Merge branch 'iommu/fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / davicom / dm9000.c
1 /*
2 * Davicom DM9000 Fast Ethernet driver for Linux.
3 * Copyright (C) 1997 Sten Wang
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16 *
17 * Additional updates, Copyright:
18 * Ben Dooks <ben@simtec.co.uk>
19 * Sascha Hauer <s.hauer@pengutronix.de>
20 */
21
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/crc32.h>
31 #include <linux/mii.h>
32 #include <linux/ethtool.h>
33 #include <linux/dm9000.h>
34 #include <linux/delay.h>
35 #include <linux/platform_device.h>
36 #include <linux/irq.h>
37 #include <linux/slab.h>
38
39 #include <asm/delay.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42
43 #include "dm9000.h"
44
45 /* Board/System/Debug information/definition ---------------- */
46
47 #define DM9000_PHY 0x40 /* PHY address 0x01 */
48
49 #define CARDNAME "dm9000"
50 #define DRV_VERSION "1.31"
51
52 /*
53 * Transmit timeout, default 5 seconds.
54 */
55 static int watchdog = 5000;
56 module_param(watchdog, int, 0400);
57 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
58
59 /*
60 * Debug messages level
61 */
62 static int debug;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
65
66 /* DM9000 register address locking.
67 *
68 * The DM9000 uses an address register to control where data written
69 * to the data register goes. This means that the address register
70 * must be preserved over interrupts or similar calls.
71 *
72 * During interrupt and other critical calls, a spinlock is used to
73 * protect the system, but the calls themselves save the address
74 * in the address register in case they are interrupting another
75 * access to the device.
76 *
77 * For general accesses a lock is provided so that calls which are
78 * allowed to sleep are serialised so that the address register does
79 * not need to be saved. This lock also serves to serialise access
80 * to the EEPROM and PHY access registers which are shared between
81 * these two devices.
82 */
83
84 /* The driver supports the original DM9000E, and now the two newer
85 * devices, DM9000A and DM9000B.
86 */
87
88 enum dm9000_type {
89 TYPE_DM9000E, /* original DM9000 */
90 TYPE_DM9000A,
91 TYPE_DM9000B
92 };
93
94 /* Structure/enum declaration ------------------------------- */
95 typedef struct board_info {
96
97 void __iomem *io_addr; /* Register I/O base address */
98 void __iomem *io_data; /* Data I/O address */
99 u16 irq; /* IRQ */
100
101 u16 tx_pkt_cnt;
102 u16 queue_pkt_len;
103 u16 queue_start_addr;
104 u16 queue_ip_summed;
105 u16 dbug_cnt;
106 u8 io_mode; /* 0:word, 2:byte */
107 u8 phy_addr;
108 u8 imr_all;
109
110 unsigned int flags;
111 unsigned int in_suspend :1;
112 unsigned int wake_supported :1;
113
114 enum dm9000_type type;
115
116 void (*inblk)(void __iomem *port, void *data, int length);
117 void (*outblk)(void __iomem *port, void *data, int length);
118 void (*dumpblk)(void __iomem *port, int length);
119
120 struct device *dev; /* parent device */
121
122 struct resource *addr_res; /* resources found */
123 struct resource *data_res;
124 struct resource *addr_req; /* resources requested */
125 struct resource *data_req;
126 struct resource *irq_res;
127
128 int irq_wake;
129
130 struct mutex addr_lock; /* phy and eeprom access lock */
131
132 struct delayed_work phy_poll;
133 struct net_device *ndev;
134
135 spinlock_t lock;
136
137 struct mii_if_info mii;
138 u32 msg_enable;
139 u32 wake_state;
140
141 int ip_summed;
142 } board_info_t;
143
144 /* debug code */
145
146 #define dm9000_dbg(db, lev, msg...) do { \
147 if ((lev) < debug) { \
148 dev_dbg(db->dev, msg); \
149 } \
150 } while (0)
151
152 static inline board_info_t *to_dm9000_board(struct net_device *dev)
153 {
154 return netdev_priv(dev);
155 }
156
157 /* DM9000 network board routine ---------------------------- */
158
159 static void
160 dm9000_reset(board_info_t * db)
161 {
162 dev_dbg(db->dev, "resetting device\n");
163
164 /* RESET device */
165 writeb(DM9000_NCR, db->io_addr);
166 udelay(200);
167 writeb(NCR_RST, db->io_data);
168 udelay(200);
169 }
170
171 /*
172 * Read a byte from I/O port
173 */
174 static u8
175 ior(board_info_t * db, int reg)
176 {
177 writeb(reg, db->io_addr);
178 return readb(db->io_data);
179 }
180
181 /*
182 * Write a byte to I/O port
183 */
184
185 static void
186 iow(board_info_t * db, int reg, int value)
187 {
188 writeb(reg, db->io_addr);
189 writeb(value, db->io_data);
190 }
191
192 /* routines for sending block to chip */
193
194 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
195 {
196 writesb(reg, data, count);
197 }
198
199 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
200 {
201 writesw(reg, data, (count+1) >> 1);
202 }
203
204 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
205 {
206 writesl(reg, data, (count+3) >> 2);
207 }
208
209 /* input block from chip to memory */
210
211 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
212 {
213 readsb(reg, data, count);
214 }
215
216
217 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
218 {
219 readsw(reg, data, (count+1) >> 1);
220 }
221
222 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
223 {
224 readsl(reg, data, (count+3) >> 2);
225 }
226
227 /* dump block from chip to null */
228
229 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
230 {
231 int i;
232 int tmp;
233
234 for (i = 0; i < count; i++)
235 tmp = readb(reg);
236 }
237
238 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
239 {
240 int i;
241 int tmp;
242
243 count = (count + 1) >> 1;
244
245 for (i = 0; i < count; i++)
246 tmp = readw(reg);
247 }
248
249 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
250 {
251 int i;
252 int tmp;
253
254 count = (count + 3) >> 2;
255
256 for (i = 0; i < count; i++)
257 tmp = readl(reg);
258 }
259
260 /* dm9000_set_io
261 *
262 * select the specified set of io routines to use with the
263 * device
264 */
265
266 static void dm9000_set_io(struct board_info *db, int byte_width)
267 {
268 /* use the size of the data resource to work out what IO
269 * routines we want to use
270 */
271
272 switch (byte_width) {
273 case 1:
274 db->dumpblk = dm9000_dumpblk_8bit;
275 db->outblk = dm9000_outblk_8bit;
276 db->inblk = dm9000_inblk_8bit;
277 break;
278
279
280 case 3:
281 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
282 case 2:
283 db->dumpblk = dm9000_dumpblk_16bit;
284 db->outblk = dm9000_outblk_16bit;
285 db->inblk = dm9000_inblk_16bit;
286 break;
287
288 case 4:
289 default:
290 db->dumpblk = dm9000_dumpblk_32bit;
291 db->outblk = dm9000_outblk_32bit;
292 db->inblk = dm9000_inblk_32bit;
293 break;
294 }
295 }
296
297 static void dm9000_schedule_poll(board_info_t *db)
298 {
299 if (db->type == TYPE_DM9000E)
300 schedule_delayed_work(&db->phy_poll, HZ * 2);
301 }
302
303 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
304 {
305 board_info_t *dm = to_dm9000_board(dev);
306
307 if (!netif_running(dev))
308 return -EINVAL;
309
310 return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
311 }
312
313 static unsigned int
314 dm9000_read_locked(board_info_t *db, int reg)
315 {
316 unsigned long flags;
317 unsigned int ret;
318
319 spin_lock_irqsave(&db->lock, flags);
320 ret = ior(db, reg);
321 spin_unlock_irqrestore(&db->lock, flags);
322
323 return ret;
324 }
325
326 static int dm9000_wait_eeprom(board_info_t *db)
327 {
328 unsigned int status;
329 int timeout = 8; /* wait max 8msec */
330
331 /* The DM9000 data sheets say we should be able to
332 * poll the ERRE bit in EPCR to wait for the EEPROM
333 * operation. From testing several chips, this bit
334 * does not seem to work.
