Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / dlink / dl2k.c
1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11 */
12
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18
19 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
22 #define dr32(reg) ioread32(ioaddr + (reg))
23 #define dr16(reg) ioread16(ioaddr + (reg))
24 #define dr8(reg) ioread8(ioaddr + (reg))
25
26 static char version[] __devinitdata =
27 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
28 #define MAX_UNITS 8
29 static int mtu[MAX_UNITS];
30 static int vlan[MAX_UNITS];
31 static int jumbo[MAX_UNITS];
32 static char *media[MAX_UNITS];
33 static int tx_flow=-1;
34 static int rx_flow=-1;
35 static int copy_thresh;
36 static int rx_coalesce=10; /* Rx frame count each interrupt */
37 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
39
40
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu, int, NULL, 0);
45 module_param_array(media, charp, NULL, 0);
46 module_param_array(vlan, int, NULL, 0);
47 module_param_array(jumbo, int, NULL, 0);
48 module_param(tx_flow, int, 0);
49 module_param(rx_flow, int, 0);
50 module_param(copy_thresh, int, 0);
51 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
52 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
54
55
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58 UpdateStats | LinkEvent)
59
60 static void dl2k_enable_int(struct netdev_private *np)
61 {
62 void __iomem *ioaddr = np->ioaddr;
63
64 dw16(IntEnable, DEFAULT_INTR);
65 }
66
67 static const int max_intrloop = 50;
68 static const int multicast_filter_limit = 0x40;
69
70 static int rio_open (struct net_device *dev);
71 static void rio_timer (unsigned long data);
72 static void rio_tx_timeout (struct net_device *dev);
73 static void alloc_list (struct net_device *dev);
74 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
75 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
76 static void rio_free_tx (struct net_device *dev, int irq);
77 static void tx_error (struct net_device *dev, int tx_status);
78 static int receive_packet (struct net_device *dev);
79 static void rio_error (struct net_device *dev, int int_status);
80 static int change_mtu (struct net_device *dev, int new_mtu);
81 static void set_multicast (struct net_device *dev);
82 static struct net_device_stats *get_stats (struct net_device *dev);
83 static int clear_stats (struct net_device *dev);
84 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
85 static int rio_close (struct net_device *dev);
86 static int find_miiphy (struct net_device *dev);
87 static int parse_eeprom (struct net_device *dev);
88 static int read_eeprom (struct netdev_private *, int eep_addr);
89 static int mii_wait_link (struct net_device *dev, int wait);
90 static int mii_set_media (struct net_device *dev);
91 static int mii_get_media (struct net_device *dev);
92 static int mii_set_media_pcs (struct net_device *dev);
93 static int mii_get_media_pcs (struct net_device *dev);
94 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
95 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
96 u16 data);
97
98 static const struct ethtool_ops ethtool_ops;
99
100 static const struct net_device_ops netdev_ops = {
101 .ndo_open = rio_open,
102 .ndo_start_xmit = start_xmit,
103 .ndo_stop = rio_close,
104 .ndo_get_stats = get_stats,
105 .ndo_validate_addr = eth_validate_addr,
106 .ndo_set_mac_address = eth_mac_addr,
107 .ndo_set_rx_mode = set_multicast,
108 .ndo_do_ioctl = rio_ioctl,
109 .ndo_tx_timeout = rio_tx_timeout,
110 .ndo_change_mtu = change_mtu,
111 };
112
113 static int __devinit
114 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
115 {
116 struct net_device *dev;
117 struct netdev_private *np;
118 static int card_idx;
119 int chip_idx = ent->driver_data;
120 int err, irq;
121 void __iomem *ioaddr;
122 static int version_printed;
123 void *ring_space;
124 dma_addr_t ring_dma;
125
126 if (!version_printed++)
127 printk ("%s", version);
128
129 err = pci_enable_device (pdev);
130 if (err)
131 return err;
132
133 irq = pdev->irq;
134 err = pci_request_regions (pdev, "dl2k");
135 if (err)
136 goto err_out_disable;
137
138 pci_set_master (pdev);
139
140 err = -ENOMEM;
141
142 dev = alloc_etherdev (sizeof (*np));
143 if (!dev)
144 goto err_out_res;
145 SET_NETDEV_DEV(dev, &pdev->dev);
146
147 np = netdev_priv(dev);
148
149 /* IO registers range. */
150 ioaddr = pci_iomap(pdev, 0, 0);
151 if (!ioaddr)
152 goto err_out_dev;
153 np->eeprom_addr = ioaddr;
154
155 #ifdef MEM_MAPPING
156 /* MM registers range. */
157 ioaddr = pci_iomap(pdev, 1, 0);
158 if (!ioaddr)
159 goto err_out_iounmap;
160 #endif
161 np->ioaddr = ioaddr;
162 np->chip_id = chip_idx;
163 np->pdev = pdev;
164 spin_lock_init (&np->tx_lock);
165 spin_lock_init (&np->rx_lock);
166
167 /* Parse manual configuration */
168 np->an_enable = 1;
169 np->tx_coalesce = 1;
170 if (card_idx < MAX_UNITS) {
171 if (media[card_idx] != NULL) {
172 np->an_enable = 0;
173 if (strcmp (media[card_idx], "auto") == 0 ||
174 strcmp (media[card_idx], "autosense") == 0 ||
175 strcmp (media[card_idx], "0") == 0 ) {
176 np->an_enable = 2;
177 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
178 strcmp (media[card_idx], "4") == 0) {
179 np->speed = 100;
180 np->full_duplex = 1;
181 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
182 strcmp (media[card_idx], "3") == 0) {
183 np->speed = 100;
184 np->full_duplex = 0;
185 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
186 strcmp (media[card_idx], "2") == 0) {
187 np->speed = 10;
188 np->full_duplex = 1;
189 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
190 strcmp (media[card_idx], "1") == 0) {
191 np->speed = 10;
192 np->full_duplex = 0;
193 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
194 strcmp (media[card_idx], "6") == 0) {
195 np->speed=1000;
196 np->full_duplex=1;
197 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
198 strcmp (media[card_idx], "5") == 0) {
199 np->speed = 1000;
200 np->full_duplex = 0;
201 } else {
202 np->an_enable = 1;
203 }
204 }
205 if (jumbo[card_idx] != 0) {
206 np->jumbo = 1;
207 dev->mtu = MAX_JUMBO;
208 } else {
209 np->jumbo = 0;
210 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
211 dev->mtu = mtu[card_idx];
212 }
213 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
214 vlan[card_idx] : 0;
215 if (rx_coalesce > 0 && rx_timeout > 0) {
216 np->rx_coalesce = rx_coalesce;
217 np->rx_timeout = rx_timeout;
218 np->coalesce = 1;
219 }
220 np->tx_flow = (tx_flow == 0) ? 0 : 1;
221 np->rx_flow = (rx_flow == 0) ? 0 : 1;
222
223 if (tx_coalesce < 1)
224 tx_coalesce = 1;
225 else if (tx_coalesce > TX_RING_SIZE-1)
