 u32 new_itr = q_vector->itr;
723 u8 current_itr;
724
725 ixgbevf_update_itr(q_vector, &q_vector->tx);
726 ixgbevf_update_itr(q_vector, &q_vector->rx);
727
728 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
729
730 switch (current_itr) {
731 /* counts and packets in update_itr are dependent on these numbers */
732 case lowest_latency:
733 new_itr = IXGBE_100K_ITR;
734 break;
735 case low_latency:
736 new_itr = IXGBE_20K_ITR;
737 break;
738 case bulk_latency:
739 default:
740 new_itr = IXGBE_8K_ITR;
741 break;
742 }
743
744 if (new_itr != q_vector->itr) {
745 /* do an exponential smoothing */
746 new_itr = (10 * new_itr * q_vector->itr) /
747 ((9 * new_itr) + q_vector->itr);
748
749 /* save the algorithm value here */
750 q_vector->itr = new_itr;
751
752 ixgbevf_write_eitr(q_vector);
753 }
754 }
755
756 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
757 {
758 struct ixgbevf_adapter *adapter = data;
759 struct pci_dev *pdev = adapter->pdev;
760 struct ixgbe_hw *hw = &adapter->hw;
761 u32 msg;
762 bool got_ack = false;
763
764 hw->mac.get_link_status = 1;
765 if (!hw->mbx.ops.check_for_ack(hw))
766 got_ack = true;
767
768 if (!hw->mbx.ops.check_for_msg(hw)) {
769 hw->mbx.ops.read(hw, &msg, 1);
770
771 if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG) {
772 mod_timer(&adapter->watchdog_timer,
773 round_jiffies(jiffies + 1));
774 adapter->link_up = false;
775 }
776
777 if (msg & IXGBE_VT_MSGTYPE_NACK)
778 dev_info(&pdev->dev,
779 "Last Request of type %2.2x to PF Nacked\n",
780 msg & 0xFF);
781 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFSTS;
782 }
783
784 /* checking for the ack clears the PFACK bit. Place
785 * it back in the v2p_mailbox cache so that anyone
786 * polling for an ack will not miss it
787 */
788 if (got_ack)
789 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
790
791 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
792
793 return IRQ_HANDLED;
794 }
795
796 /**
797 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
798 * @irq: unused
799 * @data: pointer to our q_vector struct for this interrupt vector
800 **/
801 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
802 {
803 struct ixgbevf_q_vector *q_vector = data;
804
805 /* EIAM disabled interrupts (on this vector) for us */
806 if (q_vector->rx.ring || q_vector->tx.ring)
807 napi_schedule(&q_vector->napi);
808
809 return IRQ_HANDLED;
810 }
811
812 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
813 int r_idx)
814 {
815 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
816
817 a->rx_ring[r_idx].next = q_vector->rx.ring;
818 q_vector->rx.ring = &a->rx_ring[r_idx];
819 q_vector->rx.count++;
820 }
821
822 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
823 int t_idx)
824 {
825 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
826
827 a->tx_ring[t_idx].next = q_vector->tx.ring;
828 q_vector->tx.ring = &a->tx_ring[t_idx];
829 q_vector->tx.count++;
830 }
831
832 /**
833 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
834 * @adapter: board private structure to initialize
835 *
836 * This function maps descriptor rings to the queue-specific vectors
837 * we were allotted through the MSI-X enabling code. Ideally, we'd have
838 * one vector per ring/queue, but on a constrained vector budget, we
839 * group the rings as "efficiently" as possible. You would add new
840 * mapping configurations in here.
841 **/
842 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
843 {
844 int q_vectors;
845 int v_start = 0;
846 int rxr_idx = 0, txr_idx = 0;
847 int rxr_remaining = adapter->num_rx_queues;
848 int txr_remaining = adapter->num_tx_queues;
849 int i, j;
850 int rqpv, tqpv;
851 int err = 0;
852
853 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
854
855 /*
856 * The ideal configuration...
857 * We have enough vectors to map one per queue.
858 */
859 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
860 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
861 map_vector_to_rxq(adapter, v_start, rxr_idx);
862
863 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
864 map_vector_to_txq(adapter, v_start, txr_idx);
865 goto out;
866 }
867
868 /*
869 * If we don't have enough vectors for a 1-to-1
870 * mapping, we'll have to group them so there are
871 * multiple queues per vector.
872 */
873 /* Re-adjusting *qpv takes care of the remainder. */
874 for (i = v_start; i < q_vectors; i++) {
875 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
876 for (j = 0; j < rqpv; j++) {
877 map_vector_to_rxq(adapter, i, rxr_idx);
878 rxr_idx++;
879 rxr_remaining--;
880 }
881 }
882 for (i = v_start; i < q_vectors; i++) {
883 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
884 for (j = 0; j < tqpv; j++) {
885 map_vector_to_txq(adapter, i, txr_idx);
886 txr_idx++;
887 txr_remaining--;
888 }
889 }
890
891 out:
892 return err;
893 }
894
895 /**
896 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
897 * @adapter: board private structure
898 *
899 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
900 * interrupts from the kernel.
901 **/
902 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
903 {
904 struct net_device *netdev = adapter->netdev;
905 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
906 int vector, err;
907 int ri = 0, ti = 0;
908
909 for (vector = 0; vector < q_vectors; vector++) {
910 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
911 struct msix_entry *entry = &adapter->msix_entries[vector];
912
913 if (q_vector->tx.ring && q_vector->rx.ring) {
914 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
915 "%s-%s-%d", netdev->name, "TxRx", ri++);
916 ti++;
917 } else if (q_vector->rx.ring) {
918 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
919 "%s-%s-%d", netdev->name, "rx", ri++);
920 } else if (q_vector->tx.ring) {
921 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
922 "%s-%s-%d", netdev->name, "tx", ti++);
923 } else {
924 /* skip this unused q_vector */
925 continue;
926 }
927 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
928 q_vector->name, q_vector);
929 if (err) {
930 hw_dbg(&adapter->hw,
931 "request_irq failed for MSIX interrupt "
932 "Error: %d\n", err);
933 goto free_queue_irqs;
934 }
935 }
936
937 err = request_irq(adapter->msix_entries[vector].vector,
938 &ixgbevf_msix_other, 0, netdev->name, adapter);
939 if (err) {
940 hw_dbg(&adapter->hw,
941 "request_irq for msix_other failed: %d\n", err);
942 goto free_queue_irqs;
943 }
944
945 return 0;
946
947 free_queue_irqs:
948 while (vector) {
949 vector--;
950 free_irq(adapter->msix_entries[vector].vector,
951 adapter->q_vector[vector]);
952 }
953 /* This failure is non-recoverable - it indicates the system is
954 * out of MSIX vector resources and the VF driver cannot run
955 * without them. Set the number of msix vectors to zero
956 * indicating that not enough can be allocated. The error
957 * will be returned to the user indicating device open failed.
958 * Any further attempts to force the driver to open will also
959 * fail. The only way to recover is to unload the driver and
960 * reload it again. If the system has recovered some MSIX
961 * vectors then it may succeed.
962 */
963 adapter->num_msix_vectors = 0;
964 return err;
965 }
966
967 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
968 {
969 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
970
971 for (i = 0; i < q_vectors; i++) {
972 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
973 q_vector->rx.ring = NULL;
974 q_vector->tx.ring = NULL;
975 q_vector->rx.count = 0;
976 q_vector->tx.count = 0;
977 }
978 }
979
980 /**
981 * ixgbevf_request_irq - initialize interrupts
982 * @adapter: board private structure
983 *
984 * Attempts to configure interrupts using the best available
985 * capabilities of the hardware and kernel.
986 **/
987 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
988 {
989 int err = 0;
990
991 err = ixgbevf_request_msix_irqs(adapter);
992
993 if (err)
994 hw_dbg(&adapter->hw,
995 "request_irq failed, Error %d\n", err);
996
997 return err;
998 }
999
1000 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1001 {
1002 int i, q_vectors;
1003
1004 q_vectors = adapter->num_msix_vectors;
1005 i = q_vectors - 1;
1006
1007 free_irq(adapter->msix_entries[i].vector, adapter);
1008 i--;
1009
1010 for (; i >= 0; i--) {
1011 /* free only the irqs that were actually requested */
1012 if (!adapter->q_vector[i]->rx.ring &&
1013 !adapter->q_vector[i]->tx.ring)
1014 continue;
1015
1016 free_irq(adapter->msix_entries[i].vector,
1017 adapter->q_vector[i]);
1018 }
1019
1020 ixgbevf_reset_q_vectors(adapter);
1021 }
1022
1023 /**
1024 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1025 * @adapter: board private structure
1026 **/
1027 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1028 {
1029 struct ixgbe_hw *hw = &adapter->hw;
1030 int i;
1031
1032 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1033 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1034 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1035
1036 IXGBE_WRITE_FLUSH(hw);
1037
1038 for (i = 0; i < adapter->num_msix_vectors; i++)
1039 synchronize_irq(adapter->msix_entries[i].vector);
1040 }
1041
1042 /**
1043 * ixgbevf_irq_enable - Enable default interrupt generation settings
1044 * @adapter: board private structure
1045 **/
1046 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1047 {
1048 struct ixgbe_hw *hw = &adapter->hw;
1049
1050 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1051 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1052 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1053 }
1054
1055 /**
1056 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1057 * @adapter: board private structure
1058 *
1059 * Configure the Tx unit of the MAC after a reset.
1060 **/
1061 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1062 {
1063 u64 tdba;
1064 struct ixgbe_hw *hw = &adapter->hw;
1065 u32 i, j, tdlen, txctrl;
1066
1067 /* Setup the HW Tx Head and Tail descriptor pointers */
1068 for (i = 0; i < adapter->num_tx_queues; i++) {
1069 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1070 j = ring->reg_idx;
1071 tdba = ring->dma;
1072 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1073 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1074 (tdba & DMA_BIT_MASK(32)));
1075 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1076 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1077 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1078 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1079 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1080 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1081 /* Disable Tx Head Writeback RO bit, since this hoses
1082 * bookkeeping if things aren't delivered in order.