335 *
336 * We attempt to use the bit, but fall back to the
337 * timeout (which is why we do not return an error
338 * on expiry) to say that the EEPROM operation has
339 * completed.
340 */
341
342 while (1) {
343 status = dm9000_read_locked(db, DM9000_EPCR);
344
345 if ((status & EPCR_ERRE) == 0)
346 break;
347
348 msleep(1);
349
350 if (timeout-- < 0) {
351 dev_dbg(db->dev, "timeout waiting EEPROM\n");
352 break;
353 }
354 }
355
356 return 0;
357 }
358
359 /*
360 * Read a word data from EEPROM
361 */
362 static void
363 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
364 {
365 unsigned long flags;
366
367 if (db->flags & DM9000_PLATF_NO_EEPROM) {
368 to[0] = 0xff;
369 to[1] = 0xff;
370 return;
371 }
372
373 mutex_lock(&db->addr_lock);
374
375 spin_lock_irqsave(&db->lock, flags);
376
377 iow(db, DM9000_EPAR, offset);
378 iow(db, DM9000_EPCR, EPCR_ERPRR);
379
380 spin_unlock_irqrestore(&db->lock, flags);
381
382 dm9000_wait_eeprom(db);
383
384 /* delay for at-least 150uS */
385 msleep(1);
386
387 spin_lock_irqsave(&db->lock, flags);
388
389 iow(db, DM9000_EPCR, 0x0);
390
391 to[0] = ior(db, DM9000_EPDRL);
392 to[1] = ior(db, DM9000_EPDRH);
393
394 spin_unlock_irqrestore(&db->lock, flags);
395
396 mutex_unlock(&db->addr_lock);
397 }
398
399 /*
400 * Write a word data to SROM
401 */
402 static void
403 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
404 {
405 unsigned long flags;
406
407 if (db->flags & DM9000_PLATF_NO_EEPROM)
408 return;
409
410 mutex_lock(&db->addr_lock);
411
412 spin_lock_irqsave(&db->lock, flags);
413 iow(db, DM9000_EPAR, offset);
414 iow(db, DM9000_EPDRH, data[1]);
415 iow(db, DM9000_EPDRL, data[0]);
416 iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
417 spin_unlock_irqrestore(&db->lock, flags);
418
419 dm9000_wait_eeprom(db);
420
421 mdelay(1); /* wait at least 150uS to clear */
422
423 spin_lock_irqsave(&db->lock, flags);
424 iow(db, DM9000_EPCR, 0);
425 spin_unlock_irqrestore(&db->lock, flags);
426
427 mutex_unlock(&db->addr_lock);
428 }
429
430 /* ethtool ops */
431
432 static void dm9000_get_drvinfo(struct net_device *dev,
433 struct ethtool_drvinfo *info)
434 {
435 board_info_t *dm = to_dm9000_board(dev);
436
437 strcpy(info->driver, CARDNAME);
438 strcpy(info->version, DRV_VERSION);
439 strcpy(info->bus_info, to_platform_device(dm->dev)->name);
440 }
441
442 static u32 dm9000_get_msglevel(struct net_device *dev)
443 {
444 board_info_t *dm = to_dm9000_board(dev);
445
446 return dm->msg_enable;
447 }
448
449 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
450 {
451 board_info_t *dm = to_dm9000_board(dev);
452
453 dm->msg_enable = value;
454 }
455
456 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
457 {
458 board_info_t *dm = to_dm9000_board(dev);
459
460 mii_ethtool_gset(&dm->mii, cmd);
461 return 0;
462 }
463
464 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
465 {
466 board_info_t *dm = to_dm9000_board(dev);
467
468 return mii_ethtool_sset(&dm->mii, cmd);
469 }
470
471 static int dm9000_nway_reset(struct net_device *dev)
472 {
473 board_info_t *dm = to_dm9000_board(dev);
474 return mii_nway_restart(&dm->mii);
475 }
476
477 static int dm9000_set_features(struct net_device *dev, u32 features)
478 {
479 board_info_t *dm = to_dm9000_board(dev);
480 u32 changed = dev->features ^ features;
481 unsigned long flags;
482
483 if (!(changed & NETIF_F_RXCSUM))
484 return 0;
485
486 spin_lock_irqsave(&dm->lock, flags);
487 iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
488 spin_unlock_irqrestore(&dm->lock, flags);
489
490 return 0;
491 }
492
493 static u32 dm9000_get_link(struct net_device *dev)
494 {
495 board_info_t *dm = to_dm9000_board(dev);
496 u32 ret;
497
498 if (dm->flags & DM9000_PLATF_EXT_PHY)
499 ret = mii_link_ok(&dm->mii);
500 else
501 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
502
503 return ret;
504 }
505
506 #define DM_EEPROM_MAGIC (0x444D394B)
507
508 static int dm9000_get_eeprom_len(struct net_device *dev)
509 {
510 return 128;
511 }
512
513 static int dm9000_get_eeprom(struct net_device *dev,
514 struct ethtool_eeprom *ee, u8 *data)
515 {
516 board_info_t *dm = to_dm9000_board(dev);
517 int offset = ee->offset;
518 int len = ee->len;
519 int i;
520
521 /* EEPROM access is aligned to two bytes */
522
523 if ((len & 1) != 0 || (offset & 1) != 0)
524 return -EINVAL;
525
526 if (dm->flags & DM9000_PLATF_NO_EEPROM)
527 return -ENOENT;
528
529 ee->magic = DM_EEPROM_MAGIC;
530
531 for (i = 0; i < len; i += 2)
532 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