226 tx_coalesce = TX_RING_SIZE - 1;
227 }
228 dev->netdev_ops = &netdev_ops;
229 dev->watchdog_timeo = TX_TIMEOUT;
230 SET_ETHTOOL_OPS(dev, &ethtool_ops);
231 #if 0
232 dev->features = NETIF_F_IP_CSUM;
233 #endif
234 pci_set_drvdata (pdev, dev);
235
236 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
237 if (!ring_space)
238 goto err_out_iounmap;
239 np->tx_ring = ring_space;
240 np->tx_ring_dma = ring_dma;
241
242 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
243 if (!ring_space)
244 goto err_out_unmap_tx;
245 np->rx_ring = ring_space;
246 np->rx_ring_dma = ring_dma;
247
248 /* Parse eeprom data */
249 parse_eeprom (dev);
250
251 /* Find PHY address */
252 err = find_miiphy (dev);
253 if (err)
254 goto err_out_unmap_rx;
255
256 /* Fiber device? */
257 np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
258 np->link_status = 0;
259 /* Set media and reset PHY */
260 if (np->phy_media) {
261 /* default Auto-Negotiation for fiber deivices */
262 if (np->an_enable == 2) {
263 np->an_enable = 1;
264 }
265 mii_set_media_pcs (dev);
266 } else {
267 /* Auto-Negotiation is mandatory for 1000BASE-T,
268 IEEE 802.3ab Annex 28D page 14 */
269 if (np->speed == 1000)
270 np->an_enable = 1;
271 mii_set_media (dev);
272 }
273
274 err = register_netdev (dev);
275 if (err)
276 goto err_out_unmap_rx;
277
278 card_idx++;
279
280 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
281 dev->name, np->name, dev->dev_addr, irq);
282 if (tx_coalesce > 1)
283 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
284 tx_coalesce);
285 if (np->coalesce)
286 printk(KERN_INFO
287 "rx_coalesce:\t%d packets\n"
288 "rx_timeout: \t%d ns\n",
289 np->rx_coalesce, np->rx_timeout*640);
290 if (np->vlan)
291 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
292 return 0;
293
294 err_out_unmap_rx:
295 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
296 err_out_unmap_tx:
297 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
298 err_out_iounmap:
299 #ifdef MEM_MAPPING
300 pci_iounmap(pdev, np->ioaddr);
301 #endif
302 pci_iounmap(pdev, np->eeprom_addr);
303 err_out_dev:
304 free_netdev (dev);
305 err_out_res:
306 pci_release_regions (pdev);
307 err_out_disable:
308 pci_disable_device (pdev);
309 return err;
310 }
311
312 static int
313 find_miiphy (struct net_device *dev)
314 {
315 struct netdev_private *np = netdev_priv(dev);
316 int i, phy_found = 0;
317 np = netdev_priv(dev);
318 np->phy_addr = 1;
319
320 for (i = 31; i >= 0; i--) {
321 int mii_status = mii_read (dev, i, 1);
322 if (mii_status != 0xffff && mii_status != 0x0000) {
323 np->phy_addr = i;
324 phy_found++;
325 }
326 }
327 if (!phy_found) {
328 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
329 return -ENODEV;
330 }
331 return 0;
332 }
333
334 static int
335 parse_eeprom (struct net_device *dev)
336 {
337 struct netdev_private *np = netdev_priv(dev);
338 void __iomem *ioaddr = np->ioaddr;
339 int i, j;
340 u8 sromdata[256];
341 u8 *psib;
342 u32 crc;
343 PSROM_t psrom = (PSROM_t) sromdata;
344
345 int cid, next;
346
347 for (i = 0; i < 128; i++)
348 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
349
350 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
351 /* Check CRC */
352 crc = ~ether_crc_le (256 - 4, sromdata);
353 if (psrom->crc != cpu_to_le32(crc)) {
354 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
355 dev->name);
356 return -1;
357 }
358 }
359
360 /* Set MAC address */
361 for (i = 0; i < 6; i++)
362 dev->dev_addr[i] = psrom->mac_addr[i];
363
364 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
365 return 0;
366 }
367
368 /* Parse Software Information Block */
369 i = 0x30;
370 psib = (u8 *) sromdata;
371 do {
372 cid = psib[i++];
373 next = psib[i++];
374 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
375 printk (KERN_ERR "Cell data error\n");
376 return -1;
377 }
378 switch (cid) {
379 case 0: /* Format version */
380 break;
381 case 1: /* End of cell */
382 return 0;
383 case 2: /* Duplex Polarity */
384 np->duplex_polarity = psib[i];
385 dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
386 break;
387 case 3: /* Wake Polarity */
388 np->wake_polarity = psib[i];
389 break;
390 case 9: /* Adapter description */
391 j = (next - i > 255) ? 255 : next - i;
392 memcpy (np->name, &(psib[i]), j);
393 break;
394 case 4:
395 case 5:
396 case 6:
397 case 7:
398 case 8: /* Reversed */
399 break;
400 default: /* Unknown cell */
401 return -1;
402 }
403 i = next;
404 } while (1);
405
406 return 0;
407 }
408
409 static int
410 rio_open (struct net_device *dev)
411 {
412 struct netdev_private *np = netdev_priv(dev);
413 void __iomem *ioaddr = np->ioaddr;
414 const int irq = np->pdev->irq;
415 int i;
416 u16 macctrl;
417
418 i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
419 if (i)
420 return i;
421
422 /* Reset all logic functions */
423 dw16(ASICCtrl + 2,
424 GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
425 mdelay(10);
426
427 /* DebugCtrl bit 4, 5, 9 must set */
428 dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
429
430 /* Jumbo frame */
431 if (np->jumbo != 0)
432 dw16(MaxFrameSize, MAX_JUMBO+14);
433
434 alloc_list (dev);
435
436 /* Get station address */
437 for (i = 0; i < 6; i++)
438 dw8(StationAddr0 + i, dev->dev_addr[i]);
439
440 set_multicast (dev);
441 if (np->coalesce) {
442 dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
443 }
444 /* Set RIO to poll every N*320nsec. */
445 dw8(RxDMAPollPeriod, 0x20);
446 dw8(TxDMAPollPeriod, 0xff);
447 dw8(RxDMABurstThresh, 0x30);
448 dw8(RxDMAUrgentThresh, 0x30);
449 dw32(RmonStatMask, 0x0007ffff);
450 /* clear statistics */
451 clear_stats (dev);
452
453 /* VLAN supported */
454 if (np->vlan) {
455 /* priority field in RxDMAIntCtrl */
456 dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
457 /* VLANId */
458 dw16(VLANId, np->vlan);
459 /* Length/Type should be 0x8100 */
460 dw32(VLANTag, 0x8100 << 16 | np->vlan);
461 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
462 VLAN information tagged by TFC' VID, CFI fields. */
463 dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
464 }
465
466 init_timer (&np->timer);
467 np->timer.expires = jiffies + 1*HZ;
468 np->timer.data = (unsigned long) dev;
469 np->timer.function = rio_timer;
470 add_timer (&np->timer);
471
472 /* Start Tx/Rx */
473 dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
474
475 macctrl = 0;
476 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
477 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
478 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
479 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
480 dw16(MACCtrl, macctrl);
481
482 netif_start_queue (dev);
