d18ee75bdd543449c6128757229aeca96878bb33
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / brocade / bna / bnad.c
1 /*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 /*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18 #include <linux/bitops.h>
19 #include <linux/netdevice.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_vlan.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/prefetch.h>
28 #include <linux/module.h>
29
30 #include "bnad.h"
31 #include "bna.h"
32 #include "cna.h"
33
34 static DEFINE_MUTEX(bnad_fwimg_mutex);
35
36 /*
37 * Module params
38 */
39 static uint bnad_msix_disable;
40 module_param(bnad_msix_disable, uint, 0444);
41 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
42
43 static uint bnad_ioc_auto_recover = 1;
44 module_param(bnad_ioc_auto_recover, uint, 0444);
45 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
46
47 static uint bna_debugfs_enable = 1;
48 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
50 " Range[false:0|true:1]");
51
52 /*
53 * Global variables
54 */
55 u32 bnad_rxqs_per_cq = 2;
56 static u32 bna_id;
57 static struct mutex bnad_list_mutex;
58 static LIST_HEAD(bnad_list);
59 static const u8 bnad_bcast_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
60
61 /*
62 * Local MACROS
63 */
64 #define BNAD_GET_MBOX_IRQ(_bnad) \
65 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
66 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
67 ((_bnad)->pcidev->irq))
68
69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \
70 do { \
71 (_res_info)->res_type = BNA_RES_T_MEM; \
72 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
73 (_res_info)->res_u.mem_info.num = (_num); \
74 (_res_info)->res_u.mem_info.len = (_size); \
75 } while (0)
76
77 static void
78 bnad_add_to_list(struct bnad *bnad)
79 {
80 mutex_lock(&bnad_list_mutex);
81 list_add_tail(&bnad->list_entry, &bnad_list);
82 bnad->id = bna_id++;
83 mutex_unlock(&bnad_list_mutex);
84 }
85
86 static void
87 bnad_remove_from_list(struct bnad *bnad)
88 {
89 mutex_lock(&bnad_list_mutex);
90 list_del(&bnad->list_entry);
91 mutex_unlock(&bnad_list_mutex);
92 }
93
94 /*
95 * Reinitialize completions in CQ, once Rx is taken down
96 */
97 static void
98 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
99 {
100 struct bna_cq_entry *cmpl;
101 int i;
102
103 for (i = 0; i < ccb->q_depth; i++) {
104 cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
105 cmpl->valid = 0;
106 }
107 }
108
109 /* Tx Datapath functions */
110
111
112 /* Caller should ensure that the entry at unmap_q[index] is valid */
113 static u32
114 bnad_tx_buff_unmap(struct bnad *bnad,
115 struct bnad_tx_unmap *unmap_q,
116 u32 q_depth, u32 index)
117 {
118 struct bnad_tx_unmap *unmap;
119 struct sk_buff *skb;
120 int vector, nvecs;
121
122 unmap = &unmap_q[index];
123 nvecs = unmap->nvecs;
124
125 skb = unmap->skb;
126 unmap->skb = NULL;
127 unmap->nvecs = 0;
128 dma_unmap_single(&bnad->pcidev->dev,
129 dma_unmap_addr(&unmap->vectors[0], dma_addr),
130 skb_headlen(skb), DMA_TO_DEVICE);
131 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
132 nvecs--;
133
134 vector = 0;
135 while (nvecs) {
136 vector++;
137 if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
138 vector = 0;
139 BNA_QE_INDX_INC(index, q_depth);
140 unmap = &unmap_q[index];
141 }
142
143 dma_unmap_page(&bnad->pcidev->dev,
144 dma_unmap_addr(&unmap->vectors[vector], dma_addr),
145 skb_shinfo(skb)->frags[nvecs].size, DMA_TO_DEVICE);
146 dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
147 nvecs--;
148 }
149
150 BNA_QE_INDX_INC(index, q_depth);
151
152 return index;
153 }
154
155 /*
156 * Frees all pending Tx Bufs
157 * At this point no activity is expected on the Q,
158 * so DMA unmap & freeing is fine.
159 */
160 static void
161 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
162 {
163 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
164 struct sk_buff *skb;
165 int i;
166
167 for (i = 0; i < tcb->q_depth; i++) {
168 skb = unmap_q[i].skb;
169 if (!skb)
170 continue;
171 bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
172
173 dev_kfree_skb_any(skb);
174 }
175 }
176
177 /*
178 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
179 * Can be called in a) Interrupt context
180 * b) Sending context
181 */
182 static u32
183 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
184 {
185 u32 sent_packets = 0, sent_bytes = 0;
186 u32 wis, unmap_wis, hw_cons, cons, q_depth;
187 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
188 struct bnad_tx_unmap *unmap;
189 struct sk_buff *skb;
190
191 /* Just return if TX is stopped */
192 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
193 return 0;
194
195 hw_cons = *(tcb->hw_consumer_index);
196 rmb();
197 cons = tcb->consumer_index;
198 q_depth = tcb->q_depth;
199
200 wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
201 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
202
203 while (wis) {
204 unmap = &unmap_q[cons];
205
206 skb = unmap->skb;
207
208 sent_packets++;
209 sent_bytes += skb->len;
210
211 unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
212 wis -= unmap_wis;
213
214 cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
215 dev_kfree_skb_any(skb);
216 }
217
218 /* Update consumer pointers. */
219 tcb->consumer_index = hw_cons;
220
221 tcb->txq->tx_packets += sent_packets;
222 tcb->txq->tx_bytes += sent_bytes;
223
224 return sent_packets;
225 }
226
227 static u32
228 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
229 {
230 struct net_device *netdev = bnad->netdev;
231 u32 sent = 0;
232
233 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
234 return 0;
235
236 sent = bnad_txcmpl_process(bnad, tcb);
237 if (sent) {
238 if (netif_queue_stopped(netdev) &&
239 netif_carrier_ok(netdev) &&
240 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
241 BNAD_NETIF_WAKE_THRESHOLD) {
242 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
243 netif_wake_queue(netdev);
244 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
245 }
246 }
247 }
248
249 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
250 bna_ib_ack(tcb->i_dbell, sent);
251
252 smp_mb__before_clear_bit();
253 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
254
255 return sent;
256 }
257
258 /* MSIX Tx Completion Handler */
259 static irqreturn_t
260 bnad_msix_tx(int irq, void *data)
261 {
262 struct bna_tcb *tcb = (struct bna_tcb *)data;
263 struct bnad *bnad = tcb->bnad;
264
265 bnad_tx_complete(bnad, tcb);
266
267 return IRQ_HANDLED;
268 }
269
270 static inline void
271 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
272 {
273 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
274
275 unmap_q->reuse_pi = -1;
276 unmap_q->alloc_order = -1;
277 unmap_q->map_size = 0;
278 unmap_q->type = BNAD_RXBUF_NONE;
279 }
280
281 /* Default is page-based allocation. Multi-buffer support - TBD */
282 static int
283 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
284 {
285 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
286 int mtu, order;
287
288 bnad_rxq_alloc_uninit(bnad, rcb);
289
290 mtu = bna_enet_mtu_get(&bnad->bna.enet);
291 order = get_order(mtu);
292
293 if (bna_is_small_rxq(rcb->id)) {
294 unmap_q->alloc_order = 0;
295 unmap_q->map_size = rcb->rxq->buffer_size;
296 } else {
297 unmap_q->alloc_order = order;
298 unmap_q->map_size =
299 (rcb->rxq->buffer_size > 2048) ?