533
534 return 0;
535 }
536
537 static int dm9000_set_eeprom(struct net_device *dev,
538 struct ethtool_eeprom *ee, u8 *data)
539 {
540 board_info_t *dm = to_dm9000_board(dev);
541 int offset = ee->offset;
542 int len = ee->len;
543 int done;
544
545 /* EEPROM access is aligned to two bytes */
546
547 if (dm->flags & DM9000_PLATF_NO_EEPROM)
548 return -ENOENT;
549
550 if (ee->magic != DM_EEPROM_MAGIC)
551 return -EINVAL;
552
553 while (len > 0) {
554 if (len & 1 || offset & 1) {
555 int which = offset & 1;
556 u8 tmp[2];
557
558 dm9000_read_eeprom(dm, offset / 2, tmp);
559 tmp[which] = *data;
560 dm9000_write_eeprom(dm, offset / 2, tmp);
561
562 done = 1;
563 } else {
564 dm9000_write_eeprom(dm, offset / 2, data);
565 done = 2;
566 }
567
568 data += done;
569 offset += done;
570 len -= done;
571 }
572
573 return 0;
574 }
575
576 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
577 {
578 board_info_t *dm = to_dm9000_board(dev);
579
580 memset(w, 0, sizeof(struct ethtool_wolinfo));
581
582 /* note, we could probably support wake-phy too */
583 w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
584 w->wolopts = dm->wake_state;
585 }
586
587 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
588 {
589 board_info_t *dm = to_dm9000_board(dev);
590 unsigned long flags;
591 u32 opts = w->wolopts;
592 u32 wcr = 0;
593
594 if (!dm->wake_supported)
595 return -EOPNOTSUPP;
596
597 if (opts & ~WAKE_MAGIC)
598 return -EINVAL;
599
600 if (opts & WAKE_MAGIC)
601 wcr |= WCR_MAGICEN;
602
603 mutex_lock(&dm->addr_lock);
604
605 spin_lock_irqsave(&dm->lock, flags);
606 iow(dm, DM9000_WCR, wcr);
607 spin_unlock_irqrestore(&dm->lock, flags);
608
609 mutex_unlock(&dm->addr_lock);
610
611 if (dm->wake_state != opts) {
612 /* change in wol state, update IRQ state */
613
614 if (!dm->wake_state)
615 irq_set_irq_wake(dm->irq_wake, 1);
616 else if (dm->wake_state && !opts)
617 irq_set_irq_wake(dm->irq_wake, 0);
618 }
619
620 dm->wake_state = opts;
621 return 0;
622 }
623
624 static const struct ethtool_ops dm9000_ethtool_ops = {
625 .get_drvinfo = dm9000_get_drvinfo,
626 .get_settings = dm9000_get_settings,
627 .set_settings = dm9000_set_settings,
628 .get_msglevel = dm9000_get_msglevel,
629 .set_msglevel = dm9000_set_msglevel,
630 .nway_reset = dm9000_nway_reset,
631 .get_link = dm9000_get_link,
632 .get_wol = dm9000_get_wol,
633 .set_wol = dm9000_set_wol,
634 .get_eeprom_len = dm9000_get_eeprom_len,
635 .get_eeprom = dm9000_get_eeprom,
636 .set_eeprom = dm9000_set_eeprom,
637 };
638
639 static void dm9000_show_carrier(board_info_t *db,
640 unsigned carrier, unsigned nsr)
641 {
642 struct net_device *ndev = db->ndev;
643 unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
644
645 if (carrier)
646 dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
647 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
648 (ncr & NCR_FDX) ? "full" : "half");
649 else
650 dev_info(db->dev, "%s: link down\n", ndev->name);
651 }
652
653 static void
654 dm9000_poll_work(struct work_struct *w)
655 {
656 struct delayed_work *dw = to_delayed_work(w);
657 board_info_t *db = container_of(dw, board_info_t, phy_poll);
658 struct net_device *ndev = db->ndev;
659
660 if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
661 !(db->flags & DM9000_PLATF_EXT_PHY)) {
662 unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
663 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
664 unsigned new_carrier;
665
666 new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
667
668 if (old_carrier != new_carrier) {
669 if (netif_msg_link(db))
670 dm9000_show_carrier(db, new_carrier, nsr);
671
672 if (!new_carrier)
673 netif_carrier_off(ndev);
674 else
675 netif_carrier_on(ndev);
676 }
677 } else
678 mii_check_media(&db->mii, netif_msg_link(db), 0);
679
680 if (netif_running(ndev))
681 dm9000_schedule_poll(db);
682 }
683
684 /* dm9000_release_board
685 *
686 * release a board, and any mapped resources
687 */
688
689 static void
690 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
691 {
692 /* unmap our resources */
693
694 iounmap(db->io_addr);
695 iounmap(db->io_data);
696
697 /* release the resources */
698
699 release_resource(db->data_req);
700 kfree(db->data_req);
701
702 release_resource(db->addr_req);
703 kfree(db->addr_req);
704 }
705
706 static unsigned char dm9000_type_to_char(enum dm9000_type type)
707 {
708 switch (type) {
709 case TYPE_DM9000E: return 'e';
710 case TYPE_DM9000A: return 'a';
711 case TYPE_DM9000B: return 'b';
712 }
713
714 return '?';
715 }
716
717 /*