1083 */
1084 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1085 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1086 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1087 }
1088 }
1089
1090 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1091
1092 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1093 {
1094 struct ixgbevf_ring *rx_ring;
1095 struct ixgbe_hw *hw = &adapter->hw;
1096 u32 srrctl;
1097
1098 rx_ring = &adapter->rx_ring[index];
1099
1100 srrctl = IXGBE_SRRCTL_DROP_EN;
1101
1102 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1103
1104 srrctl |= ALIGN(rx_ring->rx_buf_len, 1024) >>
1105 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1106
1107 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1108 }
1109
1110 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter)
1111 {
1112 struct ixgbe_hw *hw = &adapter->hw;
1113 struct net_device *netdev = adapter->netdev;
1114 int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1115 int i;
1116 u16 rx_buf_len;
1117
1118 /* notify the PF of our intent to use this size of frame */
1119 ixgbevf_rlpml_set_vf(hw, max_frame);
1120
1121 /* PF will allow an extra 4 bytes past for vlan tagged frames */
1122 max_frame += VLAN_HLEN;
1123
1124 /*
1125 * Allocate buffer sizes that fit well into 32K and
1126 * take into account max frame size of 9.5K
1127 */
1128 if ((hw->mac.type == ixgbe_mac_X540_vf) &&
1129 (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE))
1130 rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1131 else if (max_frame <= IXGBEVF_RXBUFFER_2K)
1132 rx_buf_len = IXGBEVF_RXBUFFER_2K;
1133 else if (max_frame <= IXGBEVF_RXBUFFER_4K)
1134 rx_buf_len = IXGBEVF_RXBUFFER_4K;
1135 else if (max_frame <= IXGBEVF_RXBUFFER_8K)
1136 rx_buf_len = IXGBEVF_RXBUFFER_8K;
1137 else
1138 rx_buf_len = IXGBEVF_RXBUFFER_10K;
1139
1140 for (i = 0; i < adapter->num_rx_queues; i++)
1141 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1142 }
1143
1144 /**
1145 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1146 * @adapter: board private structure
1147 *
1148 * Configure the Rx unit of the MAC after a reset.
1149 **/
1150 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1151 {
1152 u64 rdba;
1153 struct ixgbe_hw *hw = &adapter->hw;
1154 int i, j;
1155 u32 rdlen;
1156
1157 /* PSRTYPE must be initialized in 82599 */
1158 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1159
1160 /* set_rx_buffer_len must be called before ring initialization */
1161 ixgbevf_set_rx_buffer_len(adapter);
1162
1163 rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1164 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1165 * the Base and Length of the Rx Descriptor Ring */
1166 for (i = 0; i < adapter->num_rx_queues; i++) {
1167 rdba = adapter->rx_ring[i].dma;
1168 j = adapter->rx_ring[i].reg_idx;
1169 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1170 (rdba & DMA_BIT_MASK(32)));
1171 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1172 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1173 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1174 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1175 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1176 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1177
1178 ixgbevf_configure_srrctl(adapter, j);
1179 }
1180 }
1181
1182 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1183 __be16 proto, u16 vid)
1184 {
1185 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1186 struct ixgbe_hw *hw = &adapter->hw;
1187 int err;
1188
1189 spin_lock_bh(&adapter->mbx_lock);
1190
1191 /* add VID to filter table */
1192 err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1193
1194 spin_unlock_bh(&adapter->mbx_lock);
1195
1196 /* translate error return types so error makes sense */
1197 if (err == IXGBE_ERR_MBX)
1198 return -EIO;
1199
1200 if (err == IXGBE_ERR_INVALID_ARGUMENT)
1201 return -EACCES;
1202
1203 set_bit(vid, adapter->active_vlans);
1204
1205 return err;
1206 }
1207
1208 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1209 __be16 proto, u16 vid)
1210 {
1211 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1212 struct ixgbe_hw *hw = &adapter->hw;
1213 int err = -EOPNOTSUPP;
1214
1215 spin_lock_bh(&adapter->mbx_lock);
1216
1217 /* remove VID from filter table */
1218 err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1219
1220 spin_unlock_bh(&adapter->mbx_lock);
1221
1222 clear_bit(vid, adapter->active_vlans);
1223
1224 return err;
1225 }
1226
1227 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1228 {
1229 u16 vid;
1230
1231 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1232 ixgbevf_vlan_rx_add_vid(adapter->netdev,
1233 htons(ETH_P_8021Q), vid);
1234 }
1235
1236 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1237 {
1238 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1239 struct ixgbe_hw *hw = &adapter->hw;
1240 int count = 0;
1241
1242 if ((netdev_uc_count(netdev)) > 10) {
1243 pr_err("Too many unicast filters - No Space\n");
1244 return -ENOSPC;
1245 }
1246
1247 if (!netdev_uc_empty(netdev)) {
1248 struct netdev_hw_addr *ha;
1249 netdev_for_each_uc_addr(ha, netdev) {
1250 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1251 udelay(200);
1252 }
1253 } else {
1254 /*
1255 * If the list is empty then send message to PF driver to
1256 * clear all macvlans on this VF.
1257 */
1258 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1259 }
1260
1261 return count;
1262 }
1263
1264 /**
1265 * ixgbevf_set_rx_mode - Multicast and unicast set
1266 * @netdev: network interface device structure
1267 *
1268 * The set_rx_method entry point is called whenever the multicast address
1269 * list, unicast address list or the network interface flags are updated.
1270 * This routine is responsible for configuring the hardware for proper
1271 * multicast mode and configuring requested unicast filters.
1272 **/
1273 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1274 {
1275 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1276 struct ixgbe_hw *hw = &adapter->hw;
1277
1278 spin_lock_bh(&adapter->mbx_lock);
1279
1280 /* reprogram multicast list */
1281 hw->mac.ops.update_mc_addr_list(hw, netdev);
1282
1283 ixgbevf_write_uc_addr_list(netdev);
1284
1285 spin_unlock_bh(&adapter->mbx_lock);
1286 }
1287
1288 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1289 {
1290 int q_idx;
1291 struct ixgbevf_q_vector *q_vector;
1292 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1293
1294 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1295 q_vector = adapter->q_vector[q_idx];
1296 napi_enable(&q_vector->napi);
1297 }
1298 }
1299
1300 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1301 {
1302 int q_idx;
1303 struct ixgbevf_q_vector *q_vector;
1304 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1305
1306 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1307 q_vector = adapter->q_vector[q_idx];
1308 napi_disable(&q_vector->napi);
1309 }
1310 }
1311
1312 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1313 {
1314 struct net_device *netdev = adapter->netdev;
1315 int i;
1316
1317 ixgbevf_set_rx_mode(netdev);
1318
1319 ixgbevf_restore_vlan(adapter);
1320
1321 ixgbevf_configure_tx(adapter);
1322 ixgbevf_configure_rx(adapter);
1323 for (i = 0; i < adapter->num_rx_queues; i++) {
1324 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1325 ixgbevf_alloc_rx_buffers(adapter, ring,
1326 IXGBE_DESC_UNUSED(ring));
1327 }
1328 }
1329
1330 #define IXGBE_MAX_RX_DESC_POLL 10
1331 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1332 int rxr)
1333 {
1334 struct ixgbe_hw *hw = &adapter->hw;
1335 int j = adapter->rx_ring[rxr].reg_idx;
1336 int k;
1337
1338 for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1339 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1340 break;
1341 else
1342 msleep(1);
1343 }
1344 if (k >= IXGBE_MAX_RX_DESC_POLL) {
1345 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1346 "not set within the polling period\n", rxr);
1347 }
1348
1349 ixgbevf_release_rx_desc(hw, &adapter->rx_ring[rxr],
1350 adapter->rx_ring[rxr].count - 1);
1351 }
1352
1353 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1354 {
1355 /* Only save pre-reset stats if there are some */
1356 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1357 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1358 adapter->stats.base_vfgprc;
1359 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1360 adapter->stats.base_vfgptc;
1361 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1362 adapter->stats.base_vfgorc;
1363 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1364 adapter->stats.base_vfgotc;
1365 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1366 adapter->stats.base_vfmprc;
1367 }
1368 }
1369
1370 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1371 {
1372 struct ixgbe_hw *hw = &adapter->hw;
1373
1374 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1375 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1376 adapter->stats.last_vfgorc |=
1377 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1378 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1379 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1380 adapter->stats.last_vfgotc |=
1381 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1382 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1383
1384 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1385 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1386 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1387 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1388 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1389 }
1390
1391 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
1392 {
1393 struct ixgbe_hw *hw = &adapter->hw;
1394 int api[] = { ixgbe_mbox_api_11,
1395 ixgbe_mbox_api_10,
1396 ixgbe_mbox_api_unknown };
1397 int err = 0, idx = 0;
1398
1399 spin_lock_bh(&adapter->mbx_lock);
1400
1401 while (api[idx] != ixgbe_mbox_api_unknown) {
1402 err = ixgbevf_negotiate_api_version(hw, api[idx]);
1403 if (!err)
1404 break;
1405 idx++;
1406 }
1407
1408 spin_unlock_bh(&adapter->mbx_lock);
1409 }
1410
1411 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1412 {
1413 struct net_device *netdev = adapter->netdev;
1414 struct ixgbe_hw *hw = &adapter->hw;
1415 int i, j = 0;
1416 int num_rx_rings = adapter->num_rx_queues;
1417 u32 txdctl, rxdctl;
1418
1419 for (i = 0; i < adapter->num_tx_queues; i++) {
1420 j = adapter->tx_ring[i].reg_idx;
1421 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1422 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1423 txdctl |= (8 << 16);
1424 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1425 }
1426
1427 for (i = 0; i < adapter->num_tx_queues; i++) {
1428 j = adapter->tx_ring[i].reg_idx;
1429 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1430 txdctl |= IXGBE_TXDCTL_ENABLE;
1431 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1432 }
1433
1434 for (i = 0; i < num_rx_rings; i++) {
1435 j = adapter->rx_ring[i].reg_idx;
1436 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1437 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1438 if (hw->mac.type == ixgbe_mac_X540_vf) {
1439 rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1440 rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1441 IXGBE_RXDCTL_RLPML_EN);
1442 }
1443 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1444 ixgbevf_rx_desc_queue_enable(adapter, i);
1445 }
1446
1447 ixgbevf_configure_msix(adapter);
1448
1449 spin_lock_bh(&adapter->mbx_lock);
1450
1451 if (is_valid_ether_addr(hw->mac.addr))
1452 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1453 else
1454 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1455
1456 spin_unlock_bh(&adapter->mbx_lock);
1457
1458 clear_bit(__IXGBEVF_DOWN, &adapter->state);
1459 ixgbevf_napi_enable_all(adapter);
