Merge branch 'for-next' of git://git.pengutronix.de/git/ukl/linux into devel-stable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / intel / e100.c
1 /*******************************************************************************
2
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30 * e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
40 *
41 *
42 * Theory of Operation
43 *
44 * I. General
45 *
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
54 *
55 * II. Driver Operation
56 *
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
63 *
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
68 *
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
72 *
73 * III. Transmit
74 *
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
82 *
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
92 *
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
96 *
97 * IV. Receive
98 *
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
108 *
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
115 *
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
124 * placed.
125 *
126 * V. Miscellaneous
127 *
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
133 *
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
135 *
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
138 *
139 * TODO:
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
142 *
143 * FIXES:
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
148 */
149
150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
151
152 #include <linux/hardirq.h>
153 #include <linux/interrupt.h>
154 #include <linux/module.h>
155 #include <linux/moduleparam.h>
156 #include <linux/kernel.h>
157 #include <linux/types.h>
158 #include <linux/sched.h>
159 #include <linux/slab.h>
160 #include <linux/delay.h>
161 #include <linux/init.h>
162 #include <linux/pci.h>
163 #include <linux/dma-mapping.h>
164 #include <linux/dmapool.h>
165 #include <linux/netdevice.h>
166 #include <linux/etherdevice.h>
167 #include <linux/mii.h>
168 #include <linux/if_vlan.h>
169 #include <linux/skbuff.h>
170 #include <linux/ethtool.h>
171 #include <linux/string.h>
172 #include <linux/firmware.h>
173 #include <linux/rtnetlink.h>
174 #include <asm/unaligned.h>
175
176
177 #define DRV_NAME "e100"
178 #define DRV_EXT "-NAPI"
179 #define DRV_VERSION "3.5.24-k2"DRV_EXT
180 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
181 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
182
183 #define E100_WATCHDOG_PERIOD (2 * HZ)
184 #define E100_NAPI_WEIGHT 16
185
186 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
187 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
188 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
189
190 MODULE_DESCRIPTION(DRV_DESCRIPTION);
191 MODULE_AUTHOR(DRV_COPYRIGHT);
192 MODULE_LICENSE("GPL");
193 MODULE_VERSION(DRV_VERSION);
194 MODULE_FIRMWARE(FIRMWARE_D101M);
195 MODULE_FIRMWARE(FIRMWARE_D101S);
196 MODULE_FIRMWARE(FIRMWARE_D102E);
197
198 static int debug = 3;
199 static int eeprom_bad_csum_allow = 0;
200 static int use_io = 0;
201 module_param(debug, int, 0);
202 module_param(eeprom_bad_csum_allow, int, 0);
203 module_param(use_io, int, 0);
204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
205 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
206 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
207
208 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
209 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
210 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
211 static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
212 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
213 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
214 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
216 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
217 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
218 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
219 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
222 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
223 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
224 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
225 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
230 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
231 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
232 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
233 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
234 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
239 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
240 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
241 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
242 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
245 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
246 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
247 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
248 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
249 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
250 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
251 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
252 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
253 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
254 { 0, }
255 };
256 MODULE_DEVICE_TABLE(pci, e100_id_table);
257
258 enum mac {
259 mac_82557_D100_A = 0,
260 mac_82557_D100_B = 1,
261 mac_82557_D100_C = 2,
262 mac_82558_D101_A4 = 4,
263 mac_82558_D101_B0 = 5,
264 mac_82559_D101M = 8,
265 mac_82559_D101S = 9,
266 mac_82550_D102 = 12,
267 mac_82550_D102_C = 13,
268 mac_82551_E = 14,
269 mac_82551_F = 15,
270 mac_82551_10 = 16,
271 mac_unknown = 0xFF,
272 };
273
274 enum phy {
275 phy_100a = 0x000003E0,
276 phy_100c = 0x035002A8,
277 phy_82555_tx = 0x015002A8,
278 phy_nsc_tx = 0x5C002000,
279 phy_82562_et = 0x033002A8,
280 phy_82562_em = 0x032002A8,
281 phy_82562_ek = 0x031002A8,
282 phy_82562_eh = 0x017002A8,
283 phy_82552_v = 0xd061004d,
284 phy_unknown = 0xFFFFFFFF,
285 };
286
287 /* CSR (Control/Status Registers) */
288 struct csr {
289 struct {
290 u8 status;
291 u8 stat_ack;
292 u8 cmd_lo;
293 u8 cmd_hi;
294 u32 gen_ptr;
295 } scb;
296 u32 port;
297 u16 flash_ctrl;
298 u8 eeprom_ctrl_lo;
299 u8 eeprom_ctrl_hi;
300 u32 mdi_ctrl;
301 u32 rx_dma_count;
302 };
303
304 enum scb_status {
305 rus_no_res = 0x08,
306 rus_ready = 0x10,
307 rus_mask = 0x3C,
308 };
309
310 enum ru_state {
311 RU_SUSPENDED = 0,
312 RU_RUNNING = 1,
313 RU_UNINITIALIZED = -1,
314 };
315
316 enum scb_stat_ack {
317 stat_ack_not_ours = 0x00,
318 stat_ack_sw_gen = 0x04,
319 stat_ack_rnr = 0x10,
320 stat_ack_cu_idle = 0x20,
321 stat_ack_frame_rx = 0x40,
322 stat_ack_cu_cmd_done = 0x80,
323 stat_ack_not_present = 0xFF,
324 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
325 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
326 };
327
328 enum scb_cmd_hi {
329 irq_mask_none = 0x00,
330 irq_mask_all = 0x01,
331 irq_sw_gen = 0x02,
332 };
333
334 enum scb_cmd_lo {
335 cuc_nop = 0x00,
336 ruc_start = 0x01,
337 ruc_load_base = 0x06,
338 cuc_start = 0x10,
339 cuc_resume = 0x20,
340 cuc_dump_addr = 0x40,
341 cuc_dump_stats = 0x50,
342 cuc_load_base = 0x60,
343 cuc_dump_reset = 0x70,
344 };
345
346 enum cuc_dump {
347 cuc_dump_complete = 0x0000A005,
348 cuc_dump_reset_complete = 0x0000A007,
349 };
350
351 enum port {
352 software_reset = 0x0000,
353 selftest = 0x0001,
354 selective_reset = 0x0002,
355 };
356
357 enum eeprom_ctrl_lo {
358 eesk = 0x01,
359 eecs = 0x02,
360 eedi = 0x04,
361 eedo = 0x08,
362 };
363
364 enum mdi_ctrl {
365 mdi_write = 0x04000000,
366 mdi_read = 0x08000000,
367 mdi_ready = 0x10000000,
368 };
369
370 enum eeprom_op {
371 op_write = 0x05,
372 op_read = 0x06,
373 op_ewds = 0x10,
374 op_ewen = 0x13,
375 };
376
377 enum eeprom_offsets {
378 eeprom_cnfg_mdix = 0x03,
379 eeprom_phy_iface = 0x06,
380 eeprom_id = 0x0A,
381 eeprom_config_asf = 0x0D,
382 eeprom_smbus_addr = 0x90,
383 };
384
385 enum eeprom_cnfg_mdix {
386 eeprom_mdix_enabled = 0x0080,
387 };
388
389 enum eeprom_phy_iface {
390 NoSuchPhy = 0,
391 I82553AB,
392 I82553C,
393 I82503,
394 DP83840,
395 S80C240,
396 S80C24,
397 I82555,
398 DP83840A = 10,
399 };
400
401 enum eeprom_id {
402 eeprom_id_wol = 0x0020,
403 };
404
405 enum eeprom_config_asf {
406 eeprom_asf = 0x8000,
407 eeprom_gcl = 0x4000,
408 };
409
410 enum cb_status {
411 cb_complete = 0x8000,
412 cb_ok = 0x2000,
413 };
414
415 /**
416 * cb_command - Command Block flags
417 * @cb_tx_nc: 0: controler does CRC (normal), 1: CRC from skb memory
418 */
419 enum cb_command {
420 cb_nop = 0x0000,
421 cb_iaaddr = 0x0001,
422 cb_config = 0x0002,
423 cb_multi = 0x0003,
424 cb_tx = 0x0004,
425 cb_ucode = 0x0005,
426 cb_dump = 0x0006,
427 cb_tx_sf = 0x0008,
428 cb_tx_nc = 0x0010,
429 cb_cid = 0x1f00,
430 cb_i = 0x2000,
431 cb_s = 0x4000,
432 cb_el = 0x8000,
433 };
434
435 struct rfd {
436 __le16 status;
437 __le16 command;
438 __le32 link;
439 __le32 rbd;
440 __le16 actual_size;
441 __le16 size;
442 };
443
444 struct rx {
445 struct rx *next, *prev;
446 struct sk_buff *skb;
447 dma_addr_t dma_addr;
448 };
449
450 #if defined(__BIG_ENDIAN_BITFIELD)
451 #define X(a,b) b,a
452 #else
453 #define X(a,b) a,b
454 #endif
455 struct config {
456 /*0*/ u8 X(byte_count:6, pad0:2);
457 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
458 /*2*/ u8 adaptive_ifs;
459 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
460 term_write_cache_line:1), pad3:4);
461 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
462 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
463 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
464 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
465 rx_save_overruns : 1), rx_save_bad_frames : 1);
466 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
467 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
468 tx_dynamic_tbd:1);
469 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
470 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
471 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
472 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
473 loopback:2);
474 /*11*/ u8 X(linear_priority:3, pad11:5);
475 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
476 /*13*/ u8 ip_addr_lo;
477 /*14*/ u8 ip_addr_hi;
478 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
479 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
480 pad15_2:1), crs_or_cdt:1);
481 /*16*/ u8 fc_delay_lo;
482 /*17*/ u8 fc_delay_hi;
483 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
484 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
485 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
486 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
487 full_duplex_force:1), full_duplex_pin:1);
488 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
489 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
490 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
491 u8 pad_d102[9];
492 };
493
494 #define E100_MAX_MULTICAST_ADDRS 64
495 struct multi {
496 __le16 count;
497 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
498 };
499
500 /* Important: keep total struct u32-aligned */
501 #define UCODE_SIZE 134
502 struct cb {
503 __le16 status;
504 __le16 command;
505 __le32 link;
506 union {
507 u8 iaaddr[ETH_ALEN];
508 __le32 ucode[UCODE_SIZE];
509 struct config config;
510 struct multi multi;
511 struct {
512 u32 tbd_array;
513 u16 tcb_byte_count;
514 u8 threshold;
515 u8 tbd_count;
516 struct {
517 __le32 buf_addr;
518 __le16 size;
519 u16 eol;
520 } tbd;
521 } tcb;
522 __le32 dump_buffer_addr;
523 } u;
524 struct cb *next, *prev;
525 dma_addr_t dma_addr;
526 struct sk_buff *skb;
527 };
528
529 enum loopback {
530 lb_none = 0, lb_mac = 1, lb_phy = 3,
531 };
532
533 struct stats {
534 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
535 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
536 tx_multiple_collisions, tx_total_collisions;
537 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
538 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
539 rx_short_frame_errors;
540 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
541 __le16 xmt_tco_frames, rcv_tco_frames;
542 __le32 complete;
543 };
544
545 struct mem {
546 struct {
547 u32 signature;
548 u32 result;
549 } selftest;
550 struct stats stats;
551 u8 dump_buf[596];
552 };
553
554 struct param_range {
555 u32 min;
556 u32 max;
557 u32 count;
558 };
559
560 struct params {