300 PAGE_SIZE << order : 2048;
301 }
302
303 BUG_ON(((PAGE_SIZE << order) % unmap_q->map_size));
304
305 unmap_q->type = BNAD_RXBUF_PAGE;
306
307 return 0;
308 }
309
310 static inline void
311 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
312 {
313 if (!unmap->page)
314 return;
315
316 dma_unmap_page(&bnad->pcidev->dev,
317 dma_unmap_addr(&unmap->vector, dma_addr),
318 unmap->vector.len, DMA_FROM_DEVICE);
319 put_page(unmap->page);
320 unmap->page = NULL;
321 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
322 unmap->vector.len = 0;
323 }
324
325 static inline void
326 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
327 {
328 if (!unmap->skb)
329 return;
330
331 dma_unmap_single(&bnad->pcidev->dev,
332 dma_unmap_addr(&unmap->vector, dma_addr),
333 unmap->vector.len, DMA_FROM_DEVICE);
334 dev_kfree_skb_any(unmap->skb);
335 unmap->skb = NULL;
336 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
337 unmap->vector.len = 0;
338 }
339
340 static void
341 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
342 {
343 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
344 int i;
345
346 for (i = 0; i < rcb->q_depth; i++) {
347 struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
348
349 if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
350 bnad_rxq_cleanup_page(bnad, unmap);
351 else
352 bnad_rxq_cleanup_skb(bnad, unmap);
353 }
354 bnad_rxq_alloc_uninit(bnad, rcb);
355 }
356
357 static u32
358 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
359 {
360 u32 alloced, prod, q_depth;
361 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
362 struct bnad_rx_unmap *unmap, *prev;
363 struct bna_rxq_entry *rxent;
364 struct page *page;
365 u32 page_offset, alloc_size;
366 dma_addr_t dma_addr;
367
368 prod = rcb->producer_index;
369 q_depth = rcb->q_depth;
370
371 alloc_size = PAGE_SIZE << unmap_q->alloc_order;
372 alloced = 0;
373
374 while (nalloc--) {
375 unmap = &unmap_q->unmap[prod];
376
377 if (unmap_q->reuse_pi < 0) {
378 page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
379 unmap_q->alloc_order);
380 page_offset = 0;
381 } else {
382 prev = &unmap_q->unmap[unmap_q->reuse_pi];
383 page = prev->page;
384 page_offset = prev->page_offset + unmap_q->map_size;
385 get_page(page);
386 }
387
388 if (unlikely(!page)) {
389 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
390 rcb->rxq->rxbuf_alloc_failed++;
391 goto finishing;
392 }
393
394 dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
395 unmap_q->map_size, DMA_FROM_DEVICE);
396
397 unmap->page = page;
398 unmap->page_offset = page_offset;
399 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
400 unmap->vector.len = unmap_q->map_size;
401 page_offset += unmap_q->map_size;
402
403 if (page_offset < alloc_size)
404 unmap_q->reuse_pi = prod;
405 else
406 unmap_q->reuse_pi = -1;
407
408 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
409 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
410 BNA_QE_INDX_INC(prod, q_depth);
411 alloced++;
412 }
413
414 finishing:
415 if (likely(alloced)) {
416 rcb->producer_index = prod;
417 smp_mb();
418 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
419 bna_rxq_prod_indx_doorbell(rcb);
420 }
421
422 return alloced;
423 }
424
425 static u32
426 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
427 {
428 u32 alloced, prod, q_depth, buff_sz;
429 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
430 struct bnad_rx_unmap *unmap;
431 struct bna_rxq_entry *rxent;
432 struct sk_buff *skb;
433 dma_addr_t dma_addr;
434
435 buff_sz = rcb->rxq->buffer_size;
436 prod = rcb->producer_index;
437 q_depth = rcb->q_depth;
438
439 alloced = 0;
440 while (nalloc--) {
441 unmap = &unmap_q->unmap[prod];
442
443 skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
444
445 if (unlikely(!skb)) {
446 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
447 rcb->rxq->rxbuf_alloc_failed++;
448 goto finishing;
449 }
450 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
451 buff_sz, DMA_FROM_DEVICE);
452
453 unmap->skb = skb;
454 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
455 unmap->vector.len = buff_sz;
456
457 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
458 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
459 BNA_QE_INDX_INC(prod, q_depth);
460 alloced++;
461 }
462
463 finishing:
464 if (likely(alloced)) {
465 rcb->producer_index = prod;
466 smp_mb();
467 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
468 bna_rxq_prod_indx_doorbell(rcb);
469 }
470
471 return alloced;
472 }
473
474 static inline void
475 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
476 {
477 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
478 u32 to_alloc;
479
480 to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
481 if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
482 return;
483
484 if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
485 bnad_rxq_refill_page(bnad, rcb, to_alloc);
486 else
487 bnad_rxq_refill_skb(bnad, rcb, to_alloc);
488 }
489
490 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
491 BNA_CQ_EF_IPV6 | \
492 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
493 BNA_CQ_EF_L4_CKSUM_OK)
494
495 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
496 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
497 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
498 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
499 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
500 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
501 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
502 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
503
504 static inline struct sk_buff *
505 bnad_cq_prepare_skb(struct bnad_rx_ctrl *rx_ctrl,
506 struct bnad_rx_unmap_q *unmap_q,
507 struct bnad_rx_unmap *unmap,
508 u32 length, u32 flags)
509 {
510 struct bnad *bnad = rx_ctrl->bnad;
511 struct sk_buff *skb;
512
513 if (BNAD_RXBUF_IS_PAGE(unmap_q->type)) {
514 skb = napi_get_frags(&rx_ctrl->napi);
515 if (unlikely(!skb))
516 return NULL;
517
518 dma_unmap_page(&bnad->pcidev->dev,
519 dma_unmap_addr(&unmap->vector, dma_addr),
520 unmap->vector.len, DMA_FROM_DEVICE);
521 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
