Merge 4.14.24 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4 * Copyright(c) 2013 - 2016 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29
30 #include "i40evf.h"
31 #include "i40e_trace.h"
32 #include "i40e_prototype.h"
33
34 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
35 u32 td_tag)
36 {
37 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
38 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
39 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
40 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
41 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
42 }
43
44 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45
46 /**
47 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
48 * @ring: the ring that owns the buffer
49 * @tx_buffer: the buffer to free
50 **/
51 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
52 struct i40e_tx_buffer *tx_buffer)
53 {
54 if (tx_buffer->skb) {
55 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
56 kfree(tx_buffer->raw_buf);
57 else
58 dev_kfree_skb_any(tx_buffer->skb);
59 if (dma_unmap_len(tx_buffer, len))
60 dma_unmap_single(ring->dev,
61 dma_unmap_addr(tx_buffer, dma),
62 dma_unmap_len(tx_buffer, len),
63 DMA_TO_DEVICE);
64 } else if (dma_unmap_len(tx_buffer, len)) {
65 dma_unmap_page(ring->dev,
66 dma_unmap_addr(tx_buffer, dma),
67 dma_unmap_len(tx_buffer, len),
68 DMA_TO_DEVICE);
69 }
70
71 tx_buffer->next_to_watch = NULL;
72 tx_buffer->skb = NULL;
73 dma_unmap_len_set(tx_buffer, len, 0);
74 /* tx_buffer must be completely set up in the transmit path */
75 }
76
77 /**
78 * i40evf_clean_tx_ring - Free any empty Tx buffers
79 * @tx_ring: ring to be cleaned
80 **/
81 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
82 {
83 unsigned long bi_size;
84 u16 i;
85
86 /* ring already cleared, nothing to do */
87 if (!tx_ring->tx_bi)
88 return;
89
90 /* Free all the Tx ring sk_buffs */
91 for (i = 0; i < tx_ring->count; i++)
92 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
93
94 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
95 memset(tx_ring->tx_bi, 0, bi_size);
96
97 /* Zero out the descriptor ring */
98 memset(tx_ring->desc, 0, tx_ring->size);
99
100 tx_ring->next_to_use = 0;
101 tx_ring->next_to_clean = 0;
102
103 if (!tx_ring->netdev)
104 return;
105
106 /* cleanup Tx queue statistics */
107 netdev_tx_reset_queue(txring_txq(tx_ring));
108 }
109
110 /**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117 {
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127 }
128
129 /**
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
132 * @in_sw: is tx_pending being checked in SW or HW
133 *
134 * Since there is no access to the ring head register
135 * in XL710, we need to use our local copies
136 **/
137 u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
138 {
139 u32 head, tail;
140
141 head = ring->next_to_clean;
142 tail = readl(ring->tail);
143
144 if (head != tail)
145 return (head < tail) ?
146 tail - head : (tail + ring->count - head);
147
148 return 0;
149 }
150
151 #define WB_STRIDE 4
152
153 /**
154 * i40e_clean_tx_irq - Reclaim resources after transmit completes
155 * @vsi: the VSI we care about
156 * @tx_ring: Tx ring to clean
157 * @napi_budget: Used to determine if we are in netpoll
158 *
159 * Returns true if there's any budget left (e.g. the clean is finished)
160 **/
161 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
162 struct i40e_ring *tx_ring, int napi_budget)
163 {
164 u16 i = tx_ring->next_to_clean;
165 struct i40e_tx_buffer *tx_buf;
166 struct i40e_tx_desc *tx_desc;
167 unsigned int total_bytes = 0, total_packets = 0;
168 unsigned int budget = vsi->work_limit;
169
170 tx_buf = &tx_ring->tx_bi[i];
171 tx_desc = I40E_TX_DESC(tx_ring, i);
172 i -= tx_ring->count;
173
174 do {
175 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
176
177 /* if next_to_watch is not set then there is no work pending */
178 if (!eop_desc)
179 break;
180
181 /* prevent any other reads prior to eop_desc */
182 smp_rmb();
183
184 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
185 /* if the descriptor isn't done, no work yet to do */
186 if (!(eop_desc->cmd_type_offset_bsz &
187 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
188 break;
189
190 /* clear next_to_watch to prevent false hangs */
191 tx_buf->next_to_watch = NULL;
192
193 /* update the statistics for this packet */
194 total_bytes += tx_buf->bytecount;
195 total_packets += tx_buf->gso_segs;
196
197 /* free the skb */
198 napi_consume_skb(tx_buf->skb, napi_budget);
199
200 /* unmap skb header data */
201 dma_unmap_single(tx_ring->dev,
202 dma_unmap_addr(tx_buf, dma),
203 dma_unmap_len(tx_buf, len),
204 DMA_TO_DEVICE);
205
206 /* clear tx_buffer data */
207 tx_buf->skb = NULL;
208 dma_unmap_len_set(tx_buf, len, 0);
209
210 /* unmap remaining buffers */
211 while (tx_desc != eop_desc) {
212 i40e_trace(clean_tx_irq_unmap,
213 tx_ring, tx_desc, tx_buf);
214
215 tx_buf++;
216 tx_desc++;
217 i++;
218 if (unlikely(!i)) {
219 i -= tx_ring->count;
220 tx_buf = tx_ring->tx_bi;
221 tx_desc = I40E_TX_DESC(tx_ring, 0);
222 }
223
224 /* unmap any remaining paged data */
225 if (dma_unmap_len(tx_buf, len)) {
226 dma_unmap_page(tx_ring->dev,
227 dma_unmap_addr(tx_buf, dma),
228 dma_unmap_len(tx_buf, len),
229 DMA_TO_DEVICE);
230 dma_unmap_len_set(tx_buf, len, 0);
231 }
232 }
233
234 /* move us one more past the eop_desc for start of next pkt */
235 tx_buf++;
236 tx_desc++;
237 i++;
238 if (unlikely(!i)) {
239 i -= tx_ring->count;
240 tx_buf = tx_ring->tx_bi;
241 tx_desc = I40E_TX_DESC(tx_ring, 0);
242 }
243
244 prefetch(tx_desc);
245
246 /* update budget accounting */
247 budget--;
248 } while (likely(budget));
249
250 i += tx_ring->count;
251 tx_ring->next_to_clean = i;
252 u64_stats_update_begin(&tx_ring->syncp);
253 tx_ring->stats.bytes += total_bytes;
254 tx_ring->stats.packets += total_packets;
255 u64_stats_update_end(&tx_ring->syncp);
256 tx_ring->q_vector->tx.total_bytes += total_bytes;
257 tx_ring->q_vector->tx.total_packets += total_packets;
258
259 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
260 /* check to see if there are < 4 descriptors
261 * waiting to be written back, then kick the hardware to force
262 * them to be written back in case we stay in NAPI.
263 * In this mode on X722 we do not enable Interrupt.
264 */
265 unsigned int j = i40evf_get_tx_pending(tx_ring, false);
266
267 if (budget &&
268 ((j / WB_STRIDE) == 0) && (j > 0) &&
269 !test_bit(__I40E_VSI_DOWN, vsi->state) &&
270 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
271 tx_ring->arm_wb = true;
272 }
273
274 /* notify netdev of completed buffers */
275 netdev_tx_completed_queue(txring_txq(tx_ring),
276 total_packets, total_bytes);
277
278 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
279 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
280 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
281 /* Make sure that anybody stopping the queue after this
282 * sees the new next_to_clean.
283 */
284 smp_mb();
285 if (__netif_subqueue_stopped(tx_ring->netdev,
286 tx_ring->queue_index) &&
287 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
288 netif_wake_subqueue(tx_ring->netdev,
289 tx_ring->queue_index);
290 ++tx_ring->tx_stats.restart_queue;
291 }
292 }
293
294 return !!budget;
295 }
296
297 /**
298 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
299 * @vsi: the VSI we care about
300 * @q_vector: the vector on which to enable writeback
301 *
302 **/
303 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
304 struct i40e_q_vector *q_vector)
305 {
306 u16 flags = q_vector->tx.ring[0].flags;
307 u32 val;
308
309 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
310 return;
311
312 if (q_vector->arm_wb_state)
313 return;
314
315 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
316 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
317
318 wr32(&vsi->back->hw,
319 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
320 vsi->base_vector - 1), val);
321 q_vector->arm_wb_state = true;
322 }
323
324 /**
325 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
326 * @vsi: the VSI we care about
327 * @q_vector: the vector on which to force writeback
328 *
329 **/
330 void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
331 {
332 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
333 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
334 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
335 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
336 /* allow 00 to be written to the index */;
337
338 wr32(&vsi->back->hw,
339 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
340 val);
341 }
342
343 /**
344 * i40e_set_new_dynamic_itr - Find new ITR level
345 * @rc: structure containing ring performance data
346 *
347 * Returns true if ITR changed, false if not
348 *
349 * Stores a new ITR value based on packets and byte counts during
350 * the last interrupt. The advantage of per interrupt computation
351 * is faster updates and more accurate ITR for the current traffic
352 * pattern. Constants in this function were computed based on
353 * theoretical maximum wire speed and thresholds were set based on
354 * testing data as well as attempting to minimize response time
355 * while increasing bulk throughput.