1460
1461 /* enable transmits */
1462 netif_tx_start_all_queues(netdev);
1463
1464 ixgbevf_save_reset_stats(adapter);
1465 ixgbevf_init_last_counter_stats(adapter);
1466
1467 hw->mac.get_link_status = 1;
1468 mod_timer(&adapter->watchdog_timer, jiffies);
1469 }
1470
1471 static int ixgbevf_reset_queues(struct ixgbevf_adapter *adapter)
1472 {
1473 struct ixgbe_hw *hw = &adapter->hw;
1474 struct ixgbevf_ring *rx_ring;
1475 unsigned int def_q = 0;
1476 unsigned int num_tcs = 0;
1477 unsigned int num_rx_queues = 1;
1478 int err, i;
1479
1480 spin_lock_bh(&adapter->mbx_lock);
1481
1482 /* fetch queue configuration from the PF */
1483 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1484
1485 spin_unlock_bh(&adapter->mbx_lock);
1486
1487 if (err)
1488 return err;
1489
1490 if (num_tcs > 1) {
1491 /* update default Tx ring register index */
1492 adapter->tx_ring[0].reg_idx = def_q;
1493
1494 /* we need as many queues as traffic classes */
1495 num_rx_queues = num_tcs;
1496 }
1497
1498 /* nothing to do if we have the correct number of queues */
1499 if (adapter->num_rx_queues == num_rx_queues)
1500 return 0;
1501
1502 /* allocate new rings */
1503 rx_ring = kcalloc(num_rx_queues,
1504 sizeof(struct ixgbevf_ring), GFP_KERNEL);
1505 if (!rx_ring)
1506 return -ENOMEM;
1507
1508 /* setup ring fields */
1509 for (i = 0; i < num_rx_queues; i++) {
1510 rx_ring[i].count = adapter->rx_ring_count;
1511 rx_ring[i].queue_index = i;
1512 rx_ring[i].reg_idx = i;
1513 rx_ring[i].dev = &adapter->pdev->dev;
1514 rx_ring[i].netdev = adapter->netdev;
1515
1516 /* allocate resources on the ring */
1517 err = ixgbevf_setup_rx_resources(adapter, &rx_ring[i]);
1518 if (err) {
1519 while (i) {
1520 i--;
1521 ixgbevf_free_rx_resources(adapter, &rx_ring[i]);
1522 }
1523 kfree(rx_ring);
1524 return err;
1525 }
1526 }
1527
1528 /* free the existing rings and queues */
1529 ixgbevf_free_all_rx_resources(adapter);
1530 adapter->num_rx_queues = 0;
1531 kfree(adapter->rx_ring);
1532
1533 /* move new rings into position on the adapter struct */
1534 adapter->rx_ring = rx_ring;
1535 adapter->num_rx_queues = num_rx_queues;
1536
1537 /* reset ring to vector mapping */
1538 ixgbevf_reset_q_vectors(adapter);
1539 ixgbevf_map_rings_to_vectors(adapter);
1540
1541 return 0;
1542 }
1543
1544 void ixgbevf_up(struct ixgbevf_adapter *adapter)
1545 {
1546 struct ixgbe_hw *hw = &adapter->hw;
1547
1548 ixgbevf_negotiate_api(adapter);
1549
1550 ixgbevf_reset_queues(adapter);
1551
1552 ixgbevf_configure(adapter);
1553
1554 ixgbevf_up_complete(adapter);
1555
1556 /* clear any pending interrupts, may auto mask */
1557 IXGBE_READ_REG(hw, IXGBE_VTEICR);
1558
1559 ixgbevf_irq_enable(adapter);
1560 }
1561
1562 /**
1563 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1564 * @adapter: board private structure
1565 * @rx_ring: ring to free buffers from
1566 **/
1567 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1568 struct ixgbevf_ring *rx_ring)
1569 {
1570 struct pci_dev *pdev = adapter->pdev;
1571 unsigned long size;
1572 unsigned int i;
1573
1574 if (!rx_ring->rx_buffer_info)
1575 return;
1576
1577 /* Free all the Rx ring sk_buffs */
1578 for (i = 0; i < rx_ring->count; i++) {
1579 struct ixgbevf_rx_buffer *rx_buffer_info;
1580
1581 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1582 if (rx_buffer_info->dma) {
1583 dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1584 rx_ring->rx_buf_len,
1585 DMA_FROM_DEVICE);
1586 rx_buffer_info->dma = 0;
1587 }
1588 if (rx_buffer_info->skb) {
1589 struct sk_buff *skb = rx_buffer_info->skb;
1590 rx_buffer_info->skb = NULL;
1591 do {
1592 struct sk_buff *this = skb;
1593 skb = IXGBE_CB(skb)->prev;
1594 dev_kfree_skb(this);
1595 } while (skb);
1596 }
1597 }
1598
1599 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1600 memset(rx_ring->rx_buffer_info, 0, size);
1601
1602 /* Zero out the descriptor ring */
1603 memset(rx_ring->desc, 0, rx_ring->size);
1604
1605 rx_ring->next_to_clean = 0;
1606 rx_ring->next_to_use = 0;
1607
1608 if (rx_ring->head)
1609 writel(0, adapter->hw.hw_addr + rx_ring->head);
1610 if (rx_ring->tail)
1611 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1612 }
1613
1614 /**
1615 * ixgbevf_clean_tx_ring - Free Tx Buffers
1616 * @adapter: board private structure
1617 * @tx_ring: ring to be cleaned
1618 **/
1619 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1620 struct ixgbevf_ring *tx_ring)
1621 {
1622 struct ixgbevf_tx_buffer *tx_buffer_info;
1623 unsigned long size;
1624 unsigned int i;
1625
1626 if (!tx_ring->tx_buffer_info)
1627 return;
1628
1629 /* Free all the Tx ring sk_buffs */
1630 for (i = 0; i < tx_ring->count; i++) {
1631 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1632 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1633 }
1634
1635 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1636 memset(tx_ring->tx_buffer_info, 0, size);
1637
1638 memset(tx_ring->desc, 0, tx_ring->size);
1639
1640 tx_ring->next_to_use = 0;
1641 tx_ring->next_to_clean = 0;
1642
1643 if (tx_ring->head)
1644 writel(0, adapter->hw.hw_addr + tx_ring->head);
1645 if (tx_ring->tail)
1646 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1647 }
1648
1649 /**
1650 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1651 * @adapter: board private structure
1652 **/
1653 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1654 {
1655 int i;
1656
1657 for (i = 0; i < adapter->num_rx_queues; i++)
1658 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1659 }
1660
1661 /**
1662 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1663 * @adapter: board private structure
1664 **/
1665 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1666 {
1667 int i;
1668
1669 for (i = 0; i < adapter->num_tx_queues; i++)
1670 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1671 }
1672
1673 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1674 {
1675 struct net_device *netdev = adapter->netdev;
1676 struct ixgbe_hw *hw = &adapter->hw;
1677 u32 txdctl;
1678 int i, j;
1679
1680 /* signal that we are down to the interrupt handler */
1681 set_bit(__IXGBEVF_DOWN, &adapter->state);
1682 /* disable receives */
1683
1684 netif_tx_disable(netdev);
1685
1686 msleep(10);
1687
1688 netif_tx_stop_all_queues(netdev);
1689
1690 ixgbevf_irq_disable(adapter);
1691
1692 ixgbevf_napi_disable_all(adapter);
1693
1694 del_timer_sync(&adapter->watchdog_timer);
1695 /* can't call flush scheduled work here because it can deadlock
1696 * if linkwatch_event tries to acquire the rtnl_lock which we are
1697 * holding */
1698 while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1699 msleep(1);
1700
1701 /* disable transmits in the hardware now that interrupts are off */
1702 for (i = 0; i < adapter->num_tx_queues; i++) {
1703 j = adapter->tx_ring[i].reg_idx;
1704 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1705 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1706 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1707 }
1708
1709 netif_carrier_off(netdev);
1710
1711 if (!pci_channel_offline(adapter->pdev))
1712 ixgbevf_reset(adapter);
1713
1714 ixgbevf_clean_all_tx_rings(adapter);
1715 ixgbevf_clean_all_rx_rings(adapter);
1716 }
1717
1718 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1719 {
1720 WARN_ON(in_interrupt());
1721
1722 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1723 msleep(1);
1724
1725 ixgbevf_down(adapter);
1726 ixgbevf_up(adapter);
1727
1728 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1729 }
1730
1731 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1732 {
1733 struct ixgbe_hw *hw = &adapter->hw;
1734 struct net_device *netdev = adapter->netdev;
1735
1736 if (hw->mac.ops.reset_hw(hw))
1737 hw_dbg(hw, "PF still resetting\n");
1738 else
1739 hw->mac.ops.init_hw(hw);
1740
1741 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1742 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1743 netdev->addr_len);
1744 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1745 netdev->addr_len);
1746 }
1747 }
1748
1749 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1750 int vectors)
1751 {
1752 int err = 0;
1753 int vector_threshold;
1754
1755 /* We'll want at least 2 (vector_threshold):
1756 * 1) TxQ[0] + RxQ[0] handler
1757 * 2) Other (Link Status Change, etc.)
1758 */
1759 vector_threshold = MIN_MSIX_COUNT;
1760
1761 /* The more we get, the more we will assign to Tx/Rx Cleanup
1762 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1763 * Right now, we simply care about how many we'll get; we'll
1764 * set them up later while requesting irq's.
1765 */
1766 while (vectors >= vector_threshold) {
1767 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1768 vectors);
1769 if (!err || err < 0) /* Success or a nasty failure. */
1770 break;
1771 else /* err == number of vectors we should try again with */
1772 vectors = err;
1773 }
1774
1775 if (vectors < vector_threshold)
1776 err = -ENOMEM;
1777
1778 if (err) {
1779 dev_err(&adapter->pdev->dev,
1780 "Unable to allocate MSI-X interrupts\n");
1781 kfree(adapter->msix_entries);
1782 adapter->msix_entries = NULL;
1783 } else {
1784 /*
1785 * Adjust for only the vectors we'll use, which is minimum
1786 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1787 * vectors we were allocated.
1788 */
1789 adapter->num_msix_vectors = vectors;
1790 }
1791
1792 return err;
1793 }
1794
1795 /**
1796 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
1797 * @adapter: board private structure to initialize
1798 *
1799 * This is the top level queue allocation routine. The order here is very
1800 * important, starting with the "most" number of features turned on at once,
1801 * and ending with the smallest set of features. This way large combinations
1802 * can be allocated if they're turned on, and smaller combinations are the
1803 * fallthrough conditions.
1804 *
1805 **/
1806 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1807 {
1808 /* Start with base case */
1809 adapter->num_rx_queues = 1;
1810 adapter->num_tx_queues = 1;
1811 }
1812
1813 /**
1814 * ixgbevf_alloc_queues - Allocate memory for all rings
1815 * @adapter: board private structure to initialize
1816 *
1817 * We allocate one ring per queue at run-time since we don't know the
1818 * number of queues at compile-time. The polling_netdev array is
1819 * intended for Multiqueue, but should work fine with a single queue.
1820 **/
1821 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1822 {
1823 int i;
1824
1825 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1826 sizeof(struct ixgbevf_ring), GFP_KERNEL);
1827 if (!adapter->tx_ring)
1828 goto err_tx_ring_allocation;
1829
1830 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1831 sizeof(struct ixgbevf_ring), GFP_KERNEL);
1832 if (!adapter->rx_ring)
1833 goto err_rx_ring_allocation;
1834
1835 for (i = 0; i < adapter->num_tx_queues; i++) {
1836 adapter->tx_ring[i].count = adapter->tx_ring_count;
1837 adapter->tx_ring[i].queue_index = i;
1838 /* reg_idx may be remapped later by DCB config */
1839 adapter->tx_ring[i].reg_idx = i;
1840 adapter->tx_ring[i].dev = &adapter->pdev->dev;
1841 adapter->tx_ring[i].netdev = adapter->netdev;
1842 }
1843
1844 for (i = 0; i < adapter->num_rx_queues; i++) {
1845 adapter->rx_ring[i].count = adapter->rx_ring_count;
1846 adapter->rx_ring[i].queue_index = i;
1847 adapter->rx_ring[i].reg_idx = i;
1848 adapter->rx_ring[i].dev = &adapter->pdev->dev;
1849 adapter->rx_ring[i].netdev = adapter->netdev;
1850 }
1851
1852 return 0;
1853
1854 err_rx_ring_allocation:
1855 kfree(adapter->tx_ring);
1856 err_tx_ring_allocation:
1857 return -ENOMEM;
1858 }
1859
1860 /**
1861 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
1862 * @adapter: board private structure to initialize
1863 *
1864 * Attempt to configure the interrupts using the best available
1865 * capabilities of the hardware and the kernel.