522 unmap->page, unmap->page_offset, length);
523 skb->len += length;
524 skb->data_len += length;
525 skb->truesize += length;
526
527 unmap->page = NULL;
528 unmap->vector.len = 0;
529
530 return skb;
531 }
532
533 skb = unmap->skb;
534 BUG_ON(!skb);
535
536 dma_unmap_single(&bnad->pcidev->dev,
537 dma_unmap_addr(&unmap->vector, dma_addr),
538 unmap->vector.len, DMA_FROM_DEVICE);
539
540 skb_put(skb, length);
541
542 skb->protocol = eth_type_trans(skb, bnad->netdev);
543
544 unmap->skb = NULL;
545 unmap->vector.len = 0;
546 return skb;
547 }
548
549 static u32
550 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
551 {
552 struct bna_cq_entry *cq, *cmpl;
553 struct bna_rcb *rcb = NULL;
554 struct bnad_rx_unmap_q *unmap_q;
555 struct bnad_rx_unmap *unmap;
556 struct sk_buff *skb;
557 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
558 struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
559 u32 packets = 0, length = 0, flags, masked_flags;
560
561 prefetch(bnad->netdev);
562
563 cq = ccb->sw_q;
564 cmpl = &cq[ccb->producer_index];
565
566 while (cmpl->valid && (packets < budget)) {
567 packets++;
568 flags = ntohl(cmpl->flags);
569 length = ntohs(cmpl->length);
570 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
571
572 if (bna_is_small_rxq(cmpl->rxq_id))
573 rcb = ccb->rcb[1];
574 else
575 rcb = ccb->rcb[0];
576
577 unmap_q = rcb->unmap_q;
578 unmap = &unmap_q->unmap[rcb->consumer_index];
579
580 if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
581 BNA_CQ_EF_FCS_ERROR |
582 BNA_CQ_EF_TOO_LONG))) {
583 if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
584 bnad_rxq_cleanup_page(bnad, unmap);
585 else
586 bnad_rxq_cleanup_skb(bnad, unmap);
587
588 rcb->rxq->rx_packets_with_error++;
589 goto next;
590 }
591
592 skb = bnad_cq_prepare_skb(ccb->ctrl, unmap_q, unmap,
593 length, flags);
594
595 if (unlikely(!skb))
596 break;
597
598 masked_flags = flags & flags_cksum_prot_mask;
599
600 if (likely
601 ((bnad->netdev->features & NETIF_F_RXCSUM) &&
602 ((masked_flags == flags_tcp4) ||
603 (masked_flags == flags_udp4) ||
604 (masked_flags == flags_tcp6) ||
605 (masked_flags == flags_udp6))))
606 skb->ip_summed = CHECKSUM_UNNECESSARY;
607 else
608 skb_checksum_none_assert(skb);
609
610 rcb->rxq->rx_packets++;
611 rcb->rxq->rx_bytes += length;
612
613 if (flags & BNA_CQ_EF_VLAN)
614 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
615
616 if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
617 napi_gro_frags(&rx_ctrl->napi);
618 else
619 netif_receive_skb(skb);
620
621 next:
622 cmpl->valid = 0;
623 BNA_QE_INDX_INC(rcb->consumer_index, rcb->q_depth);
624 BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
625 cmpl = &cq[ccb->producer_index];
626 }
627
628 napi_gro_flush(&rx_ctrl->napi, false);
629 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
630 bna_ib_ack_disable_irq(ccb->i_dbell, packets);
631
632 bnad_rxq_post(bnad, ccb->rcb[0]);
633 if (ccb->rcb[1])
634 bnad_rxq_post(bnad, ccb->rcb[1]);
635
636 return packets;
637 }
638
639 static void
640 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
641 {
642 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
643 struct napi_struct *napi = &rx_ctrl->napi;
644
645 if (likely(napi_schedule_prep(napi))) {
646 __napi_schedule(napi);
647 rx_ctrl->rx_schedule++;
648 }
649 }
650
651 /* MSIX Rx Path Handler */
652 static irqreturn_t
653 bnad_msix_rx(int irq, void *data)
654 {
655 struct bna_ccb *ccb = (struct bna_ccb *)data;
656
657 if (ccb) {
658 ((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
659 bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
660 }
661
662 return IRQ_HANDLED;
663 }
664
665 /* Interrupt handlers */
666
667 /* Mbox Interrupt Handlers */
668 static irqreturn_t
669 bnad_msix_mbox_handler(int irq, void *data)
670 {
671 u32 intr_status;
672 unsigned long flags;
673 struct bnad *bnad = (struct bnad *)data;
674
675 spin_lock_irqsave(&bnad->bna_lock, flags);
676 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
677 spin_unlock_irqrestore(&bnad->bna_lock, flags);
678 return IRQ_HANDLED;
679 }
680
681 bna_intr_status_get(&bnad->bna, intr_status);
682
683 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
684 bna_mbox_handler(&bnad->bna, intr_status);
685
686 spin_unlock_irqrestore(&bnad->bna_lock, flags);
687
688 return IRQ_HANDLED;
689 }
690
691 static irqreturn_t
692 bnad_isr(int irq, void *data)
693 {
694 int i, j;
695 u32 intr_status;
696 unsigned long flags;
697 struct bnad *bnad = (struct bnad *)data;
698 struct bnad_rx_info *rx_info;
699 struct bnad_rx_ctrl *rx_ctrl;
700 struct bna_tcb *tcb = NULL;
701
702 spin_lock_irqsave(&bnad->bna_lock, flags);
703 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
704 spin_unlock_irqrestore(&bnad->bna_lock, flags);
705 return IRQ_NONE;
706 }
707
708 bna_intr_status_get(&bnad->bna, intr_status);
709
710 if (unlikely(!intr_status)) {
711 spin_unlock_irqrestore(&bnad->bna_lock, flags);
712 return IRQ_NONE;
713 }
714
715 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
716 bna_mbox_handler(&bnad->bna, intr_status);
717
718 spin_unlock_irqrestore(&bnad->bna_lock, flags);
719
720 if (!BNA_IS_INTX_DATA_INTR(intr_status))
721 return IRQ_HANDLED;
722
723 /* Process data interrupts */
724 /* Tx processing */
725 for (i = 0; i < bnad->num_tx; i++) {
726 for (j = 0; j < bnad->num_txq_per_tx; j++) {
727 tcb = bnad->tx_info[i].tcb[j];
728 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
729 bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
730 }
731 }
732 /* Rx processing */
733 for (i = 0; i < bnad->num_rx; i++) {
734 rx_info = &bnad->rx_info[i];
735 if (!rx_info->rx)
736 continue;
737 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
738 rx_ctrl = &rx_info->rx_ctrl[j];
739 if (rx_ctrl->ccb)
740 bnad_netif_rx_schedule_poll(bnad,
741 rx_ctrl->ccb);
742 }
743 }
744 return IRQ_HANDLED;
745 }
746
747 /*
748 * Called in interrupt / callback context
749 * with bna_lock held, so cfg_flags access is OK
750 */
751 static void
752 bnad_enable_mbox_irq(struct bnad *bnad)
753 {
754 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
755
756 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
757 }
758
759 /*
760 * Called with bnad->bna_lock held b'cos of
761 * bnad->cfg_flags access.