561 struct param_range rfds;
562 struct param_range cbs;
563 };
564
565 struct nic {
566 /* Begin: frequently used values: keep adjacent for cache effect */
567 u32 msg_enable ____cacheline_aligned;
568 struct net_device *netdev;
569 struct pci_dev *pdev;
570 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
571
572 struct rx *rxs ____cacheline_aligned;
573 struct rx *rx_to_use;
574 struct rx *rx_to_clean;
575 struct rfd blank_rfd;
576 enum ru_state ru_running;
577
578 spinlock_t cb_lock ____cacheline_aligned;
579 spinlock_t cmd_lock;
580 struct csr __iomem *csr;
581 enum scb_cmd_lo cuc_cmd;
582 unsigned int cbs_avail;
583 struct napi_struct napi;
584 struct cb *cbs;
585 struct cb *cb_to_use;
586 struct cb *cb_to_send;
587 struct cb *cb_to_clean;
588 __le16 tx_command;
589 /* End: frequently used values: keep adjacent for cache effect */
590
591 enum {
592 ich = (1 << 0),
593 promiscuous = (1 << 1),
594 multicast_all = (1 << 2),
595 wol_magic = (1 << 3),
596 ich_10h_workaround = (1 << 4),
597 } flags ____cacheline_aligned;
598
599 enum mac mac;
600 enum phy phy;
601 struct params params;
602 struct timer_list watchdog;
603 struct mii_if_info mii;
604 struct work_struct tx_timeout_task;
605 enum loopback loopback;
606
607 struct mem *mem;
608 dma_addr_t dma_addr;
609
610 struct pci_pool *cbs_pool;
611 dma_addr_t cbs_dma_addr;
612 u8 adaptive_ifs;
613 u8 tx_threshold;
614 u32 tx_frames;
615 u32 tx_collisions;
616 u32 tx_deferred;
617 u32 tx_single_collisions;
618 u32 tx_multiple_collisions;
619 u32 tx_fc_pause;
620 u32 tx_tco_frames;
621
622 u32 rx_fc_pause;
623 u32 rx_fc_unsupported;
624 u32 rx_tco_frames;
625 u32 rx_short_frame_errors;
626 u32 rx_over_length_errors;
627
628 u16 eeprom_wc;
629 __le16 eeprom[256];
630 spinlock_t mdio_lock;
631 const struct firmware *fw;
632 };
633
634 static inline void e100_write_flush(struct nic *nic)
635 {
636 /* Flush previous PCI writes through intermediate bridges
637 * by doing a benign read */
638 (void)ioread8(&nic->csr->scb.status);
639 }
640
641 static void e100_enable_irq(struct nic *nic)
642 {
643 unsigned long flags;
644
645 spin_lock_irqsave(&nic->cmd_lock, flags);
646 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
647 e100_write_flush(nic);
648 spin_unlock_irqrestore(&nic->cmd_lock, flags);
649 }
650
651 static void e100_disable_irq(struct nic *nic)
652 {
653 unsigned long flags;
654
655 spin_lock_irqsave(&nic->cmd_lock, flags);
656 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
657 e100_write_flush(nic);
658 spin_unlock_irqrestore(&nic->cmd_lock, flags);
659 }
660
661 static void e100_hw_reset(struct nic *nic)
662 {
663 /* Put CU and RU into idle with a selective reset to get
664 * device off of PCI bus */
665 iowrite32(selective_reset, &nic->csr->port);
666 e100_write_flush(nic); udelay(20);
667
668 /* Now fully reset device */
669 iowrite32(software_reset, &nic->csr->port);
670 e100_write_flush(nic); udelay(20);
671
672 /* Mask off our interrupt line - it's unmasked after reset */
673 e100_disable_irq(nic);
674 }
675
676 static int e100_self_test(struct nic *nic)
677 {
678 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
679
680 /* Passing the self-test is a pretty good indication
681 * that the device can DMA to/from host memory */
682
683 nic->mem->selftest.signature = 0;
684 nic->mem->selftest.result = 0xFFFFFFFF;
685
686 iowrite32(selftest | dma_addr, &nic->csr->port);
687 e100_write_flush(nic);
688 /* Wait 10 msec for self-test to complete */
689 msleep(10);
690
691 /* Interrupts are enabled after self-test */
692 e100_disable_irq(nic);
693
694 /* Check results of self-test */
695 if (nic->mem->selftest.result != 0) {
696 netif_err(nic, hw, nic->netdev,
697 "Self-test failed: result=0x%08X\n",
698 nic->mem->selftest.result);
699 return -ETIMEDOUT;
700 }
701 if (nic->mem->selftest.signature == 0) {
702 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
703 return -ETIMEDOUT;
704 }
705
706 return 0;
707 }
708
709 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
710 {
711 u32 cmd_addr_data[3];
712 u8 ctrl;
713 int i, j;
714
715 /* Three cmds: write/erase enable, write data, write/erase disable */
716 cmd_addr_data[0] = op_ewen << (addr_len - 2);
717 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
718 le16_to_cpu(data);
719 cmd_addr_data[2] = op_ewds << (addr_len - 2);
720
721 /* Bit-bang cmds to write word to eeprom */
722 for (j = 0; j < 3; j++) {
723
724 /* Chip select */
725 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
726 e100_write_flush(nic); udelay(4);
727
728 for (i = 31; i >= 0; i--) {
729 ctrl = (cmd_addr_data[j] & (1 << i)) ?
730 eecs | eedi : eecs;
731 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
732 e100_write_flush(nic); udelay(4);
733
734 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
735 e100_write_flush(nic); udelay(4);
736 }
737 /* Wait 10 msec for cmd to complete */
738 msleep(10);
739
740 /* Chip deselect */
741 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
742 e100_write_flush(nic); udelay(4);
743 }
744 };
745
746 /* General technique stolen from the eepro100 driver - very clever */
747 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
748 {
749 u32 cmd_addr_data;
750 u16 data = 0;
751 u8 ctrl;
752 int i;
753
754 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
755
756 /* Chip select */
757 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
758 e100_write_flush(nic); udelay(4);
759
760 /* Bit-bang to read word from eeprom */
761 for (i = 31; i >= 0; i--) {
762 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
763 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
764 e100_write_flush(nic); udelay(4);
765
766 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
767 e100_write_flush(nic); udelay(4);
768
769 /* Eeprom drives a dummy zero to EEDO after receiving
770 * complete address. Use this to adjust addr_len. */
771 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
772 if (!(ctrl & eedo) && i > 16) {
773 *addr_len -= (i - 16);
774 i = 17;
775 }
776
777 data = (data << 1) | (ctrl & eedo ? 1 : 0);
778 }
779
780 /* Chip deselect */
781 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
782 e100_write_flush(nic); udelay(4);
783
784 return cpu_to_le16(data);
785 };
786
787 /* Load entire EEPROM image into driver cache and validate checksum */
788 static int e100_eeprom_load(struct nic *nic)
789 {
790 u16 addr, addr_len = 8, checksum = 0;
791
792 /* Try reading with an 8-bit addr len to discover actual addr len */
793 e100_eeprom_read(nic, &addr_len, 0);
794 nic->eeprom_wc = 1 << addr_len;
795
796 for (addr = 0; addr < nic->eeprom_wc; addr++) {
797 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
798 if (addr < nic->eeprom_wc - 1)
799 checksum += le16_to_cpu(nic->eeprom[addr]);
800 }
801
802 /* The checksum, stored in the last word, is calculated such that
803 * the sum of words should be 0xBABA */
804 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
805 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
806 if (!eeprom_bad_csum_allow)
807 return -EAGAIN;
808 }
809
810 return 0;
811 }
812
813 /* Save (portion of) driver EEPROM cache to device and update checksum */
814 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
815 {
816 u16 addr, addr_len = 8, checksum = 0;
817
818 /* Try reading with an 8-bit addr len to discover actual addr len */
819 e100_eeprom_read(nic, &addr_len, 0);
820 nic->eeprom_wc = 1 << addr_len;
821
822 if (start + count >= nic->eeprom_wc)
823 return -EINVAL;
824
825 for (addr = start; addr < start + count; addr++)
826 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
827
828 /* The checksum, stored in the last word, is calculated such that
829 * the sum of words should be 0xBABA */
830 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
831 checksum += le16_to_cpu(nic->eeprom[addr]);
832 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
833 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
834 nic->eeprom[nic->eeprom_wc - 1]);
835
836 return 0;
837 }
838
839 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
840 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
841 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
842 {
843 unsigned long flags;
844 unsigned int i;
845 int err = 0;
846
847 spin_lock_irqsave(&nic->cmd_lock, flags);
848
849 /* Previous command is accepted when SCB clears */
850 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
851 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
852 break;
853 cpu_relax();
854 if (unlikely(i > E100_WAIT_SCB_FAST))
855 udelay(5);
856 }
857 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
858 err = -EAGAIN;
859 goto err_unlock;
860 }
861
862 if (unlikely(cmd != cuc_resume))
863 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
864 iowrite8(cmd, &nic->csr->scb.cmd_lo);
865
866 err_unlock:
867 spin_unlock_irqrestore(&nic->cmd_lock, flags);
868
869 return err;
870 }
871
872 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
873 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
874 {
875 struct cb *cb;
876 unsigned long flags;
877 int err = 0;
878
879 spin_lock_irqsave(&nic->cb_lock, flags);
880
881 if (unlikely(!nic->cbs_avail)) {
882 err = -ENOMEM;
883 goto err_unlock;
884 }
885
886 cb = nic->cb_to_use;
887 nic->cb_to_use = cb->next;
888 nic->cbs_avail--;
889 cb->skb = skb;
890
891 if (unlikely(!nic->cbs_avail))
892 err = -ENOSPC;
893
894 cb_prepare(nic, cb, skb);
895
896 /* Order is important otherwise we'll be in a race with h/w:
897 * set S-bit in current first, then clear S-bit in previous. */
898 cb->command |= cpu_to_le16(cb_s);
899 wmb();
900 cb->prev->command &= cpu_to_le16(~cb_s);
901
902 while (nic->cb_to_send != nic->cb_to_use) {
903 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
904 nic->cb_to_send->dma_addr))) {
905 /* Ok, here's where things get sticky. It's
906 * possible that we can't schedule the command
907 * because the controller is too busy, so
908 * let's just queue the command and try again
909 * when another command is scheduled. */
910 if (err == -ENOSPC) {
911 //request a reset
912 schedule_work(&nic->tx_timeout_task);
913 }
914 break;
915 } else {
916 nic->cuc_cmd = cuc_resume;
917 nic->cb_to_send = nic->cb_to_send->next;
918 }
919 }
920
921 err_unlock:
922 spin_unlock_irqrestore(&nic->cb_lock, flags);
923
924 return err;
925 }
926
927 static int mdio_read(struct net_device *netdev, int addr, int reg)
928 {
929 struct nic *nic = netdev_priv(netdev);
930 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
931 }
932
933 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
934 {
935 struct nic *nic = netdev_priv(netdev);
936
937 nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
938 }
939
940 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
941 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
942 {
943 u32 data_out = 0;
944 unsigned int i;
945 unsigned long flags;
946
947
948 /*
949 * Stratus87247: we shouldn't be writing the MDI control
950 * register until the Ready bit shows True. Also, since
951 * manipulation of the MDI control registers is a multi-step
952 * procedure it should be done under lock.
953 */
954 spin_lock_irqsave(&nic->mdio_lock, flags);
955 for (i = 100; i; --i) {
956 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
957 break;
958 udelay(20);
959 }
960 if (unlikely(!i)) {
961 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
962 spin_unlock_irqrestore(&nic->mdio_lock, flags);
963 return 0; /* No way to indicate timeout error */
964 }
965 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
966
967 for (i = 0; i < 100; i++) {
968 udelay(20);
969 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
970 break;
971 }
972 spin_unlock_irqrestore(&nic->mdio_lock, flags);
973 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
974 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
975 dir == mdi_read ? "READ" : "WRITE",
976 addr, reg, data, data_out);
977 return (u16)data_out;
978 }
979
980 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
981 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
982 u32 addr,
983 u32 dir,
984 u32 reg,
985 u16 data)
986 {
987 if ((reg == MII_BMCR) && (dir == mdi_write)) {
988 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
989 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
990 MII_ADVERTISE);
991
992 /*
993 * Workaround Si issue where sometimes the part will not
994 * autoneg to 100Mbps even when advertised.