1866 **/
1867 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
1868 {
1869 struct net_device *netdev = adapter->netdev;
1870 int err = 0;
1871 int vector, v_budget;
1872
1873 /*
1874 * It's easy to be greedy for MSI-X vectors, but it really
1875 * doesn't do us much good if we have a lot more vectors
1876 * than CPU's. So let's be conservative and only ask for
1877 * (roughly) the same number of vectors as there are CPU's.
1878 * The default is to use pairs of vectors.
1879 */
1880 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
1881 v_budget = min_t(int, v_budget, num_online_cpus());
1882 v_budget += NON_Q_VECTORS;
1883
1884 /* A failure in MSI-X entry allocation isn't fatal, but it does
1885 * mean we disable MSI-X capabilities of the adapter. */
1886 adapter->msix_entries = kcalloc(v_budget,
1887 sizeof(struct msix_entry), GFP_KERNEL);
1888 if (!adapter->msix_entries) {
1889 err = -ENOMEM;
1890 goto out;
1891 }
1892
1893 for (vector = 0; vector < v_budget; vector++)
1894 adapter->msix_entries[vector].entry = vector;
1895
1896 err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
1897 if (err)
1898 goto out;
1899
1900 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
1901 if (err)
1902 goto out;
1903
1904 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
1905
1906 out:
1907 return err;
1908 }
1909
1910 /**
1911 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
1912 * @adapter: board private structure to initialize
1913 *
1914 * We allocate one q_vector per queue interrupt. If allocation fails we
1915 * return -ENOMEM.
1916 **/
1917 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
1918 {
1919 int q_idx, num_q_vectors;
1920 struct ixgbevf_q_vector *q_vector;
1921
1922 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1923
1924 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1925 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
1926 if (!q_vector)
1927 goto err_out;
1928 q_vector->adapter = adapter;
1929 q_vector->v_idx = q_idx;
1930 netif_napi_add(adapter->netdev, &q_vector->napi,
1931 ixgbevf_poll, 64);
1932 adapter->q_vector[q_idx] = q_vector;
1933 }
1934
1935 return 0;
1936
1937 err_out:
1938 while (q_idx) {
1939 q_idx--;
1940 q_vector = adapter->q_vector[q_idx];
1941 netif_napi_del(&q_vector->napi);
1942 kfree(q_vector);
1943 adapter->q_vector[q_idx] = NULL;
1944 }
1945 return -ENOMEM;
1946 }
1947
1948 /**
1949 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
1950 * @adapter: board private structure to initialize
1951 *
1952 * This function frees the memory allocated to the q_vectors. In addition if
1953 * NAPI is enabled it will delete any references to the NAPI struct prior
1954 * to freeing the q_vector.
1955 **/
1956 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
1957 {
1958 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1959
1960 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1961 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
1962
1963 adapter->q_vector[q_idx] = NULL;
1964 netif_napi_del(&q_vector->napi);
1965 kfree(q_vector);
1966 }
1967 }
1968
1969 /**
1970 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
1971 * @adapter: board private structure
1972 *
1973 **/
1974 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
1975 {
1976 pci_disable_msix(adapter->pdev);
1977 kfree(adapter->msix_entries);
1978 adapter->msix_entries = NULL;
1979 }
1980
1981 /**
1982 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
1983 * @adapter: board private structure to initialize
1984 *
1985 **/
1986 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
1987 {
1988 int err;
1989
1990 /* Number of supported queues */
1991 ixgbevf_set_num_queues(adapter);
1992
1993 err = ixgbevf_set_interrupt_capability(adapter);
1994 if (err) {
1995 hw_dbg(&adapter->hw,
1996 "Unable to setup interrupt capabilities\n");
1997 goto err_set_interrupt;
1998 }
1999
2000 err = ixgbevf_alloc_q_vectors(adapter);
2001 if (err) {
2002 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2003 "vectors\n");
2004 goto err_alloc_q_vectors;
2005 }
2006
2007 err = ixgbevf_alloc_queues(adapter);
2008 if (err) {
2009 pr_err("Unable to allocate memory for queues\n");
2010 goto err_alloc_queues;
2011 }
2012
2013 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2014 "Tx Queue count = %u\n",
2015 (adapter->num_rx_queues > 1) ? "Enabled" :
2016 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2017
2018 set_bit(__IXGBEVF_DOWN, &adapter->state);
2019
2020 return 0;
2021 err_alloc_queues:
2022 ixgbevf_free_q_vectors(adapter);
2023 err_alloc_q_vectors:
2024 ixgbevf_reset_interrupt_capability(adapter);
2025 err_set_interrupt:
2026 return err;
2027 }
2028
2029 /**
2030 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2031 * @adapter: board private structure to clear interrupt scheme on
2032 *
2033 * We go through and clear interrupt specific resources and reset the structure
2034 * to pre-load conditions
2035 **/
2036 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2037 {
2038 adapter->num_tx_queues = 0;
2039 adapter->num_rx_queues = 0;
2040
2041 ixgbevf_free_q_vectors(adapter);
2042 ixgbevf_reset_interrupt_capability(adapter);
2043 }
2044
2045 /**
2046 * ixgbevf_sw_init - Initialize general software structures
2047 * (struct ixgbevf_adapter)
2048 * @adapter: board private structure to initialize
2049 *
2050 * ixgbevf_sw_init initializes the Adapter private data structure.
2051 * Fields are initialized based on PCI device information and
2052 * OS network device settings (MTU size).
2053 **/
2054 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2055 {
2056 struct ixgbe_hw *hw = &adapter->hw;
2057 struct pci_dev *pdev = adapter->pdev;
2058 struct net_device *netdev = adapter->netdev;
2059 int err;
2060
2061 /* PCI config space info */
2062
2063 hw->vendor_id = pdev->vendor;
2064 hw->device_id = pdev->device;
2065 hw->revision_id = pdev->revision;
2066 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2067 hw->subsystem_device_id = pdev->subsystem_device;
2068
2069 hw->mbx.ops.init_params(hw);
2070
2071 /* assume legacy case in which PF would only give VF 2 queues */
2072 hw->mac.max_tx_queues = 2;
2073 hw->mac.max_rx_queues = 2;
2074
2075 err = hw->mac.ops.reset_hw(hw);
2076 if (err) {
2077 dev_info(&pdev->dev,
2078 "PF still in reset state. Is the PF interface up?\n");
2079 } else {
2080 err = hw->mac.ops.init_hw(hw);
2081 if (err) {
2082 pr_err("init_shared_code failed: %d\n", err);
2083 goto out;
2084 }
2085 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2086 if (err)
2087 dev_info(&pdev->dev, "Error reading MAC address\n");
2088 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2089 dev_info(&pdev->dev,
2090 "MAC address not assigned by administrator.\n");
2091 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2092 }
2093
2094 if (!is_valid_ether_addr(netdev->dev_addr)) {
2095 dev_info(&pdev->dev, "Assigning random MAC address\n");
2096 eth_hw_addr_random(netdev);
2097 memcpy(hw->mac.addr, netdev->dev_addr, netdev->addr_len);
2098 }
2099
2100 /* lock to protect mailbox accesses */
2101 spin_lock_init(&adapter->mbx_lock);
2102
2103 /* Enable dynamic interrupt throttling rates */
2104 adapter->rx_itr_setting = 1;
2105 adapter->tx_itr_setting = 1;
2106
2107 /* set default ring sizes */
2108 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2109 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2110
2111 set_bit(__IXGBEVF_DOWN, &adapter->state);
2112 return 0;
2113
2114 out:
2115 return err;
2116 }
2117
2118 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
2119 { \
2120 u32 current_counter = IXGBE_READ_REG(hw, reg); \
2121 if (current_counter < last_counter) \
2122 counter += 0x100000000LL; \
2123 last_counter = current_counter; \
2124 counter &= 0xFFFFFFFF00000000LL; \
2125 counter |= current_counter; \
2126 }
2127
2128 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2129 { \
2130 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
2131 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
2132 u64 current_counter = (current_counter_msb << 32) | \
2133 current_counter_lsb; \
2134 if (current_counter < last_counter) \
2135 counter += 0x1000000000LL; \
2136 last_counter = current_counter; \
2137 counter &= 0xFFFFFFF000000000LL; \
2138 counter |= current_counter; \
2139 }
2140 /**
2141 * ixgbevf_update_stats - Update the board statistics counters.