762 */
763 static void
764 bnad_disable_mbox_irq(struct bnad *bnad)
765 {
766 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
767
768 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
769 }
770
771 static void
772 bnad_set_netdev_perm_addr(struct bnad *bnad)
773 {
774 struct net_device *netdev = bnad->netdev;
775
776 memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
777 if (is_zero_ether_addr(netdev->dev_addr))
778 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
779 }
780
781 /* Control Path Handlers */
782
783 /* Callbacks */
784 void
785 bnad_cb_mbox_intr_enable(struct bnad *bnad)
786 {
787 bnad_enable_mbox_irq(bnad);
788 }
789
790 void
791 bnad_cb_mbox_intr_disable(struct bnad *bnad)
792 {
793 bnad_disable_mbox_irq(bnad);
794 }
795
796 void
797 bnad_cb_ioceth_ready(struct bnad *bnad)
798 {
799 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
800 complete(&bnad->bnad_completions.ioc_comp);
801 }
802
803 void
804 bnad_cb_ioceth_failed(struct bnad *bnad)
805 {
806 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
807 complete(&bnad->bnad_completions.ioc_comp);
808 }
809
810 void
811 bnad_cb_ioceth_disabled(struct bnad *bnad)
812 {
813 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
814 complete(&bnad->bnad_completions.ioc_comp);
815 }
816
817 static void
818 bnad_cb_enet_disabled(void *arg)
819 {
820 struct bnad *bnad = (struct bnad *)arg;
821
822 netif_carrier_off(bnad->netdev);
823 complete(&bnad->bnad_completions.enet_comp);
824 }
825
826 void
827 bnad_cb_ethport_link_status(struct bnad *bnad,
828 enum bna_link_status link_status)
829 {
830 bool link_up = false;
831
832 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
833
834 if (link_status == BNA_CEE_UP) {
835 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
836 BNAD_UPDATE_CTR(bnad, cee_toggle);
837 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
838 } else {
839 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
840 BNAD_UPDATE_CTR(bnad, cee_toggle);
841 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
842 }
843
844 if (link_up) {
845 if (!netif_carrier_ok(bnad->netdev)) {
846 uint tx_id, tcb_id;
847 printk(KERN_WARNING "bna: %s link up\n",
848 bnad->netdev->name);
849 netif_carrier_on(bnad->netdev);
850 BNAD_UPDATE_CTR(bnad, link_toggle);
851 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
852 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
853 tcb_id++) {
854 struct bna_tcb *tcb =
855 bnad->tx_info[tx_id].tcb[tcb_id];
856 u32 txq_id;
857 if (!tcb)
858 continue;
859
860 txq_id = tcb->id;
861
862 if (test_bit(BNAD_TXQ_TX_STARTED,
863 &tcb->flags)) {
864 /*
865 * Force an immediate
866 * Transmit Schedule */
867 printk(KERN_INFO "bna: %s %d "
868 "TXQ_STARTED\n",
869 bnad->netdev->name,
870 txq_id);
871 netif_wake_subqueue(
872 bnad->netdev,
873 txq_id);
874 BNAD_UPDATE_CTR(bnad,
875 netif_queue_wakeup);
876 } else {
877 netif_stop_subqueue(
878 bnad->netdev,
879 txq_id);
880 BNAD_UPDATE_CTR(bnad,
881 netif_queue_stop);
882 }
883 }
884 }
885 }
886 } else {
887 if (netif_carrier_ok(bnad->netdev)) {
888 printk(KERN_WARNING "bna: %s link down\n",
889 bnad->netdev->name);
890 netif_carrier_off(bnad->netdev);
891 BNAD_UPDATE_CTR(bnad, link_toggle);
892 }
893 }
894 }
895
896 static void
897 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
898 {
899 struct bnad *bnad = (struct bnad *)arg;
900
901 complete(&bnad->bnad_completions.tx_comp);
902 }
903
904 static void
905 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
906 {
907 struct bnad_tx_info *tx_info =
908 (struct bnad_tx_info *)tcb->txq->tx->priv;
909
910 tcb->priv = tcb;
911 tx_info->tcb[tcb->id] = tcb;
912 }
913
914 static void
915 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
916 {
917 struct bnad_tx_info *tx_info =
918 (struct bnad_tx_info *)tcb->txq->tx->priv;
919
920 tx_info->tcb[tcb->id] = NULL;
921 tcb->priv = NULL;
922 }
923
924 static void
925 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
926 {
927 struct bnad_rx_info *rx_info =
928 (struct bnad_rx_info *)ccb->cq->rx->priv;
929
930 rx_info->rx_ctrl[ccb->id].ccb = ccb;
931 ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
932 }
933
934 static void
935 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
936 {
937 struct bnad_rx_info *rx_info =
938 (struct bnad_rx_info *)ccb->cq->rx->priv;
939
940 rx_info->rx_ctrl[ccb->id].ccb = NULL;
941 }
942
943 static void
944 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
945 {
946 struct bnad_tx_info *tx_info =
947 (struct bnad_tx_info *)tx->priv;
948 struct bna_tcb *tcb;
949 u32 txq_id;
950 int i;
951
952 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
953 tcb = tx_info->tcb[i];
954 if (!tcb)
955 continue;
956 txq_id = tcb->id;
957 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
958 netif_stop_subqueue(bnad->netdev, txq_id);
959 printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
960 bnad->netdev->name, txq_id);
961 }
962 }
963
964 static void
965 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
966 {
967 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
968 struct bna_tcb *tcb;
969 u32 txq_id;
970 int i;
971
972 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
973 tcb = tx_info->tcb[i];
974 if (!tcb)
975 continue;
976 txq_id = tcb->id;
977
978 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
979 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
980 BUG_ON(*(tcb->hw_consumer_index) != 0);
981
982 if (netif_carrier_ok(bnad->netdev)) {
983 printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
984 bnad->netdev->name, txq_id);
985 netif_wake_subqueue(bnad->netdev, txq_id);
986 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
987 }
988 }
989
990 /*
991 * Workaround for first ioceth enable failure & we
992 * get a 0 MAC address. We try to get the MAC address
993 * again here.