718 * Set DM9000 multicast address
719 */
720 static void
721 dm9000_hash_table_unlocked(struct net_device *dev)
722 {
723 board_info_t *db = netdev_priv(dev);
724 struct netdev_hw_addr *ha;
725 int i, oft;
726 u32 hash_val;
727 u16 hash_table[4];
728 u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
729
730 dm9000_dbg(db, 1, "entering %s\n", __func__);
731
732 for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
733 iow(db, oft, dev->dev_addr[i]);
734
735 /* Clear Hash Table */
736 for (i = 0; i < 4; i++)
737 hash_table[i] = 0x0;
738
739 /* broadcast address */
740 hash_table[3] = 0x8000;
741
742 if (dev->flags & IFF_PROMISC)
743 rcr |= RCR_PRMSC;
744
745 if (dev->flags & IFF_ALLMULTI)
746 rcr |= RCR_ALL;
747
748 /* the multicast address in Hash Table : 64 bits */
749 netdev_for_each_mc_addr(ha, dev) {
750 hash_val = ether_crc_le(6, ha->addr) & 0x3f;
751 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
752 }
753
754 /* Write the hash table to MAC MD table */
755 for (i = 0, oft = DM9000_MAR; i < 4; i++) {
756 iow(db, oft++, hash_table[i]);
757 iow(db, oft++, hash_table[i] >> 8);
758 }
759
760 iow(db, DM9000_RCR, rcr);
761 }
762
763 static void
764 dm9000_hash_table(struct net_device *dev)
765 {
766 board_info_t *db = netdev_priv(dev);
767 unsigned long flags;
768
769 spin_lock_irqsave(&db->lock, flags);
770 dm9000_hash_table_unlocked(dev);
771 spin_unlock_irqrestore(&db->lock, flags);
772 }
773
774 /*
775 * Initialize dm9000 board
776 */
777 static void
778 dm9000_init_dm9000(struct net_device *dev)
779 {
780 board_info_t *db = netdev_priv(dev);
781 unsigned int imr;
782 unsigned int ncr;
783
784 dm9000_dbg(db, 1, "entering %s\n", __func__);
785
786 /* I/O mode */
787 db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
788
789 /* Checksum mode */
790 if (dev->hw_features & NETIF_F_RXCSUM)
791 iow(db, DM9000_RCSR,
792 (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
793
794 iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
795
796 ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
797
798 /* if wol is needed, then always set NCR_WAKEEN otherwise we end
799 * up dumping the wake events if we disable this. There is already
800 * a wake-mask in DM9000_WCR */
801 if (db->wake_supported)
802 ncr |= NCR_WAKEEN;
803
804 iow(db, DM9000_NCR, ncr);
805
806 /* Program operating register */
807 iow(db, DM9000_TCR, 0); /* TX Polling clear */
808 iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
809 iow(db, DM9000_FCR, 0xff); /* Flow Control */
810 iow(db, DM9000_SMCR, 0); /* Special Mode */
811 /* clear TX status */
812 iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
813 iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
814
815 /* Set address filter table */
816 dm9000_hash_table_unlocked(dev);
817
818 imr = IMR_PAR | IMR_PTM | IMR_PRM;
819 if (db->type != TYPE_DM9000E)
820 imr |= IMR_LNKCHNG;
821
822 db->imr_all = imr;
823
824 /* Enable TX/RX interrupt mask */
825 iow(db, DM9000_IMR, imr);
826
827 /* Init Driver variable */
828 db->tx_pkt_cnt = 0;
829 db->queue_pkt_len = 0;
830 dev->trans_start = jiffies;
831 }
832
833 /* Our watchdog timed out. Called by the networking layer */
834 static void dm9000_timeout(struct net_device *dev)
835 {
836 board_info_t *db = netdev_priv(dev);
837 u8 reg_save;
838 unsigned long flags;
839
840 /* Save previous register address */
841 spin_lock_irqsave(&db->lock, flags);
842 reg_save = readb(db->io_addr);
843
844 netif_stop_queue(dev);
845 dm9000_reset(db);
846 dm9000_init_dm9000(dev);
847 /* We can accept TX packets again */
848 dev->trans_start = jiffies; /* prevent tx timeout */
849 netif_wake_queue(dev);
850
851 /* Restore previous register address */
852 writeb(reg_save, db->io_addr);
853 spin_unlock_irqrestore(&db->lock, flags);
854 }
855
856 static void dm9000_send_packet(struct net_device *dev,
857 int ip_summed,
858 u16 pkt_len)
859 {
860 board_info_t *dm = to_dm9000_board(dev);
861
862 /* The DM9000 is not smart enough to leave fragmented packets alone. */
863 if (dm->ip_summed != ip_summed) {
864 if (ip_summed == CHECKSUM_NONE)
865 iow(dm, DM9000_TCCR, 0);
866 else
867 iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
868 dm->ip_summed = ip_summed;
869 }
870
871 /* Set TX length to DM9000 */
872 iow(dm, DM9000_TXPLL, pkt_len);
873 iow(dm, DM9000_TXPLH, pkt_len >> 8);
874
875 /* Issue TX polling command */
876 iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
877 }
878
879 /*
880 * Hardware start transmission.
881 * Send a packet to media from the upper layer.