2142 * @adapter: board private structure
2143 **/
2144 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2145 {
2146 struct ixgbe_hw *hw = &adapter->hw;
2147 int i;
2148
2149 if (!adapter->link_up)
2150 return;
2151
2152 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2153 adapter->stats.vfgprc);
2154 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2155 adapter->stats.vfgptc);
2156 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2157 adapter->stats.last_vfgorc,
2158 adapter->stats.vfgorc);
2159 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2160 adapter->stats.last_vfgotc,
2161 adapter->stats.vfgotc);
2162 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2163 adapter->stats.vfmprc);
2164
2165 for (i = 0; i < adapter->num_rx_queues; i++) {
2166 adapter->hw_csum_rx_error +=
2167 adapter->rx_ring[i].hw_csum_rx_error;
2168 adapter->hw_csum_rx_good +=
2169 adapter->rx_ring[i].hw_csum_rx_good;
2170 adapter->rx_ring[i].hw_csum_rx_error = 0;
2171 adapter->rx_ring[i].hw_csum_rx_good = 0;
2172 }
2173 }
2174
2175 /**
2176 * ixgbevf_watchdog - Timer Call-back
2177 * @data: pointer to adapter cast into an unsigned long
2178 **/
2179 static void ixgbevf_watchdog(unsigned long data)
2180 {
2181 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2182 struct ixgbe_hw *hw = &adapter->hw;
2183 u32 eics = 0;
2184 int i;
2185
2186 /*
2187 * Do the watchdog outside of interrupt context due to the lovely
2188 * delays that some of the newer hardware requires
2189 */
2190
2191 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2192 goto watchdog_short_circuit;
2193
2194 /* get one bit for every active tx/rx interrupt vector */
2195 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2196 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2197 if (qv->rx.ring || qv->tx.ring)
2198 eics |= 1 << i;
2199 }
2200
2201 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2202
2203 watchdog_short_circuit:
2204 schedule_work(&adapter->watchdog_task);
2205 }
2206
2207 /**
2208 * ixgbevf_tx_timeout - Respond to a Tx Hang
2209 * @netdev: network interface device structure
2210 **/
2211 static void ixgbevf_tx_timeout(struct net_device *netdev)
2212 {
2213 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2214
2215 /* Do the reset outside of interrupt context */
2216 schedule_work(&adapter->reset_task);
2217 }
2218
2219 static void ixgbevf_reset_task(struct work_struct *work)
2220 {
2221 struct ixgbevf_adapter *adapter;
2222 adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2223
2224 /* If we're already down or resetting, just bail */
2225 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2226 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2227 return;
2228
2229 adapter->tx_timeout_count++;
2230
2231 ixgbevf_reinit_locked(adapter);
2232 }
2233
2234 /**
2235 * ixgbevf_watchdog_task - worker thread to bring link up
2236 * @work: pointer to work_struct containing our data
2237 **/
2238 static void ixgbevf_watchdog_task(struct work_struct *work)
2239 {
2240 struct ixgbevf_adapter *adapter = container_of(work,
2241 struct ixgbevf_adapter,
2242 watchdog_task);
2243 struct net_device *netdev = adapter->netdev;
2244 struct ixgbe_hw *hw = &adapter->hw;
2245 u32 link_speed = adapter->link_speed;
2246 bool link_up = adapter->link_up;
2247 s32 need_reset;
2248
2249 adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2250
2251 /*
2252 * Always check the link on the watchdog because we have
2253 * no LSC interrupt
2254 */
2255 spin_lock_bh(&adapter->mbx_lock);
2256
2257 need_reset = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2258
2259 spin_unlock_bh(&adapter->mbx_lock);
2260
2261 if (need_reset) {
2262 adapter->link_up = link_up;
2263 adapter->link_speed = link_speed;
2264 netif_carrier_off(netdev);
2265 netif_tx_stop_all_queues(netdev);
2266 schedule_work(&adapter->reset_task);
2267 goto pf_has_reset;
2268 }
2269 adapter->link_up = link_up;
2270 adapter->link_speed = link_speed;
2271
2272 if (link_up) {
2273 if (!netif_carrier_ok(netdev)) {
2274 char *link_speed_string;
2275 switch (link_speed) {
2276 case IXGBE_LINK_SPEED_10GB_FULL:
2277 link_speed_string = "10 Gbps";
2278 break;
2279 case IXGBE_LINK_SPEED_1GB_FULL:
2280 link_speed_string = "1 Gbps";
2281 break;
2282 case IXGBE_LINK_SPEED_100_FULL:
2283 link_speed_string = "100 Mbps";
2284 break;
2285 default:
2286 link_speed_string = "unknown speed";
2287 break;
2288 }
2289 dev_info(&adapter->pdev->dev,
2290 "NIC Link is Up, %s\n", link_speed_string);
2291 netif_carrier_on(netdev);
2292 netif_tx_wake_all_queues(netdev);
2293 }
2294 } else {
2295 adapter->link_up = false;
2296 adapter->link_speed = 0;
2297 if (netif_carrier_ok(netdev)) {
2298 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2299 netif_carrier_off(netdev);
2300 netif_tx_stop_all_queues(netdev);
2301 }
2302 }
2303
2304 ixgbevf_update_stats(adapter);
2305
2306 pf_has_reset:
2307 /* Reset the timer */
2308 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2309 mod_timer(&adapter->watchdog_timer,
2310 round_jiffies(jiffies + (2 * HZ)));
2311
2312 adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2313 }
2314
2315 /**
2316 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2317 * @adapter: board private structure
2318 * @tx_ring: Tx descriptor ring for a specific queue
2319 *
2320 * Free all transmit software resources
2321 **/
2322 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2323 struct ixgbevf_ring *tx_ring)
2324 {
2325 struct pci_dev *pdev = adapter->pdev;
2326
2327 ixgbevf_clean_tx_ring(adapter, tx_ring);
2328
2329 vfree(tx_ring->tx_buffer_info);
2330 tx_ring->tx_buffer_info = NULL;
2331
2332 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2333 tx_ring->dma);
2334
2335 tx_ring->desc = NULL;
2336 }
2337
2338 /**
2339 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2340 * @adapter: board private structure
2341 *
2342 * Free all transmit software resources
2343 **/
2344 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2345 {
2346 int i;
2347
2348 for (i = 0; i < adapter->num_tx_queues; i++)
2349 if (adapter->tx_ring[i].desc)
2350 ixgbevf_free_tx_resources(adapter,
2351 &adapter->tx_ring[i]);
2352
2353 }
2354
2355 /**
2356 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2357 * @adapter: board private structure
2358 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2359 *
2360 * Return 0 on success, negative on failure
2361 **/
2362 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2363 struct ixgbevf_ring *tx_ring)
2364 {
2365 struct pci_dev *pdev = adapter->pdev;
2366 int size;
2367
2368 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2369 tx_ring->tx_buffer_info = vzalloc(size);
2370 if (!tx_ring->tx_buffer_info)
2371 goto err;
2372
2373 /* round up to nearest 4K */
2374 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2375 tx_ring->size = ALIGN(tx_ring->size, 4096);
2376
2377 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2378 &tx_ring->dma, GFP_KERNEL);
2379 if (!tx_ring->desc)
2380 goto err;
2381
2382 tx_ring->next_to_use = 0;
2383 tx_ring->next_to_clean = 0;
2384 return 0;
2385
2386 err:
2387 vfree(tx_ring->tx_buffer_info);
2388 tx_ring->tx_buffer_info = NULL;
2389 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2390 "descriptor ring\n");
2391 return -ENOMEM;
2392 }
2393
2394 /**
2395 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2396 * @adapter: board private structure
2397 *
2398 * If this function returns with an error, then it's possible one or
2399 * more of the rings is populated (while the rest are not). It is the
2400 * callers duty to clean those orphaned rings.
2401 *
2402 * Return 0 on success, negative on failure
2403 **/
2404 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2405 {
2406 int i, err = 0;
2407
2408 for (i = 0; i < adapter->num_tx_queues; i++) {
2409 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2410 if (!err)
2411 continue;
2412 hw_dbg(&adapter->hw,
2413 "Allocation for Tx Queue %u failed\n", i);
2414 break;
2415 }
2416
2417 return err;
2418 }
2419
2420 /**
2421 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2422 * @adapter: board private structure
2423 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2424 *
2425 * Returns 0 on success, negative on failure
2426 **/
2427 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2428 struct ixgbevf_ring *rx_ring)
2429 {
2430 struct pci_dev *pdev = adapter->pdev;
2431 int size;
2432
2433 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2434 rx_ring->rx_buffer_info = vzalloc(size);
2435 if (!rx_ring->rx_buffer_info)
2436 goto alloc_failed;
2437
2438 /* Round up to nearest 4K */
2439 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2440 rx_ring->size = ALIGN(rx_ring->size, 4096);
2441
2442 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2443 &rx_ring->dma, GFP_KERNEL);
2444
2445 if (!rx_ring->desc) {
2446 vfree(rx_ring->rx_buffer_info);
2447 rx_ring->rx_buffer_info = NULL;
2448 goto alloc_failed;
2449 }
2450
2451 rx_ring->next_to_clean = 0;
2452 rx_ring->next_to_use = 0;
2453
2454 return 0;
2455 alloc_failed:
2456 return -ENOMEM;
2457 }
2458
2459 /**
2460 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2461 * @adapter: board private structure
2462 *
2463 * If this function returns with an error, then it's possible one or
2464 * more of the rings is populated (while the rest are not). It is the
2465 * callers duty to clean those orphaned rings.
2466 *
2467 * Return 0 on success, negative on failure
2468 **/
2469 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2470 {
2471 int i, err = 0;
2472
2473 for (i = 0; i < adapter->num_rx_queues; i++) {
2474 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2475 if (!err)
2476 continue;
2477 hw_dbg(&adapter->hw,
2478 "Allocation for Rx Queue %u failed\n", i);
2479 break;
2480 }
2481 return err;
2482 }
2483
2484 /**
2485 * ixgbevf_free_rx_resources - Free Rx Resources
2486 * @adapter: board private structure
2487 * @rx_ring: ring to clean the resources from
2488 *
2489 * Free all receive software resources
2490 **/
2491 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2492 struct ixgbevf_ring *rx_ring)
2493 {
2494 struct pci_dev *pdev = adapter->pdev;
2495
2496 ixgbevf_clean_rx_ring(adapter, rx_ring);
2497
2498 vfree(rx_ring->rx_buffer_info);
2499 rx_ring->rx_buffer_info = NULL;
2500
2501 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2502 rx_ring->dma);
2503
2504 rx_ring->desc = NULL;
2505 }
2506
2507 /**
2508 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2509 * @adapter: board private structure
2510 *
2511 * Free all receive software resources
2512 **/
2513 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2514 {
2515 int i;
2516
2517 for (i = 0; i < adapter->num_rx_queues; i++)
2518 if (adapter->rx_ring[i].desc)
2519 ixgbevf_free_rx_resources(adapter,
2520 &adapter->rx_ring[i]);
2521 }
2522
2523 static int ixgbevf_setup_queues(struct ixgbevf_adapter *adapter)
2524 {
2525 struct ixgbe_hw *hw = &adapter->hw;
2526 struct ixgbevf_ring *rx_ring;
2527 unsigned int def_q = 0;
2528 unsigned int num_tcs = 0;
2529 unsigned int num_rx_queues = 1;
2530 int err, i;
2531
2532 spin_lock_bh(&adapter->mbx_lock);
2533
2534 /* fetch queue configuration from the PF */
2535 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2536
2537 spin_unlock_bh(&adapter->mbx_lock);
2538
2539 if (err)
2540 return err;
2541
2542 if (num_tcs > 1) {
2543 /* update default Tx ring register index */
2544 adapter->tx_ring[0].reg_idx = def_q;
2545
2546 /* we need as many queues as traffic classes */
2547 num_rx_queues = num_tcs;
2548 }
2549
2550 /* nothing to do if we have the correct number of queues */
2551 if (adapter->num_rx_queues == num_rx_queues)
2552 return 0;
2553
2554 /* allocate new rings */
2555 rx_ring = kcalloc(num_rx_queues,
2556 sizeof(struct ixgbevf_ring), GFP_KERNEL);
2557 if (!rx_ring)
2558 return -ENOMEM;
2559
2560 /* setup ring fields */
2561 for (i = 0; i < num_rx_queues; i++) {
2562 rx_ring[i].count = adapter->rx_ring_count;
2563 rx_ring[i].queue_index = i;
2564 rx_ring[i].reg_idx = i;
2565 rx_ring[i].dev = &adapter->pdev->dev;
2566 rx_ring[i].netdev = adapter->netdev;
2567 }
2568
2569 /* free the existing ring and queues */
2570 adapter->num_rx_queues = 0;
2571 kfree(adapter->rx_ring);
2572
2573 /* move new rings into position on the adapter struct */
2574 adapter->rx_ring = rx_ring;
2575 adapter->num_rx_queues = num_rx_queues;
2576
2577 return 0;
2578 }
2579
2580 /**
2581 * ixgbevf_open - Called when a network interface is made active
2582 * @netdev: network interface device structure
2583 *
2584 * Returns 0 on success, negative value on failure
2585 *
2586 * The open entry point is called when a network interface is made
2587 * active by the system (IFF_UP). At this point all resources needed
2588 * for transmit and receive operations are allocated, the interrupt
2589 * handler is registered with the OS, the watchdog timer is started,
2590 * and the stack is notified that the interface is ready.