356 **/
357 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
358 {
359 enum i40e_latency_range new_latency_range = rc->latency_range;
360 u32 new_itr = rc->itr;
361 int bytes_per_int;
362 unsigned int usecs, estimated_usecs;
363
364 if (rc->total_packets == 0 || !rc->itr)
365 return false;
366
367 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
368 bytes_per_int = rc->total_bytes / usecs;
369
370 /* The calculations in this algorithm depend on interrupts actually
371 * firing at the ITR rate. This may not happen if the packet rate is
372 * really low, or if we've been napi polling. Check to make sure
373 * that's not the case before we continue.
374 */
375 estimated_usecs = jiffies_to_usecs(jiffies - rc->last_itr_update);
376 if (estimated_usecs > usecs) {
377 new_latency_range = I40E_LOW_LATENCY;
378 goto reset_latency;
379 }
380
381 /* simple throttlerate management
382 * 0-10MB/s lowest (50000 ints/s)
383 * 10-20MB/s low (20000 ints/s)
384 * 20-1249MB/s bulk (18000 ints/s)
385 *
386 * The math works out because the divisor is in 10^(-6) which
387 * turns the bytes/us input value into MB/s values, but
388 * make sure to use usecs, as the register values written
389 * are in 2 usec increments in the ITR registers, and make sure
390 * to use the smoothed values that the countdown timer gives us.
391 */
392 switch (new_latency_range) {
393 case I40E_LOWEST_LATENCY:
394 if (bytes_per_int > 10)
395 new_latency_range = I40E_LOW_LATENCY;
396 break;
397 case I40E_LOW_LATENCY:
398 if (bytes_per_int > 20)
399 new_latency_range = I40E_BULK_LATENCY;
400 else if (bytes_per_int <= 10)
401 new_latency_range = I40E_LOWEST_LATENCY;
402 break;
403 case I40E_BULK_LATENCY:
404 default:
405 if (bytes_per_int <= 20)
406 new_latency_range = I40E_LOW_LATENCY;
407 break;
408 }
409
410 reset_latency:
411 rc->latency_range = new_latency_range;
412
413 switch (new_latency_range) {
414 case I40E_LOWEST_LATENCY:
415 new_itr = I40E_ITR_50K;
416 break;
417 case I40E_LOW_LATENCY:
418 new_itr = I40E_ITR_20K;
419 break;
420 case I40E_BULK_LATENCY:
421 new_itr = I40E_ITR_18K;
422 break;
423 default:
424 break;
425 }
426
427 rc->total_bytes = 0;
428 rc->total_packets = 0;
429 rc->last_itr_update = jiffies;
430
431 if (new_itr != rc->itr) {
432 rc->itr = new_itr;
433 return true;
434 }
435 return false;
436 }
437
438 /**
439 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
440 * @tx_ring: the tx ring to set up
441 *
442 * Return 0 on success, negative on error
443 **/
444 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
445 {
446 struct device *dev = tx_ring->dev;
447 int bi_size;
448
449 if (!dev)
450 return -ENOMEM;
451
452 /* warn if we are about to overwrite the pointer */
453 WARN_ON(tx_ring->tx_bi);
454 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
455 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
456 if (!tx_ring->tx_bi)
457 goto err;
458
459 /* round up to nearest 4K */
460 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
461 tx_ring->size = ALIGN(tx_ring->size, 4096);
462 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
463 &tx_ring->dma, GFP_KERNEL);
464 if (!tx_ring->desc) {
465 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
466 tx_ring->size);
467 goto err;
468 }
469
470 tx_ring->next_to_use = 0;
471 tx_ring->next_to_clean = 0;
472 return 0;
473
474 err:
475 kfree(tx_ring->tx_bi);
476 tx_ring->tx_bi = NULL;
477 return -ENOMEM;
478 }
479
480 /**
481 * i40evf_clean_rx_ring - Free Rx buffers
482 * @rx_ring: ring to be cleaned
483 **/
484 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
485 {
486 unsigned long bi_size;
487 u16 i;
488
489 /* ring already cleared, nothing to do */
490 if (!rx_ring->rx_bi)
491 return;
492
493 if (rx_ring->skb) {
494 dev_kfree_skb(rx_ring->skb);
495 rx_ring->skb = NULL;
496 }
497
498 /* Free all the Rx ring sk_buffs */
499 for (i = 0; i < rx_ring->count; i++) {
500 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
501
502 if (!rx_bi->page)
503 continue;
504
505 /* Invalidate cache lines that may have been written to by
506 * device so that we avoid corrupting memory.
507 */
508 dma_sync_single_range_for_cpu(rx_ring->dev,
509 rx_bi->dma,
510 rx_bi->page_offset,
511 rx_ring->rx_buf_len,
512 DMA_FROM_DEVICE);
513
514 /* free resources associated with mapping */
515 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
516 i40e_rx_pg_size(rx_ring),
517 DMA_FROM_DEVICE,
518 I40E_RX_DMA_ATTR);
519
520 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
521
522 rx_bi->page = NULL;
523 rx_bi->page_offset = 0;
524 }
525
526 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
527 memset(rx_ring->rx_bi, 0, bi_size);
528
529 /* Zero out the descriptor ring */
530 memset(rx_ring->desc, 0, rx_ring->size);
531
532 rx_ring->next_to_alloc = 0;
533 rx_ring->next_to_clean = 0;
534 rx_ring->next_to_use = 0;
535 }
536
537 /**
538 * i40evf_free_rx_resources - Free Rx resources
539 * @rx_ring: ring to clean the resources from
540 *
541 * Free all receive software resources
542 **/
543 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
544 {
545 i40evf_clean_rx_ring(rx_ring);
546 kfree(rx_ring->rx_bi);
547 rx_ring->rx_bi = NULL;
548
549 if (rx_ring->desc) {
550 dma_free_coherent(rx_ring->dev, rx_ring->size,
551 rx_ring->desc, rx_ring->dma);
552 rx_ring->desc = NULL;
553 }
554 }
555
556 /**
557 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
558 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
559 *
560 * Returns 0 on success, negative on failure
561 **/
562 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
563 {
564 struct device *dev = rx_ring->dev;
565 int bi_size;
566
567 /* warn if we are about to overwrite the pointer */
568 WARN_ON(rx_ring->rx_bi);
569 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
570 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
571 if (!rx_ring->rx_bi)
572 goto err;
573
574 u64_stats_init(&rx_ring->syncp);
575
576 /* Round up to nearest 4K */
577 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
578 rx_ring->size = ALIGN(rx_ring->size, 4096);
579 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
580 &rx_ring->dma, GFP_KERNEL);
581
582 if (!rx_ring->desc) {
583 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
584 rx_ring->size);
585 goto err;
586 }
587
588 rx_ring->next_to_alloc = 0;
589 rx_ring->next_to_clean = 0;
590 rx_ring->next_to_use = 0;
591
592 return 0;
593 err:
594 kfree(rx_ring->rx_bi);
595 rx_ring->rx_bi = NULL;
596 return -ENOMEM;
597 }
598
599 /**
600 * i40e_release_rx_desc - Store the new tail and head values
601 * @rx_ring: ring to bump
602 * @val: new head index
603 **/
604 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
605 {
606 rx_ring->next_to_use = val;
607
608 /* update next to alloc since we have filled the ring */
609 rx_ring->next_to_alloc = val;
610
611 /* Force memory writes to complete before letting h/w
612 * know there are new descriptors to fetch. (Only
613 * applicable for weak-ordered memory model archs,
614 * such as IA-64).
615 */
616 wmb();
617 writel(val, rx_ring->tail);
618 }
619
620 /**
621 * i40e_rx_offset - Return expected offset into page to access data
622 * @rx_ring: Ring we are requesting offset of
623 *
624 * Returns the offset value for ring into the data buffer.
625 */
626 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
627 {
628 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
629 }
630
631 /**
632 * i40e_alloc_mapped_page - recycle or make a new page
633 * @rx_ring: ring to use
634 * @bi: rx_buffer struct to modify
635 *
636 * Returns true if the page was successfully allocated or
637 * reused.