483
484 dl2k_enable_int(np);
485 return 0;
486 }
487
488 static void
489 rio_timer (unsigned long data)
490 {
491 struct net_device *dev = (struct net_device *)data;
492 struct netdev_private *np = netdev_priv(dev);
493 unsigned int entry;
494 int next_tick = 1*HZ;
495 unsigned long flags;
496
497 spin_lock_irqsave(&np->rx_lock, flags);
498 /* Recover rx ring exhausted error */
499 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
500 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
501 /* Re-allocate skbuffs to fill the descriptor ring */
502 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
503 struct sk_buff *skb;
504 entry = np->old_rx % RX_RING_SIZE;
505 /* Dropped packets don't need to re-allocate */
506 if (np->rx_skbuff[entry] == NULL) {
507 skb = netdev_alloc_skb_ip_align(dev,
508 np->rx_buf_sz);
509 if (skb == NULL) {
510 np->rx_ring[entry].fraginfo = 0;
511 printk (KERN_INFO
512 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
513 dev->name, entry);
514 break;
515 }
516 np->rx_skbuff[entry] = skb;
517 np->rx_ring[entry].fraginfo =
518 cpu_to_le64 (pci_map_single
519 (np->pdev, skb->data, np->rx_buf_sz,
520 PCI_DMA_FROMDEVICE));
521 }
522 np->rx_ring[entry].fraginfo |=
523 cpu_to_le64((u64)np->rx_buf_sz << 48);
524 np->rx_ring[entry].status = 0;
525 } /* end for */
526 } /* end if */
527 spin_unlock_irqrestore (&np->rx_lock, flags);
528 np->timer.expires = jiffies + next_tick;
529 add_timer(&np->timer);
530 }
531
532 static void
533 rio_tx_timeout (struct net_device *dev)
534 {
535 struct netdev_private *np = netdev_priv(dev);
536 void __iomem *ioaddr = np->ioaddr;
537
538 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
539 dev->name, dr32(TxStatus));
540 rio_free_tx(dev, 0);
541 dev->if_port = 0;
542 dev->trans_start = jiffies; /* prevent tx timeout */
543 }
544
545 /* allocate and initialize Tx and Rx descriptors */
546 static void
547 alloc_list (struct net_device *dev)
548 {
549 struct netdev_private *np = netdev_priv(dev);
550 void __iomem *ioaddr = np->ioaddr;
551 int i;
552
553 np->cur_rx = np->cur_tx = 0;
554 np->old_rx = np->old_tx = 0;
555 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
556
557 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
558 for (i = 0; i < TX_RING_SIZE; i++) {
559 np->tx_skbuff[i] = NULL;
560 np->tx_ring[i].status = cpu_to_le64 (TFDDone);
561 np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
562 ((i+1)%TX_RING_SIZE) *
563 sizeof (struct netdev_desc));
564 }
565
566 /* Initialize Rx descriptors */
567 for (i = 0; i < RX_RING_SIZE; i++) {
568 np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
569 ((i + 1) % RX_RING_SIZE) *
570 sizeof (struct netdev_desc));
571 np->rx_ring[i].status = 0;
572 np->rx_ring[i].fraginfo = 0;
573 np->rx_skbuff[i] = NULL;
574 }
575
576 /* Allocate the rx buffers */
577 for (i = 0; i < RX_RING_SIZE; i++) {
578 /* Allocated fixed size of skbuff */
579 struct sk_buff *skb;
580
581 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
582 np->rx_skbuff[i] = skb;
583 if (skb == NULL) {
584 printk (KERN_ERR
585 "%s: alloc_list: allocate Rx buffer error! ",
586 dev->name);
587 break;
588 }
589 /* Rubicon now supports 40 bits of addressing space. */
590 np->rx_ring[i].fraginfo =
591 cpu_to_le64 ( pci_map_single (
592 np->pdev, skb->data, np->rx_buf_sz,
593 PCI_DMA_FROMDEVICE));
594 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
595 }
596
597 /* Set RFDListPtr */
598 dw32(RFDListPtr0, np->rx_ring_dma);
599 dw32(RFDListPtr1, 0);
600 }
601
602 static netdev_tx_t
603 start_xmit (struct sk_buff *skb, struct net_device *dev)
604 {
605 struct netdev_private *np = netdev_priv(dev);
606 void __iomem *ioaddr = np->ioaddr;
607 struct netdev_desc *txdesc;
608 unsigned entry;
609 u64 tfc_vlan_tag = 0;
610
611 if (np->link_status == 0) { /* Link Down */
612 dev_kfree_skb(skb);
613 return NETDEV_TX_OK;
614 }
615 entry = np->cur_tx % TX_RING_SIZE;
616 np->tx_skbuff[entry] = skb;
617 txdesc = &np->tx_ring[entry];
618
619 #if 0
620 if (skb->ip_summed == CHECKSUM_PARTIAL) {
621 txdesc->status |=
622 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
623 IPChecksumEnable);
624 }
625 #endif
626 if (np->vlan) {
627 tfc_vlan_tag = VLANTagInsert |
628 ((u64)np->vlan << 32) |
629 ((u64)skb->priority << 45);
630 }
631 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
632 skb->len,
633 PCI_DMA_TODEVICE));
634 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
635
636 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
637 * Work around: Always use 1 descriptor in 10Mbps mode */
638 if (entry % np->tx_coalesce == 0 || np->speed == 10)
639 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
640 WordAlignDisable |
641 TxDMAIndicate |
642 (1 << FragCountShift));
643 else
644 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
645 WordAlignDisable |
646 (1 << FragCountShift));
647
648 /* TxDMAPollNow */
649 dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
650 /* Schedule ISR */
651 dw32(CountDown, 10000);
652 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
653 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
654 < TX_QUEUE_LEN - 1 && np->speed != 10) {
655 /* do nothing */
656 } else if (!netif_queue_stopped(dev)) {
657 netif_stop_queue (dev);
658 }
659
660 /* The first TFDListPtr */
661 if (!dr32(TFDListPtr0)) {
662 dw32(TFDListPtr0, np->tx_ring_dma +
663 entry * sizeof (struct netdev_desc));
664 dw32(TFDListPtr1, 0);
665 }
666
667 return NETDEV_TX_OK;
668 }
669
670 static irqreturn_t
671 rio_interrupt (int irq, void *dev_instance)
672 {
673 struct net_device *dev = dev_instance;
674 struct netdev_private *np = netdev_priv(dev);
675 void __iomem *ioaddr = np->ioaddr;
676 unsigned int_status;
677 int cnt = max_intrloop;
678 int handled = 0;
679
680 while (1) {
681 int_status = dr16(IntStatus);
682 dw16(IntStatus, int_status);
683 int_status &= DEFAULT_INTR;
684 if (int_status == 0 || --cnt < 0)
685 break;
686 handled = 1;
687 /* Processing received packets */
688 if (int_status & RxDMAComplete)
689 receive_packet (dev);
690 /* TxDMAComplete interrupt */
691 if ((int_status & (TxDMAComplete|IntRequested))) {
692 int tx_status;
693 tx_status = dr32(TxStatus);
694 if (tx_status & 0x01)
695 tx_error (dev, tx_status);
696 /* Free used tx skbuffs */
697 rio_free_tx (dev, 1);
698 }
699
700 /* Handle uncommon events */
701 if (int_status &
702 (HostError | LinkEvent | UpdateStats))
703 rio_error (dev, int_status);
704 }
705 if (np->cur_tx != np->old_tx)
706 dw32(CountDown, 100);
707 return IRQ_RETVAL(handled);
708 }
709
710 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
711 {