994 */
995 if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
996 bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
997 bnad_set_netdev_perm_addr(bnad);
998 }
999 }
1000
1001 /*
1002 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1003 */
1004 static void
1005 bnad_tx_cleanup(struct delayed_work *work)
1006 {
1007 struct bnad_tx_info *tx_info =
1008 container_of(work, struct bnad_tx_info, tx_cleanup_work);
1009 struct bnad *bnad = NULL;
1010 struct bna_tcb *tcb;
1011 unsigned long flags;
1012 u32 i, pending = 0;
1013
1014 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1015 tcb = tx_info->tcb[i];
1016 if (!tcb)
1017 continue;
1018
1019 bnad = tcb->bnad;
1020
1021 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1022 pending++;
1023 continue;
1024 }
1025
1026 bnad_txq_cleanup(bnad, tcb);
1027
1028 smp_mb__before_clear_bit();
1029 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1030 }
1031
1032 if (pending) {
1033 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1034 msecs_to_jiffies(1));
1035 return;
1036 }
1037
1038 spin_lock_irqsave(&bnad->bna_lock, flags);
1039 bna_tx_cleanup_complete(tx_info->tx);
1040 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1041 }
1042
1043 static void
1044 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1045 {
1046 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1047 struct bna_tcb *tcb;
1048 int i;
1049
1050 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1051 tcb = tx_info->tcb[i];
1052 if (!tcb)
1053 continue;
1054 }
1055
1056 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1057 }
1058
1059 static void
1060 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1061 {
1062 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1063 struct bna_ccb *ccb;
1064 struct bnad_rx_ctrl *rx_ctrl;
1065 int i;
1066
1067 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1068 rx_ctrl = &rx_info->rx_ctrl[i];
1069 ccb = rx_ctrl->ccb;
1070 if (!ccb)
1071 continue;
1072
1073 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1074
1075 if (ccb->rcb[1])
1076 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1077 }
1078 }
1079
1080 /*
1081 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1082 */
1083 static void
1084 bnad_rx_cleanup(void *work)
1085 {
1086 struct bnad_rx_info *rx_info =
1087 container_of(work, struct bnad_rx_info, rx_cleanup_work);
1088 struct bnad_rx_ctrl *rx_ctrl;
1089 struct bnad *bnad = NULL;
1090 unsigned long flags;
1091 u32 i;
1092
1093 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1094 rx_ctrl = &rx_info->rx_ctrl[i];
1095
1096 if (!rx_ctrl->ccb)
1097 continue;
1098
1099 bnad = rx_ctrl->ccb->bnad;
1100
1101 /*
1102 * Wait till the poll handler has exited
1103 * and nothing can be scheduled anymore
1104 */
1105 napi_disable(&rx_ctrl->napi);
1106
1107 bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1108 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1109 if (rx_ctrl->ccb->rcb[1])
1110 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1111 }
1112
1113 spin_lock_irqsave(&bnad->bna_lock, flags);
1114 bna_rx_cleanup_complete(rx_info->rx);
1115 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1116 }
1117
1118 static void
1119 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1120 {
1121 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1122 struct bna_ccb *ccb;
1123 struct bnad_rx_ctrl *rx_ctrl;
1124 int i;
1125
1126 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1127 rx_ctrl = &rx_info->rx_ctrl[i];
1128 ccb = rx_ctrl->ccb;
1129 if (!ccb)
1130 continue;
1131
1132 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1133
1134 if (ccb->rcb[1])
1135 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1136 }
1137
1138 queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1139 }
1140
1141 static void
1142 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1143 {
1144 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1145 struct bna_ccb *ccb;
1146 struct bna_rcb *rcb;
1147 struct bnad_rx_ctrl *rx_ctrl;
1148 int i, j;
1149
1150 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1151 rx_ctrl = &rx_info->rx_ctrl[i];
1152 ccb = rx_ctrl->ccb;
1153 if (!ccb)
1154 continue;
1155
1156 napi_enable(&rx_ctrl->napi);
1157
1158 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1159 rcb = ccb->rcb[j];
1160 if (!rcb)
1161 continue;
1162
1163 bnad_rxq_alloc_init(bnad, rcb);
1164 set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1165 set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1166 bnad_rxq_post(bnad, rcb);
1167 }
1168 }
1169 }
1170
1171 static void
1172 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1173 {
1174 struct bnad *bnad = (struct bnad *)arg;
1175
1176 complete(&bnad->bnad_completions.rx_comp);
1177 }
1178
1179 static void
1180 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1181 {
1182 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1183 complete(&bnad->bnad_completions.mcast_comp);
1184 }
1185
1186 void
1187 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1188 struct bna_stats *stats)
1189 {
1190 if (status == BNA_CB_SUCCESS)
1191 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1192
1193 if (!netif_running(bnad->netdev) ||
1194 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1195 return;
1196
1197 mod_timer(&bnad->stats_timer,
1198 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1199 }
1200
1201 static void
1202 bnad_cb_enet_mtu_set(struct bnad *bnad)
1203 {
1204 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1205 complete(&bnad->bnad_completions.mtu_comp);
1206 }
1207
1208 void
1209 bnad_cb_completion(void *arg, enum bfa_status status)
1210 {
1211 struct bnad_iocmd_comp *iocmd_comp =
1212 (struct bnad_iocmd_comp *)arg;
1213
1214 iocmd_comp->comp_status = (u32) status;
1215 complete(&iocmd_comp->comp);
1216 }
1217
1218 /* Resource allocation, free functions */
1219
1220 static void
1221 bnad_mem_free(struct bnad *bnad,
1222 struct bna_mem_info *mem_info)
1223 {
1224 int i;
1225 dma_addr_t dma_pa;
1226
1227 if (mem_info->mdl == NULL)
1228 return;
1229
1230 for (i = 0; i < mem_info->num; i++) {
1231 if (mem_info->mdl[i].kva != NULL) {
1232 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1233 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1234 dma_pa);
1235 dma_free_coherent(&bnad->pcidev->dev,
1236 mem_info->mdl[i].len,
1237 mem_info->mdl[i].kva, dma_pa);
1238 } else
1239 kfree(mem_info->mdl[i].kva);
1240 }
1241 }
1242 kfree(mem_info->mdl);
1243 mem_info->mdl = NULL;
1244 }
1245
1246 static int
1247 bnad_mem_alloc(struct bnad *bnad,
1248 struct bna_mem_info *mem_info)
1249 {
1250 int i;
1251 dma_addr_t dma_pa;
1252
1253 if ((mem_info->num == 0) || (mem_info->len == 0)) {
1254 mem_info->mdl = NULL;
1255 return 0;
1256 }
1257
1258 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1259 GFP_KERNEL);
1260 if (mem_info->mdl == NULL)
1261 return -ENOMEM;
1262
1263 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1264 for (i = 0; i < mem_info->num; i++) {
1265 mem_info->mdl[i].len = mem_info->len;
1266 mem_info->mdl[i].kva =
1267 dma_alloc_coherent(&bnad->pcidev->dev,
1268 mem_info->len, &dma_pa,
1269 GFP_KERNEL);
1270 if (mem_info->mdl[i].kva == NULL)
1271 goto err_return;
1272
1273 BNA_SET_DMA_ADDR(dma_pa,
1274 &(mem_info->mdl[i].dma));
1275 }
1276 } else {
1277 for (i = 0; i < mem_info->num; i++) {
1278 mem_info->mdl[i].len = mem_info->len;
1279 mem_info->mdl[i].kva = kzalloc(mem_info->len,
1280 GFP_KERNEL);
1281 if (mem_info->mdl[i].kva == NULL)
1282 goto err_return;
1283 }
1284 }
1285