882 */
883 static int
884 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
885 {
886 unsigned long flags;
887 board_info_t *db = netdev_priv(dev);
888
889 dm9000_dbg(db, 3, "%s:\n", __func__);
890
891 if (db->tx_pkt_cnt > 1)
892 return NETDEV_TX_BUSY;
893
894 spin_lock_irqsave(&db->lock, flags);
895
896 /* Move data to DM9000 TX RAM */
897 writeb(DM9000_MWCMD, db->io_addr);
898
899 (db->outblk)(db->io_data, skb->data, skb->len);
900 dev->stats.tx_bytes += skb->len;
901
902 db->tx_pkt_cnt++;
903 /* TX control: First packet immediately send, second packet queue */
904 if (db->tx_pkt_cnt == 1) {
905 dm9000_send_packet(dev, skb->ip_summed, skb->len);
906 } else {
907 /* Second packet */
908 db->queue_pkt_len = skb->len;
909 db->queue_ip_summed = skb->ip_summed;
910 netif_stop_queue(dev);
911 }
912
913 spin_unlock_irqrestore(&db->lock, flags);
914
915 /* free this SKB */
916 dev_kfree_skb(skb);
917
918 return NETDEV_TX_OK;
919 }
920
921 /*
922 * DM9000 interrupt handler
923 * receive the packet to upper layer, free the transmitted packet
924 */
925
926 static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
927 {
928 int tx_status = ior(db, DM9000_NSR); /* Got TX status */
929
930 if (tx_status & (NSR_TX2END | NSR_TX1END)) {
931 /* One packet sent complete */
932 db->tx_pkt_cnt--;
933 dev->stats.tx_packets++;
934
935 if (netif_msg_tx_done(db))
936 dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
937
938 /* Queue packet check & send */
939 if (db->tx_pkt_cnt > 0)
940 dm9000_send_packet(dev, db->queue_ip_summed,
941 db->queue_pkt_len);
942 netif_wake_queue(dev);
943 }
944 }
945
946 struct dm9000_rxhdr {
947 u8 RxPktReady;
948 u8 RxStatus;
949 __le16 RxLen;
950 } __packed;
951
952 /*
953 * Received a packet and pass to upper layer
954 */
955 static void
956 dm9000_rx(struct net_device *dev)
957 {
958 board_info_t *db = netdev_priv(dev);
959 struct dm9000_rxhdr rxhdr;
960 struct sk_buff *skb;
961 u8 rxbyte, *rdptr;
962 bool GoodPacket;
963 int RxLen;
964
965 /* Check packet ready or not */
966 do {
967 ior(db, DM9000_MRCMDX); /* Dummy read */
968
969 /* Get most updated data */
970 rxbyte = readb(db->io_data);
971
972 /* Status check: this byte must be 0 or 1 */
973 if (rxbyte & DM9000_PKT_ERR) {
974 dev_warn(db->dev, "status check fail: %d\n", rxbyte);
975 iow(db, DM9000_RCR, 0x00); /* Stop Device */
976 iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
977 return;
978 }
979
980 if (!(rxbyte & DM9000_PKT_RDY))
981 return;
982
983 /* A packet ready now & Get status/length */
984 GoodPacket = true;
985 writeb(DM9000_MRCMD, db->io_addr);
986
987 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
988
989 RxLen = le16_to_cpu(rxhdr.RxLen);
990
991 if (netif_msg_rx_status(db))
992 dev_dbg(db->dev, "RX: status %02x, length %04x\n",
993 rxhdr.RxStatus, RxLen);
994
995 /* Packet Status check */
996 if (RxLen < 0x40) {
997 GoodPacket = false;
998 if (netif_msg_rx_err(db))
999 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1000 }
1001
1002 if (RxLen > DM9000_PKT_MAX) {
1003 dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1004 }
1005
1006 /* rxhdr.RxStatus is identical to RSR register. */
1007 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1008 RSR_PLE | RSR_RWTO |
1009 RSR_LCS | RSR_RF)) {
1010 GoodPacket = false;
1011 if (rxhdr.RxStatus & RSR_FOE) {
1012 if (netif_msg_rx_err(db))
1013 dev_dbg(db->dev, "fifo error\n");
1014 dev->stats.rx_fifo_errors++;
1015 }
1016 if (rxhdr.RxStatus & RSR_CE) {
1017 if (netif_msg_rx_err(db))
1018 dev_dbg(db->dev, "crc error\n");
1019 dev->stats.rx_crc_errors++;
1020 }
1021 if (rxhdr.RxStatus & RSR_RF) {
1022 if (netif_msg_rx_err(db))
1023 dev_dbg(db->dev, "length error\n");
1024 dev->stats.rx_length_errors++;
1025 }
1026 }
1027
1028 /* Move data from DM9000 */
1029 if (GoodPacket &&
1030 ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
1031 skb_reserve(skb, 2);
1032 rdptr = (u8 *) skb_put(skb, RxLen - 4);
1033
1034 /* Read received packet from RX SRAM */
1035
1036 (db->inblk)(db->io_data, rdptr, RxLen);
1037 dev->stats.rx_bytes += RxLen;
1038
1039 /* Pass to upper layer */
1040 skb->protocol = eth_type_trans(skb, dev);
1041 if (dev->features & NETIF_F_RXCSUM) {
1042 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1043 skb->ip_summed = CHECKSUM_UNNECESSARY;
1044 else
1045 skb_checksum_none_assert(skb);
1046 }
1047 netif_rx(skb);
1048 dev->stats.rx_packets++;
1049
1050 } else {
1051 /* need to dump the packet's data */
1052
1053 (db->dumpblk)(db->io_data, RxLen);
1054 }
1055 } while (rxbyte & DM9000_PKT_RDY);
1056 }
1057
1058 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1059 {
1060 struct net_device *dev = dev_id;
1061 board_info_t *db = netdev_priv(dev);
1062 int int_status;
1063 unsigned long flags;
1064 u8 reg_save;
1065
1066 dm9000_dbg(db, 3, "entering %s\n", __func__);
1067
1068 /* A real interrupt coming */
1069
1070 /* holders of db->lock must always block IRQs */
1071 spin_lock_irqsave(&db->lock, flags);
1072
1073 /* Save previous register address */
1074 reg_save = readb(db->io_addr);
1075
1076 /* Disable all interrupts */
1077 iow(db, DM9000_IMR, IMR_PAR);
1078
1079 /* Got DM9000 interrupt status */
1080 int_status = ior(db, DM9000_ISR); /* Got ISR */
1081 iow(db, DM9000_ISR, int_status); /* Clear ISR status */
1082
1083 if (netif_msg_intr(db))
1084 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1085
1086 /* Received the coming packet */
1087 if (int_status & ISR_PRS)
1088 dm9000_rx(dev);
1089
1090 /* Trnasmit Interrupt check */
1091 if (int_status & ISR_PTS)
1092 dm9000_tx_done(dev, db);
1093
1094 if (db->type != TYPE_DM9000E) {
1095 if (int_status & ISR_LNKCHNG) {
1096 /* fire a link-change request */
1097 schedule_delayed_work(&db->phy_poll, 1);
1098 }
1099 }
1100
1101 /* Re-enable interrupt mask */
1102 iow(db, DM9000_IMR, db->imr_all);
1103
1104 /* Restore previous register address */
1105 writeb(reg_save, db->io_addr);
1106
1107 spin_unlock_irqrestore(&db->lock, flags);
1108
1109 return IRQ_HANDLED;
1110 }
1111
1112 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1113 {
1114 struct net_device *dev = dev_id;
1115 board_info_t *db = netdev_priv(dev);
1116 unsigned long flags;
1117 unsigned nsr, wcr;
1118
1119 spin_lock_irqsave(&db->lock, flags);
1120
1121 nsr = ior(db, DM9000_NSR);
1122 wcr = ior(db, DM9000_WCR);
1123
1124 dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1125
1126 if (nsr & NSR_WAKEST) {
1127 /* clear, so we can avoid */
1128 iow(db, DM9000_NSR, NSR_WAKEST);
1129
1130 if (wcr & WCR_LINKST)
1131 dev_info(db->dev, "wake by link status change\n");
1132 if (wcr & WCR_SAMPLEST)
1133 dev_info(db->dev, "wake by sample packet\n");
1134 if (wcr & WCR_MAGICST )
1135 dev_info(db->dev, "wake by magic packet\n");
1136 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1137 dev_err(db->dev, "wake signalled with no reason? "
1138 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1139
1140 }
1141
1142 spin_unlock_irqrestore(&db->lock, flags);
1143
1144 return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1145 }
1146
1147 #ifdef CONFIG_NET_POLL_CONTROLLER
1148 /*
1149 *Used by netconsole
1150 */
1151 static void dm9000_poll_controller(struct net_device *dev)
1152 {
1153 disable_irq(dev->irq);
1154 dm9000_interrupt(dev->irq, dev);
1155 enable_irq(dev->irq);
1156 }
1157 #endif
1158
1159 /*
1160 * Open the interface.