712 return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
713 }
714
715 static void
716 rio_free_tx (struct net_device *dev, int irq)
717 {
718 struct netdev_private *np = netdev_priv(dev);
719 int entry = np->old_tx % TX_RING_SIZE;
720 int tx_use = 0;
721 unsigned long flag = 0;
722
723 if (irq)
724 spin_lock(&np->tx_lock);
725 else
726 spin_lock_irqsave(&np->tx_lock, flag);
727
728 /* Free used tx skbuffs */
729 while (entry != np->cur_tx) {
730 struct sk_buff *skb;
731
732 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
733 break;
734 skb = np->tx_skbuff[entry];
735 pci_unmap_single (np->pdev,
736 desc_to_dma(&np->tx_ring[entry]),
737 skb->len, PCI_DMA_TODEVICE);
738 if (irq)
739 dev_kfree_skb_irq (skb);
740 else
741 dev_kfree_skb (skb);
742
743 np->tx_skbuff[entry] = NULL;
744 entry = (entry + 1) % TX_RING_SIZE;
745 tx_use++;
746 }
747 if (irq)
748 spin_unlock(&np->tx_lock);
749 else
750 spin_unlock_irqrestore(&np->tx_lock, flag);
751 np->old_tx = entry;
752
753 /* If the ring is no longer full, clear tx_full and
754 call netif_wake_queue() */
755
756 if (netif_queue_stopped(dev) &&
757 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
758 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
759 netif_wake_queue (dev);
760 }
761 }
762
763 static void
764 tx_error (struct net_device *dev, int tx_status)
765 {
766 struct netdev_private *np = netdev_priv(dev);
767 void __iomem *ioaddr = np->ioaddr;
768 int frame_id;
769 int i;
770
771 frame_id = (tx_status & 0xffff0000);
772 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
773 dev->name, tx_status, frame_id);
774 np->stats.tx_errors++;
775 /* Ttransmit Underrun */
776 if (tx_status & 0x10) {
777 np->stats.tx_fifo_errors++;
778 dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
779 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
780 dw16(ASICCtrl + 2,
781 TxReset | DMAReset | FIFOReset | NetworkReset);
782 /* Wait for ResetBusy bit clear */
783 for (i = 50; i > 0; i--) {
784 if (!(dr16(ASICCtrl + 2) & ResetBusy))
785 break;
786 mdelay (1);
787 }
788 rio_free_tx (dev, 1);
789 /* Reset TFDListPtr */
790 dw32(TFDListPtr0, np->tx_ring_dma +
791 np->old_tx * sizeof (struct netdev_desc));
792 dw32(TFDListPtr1, 0);
793
794 /* Let TxStartThresh stay default value */
795 }
796 /* Late Collision */
797 if (tx_status & 0x04) {
798 np->stats.tx_fifo_errors++;
799 /* TxReset and clear FIFO */
800 dw16(ASICCtrl + 2, TxReset | FIFOReset);
801 /* Wait reset done */
802 for (i = 50; i > 0; i--) {
803 if (!(dr16(ASICCtrl + 2) & ResetBusy))
804 break;
805 mdelay (1);
806 }
807 /* Let TxStartThresh stay default value */
808 }
809 /* Maximum Collisions */
810 #ifdef ETHER_STATS
811 if (tx_status & 0x08)
812 np->stats.collisions16++;
813 #else
814 if (tx_status & 0x08)
815 np->stats.collisions++;
816 #endif
817 /* Restart the Tx */
818 dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
819 }
820
821 static int
822 receive_packet (struct net_device *dev)
823 {
824 struct netdev_private *np = netdev_priv(dev);
825 int entry = np->cur_rx % RX_RING_SIZE;
826 int cnt = 30;
827
828 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
829 while (1) {
830 struct netdev_desc *desc = &np->rx_ring[entry];
831 int pkt_len;
832 u64 frame_status;
833
834 if (!(desc->status & cpu_to_le64(RFDDone)) ||
835 !(desc->status & cpu_to_le64(FrameStart)) ||
836 !(desc->status & cpu_to_le64(FrameEnd)))
837 break;
838
839 /* Chip omits the CRC. */
840 frame_status = le64_to_cpu(desc->status);
841 pkt_len = frame_status & 0xffff;
842 if (--cnt < 0)
843 break;
844 /* Update rx error statistics, drop packet. */
845 if (frame_status & RFS_Errors) {
846 np->stats.rx_errors++;
847 if (frame_status & (RxRuntFrame | RxLengthError))
848 np->stats.rx_length_errors++;
849 if (frame_status & RxFCSError)
850 np->stats.rx_crc_errors++;
851 if (frame_status & RxAlignmentError && np->speed != 1000)
852 np->stats.rx_frame_errors++;
853 if (frame_status & RxFIFOOverrun)
854 np->stats.rx_fifo_errors++;
855 } else {
856 struct sk_buff *skb;
857
858 /* Small skbuffs for short packets */
859 if (pkt_len > copy_thresh) {
860 pci_unmap_single (np->pdev,
861 desc_to_dma(desc),
862 np->rx_buf_sz,
863 PCI_DMA_FROMDEVICE);
864 skb_put (skb = np->rx_skbuff[entry], pkt_len);
865 np->rx_skbuff[entry] = NULL;
866 } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
867 pci_dma_sync_single_for_cpu(np->pdev,
868 desc_to_dma(desc),
869 np->rx_buf_sz,
870 PCI_DMA_FROMDEVICE);
871 skb_copy_to_linear_data (skb,
872 np->rx_skbuff[entry]->data,
873 pkt_len);
874 skb_put (skb, pkt_len);
875 pci_dma_sync_single_for_device(np->pdev,
876 desc_to_dma(desc),
877 np->rx_buf_sz,
878 PCI_DMA_FROMDEVICE);
879 }
880 skb->protocol = eth_type_trans (skb, dev);
881 #if 0
882 /* Checksum done by hw, but csum value unavailable. */
883 if (np->pdev->pci_rev_id >= 0x0c &&
884 !(frame_status & (TCPError | UDPError | IPError))) {
885 skb->ip_summed = CHECKSUM_UNNECESSARY;
886 }
887 #endif
888 netif_rx (skb);
889 }
890 entry = (entry + 1) % RX_RING_SIZE;
891 }
892 spin_lock(&np->rx_lock);
893 np->cur_rx = entry;
894 /* Re-allocate skbuffs to fill the descriptor ring */
895 entry = np->old_rx;
896 while (entry != np->cur_rx) {
897 struct sk_buff *skb;
898 /* Dropped packets don't need to re-allocate */
899 if (np->rx_skbuff[entry] == NULL) {
900 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
901 if (skb == NULL) {
902 np->rx_ring[entry].fraginfo = 0;
903 printk (KERN_INFO
904 "%s: receive_packet: "
905 "Unable to re-allocate Rx skbuff.#%d\n",
906 dev->name, entry);
907 break;
908 }
909 np->rx_skbuff[entry] = skb;
910 np->rx_ring[entry].fraginfo =
911 cpu_to_le64 (pci_map_single
912 (np->pdev, skb->data, np->rx_buf_sz,
913 PCI_DMA_FROMDEVICE));
914 }
915 np->rx_ring[entry].fraginfo |=
916 cpu_to_le64((u64)np->rx_buf_sz << 48);
917 np->rx_ring[entry].status = 0;
918 entry = (entry + 1) % RX_RING_SIZE;
919 }
920 np->old_rx = entry;
921 spin_unlock(&np->rx_lock);
922 return 0;
923 }
924
925 static void
926 rio_error (struct net_device *dev, int int_status)
927 {
928 struct netdev_private *np = netdev_priv(dev);
929 void __iomem *ioaddr = np->ioaddr;
930 u16 macctrl;
931
932 /* Link change event */
933 if (int_status & LinkEvent) {
934 if (mii_wait_link (dev, 10) == 0) {
935 printk (KERN_INFO "%s: Link up\n", dev->name);
936 if (np->phy_media)
937 mii_get_media_pcs (dev);
938 else
939 mii_get_media (dev);
940 if (np->speed == 1000)
941 np->tx_coalesce = tx_coalesce;
942 else
943 np->tx_coalesce = 1;
944 macctrl = 0;
945 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
946 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
947 macctrl |= (np->tx_flow) ?