995 */
996 if (advert & ADVERTISE_100FULL)
997 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
998 else if (advert & ADVERTISE_100HALF)
999 data |= BMCR_SPEED100;
1000 }
1001 }
1002 return mdio_ctrl_hw(nic, addr, dir, reg, data);
1003 }
1004
1005 /* Fully software-emulated mdio_ctrl() function for cards without
1006 * MII-compliant PHYs.
1007 * For now, this is mainly geared towards 80c24 support; in case of further
1008 * requirements for other types (i82503, ...?) either extend this mechanism
1009 * or split it, whichever is cleaner.
1010 */
1011 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1012 u32 addr,
1013 u32 dir,
1014 u32 reg,
1015 u16 data)
1016 {
1017 /* might need to allocate a netdev_priv'ed register array eventually
1018 * to be able to record state changes, but for now
1019 * some fully hardcoded register handling ought to be ok I guess. */
1020
1021 if (dir == mdi_read) {
1022 switch (reg) {
1023 case MII_BMCR:
1024 /* Auto-negotiation, right? */
1025 return BMCR_ANENABLE |
1026 BMCR_FULLDPLX;
1027 case MII_BMSR:
1028 return BMSR_LSTATUS /* for mii_link_ok() */ |
1029 BMSR_ANEGCAPABLE |
1030 BMSR_10FULL;
1031 case MII_ADVERTISE:
1032 /* 80c24 is a "combo card" PHY, right? */
1033 return ADVERTISE_10HALF |
1034 ADVERTISE_10FULL;
1035 default:
1036 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1037 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1038 dir == mdi_read ? "READ" : "WRITE",
1039 addr, reg, data);
1040 return 0xFFFF;
1041 }
1042 } else {
1043 switch (reg) {
1044 default:
1045 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1046 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1047 dir == mdi_read ? "READ" : "WRITE",
1048 addr, reg, data);
1049 return 0xFFFF;
1050 }
1051 }
1052 }
1053 static inline int e100_phy_supports_mii(struct nic *nic)
1054 {
1055 /* for now, just check it by comparing whether we
1056 are using MII software emulation.
1057 */
1058 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1059 }
1060
1061 static void e100_get_defaults(struct nic *nic)
1062 {
1063 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1064 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1065
1066 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1067 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1068 if (nic->mac == mac_unknown)
1069 nic->mac = mac_82557_D100_A;
1070
1071 nic->params.rfds = rfds;
1072 nic->params.cbs = cbs;
1073
1074 /* Quadwords to DMA into FIFO before starting frame transmit */
1075 nic->tx_threshold = 0xE0;
1076
1077 /* no interrupt for every tx completion, delay = 256us if not 557 */
1078 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1079 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1080
1081 /* Template for a freshly allocated RFD */
1082 nic->blank_rfd.command = 0;
1083 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1084 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1085
1086 /* MII setup */
1087 nic->mii.phy_id_mask = 0x1F;
1088 nic->mii.reg_num_mask = 0x1F;
1089 nic->mii.dev = nic->netdev;
1090 nic->mii.mdio_read = mdio_read;
1091 nic->mii.mdio_write = mdio_write;
1092 }
1093
1094 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1095 {
1096 struct config *config = &cb->u.config;
1097 u8 *c = (u8 *)config;
1098 struct net_device *netdev = nic->netdev;
1099
1100 cb->command = cpu_to_le16(cb_config);
1101
1102 memset(config, 0, sizeof(struct config));
1103
1104 config->byte_count = 0x16; /* bytes in this struct */
1105 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1106 config->direct_rx_dma = 0x1; /* reserved */
1107 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1108 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1109 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1110 config->tx_underrun_retry = 0x3; /* # of underrun retries */
1111 if (e100_phy_supports_mii(nic))
1112 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
1113 config->pad10 = 0x6;
1114 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1115 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1116 config->ifs = 0x6; /* x16 = inter frame spacing */
1117 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1118 config->pad15_1 = 0x1;
1119 config->pad15_2 = 0x1;
1120 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1121 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1122 config->tx_padding = 0x1; /* 1=pad short frames */
1123 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1124 config->pad18 = 0x1;
1125 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1126 config->pad20_1 = 0x1F;
1127 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1128 config->pad21_1 = 0x5;
1129
1130 config->adaptive_ifs = nic->adaptive_ifs;
1131 config->loopback = nic->loopback;
1132
1133 if (nic->mii.force_media && nic->mii.full_duplex)
1134 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1135
1136 if (nic->flags & promiscuous || nic->loopback) {
1137 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1138 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1139 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1140 }
1141
1142 if (unlikely(netdev->features & NETIF_F_RXFCS))
1143 config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */
1144
1145 if (nic->flags & multicast_all)
1146 config->multicast_all = 0x1; /* 1=accept, 0=no */
1147
1148 /* disable WoL when up */
1149 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1150 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1151
1152 if (nic->mac >= mac_82558_D101_A4) {
1153 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1154 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1155 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1156 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1157 if (nic->mac >= mac_82559_D101M) {
1158 config->tno_intr = 0x1; /* TCO stats enable */
1159 /* Enable TCO in extended config */
1160 if (nic->mac >= mac_82551_10) {
1161 config->byte_count = 0x20; /* extended bytes */
1162 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1163 }
1164 } else {
1165 config->standard_stat_counter = 0x0;
1166 }
1167 }
1168
1169 if (netdev->features & NETIF_F_RXALL) {
1170 config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1171 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1172 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1173 }
1174
1175 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1176 "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1177 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1178 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1179 "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1180 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1181 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1182 "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1183 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1184 }
1185
1186 /*************************************************************************
1187 * CPUSaver parameters
1188 *
1189 * All CPUSaver parameters are 16-bit literals that are part of a
1190 * "move immediate value" instruction. By changing the value of
1191 * the literal in the instruction before the code is loaded, the
1192 * driver can change the algorithm.
1193 *
1194 * INTDELAY - This loads the dead-man timer with its initial value.
1195 * When this timer expires the interrupt is asserted, and the
1196 * timer is reset each time a new packet is received. (see
1197 * BUNDLEMAX below to set the limit on number of chained packets)
1198 * The current default is 0x600 or 1536. Experiments show that
1199 * the value should probably stay within the 0x200 - 0x1000.
1200 *
1201 * BUNDLEMAX -
1202 * This sets the maximum number of frames that will be bundled. In
1203 * some situations, such as the TCP windowing algorithm, it may be
1204 * better to limit the growth of the bundle size than let it go as
1205 * high as it can, because that could cause too much added latency.
1206 * The default is six, because this is the number of packets in the
1207 * default TCP window size. A value of 1 would make CPUSaver indicate
1208 * an interrupt for every frame received. If you do not want to put
1209 * a limit on the bundle size, set this value to xFFFF.
1210 *
1211 * BUNDLESMALL -
1212 * This contains a bit-mask describing the minimum size frame that
1213 * will be bundled. The default masks the lower 7 bits, which means
1214 * that any frame less than 128 bytes in length will not be bundled,
1215 * but will instead immediately generate an interrupt. This does
1216 * not affect the current bundle in any way. Any frame that is 128
1217 * bytes or large will be bundled normally. This feature is meant
1218 * to provide immediate indication of ACK frames in a TCP environment.
1219 * Customers were seeing poor performance when a machine with CPUSaver
1220 * enabled was sending but not receiving. The delay introduced when
1221 * the ACKs were received was enough to reduce total throughput, because
1222 * the sender would sit idle until the ACK was finally seen.
1223 *
1224 * The current default is 0xFF80, which masks out the lower 7 bits.
1225 * This means that any frame which is x7F (127) bytes or smaller
1226 * will cause an immediate interrupt. Because this value must be a
1227 * bit mask, there are only a few valid values that can be used. To
1228 * turn this feature off, the driver can write the value xFFFF to the
1229 * lower word of this instruction (in the same way that the other
1230 * parameters are used). Likewise, a value of 0xF800 (2047) would
1231 * cause an interrupt to be generated for every frame, because all
1232 * standard Ethernet frames are <= 2047 bytes in length.
1233 *************************************************************************/
1234
1235 /* if you wish to disable the ucode functionality, while maintaining the
1236 * workarounds it provides, set the following defines to:
1237 * BUNDLESMALL 0
1238 * BUNDLEMAX 1
1239 * INTDELAY 1
1240 */
1241 #define BUNDLESMALL 1
1242 #define BUNDLEMAX (u16)6
1243 #define INTDELAY (u16)1536 /* 0x600 */
1244
1245 /* Initialize firmware */
1246 static const struct firmware *e100_request_firmware(struct nic *nic)
1247 {
1248 const char *fw_name;
1249 const struct firmware *fw = nic->fw;
1250 u8 timer, bundle, min_size;
1251 int err = 0;
1252 bool required = false;
1253
1254 /* do not load u-code for ICH devices */
1255 if (nic->flags & ich)
1256 return NULL;
1257
1258 /* Search for ucode match against h/w revision
1259 *
1260 * Based on comments in the source code for the FreeBSD fxp
1261 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1262 *
1263 * "fixes for bugs in the B-step hardware (specifically, bugs
1264 * with Inline Receive)."
1265 *
1266 * So we must fail if it cannot be loaded.
1267 *
1268 * The other microcode files are only required for the optional
1269 * CPUSaver feature. Nice to have, but no reason to fail.
1270 */
1271 if (nic->mac == mac_82559_D101M) {
1272 fw_name = FIRMWARE_D101M;
1273 } else if (nic->mac == mac_82559_D101S) {
1274 fw_name = FIRMWARE_D101S;
1275 } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1276 fw_name = FIRMWARE_D102E;
1277 required = true;
1278 } else { /* No ucode on other devices */
1279 return NULL;
1280 }
1281
1282 /* If the firmware has not previously been loaded, request a pointer
1283 * to it. If it was previously loaded, we are reinitializing the
1284 * adapter, possibly in a resume from hibernate, in which case
1285 * request_firmware() cannot be used.