638 **/
639 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
640 struct i40e_rx_buffer *bi)
641 {
642 struct page *page = bi->page;
643 dma_addr_t dma;
644
645 /* since we are recycling buffers we should seldom need to alloc */
646 if (likely(page)) {
647 rx_ring->rx_stats.page_reuse_count++;
648 return true;
649 }
650
651 /* alloc new page for storage */
652 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
653 if (unlikely(!page)) {
654 rx_ring->rx_stats.alloc_page_failed++;
655 return false;
656 }
657
658 /* map page for use */
659 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
660 i40e_rx_pg_size(rx_ring),
661 DMA_FROM_DEVICE,
662 I40E_RX_DMA_ATTR);
663
664 /* if mapping failed free memory back to system since
665 * there isn't much point in holding memory we can't use
666 */
667 if (dma_mapping_error(rx_ring->dev, dma)) {
668 __free_pages(page, i40e_rx_pg_order(rx_ring));
669 rx_ring->rx_stats.alloc_page_failed++;
670 return false;
671 }
672
673 bi->dma = dma;
674 bi->page = page;
675 bi->page_offset = i40e_rx_offset(rx_ring);
676
677 /* initialize pagecnt_bias to 1 representing we fully own page */
678 bi->pagecnt_bias = 1;
679
680 return true;
681 }
682
683 /**
684 * i40e_receive_skb - Send a completed packet up the stack
685 * @rx_ring: rx ring in play
686 * @skb: packet to send up
687 * @vlan_tag: vlan tag for packet
688 **/
689 static void i40e_receive_skb(struct i40e_ring *rx_ring,
690 struct sk_buff *skb, u16 vlan_tag)
691 {
692 struct i40e_q_vector *q_vector = rx_ring->q_vector;
693
694 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
695 (vlan_tag & VLAN_VID_MASK))
696 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
697
698 napi_gro_receive(&q_vector->napi, skb);
699 }
700
701 /**
702 * i40evf_alloc_rx_buffers - Replace used receive buffers
703 * @rx_ring: ring to place buffers on
704 * @cleaned_count: number of buffers to replace
705 *
706 * Returns false if all allocations were successful, true if any fail
707 **/
708 bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
709 {
710 u16 ntu = rx_ring->next_to_use;
711 union i40e_rx_desc *rx_desc;
712 struct i40e_rx_buffer *bi;
713
714 /* do nothing if no valid netdev defined */
715 if (!rx_ring->netdev || !cleaned_count)
716 return false;
717
718 rx_desc = I40E_RX_DESC(rx_ring, ntu);
719 bi = &rx_ring->rx_bi[ntu];
720
721 do {
722 if (!i40e_alloc_mapped_page(rx_ring, bi))
723 goto no_buffers;
724
725 /* sync the buffer for use by the device */
726 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
727 bi->page_offset,
728 rx_ring->rx_buf_len,
729 DMA_FROM_DEVICE);
730
731 /* Refresh the desc even if buffer_addrs didn't change
732 * because each write-back erases this info.
733 */
734 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
735
736 rx_desc++;
737 bi++;
738 ntu++;
739 if (unlikely(ntu == rx_ring->count)) {
740 rx_desc = I40E_RX_DESC(rx_ring, 0);
741 bi = rx_ring->rx_bi;
742 ntu = 0;
743 }
744
745 /* clear the status bits for the next_to_use descriptor */
746 rx_desc->wb.qword1.status_error_len = 0;
747
748 cleaned_count--;
749 } while (cleaned_count);
750
751 if (rx_ring->next_to_use != ntu)
752 i40e_release_rx_desc(rx_ring, ntu);
753
754 return false;
755
756 no_buffers:
757 if (rx_ring->next_to_use != ntu)
758 i40e_release_rx_desc(rx_ring, ntu);
759
760 /* make sure to come back via polling to try again after
761 * allocation failure
762 */
763 return true;
764 }
765
766 /**
767 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
768 * @vsi: the VSI we care about
769 * @skb: skb currently being received and modified
770 * @rx_desc: the receive descriptor
771 **/
772 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
773 struct sk_buff *skb,
774 union i40e_rx_desc *rx_desc)
775 {
776 struct i40e_rx_ptype_decoded decoded;
777 u32 rx_error, rx_status;
778 bool ipv4, ipv6;
779 u8 ptype;
780 u64 qword;
781
782 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
783 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
784 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
785 I40E_RXD_QW1_ERROR_SHIFT;
786 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
787 I40E_RXD_QW1_STATUS_SHIFT;
788 decoded = decode_rx_desc_ptype(ptype);
789
790 skb->ip_summed = CHECKSUM_NONE;
791
792 skb_checksum_none_assert(skb);
793
794 /* Rx csum enabled and ip headers found? */
795 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
796 return;
797
798 /* did the hardware decode the packet and checksum? */
799 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
800 return;
801
802 /* both known and outer_ip must be set for the below code to work */
803 if (!(decoded.known && decoded.outer_ip))
804 return;
805
806 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
807 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
808 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
809 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
810
811 if (ipv4 &&
812 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
813 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
814 goto checksum_fail;
815
816 /* likely incorrect csum if alternate IP extension headers found */
817 if (ipv6 &&
818 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
819 /* don't increment checksum err here, non-fatal err */
820 return;
821
822 /* there was some L4 error, count error and punt packet to the stack */
823 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
824 goto checksum_fail;
825
826 /* handle packets that were not able to be checksummed due
827 * to arrival speed, in this case the stack can compute
828 * the csum.
829 */
830 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
831 return;
832
833 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
834 switch (decoded.inner_prot) {
835 case I40E_RX_PTYPE_INNER_PROT_TCP:
836 case I40E_RX_PTYPE_INNER_PROT_UDP:
837 case I40E_RX_PTYPE_INNER_PROT_SCTP:
838 skb->ip_summed = CHECKSUM_UNNECESSARY;
839 /* fall though */
840 default:
841 break;
842 }
843
844 return;
845
846 checksum_fail:
847 vsi->back->hw_csum_rx_error++;
848 }
849
850 /**
851 * i40e_ptype_to_htype - get a hash type
852 * @ptype: the ptype value from the descriptor
853 *
854 * Returns a hash type to be used by skb_set_hash
855 **/
856 static inline int i40e_ptype_to_htype(u8 ptype)
857 {
858 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
859
860 if (!decoded.known)
861 return PKT_HASH_TYPE_NONE;
862
863 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
864 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
865 return PKT_HASH_TYPE_L4;
866 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
867 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
868 return PKT_HASH_TYPE_L3;
869 else
870 return PKT_HASH_TYPE_L2;
871 }
872
873 /**
874 * i40e_rx_hash - set the hash value in the skb
875 * @ring: descriptor ring
876 * @rx_desc: specific descriptor
877 **/
878 static inline void i40e_rx_hash(struct i40e_ring *ring,
879 union i40e_rx_desc *rx_desc,
880 struct sk_buff *skb,
881 u8 rx_ptype)
882 {
883 u32 hash;
884 const __le64 rss_mask =
885 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
886 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
887
888 if (ring->netdev->features & NETIF_F_RXHASH)
889 return;
890
891 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
892 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
893 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
894 }
895 }
896
897 /**
898 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
899 * @rx_ring: rx descriptor ring packet is being transacted on
900 * @rx_desc: pointer to the EOP Rx descriptor
901 * @skb: pointer to current skb being populated
902 * @rx_ptype: the packet type decoded by hardware
903 *
904 * This function checks the ring, descriptor, and packet information in
905 * order to populate the hash, checksum, VLAN, protocol, and
906 * other fields within the skb.
907 **/
908 static inline
909 void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
910 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
911 u8 rx_ptype)
912 {
913 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
914
915 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
916
917 skb_record_rx_queue(skb, rx_ring->queue_index);
918
919 /* modifies the skb - consumes the enet header */
920 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
921 }
922
923 /**
924 * i40e_cleanup_headers - Correct empty headers
925 * @rx_ring: rx descriptor ring packet is being transacted on
926 * @skb: pointer to current skb being fixed
927 *
928 * Also address the case where we are pulling data in on pages only
929 * and as such no data is present in the skb header.
930 *
931 * In addition if skb is not at least 60 bytes we need to pad it so that
932 * it is large enough to qualify as a valid Ethernet frame.
933 *
934 * Returns true if an error was encountered and skb was freed.