948 TxFlowControlEnable : 0;
949 macctrl |= (np->rx_flow) ?
950 RxFlowControlEnable : 0;
951 dw16(MACCtrl, macctrl);
952 np->link_status = 1;
953 netif_carrier_on(dev);
954 } else {
955 printk (KERN_INFO "%s: Link off\n", dev->name);
956 np->link_status = 0;
957 netif_carrier_off(dev);
958 }
959 }
960
961 /* UpdateStats statistics registers */
962 if (int_status & UpdateStats) {
963 get_stats (dev);
964 }
965
966 /* PCI Error, a catastronphic error related to the bus interface
967 occurs, set GlobalReset and HostReset to reset. */
968 if (int_status & HostError) {
969 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
970 dev->name, int_status);
971 dw16(ASICCtrl + 2, GlobalReset | HostReset);
972 mdelay (500);
973 }
974 }
975
976 static struct net_device_stats *
977 get_stats (struct net_device *dev)
978 {
979 struct netdev_private *np = netdev_priv(dev);
980 void __iomem *ioaddr = np->ioaddr;
981 #ifdef MEM_MAPPING
982 int i;
983 #endif
984 unsigned int stat_reg;
985
986 /* All statistics registers need to be acknowledged,
987 else statistic overflow could cause problems */
988
989 np->stats.rx_packets += dr32(FramesRcvOk);
990 np->stats.tx_packets += dr32(FramesXmtOk);
991 np->stats.rx_bytes += dr32(OctetRcvOk);
992 np->stats.tx_bytes += dr32(OctetXmtOk);
993
994 np->stats.multicast = dr32(McstFramesRcvdOk);
995 np->stats.collisions += dr32(SingleColFrames)
996 + dr32(MultiColFrames);
997
998 /* detailed tx errors */
999 stat_reg = dr16(FramesAbortXSColls);
1000 np->stats.tx_aborted_errors += stat_reg;
1001 np->stats.tx_errors += stat_reg;
1002
1003 stat_reg = dr16(CarrierSenseErrors);
1004 np->stats.tx_carrier_errors += stat_reg;
1005 np->stats.tx_errors += stat_reg;
1006
1007 /* Clear all other statistic register. */
1008 dr32(McstOctetXmtOk);
1009 dr16(BcstFramesXmtdOk);
1010 dr32(McstFramesXmtdOk);
1011 dr16(BcstFramesRcvdOk);
1012 dr16(MacControlFramesRcvd);
1013 dr16(FrameTooLongErrors);
1014 dr16(InRangeLengthErrors);
1015 dr16(FramesCheckSeqErrors);
1016 dr16(FramesLostRxErrors);
1017 dr32(McstOctetXmtOk);
1018 dr32(BcstOctetXmtOk);
1019 dr32(McstFramesXmtdOk);
1020 dr32(FramesWDeferredXmt);
1021 dr32(LateCollisions);
1022 dr16(BcstFramesXmtdOk);
1023 dr16(MacControlFramesXmtd);
1024 dr16(FramesWEXDeferal);
1025
1026 #ifdef MEM_MAPPING
1027 for (i = 0x100; i <= 0x150; i += 4)
1028 dr32(i);
1029 #endif
1030 dr16(TxJumboFrames);
1031 dr16(RxJumboFrames);
1032 dr16(TCPCheckSumErrors);
1033 dr16(UDPCheckSumErrors);
1034 dr16(IPCheckSumErrors);
1035 return &np->stats;
1036 }
1037
1038 static int
1039 clear_stats (struct net_device *dev)
1040 {
1041 struct netdev_private *np = netdev_priv(dev);
1042 void __iomem *ioaddr = np->ioaddr;
1043 #ifdef MEM_MAPPING
1044 int i;
1045 #endif
1046
1047 /* All statistics registers need to be acknowledged,
1048 else statistic overflow could cause problems */
1049 dr32(FramesRcvOk);
1050 dr32(FramesXmtOk);
1051 dr32(OctetRcvOk);
1052 dr32(OctetXmtOk);
1053
1054 dr32(McstFramesRcvdOk);
1055 dr32(SingleColFrames);
1056 dr32(MultiColFrames);
1057 dr32(LateCollisions);
1058 /* detailed rx errors */
1059 dr16(FrameTooLongErrors);
1060 dr16(InRangeLengthErrors);
1061 dr16(FramesCheckSeqErrors);
1062 dr16(FramesLostRxErrors);
1063
1064 /* detailed tx errors */
1065 dr16(FramesAbortXSColls);
1066 dr16(CarrierSenseErrors);
1067
1068 /* Clear all other statistic register. */
1069 dr32(McstOctetXmtOk);
1070 dr16(BcstFramesXmtdOk);
1071 dr32(McstFramesXmtdOk);
1072 dr16(BcstFramesRcvdOk);
1073 dr16(MacControlFramesRcvd);
1074 dr32(McstOctetXmtOk);
1075 dr32(BcstOctetXmtOk);
1076 dr32(McstFramesXmtdOk);
1077 dr32(FramesWDeferredXmt);
1078 dr16(BcstFramesXmtdOk);
1079 dr16(MacControlFramesXmtd);
1080 dr16(FramesWEXDeferal);
1081 #ifdef MEM_MAPPING
1082 for (i = 0x100; i <= 0x150; i += 4)
1083 dr32(i);
1084 #endif
1085 dr16(TxJumboFrames);
1086 dr16(RxJumboFrames);
1087 dr16(TCPCheckSumErrors);
1088 dr16(UDPCheckSumErrors);
1089 dr16(IPCheckSumErrors);
1090 return 0;
1091 }
1092
1093
1094 static int
1095 change_mtu (struct net_device *dev, int new_mtu)
1096 {
1097 struct netdev_private *np = netdev_priv(dev);
1098 int max = (np->jumbo) ? MAX_JUMBO : 1536;
1099
1100 if ((new_mtu < 68) || (new_mtu > max)) {
1101 return -EINVAL;
1102 }
1103
1104 dev->mtu = new_mtu;
1105
1106 return 0;
1107 }
1108
1109 static void
1110 set_multicast (struct net_device *dev)
1111 {
1112 struct netdev_private *np = netdev_priv(dev);
1113 void __iomem *ioaddr = np->ioaddr;
1114 u32 hash_table[2];
1115 u16 rx_mode = 0;
1116
1117 hash_table[0] = hash_table[1] = 0;
1118 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1119 hash_table[1] |= 0x02000000;
1120 if (dev->flags & IFF_PROMISC) {
1121 /* Receive all frames promiscuously. */
1122 rx_mode = ReceiveAllFrames;
1123 } else if ((dev->flags & IFF_ALLMULTI) ||
1124 (netdev_mc_count(dev) > multicast_filter_limit)) {
1125 /* Receive broadcast and multicast frames */
1126 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1127 } else if (!netdev_mc_empty(dev)) {
1128 struct netdev_hw_addr *ha;
1129 /* Receive broadcast frames and multicast frames filtering
1130 by Hashtable */
1131 rx_mode =
1132 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1133 netdev_for_each_mc_addr(ha, dev) {
1134 int bit, index = 0;
1135 int crc = ether_crc_le(ETH_ALEN, ha->addr);
1136 /* The inverted high significant 6 bits of CRC are
1137 used as an index to hashtable */
1138 for (bit = 0; bit < 6; bit++)
1139 if (crc & (1 << (31 - bit)))
1140 index |= (1 << bit);
1141 hash_table[index / 32] |= (1 << (index % 32));
1142 }
1143 } else {
1144 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1145 }
1146 if (np->vlan) {
1147 /* ReceiveVLANMatch field in ReceiveMode */
1148 rx_mode |= ReceiveVLANMatch;
1149 }
1150
1151 dw32(HashTable0, hash_table[0]);
1152 dw32(HashTable1, hash_table[1]);
1153 dw16(ReceiveMode, rx_mode);
1154 }
1155