1161 * The interface is opened whenever "ifconfig" actives it.
1162 */
1163 static int
1164 dm9000_open(struct net_device *dev)
1165 {
1166 board_info_t *db = netdev_priv(dev);
1167 unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1168
1169 if (netif_msg_ifup(db))
1170 dev_dbg(db->dev, "enabling %s\n", dev->name);
1171
1172 /* If there is no IRQ type specified, default to something that
1173 * may work, and tell the user that this is a problem */
1174
1175 if (irqflags == IRQF_TRIGGER_NONE)
1176 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1177
1178 irqflags |= IRQF_SHARED;
1179
1180 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1181 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1182 mdelay(1); /* delay needs by DM9000B */
1183
1184 /* Initialize DM9000 board */
1185 dm9000_reset(db);
1186 dm9000_init_dm9000(dev);
1187
1188 if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1189 return -EAGAIN;
1190
1191 /* Init driver variable */
1192 db->dbug_cnt = 0;
1193
1194 mii_check_media(&db->mii, netif_msg_link(db), 1);
1195 netif_start_queue(dev);
1196
1197 dm9000_schedule_poll(db);
1198
1199 return 0;
1200 }
1201
1202 /*
1203 * Sleep, either by using msleep() or if we are suspending, then
1204 * use mdelay() to sleep.
1205 */
1206 static void dm9000_msleep(board_info_t *db, unsigned int ms)
1207 {
1208 if (db->in_suspend)
1209 mdelay(ms);
1210 else
1211 msleep(ms);
1212 }
1213
1214 /*
1215 * Read a word from phyxcer
1216 */
1217 static int
1218 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
1219 {
1220 board_info_t *db = netdev_priv(dev);
1221 unsigned long flags;
1222 unsigned int reg_save;
1223 int ret;
1224
1225 mutex_lock(&db->addr_lock);
1226
1227 spin_lock_irqsave(&db->lock,flags);
1228
1229 /* Save previous register address */
1230 reg_save = readb(db->io_addr);
1231
1232 /* Fill the phyxcer register into REG_0C */
1233 iow(db, DM9000_EPAR, DM9000_PHY | reg);
1234
1235 iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); /* Issue phyxcer read command */
1236
1237 writeb(reg_save, db->io_addr);
1238 spin_unlock_irqrestore(&db->lock,flags);
1239
1240 dm9000_msleep(db, 1); /* Wait read complete */
1241
1242 spin_lock_irqsave(&db->lock,flags);
1243 reg_save = readb(db->io_addr);
1244
1245 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
1246
1247 /* The read data keeps on REG_0D & REG_0E */
1248 ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
1249
1250 /* restore the previous address */
1251 writeb(reg_save, db->io_addr);
1252 spin_unlock_irqrestore(&db->lock,flags);
1253
1254 mutex_unlock(&db->addr_lock);
1255
1256 dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
1257 return ret;
1258 }
1259
1260 /*
1261 * Write a word to phyxcer
1262 */
1263 static void
1264 dm9000_phy_write(struct net_device *dev,
1265 int phyaddr_unused, int reg, int value)
1266 {
1267 board_info_t *db = netdev_priv(dev);
1268 unsigned long flags;
1269 unsigned long reg_save;
1270
1271 dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
1272 mutex_lock(&db->addr_lock);
1273
1274 spin_lock_irqsave(&db->lock,flags);
1275
1276 /* Save previous register address */
1277 reg_save = readb(db->io_addr);
1278
1279 /* Fill the phyxcer register into REG_0C */
1280 iow(db, DM9000_EPAR, DM9000_PHY | reg);
1281
1282 /* Fill the written data into REG_0D & REG_0E */
1283 iow(db, DM9000_EPDRL, value);
1284 iow(db, DM9000_EPDRH, value >> 8);
1285
1286 iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); /* Issue phyxcer write command */
1287
1288 writeb(reg_save, db->io_addr);
1289 spin_unlock_irqrestore(&db->lock, flags);
1290
1291 dm9000_msleep(db, 1); /* Wait write complete */
1292
1293 spin_lock_irqsave(&db->lock,flags);
1294 reg_save = readb(db->io_addr);
1295
1296 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
1297
1298 /* restore the previous address */
1299 writeb(reg_save, db->io_addr);
1300
1301 spin_unlock_irqrestore(&db->lock, flags);
1302 mutex_unlock(&db->addr_lock);
1303 }
1304
1305 static void
1306 dm9000_shutdown(struct net_device *dev)
1307 {
1308 board_info_t *db = netdev_priv(dev);
1309
1310 /* RESET device */
1311 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1312 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
1313 iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
1314 iow(db, DM9000_RCR, 0x00); /* Disable RX */
1315 }
1316
1317 /*
1318 * Stop the interface.