2591 **/
2592 static int ixgbevf_open(struct net_device *netdev)
2593 {
2594 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2595 struct ixgbe_hw *hw = &adapter->hw;
2596 int err;
2597
2598 /* A previous failure to open the device because of a lack of
2599 * available MSIX vector resources may have reset the number
2600 * of msix vectors variable to zero. The only way to recover
2601 * is to unload/reload the driver and hope that the system has
2602 * been able to recover some MSIX vector resources.
2603 */
2604 if (!adapter->num_msix_vectors)
2605 return -ENOMEM;
2606
2607 /* disallow open during test */
2608 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2609 return -EBUSY;
2610
2611 if (hw->adapter_stopped) {
2612 ixgbevf_reset(adapter);
2613 /* if adapter is still stopped then PF isn't up and
2614 * the vf can't start. */
2615 if (hw->adapter_stopped) {
2616 err = IXGBE_ERR_MBX;
2617 pr_err("Unable to start - perhaps the PF Driver isn't "
2618 "up yet\n");
2619 goto err_setup_reset;
2620 }
2621 }
2622
2623 ixgbevf_negotiate_api(adapter);
2624
2625 /* setup queue reg_idx and Rx queue count */
2626 err = ixgbevf_setup_queues(adapter);
2627 if (err)
2628 goto err_setup_queues;
2629
2630 /* allocate transmit descriptors */
2631 err = ixgbevf_setup_all_tx_resources(adapter);
2632 if (err)
2633 goto err_setup_tx;
2634
2635 /* allocate receive descriptors */
2636 err = ixgbevf_setup_all_rx_resources(adapter);
2637 if (err)
2638 goto err_setup_rx;
2639
2640 ixgbevf_configure(adapter);
2641
2642 /*
2643 * Map the Tx/Rx rings to the vectors we were allotted.
2644 * if request_irq will be called in this function map_rings
2645 * must be called *before* up_complete
2646 */
2647 ixgbevf_map_rings_to_vectors(adapter);
2648
2649 ixgbevf_up_complete(adapter);
2650
2651 /* clear any pending interrupts, may auto mask */
2652 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2653 err = ixgbevf_request_irq(adapter);
2654 if (err)
2655 goto err_req_irq;
2656
2657 ixgbevf_irq_enable(adapter);
2658
2659 return 0;
2660
2661 err_req_irq:
2662 ixgbevf_down(adapter);
2663 err_setup_rx:
2664 ixgbevf_free_all_rx_resources(adapter);
2665 err_setup_tx:
2666 ixgbevf_free_all_tx_resources(adapter);
2667 err_setup_queues:
2668 ixgbevf_reset(adapter);
2669
2670 err_setup_reset:
2671
2672 return err;
2673 }
2674
2675 /**
2676 * ixgbevf_close - Disables a network interface
2677 * @netdev: network interface device structure
2678 *
2679 * Returns 0, this is not allowed to fail
2680 *
2681 * The close entry point is called when an interface is de-activated
2682 * by the OS. The hardware is still under the drivers control, but
2683 * needs to be disabled. A global MAC reset is issued to stop the
2684 * hardware, and all transmit and receive resources are freed.
2685 **/
2686 static int ixgbevf_close(struct net_device *netdev)
2687 {
2688 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2689
2690 ixgbevf_down(adapter);
2691 ixgbevf_free_irq(adapter);
2692
2693 ixgbevf_free_all_tx_resources(adapter);
2694 ixgbevf_free_all_rx_resources(adapter);
2695
2696 return 0;
2697 }
2698
2699 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
2700 u32 vlan_macip_lens, u32 type_tucmd,
2701 u32 mss_l4len_idx)
2702 {
2703 struct ixgbe_adv_tx_context_desc *context_desc;
2704 u16 i = tx_ring->next_to_use;
2705
2706 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
2707
2708 i++;
2709 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2710
2711 /* set bits to identify this as an advanced context descriptor */
2712 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
2713
2714 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2715 context_desc->seqnum_seed = 0;
2716 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
2717 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2718 }
2719
2720 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
2721 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2722 {
2723 u32 vlan_macip_lens, type_tucmd;
2724 u32 mss_l4len_idx, l4len;
2725
2726 if (!skb_is_gso(skb))
2727 return 0;
2728
2729 if (skb_header_cloned(skb)) {
2730 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2731 if (err)
2732 return err;
2733 }
2734
2735 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2736 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
2737
2738 if (skb->protocol == htons(ETH_P_IP)) {
2739 struct iphdr *iph = ip_hdr(skb);
2740 iph->tot_len = 0;
2741 iph->check = 0;
2742 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2743 iph->daddr, 0,
2744 IPPROTO_TCP,
2745 0);
2746 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
2747 } else if (skb_is_gso_v6(skb)) {
2748 ipv6_hdr(skb)->payload_len = 0;
2749 tcp_hdr(skb)->check =
2750 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2751 &ipv6_hdr(skb)->daddr,
2752 0, IPPROTO_TCP, 0);
2753 }
2754
2755 /* compute header lengths */
2756 l4len = tcp_hdrlen(skb);
2757 *hdr_len += l4len;
2758 *hdr_len = skb_transport_offset(skb) + l4len;
2759
2760 /* mss_l4len_id: use 1 as index for TSO */
2761 mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT;
2762 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
2763 mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT;
2764
2765 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
2766 vlan_macip_lens = skb_network_header_len(skb);
2767 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
2768 vlan_macip_lens |= tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
2769
2770 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
2771 type_tucmd, mss_l4len_idx);
2772
2773 return 1;
2774 }
2775
2776 static bool ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
2777 struct sk_buff *skb, u32 tx_flags)
2778 {
2779 u32 vlan_macip_lens = 0;
2780 u32 mss_l4len_idx = 0;
2781 u32 type_tucmd = 0;
2782
2783 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2784 u8 l4_hdr = 0;
2785 switch (skb->protocol) {
2786 case __constant_htons(ETH_P_IP):
2787 vlan_macip_lens |= skb_network_header_len(skb);
2788 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
2789 l4_hdr = ip_hdr(skb)->protocol;
2790 break;
2791 case __constant_htons(ETH_P_IPV6):
2792 vlan_macip_lens |= skb_network_header_len(skb);
2793 l4_hdr = ipv6_hdr(skb)->nexthdr;
2794 break;
2795 default:
2796 if (unlikely(net_ratelimit())) {
2797 dev_warn(tx_ring->dev,
2798 "partial checksum but proto=%x!\n",
2799 skb->protocol);
2800 }
2801 break;
2802 }
2803
2804 switch (l4_hdr) {
2805 case IPPROTO_TCP:
2806 type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2807 mss_l4len_idx = tcp_hdrlen(skb) <<
2808 IXGBE_ADVTXD_L4LEN_SHIFT;
2809 break;
2810 case IPPROTO_SCTP:
2811 type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
2812 mss_l4len_idx = sizeof(struct sctphdr) <<
2813 IXGBE_ADVTXD_L4LEN_SHIFT;
2814 break;
2815 case IPPROTO_UDP:
2816 mss_l4len_idx = sizeof(struct udphdr) <<
2817 IXGBE_ADVTXD_L4LEN_SHIFT;
2818 break;
2819 default:
2820 if (unlikely(net_ratelimit())) {
2821 dev_warn(tx_ring->dev,
2822 "partial checksum but l4 proto=%x!\n",
2823 l4_hdr);
2824 }
2825 break;
2826 }
2827 }
2828
2829 /* vlan_macip_lens: MACLEN, VLAN tag */
2830 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
2831 vlan_macip_lens |= tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
2832
2833 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
2834 type_tucmd, mss_l4len_idx);
2835
2836 return (skb->ip_summed == CHECKSUM_PARTIAL);
2837 }
2838
2839 static int ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
2840 struct sk_buff *skb, u32 tx_flags)
2841 {
2842 struct ixgbevf_tx_buffer *tx_buffer_info;
2843 unsigned int len;
2844 unsigned int total = skb->len;
2845 unsigned int offset = 0, size;
2846 int count = 0;
2847 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2848 unsigned int f;
2849 int i;
2850
2851 i = tx_ring->next_to_use;
2852
2853 len = min(skb_headlen(skb), total);
2854 while (len) {
2855 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2856 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2857
2858 tx_buffer_info->length = size;
2859 tx_buffer_info->mapped_as_page = false;
2860 tx_buffer_info->dma = dma_map_single(tx_ring->dev,
2861 skb->data + offset,
2862 size, DMA_TO_DEVICE);
2863 if (dma_mapping_error(tx_ring->dev, tx_buffer_info->dma))
2864 goto dma_error;
2865
2866 len -= size;
2867 total -= size;
2868 offset += size;
2869 count++;
2870 i++;
2871 if (i == tx_ring->count)
2872 i = 0;
2873 }
2874
2875 for (f = 0; f < nr_frags; f++) {
2876 const struct skb_frag_struct *frag;
2877
2878 frag = &skb_shinfo(skb)->frags[f];
2879 len = min((unsigned int)skb_frag_size(frag), total);
2880 offset = 0;
2881
2882 while (len) {
2883 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2884 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2885
2886 tx_buffer_info->length = size;
2887 tx_buffer_info->dma =
2888 skb_frag_dma_map(tx_ring->dev, frag,
2889 offset, size, DMA_TO_DEVICE);
2890 if (dma_mapping_error(tx_ring->dev,
2891 tx_buffer_info->dma))
2892 goto dma_error;
2893 tx_buffer_info->mapped_as_page = true;
2894
2895 len -= size;
2896 total -= size;
2897 offset += size;
2898 count++;
2899 i++;
2900 if (i == tx_ring->count)
2901 i = 0;
2902 }
2903 if (total == 0)
2904 break;
2905 }
2906
2907 if (i == 0)
2908 i = tx_ring->count - 1;
2909 else
2910 i = i - 1;
2911 tx_ring->tx_buffer_info[i].skb = skb;
2912
2913 return count;
2914
2915 dma_error:
2916 dev_err(tx_ring->dev, "TX DMA map failed\n");
2917
2918 /* clear timestamp and dma mappings for failed tx_buffer_info map */
2919 tx_buffer_info->dma = 0;
2920 count--;
2921
2922 /* clear timestamp and dma mappings for remaining portion of packet */
2923 while (count >= 0) {
2924 count--;
2925 i--;
2926 if (i < 0)
2927 i += tx_ring->count;
2928 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2929 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2930 }
2931
2932 return count;
2933 }
2934
2935 static void ixgbevf_tx_queue(struct ixgbevf_ring *tx_ring, int tx_flags,
2936 int count, unsigned int first, u32 paylen,
2937 u8 hdr_len)
2938 {
2939 union ixgbe_adv_tx_desc *tx_desc = NULL;
2940 struct ixgbevf_tx_buffer *tx_buffer_info;
2941 u32 olinfo_status = 0, cmd_type_len = 0;
2942 unsigned int i;
2943
2944 u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
2945
2946 cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
2947
2948 cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
2949
2950 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2951 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
2952
2953 if (tx_flags & IXGBE_TX_FLAGS_CSUM)
2954 olinfo_status |= IXGBE_ADVTXD_POPTS_TXSM;
2955
2956 if (tx_flags & IXGBE_TX_FLAGS_TSO) {
2957 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
2958
2959 /* use index 1 context for tso */
2960 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2961 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
2962 olinfo_status |= IXGBE_ADVTXD_POPTS_IXSM;
2963 }
2964
2965 /*
2966 * Check Context must be set if Tx switch is enabled, which it
2967 * always is for case where virtual functions are running
2968 */
2969 olinfo_status |= IXGBE_ADVTXD_CC;
2970
2971 olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
2972
2973 i = tx_ring->next_to_use;
2974 while (count--) {
2975 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2976 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2977 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
2978 tx_desc->read.cmd_type_len =
2979 cpu_to_le32(cmd_type_len | tx_buffer_info->length);
2980 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2981 i++;
2982 if (i == tx_ring->count)
2983 i = 0;
2984 }
2985
2986 tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
2987
2988 tx_ring->tx_buffer_info[first].time_stamp = jiffies;
2989
2990 /* Force memory writes to complete before letting h/w
2991 * know there are new descriptors to fetch. (Only
2992 * applicable for weak-ordered memory model archs,
2993 * such as IA-64).