935 **/
936 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
937 {
938 /* if eth_skb_pad returns an error the skb was freed */
939 if (eth_skb_pad(skb))
940 return true;
941
942 return false;
943 }
944
945 /**
946 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
947 * @rx_ring: rx descriptor ring to store buffers on
948 * @old_buff: donor buffer to have page reused
949 *
950 * Synchronizes page for reuse by the adapter
951 **/
952 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
953 struct i40e_rx_buffer *old_buff)
954 {
955 struct i40e_rx_buffer *new_buff;
956 u16 nta = rx_ring->next_to_alloc;
957
958 new_buff = &rx_ring->rx_bi[nta];
959
960 /* update, and store next to alloc */
961 nta++;
962 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
963
964 /* transfer page from old buffer to new buffer */
965 new_buff->dma = old_buff->dma;
966 new_buff->page = old_buff->page;
967 new_buff->page_offset = old_buff->page_offset;
968 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
969 }
970
971 /**
972 * i40e_page_is_reusable - check if any reuse is possible
973 * @page: page struct to check
974 *
975 * A page is not reusable if it was allocated under low memory
976 * conditions, or it's not in the same NUMA node as this CPU.
977 */
978 static inline bool i40e_page_is_reusable(struct page *page)
979 {
980 return (page_to_nid(page) == numa_mem_id()) &&
981 !page_is_pfmemalloc(page);
982 }
983
984 /**
985 * i40e_can_reuse_rx_page - Determine if this page can be reused by
986 * the adapter for another receive
987 *
988 * @rx_buffer: buffer containing the page
989 *
990 * If page is reusable, rx_buffer->page_offset is adjusted to point to
991 * an unused region in the page.
992 *
993 * For small pages, @truesize will be a constant value, half the size
994 * of the memory at page. We'll attempt to alternate between high and
995 * low halves of the page, with one half ready for use by the hardware
996 * and the other half being consumed by the stack. We use the page
997 * ref count to determine whether the stack has finished consuming the
998 * portion of this page that was passed up with a previous packet. If
999 * the page ref count is >1, we'll assume the "other" half page is
1000 * still busy, and this page cannot be reused.
1001 *
1002 * For larger pages, @truesize will be the actual space used by the
1003 * received packet (adjusted upward to an even multiple of the cache
1004 * line size). This will advance through the page by the amount
1005 * actually consumed by the received packets while there is still
1006 * space for a buffer. Each region of larger pages will be used at
1007 * most once, after which the page will not be reused.
1008 *
1009 * In either case, if the page is reusable its refcount is increased.
1010 **/
1011 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1012 {
1013 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1014 struct page *page = rx_buffer->page;
1015
1016 /* Is any reuse possible? */
1017 if (unlikely(!i40e_page_is_reusable(page)))
1018 return false;
1019
1020 #if (PAGE_SIZE < 8192)
1021 /* if we are only owner of page we can reuse it */
1022 if (unlikely((page_count(page) - pagecnt_bias) > 1))
1023 return false;
1024 #else
1025 #define I40E_LAST_OFFSET \
1026 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1027 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1028 return false;
1029 #endif
1030
1031 /* If we have drained the page fragment pool we need to update
1032 * the pagecnt_bias and page count so that we fully restock the
1033 * number of references the driver holds.
1034 */
1035 if (unlikely(!pagecnt_bias)) {
1036 page_ref_add(page, USHRT_MAX);
1037 rx_buffer->pagecnt_bias = USHRT_MAX;
1038 }
1039
1040 return true;
1041 }
1042
1043 /**
1044 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1045 * @rx_ring: rx descriptor ring to transact packets on
1046 * @rx_buffer: buffer containing page to add
1047 * @skb: sk_buff to place the data into
1048 * @size: packet length from rx_desc
1049 *
1050 * This function will add the data contained in rx_buffer->page to the skb.
1051 * It will just attach the page as a frag to the skb.
1052 *
1053 * The function will then update the page offset.
1054 **/
1055 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1056 struct i40e_rx_buffer *rx_buffer,
1057 struct sk_buff *skb,
1058 unsigned int size)
1059 {
1060 #if (PAGE_SIZE < 8192)
1061 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1062 #else
1063 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1064 #endif
1065
1066 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1067 rx_buffer->page_offset, size, truesize);
1068
1069 /* page is being used so we must update the page offset */
1070 #if (PAGE_SIZE < 8192)
1071 rx_buffer->page_offset ^= truesize;
1072 #else
1073 rx_buffer->page_offset += truesize;
1074 #endif
1075 }
1076
1077 /**
1078 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1079 * @rx_ring: rx descriptor ring to transact packets on
1080 * @size: size of buffer to add to skb
1081 *
1082 * This function will pull an Rx buffer from the ring and synchronize it
1083 * for use by the CPU.
1084 */
1085 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1086 const unsigned int size)
1087 {
1088 struct i40e_rx_buffer *rx_buffer;
1089
1090 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1091 prefetchw(rx_buffer->page);
1092
1093 /* we are reusing so sync this buffer for CPU use */
1094 dma_sync_single_range_for_cpu(rx_ring->dev,
1095 rx_buffer->dma,
1096 rx_buffer->page_offset,
1097 size,
1098 DMA_FROM_DEVICE);
1099
1100 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1101 rx_buffer->pagecnt_bias--;
1102
1103 return rx_buffer;
1104 }
1105
1106 /**
1107 * i40e_construct_skb - Allocate skb and populate it
1108 * @rx_ring: rx descriptor ring to transact packets on
1109 * @rx_buffer: rx buffer to pull data from
1110 * @size: size of buffer to add to skb
1111 *
1112 * This function allocates an skb. It then populates it with the page
1113 * data from the current receive descriptor, taking care to set up the
1114 * skb correctly.
1115 */
1116 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1117 struct i40e_rx_buffer *rx_buffer,
1118 unsigned int size)
1119 {
1120 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1121 #if (PAGE_SIZE < 8192)
1122 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1123 #else
1124 unsigned int truesize = SKB_DATA_ALIGN(size);
1125 #endif
1126 unsigned int headlen;
1127 struct sk_buff *skb;
1128
1129 /* prefetch first cache line of first page */
1130 prefetch(va);
1131 #if L1_CACHE_BYTES < 128
1132 prefetch(va + L1_CACHE_BYTES);
1133 #endif
1134
1135 /* allocate a skb to store the frags */
1136 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1137 I40E_RX_HDR_SIZE,
1138 GFP_ATOMIC | __GFP_NOWARN);
1139 if (unlikely(!skb))
1140 return NULL;
1141
1142 /* Determine available headroom for copy */
1143 headlen = size;
1144 if (headlen > I40E_RX_HDR_SIZE)
1145 headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1146
1147 /* align pull length to size of long to optimize memcpy performance */
1148 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1149
1150 /* update all of the pointers */
1151 size -= headlen;
1152 if (size) {
1153 skb_add_rx_frag(skb, 0, rx_buffer->page,
1154 rx_buffer->page_offset + headlen,
1155 size, truesize);
1156
1157 /* buffer is used by skb, update page_offset */
1158 #if (PAGE_SIZE < 8192)
1159 rx_buffer->page_offset ^= truesize;
1160 #else
1161 rx_buffer->page_offset += truesize;
1162 #endif
1163 } else {
1164 /* buffer is unused, reset bias back to rx_buffer */
1165 rx_buffer->pagecnt_bias++;
1166 }
1167
1168 return skb;
1169 }
1170
1171 /**
1172 * i40e_build_skb - Build skb around an existing buffer
1173 * @rx_ring: Rx descriptor ring to transact packets on
1174 * @rx_buffer: Rx buffer to pull data from
1175 * @size: size of buffer to add to skb
1176 *
1177 * This function builds an skb around an existing Rx buffer, taking care
1178 * to set up the skb correctly and avoid any memcpy overhead.
1179 */
1180 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1181 struct i40e_rx_buffer *rx_buffer,
1182 unsigned int size)
1183 {
1184 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1185 #if (PAGE_SIZE < 8192)
1186 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1187 #else
1188 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1189 SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1190 #endif
1191 struct sk_buff *skb;
1192
1193 /* prefetch first cache line of first page */
1194 prefetch(va);
1195 #if L1_CACHE_BYTES < 128
1196 prefetch(va + L1_CACHE_BYTES);
1197 #endif
1198 /* build an skb around the page buffer */
1199 skb = build_skb(va - I40E_SKB_PAD, truesize);
1200 if (unlikely(!skb))
1201 return NULL;
1202
1203 /* update pointers within the skb to store the data */
1204 skb_reserve(skb, I40E_SKB_PAD);
1205 __skb_put(skb, size);
1206
1207 /* buffer is used by skb, update page_offset */
1208 #if (PAGE_SIZE < 8192)
1209 rx_buffer->page_offset ^= truesize;
1210 #else
1211 rx_buffer->page_offset += truesize;
1212 #endif
1213
1214 return skb;
1215 }
1216
1217 /**
1218 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1219 * @rx_ring: rx descriptor ring to transact packets on
1220 * @rx_buffer: rx buffer to pull data from
1221 *
1222 * This function will clean up the contents of the rx_buffer. It will
1223 * either recycle the bufer or unmap it and free the associated resources.