1286 */
1287 if (!fw)
1288 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1289
1290 if (err) {
1291 if (required) {
1292 netif_err(nic, probe, nic->netdev,
1293 "Failed to load firmware \"%s\": %d\n",
1294 fw_name, err);
1295 return ERR_PTR(err);
1296 } else {
1297 netif_info(nic, probe, nic->netdev,
1298 "CPUSaver disabled. Needs \"%s\": %d\n",
1299 fw_name, err);
1300 return NULL;
1301 }
1302 }
1303
1304 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1305 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1306 if (fw->size != UCODE_SIZE * 4 + 3) {
1307 netif_err(nic, probe, nic->netdev,
1308 "Firmware \"%s\" has wrong size %zu\n",
1309 fw_name, fw->size);
1310 release_firmware(fw);
1311 return ERR_PTR(-EINVAL);
1312 }
1313
1314 /* Read timer, bundle and min_size from end of firmware blob */
1315 timer = fw->data[UCODE_SIZE * 4];
1316 bundle = fw->data[UCODE_SIZE * 4 + 1];
1317 min_size = fw->data[UCODE_SIZE * 4 + 2];
1318
1319 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1320 min_size >= UCODE_SIZE) {
1321 netif_err(nic, probe, nic->netdev,
1322 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1323 fw_name, timer, bundle, min_size);
1324 release_firmware(fw);
1325 return ERR_PTR(-EINVAL);
1326 }
1327
1328 /* OK, firmware is validated and ready to use. Save a pointer
1329 * to it in the nic */
1330 nic->fw = fw;
1331 return fw;
1332 }
1333
1334 static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1335 struct sk_buff *skb)
1336 {
1337 const struct firmware *fw = (void *)skb;
1338 u8 timer, bundle, min_size;
1339
1340 /* It's not a real skb; we just abused the fact that e100_exec_cb
1341 will pass it through to here... */
1342 cb->skb = NULL;
1343
1344 /* firmware is stored as little endian already */
1345 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1346
1347 /* Read timer, bundle and min_size from end of firmware blob */
1348 timer = fw->data[UCODE_SIZE * 4];
1349 bundle = fw->data[UCODE_SIZE * 4 + 1];
1350 min_size = fw->data[UCODE_SIZE * 4 + 2];
1351
1352 /* Insert user-tunable settings in cb->u.ucode */
1353 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1354 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1355 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1356 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1357 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1358 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1359
1360 cb->command = cpu_to_le16(cb_ucode | cb_el);
1361 }
1362
1363 static inline int e100_load_ucode_wait(struct nic *nic)
1364 {
1365 const struct firmware *fw;
1366 int err = 0, counter = 50;
1367 struct cb *cb = nic->cb_to_clean;
1368
1369 fw = e100_request_firmware(nic);
1370 /* If it's NULL, then no ucode is required */
1371 if (!fw || IS_ERR(fw))
1372 return PTR_ERR(fw);
1373
1374 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1375 netif_err(nic, probe, nic->netdev,
1376 "ucode cmd failed with error %d\n", err);
1377
1378 /* must restart cuc */
1379 nic->cuc_cmd = cuc_start;
1380
1381 /* wait for completion */
1382 e100_write_flush(nic);
1383 udelay(10);
1384
1385 /* wait for possibly (ouch) 500ms */
1386 while (!(cb->status & cpu_to_le16(cb_complete))) {
1387 msleep(10);
1388 if (!--counter) break;
1389 }
1390
1391 /* ack any interrupts, something could have been set */
1392 iowrite8(~0, &nic->csr->scb.stat_ack);
1393
1394 /* if the command failed, or is not OK, notify and return */
1395 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1396 netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1397 err = -EPERM;
1398 }
1399
1400 return err;
1401 }
1402
1403 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1404 struct sk_buff *skb)
1405 {
1406 cb->command = cpu_to_le16(cb_iaaddr);
1407 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1408 }
1409
1410 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1411 {
1412 cb->command = cpu_to_le16(cb_dump);
1413 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1414 offsetof(struct mem, dump_buf));
1415 }
1416
1417 static int e100_phy_check_without_mii(struct nic *nic)
1418 {
1419 u8 phy_type;
1420 int without_mii;
1421
1422 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1423
1424 switch (phy_type) {
1425 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1426 case I82503: /* Non-MII PHY; UNTESTED! */
1427 case S80C24: /* Non-MII PHY; tested and working */
1428 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1429 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1430 * doesn't have a programming interface of any sort. The
1431 * media is sensed automatically based on how the link partner
1432 * is configured. This is, in essence, manual configuration.
1433 */
1434 netif_info(nic, probe, nic->netdev,
1435 "found MII-less i82503 or 80c24 or other PHY\n");
1436
1437 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1438 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1439
1440 /* these might be needed for certain MII-less cards...
1441 * nic->flags |= ich;
1442 * nic->flags |= ich_10h_workaround; */
1443
1444 without_mii = 1;
1445 break;
1446 default:
1447 without_mii = 0;
1448 break;
1449 }
1450 return without_mii;
1451 }
1452
1453 #define NCONFIG_AUTO_SWITCH 0x0080
1454 #define MII_NSC_CONG MII_RESV1
1455 #define NSC_CONG_ENABLE 0x0100
1456 #define NSC_CONG_TXREADY 0x0400
1457 #define ADVERTISE_FC_SUPPORTED 0x0400
1458 static int e100_phy_init(struct nic *nic)
1459 {
1460 struct net_device *netdev = nic->netdev;
1461 u32 addr;
1462 u16 bmcr, stat, id_lo, id_hi, cong;
1463
1464 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1465 for (addr = 0; addr < 32; addr++) {
1466 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1467 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1468 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1469 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1470 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1471 break;
1472 }
1473 if (addr == 32) {
1474 /* uhoh, no PHY detected: check whether we seem to be some
1475 * weird, rare variant which is *known* to not have any MII.
1476 * But do this AFTER MII checking only, since this does
1477 * lookup of EEPROM values which may easily be unreliable. */
1478 if (e100_phy_check_without_mii(nic))
1479 return 0; /* simply return and hope for the best */
1480 else {
1481 /* for unknown cases log a fatal error */
1482 netif_err(nic, hw, nic->netdev,
1483 "Failed to locate any known PHY, aborting\n");
1484 return -EAGAIN;
1485 }
1486 } else
1487 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1488 "phy_addr = %d\n", nic->mii.phy_id);
1489
1490 /* Get phy ID */
1491 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1492 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1493 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1494 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1495 "phy ID = 0x%08X\n", nic->phy);
1496
1497 /* Select the phy and isolate the rest */
1498 for (addr = 0; addr < 32; addr++) {
1499 if (addr != nic->mii.phy_id) {
1500 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1501 } else if (nic->phy != phy_82552_v) {
1502 bmcr = mdio_read(netdev, addr, MII_BMCR);
1503 mdio_write(netdev, addr, MII_BMCR,
1504 bmcr & ~BMCR_ISOLATE);
1505 }
1506 }
1507 /*
1508 * Workaround for 82552:
1509 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1510 * other phy_id's) using bmcr value from addr discovery loop above.
1511 */
1512 if (nic->phy == phy_82552_v)
1513 mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1514 bmcr & ~BMCR_ISOLATE);
1515
1516 /* Handle National tx phys */
1517 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1518 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1519 /* Disable congestion control */
1520 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1521 cong |= NSC_CONG_TXREADY;
1522 cong &= ~NSC_CONG_ENABLE;
1523 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1524 }
1525
1526 if (nic->phy == phy_82552_v) {
1527 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1528
1529 /* assign special tweaked mdio_ctrl() function */
1530 nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1531
1532 /* Workaround Si not advertising flow-control during autoneg */
1533 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1534 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1535
1536 /* Reset for the above changes to take effect */
1537 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1538 bmcr |= BMCR_RESET;
1539 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1540 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1541 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1542 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1543 /* enable/disable MDI/MDI-X auto-switching. */
1544 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1545 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1546 }
1547
1548 return 0;
1549 }
1550
1551 static int e100_hw_init(struct nic *nic)
1552 {
1553 int err = 0;
1554
1555 e100_hw_reset(nic);
1556
1557 netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1558 if (!in_interrupt() && (err = e100_self_test(nic)))
1559 return err;
1560
1561 if ((err = e100_phy_init(nic)))
1562 return err;
1563 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1564 return err;
1565 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1566 return err;
1567 if ((err = e100_load_ucode_wait(nic)))
1568 return err;
1569 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1570 return err;
1571 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1572 return err;
1573 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1574 nic->dma_addr + offsetof(struct mem, stats))))
1575 return err;
1576 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1577 return err;
1578
1579 e100_disable_irq(nic);
1580
1581 return 0;
1582 }
1583
1584 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1585 {
1586 struct net_device *netdev = nic->netdev;
1587 struct netdev_hw_addr *ha;
1588 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1589
1590 cb->command = cpu_to_le16(cb_multi);
1591 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1592 i = 0;
1593 netdev_for_each_mc_addr(ha, netdev) {
1594 if (i == count)
1595 break;
1596 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1597 ETH_ALEN);
1598 }
1599 }
1600
1601 static void e100_set_multicast_list(struct net_device *netdev)
1602 {
1603 struct nic *nic = netdev_priv(netdev);
1604
1605 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1606 "mc_count=%d, flags=0x%04X\n",
1607 netdev_mc_count(netdev), netdev->flags);
1608
1609 if (netdev->flags & IFF_PROMISC)
1610 nic->flags |= promiscuous;
1611 else
1612 nic->flags &= ~promiscuous;
1613
1614 if (netdev->flags & IFF_ALLMULTI ||
1615 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1616 nic->flags |= multicast_all;
1617 else
1618 nic->flags &= ~multicast_all;
1619
1620 e100_exec_cb(nic, NULL, e100_configure);
1621 e100_exec_cb(nic, NULL, e100_multi);
1622 }
1623
1624 static void e100_update_stats(struct nic *nic)
1625 {
1626 struct net_device *dev = nic->netdev;
1627 struct net_device_stats *ns = &dev->stats;
1628 struct stats *s = &nic->mem->stats;
1629 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1630 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1631 &s->complete;
1632
1633 /* Device's stats reporting may take several microseconds to
1634 * complete, so we're always waiting for results of the
1635 * previous command. */
1636
1637 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1638 *complete = 0;
1639 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1640 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1641 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1642 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1643 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1644 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1645 ns->collisions += nic->tx_collisions;
1646 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1647 le32_to_cpu(s->tx_lost_crs);
1648 nic->rx_short_frame_errors +=
1649 le32_to_cpu(s->rx_short_frame_errors);
1650 ns->rx_length_errors = nic->rx_short_frame_errors +
1651 nic->rx_over_length_errors;
1652 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1653 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1654 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1655 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1656 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1657 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1658 le32_to_cpu(s->rx_alignment_errors) +
1659 le32_to_cpu(s->rx_short_frame_errors) +
1660 le32_to_cpu(s->rx_cdt_errors);
1661 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1662 nic->tx_single_collisions +=
1663 le32_to_cpu(s->tx_single_collisions);
1664 nic->tx_multiple_collisions +=
1665 le32_to_cpu(s->tx_multiple_collisions);
1666 if (nic->mac >= mac_82558_D101_A4) {
1667 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1668 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1669 nic->rx_fc_unsupported +=
1670 le32_to_cpu(s->fc_rcv_unsupported);
1671 if (nic->mac >= mac_82559_D101M) {
1672 nic->tx_tco_frames +=
1673 le16_to_cpu(s->xmt_tco_frames);
1674 nic->rx_tco_frames +=
1675 le16_to_cpu(s->rcv_tco_frames);
1676 }
1677 }
1678 }
1679
1680
1681 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1682 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1683 "exec cuc_dump_reset failed\n");
1684 }
1685
1686 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1687 {
1688 /* Adjust inter-frame-spacing (IFS) between two transmits if
1689 * we're getting collisions on a half-duplex connection. */
1690
1691 if (duplex == DUPLEX_HALF) {
1692 u32 prev = nic->adaptive_ifs;
1693 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1694
1695 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1696 (nic->tx_frames > min_frames)) {
1697 if (nic->adaptive_ifs < 60)
1698 nic->adaptive_ifs += 5;
1699 } else if (nic->tx_frames < min_frames) {
1700 if (nic->adaptive_ifs >= 5)
1701 nic->adaptive_ifs -= 5;
1702 }
1703 if (nic->adaptive_ifs != prev)
1704 e100_exec_cb(nic, NULL, e100_configure);
1705 }
1706 }
1707
1708 static void e100_watchdog(unsigned long data)
1709 {
1710 struct nic *nic = (struct nic *)data;
1711 struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1712 u32 speed;
1713
1714 netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1715 "right now = %ld\n", jiffies);
1716
1717 /* mii library handles link maintenance tasks */
1718
1719 mii_ethtool_gset(&nic->mii, &cmd);
1720 speed = ethtool_cmd_speed(&cmd);
1721
1722 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1723 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1724 speed == SPEED_100 ? 100 : 10,
1725 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1726 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1727 netdev_info(nic->netdev, "NIC Link is Down\n");
1728 }
1729
1730 mii_check_link(&nic->mii);
1731
1732 /* Software generated interrupt to recover from (rare) Rx
1733 * allocation failure.