2994 */
2995 wmb();
2996
2997 tx_ring->tx_buffer_info[first].next_to_watch = tx_desc;
2998 tx_ring->next_to_use = i;
2999 }
3000
3001 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3002 {
3003 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3004
3005 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3006 /* Herbert's original patch had:
3007 * smp_mb__after_netif_stop_queue();
3008 * but since that doesn't exist yet, just open code it. */
3009 smp_mb();
3010
3011 /* We need to check again in a case another CPU has just
3012 * made room available. */
3013 if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3014 return -EBUSY;
3015
3016 /* A reprieve! - use start_queue because it doesn't call schedule */
3017 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3018 ++adapter->restart_queue;
3019 return 0;
3020 }
3021
3022 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3023 {
3024 if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3025 return 0;
3026 return __ixgbevf_maybe_stop_tx(tx_ring, size);
3027 }
3028
3029 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3030 {
3031 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3032 struct ixgbevf_ring *tx_ring;
3033 unsigned int first;
3034 unsigned int tx_flags = 0;
3035 u8 hdr_len = 0;
3036 int r_idx = 0, tso;
3037 u16 count = TXD_USE_COUNT(skb_headlen(skb));
3038 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3039 unsigned short f;
3040 #endif
3041 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3042 if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3043 dev_kfree_skb(skb);
3044 return NETDEV_TX_OK;
3045 }
3046
3047 tx_ring = &adapter->tx_ring[r_idx];
3048
3049 /*
3050 * need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3051 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3052 * + 2 desc gap to keep tail from touching head,
3053 * + 1 desc for context descriptor,
3054 * otherwise try next time
3055 */
3056 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3057 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3058 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3059 #else
3060 count += skb_shinfo(skb)->nr_frags;
3061 #endif
3062 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3063 adapter->tx_busy++;
3064 return NETDEV_TX_BUSY;
3065 }
3066
3067 if (vlan_tx_tag_present(skb)) {
3068 tx_flags |= vlan_tx_tag_get(skb);
3069 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3070 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3071 }
3072
3073 first = tx_ring->next_to_use;
3074
3075 if (skb->protocol == htons(ETH_P_IP))
3076 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3077 tso = ixgbevf_tso(tx_ring, skb, tx_flags, &hdr_len);
3078 if (tso < 0) {
3079 dev_kfree_skb_any(skb);
3080 return NETDEV_TX_OK;
3081 }
3082
3083 if (tso)
3084 tx_flags |= IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_CSUM;
3085 else if (ixgbevf_tx_csum(tx_ring, skb, tx_flags))
3086 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3087
3088 ixgbevf_tx_queue(tx_ring, tx_flags,
3089 ixgbevf_tx_map(tx_ring, skb, tx_flags),
3090 first, skb->len, hdr_len);
3091
3092 writel(tx_ring->next_to_use, adapter->hw.hw_addr + tx_ring->tail);
3093
3094 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3095
3096 return NETDEV_TX_OK;
3097 }
3098
3099 /**
3100 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3101 * @netdev: network interface device structure
3102 * @p: pointer to an address structure
3103 *
3104 * Returns 0 on success, negative on failure
3105 **/
3106 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3107 {
3108 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3109 struct ixgbe_hw *hw = &adapter->hw;
3110 struct sockaddr *addr = p;
3111
3112 if (!is_valid_ether_addr(addr->sa_data))
3113 return -EADDRNOTAVAIL;
3114
3115 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3116 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3117
3118 spin_lock_bh(&adapter->mbx_lock);
3119
3120 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3121
3122 spin_unlock_bh(&adapter->mbx_lock);
3123
3124 return 0;
3125 }
3126
3127 /**
3128 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3129 * @netdev: network interface device structure
3130 * @new_mtu: new value for maximum frame size
3131 *
3132 * Returns 0 on success, negative on failure
3133 **/
3134 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3135 {
3136 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3137 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3138 int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3139
3140 switch (adapter->hw.api_version) {
3141 case ixgbe_mbox_api_11:
3142 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3143 break;
3144 default:
3145 if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3146 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3147 break;
3148 }
3149
3150 /* MTU < 68 is an error and causes problems on some kernels */
3151 if ((new_mtu < 68) || (max_frame > max_possible_frame))
3152 return -EINVAL;
3153
3154 hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3155 netdev->mtu, new_mtu);
3156 /* must set new MTU before calling down or up */
3157 netdev->mtu = new_mtu;
3158
3159 if (netif_running(netdev))
3160 ixgbevf_reinit_locked(adapter);
3161
3162 return 0;
3163 }
3164
3165 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3166 {
3167 struct net_device *netdev = pci_get_drvdata(pdev);
3168 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3169 #ifdef CONFIG_PM
3170 int retval = 0;
3171 #endif
3172
3173 netif_device_detach(netdev);
3174
3175 if (netif_running(netdev)) {
3176 rtnl_lock();
3177 ixgbevf_down(adapter);
3178 ixgbevf_free_irq(adapter);
3179 ixgbevf_free_all_tx_resources(adapter);
3180 ixgbevf_free_all_rx_resources(adapter);
3181 rtnl_unlock();
3182 }
3183
3184 ixgbevf_clear_interrupt_scheme(adapter);
3185
3186 #ifdef CONFIG_PM
3187 retval = pci_save_state(pdev);
3188 if (retval)
3189 return retval;
3190
3191 #endif
3192 pci_disable_device(pdev);
3193
3194 return 0;
3195 }
3196
3197 #ifdef CONFIG_PM
3198 static int ixgbevf_resume(struct pci_dev *pdev)
3199 {
3200 struct ixgbevf_adapter *adapter = pci_get_drvdata(pdev);
3201 struct net_device *netdev = adapter->netdev;
3202 u32 err;
3203
3204 pci_set_power_state(pdev, PCI_D0);
3205 pci_restore_state(pdev);
3206 /*
3207 * pci_restore_state clears dev->state_saved so call
3208 * pci_save_state to restore it.
3209 */
3210 pci_save_state(pdev);
3211
3212 err = pci_enable_device_mem(pdev);
3213 if (err) {
3214 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3215 return err;
3216 }
3217 pci_set_master(pdev);
3218
3219 rtnl_lock();
3220 err = ixgbevf_init_interrupt_scheme(adapter);
3221 rtnl_unlock();
3222 if (err) {
3223 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3224 return err;
3225 }
3226
3227 ixgbevf_reset(adapter);
3228
3229 if (netif_running(netdev)) {
3230 err = ixgbevf_open(netdev);
3231 if (err)
3232 return err;
3233 }
3234
3235 netif_device_attach(netdev);
3236
3237 return err;
3238 }
3239
3240 #endif /* CONFIG_PM */
3241 static void ixgbevf_shutdown(struct pci_dev *pdev)
3242 {
3243 ixgbevf_suspend(pdev, PMSG_SUSPEND);
3244 }
3245
3246 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3247 struct rtnl_link_stats64 *stats)
3248 {
3249 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3250 unsigned int start;
3251 u64 bytes, packets;
3252 const struct ixgbevf_ring *ring;
3253 int i;
3254
3255 ixgbevf_update_stats(adapter);
3256
3257 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3258
3259 for (i = 0; i < adapter->num_rx_queues; i++) {
3260 ring = &adapter->rx_ring[i];
3261 do {
3262 start = u64_stats_fetch_begin_bh(&ring->syncp);
3263 bytes = ring->total_bytes;
3264 packets = ring->total_packets;
3265 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3266 stats->rx_bytes += bytes;
3267 stats->rx_packets += packets;
3268 }
3269
3270 for (i = 0; i < adapter->num_tx_queues; i++) {
3271 ring = &adapter->tx_ring[i];
3272 do {
3273 start = u64_stats_fetch_begin_bh(&ring->syncp);
3274 bytes = ring->total_bytes;
3275 packets = ring->total_packets;
3276 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3277 stats->tx_bytes += bytes;
3278 stats->tx_packets += packets;
3279 }
3280
3281 return stats;
3282 }
3283
3284 static const struct net_device_ops ixgbevf_netdev_ops = {
3285 .ndo_open = ixgbevf_open,
3286 .ndo_stop = ixgbevf_close,
3287 .ndo_start_xmit = ixgbevf_xmit_frame,
3288 .ndo_set_rx_mode = ixgbevf_set_rx_mode,
3289 .ndo_get_stats64 = ixgbevf_get_stats,
3290 .ndo_validate_addr = eth_validate_addr,
3291 .ndo_set_mac_address = ixgbevf_set_mac,
3292 .ndo_change_mtu = ixgbevf_change_mtu,
3293 .ndo_tx_timeout = ixgbevf_tx_timeout,
3294 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid,
3295 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid,
3296 };
3297
3298 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3299 {
3300 dev->netdev_ops = &ixgbevf_netdev_ops;
3301 ixgbevf_set_ethtool_ops(dev);
3302 dev->watchdog_timeo = 5 * HZ;
3303 }
3304
3305 /**
3306 * ixgbevf_probe - Device Initialization Routine
3307 * @pdev: PCI device information struct
3308 * @ent: entry in ixgbevf_pci_tbl
3309 *
3310 * Returns 0 on success, negative on failure
3311 *
3312 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3313 * The OS initialization, configuring of the adapter private structure,
3314 * and a hardware reset occur.