1156 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1157 {
1158 struct netdev_private *np = netdev_priv(dev);
1159 strcpy(info->driver, "dl2k");
1160 strcpy(info->version, DRV_VERSION);
1161 strcpy(info->bus_info, pci_name(np->pdev));
1162 }
1163
1164 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1165 {
1166 struct netdev_private *np = netdev_priv(dev);
1167 if (np->phy_media) {
1168 /* fiber device */
1169 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1170 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1171 cmd->port = PORT_FIBRE;
1172 cmd->transceiver = XCVR_INTERNAL;
1173 } else {
1174 /* copper device */
1175 cmd->supported = SUPPORTED_10baseT_Half |
1176 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1177 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1178 SUPPORTED_Autoneg | SUPPORTED_MII;
1179 cmd->advertising = ADVERTISED_10baseT_Half |
1180 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1181 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1182 ADVERTISED_Autoneg | ADVERTISED_MII;
1183 cmd->port = PORT_MII;
1184 cmd->transceiver = XCVR_INTERNAL;
1185 }
1186 if ( np->link_status ) {
1187 ethtool_cmd_speed_set(cmd, np->speed);
1188 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1189 } else {
1190 ethtool_cmd_speed_set(cmd, -1);
1191 cmd->duplex = -1;
1192 }
1193 if ( np->an_enable)
1194 cmd->autoneg = AUTONEG_ENABLE;
1195 else
1196 cmd->autoneg = AUTONEG_DISABLE;
1197
1198 cmd->phy_address = np->phy_addr;
1199 return 0;
1200 }
1201
1202 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1203 {
1204 struct netdev_private *np = netdev_priv(dev);
1205 netif_carrier_off(dev);
1206 if (cmd->autoneg == AUTONEG_ENABLE) {
1207 if (np->an_enable)
1208 return 0;
1209 else {
1210 np->an_enable = 1;
1211 mii_set_media(dev);
1212 return 0;
1213 }
1214 } else {
1215 np->an_enable = 0;
1216 if (np->speed == 1000) {
1217 ethtool_cmd_speed_set(cmd, SPEED_100);
1218 cmd->duplex = DUPLEX_FULL;
1219 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1220 }
1221 switch (ethtool_cmd_speed(cmd)) {
1222 case SPEED_10:
1223 np->speed = 10;
1224 np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1225 break;
1226 case SPEED_100:
1227 np->speed = 100;
1228 np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1229 break;
1230 case SPEED_1000: /* not supported */
1231 default:
1232 return -EINVAL;
1233 }
1234 mii_set_media(dev);
1235 }
1236 return 0;
1237 }
1238
1239 static u32 rio_get_link(struct net_device *dev)
1240 {
1241 struct netdev_private *np = netdev_priv(dev);
1242 return np->link_status;
1243 }
1244
1245 static const struct ethtool_ops ethtool_ops = {
1246 .get_drvinfo = rio_get_drvinfo,
1247 .get_settings = rio_get_settings,
1248 .set_settings = rio_set_settings,
1249 .get_link = rio_get_link,
1250 };
1251
1252 static int
1253 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1254 {
1255 int phy_addr;
1256 struct netdev_private *np = netdev_priv(dev);
1257 struct mii_ioctl_data *miidata = if_mii(rq);
1258
1259 phy_addr = np->phy_addr;
1260 switch (cmd) {
1261 case SIOCGMIIPHY:
1262 miidata->phy_id = phy_addr;
1263 break;
1264 case SIOCGMIIREG:
1265 miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1266 break;
1267 case SIOCSMIIREG:
1268 if (!capable(CAP_NET_ADMIN))
1269 return -EPERM;
1270 mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1271 break;
1272 default:
1273 return -EOPNOTSUPP;
1274 }
1275 return 0;
1276 }
1277
1278 #define EEP_READ 0x0200
1279 #define EEP_BUSY 0x8000
1280 /* Read the EEPROM word */
1281 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1282 static int read_eeprom(struct netdev_private *np, int eep_addr)
1283 {
1284 void __iomem *ioaddr = np->eeprom_addr;
1285 int i = 1000;
1286
1287 dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1288 while (i-- > 0) {
1289 if (!(dr16(EepromCtrl) & EEP_BUSY))
1290 return dr16(EepromData);
1291 }
1292 return 0;
1293 }
1294
1295 enum phy_ctrl_bits {
1296 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1297 MII_DUPLEX = 0x08,
1298 };
1299
1300 #define mii_delay() dr8(PhyCtrl)
1301 static void
1302 mii_sendbit (struct net_device *dev, u32 data)
1303 {
1304 struct netdev_private *np = netdev_priv(dev);
1305 void __iomem *ioaddr = np->ioaddr;
1306
1307 data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1308 dw8(PhyCtrl, data);
1309 mii_delay ();
1310 dw8(PhyCtrl, data | MII_CLK);
1311 mii_delay ();
1312 }
1313
1314 static int
1315 mii_getbit (struct net_device *dev)
1316 {
1317 struct netdev_private *np = netdev_priv(dev);
1318 void __iomem *ioaddr = np->ioaddr;
1319 u8 data;
1320
1321 data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1322 dw8(PhyCtrl, data);
1323 mii_delay ();
1324 dw8(PhyCtrl, data | MII_CLK);
1325 mii_delay ();
1326 return (dr8(PhyCtrl) >> 1) & 1;
1327 }
1328
1329 static void
1330 mii_send_bits (struct net_device *dev, u32 data, int len)
1331 {
1332 int i;
1333
1334 for (i = len - 1; i >= 0; i--) {
1335 mii_sendbit (dev, data & (1 << i));
1336 }
1337 }
1338
1339 static int
1340 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1341 {
1342 u32 cmd;
1343 int i;
1344 u32 retval = 0;
1345
1346 /* Preamble */
1347 mii_send_bits (dev, 0xffffffff, 32);
1348 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1349 /* ST,OP = 0110'b for read operation */
1350 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1351 mii_send_bits (dev, cmd, 14);
1352 /* Turnaround */
1353 if (mii_getbit (dev))
1354 goto err_out;
1355 /* Read data */
1356 for (i = 0; i < 16; i++) {
1357 retval |= mii_getbit (dev);
1358 retval <<= 1;
1359 }
1360 /* End cycle */
1361 mii_getbit (dev);
1362 return (retval >> 1) & 0xffff;
1363
1364 err_out:
1365 return 0;
1366 }
1367 static int
1368 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1369 {
1370 u32 cmd;
1371
1372 /* Preamble */
1373 mii_send_bits (dev, 0xffffffff, 32);