1734 * Unfortunately have to use a spinlock to not re-enable interrupts
1735 * accidentally, due to hardware that shares a register between the
1736 * interrupt mask bit and the SW Interrupt generation bit */
1737 spin_lock_irq(&nic->cmd_lock);
1738 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1739 e100_write_flush(nic);
1740 spin_unlock_irq(&nic->cmd_lock);
1741
1742 e100_update_stats(nic);
1743 e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1744
1745 if (nic->mac <= mac_82557_D100_C)
1746 /* Issue a multicast command to workaround a 557 lock up */
1747 e100_set_multicast_list(nic->netdev);
1748
1749 if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1750 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1751 nic->flags |= ich_10h_workaround;
1752 else
1753 nic->flags &= ~ich_10h_workaround;
1754
1755 mod_timer(&nic->watchdog,
1756 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1757 }
1758
1759 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1760 struct sk_buff *skb)
1761 {
1762 cb->command = nic->tx_command;
1763
1764 /*
1765 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1766 * testing, ie sending frames with bad CRC.
1767 */
1768 if (unlikely(skb->no_fcs))
1769 cb->command |= __constant_cpu_to_le16(cb_tx_nc);
1770 else
1771 cb->command &= ~__constant_cpu_to_le16(cb_tx_nc);
1772
1773 /* interrupt every 16 packets regardless of delay */
1774 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1775 cb->command |= cpu_to_le16(cb_i);
1776 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1777 cb->u.tcb.tcb_byte_count = 0;
1778 cb->u.tcb.threshold = nic->tx_threshold;
1779 cb->u.tcb.tbd_count = 1;
1780 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1781 skb->data, skb->len, PCI_DMA_TODEVICE));
1782 /* check for mapping failure? */
1783 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1784 skb_tx_timestamp(skb);
1785 }
1786
1787 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1788 struct net_device *netdev)
1789 {
1790 struct nic *nic = netdev_priv(netdev);
1791 int err;
1792
1793 if (nic->flags & ich_10h_workaround) {
1794 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1795 Issue a NOP command followed by a 1us delay before
1796 issuing the Tx command. */
1797 if (e100_exec_cmd(nic, cuc_nop, 0))
1798 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1799 "exec cuc_nop failed\n");
1800 udelay(1);
1801 }
1802
1803 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1804
1805 switch (err) {
1806 case -ENOSPC:
1807 /* We queued the skb, but now we're out of space. */
1808 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1809 "No space for CB\n");
1810 netif_stop_queue(netdev);
1811 break;
1812 case -ENOMEM:
1813 /* This is a hard error - log it. */
1814 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1815 "Out of Tx resources, returning skb\n");
1816 netif_stop_queue(netdev);
1817 return NETDEV_TX_BUSY;
1818 }
1819
1820 return NETDEV_TX_OK;
1821 }
1822
1823 static int e100_tx_clean(struct nic *nic)
1824 {
1825 struct net_device *dev = nic->netdev;
1826 struct cb *cb;
1827 int tx_cleaned = 0;
1828
1829 spin_lock(&nic->cb_lock);
1830
1831 /* Clean CBs marked complete */
1832 for (cb = nic->cb_to_clean;
1833 cb->status & cpu_to_le16(cb_complete);
1834 cb = nic->cb_to_clean = cb->next) {
1835 rmb(); /* read skb after status */
1836 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1837 "cb[%d]->status = 0x%04X\n",
1838 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1839 cb->status);
1840
1841 if (likely(cb->skb != NULL)) {
1842 dev->stats.tx_packets++;
1843 dev->stats.tx_bytes += cb->skb->len;
1844
1845 pci_unmap_single(nic->pdev,
1846 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1847 le16_to_cpu(cb->u.tcb.tbd.size),
1848 PCI_DMA_TODEVICE);
1849 dev_kfree_skb_any(cb->skb);
1850 cb->skb = NULL;
1851 tx_cleaned = 1;
1852 }
1853 cb->status = 0;
1854 nic->cbs_avail++;
1855 }
1856
1857 spin_unlock(&nic->cb_lock);
1858
1859 /* Recover from running out of Tx resources in xmit_frame */
1860 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1861 netif_wake_queue(nic->netdev);
1862
1863 return tx_cleaned;
1864 }
1865
1866 static void e100_clean_cbs(struct nic *nic)
1867 {
1868 if (nic->cbs) {
1869 while (nic->cbs_avail != nic->params.cbs.count) {
1870 struct cb *cb = nic->cb_to_clean;
1871 if (cb->skb) {
1872 pci_unmap_single(nic->pdev,
1873 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1874 le16_to_cpu(cb->u.tcb.tbd.size),
1875 PCI_DMA_TODEVICE);
1876 dev_kfree_skb(cb->skb);
1877 }
1878 nic->cb_to_clean = nic->cb_to_clean->next;
1879 nic->cbs_avail++;
1880 }
1881 pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1882 nic->cbs = NULL;
1883 nic->cbs_avail = 0;
1884 }
1885 nic->cuc_cmd = cuc_start;
1886 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1887 nic->cbs;
1888 }
1889
1890 static int e100_alloc_cbs(struct nic *nic)
1891 {
1892 struct cb *cb;
1893 unsigned int i, count = nic->params.cbs.count;
1894
1895 nic->cuc_cmd = cuc_start;
1896 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1897 nic->cbs_avail = 0;
1898
1899 nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1900 &nic->cbs_dma_addr);
1901 if (!nic->cbs)
1902 return -ENOMEM;
1903 memset(nic->cbs, 0, count * sizeof(struct cb));
1904
1905 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1906 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1907 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1908
1909 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1910 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1911 ((i+1) % count) * sizeof(struct cb));
1912 }
1913
1914 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1915 nic->cbs_avail = count;
1916
1917 return 0;
1918 }
1919
1920 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1921 {
1922 if (!nic->rxs) return;
1923 if (RU_SUSPENDED != nic->ru_running) return;
1924
1925 /* handle init time starts */
1926 if (!rx) rx = nic->rxs;
1927
1928 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1929 if (rx->skb) {
1930 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1931 nic->ru_running = RU_RUNNING;
1932 }
1933 }
1934
1935 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1936 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1937 {
1938 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1939 return -ENOMEM;
1940
1941 /* Init, and map the RFD. */
1942 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1943 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1944 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1945
1946 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1947 dev_kfree_skb_any(rx->skb);
1948 rx->skb = NULL;
1949 rx->dma_addr = 0;
1950 return -ENOMEM;
1951 }
1952
1953 /* Link the RFD to end of RFA by linking previous RFD to
1954 * this one. We are safe to touch the previous RFD because
1955 * it is protected by the before last buffer's el bit being set */
1956 if (rx->prev->skb) {
1957 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1958 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1959 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1960 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1961 }
1962
1963 return 0;
1964 }
1965
1966 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1967 unsigned int *work_done, unsigned int work_to_do)
1968 {
1969 struct net_device *dev = nic->netdev;
1970 struct sk_buff *skb = rx->skb;
1971 struct rfd *rfd = (struct rfd *)skb->data;
1972 u16 rfd_status, actual_size;
1973 u16 fcs_pad = 0;
1974
1975 if (unlikely(work_done && *work_done >= work_to_do))
1976 return -EAGAIN;
1977
1978 /* Need to sync before taking a peek at cb_complete bit */
1979 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1980 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1981 rfd_status = le16_to_cpu(rfd->status);
1982
1983 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1984 "status=0x%04X\n", rfd_status);
1985 rmb(); /* read size after status bit */
1986
1987 /* If data isn't ready, nothing to indicate */
1988 if (unlikely(!(rfd_status & cb_complete))) {
1989 /* If the next buffer has the el bit, but we think the receiver
1990 * is still running, check to see if it really stopped while
1991 * we had interrupts off.
1992 * This allows for a fast restart without re-enabling
1993 * interrupts */
1994 if ((le16_to_cpu(rfd->command) & cb_el) &&
1995 (RU_RUNNING == nic->ru_running))
1996
1997 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1998 nic->ru_running = RU_SUSPENDED;
1999 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2000 sizeof(struct rfd),
2001 PCI_DMA_FROMDEVICE);
2002 return -ENODATA;
2003 }
2004
2005 /* Get actual data size */
2006 if (unlikely(dev->features & NETIF_F_RXFCS))
2007 fcs_pad = 4;
2008 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
2009 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
2010 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
2011
2012 /* Get data */
2013 pci_unmap_single(nic->pdev, rx->dma_addr,
2014 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2015
2016 /* If this buffer has the el bit, but we think the receiver
2017 * is still running, check to see if it really stopped while
2018 * we had interrupts off.
2019 * This allows for a fast restart without re-enabling interrupts.
2020 * This can happen when the RU sees the size change but also sees
2021 * the el bit set. */
2022 if ((le16_to_cpu(rfd->command) & cb_el) &&
2023 (RU_RUNNING == nic->ru_running)) {
2024
2025 if (ioread8(&nic->csr->scb.status) & rus_no_res)
2026 nic->ru_running = RU_SUSPENDED;
2027 }
2028
2029 /* Pull off the RFD and put the actual data (minus eth hdr) */
2030 skb_reserve(skb, sizeof(struct rfd));
2031 skb_put(skb, actual_size);
2032 skb->protocol = eth_type_trans(skb, nic->netdev);
2033
2034 /* If we are receiving all frames, then don't bother
2035 * checking for errors.
2036 */
2037 if (unlikely(dev->features & NETIF_F_RXALL)) {
2038 if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2039 /* Received oversized frame, but keep it. */
2040 nic->rx_over_length_errors++;
2041 goto process_skb;
2042 }
2043
2044 if (unlikely(!(rfd_status & cb_ok))) {
2045 /* Don't indicate if hardware indicates errors */
2046 dev_kfree_skb_any(skb);
2047 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2048 /* Don't indicate oversized frames */
2049 nic->rx_over_length_errors++;
2050 dev_kfree_skb_any(skb);
2051 } else {
2052 process_skb:
2053 dev->stats.rx_packets++;
2054 dev->stats.rx_bytes += (actual_size - fcs_pad);
2055 netif_receive_skb(skb);
2056 if (work_done)
2057 (*work_done)++;
2058 }
2059
2060 rx->skb = NULL;
2061
2062 return 0;
2063 }
2064
2065 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2066 unsigned int work_to_do)
2067 {
2068 struct rx *rx;
2069 int restart_required = 0, err = 0;
2070 struct rx *old_before_last_rx, *new_before_last_rx;
2071 struct rfd *old_before_last_rfd, *new_before_last_rfd;
2072
2073 /* Indicate newly arrived packets */
2074 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2075 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2076 /* Hit quota or no more to clean */
2077 if (-EAGAIN == err || -ENODATA == err)
2078 break;
2079 }
2080
2081
2082 /* On EAGAIN, hit quota so have more work to do, restart once
2083 * cleanup is complete.
2084 * Else, are we already rnr? then pay attention!!! this ensures that
2085 * the state machine progression never allows a start with a
2086 * partially cleaned list, avoiding a race between hardware
2087 * and rx_to_clean when in NAPI mode */
2088 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2089 restart_required = 1;
2090
2091 old_before_last_rx = nic->rx_to_use->prev->prev;
2092 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2093
2094 /* Alloc new skbs to refill list */
2095 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2096 if (unlikely(e100_rx_alloc_skb(nic, rx)))
2097 break; /* Better luck next time (see watchdog) */
2098 }
2099
2100 new_before_last_rx = nic->rx_to_use->prev->prev;
2101 if (new_before_last_rx != old_before_last_rx) {
2102 /* Set the el-bit on the buffer that is before the last buffer.