1286 return 0;
1287
1288 err_return:
1289 bnad_mem_free(bnad, mem_info);
1290 return -ENOMEM;
1291 }
1292
1293 /* Free IRQ for Mailbox */
1294 static void
1295 bnad_mbox_irq_free(struct bnad *bnad)
1296 {
1297 int irq;
1298 unsigned long flags;
1299
1300 spin_lock_irqsave(&bnad->bna_lock, flags);
1301 bnad_disable_mbox_irq(bnad);
1302 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1303
1304 irq = BNAD_GET_MBOX_IRQ(bnad);
1305 free_irq(irq, bnad);
1306 }
1307
1308 /*
1309 * Allocates IRQ for Mailbox, but keep it disabled
1310 * This will be enabled once we get the mbox enable callback
1311 * from bna
1312 */
1313 static int
1314 bnad_mbox_irq_alloc(struct bnad *bnad)
1315 {
1316 int err = 0;
1317 unsigned long irq_flags, flags;
1318 u32 irq;
1319 irq_handler_t irq_handler;
1320
1321 spin_lock_irqsave(&bnad->bna_lock, flags);
1322 if (bnad->cfg_flags & BNAD_CF_MSIX) {
1323 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1324 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1325 irq_flags = 0;
1326 } else {
1327 irq_handler = (irq_handler_t)bnad_isr;
1328 irq = bnad->pcidev->irq;
1329 irq_flags = IRQF_SHARED;
1330 }
1331
1332 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1333 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1334
1335 /*
1336 * Set the Mbox IRQ disable flag, so that the IRQ handler
1337 * called from request_irq() for SHARED IRQs do not execute
1338 */
1339 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1340
1341 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1342
1343 err = request_irq(irq, irq_handler, irq_flags,
1344 bnad->mbox_irq_name, bnad);
1345
1346 return err;
1347 }
1348
1349 static void
1350 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1351 {
1352 kfree(intr_info->idl);
1353 intr_info->idl = NULL;
1354 }
1355
1356 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1357 static int
1358 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1359 u32 txrx_id, struct bna_intr_info *intr_info)
1360 {
1361 int i, vector_start = 0;
1362 u32 cfg_flags;
1363 unsigned long flags;
1364
1365 spin_lock_irqsave(&bnad->bna_lock, flags);
1366 cfg_flags = bnad->cfg_flags;
1367 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1368
1369 if (cfg_flags & BNAD_CF_MSIX) {
1370 intr_info->intr_type = BNA_INTR_T_MSIX;
1371 intr_info->idl = kcalloc(intr_info->num,
1372 sizeof(struct bna_intr_descr),
1373 GFP_KERNEL);
1374 if (!intr_info->idl)
1375 return -ENOMEM;
1376
1377 switch (src) {
1378 case BNAD_INTR_TX:
1379 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1380 break;
1381
1382 case BNAD_INTR_RX:
1383 vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1384 (bnad->num_tx * bnad->num_txq_per_tx) +
1385 txrx_id;
1386 break;
1387
1388 default:
1389 BUG();
1390 }
1391
1392 for (i = 0; i < intr_info->num; i++)
1393 intr_info->idl[i].vector = vector_start + i;
1394 } else {
1395 intr_info->intr_type = BNA_INTR_T_INTX;
1396 intr_info->num = 1;
1397 intr_info->idl = kcalloc(intr_info->num,
1398 sizeof(struct bna_intr_descr),
1399 GFP_KERNEL);
1400 if (!intr_info->idl)
1401 return -ENOMEM;
1402
1403 switch (src) {
1404 case BNAD_INTR_TX:
1405 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1406 break;
1407
1408 case BNAD_INTR_RX:
1409 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1410 break;
1411 }
1412 }
1413 return 0;
1414 }
1415
1416 /* NOTE: Should be called for MSIX only
1417 * Unregisters Tx MSIX vector(s) from the kernel
1418 */
1419 static void
1420 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1421 int num_txqs)
1422 {
1423 int i;
1424 int vector_num;
1425
1426 for (i = 0; i < num_txqs; i++) {
1427 if (tx_info->tcb[i] == NULL)
1428 continue;
1429
1430 vector_num = tx_info->tcb[i]->intr_vector;
1431 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1432 }
1433 }
1434
1435 /* NOTE: Should be called for MSIX only
1436 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1437 */
1438 static int
1439 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1440 u32 tx_id, int num_txqs)
1441 {
1442 int i;
1443 int err;
1444 int vector_num;
1445
1446 for (i = 0; i < num_txqs; i++) {
1447 vector_num = tx_info->tcb[i]->intr_vector;
1448 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1449 tx_id + tx_info->tcb[i]->id);
1450 err = request_irq(bnad->msix_table[vector_num].vector,
1451 (irq_handler_t)bnad_msix_tx, 0,
1452 tx_info->tcb[i]->name,
1453 tx_info->tcb[i]);
1454 if (err)
1455 goto err_return;
1456 }
1457
1458 return 0;
1459
1460 err_return:
1461 if (i > 0)
1462 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1463 return -1;
1464 }
1465
1466 /* NOTE: Should be called for MSIX only
1467 * Unregisters Rx MSIX vector(s) from the kernel
1468 */
1469 static void
1470 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1471 int num_rxps)
1472 {
1473 int i;
1474 int vector_num;
1475
1476 for (i = 0; i < num_rxps; i++) {
1477 if (rx_info->rx_ctrl[i].ccb == NULL)
1478 continue;
1479
1480 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1481 free_irq(bnad->msix_table[vector_num].vector,
1482 rx_info->rx_ctrl[i].ccb);
1483 }
1484 }
1485
1486 /* NOTE: Should be called for MSIX only
1487 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1488 */
1489 static int
1490 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1491 u32 rx_id, int num_rxps)
1492 {
1493 int i;
1494 int err;
1495 int vector_num;
1496
1497 for (i = 0; i < num_rxps; i++) {
1498 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1499 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1500 bnad->netdev->name,
1501 rx_id + rx_info->rx_ctrl[i].ccb->id);
1502 err = request_irq(bnad->msix_table[vector_num].vector,
1503 (irq_handler_t)bnad_msix_rx, 0,
1504 rx_info->rx_ctrl[i].ccb->name,
1505 rx_info->rx_ctrl[i].ccb);
1506 if (err)
1507 goto err_return;
1508 }
1509
1510 return 0;
1511
1512 err_return:
1513 if (i > 0)
1514 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1515 return -1;
1516 }
1517
1518 /* Free Tx object Resources */
1519 static void
1520 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1521 {
1522 int i;
1523
1524 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1525 if (res_info[i].res_type == BNA_RES_T_MEM)
1526 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1527 else if (res_info[i].res_type == BNA_RES_T_INTR)
1528 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1529 }
1530 }
1531
1532 /* Allocates memory and interrupt resources for Tx object */
1533 static int
1534 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1535 u32 tx_id)
1536 {
1537 int i, err = 0;
1538
1539 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1540 if (res_info[i].res_type == BNA_RES_T_MEM)
1541 err = bnad_mem_alloc(bnad,
1542 &res_info[i].res_u.mem_info);
1543 else if (res_info[i].res_type == BNA_RES_T_INTR)
1544 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1545 &res_info[i].res_u.intr_info);
1546 if (err)
1547 goto err_return;
1548 }
1549 return 0;
1550
1551 err_return:
1552 bnad_tx_res_free(bnad, res_info);
1553 return err;
1554 }
1555
1556 /* Free Rx object Resources */
1557 static void
1558 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1559 {
1560 int i;
1561
1562 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1563 if (res_info[i].res_type == BNA_RES_T_MEM)
1564 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1565 else if (res_info[i].res_type == BNA_RES_T_INTR)
1566 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1567 }
1568 }
1569
1570 /* Allocates memory and interrupt resources for Rx object */