1224 */
1225 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1226 struct i40e_rx_buffer *rx_buffer)
1227 {
1228 if (i40e_can_reuse_rx_page(rx_buffer)) {
1229 /* hand second half of page back to the ring */
1230 i40e_reuse_rx_page(rx_ring, rx_buffer);
1231 rx_ring->rx_stats.page_reuse_count++;
1232 } else {
1233 /* we are not reusing the buffer so unmap it */
1234 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1235 i40e_rx_pg_size(rx_ring),
1236 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1237 __page_frag_cache_drain(rx_buffer->page,
1238 rx_buffer->pagecnt_bias);
1239 }
1240
1241 /* clear contents of buffer_info */
1242 rx_buffer->page = NULL;
1243 }
1244
1245 /**
1246 * i40e_is_non_eop - process handling of non-EOP buffers
1247 * @rx_ring: Rx ring being processed
1248 * @rx_desc: Rx descriptor for current buffer
1249 * @skb: Current socket buffer containing buffer in progress
1250 *
1251 * This function updates next to clean. If the buffer is an EOP buffer
1252 * this function exits returning false, otherwise it will place the
1253 * sk_buff in the next buffer to be chained and return true indicating
1254 * that this is in fact a non-EOP buffer.
1255 **/
1256 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1257 union i40e_rx_desc *rx_desc,
1258 struct sk_buff *skb)
1259 {
1260 u32 ntc = rx_ring->next_to_clean + 1;
1261
1262 /* fetch, update, and store next to clean */
1263 ntc = (ntc < rx_ring->count) ? ntc : 0;
1264 rx_ring->next_to_clean = ntc;
1265
1266 prefetch(I40E_RX_DESC(rx_ring, ntc));
1267
1268 /* if we are the last buffer then there is nothing else to do */
1269 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1270 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1271 return false;
1272
1273 rx_ring->rx_stats.non_eop_descs++;
1274
1275 return true;
1276 }
1277
1278 /**
1279 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1280 * @rx_ring: rx descriptor ring to transact packets on
1281 * @budget: Total limit on number of packets to process
1282 *
1283 * This function provides a "bounce buffer" approach to Rx interrupt
1284 * processing. The advantage to this is that on systems that have
1285 * expensive overhead for IOMMU access this provides a means of avoiding
1286 * it by maintaining the mapping of the page to the system.
1287 *
1288 * Returns amount of work completed
1289 **/
1290 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1291 {
1292 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1293 struct sk_buff *skb = rx_ring->skb;
1294 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1295 bool failure = false;
1296
1297 while (likely(total_rx_packets < (unsigned int)budget)) {
1298 struct i40e_rx_buffer *rx_buffer;
1299 union i40e_rx_desc *rx_desc;
1300 unsigned int size;
1301 u16 vlan_tag;
1302 u8 rx_ptype;
1303 u64 qword;
1304
1305 /* return some buffers to hardware, one at a time is too slow */
1306 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1307 failure = failure ||
1308 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1309 cleaned_count = 0;
1310 }
1311
1312 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1313
1314 /* status_error_len will always be zero for unused descriptors
1315 * because it's cleared in cleanup, and overlaps with hdr_addr
1316 * which is always zero because packet split isn't used, if the
1317 * hardware wrote DD then the length will be non-zero
1318 */
1319 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1320
1321 /* This memory barrier is needed to keep us from reading
1322 * any other fields out of the rx_desc until we have
1323 * verified the descriptor has been written back.
1324 */
1325 dma_rmb();
1326
1327 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1328 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1329 if (!size)
1330 break;
1331
1332 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1333 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
1334
1335 /* retrieve a buffer from the ring */
1336 if (skb)
1337 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
1338 else if (ring_uses_build_skb(rx_ring))
1339 skb = i40e_build_skb(rx_ring, rx_buffer, size);
1340 else
1341 skb = i40e_construct_skb(rx_ring, rx_buffer, size);
1342
1343 /* exit if we failed to retrieve a buffer */
1344 if (!skb) {
1345 rx_ring->rx_stats.alloc_buff_failed++;
1346 rx_buffer->pagecnt_bias++;
1347 break;
1348 }
1349
1350 i40e_put_rx_buffer(rx_ring, rx_buffer);
1351 cleaned_count++;
1352
1353 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1354 continue;
1355
1356 /* ERR_MASK will only have valid bits if EOP set, and
1357 * what we are doing here is actually checking
1358 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1359 * the error field
1360 */
1361 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1362 dev_kfree_skb_any(skb);
1363 skb = NULL;
1364 continue;
1365 }
1366
1367 if (i40e_cleanup_headers(rx_ring, skb)) {
1368 skb = NULL;
1369 continue;
1370 }
1371
1372 /* probably a little skewed due to removing CRC */
1373 total_rx_bytes += skb->len;
1374
1375 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1376 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1377 I40E_RXD_QW1_PTYPE_SHIFT;
1378
1379 /* populate checksum, VLAN, and protocol */
1380 i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1381
1382
1383 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1384 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1385
1386 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1387 i40e_receive_skb(rx_ring, skb, vlan_tag);
1388 skb = NULL;
1389
1390 /* update budget accounting */
1391 total_rx_packets++;
1392 }
1393
1394 rx_ring->skb = skb;
1395
1396 u64_stats_update_begin(&rx_ring->syncp);
1397 rx_ring->stats.packets += total_rx_packets;
1398 rx_ring->stats.bytes += total_rx_bytes;
1399 u64_stats_update_end(&rx_ring->syncp);
1400 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1401 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1402
1403 /* guarantee a trip back through this routine if there was a failure */
1404 return failure ? budget : (int)total_rx_packets;
1405 }
1406
1407 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1408 {
1409 u32 val;
1410
1411 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1412 /* Don't clear PBA because that can cause lost interrupts that
1413 * came in while we were cleaning/polling
1414 */
1415 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1416 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1417
1418 return val;
1419 }
1420
1421 /* a small macro to shorten up some long lines */
1422 #define INTREG I40E_VFINT_DYN_CTLN1
1423 static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1424 {
1425 struct i40evf_adapter *adapter = vsi->back;
1426
1427 return adapter->rx_rings[idx].rx_itr_setting;
1428 }
1429
1430 static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
1431 {
1432 struct i40evf_adapter *adapter = vsi->back;
1433
1434 return adapter->tx_rings[idx].tx_itr_setting;
1435 }
1436
1437 /**
1438 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1439 * @vsi: the VSI we care about
1440 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1441 *
1442 **/
1443 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1444 struct i40e_q_vector *q_vector)
1445 {
1446 struct i40e_hw *hw = &vsi->back->hw;
1447 bool rx = false, tx = false;
1448 u32 rxval, txval;
1449 int vector;
1450 int idx = q_vector->v_idx;
1451 int rx_itr_setting, tx_itr_setting;
1452
1453 vector = (q_vector->v_idx + vsi->base_vector);
1454
1455 /* avoid dynamic calculation if in countdown mode OR if
1456 * all dynamic is disabled
1457 */
1458 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1459
1460 rx_itr_setting = get_rx_itr(vsi, idx);
1461 tx_itr_setting = get_tx_itr(vsi, idx);
1462
1463 if (q_vector->itr_countdown > 0 ||
1464 (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1465 !ITR_IS_DYNAMIC(tx_itr_setting))) {
1466 goto enable_int;
1467 }
1468
1469 if (ITR_IS_DYNAMIC(rx_itr_setting)) {
1470 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1471 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1472 }
1473
1474 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1475 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1476 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1477 }
1478
1479 if (rx || tx) {
1480 /* get the higher of the two ITR adjustments and
1481 * use the same value for both ITR registers
1482 * when in adaptive mode (Rx and/or Tx)
1483 */
1484 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1485
1486 q_vector->tx.itr = q_vector->rx.itr = itr;
1487 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1488 tx = true;
1489 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1490 rx = true;
1491 }
1492
1493 /* only need to enable the interrupt once, but need
1494 * to possibly update both ITR values
1495 */
1496 if (rx) {
1497 /* set the INTENA_MSK_MASK so that this first write
1498 * won't actually enable the interrupt, instead just
1499 * updating the ITR (it's bit 31 PF and VF)
1500 */
1501 rxval |= BIT(31);
1502 /* don't check _DOWN because interrupt isn't being enabled */
1503 wr32(hw, INTREG(vector - 1), rxval);
1504 }
1505
1506 enable_int:
1507 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
1508 wr32(hw, INTREG(vector - 1), txval);
1509
1510 if (q_vector->itr_countdown)
1511 q_vector->itr_countdown--;
1512 else
1513 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1514 }
1515
1516 /**
1517 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1518 * @napi: napi struct with our devices info in it
1519 * @budget: amount of work driver is allowed to do this pass, in packets
1520 *
1521 * This function will clean all queues associated with a q_vector.