1374 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1375 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1376 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1377 mii_send_bits (dev, cmd, 32);
1378 /* End cycle */
1379 mii_getbit (dev);
1380 return 0;
1381 }
1382 static int
1383 mii_wait_link (struct net_device *dev, int wait)
1384 {
1385 __u16 bmsr;
1386 int phy_addr;
1387 struct netdev_private *np;
1388
1389 np = netdev_priv(dev);
1390 phy_addr = np->phy_addr;
1391
1392 do {
1393 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1394 if (bmsr & BMSR_LSTATUS)
1395 return 0;
1396 mdelay (1);
1397 } while (--wait > 0);
1398 return -1;
1399 }
1400 static int
1401 mii_get_media (struct net_device *dev)
1402 {
1403 __u16 negotiate;
1404 __u16 bmsr;
1405 __u16 mscr;
1406 __u16 mssr;
1407 int phy_addr;
1408 struct netdev_private *np;
1409
1410 np = netdev_priv(dev);
1411 phy_addr = np->phy_addr;
1412
1413 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1414 if (np->an_enable) {
1415 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1416 /* Auto-Negotiation not completed */
1417 return -1;
1418 }
1419 negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1420 mii_read (dev, phy_addr, MII_LPA);
1421 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1422 mssr = mii_read (dev, phy_addr, MII_STAT1000);
1423 if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1424 np->speed = 1000;
1425 np->full_duplex = 1;
1426 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1427 } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1428 np->speed = 1000;
1429 np->full_duplex = 0;
1430 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1431 } else if (negotiate & ADVERTISE_100FULL) {
1432 np->speed = 100;
1433 np->full_duplex = 1;
1434 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1435 } else if (negotiate & ADVERTISE_100HALF) {
1436 np->speed = 100;
1437 np->full_duplex = 0;
1438 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1439 } else if (negotiate & ADVERTISE_10FULL) {
1440 np->speed = 10;
1441 np->full_duplex = 1;
1442 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1443 } else if (negotiate & ADVERTISE_10HALF) {
1444 np->speed = 10;
1445 np->full_duplex = 0;
1446 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1447 }
1448 if (negotiate & ADVERTISE_PAUSE_CAP) {
1449 np->tx_flow &= 1;
1450 np->rx_flow &= 1;
1451 } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1452 np->tx_flow = 0;
1453 np->rx_flow &= 1;
1454 }
1455 /* else tx_flow, rx_flow = user select */
1456 } else {
1457 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1458 switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1459 case BMCR_SPEED1000:
1460 printk (KERN_INFO "Operating at 1000 Mbps, ");
1461 break;
1462 case BMCR_SPEED100:
1463 printk (KERN_INFO "Operating at 100 Mbps, ");
1464 break;
1465 case 0:
1466 printk (KERN_INFO "Operating at 10 Mbps, ");
1467 }
1468 if (bmcr & BMCR_FULLDPLX) {
1469 printk (KERN_CONT "Full duplex\n");
1470 } else {
1471 printk (KERN_CONT "Half duplex\n");
1472 }
1473 }
1474 if (np->tx_flow)
1475 printk(KERN_INFO "Enable Tx Flow Control\n");
1476 else
1477 printk(KERN_INFO "Disable Tx Flow Control\n");
1478 if (np->rx_flow)
1479 printk(KERN_INFO "Enable Rx Flow Control\n");
1480 else
1481 printk(KERN_INFO "Disable Rx Flow Control\n");
1482
1483 return 0;
1484 }
1485
1486 static int
1487 mii_set_media (struct net_device *dev)
1488 {
1489 __u16 pscr;
1490 __u16 bmcr;
1491 __u16 bmsr;
1492 __u16 anar;
1493 int phy_addr;
1494 struct netdev_private *np;
1495 np = netdev_priv(dev);
1496 phy_addr = np->phy_addr;
1497
1498 /* Does user set speed? */
1499 if (np->an_enable) {
1500 /* Advertise capabilities */
1501 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1502 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1503 ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1504 ADVERTISE_100HALF | ADVERTISE_10HALF |
1505 ADVERTISE_100BASE4);
1506 if (bmsr & BMSR_100FULL)
1507 anar |= ADVERTISE_100FULL;
1508 if (bmsr & BMSR_100HALF)
1509 anar |= ADVERTISE_100HALF;
1510 if (bmsr & BMSR_100BASE4)
1511 anar |= ADVERTISE_100BASE4;
1512 if (bmsr & BMSR_10FULL)
1513 anar |= ADVERTISE_10FULL;
1514 if (bmsr & BMSR_10HALF)
1515 anar |= ADVERTISE_10HALF;
1516 anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1517 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1518
1519 /* Enable Auto crossover */
1520 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1521 pscr |= 3 << 5; /* 11'b */
1522 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1523
1524 /* Soft reset PHY */
1525 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1526 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1527 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1528 mdelay(1);
1529 } else {
1530 /* Force speed setting */
1531 /* 1) Disable Auto crossover */
1532 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1533 pscr &= ~(3 << 5);
1534 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1535
1536 /* 2) PHY Reset */
1537 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1538 bmcr |= BMCR_RESET;
1539 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1540
1541 /* 3) Power Down */
1542 bmcr = 0x1940; /* must be 0x1940 */
1543 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1544 mdelay (100); /* wait a certain time */
1545
1546 /* 4) Advertise nothing */
1547 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1548
1549 /* 5) Set media and Power Up */
1550 bmcr = BMCR_PDOWN;
1551 if (np->speed == 100) {
1552 bmcr |= BMCR_SPEED100;
1553 printk (KERN_INFO "Manual 100 Mbps, ");
1554 } else if (np->speed == 10) {
1555 printk (KERN_INFO "Manual 10 Mbps, ");
1556 }
1557 if (np->full_duplex) {
1558 bmcr |= BMCR_FULLDPLX;
1559 printk (KERN_CONT "Full duplex\n");
1560 } else {
1561 printk (KERN_CONT "Half duplex\n");
1562 }
1563 #if 0
1564 /* Set 1000BaseT Master/Slave setting */