3315 **/
3316 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3317 {
3318 struct net_device *netdev;
3319 struct ixgbevf_adapter *adapter = NULL;
3320 struct ixgbe_hw *hw = NULL;
3321 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3322 static int cards_found;
3323 int err, pci_using_dac;
3324
3325 err = pci_enable_device(pdev);
3326 if (err)
3327 return err;
3328
3329 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3330 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3331 pci_using_dac = 1;
3332 } else {
3333 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3334 if (err) {
3335 err = dma_set_coherent_mask(&pdev->dev,
3336 DMA_BIT_MASK(32));
3337 if (err) {
3338 dev_err(&pdev->dev, "No usable DMA "
3339 "configuration, aborting\n");
3340 goto err_dma;
3341 }
3342 }
3343 pci_using_dac = 0;
3344 }
3345
3346 err = pci_request_regions(pdev, ixgbevf_driver_name);
3347 if (err) {
3348 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3349 goto err_pci_reg;
3350 }
3351
3352 pci_set_master(pdev);
3353
3354 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3355 MAX_TX_QUEUES);
3356 if (!netdev) {
3357 err = -ENOMEM;
3358 goto err_alloc_etherdev;
3359 }
3360
3361 SET_NETDEV_DEV(netdev, &pdev->dev);
3362
3363 pci_set_drvdata(pdev, netdev);
3364 adapter = netdev_priv(netdev);
3365
3366 adapter->netdev = netdev;
3367 adapter->pdev = pdev;
3368 hw = &adapter->hw;
3369 hw->back = adapter;
3370 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3371
3372 /*
3373 * call save state here in standalone driver because it relies on
3374 * adapter struct to exist, and needs to call netdev_priv
3375 */
3376 pci_save_state(pdev);
3377
3378 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3379 pci_resource_len(pdev, 0));
3380 if (!hw->hw_addr) {
3381 err = -EIO;
3382 goto err_ioremap;
3383 }
3384
3385 ixgbevf_assign_netdev_ops(netdev);
3386
3387 adapter->bd_number = cards_found;
3388
3389 /* Setup hw api */
3390 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3391 hw->mac.type = ii->mac;
3392
3393 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3394 sizeof(struct ixgbe_mbx_operations));
3395
3396 /* setup the private structure */
3397 err = ixgbevf_sw_init(adapter);
3398 if (err)
3399 goto err_sw_init;
3400
3401 /* The HW MAC address was set and/or determined in sw_init */
3402 if (!is_valid_ether_addr(netdev->dev_addr)) {
3403 pr_err("invalid MAC address\n");
3404 err = -EIO;
3405 goto err_sw_init;
3406 }
3407
3408 netdev->hw_features = NETIF_F_SG |
3409 NETIF_F_IP_CSUM |
3410 NETIF_F_IPV6_CSUM |
3411 NETIF_F_TSO |
3412 NETIF_F_TSO6 |
3413 NETIF_F_RXCSUM;
3414
3415 netdev->features = netdev->hw_features |
3416 NETIF_F_HW_VLAN_CTAG_TX |
3417 NETIF_F_HW_VLAN_CTAG_RX |
3418 NETIF_F_HW_VLAN_CTAG_FILTER;
3419
3420 netdev->vlan_features |= NETIF_F_TSO;
3421 netdev->vlan_features |= NETIF_F_TSO6;
3422 netdev->vlan_features |= NETIF_F_IP_CSUM;
3423 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3424 netdev->vlan_features |= NETIF_F_SG;
3425
3426 if (pci_using_dac)
3427 netdev->features |= NETIF_F_HIGHDMA;
3428
3429 netdev->priv_flags |= IFF_UNICAST_FLT;
3430
3431 init_timer(&adapter->watchdog_timer);
3432 adapter->watchdog_timer.function = ixgbevf_watchdog;
3433 adapter->watchdog_timer.data = (unsigned long)adapter;
3434
3435 INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3436 INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3437
3438 err = ixgbevf_init_interrupt_scheme(adapter);
3439 if (err)
3440 goto err_sw_init;
3441
3442 strcpy(netdev->name, "eth%d");
3443
3444 err = register_netdev(netdev);
3445 if (err)
3446 goto err_register;
3447
3448 netif_carrier_off(netdev);
3449
3450 ixgbevf_init_last_counter_stats(adapter);
3451
3452 /* print the MAC address */
3453 hw_dbg(hw, "%pM\n", netdev->dev_addr);
3454
3455 hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3456
3457 hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3458 cards_found++;
3459 return 0;
3460
3461 err_register:
3462 ixgbevf_clear_interrupt_scheme(adapter);
3463 err_sw_init:
3464 ixgbevf_reset_interrupt_capability(adapter);
3465 iounmap(hw->hw_addr);
3466 err_ioremap:
3467 free_netdev(netdev);
3468 err_alloc_etherdev:
3469 pci_release_regions(pdev);
3470 err_pci_reg:
3471 err_dma:
3472 pci_disable_device(pdev);
3473 return err;
3474 }
3475
3476 /**
3477 * ixgbevf_remove - Device Removal Routine
3478 * @pdev: PCI device information struct
3479 *
3480 * ixgbevf_remove is called by the PCI subsystem to alert the driver
3481 * that it should release a PCI device. The could be caused by a
3482 * Hot-Plug event, or because the driver is going to be removed from
3483 * memory.
3484 **/
3485 static void ixgbevf_remove(struct pci_dev *pdev)
3486 {
3487 struct net_device *netdev = pci_get_drvdata(pdev);
3488 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3489
3490 set_bit(__IXGBEVF_DOWN, &adapter->state);
3491
3492 del_timer_sync(&adapter->watchdog_timer);
3493
3494 cancel_work_sync(&adapter->reset_task);
3495 cancel_work_sync(&adapter->watchdog_task);
3496
3497 if (netdev->reg_state == NETREG_REGISTERED)
3498 unregister_netdev(netdev);
3499
3500 ixgbevf_clear_interrupt_scheme(adapter);
3501 ixgbevf_reset_interrupt_capability(adapter);
3502
3503 iounmap(adapter->hw.hw_addr);
3504 pci_release_regions(pdev);
3505
3506 hw_dbg(&adapter->hw, "Remove complete\n");
3507
3508 kfree(adapter->tx_ring);
3509 kfree(adapter->rx_ring);
3510
3511 free_netdev(netdev);
3512
3513 pci_disable_device(pdev);
3514 }
3515
3516 /**
3517 * ixgbevf_io_error_detected - called when PCI error is detected
3518 * @pdev: Pointer to PCI device
3519 * @state: The current pci connection state
3520 *
3521 * This function is called after a PCI bus error affecting
3522 * this device has been detected.
3523 */
3524 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
3525 pci_channel_state_t state)
3526 {
3527 struct net_device *netdev = pci_get_drvdata(pdev);
3528 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3529
3530 netif_device_detach(netdev);
3531
3532 if (state == pci_channel_io_perm_failure)
3533 return PCI_ERS_RESULT_DISCONNECT;
3534
3535 if (netif_running(netdev))
3536 ixgbevf_down(adapter);
3537
3538 pci_disable_device(pdev);
3539
3540 /* Request a slot slot reset. */
3541 return PCI_ERS_RESULT_NEED_RESET;
3542 }
3543
3544 /**
3545 * ixgbevf_io_slot_reset - called after the pci bus has been reset.
3546 * @pdev: Pointer to PCI device
3547 *
3548 * Restart the card from scratch, as if from a cold-boot. Implementation
3549 * resembles the first-half of the ixgbevf_resume routine.
3550 */
3551 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
3552 {
3553 struct net_device *netdev = pci_get_drvdata(pdev);
3554 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3555
3556 if (pci_enable_device_mem(pdev)) {
3557 dev_err(&pdev->dev,
3558 "Cannot re-enable PCI device after reset.\n");
3559 return PCI_ERS_RESULT_DISCONNECT;
3560 }
3561
3562 pci_set_master(pdev);
3563
3564 ixgbevf_reset(adapter);
3565
3566 return PCI_ERS_RESULT_RECOVERED;
3567 }
3568
3569 /**
3570 * ixgbevf_io_resume - called when traffic can start flowing again.
3571 * @pdev: Pointer to PCI device
3572 *
3573 * This callback is called when the error recovery driver tells us that
3574 * its OK to resume normal operation. Implementation resembles the
3575 * second-half of the ixgbevf_resume routine.
3576 */
3577 static void ixgbevf_io_resume(struct pci_dev *pdev)
3578 {
3579 struct net_device *netdev = pci_get_drvdata(pdev);
3580 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3581
3582 if (netif_running(netdev))
3583 ixgbevf_up(adapter);
3584
3585 netif_device_attach(netdev);
3586 }
3587
3588 /* PCI Error Recovery (ERS) */
3589 static const struct pci_error_handlers ixgbevf_err_handler = {
3590 .error_detected = ixgbevf_io_error_detected,
3591 .slot_reset = ixgbevf_io_slot_reset,
3592 .resume = ixgbevf_io_resume,
3593 };
3594
3595 static struct pci_driver ixgbevf_driver = {
3596 .name = ixgbevf_driver_name,
3597 .id_table = ixgbevf_pci_tbl,
3598 .probe = ixgbevf_probe,
3599 .remove = ixgbevf_remove,
3600 #ifdef CONFIG_PM
3601 /* Power Management Hooks */
3602 .suspend = ixgbevf_suspend,
3603 .resume = ixgbevf_resume,
3604 #endif
3605 .shutdown = ixgbevf_shutdown,
3606 .err_handler = &ixgbevf_err_handler
3607 };
3608
3609 /**
3610 * ixgbevf_init_module - Driver Registration Routine
3611 *
3612 * ixgbevf_init_module is the first routine called when the driver is
3613 * loaded. All it does is register with the PCI subsystem.
3614 **/
3615 static int __init ixgbevf_init_module(void)
3616 {
3617 int ret;
3618 pr_info("%s - version %s\n", ixgbevf_driver_string,
3619 ixgbevf_driver_version);
3620
3621 pr_info("%s\n", ixgbevf_copyright);
3622
3623 ret = pci_register_driver(&ixgbevf_driver);
3624 return ret;
3625 }
3626
3627 module_init(ixgbevf_init_module);
3628
3629 /**
3630 * ixgbevf_exit_module - Driver Exit Cleanup Routine
3631 *
3632 * ixgbevf_exit_module is called just before the driver is removed
3633 * from memory.
3634 **/
3635 static void __exit ixgbevf_exit_module(void)
3636 {
3637 pci_unregister_driver(&ixgbevf_driver);
3638 }
3639
3640 #ifdef DEBUG
3641 /**
3642 * ixgbevf_get_hw_dev_name - return device name string
3643 * used by hardware layer to print debugging information
3644 **/
3645 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3646 {
3647 struct ixgbevf_adapter *adapter = hw->back;
3648 return adapter->netdev->name;
3649 }
3650
3651 #endif
3652 module_exit(ixgbevf_exit_module);
3653
3654 /* ixgbevf_main.c */