1571 static int
1572 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1573 uint rx_id)
1574 {
1575 int i, err = 0;
1576
1577 /* All memory needs to be allocated before setup_ccbs */
1578 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1579 if (res_info[i].res_type == BNA_RES_T_MEM)
1580 err = bnad_mem_alloc(bnad,
1581 &res_info[i].res_u.mem_info);
1582 else if (res_info[i].res_type == BNA_RES_T_INTR)
1583 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1584 &res_info[i].res_u.intr_info);
1585 if (err)
1586 goto err_return;
1587 }
1588 return 0;
1589
1590 err_return:
1591 bnad_rx_res_free(bnad, res_info);
1592 return err;
1593 }
1594
1595 /* Timer callbacks */
1596 /* a) IOC timer */
1597 static void
1598 bnad_ioc_timeout(unsigned long data)
1599 {
1600 struct bnad *bnad = (struct bnad *)data;
1601 unsigned long flags;
1602
1603 spin_lock_irqsave(&bnad->bna_lock, flags);
1604 bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1605 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1606 }
1607
1608 static void
1609 bnad_ioc_hb_check(unsigned long data)
1610 {
1611 struct bnad *bnad = (struct bnad *)data;
1612 unsigned long flags;
1613
1614 spin_lock_irqsave(&bnad->bna_lock, flags);
1615 bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1616 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1617 }
1618
1619 static void
1620 bnad_iocpf_timeout(unsigned long data)
1621 {
1622 struct bnad *bnad = (struct bnad *)data;
1623 unsigned long flags;
1624
1625 spin_lock_irqsave(&bnad->bna_lock, flags);
1626 bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1627 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1628 }
1629
1630 static void
1631 bnad_iocpf_sem_timeout(unsigned long data)
1632 {
1633 struct bnad *bnad = (struct bnad *)data;
1634 unsigned long flags;
1635
1636 spin_lock_irqsave(&bnad->bna_lock, flags);
1637 bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1638 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1639 }
1640
1641 /*
1642 * All timer routines use bnad->bna_lock to protect against
1643 * the following race, which may occur in case of no locking:
1644 * Time CPU m CPU n
1645 * 0 1 = test_bit
1646 * 1 clear_bit
1647 * 2 del_timer_sync
1648 * 3 mod_timer
1649 */
1650
1651 /* b) Dynamic Interrupt Moderation Timer */
1652 static void
1653 bnad_dim_timeout(unsigned long data)
1654 {
1655 struct bnad *bnad = (struct bnad *)data;
1656 struct bnad_rx_info *rx_info;
1657 struct bnad_rx_ctrl *rx_ctrl;
1658 int i, j;
1659 unsigned long flags;
1660
1661 if (!netif_carrier_ok(bnad->netdev))
1662 return;
1663
1664 spin_lock_irqsave(&bnad->bna_lock, flags);
1665 for (i = 0; i < bnad->num_rx; i++) {
1666 rx_info = &bnad->rx_info[i];
1667 if (!rx_info->rx)
1668 continue;
1669 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1670 rx_ctrl = &rx_info->rx_ctrl[j];
1671 if (!rx_ctrl->ccb)
1672 continue;
1673 bna_rx_dim_update(rx_ctrl->ccb);
1674 }
1675 }
1676
1677 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1678 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1679 mod_timer(&bnad->dim_timer,
1680 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1681 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1682 }
1683
1684 /* c) Statistics Timer */
1685 static void
1686 bnad_stats_timeout(unsigned long data)
1687 {
1688 struct bnad *bnad = (struct bnad *)data;
1689 unsigned long flags;
1690
1691 if (!netif_running(bnad->netdev) ||
1692 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1693 return;
1694
1695 spin_lock_irqsave(&bnad->bna_lock, flags);
1696 bna_hw_stats_get(&bnad->bna);
1697 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1698 }
1699
1700 /*
1701 * Set up timer for DIM
1702 * Called with bnad->bna_lock held
1703 */
1704 void
1705 bnad_dim_timer_start(struct bnad *bnad)
1706 {
1707 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1708 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1709 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1710 (unsigned long)bnad);
1711 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1712 mod_timer(&bnad->dim_timer,
1713 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1714 }
1715 }
1716
1717 /*
1718 * Set up timer for statistics
1719 * Called with mutex_lock(&bnad->conf_mutex) held
1720 */
1721 static void
1722 bnad_stats_timer_start(struct bnad *bnad)
1723 {
1724 unsigned long flags;
1725
1726 spin_lock_irqsave(&bnad->bna_lock, flags);
1727 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1728 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1729 (unsigned long)bnad);
1730 mod_timer(&bnad->stats_timer,
1731 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1732 }
1733 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1734 }
1735
1736 /*
1737 * Stops the stats timer
1738 * Called with mutex_lock(&bnad->conf_mutex) held
1739 */
1740 static void
1741 bnad_stats_timer_stop(struct bnad *bnad)
1742 {
1743 int to_del = 0;
1744 unsigned long flags;
1745
1746 spin_lock_irqsave(&bnad->bna_lock, flags);
1747 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1748 to_del = 1;
1749 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1750 if (to_del)
1751 del_timer_sync(&bnad->stats_timer);
1752 }
1753
1754 /* Utilities */
1755
1756 static void
1757 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1758 {
1759 int i = 1; /* Index 0 has broadcast address */
1760 struct netdev_hw_addr *mc_addr;
1761
1762 netdev_for_each_mc_addr(mc_addr, netdev) {
1763 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1764 ETH_ALEN);
1765 i++;
1766 }
1767 }
1768
1769 static int
1770 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1771 {
1772 struct bnad_rx_ctrl *rx_ctrl =
1773 container_of(napi, struct bnad_rx_ctrl, napi);
1774 struct bnad *bnad = rx_ctrl->bnad;
1775 int rcvd = 0;
1776
1777 rx_ctrl->rx_poll_ctr++;
1778
1779 if (!netif_carrier_ok(bnad->netdev))
1780 goto poll_exit;
1781
1782 rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1783 if (rcvd >= budget)
1784 return rcvd;
1785
1786 poll_exit:
1787 napi_complete(napi);
1788
1789 rx_ctrl->rx_complete++;
1790
1791 if (rx_ctrl->ccb)
1792 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1793
1794 return rcvd;
1795 }
1796
1797 #define BNAD_NAPI_POLL_QUOTA 64
1798 static void
1799 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1800 {
1801 struct bnad_rx_ctrl *rx_ctrl;
1802 int i;
1803
1804 /* Initialize & enable NAPI */
1805 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1806 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1807 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1808 bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1809 }
1810 }
1811
1812 static void
1813 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1814 {
1815 int i;
1816
1817 /* First disable and then clean up */
1818 for (i = 0; i < bnad->num_rxp_per_rx; i++)
1819 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1820 }
1821
1822 /* Should be held with conf_lock held */
1823 void
1824 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1825 {
1826 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1827 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1828 unsigned long flags;
1829
1830 if (!tx_info->tx)
1831 return;
1832
1833 init_completion(&bnad->bnad_completions.tx_comp);
1834 spin_lock_irqsave(&bnad->bna_lock, flags);
1835 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1836 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1837 wait_for_completion(&bnad->bnad_completions.tx_comp);
1838