2103 * This lets us update the next pointer on the last buffer
2104 * without worrying about hardware touching it.
2105 * We set the size to 0 to prevent hardware from touching this
2106 * buffer.
2107 * When the hardware hits the before last buffer with el-bit
2108 * and size of 0, it will RNR interrupt, the RUS will go into
2109 * the No Resources state. It will not complete nor write to
2110 * this buffer. */
2111 new_before_last_rfd =
2112 (struct rfd *)new_before_last_rx->skb->data;
2113 new_before_last_rfd->size = 0;
2114 new_before_last_rfd->command |= cpu_to_le16(cb_el);
2115 pci_dma_sync_single_for_device(nic->pdev,
2116 new_before_last_rx->dma_addr, sizeof(struct rfd),
2117 PCI_DMA_BIDIRECTIONAL);
2118
2119 /* Now that we have a new stopping point, we can clear the old
2120 * stopping point. We must sync twice to get the proper
2121 * ordering on the hardware side of things. */
2122 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2123 pci_dma_sync_single_for_device(nic->pdev,
2124 old_before_last_rx->dma_addr, sizeof(struct rfd),
2125 PCI_DMA_BIDIRECTIONAL);
2126 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2127 + ETH_FCS_LEN);
2128 pci_dma_sync_single_for_device(nic->pdev,
2129 old_before_last_rx->dma_addr, sizeof(struct rfd),
2130 PCI_DMA_BIDIRECTIONAL);
2131 }
2132
2133 if (restart_required) {
2134 // ack the rnr?
2135 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2136 e100_start_receiver(nic, nic->rx_to_clean);
2137 if (work_done)
2138 (*work_done)++;
2139 }
2140 }
2141
2142 static void e100_rx_clean_list(struct nic *nic)
2143 {
2144 struct rx *rx;
2145 unsigned int i, count = nic->params.rfds.count;
2146
2147 nic->ru_running = RU_UNINITIALIZED;
2148
2149 if (nic->rxs) {
2150 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2151 if (rx->skb) {
2152 pci_unmap_single(nic->pdev, rx->dma_addr,
2153 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2154 dev_kfree_skb(rx->skb);
2155 }
2156 }
2157 kfree(nic->rxs);
2158 nic->rxs = NULL;
2159 }
2160
2161 nic->rx_to_use = nic->rx_to_clean = NULL;
2162 }
2163
2164 static int e100_rx_alloc_list(struct nic *nic)
2165 {
2166 struct rx *rx;
2167 unsigned int i, count = nic->params.rfds.count;
2168 struct rfd *before_last;
2169
2170 nic->rx_to_use = nic->rx_to_clean = NULL;
2171 nic->ru_running = RU_UNINITIALIZED;
2172
2173 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2174 return -ENOMEM;
2175
2176 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2177 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2178 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2179 if (e100_rx_alloc_skb(nic, rx)) {
2180 e100_rx_clean_list(nic);
2181 return -ENOMEM;
2182 }
2183 }
2184 /* Set the el-bit on the buffer that is before the last buffer.
2185 * This lets us update the next pointer on the last buffer without
2186 * worrying about hardware touching it.
2187 * We set the size to 0 to prevent hardware from touching this buffer.
2188 * When the hardware hits the before last buffer with el-bit and size
2189 * of 0, it will RNR interrupt, the RU will go into the No Resources
2190 * state. It will not complete nor write to this buffer. */
2191 rx = nic->rxs->prev->prev;
2192 before_last = (struct rfd *)rx->skb->data;
2193 before_last->command |= cpu_to_le16(cb_el);
2194 before_last->size = 0;
2195 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2196 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2197
2198 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2199 nic->ru_running = RU_SUSPENDED;
2200
2201 return 0;
2202 }
2203
2204 static irqreturn_t e100_intr(int irq, void *dev_id)
2205 {
2206 struct net_device *netdev = dev_id;
2207 struct nic *nic = netdev_priv(netdev);
2208 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2209
2210 netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2211 "stat_ack = 0x%02X\n", stat_ack);
2212
2213 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
2214 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2215 return IRQ_NONE;
2216
2217 /* Ack interrupt(s) */
2218 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2219
2220 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2221 if (stat_ack & stat_ack_rnr)
2222 nic->ru_running = RU_SUSPENDED;
2223
2224 if (likely(napi_schedule_prep(&nic->napi))) {
2225 e100_disable_irq(nic);
2226 __napi_schedule(&nic->napi);
2227 }
2228
2229 return IRQ_HANDLED;
2230 }
2231
2232 static int e100_poll(struct napi_struct *napi, int budget)
2233 {
2234 struct nic *nic = container_of(napi, struct nic, napi);
2235 unsigned int work_done = 0;
2236
2237 e100_rx_clean(nic, &work_done, budget);
2238 e100_tx_clean(nic);
2239
2240 /* If budget not fully consumed, exit the polling mode */
2241 if (work_done < budget) {
2242 napi_complete(napi);
2243 e100_enable_irq(nic);
2244 }
2245
2246 return work_done;
2247 }
2248
2249 #ifdef CONFIG_NET_POLL_CONTROLLER
2250 static void e100_netpoll(struct net_device *netdev)
2251 {
2252 struct nic *nic = netdev_priv(netdev);
2253
2254 e100_disable_irq(nic);
2255 e100_intr(nic->pdev->irq, netdev);
2256 e100_tx_clean(nic);
2257 e100_enable_irq(nic);
2258 }
2259 #endif
2260
2261 static int e100_set_mac_address(struct net_device *netdev, void *p)
2262 {
2263 struct nic *nic = netdev_priv(netdev);
2264 struct sockaddr *addr = p;
2265
2266 if (!is_valid_ether_addr(addr->sa_data))
2267 return -EADDRNOTAVAIL;
2268
2269 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2270 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2271
2272 return 0;
2273 }
2274
2275 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2276 {
2277 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2278 return -EINVAL;
2279 netdev->mtu = new_mtu;
2280 return 0;
2281 }
2282
2283 static int e100_asf(struct nic *nic)
2284 {
2285 /* ASF can be enabled from eeprom */
2286 return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2287 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2288 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2289 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2290 }
2291
2292 static int e100_up(struct nic *nic)
2293 {
2294 int err;
2295
2296 if ((err = e100_rx_alloc_list(nic)))
2297 return err;
2298 if ((err = e100_alloc_cbs(nic)))
2299 goto err_rx_clean_list;
2300 if ((err = e100_hw_init(nic)))
2301 goto err_clean_cbs;
2302 e100_set_multicast_list(nic->netdev);
2303 e100_start_receiver(nic, NULL);
2304 mod_timer(&nic->watchdog, jiffies);
2305 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2306 nic->netdev->name, nic->netdev)))
2307 goto err_no_irq;
2308 netif_wake_queue(nic->netdev);
2309 napi_enable(&nic->napi);
2310 /* enable ints _after_ enabling poll, preventing a race between
2311 * disable ints+schedule */
2312 e100_enable_irq(nic);
2313 return 0;
2314
2315 err_no_irq:
2316 del_timer_sync(&nic->watchdog);
2317 err_clean_cbs:
2318 e100_clean_cbs(nic);
2319 err_rx_clean_list:
2320 e100_rx_clean_list(nic);
2321 return err;
2322 }
2323
2324 static void e100_down(struct nic *nic)
2325 {
2326 /* wait here for poll to complete */
2327 napi_disable(&nic->napi);
2328 netif_stop_queue(nic->netdev);
2329 e100_hw_reset(nic);
2330 free_irq(nic->pdev->irq, nic->netdev);
2331 del_timer_sync(&nic->watchdog);
2332 netif_carrier_off(nic->netdev);
2333 e100_clean_cbs(nic);
2334 e100_rx_clean_list(nic);
2335 }
2336
2337 static void e100_tx_timeout(struct net_device *netdev)
2338 {
2339 struct nic *nic = netdev_priv(netdev);
2340
2341 /* Reset outside of interrupt context, to avoid request_irq
2342 * in interrupt context */
2343 schedule_work(&nic->tx_timeout_task);
2344 }
2345
2346 static void e100_tx_timeout_task(struct work_struct *work)
2347 {
2348 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2349 struct net_device *netdev = nic->netdev;
2350
2351 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2352 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2353
2354 rtnl_lock();
2355 if (netif_running(netdev)) {
2356 e100_down(netdev_priv(netdev));
2357 e100_up(netdev_priv(netdev));
2358 }
2359 rtnl_unlock();
2360 }
2361
2362 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2363 {
2364 int err;
2365 struct sk_buff *skb;
2366
2367 /* Use driver resources to perform internal MAC or PHY
2368 * loopback test. A single packet is prepared and transmitted
2369 * in loopback mode, and the test passes if the received
2370 * packet compares byte-for-byte to the transmitted packet. */
2371
2372 if ((err = e100_rx_alloc_list(nic)))
2373 return err;
2374 if ((err = e100_alloc_cbs(nic)))
2375 goto err_clean_rx;
2376
2377 /* ICH PHY loopback is broken so do MAC loopback instead */
2378 if (nic->flags & ich && loopback_mode == lb_phy)
2379 loopback_mode = lb_mac;
2380
2381 nic->loopback = loopback_mode;
2382 if ((err = e100_hw_init(nic)))
2383 goto err_loopback_none;
2384
2385 if (loopback_mode == lb_phy)
2386 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2387 BMCR_LOOPBACK);
2388
2389 e100_start_receiver(nic, NULL);
2390
2391 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2392 err = -ENOMEM;
2393 goto err_loopback_none;
2394 }
2395 skb_put(skb, ETH_DATA_LEN);
2396 memset(skb->data, 0xFF, ETH_DATA_LEN);
2397 e100_xmit_frame(skb, nic->netdev);
2398
2399 msleep(10);
2400
2401 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2402 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2403
2404 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2405 skb->data, ETH_DATA_LEN))
2406 err = -EAGAIN;
2407
2408 err_loopback_none:
2409 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2410 nic->loopback = lb_none;
2411 e100_clean_cbs(nic);
2412 e100_hw_reset(nic);
2413 err_clean_rx:
2414 e100_rx_clean_list(nic);
2415 return err;
2416 }
2417
2418 #define MII_LED_CONTROL 0x1B
2419 #define E100_82552_LED_OVERRIDE 0x19
2420 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2421 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2422
2423 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2424 {
2425 struct nic *nic = netdev_priv(netdev);
2426 return mii_ethtool_gset(&nic->mii, cmd);
2427 }
2428
2429 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2430 {
2431 struct nic *nic = netdev_priv(netdev);
2432 int err;
2433
2434 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2435 err = mii_ethtool_sset(&nic->mii, cmd);
2436 e100_exec_cb(nic, NULL, e100_configure);
2437
2438 return err;
2439 }
2440
2441 static void e100_get_drvinfo(struct net_device *netdev,
2442 struct ethtool_drvinfo *info)
2443 {
2444 struct nic *nic = netdev_priv(netdev);
2445 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2446 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2447 strlcpy(info->bus_info, pci_name(nic->pdev),
2448 sizeof(info->bus_info));
2449 }
2450
2451 #define E100_PHY_REGS 0x1C