1522 *
1523 * Returns the amount of work done
1524 **/
1525 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1526 {
1527 struct i40e_q_vector *q_vector =
1528 container_of(napi, struct i40e_q_vector, napi);
1529 struct i40e_vsi *vsi = q_vector->vsi;
1530 struct i40e_ring *ring;
1531 bool clean_complete = true;
1532 bool arm_wb = false;
1533 int budget_per_ring;
1534 int work_done = 0;
1535
1536 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
1537 napi_complete(napi);
1538 return 0;
1539 }
1540
1541 /* Since the actual Tx work is minimal, we can give the Tx a larger
1542 * budget and be more aggressive about cleaning up the Tx descriptors.
1543 */
1544 i40e_for_each_ring(ring, q_vector->tx) {
1545 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1546 clean_complete = false;
1547 continue;
1548 }
1549 arm_wb |= ring->arm_wb;
1550 ring->arm_wb = false;
1551 }
1552
1553 /* Handle case where we are called by netpoll with a budget of 0 */
1554 if (budget <= 0)
1555 goto tx_only;
1556
1557 /* We attempt to distribute budget to each Rx queue fairly, but don't
1558 * allow the budget to go below 1 because that would exit polling early.
1559 */
1560 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1561
1562 i40e_for_each_ring(ring, q_vector->rx) {
1563 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1564
1565 work_done += cleaned;
1566 /* if we clean as many as budgeted, we must not be done */
1567 if (cleaned >= budget_per_ring)
1568 clean_complete = false;
1569 }
1570
1571 /* If work not completed, return budget and polling will return */
1572 if (!clean_complete) {
1573 int cpu_id = smp_processor_id();
1574
1575 /* It is possible that the interrupt affinity has changed but,
1576 * if the cpu is pegged at 100%, polling will never exit while
1577 * traffic continues and the interrupt will be stuck on this
1578 * cpu. We check to make sure affinity is correct before we
1579 * continue to poll, otherwise we must stop polling so the
1580 * interrupt can move to the correct cpu.
1581 */
1582 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1583 /* Tell napi that we are done polling */
1584 napi_complete_done(napi, work_done);
1585
1586 /* Force an interrupt */
1587 i40evf_force_wb(vsi, q_vector);
1588
1589 /* Return budget-1 so that polling stops */
1590 return budget - 1;
1591 }
1592 tx_only:
1593 if (arm_wb) {
1594 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1595 i40e_enable_wb_on_itr(vsi, q_vector);
1596 }
1597 return budget;
1598 }
1599
1600 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1601 q_vector->arm_wb_state = false;
1602
1603 /* Work is done so exit the polling mode and re-enable the interrupt */
1604 napi_complete_done(napi, work_done);
1605
1606 i40e_update_enable_itr(vsi, q_vector);
1607
1608 return min(work_done, budget - 1);
1609 }
1610
1611 /**
1612 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1613 * @skb: send buffer
1614 * @tx_ring: ring to send buffer on
1615 * @flags: the tx flags to be set
1616 *
1617 * Checks the skb and set up correspondingly several generic transmit flags
1618 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1619 *
1620 * Returns error code indicate the frame should be dropped upon error and the
1621 * otherwise returns 0 to indicate the flags has been set properly.
1622 **/
1623 static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1624 struct i40e_ring *tx_ring,
1625 u32 *flags)
1626 {
1627 __be16 protocol = skb->protocol;
1628 u32 tx_flags = 0;
1629
1630 if (protocol == htons(ETH_P_8021Q) &&
1631 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1632 /* When HW VLAN acceleration is turned off by the user the
1633 * stack sets the protocol to 8021q so that the driver
1634 * can take any steps required to support the SW only
1635 * VLAN handling. In our case the driver doesn't need
1636 * to take any further steps so just set the protocol
1637 * to the encapsulated ethertype.
1638 */
1639 skb->protocol = vlan_get_protocol(skb);
1640 goto out;
1641 }
1642
1643 /* if we have a HW VLAN tag being added, default to the HW one */
1644 if (skb_vlan_tag_present(skb)) {
1645 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1646 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1647 /* else if it is a SW VLAN, check the next protocol and store the tag */
1648 } else if (protocol == htons(ETH_P_8021Q)) {
1649 struct vlan_hdr *vhdr, _vhdr;
1650
1651 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1652 if (!vhdr)
1653 return -EINVAL;
1654
1655 protocol = vhdr->h_vlan_encapsulated_proto;
1656 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1657 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1658 }
1659
1660 out:
1661 *flags = tx_flags;
1662 return 0;
1663 }
1664
1665 /**
1666 * i40e_tso - set up the tso context descriptor
1667 * @first: pointer to first Tx buffer for xmit
1668 * @hdr_len: ptr to the size of the packet header
1669 * @cd_type_cmd_tso_mss: Quad Word 1
1670 *
1671 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1672 **/
1673 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
1674 u64 *cd_type_cmd_tso_mss)
1675 {
1676 struct sk_buff *skb = first->skb;
1677 u64 cd_cmd, cd_tso_len, cd_mss;
1678 union {
1679 struct iphdr *v4;
1680 struct ipv6hdr *v6;
1681 unsigned char *hdr;
1682 } ip;
1683 union {
1684 struct tcphdr *tcp;
1685 struct udphdr *udp;
1686 unsigned char *hdr;
1687 } l4;
1688 u32 paylen, l4_offset;
1689 u16 gso_segs, gso_size;
1690 int err;
1691
1692 if (skb->ip_summed != CHECKSUM_PARTIAL)
1693 return 0;
1694
1695 if (!skb_is_gso(skb))
1696 return 0;
1697
1698 err = skb_cow_head(skb, 0);
1699 if (err < 0)
1700 return err;
1701
1702 ip.hdr = skb_network_header(skb);
1703 l4.hdr = skb_transport_header(skb);
1704
1705 /* initialize outer IP header fields */
1706 if (ip.v4->version == 4) {
1707 ip.v4->tot_len = 0;
1708 ip.v4->check = 0;
1709 } else {
1710 ip.v6->payload_len = 0;
1711 }
1712
1713 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1714 SKB_GSO_GRE_CSUM |
1715 SKB_GSO_IPXIP4 |
1716 SKB_GSO_IPXIP6 |
1717 SKB_GSO_UDP_TUNNEL |
1718 SKB_GSO_UDP_TUNNEL_CSUM)) {
1719 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1720 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1721 l4.udp->len = 0;
1722
1723 /* determine offset of outer transport header */
1724 l4_offset = l4.hdr - skb->data;
1725
1726 /* remove payload length from outer checksum */
1727 paylen = skb->len - l4_offset;
1728 csum_replace_by_diff(&l4.udp->check,
1729 (__force __wsum)htonl(paylen));
1730 }
1731
1732 /* reset pointers to inner headers */
1733 ip.hdr = skb_inner_network_header(skb);
1734 l4.hdr = skb_inner_transport_header(skb);
1735
1736 /* initialize inner IP header fields */
1737 if (ip.v4->version == 4) {
1738 ip.v4->tot_len = 0;
1739 ip.v4->check = 0;
1740 } else {
1741 ip.v6->payload_len = 0;
1742 }
1743 }
1744
1745 /* determine offset of inner transport header */
1746 l4_offset = l4.hdr - skb->data;
1747
1748 /* remove payload length from inner checksum */
1749 paylen = skb->len - l4_offset;
1750 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1751
1752 /* compute length of segmentation header */
1753 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1754
1755 /* pull values out of skb_shinfo */
1756 gso_size = skb_shinfo(skb)->gso_size;
1757 gso_segs = skb_shinfo(skb)->gso_segs;
1758
1759 /* update GSO size and bytecount with header size */
1760 first->gso_segs = gso_segs;
1761 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1762
1763 /* find the field values */
1764 cd_cmd = I40E_TX_CTX_DESC_TSO;
1765 cd_tso_len = skb->len - *hdr_len;
1766 cd_mss = gso_size;
1767 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1768 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1769 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1770 return 1;
1771 }
1772
1773 /**
1774 * i40e_tx_enable_csum - Enable Tx checksum offloads
1775 * @skb: send buffer
1776 * @tx_flags: pointer to Tx flags currently set
1777 * @td_cmd: Tx descriptor command bits to set
1778 * @td_offset: Tx descriptor header offsets to set
1779 * @tx_ring: Tx descriptor ring
1780 * @cd_tunneling: ptr to context desc bits
1781 **/
1782 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1783 u32 *td_cmd, u32 *td_offset,