1319 * The interface is stopped when it is brought.
1320 */
1321 static int
1322 dm9000_stop(struct net_device *ndev)
1323 {
1324 board_info_t *db = netdev_priv(ndev);
1325
1326 if (netif_msg_ifdown(db))
1327 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1328
1329 cancel_delayed_work_sync(&db->phy_poll);
1330
1331 netif_stop_queue(ndev);
1332 netif_carrier_off(ndev);
1333
1334 /* free interrupt */
1335 free_irq(ndev->irq, ndev);
1336
1337 dm9000_shutdown(ndev);
1338
1339 return 0;
1340 }
1341
1342 static const struct net_device_ops dm9000_netdev_ops = {
1343 .ndo_open = dm9000_open,
1344 .ndo_stop = dm9000_stop,
1345 .ndo_start_xmit = dm9000_start_xmit,
1346 .ndo_tx_timeout = dm9000_timeout,
1347 .ndo_set_rx_mode = dm9000_hash_table,
1348 .ndo_do_ioctl = dm9000_ioctl,
1349 .ndo_change_mtu = eth_change_mtu,
1350 .ndo_set_features = dm9000_set_features,
1351 .ndo_validate_addr = eth_validate_addr,
1352 .ndo_set_mac_address = eth_mac_addr,
1353 #ifdef CONFIG_NET_POLL_CONTROLLER
1354 .ndo_poll_controller = dm9000_poll_controller,
1355 #endif
1356 };
1357
1358 /*
1359 * Search DM9000 board, allocate space and register it
1360 */
1361 static int __devinit
1362 dm9000_probe(struct platform_device *pdev)
1363 {
1364 struct dm9000_plat_data *pdata = pdev->dev.platform_data;
1365 struct board_info *db; /* Point a board information structure */
1366 struct net_device *ndev;
1367 const unsigned char *mac_src;
1368 int ret = 0;
1369 int iosize;
1370 int i;
1371 u32 id_val;
1372
1373 /* Init network device */
1374 ndev = alloc_etherdev(sizeof(struct board_info));
1375 if (!ndev) {
1376 dev_err(&pdev->dev, "could not allocate device.\n");
1377 return -ENOMEM;
1378 }
1379
1380 SET_NETDEV_DEV(ndev, &pdev->dev);
1381
1382 dev_dbg(&pdev->dev, "dm9000_probe()\n");
1383
1384 /* setup board info structure */
1385 db = netdev_priv(ndev);
1386
1387 db->dev = &pdev->dev;
1388 db->ndev = ndev;
1389
1390 spin_lock_init(&db->lock);
1391 mutex_init(&db->addr_lock);
1392
1393 INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1394
1395 db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1396 db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1397 db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1398
1399 if (db->addr_res == NULL || db->data_res == NULL ||
1400 db->irq_res == NULL) {
1401 dev_err(db->dev, "insufficient resources\n");
1402 ret = -ENOENT;
1403 goto out;
1404 }
1405
1406 db->irq_wake = platform_get_irq(pdev, 1);
1407 if (db->irq_wake >= 0) {
1408 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1409
1410 ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1411 IRQF_SHARED, dev_name(db->dev), ndev);
1412 if (ret) {
1413 dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1414 } else {
1415
1416 /* test to see if irq is really wakeup capable */
1417 ret = irq_set_irq_wake(db->irq_wake, 1);
1418 if (ret) {
1419 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1420 db->irq_wake, ret);
1421 ret = 0;
1422 } else {
1423 irq_set_irq_wake(db->irq_wake, 0);
1424 db->wake_supported = 1;
1425 }
1426 }
1427 }
1428
1429 iosize = resource_size(db->addr_res);
1430 db->addr_req = request_mem_region(db->addr_res->start, iosize,
1431 pdev->name);
1432
1433 if (db->addr_req == NULL) {
1434 dev_err(db->dev, "cannot claim address reg area\n");
1435 ret = -EIO;
1436 goto out;
1437 }
1438
1439 db->io_addr = ioremap(db->addr_res->start, iosize);
1440
1441 if (db->io_addr == NULL) {
1442 dev_err(db->dev, "failed to ioremap address reg\n");
1443 ret = -EINVAL;
1444 goto out;
1445 }
1446
1447 iosize = resource_size(db->data_res);
1448 db->data_req = request_mem_region(db->data_res->start, iosize,
1449 pdev->name);
1450
1451 if (db->data_req == NULL) {
1452 dev_err(db->dev, "cannot claim data reg area\n");
1453 ret = -EIO;
1454 goto out;
1455 }
1456
1457 db->io_data = ioremap(db->data_res->start, iosize);
1458
1459 if (db->io_data == NULL) {
1460 dev_err(db->dev, "failed to ioremap data reg\n");
1461 ret = -EINVAL;
1462 goto out;
1463 }
1464
1465 /* fill in parameters for net-dev structure */
1466 ndev->base_addr = (unsigned long)db->io_addr;
1467 ndev->irq = db->irq_res->start;
1468
1469 /* ensure at least we have a default set of IO routines */
1470 dm9000_set_io(db, iosize);
1471
1472 /* check to see if anything is being over-ridden */
1473 if (pdata != NULL) {
1474 /* check to see if the driver wants to over-ride the
1475 * default IO width */
1476
1477 if (pdata->flags & DM9000_PLATF_8BITONLY)
1478 dm9000_set_io(db, 1);
1479
1480 if (pdata->flags & DM9000_PLATF_16BITONLY)
1481 dm9000_set_io(db, 2);
1482
1483 if (pdata->flags & DM9000_PLATF_32BITONLY)
1484 dm9000_set_io(db, 4);
1485
1486 /* check to see if there are any IO routine
1487 * over-rides */
1488
1489 if (pdata->inblk != NULL)
1490 db->inblk = pdata->inblk;
1491
1492 if (pdata->outblk != NULL)
1493 db->outblk = pdata->outblk;
1494
1495 if (pdata->dumpblk != NULL)
1496 db->dumpblk = pdata->dumpblk;
1497
1498 db->flags = pdata->flags;
1499 }
1500
1501 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1502 db->flags |= DM9000_PLATF_SIMPLE_PHY;
1503 #endif
1504
1505 dm9000_reset(db);
1506
1507 /* try multiple times, DM9000 sometimes gets the read wrong */
1508 for (i = 0; i < 8; i++) {
1509 id_val = ior(db, DM9000_VIDL);