2452 static int e100_get_regs_len(struct net_device *netdev)
2453 {
2454 struct nic *nic = netdev_priv(netdev);
2455 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2456 }
2457
2458 static void e100_get_regs(struct net_device *netdev,
2459 struct ethtool_regs *regs, void *p)
2460 {
2461 struct nic *nic = netdev_priv(netdev);
2462 u32 *buff = p;
2463 int i;
2464
2465 regs->version = (1 << 24) | nic->pdev->revision;
2466 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2467 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2468 ioread16(&nic->csr->scb.status);
2469 for (i = E100_PHY_REGS; i >= 0; i--)
2470 buff[1 + E100_PHY_REGS - i] =
2471 mdio_read(netdev, nic->mii.phy_id, i);
2472 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2473 e100_exec_cb(nic, NULL, e100_dump);
2474 msleep(10);
2475 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2476 sizeof(nic->mem->dump_buf));
2477 }
2478
2479 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2480 {
2481 struct nic *nic = netdev_priv(netdev);
2482 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2483 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2484 }
2485
2486 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2487 {
2488 struct nic *nic = netdev_priv(netdev);
2489
2490 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2491 !device_can_wakeup(&nic->pdev->dev))
2492 return -EOPNOTSUPP;
2493
2494 if (wol->wolopts)
2495 nic->flags |= wol_magic;
2496 else
2497 nic->flags &= ~wol_magic;
2498
2499 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2500
2501 e100_exec_cb(nic, NULL, e100_configure);
2502
2503 return 0;
2504 }
2505
2506 static u32 e100_get_msglevel(struct net_device *netdev)
2507 {
2508 struct nic *nic = netdev_priv(netdev);
2509 return nic->msg_enable;
2510 }
2511
2512 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2513 {
2514 struct nic *nic = netdev_priv(netdev);
2515 nic->msg_enable = value;
2516 }
2517
2518 static int e100_nway_reset(struct net_device *netdev)
2519 {
2520 struct nic *nic = netdev_priv(netdev);
2521 return mii_nway_restart(&nic->mii);
2522 }
2523
2524 static u32 e100_get_link(struct net_device *netdev)
2525 {
2526 struct nic *nic = netdev_priv(netdev);
2527 return mii_link_ok(&nic->mii);
2528 }
2529
2530 static int e100_get_eeprom_len(struct net_device *netdev)
2531 {
2532 struct nic *nic = netdev_priv(netdev);
2533 return nic->eeprom_wc << 1;
2534 }
2535
2536 #define E100_EEPROM_MAGIC 0x1234
2537 static int e100_get_eeprom(struct net_device *netdev,
2538 struct ethtool_eeprom *eeprom, u8 *bytes)
2539 {
2540 struct nic *nic = netdev_priv(netdev);
2541
2542 eeprom->magic = E100_EEPROM_MAGIC;
2543 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2544
2545 return 0;
2546 }
2547
2548 static int e100_set_eeprom(struct net_device *netdev,
2549 struct ethtool_eeprom *eeprom, u8 *bytes)
2550 {
2551 struct nic *nic = netdev_priv(netdev);
2552
2553 if (eeprom->magic != E100_EEPROM_MAGIC)
2554 return -EINVAL;
2555
2556 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2557
2558 return e100_eeprom_save(nic, eeprom->offset >> 1,
2559 (eeprom->len >> 1) + 1);
2560 }
2561
2562 static void e100_get_ringparam(struct net_device *netdev,
2563 struct ethtool_ringparam *ring)
2564 {
2565 struct nic *nic = netdev_priv(netdev);
2566 struct param_range *rfds = &nic->params.rfds;
2567 struct param_range *cbs = &nic->params.cbs;
2568
2569 ring->rx_max_pending = rfds->max;
2570 ring->tx_max_pending = cbs->max;
2571 ring->rx_pending = rfds->count;
2572 ring->tx_pending = cbs->count;
2573 }
2574
2575 static int e100_set_ringparam(struct net_device *netdev,
2576 struct ethtool_ringparam *ring)
2577 {
2578 struct nic *nic = netdev_priv(netdev);
2579 struct param_range *rfds = &nic->params.rfds;
2580 struct param_range *cbs = &nic->params.cbs;
2581
2582 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2583 return -EINVAL;
2584
2585 if (netif_running(netdev))
2586 e100_down(nic);
2587 rfds->count = max(ring->rx_pending, rfds->min);
2588 rfds->count = min(rfds->count, rfds->max);
2589 cbs->count = max(ring->tx_pending, cbs->min);
2590 cbs->count = min(cbs->count, cbs->max);
2591 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2592 rfds->count, cbs->count);
2593 if (netif_running(netdev))
2594 e100_up(nic);
2595
2596 return 0;
2597 }
2598
2599 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2600 "Link test (on/offline)",
2601 "Eeprom test (on/offline)",
2602 "Self test (offline)",
2603 "Mac loopback (offline)",
2604 "Phy loopback (offline)",
2605 };
2606 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2607
2608 static void e100_diag_test(struct net_device *netdev,
2609 struct ethtool_test *test, u64 *data)
2610 {
2611 struct ethtool_cmd cmd;
2612 struct nic *nic = netdev_priv(netdev);
2613 int i, err;
2614
2615 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2616 data[0] = !mii_link_ok(&nic->mii);
2617 data[1] = e100_eeprom_load(nic);
2618 if (test->flags & ETH_TEST_FL_OFFLINE) {
2619
2620 /* save speed, duplex & autoneg settings */
2621 err = mii_ethtool_gset(&nic->mii, &cmd);
2622
2623 if (netif_running(netdev))
2624 e100_down(nic);
2625 data[2] = e100_self_test(nic);
2626 data[3] = e100_loopback_test(nic, lb_mac);
2627 data[4] = e100_loopback_test(nic, lb_phy);
2628
2629 /* restore speed, duplex & autoneg settings */
2630 err = mii_ethtool_sset(&nic->mii, &cmd);
2631
2632 if (netif_running(netdev))
2633 e100_up(nic);
2634 }
2635 for (i = 0; i < E100_TEST_LEN; i++)
2636 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2637
2638 msleep_interruptible(4 * 1000);
2639 }
2640
2641 static int e100_set_phys_id(struct net_device *netdev,
2642 enum ethtool_phys_id_state state)
2643 {
2644 struct nic *nic = netdev_priv(netdev);
2645 enum led_state {
2646 led_on = 0x01,
2647 led_off = 0x04,
2648 led_on_559 = 0x05,
2649 led_on_557 = 0x07,
2650 };
2651 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2652 MII_LED_CONTROL;
2653 u16 leds = 0;
2654
2655 switch (state) {
2656 case ETHTOOL_ID_ACTIVE:
2657 return 2;
2658
2659 case ETHTOOL_ID_ON:
2660 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2661 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2662 break;
2663
2664 case ETHTOOL_ID_OFF:
2665 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2666 break;
2667
2668 case ETHTOOL_ID_INACTIVE:
2669 break;
2670 }
2671
2672 mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2673 return 0;
2674 }
2675
2676 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2677 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2678 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2679 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2680 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2681 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2682 "tx_heartbeat_errors", "tx_window_errors",
2683 /* device-specific stats */
2684 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2685 "tx_flow_control_pause", "rx_flow_control_pause",
2686 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2687 "rx_short_frame_errors", "rx_over_length_errors",
2688 };
2689 #define E100_NET_STATS_LEN 21
2690 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2691
2692 static int e100_get_sset_count(struct net_device *netdev, int sset)
2693 {
2694 switch (sset) {
2695 case ETH_SS_TEST:
2696 return E100_TEST_LEN;
2697 case ETH_SS_STATS:
2698 return E100_STATS_LEN;
2699 default:
2700 return -EOPNOTSUPP;
2701 }
2702 }
2703
2704 static void e100_get_ethtool_stats(struct net_device *netdev,
2705 struct ethtool_stats *stats, u64 *data)
2706 {
2707 struct nic *nic = netdev_priv(netdev);
2708 int i;
2709
2710 for (i = 0; i < E100_NET_STATS_LEN; i++)
2711 data[i] = ((unsigned long *)&netdev->stats)[i];
2712
2713 data[i++] = nic->tx_deferred;
2714 data[i++] = nic->tx_single_collisions;
2715 data[i++] = nic->tx_multiple_collisions;
2716 data[i++] = nic->tx_fc_pause;
2717 data[i++] = nic->rx_fc_pause;
2718 data[i++] = nic->rx_fc_unsupported;
2719 data[i++] = nic->tx_tco_frames;
2720 data[i++] = nic->rx_tco_frames;
2721 data[i++] = nic->rx_short_frame_errors;
2722 data[i++] = nic->rx_over_length_errors;
2723 }
2724
2725 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2726 {
2727 switch (stringset) {
2728 case ETH_SS_TEST:
2729 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2730 break;
2731 case ETH_SS_STATS:
2732 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2733 break;
2734 }
2735 }
2736
2737 static const struct ethtool_ops e100_ethtool_ops = {
2738 .get_settings = e100_get_settings,
2739 .set_settings = e100_set_settings,
2740 .get_drvinfo = e100_get_drvinfo,
2741 .get_regs_len = e100_get_regs_len,
2742 .get_regs = e100_get_regs,
2743 .get_wol = e100_get_wol,
2744 .set_wol = e100_set_wol,
2745 .get_msglevel = e100_get_msglevel,
2746 .set_msglevel = e100_set_msglevel,
2747 .nway_reset = e100_nway_reset,
2748 .get_link = e100_get_link,
2749 .get_eeprom_len = e100_get_eeprom_len,
2750 .get_eeprom = e100_get_eeprom,
2751 .set_eeprom = e100_set_eeprom,
2752 .get_ringparam = e100_get_ringparam,
2753 .set_ringparam = e100_set_ringparam,
2754 .self_test = e100_diag_test,
2755 .get_strings = e100_get_strings,
2756 .set_phys_id = e100_set_phys_id,
2757 .get_ethtool_stats = e100_get_ethtool_stats,
2758 .get_sset_count = e100_get_sset_count,
2759 .get_ts_info = ethtool_op_get_ts_info,
2760 };
2761
2762 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2763 {
2764 struct nic *nic = netdev_priv(netdev);
2765
2766 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2767 }
2768
2769 static int e100_alloc(struct nic *nic)
2770 {
2771 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2772 &nic->dma_addr);
2773 return nic->mem ? 0 : -ENOMEM;
2774 }
2775
2776 static void e100_free(struct nic *nic)
2777 {
2778 if (nic->mem) {
2779 pci_free_consistent(nic->pdev, sizeof(struct mem),
2780 nic->mem, nic->dma_addr);
2781 nic->mem = NULL;
2782 }
2783 }
2784
2785 static int e100_open(struct net_device *netdev)
2786 {
2787 struct nic *nic = netdev_priv(netdev);
2788 int err = 0;
2789
2790 netif_carrier_off(netdev);
2791 if ((err = e100_up(nic)))
2792 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2793 return err;
2794 }
2795
2796 static int e100_close(struct net_device *netdev)
2797 {
2798 e100_down(netdev_priv(netdev));
2799 return 0;
2800 }
2801
2802 static int e100_set_features(struct net_device *netdev,
2803 netdev_features_t features)
2804 {
2805 struct nic *nic = netdev_priv(netdev);
2806 netdev_features_t changed = features ^ netdev->features;
2807
2808 if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2809 return 0;
2810
2811 netdev->features = features;
2812 e100_exec_cb(nic, NULL, e100_configure);
2813 return 0;
2814 }
2815
2816 static const struct net_device_ops e100_netdev_ops = {
2817 .ndo_open = e100_open,