1784 struct i40e_ring *tx_ring,
1785 u32 *cd_tunneling)
1786 {
1787 union {
1788 struct iphdr *v4;
1789 struct ipv6hdr *v6;
1790 unsigned char *hdr;
1791 } ip;
1792 union {
1793 struct tcphdr *tcp;
1794 struct udphdr *udp;
1795 unsigned char *hdr;
1796 } l4;
1797 unsigned char *exthdr;
1798 u32 offset, cmd = 0;
1799 __be16 frag_off;
1800 u8 l4_proto = 0;
1801
1802 if (skb->ip_summed != CHECKSUM_PARTIAL)
1803 return 0;
1804
1805 ip.hdr = skb_network_header(skb);
1806 l4.hdr = skb_transport_header(skb);
1807
1808 /* compute outer L2 header size */
1809 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1810
1811 if (skb->encapsulation) {
1812 u32 tunnel = 0;
1813 /* define outer network header type */
1814 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1815 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1816 I40E_TX_CTX_EXT_IP_IPV4 :
1817 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1818
1819 l4_proto = ip.v4->protocol;
1820 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1821 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1822
1823 exthdr = ip.hdr + sizeof(*ip.v6);
1824 l4_proto = ip.v6->nexthdr;
1825 if (l4.hdr != exthdr)
1826 ipv6_skip_exthdr(skb, exthdr - skb->data,
1827 &l4_proto, &frag_off);
1828 }
1829
1830 /* define outer transport */
1831 switch (l4_proto) {
1832 case IPPROTO_UDP:
1833 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1834 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1835 break;
1836 case IPPROTO_GRE:
1837 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1838 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1839 break;
1840 case IPPROTO_IPIP:
1841 case IPPROTO_IPV6:
1842 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1843 l4.hdr = skb_inner_network_header(skb);
1844 break;
1845 default:
1846 if (*tx_flags & I40E_TX_FLAGS_TSO)
1847 return -1;
1848
1849 skb_checksum_help(skb);
1850 return 0;
1851 }
1852
1853 /* compute outer L3 header size */
1854 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1855 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1856
1857 /* switch IP header pointer from outer to inner header */
1858 ip.hdr = skb_inner_network_header(skb);
1859
1860 /* compute tunnel header size */
1861 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1862 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1863
1864 /* indicate if we need to offload outer UDP header */
1865 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1866 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1867 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1868 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1869
1870 /* record tunnel offload values */
1871 *cd_tunneling |= tunnel;
1872
1873 /* switch L4 header pointer from outer to inner */
1874 l4.hdr = skb_inner_transport_header(skb);
1875 l4_proto = 0;
1876
1877 /* reset type as we transition from outer to inner headers */
1878 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1879 if (ip.v4->version == 4)
1880 *tx_flags |= I40E_TX_FLAGS_IPV4;
1881 if (ip.v6->version == 6)
1882 *tx_flags |= I40E_TX_FLAGS_IPV6;
1883 }
1884
1885 /* Enable IP checksum offloads */
1886 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1887 l4_proto = ip.v4->protocol;
1888 /* the stack computes the IP header already, the only time we
1889 * need the hardware to recompute it is in the case of TSO.
1890 */
1891 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1892 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1893 I40E_TX_DESC_CMD_IIPT_IPV4;
1894 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1895 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1896
1897 exthdr = ip.hdr + sizeof(*ip.v6);
1898 l4_proto = ip.v6->nexthdr;
1899 if (l4.hdr != exthdr)
1900 ipv6_skip_exthdr(skb, exthdr - skb->data,
1901 &l4_proto, &frag_off);
1902 }
1903
1904 /* compute inner L3 header size */
1905 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1906
1907 /* Enable L4 checksum offloads */
1908 switch (l4_proto) {
1909 case IPPROTO_TCP:
1910 /* enable checksum offloads */
1911 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1912 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1913 break;
1914 case IPPROTO_SCTP:
1915 /* enable SCTP checksum offload */
1916 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1917 offset |= (sizeof(struct sctphdr) >> 2) <<
1918 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1919 break;
1920 case IPPROTO_UDP:
1921 /* enable UDP checksum offload */
1922 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1923 offset |= (sizeof(struct udphdr) >> 2) <<
1924 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1925 break;
1926 default:
1927 if (*tx_flags & I40E_TX_FLAGS_TSO)
1928 return -1;
1929 skb_checksum_help(skb);
1930 return 0;
1931 }
1932
1933 *td_cmd |= cmd;
1934 *td_offset |= offset;
1935
1936 return 1;
1937 }
1938
1939 /**
1940 * i40e_create_tx_ctx Build the Tx context descriptor
1941 * @tx_ring: ring to create the descriptor on
1942 * @cd_type_cmd_tso_mss: Quad Word 1
1943 * @cd_tunneling: Quad Word 0 - bits 0-31
1944 * @cd_l2tag2: Quad Word 0 - bits 32-63
1945 **/
1946 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1947 const u64 cd_type_cmd_tso_mss,
1948 const u32 cd_tunneling, const u32 cd_l2tag2)
1949 {
1950 struct i40e_tx_context_desc *context_desc;
1951 int i = tx_ring->next_to_use;
1952
1953 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1954 !cd_tunneling && !cd_l2tag2)
1955 return;
1956
1957 /* grab the next descriptor */
1958 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1959
1960 i++;
1961 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1962
1963 /* cpu_to_le32 and assign to struct fields */
1964 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1965 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1966 context_desc->rsvd = cpu_to_le16(0);
1967 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1968 }
1969
1970 /**
1971 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1972 * @skb: send buffer
1973 *
1974 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1975 * and so we need to figure out the cases where we need to linearize the skb.
1976 *
1977 * For TSO we need to count the TSO header and segment payload separately.
1978 * As such we need to check cases where we have 7 fragments or more as we
1979 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1980 * the segment payload in the first descriptor, and another 7 for the
1981 * fragments.
1982 **/
1983 bool __i40evf_chk_linearize(struct sk_buff *skb)
1984 {
1985 const struct skb_frag_struct *frag, *stale;
1986 int nr_frags, sum;
1987
1988 /* no need to check if number of frags is less than 7 */
1989 nr_frags = skb_shinfo(skb)->nr_frags;
1990 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
1991 return false;
1992
1993 /* We need to walk through the list and validate that each group
1994 * of 6 fragments totals at least gso_size.
1995 */
1996 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
1997 frag = &skb_shinfo(skb)->frags[0];
1998
1999 /* Initialize size to the negative value of gso_size minus 1. We
2000 * use this as the worst case scenerio in which the frag ahead
2001 * of us only provides one byte which is why we are limited to 6
2002 * descriptors for a single transmit as the header and previous
2003 * fragment are already consuming 2 descriptors.
2004 */
2005 sum = 1 - skb_shinfo(skb)->gso_size;
2006
2007 /* Add size of frags 0 through 4 to create our initial sum */
2008 sum += skb_frag_size(frag++);
2009 sum += skb_frag_size(frag++);
2010 sum += skb_frag_size(frag++);
2011 sum += skb_frag_size(frag++);
2012 sum += skb_frag_size(frag++);
2013
2014 /* Walk through fragments adding latest fragment, testing it, and
2015 * then removing stale fragments from the sum.
2016 */
2017 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2018 int stale_size = skb_frag_size(stale);
2019
2020 sum += skb_frag_size(frag++);
2021
2022 /* The stale fragment may present us with a smaller
2023 * descriptor than the actual fragment size. To account
2024 * for that we need to remove all the data on the front and
2025 * figure out what the remainder would be in the last
2026 * descriptor associated with the fragment.