1510 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1511 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1512 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1513
1514 if (id_val == DM9000_ID)
1515 break;
1516 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1517 }
1518
1519 if (id_val != DM9000_ID) {
1520 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1521 ret = -ENODEV;
1522 goto out;
1523 }
1524
1525 /* Identify what type of DM9000 we are working on */
1526
1527 id_val = ior(db, DM9000_CHIPR);
1528 dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1529
1530 switch (id_val) {
1531 case CHIPR_DM9000A:
1532 db->type = TYPE_DM9000A;
1533 break;
1534 case CHIPR_DM9000B:
1535 db->type = TYPE_DM9000B;
1536 break;
1537 default:
1538 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1539 db->type = TYPE_DM9000E;
1540 }
1541
1542 /* dm9000a/b are capable of hardware checksum offload */
1543 if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1544 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1545 ndev->features |= ndev->hw_features;
1546 }
1547
1548 /* from this point we assume that we have found a DM9000 */
1549
1550 /* driver system function */
1551 ether_setup(ndev);
1552
1553 ndev->netdev_ops = &dm9000_netdev_ops;
1554 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1555 ndev->ethtool_ops = &dm9000_ethtool_ops;
1556
1557 db->msg_enable = NETIF_MSG_LINK;
1558 db->mii.phy_id_mask = 0x1f;
1559 db->mii.reg_num_mask = 0x1f;
1560 db->mii.force_media = 0;
1561 db->mii.full_duplex = 0;
1562 db->mii.dev = ndev;
1563 db->mii.mdio_read = dm9000_phy_read;
1564 db->mii.mdio_write = dm9000_phy_write;
1565
1566 mac_src = "eeprom";
1567
1568 /* try reading the node address from the attached EEPROM */
1569 for (i = 0; i < 6; i += 2)
1570 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1571
1572 if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1573 mac_src = "platform data";
1574 memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1575 }
1576
1577 if (!is_valid_ether_addr(ndev->dev_addr)) {
1578 /* try reading from mac */
1579
1580 mac_src = "chip";
1581 for (i = 0; i < 6; i++)
1582 ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1583 }
1584
1585 if (!is_valid_ether_addr(ndev->dev_addr)) {
1586 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1587 "set using ifconfig\n", ndev->name);
1588
1589 random_ether_addr(ndev->dev_addr);
1590 mac_src = "random";
1591 }
1592
1593
1594 platform_set_drvdata(pdev, ndev);
1595 ret = register_netdev(ndev);
1596
1597 if (ret == 0)
1598 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1599 ndev->name, dm9000_type_to_char(db->type),
1600 db->io_addr, db->io_data, ndev->irq,
1601 ndev->dev_addr, mac_src);
1602 return 0;
1603
1604 out:
1605 dev_err(db->dev, "not found (%d).\n", ret);
1606
1607 dm9000_release_board(pdev, db);
1608 free_netdev(ndev);
1609
1610 return ret;
1611 }
1612
1613 static int
1614 dm9000_drv_suspend(struct device *dev)
1615 {
1616 struct platform_device *pdev = to_platform_device(dev);
1617 struct net_device *ndev = platform_get_drvdata(pdev);
1618 board_info_t *db;
1619
1620 if (ndev) {
1621 db = netdev_priv(ndev);
1622 db->in_suspend = 1;
1623
1624 if (!netif_running(ndev))
1625 return 0;
1626
1627 netif_device_detach(ndev);
1628
1629 /* only shutdown if not using WoL */
1630 if (!db->wake_state)
1631 dm9000_shutdown(ndev);
1632 }
1633 return 0;
1634 }
1635
1636 static int
1637 dm9000_drv_resume(struct device *dev)
1638 {
1639 struct platform_device *pdev = to_platform_device(dev);
1640 struct net_device *ndev = platform_get_drvdata(pdev);
1641 board_info_t *db = netdev_priv(ndev);
1642
1643 if (ndev) {
1644 if (netif_running(ndev)) {
1645 /* reset if we were not in wake mode to ensure if
1646 * the device was powered off it is in a known state */
1647 if (!db->wake_state) {
1648 dm9000_reset(db);
1649 dm9000_init_dm9000(ndev);
1650 }
1651
1652 netif_device_attach(ndev);
1653 }
1654
1655 db->in_suspend = 0;
1656 }
1657 return 0;
1658 }
1659
1660 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1661 .suspend = dm9000_drv_suspend,
1662 .resume = dm9000_drv_resume,
1663 };
1664
1665 static int __devexit
1666 dm9000_drv_remove(struct platform_device *pdev)
1667 {
1668 struct net_device *ndev = platform_get_drvdata(pdev);
1669
1670 platform_set_drvdata(pdev, NULL);
1671
1672 unregister_netdev(ndev);
1673 dm9000_release_board(pdev, netdev_priv(ndev));
1674 free_netdev(ndev); /* free device structure */
1675
1676 dev_dbg(&pdev->dev, "released and freed device\n");
1677 return 0;
1678 }
1679
1680 static struct platform_driver dm9000_driver = {
1681 .driver = {
1682 .name = "dm9000",
1683 .owner = THIS_MODULE,
1684 .pm = &dm9000_drv_pm_ops,
1685 },
1686 .probe = dm9000_probe,
1687 .remove = __devexit_p(dm9000_drv_remove),
1688 };
1689
1690 static int __init
1691 dm9000_init(void)
1692 {
1693 printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
1694
1695 return platform_driver_register(&dm9000_driver);
1696 }
1697
1698 static void __exit
1699 dm9000_cleanup(void)
1700 {
1701 platform_driver_unregister(&dm9000_driver);
1702 }
1703
1704 module_init(dm9000_init);
1705 module_exit(dm9000_cleanup);
1706
1707 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1708 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1709 MODULE_LICENSE("GPL");
1710 MODULE_ALIAS("platform:dm9000");