1565 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1566 mscr |= MII_MSCR_CFG_ENABLE;
1567 mscr &= ~MII_MSCR_CFG_VALUE = 0;
1568 #endif
1569 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1570 mdelay(10);
1571 }
1572 return 0;
1573 }
1574
1575 static int
1576 mii_get_media_pcs (struct net_device *dev)
1577 {
1578 __u16 negotiate;
1579 __u16 bmsr;
1580 int phy_addr;
1581 struct netdev_private *np;
1582
1583 np = netdev_priv(dev);
1584 phy_addr = np->phy_addr;
1585
1586 bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1587 if (np->an_enable) {
1588 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1589 /* Auto-Negotiation not completed */
1590 return -1;
1591 }
1592 negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1593 mii_read (dev, phy_addr, PCS_ANLPAR);
1594 np->speed = 1000;
1595 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1596 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1597 np->full_duplex = 1;
1598 } else {
1599 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1600 np->full_duplex = 0;
1601 }
1602 if (negotiate & PCS_ANAR_PAUSE) {
1603 np->tx_flow &= 1;
1604 np->rx_flow &= 1;
1605 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1606 np->tx_flow = 0;
1607 np->rx_flow &= 1;
1608 }
1609 /* else tx_flow, rx_flow = user select */
1610 } else {
1611 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1612 printk (KERN_INFO "Operating at 1000 Mbps, ");
1613 if (bmcr & BMCR_FULLDPLX) {
1614 printk (KERN_CONT "Full duplex\n");
1615 } else {
1616 printk (KERN_CONT "Half duplex\n");
1617 }
1618 }
1619 if (np->tx_flow)
1620 printk(KERN_INFO "Enable Tx Flow Control\n");
1621 else
1622 printk(KERN_INFO "Disable Tx Flow Control\n");
1623 if (np->rx_flow)
1624 printk(KERN_INFO "Enable Rx Flow Control\n");
1625 else
1626 printk(KERN_INFO "Disable Rx Flow Control\n");
1627
1628 return 0;
1629 }
1630
1631 static int
1632 mii_set_media_pcs (struct net_device *dev)
1633 {
1634 __u16 bmcr;
1635 __u16 esr;
1636 __u16 anar;
1637 int phy_addr;
1638 struct netdev_private *np;
1639 np = netdev_priv(dev);
1640 phy_addr = np->phy_addr;
1641
1642 /* Auto-Negotiation? */
1643 if (np->an_enable) {
1644 /* Advertise capabilities */
1645 esr = mii_read (dev, phy_addr, PCS_ESR);
1646 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1647 ~PCS_ANAR_HALF_DUPLEX &
1648 ~PCS_ANAR_FULL_DUPLEX;
1649 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1650 anar |= PCS_ANAR_HALF_DUPLEX;
1651 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1652 anar |= PCS_ANAR_FULL_DUPLEX;
1653 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1654 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1655
1656 /* Soft reset PHY */
1657 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1658 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1659 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1660 mdelay(1);
1661 } else {
1662 /* Force speed setting */
1663 /* PHY Reset */
1664 bmcr = BMCR_RESET;
1665 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1666 mdelay(10);
1667 if (np->full_duplex) {
1668 bmcr = BMCR_FULLDPLX;
1669 printk (KERN_INFO "Manual full duplex\n");
1670 } else {
1671 bmcr = 0;
1672 printk (KERN_INFO "Manual half duplex\n");
1673 }
1674 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1675 mdelay(10);
1676
1677 /* Advertise nothing */
1678 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1679 }
1680 return 0;
1681 }
1682
1683
1684 static int
1685 rio_close (struct net_device *dev)
1686 {
1687 struct netdev_private *np = netdev_priv(dev);
1688 void __iomem *ioaddr = np->ioaddr;
1689
1690 struct pci_dev *pdev = np->pdev;
1691 struct sk_buff *skb;
1692 int i;
1693
1694 netif_stop_queue (dev);
1695
1696 /* Disable interrupts */
1697 dw16(IntEnable, 0);
1698
1699 /* Stop Tx and Rx logics */
1700 dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
1701
1702 free_irq(pdev->irq, dev);
1703 del_timer_sync (&np->timer);
1704
1705 /* Free all the skbuffs in the queue. */
1706 for (i = 0; i < RX_RING_SIZE; i++) {
1707 skb = np->rx_skbuff[i];
1708 if (skb) {
1709 pci_unmap_single(pdev, desc_to_dma(&np->rx_ring[i]),
1710 skb->len, PCI_DMA_FROMDEVICE);
1711 dev_kfree_skb (skb);
1712 np->rx_skbuff[i] = NULL;
1713 }
1714 np->rx_ring[i].status = 0;
1715 np->rx_ring[i].fraginfo = 0;
1716 }
1717 for (i = 0; i < TX_RING_SIZE; i++) {
1718 skb = np->tx_skbuff[i];
1719 if (skb) {
1720 pci_unmap_single(pdev, desc_to_dma(&np->tx_ring[i]),
1721 skb->len, PCI_DMA_TODEVICE);
1722 dev_kfree_skb (skb);
1723 np->tx_skbuff[i] = NULL;
1724 }
1725 }
1726
1727 return 0;
1728 }
1729
1730 static void __devexit
1731 rio_remove1 (struct pci_dev *pdev)
1732 {
1733 struct net_device *dev = pci_get_drvdata (pdev);
1734
1735 if (dev) {
1736 struct netdev_private *np = netdev_priv(dev);
1737
1738 unregister_netdev (dev);
1739 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1740 np->rx_ring_dma);
1741 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1742 np->tx_ring_dma);
1743 #ifdef MEM_MAPPING
1744 pci_iounmap(pdev, np->ioaddr);
1745 #endif
1746 pci_iounmap(pdev, np->eeprom_addr);
1747 free_netdev (dev);
1748 pci_release_regions (pdev);
1749 pci_disable_device (pdev);
1750 }
1751 pci_set_drvdata (pdev, NULL);
1752 }
1753
1754 static struct pci_driver rio_driver = {
1755 .name = "dl2k",
1756 .id_table = rio_pci_tbl,
1757 .probe = rio_probe1,
1758 .remove = __devexit_p(rio_remove1),
1759 };
1760
1761 static int __init
1762 rio_init (void)
1763 {
1764 return pci_register_driver(&rio_driver);
1765 }
1766
1767 static void __exit
1768 rio_exit (void)
1769 {
1770 pci_unregister_driver (&rio_driver);
1771 }
1772
1773 module_init (rio_init);
1774 module_exit (rio_exit);
1775
1776 /*
1777
1778 Compile command:
1779
1780 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1781
1782 Read Documentation/networking/dl2k.txt for details.
1783
1784 */
1785