2027 */
2028 if (stale_size > I40E_MAX_DATA_PER_TXD) {
2029 int align_pad = -(stale->page_offset) &
2030 (I40E_MAX_READ_REQ_SIZE - 1);
2031
2032 sum -= align_pad;
2033 stale_size -= align_pad;
2034
2035 do {
2036 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
2037 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
2038 } while (stale_size > I40E_MAX_DATA_PER_TXD);
2039 }
2040
2041 /* if sum is negative we failed to make sufficient progress */
2042 if (sum < 0)
2043 return true;
2044
2045 if (!nr_frags--)
2046 break;
2047
2048 sum -= stale_size;
2049 }
2050
2051 return false;
2052 }
2053
2054 /**
2055 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
2056 * @tx_ring: the ring to be checked
2057 * @size: the size buffer we want to assure is available
2058 *
2059 * Returns -EBUSY if a stop is needed, else 0
2060 **/
2061 int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2062 {
2063 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2064 /* Memory barrier before checking head and tail */
2065 smp_mb();
2066
2067 /* Check again in a case another CPU has just made room available. */
2068 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2069 return -EBUSY;
2070
2071 /* A reprieve! - use start_queue because it doesn't call schedule */
2072 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2073 ++tx_ring->tx_stats.restart_queue;
2074 return 0;
2075 }
2076
2077 /**
2078 * i40evf_tx_map - Build the Tx descriptor
2079 * @tx_ring: ring to send buffer on
2080 * @skb: send buffer
2081 * @first: first buffer info buffer to use
2082 * @tx_flags: collected send information
2083 * @hdr_len: size of the packet header
2084 * @td_cmd: the command field in the descriptor
2085 * @td_offset: offset for checksum or crc
2086 **/
2087 static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2088 struct i40e_tx_buffer *first, u32 tx_flags,
2089 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2090 {
2091 unsigned int data_len = skb->data_len;
2092 unsigned int size = skb_headlen(skb);
2093 struct skb_frag_struct *frag;
2094 struct i40e_tx_buffer *tx_bi;
2095 struct i40e_tx_desc *tx_desc;
2096 u16 i = tx_ring->next_to_use;
2097 u32 td_tag = 0;
2098 dma_addr_t dma;
2099
2100 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2101 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2102 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2103 I40E_TX_FLAGS_VLAN_SHIFT;
2104 }
2105
2106 first->tx_flags = tx_flags;
2107
2108 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2109
2110 tx_desc = I40E_TX_DESC(tx_ring, i);
2111 tx_bi = first;
2112
2113 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2114 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2115
2116 if (dma_mapping_error(tx_ring->dev, dma))
2117 goto dma_error;
2118
2119 /* record length, and DMA address */
2120 dma_unmap_len_set(tx_bi, len, size);
2121 dma_unmap_addr_set(tx_bi, dma, dma);
2122
2123 /* align size to end of page */
2124 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2125 tx_desc->buffer_addr = cpu_to_le64(dma);
2126
2127 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2128 tx_desc->cmd_type_offset_bsz =
2129 build_ctob(td_cmd, td_offset,
2130 max_data, td_tag);
2131
2132 tx_desc++;
2133 i++;
2134
2135 if (i == tx_ring->count) {
2136 tx_desc = I40E_TX_DESC(tx_ring, 0);
2137 i = 0;
2138 }
2139
2140 dma += max_data;
2141 size -= max_data;
2142
2143 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2144 tx_desc->buffer_addr = cpu_to_le64(dma);
2145 }
2146
2147 if (likely(!data_len))
2148 break;
2149
2150 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2151 size, td_tag);
2152
2153 tx_desc++;
2154 i++;
2155
2156 if (i == tx_ring->count) {
2157 tx_desc = I40E_TX_DESC(tx_ring, 0);
2158 i = 0;
2159 }
2160
2161 size = skb_frag_size(frag);
2162 data_len -= size;
2163
2164 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2165 DMA_TO_DEVICE);
2166
2167 tx_bi = &tx_ring->tx_bi[i];
2168 }
2169
2170 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2171
2172 i++;
2173 if (i == tx_ring->count)
2174 i = 0;
2175
2176 tx_ring->next_to_use = i;
2177
2178 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2179
2180 /* write last descriptor with RS and EOP bits */
2181 td_cmd |= I40E_TXD_CMD;
2182 tx_desc->cmd_type_offset_bsz =
2183 build_ctob(td_cmd, td_offset, size, td_tag);
2184
2185 /* Force memory writes to complete before letting h/w know there
2186 * are new descriptors to fetch.
2187 *
2188 * We also use this memory barrier to make certain all of the
2189 * status bits have been updated before next_to_watch is written.
2190 */
2191 wmb();
2192
2193 /* set next_to_watch value indicating a packet is present */
2194 first->next_to_watch = tx_desc;
2195
2196 /* notify HW of packet */
2197 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
2198 writel(i, tx_ring->tail);
2199
2200 /* we need this if more than one processor can write to our tail
2201 * at a time, it synchronizes IO on IA64/Altix systems
2202 */
2203 mmiowb();
2204 }
2205
2206 return;
2207
2208 dma_error:
2209 dev_info(tx_ring->dev, "TX DMA map failed\n");
2210
2211 /* clear dma mappings for failed tx_bi map */
2212 for (;;) {
2213 tx_bi = &tx_ring->tx_bi[i];
2214 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2215 if (tx_bi == first)
2216 break;
2217 if (i == 0)
2218 i = tx_ring->count;
2219 i--;
2220 }
2221
2222 tx_ring->next_to_use = i;
2223 }
2224
2225 /**
2226 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2227 * @skb: send buffer
2228 * @tx_ring: ring to send buffer on
2229 *
2230 * Returns NETDEV_TX_OK if sent, else an error code
2231 **/
2232 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2233 struct i40e_ring *tx_ring)
2234 {
2235 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2236 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2237 struct i40e_tx_buffer *first;
2238 u32 td_offset = 0;
2239 u32 tx_flags = 0;
2240 __be16 protocol;
2241 u32 td_cmd = 0;
2242 u8 hdr_len = 0;
2243 int tso, count;
2244
2245 /* prefetch the data, we'll need it later */
2246 prefetch(skb->data);
2247
2248 i40e_trace(xmit_frame_ring, skb, tx_ring);
2249
2250 count = i40e_xmit_descriptor_count(skb);
2251 if (i40e_chk_linearize(skb, count)) {
2252 if (__skb_linearize(skb)) {
2253 dev_kfree_skb_any(skb);
2254 return NETDEV_TX_OK;
2255 }
2256 count = i40e_txd_use_count(skb->len);
2257 tx_ring->tx_stats.tx_linearize++;
2258 }
2259
2260 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2261 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2262 * + 4 desc gap to avoid the cache line where head is,
2263 * + 1 desc for context descriptor,
2264 * otherwise try next time
2265 */
2266 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2267 tx_ring->tx_stats.tx_busy++;
2268 return NETDEV_TX_BUSY;
2269 }
2270
2271 /* record the location of the first descriptor for this packet */
2272 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2273 first->skb = skb;
2274 first->bytecount = skb->len;
2275 first->gso_segs = 1;
2276
2277 /* prepare the xmit flags */
2278 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2279 goto out_drop;
2280
2281 /* obtain protocol of skb */
2282 protocol = vlan_get_protocol(skb);
2283
2284 /* setup IPv4/IPv6 offloads */
2285 if (protocol == htons(ETH_P_IP))
2286 tx_flags |= I40E_TX_FLAGS_IPV4;
2287 else if (protocol == htons(ETH_P_IPV6))
2288 tx_flags |= I40E_TX_FLAGS_IPV6;
2289
2290 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2291
2292 if (tso < 0)
2293 goto out_drop;
2294 else if (tso)
2295 tx_flags |= I40E_TX_FLAGS_TSO;
2296
2297 /* Always offload the checksum, since it's in the data descriptor */
2298 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2299 tx_ring, &cd_tunneling);
2300 if (tso < 0)
2301 goto out_drop;
2302
2303 skb_tx_timestamp(skb);
2304
2305 /* always enable CRC insertion offload */
2306 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2307
2308 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2309 cd_tunneling, cd_l2tag2);
2310
2311 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2312 td_cmd, td_offset);
2313
2314 return NETDEV_TX_OK;
2315
2316 out_drop:
2317 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2318 dev_kfree_skb_any(first->skb);
2319 first->skb = NULL;
2320 return NETDEV_TX_OK;
2321 }
2322
2323 /**
2324 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2325 * @skb: send buffer
2326 * @netdev: network interface device structure
2327 *
2328 * Returns NETDEV_TX_OK if sent, else an error code
2329 **/
2330 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2331 {
2332 struct i40evf_adapter *adapter = netdev_priv(netdev);
2333 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2334
2335 /* hardware can't handle really short frames, hardware padding works
2336 * beyond this point
2337 */
2338 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2339 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2340 return NETDEV_TX_OK;
2341 skb->len = I40E_MIN_TX_LEN;
2342 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2343 }
2344
2345 return i40e_xmit_frame_ring(skb, tx_ring);
2346 }