2818 .ndo_stop = e100_close,
2819 .ndo_start_xmit = e100_xmit_frame,
2820 .ndo_validate_addr = eth_validate_addr,
2821 .ndo_set_rx_mode = e100_set_multicast_list,
2822 .ndo_set_mac_address = e100_set_mac_address,
2823 .ndo_change_mtu = e100_change_mtu,
2824 .ndo_do_ioctl = e100_do_ioctl,
2825 .ndo_tx_timeout = e100_tx_timeout,
2826 #ifdef CONFIG_NET_POLL_CONTROLLER
2827 .ndo_poll_controller = e100_netpoll,
2828 #endif
2829 .ndo_set_features = e100_set_features,
2830 };
2831
2832 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2833 {
2834 struct net_device *netdev;
2835 struct nic *nic;
2836 int err;
2837
2838 if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2839 return -ENOMEM;
2840
2841 netdev->hw_features |= NETIF_F_RXFCS;
2842 netdev->priv_flags |= IFF_SUPP_NOFCS;
2843 netdev->hw_features |= NETIF_F_RXALL;
2844
2845 netdev->netdev_ops = &e100_netdev_ops;
2846 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2847 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2848 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2849
2850 nic = netdev_priv(netdev);
2851 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2852 nic->netdev = netdev;
2853 nic->pdev = pdev;
2854 nic->msg_enable = (1 << debug) - 1;
2855 nic->mdio_ctrl = mdio_ctrl_hw;
2856 pci_set_drvdata(pdev, netdev);
2857
2858 if ((err = pci_enable_device(pdev))) {
2859 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2860 goto err_out_free_dev;
2861 }
2862
2863 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2864 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2865 err = -ENODEV;
2866 goto err_out_disable_pdev;
2867 }
2868
2869 if ((err = pci_request_regions(pdev, DRV_NAME))) {
2870 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2871 goto err_out_disable_pdev;
2872 }
2873
2874 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2875 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2876 goto err_out_free_res;
2877 }
2878
2879 SET_NETDEV_DEV(netdev, &pdev->dev);
2880
2881 if (use_io)
2882 netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2883
2884 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2885 if (!nic->csr) {
2886 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2887 err = -ENOMEM;
2888 goto err_out_free_res;
2889 }
2890
2891 if (ent->driver_data)
2892 nic->flags |= ich;
2893 else
2894 nic->flags &= ~ich;
2895
2896 e100_get_defaults(nic);
2897
2898 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2899 if (nic->mac < mac_82558_D101_A4)
2900 netdev->features |= NETIF_F_VLAN_CHALLENGED;
2901
2902 /* locks must be initialized before calling hw_reset */
2903 spin_lock_init(&nic->cb_lock);
2904 spin_lock_init(&nic->cmd_lock);
2905 spin_lock_init(&nic->mdio_lock);
2906
2907 /* Reset the device before pci_set_master() in case device is in some
2908 * funky state and has an interrupt pending - hint: we don't have the
2909 * interrupt handler registered yet. */
2910 e100_hw_reset(nic);
2911
2912 pci_set_master(pdev);
2913
2914 init_timer(&nic->watchdog);
2915 nic->watchdog.function = e100_watchdog;
2916 nic->watchdog.data = (unsigned long)nic;
2917
2918 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2919
2920 if ((err = e100_alloc(nic))) {
2921 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2922 goto err_out_iounmap;
2923 }
2924
2925 if ((err = e100_eeprom_load(nic)))
2926 goto err_out_free;
2927
2928 e100_phy_init(nic);
2929
2930 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2931 if (!is_valid_ether_addr(netdev->dev_addr)) {
2932 if (!eeprom_bad_csum_allow) {
2933 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2934 err = -EAGAIN;
2935 goto err_out_free;
2936 } else {
2937 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2938 }
2939 }
2940
2941 /* Wol magic packet can be enabled from eeprom */
2942 if ((nic->mac >= mac_82558_D101_A4) &&
2943 (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2944 nic->flags |= wol_magic;
2945 device_set_wakeup_enable(&pdev->dev, true);
2946 }
2947
2948 /* ack any pending wake events, disable PME */
2949 pci_pme_active(pdev, false);
2950
2951 strcpy(netdev->name, "eth%d");
2952 if ((err = register_netdev(netdev))) {
2953 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2954 goto err_out_free;
2955 }
2956 nic->cbs_pool = pci_pool_create(netdev->name,
2957 nic->pdev,
2958 nic->params.cbs.max * sizeof(struct cb),
2959 sizeof(u32),
2960 0);
2961 netif_info(nic, probe, nic->netdev,
2962 "addr 0x%llx, irq %d, MAC addr %pM\n",
2963 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2964 pdev->irq, netdev->dev_addr);
2965
2966 return 0;
2967
2968 err_out_free:
2969 e100_free(nic);
2970 err_out_iounmap:
2971 pci_iounmap(pdev, nic->csr);
2972 err_out_free_res:
2973 pci_release_regions(pdev);
2974 err_out_disable_pdev:
2975 pci_disable_device(pdev);
2976 err_out_free_dev:
2977 pci_set_drvdata(pdev, NULL);
2978 free_netdev(netdev);
2979 return err;
2980 }
2981
2982 static void e100_remove(struct pci_dev *pdev)
2983 {
2984 struct net_device *netdev = pci_get_drvdata(pdev);
2985
2986 if (netdev) {
2987 struct nic *nic = netdev_priv(netdev);
2988 unregister_netdev(netdev);
2989 e100_free(nic);
2990 pci_iounmap(pdev, nic->csr);
2991 pci_pool_destroy(nic->cbs_pool);
2992 free_netdev(netdev);
2993 pci_release_regions(pdev);
2994 pci_disable_device(pdev);
2995 pci_set_drvdata(pdev, NULL);
2996 }
2997 }
2998
2999 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
3000 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
3001 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
3002 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3003 {
3004 struct net_device *netdev = pci_get_drvdata(pdev);
3005 struct nic *nic = netdev_priv(netdev);
3006
3007 if (netif_running(netdev))
3008 e100_down(nic);
3009 netif_device_detach(netdev);
3010
3011 pci_save_state(pdev);
3012
3013 if ((nic->flags & wol_magic) | e100_asf(nic)) {
3014 /* enable reverse auto-negotiation */
3015 if (nic->phy == phy_82552_v) {
3016 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3017 E100_82552_SMARTSPEED);
3018
3019 mdio_write(netdev, nic->mii.phy_id,
3020 E100_82552_SMARTSPEED, smartspeed |
3021 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3022 }
3023 *enable_wake = true;
3024 } else {
3025 *enable_wake = false;
3026 }
3027
3028 pci_disable_device(pdev);
3029 }
3030
3031 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3032 {
3033 if (wake)
3034 return pci_prepare_to_sleep(pdev);
3035
3036 pci_wake_from_d3(pdev, false);
3037 pci_set_power_state(pdev, PCI_D3hot);
3038
3039 return 0;
3040 }
3041
3042 #ifdef CONFIG_PM
3043 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
3044 {
3045 bool wake;
3046 __e100_shutdown(pdev, &wake);
3047 return __e100_power_off(pdev, wake);
3048 }
3049
3050 static int e100_resume(struct pci_dev *pdev)
3051 {
3052 struct net_device *netdev = pci_get_drvdata(pdev);
3053 struct nic *nic = netdev_priv(netdev);
3054
3055 pci_set_power_state(pdev, PCI_D0);
3056 pci_restore_state(pdev);
3057 /* ack any pending wake events, disable PME */
3058 pci_enable_wake(pdev, 0, 0);
3059
3060 /* disable reverse auto-negotiation */
3061 if (nic->phy == phy_82552_v) {
3062 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3063 E100_82552_SMARTSPEED);
3064
3065 mdio_write(netdev, nic->mii.phy_id,
3066 E100_82552_SMARTSPEED,
3067 smartspeed & ~(E100_82552_REV_ANEG));
3068 }
3069
3070 netif_device_attach(netdev);
3071 if (netif_running(netdev))
3072 e100_up(nic);
3073
3074 return 0;
3075 }
3076 #endif /* CONFIG_PM */
3077
3078 static void e100_shutdown(struct pci_dev *pdev)
3079 {
3080 bool wake;
3081 __e100_shutdown(pdev, &wake);
3082 if (system_state == SYSTEM_POWER_OFF)
3083 __e100_power_off(pdev, wake);
3084 }
3085
3086 /* ------------------ PCI Error Recovery infrastructure -------------- */
3087 /**
3088 * e100_io_error_detected - called when PCI error is detected.
3089 * @pdev: Pointer to PCI device
3090 * @state: The current pci connection state
3091 */
3092 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3093 {
3094 struct net_device *netdev = pci_get_drvdata(pdev);
3095 struct nic *nic = netdev_priv(netdev);
3096
3097 netif_device_detach(netdev);
3098
3099 if (state == pci_channel_io_perm_failure)
3100 return PCI_ERS_RESULT_DISCONNECT;
3101
3102 if (netif_running(netdev))
3103 e100_down(nic);
3104 pci_disable_device(pdev);
3105
3106 /* Request a slot reset. */
3107 return PCI_ERS_RESULT_NEED_RESET;
3108 }
3109
3110 /**
3111 * e100_io_slot_reset - called after the pci bus has been reset.
3112 * @pdev: Pointer to PCI device
3113 *
3114 * Restart the card from scratch.
3115 */
3116 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3117 {
3118 struct net_device *netdev = pci_get_drvdata(pdev);
3119 struct nic *nic = netdev_priv(netdev);
3120
3121 if (pci_enable_device(pdev)) {
3122 pr_err("Cannot re-enable PCI device after reset\n");
3123 return PCI_ERS_RESULT_DISCONNECT;
3124 }
3125 pci_set_master(pdev);
3126
3127 /* Only one device per card can do a reset */
3128 if (0 != PCI_FUNC(pdev->devfn))
3129 return PCI_ERS_RESULT_RECOVERED;
3130 e100_hw_reset(nic);
3131 e100_phy_init(nic);
3132
3133 return PCI_ERS_RESULT_RECOVERED;
3134 }
3135
3136 /**
3137 * e100_io_resume - resume normal operations
3138 * @pdev: Pointer to PCI device
3139 *
3140 * Resume normal operations after an error recovery
3141 * sequence has been completed.
3142 */
3143 static void e100_io_resume(struct pci_dev *pdev)
3144 {
3145 struct net_device *netdev = pci_get_drvdata(pdev);
3146 struct nic *nic = netdev_priv(netdev);
3147
3148 /* ack any pending wake events, disable PME */
3149 pci_enable_wake(pdev, 0, 0);
3150
3151 netif_device_attach(netdev);
3152 if (netif_running(netdev)) {
3153 e100_open(netdev);
3154 mod_timer(&nic->watchdog, jiffies);
3155 }
3156 }
3157
3158 static const struct pci_error_handlers e100_err_handler = {
3159 .error_detected = e100_io_error_detected,
3160 .slot_reset = e100_io_slot_reset,
3161 .resume = e100_io_resume,
3162 };
3163
3164 static struct pci_driver e100_driver = {
3165 .name = DRV_NAME,
3166 .id_table = e100_id_table,
3167 .probe = e100_probe,
3168 .remove = e100_remove,
3169 #ifdef CONFIG_PM
3170 /* Power Management hooks */
3171 .suspend = e100_suspend,
3172 .resume = e100_resume,
3173 #endif
3174 .shutdown = e100_shutdown,
3175 .err_handler = &e100_err_handler,
3176 };
3177
3178 static int __init e100_init_module(void)
3179 {
3180 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3181 pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3182 pr_info("%s\n", DRV_COPYRIGHT);
3183 }
3184 return pci_register_driver(&e100_driver);
3185 }
3186
3187 static void __exit e100_cleanup_module(void)
3188 {
3189 pci_unregister_driver(&e100_driver);
3190 }
3191
3192 module_init(e100_init_module);
3193 module_exit(e100_cleanup_module);