1839 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1840 bnad_tx_msix_unregister(bnad, tx_info,
1841 bnad->num_txq_per_tx);
1842
1843 spin_lock_irqsave(&bnad->bna_lock, flags);
1844 bna_tx_destroy(tx_info->tx);
1845 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1846
1847 tx_info->tx = NULL;
1848 tx_info->tx_id = 0;
1849
1850 bnad_tx_res_free(bnad, res_info);
1851 }
1852
1853 /* Should be held with conf_lock held */
1854 int
1855 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1856 {
1857 int err;
1858 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1859 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1860 struct bna_intr_info *intr_info =
1861 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1862 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1863 static const struct bna_tx_event_cbfn tx_cbfn = {
1864 .tcb_setup_cbfn = bnad_cb_tcb_setup,
1865 .tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1866 .tx_stall_cbfn = bnad_cb_tx_stall,
1867 .tx_resume_cbfn = bnad_cb_tx_resume,
1868 .tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1869 };
1870
1871 struct bna_tx *tx;
1872 unsigned long flags;
1873
1874 tx_info->tx_id = tx_id;
1875
1876 /* Initialize the Tx object configuration */
1877 tx_config->num_txq = bnad->num_txq_per_tx;
1878 tx_config->txq_depth = bnad->txq_depth;
1879 tx_config->tx_type = BNA_TX_T_REGULAR;
1880 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1881
1882 /* Get BNA's resource requirement for one tx object */
1883 spin_lock_irqsave(&bnad->bna_lock, flags);
1884 bna_tx_res_req(bnad->num_txq_per_tx,
1885 bnad->txq_depth, res_info);
1886 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1887
1888 /* Fill Unmap Q memory requirements */
1889 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1890 bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1891 bnad->txq_depth));
1892
1893 /* Allocate resources */
1894 err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1895 if (err)
1896 return err;
1897
1898 /* Ask BNA to create one Tx object, supplying required resources */
1899 spin_lock_irqsave(&bnad->bna_lock, flags);
1900 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1901 tx_info);
1902 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1903 if (!tx)
1904 goto err_return;
1905 tx_info->tx = tx;
1906
1907 INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
1908 (work_func_t)bnad_tx_cleanup);
1909
1910 /* Register ISR for the Tx object */
1911 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1912 err = bnad_tx_msix_register(bnad, tx_info,
1913 tx_id, bnad->num_txq_per_tx);
1914 if (err)
1915 goto err_return;
1916 }
1917
1918 spin_lock_irqsave(&bnad->bna_lock, flags);
1919 bna_tx_enable(tx);
1920 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1921
1922 return 0;
1923
1924 err_return:
1925 bnad_tx_res_free(bnad, res_info);
1926 return err;
1927 }
1928
1929 /* Setup the rx config for bna_rx_create */
1930 /* bnad decides the configuration */
1931 static void
1932 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1933 {
1934 rx_config->rx_type = BNA_RX_T_REGULAR;
1935 rx_config->num_paths = bnad->num_rxp_per_rx;
1936 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
1937
1938 if (bnad->num_rxp_per_rx > 1) {
1939 rx_config->rss_status = BNA_STATUS_T_ENABLED;
1940 rx_config->rss_config.hash_type =
1941 (BFI_ENET_RSS_IPV6 |
1942 BFI_ENET_RSS_IPV6_TCP |
1943 BFI_ENET_RSS_IPV4 |
1944 BFI_ENET_RSS_IPV4_TCP);
1945 rx_config->rss_config.hash_mask =
1946 bnad->num_rxp_per_rx - 1;
1947 get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1948 sizeof(rx_config->rss_config.toeplitz_hash_key));
1949 } else {
1950 rx_config->rss_status = BNA_STATUS_T_DISABLED;
1951 memset(&rx_config->rss_config, 0,
1952 sizeof(rx_config->rss_config));
1953 }
1954 rx_config->rxp_type = BNA_RXP_SLR;
1955 rx_config->q_depth = bnad->rxq_depth;
1956
1957 rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1958
1959 rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1960 }
1961
1962 static void
1963 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
1964 {
1965 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1966 int i;
1967
1968 for (i = 0; i < bnad->num_rxp_per_rx; i++)
1969 rx_info->rx_ctrl[i].bnad = bnad;
1970 }
1971
1972 /* Called with mutex_lock(&bnad->conf_mutex) held */
1973 void
1974 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
1975 {
1976 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1977 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1978 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1979 unsigned long flags;
1980 int to_del = 0;
1981
1982 if (!rx_info->rx)
1983 return;
1984
1985 if (0 == rx_id) {
1986 spin_lock_irqsave(&bnad->bna_lock, flags);
1987 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1988 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1989 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1990 to_del = 1;
1991 }
1992 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1993 if (to_del)
1994 del_timer_sync(&bnad->dim_timer);
1995 }
1996
1997 init_completion(&bnad->bnad_completions.rx_comp);
1998 spin_lock_irqsave(&bnad->bna_lock, flags);
1999 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2000 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2001 wait_for_completion(&bnad->bnad_completions.rx_comp);
2002
2003 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2004 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2005
2006 bnad_napi_delete(bnad, rx_id);
2007
2008 spin_lock_irqsave(&bnad->bna_lock, flags);
2009 bna_rx_destroy(rx_info->rx);
2010
2011 rx_info->rx = NULL;
2012 rx_info->rx_id = 0;
2013 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2014
2015 bnad_rx_res_free(bnad, res_info);
2016 }
2017
2018 /* Called with mutex_lock(&bnad->conf_mutex) held */
2019 int
2020 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2021 {
2022 int err;
2023 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2024 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2025 struct bna_intr_info *intr_info =
2026 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2027 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2028 static const struct bna_rx_event_cbfn rx_cbfn = {
2029 .rcb_setup_cbfn = NULL,
2030 .rcb_destroy_cbfn = NULL,
2031 .ccb_setup_cbfn = bnad_cb_ccb_setup,
2032 .ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2033 .rx_stall_cbfn = bnad_cb_rx_stall,
2034 .rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2035 .rx_post_cbfn = bnad_cb_rx_post,
2036 };
2037 struct bna_rx *rx;
2038 unsigned long flags;
2039
2040 rx_info->rx_id = rx_id;
2041
2042 /* Initialize the Rx object configuration */
2043 bnad_init_rx_config(bnad, rx_config);
2044
2045 /* Get BNA's resource requirement for one Rx object */
2046 spin_lock_irqsave(&bnad->bna_lock, flags);
2047 bna_rx_res_req(rx_config, res_info);
2048 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2049
2050 /* Fill Unmap Q memory requirements */
2051 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPQ],
2052 rx_config->num_paths +
2053 ((rx_config->rxp_type == BNA_RXP_SINGLE) ?
2054 0 : rx_config->num_paths),
2055 ((bnad->rxq_depth * sizeof(struct bnad_rx_unmap)) +
2056 sizeof(struct bnad_rx_unmap_q)));
2057
2058 /* Allocate resource */
2059 err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2060 if (err)
2061 return err;
2062
2063 bnad_rx_ctrl_init(bnad, rx_id);
2064
2065 /* Ask BNA to create one Rx object, supplying required resources */
2066 spin_lock_irqsave(&bnad->bna_lock, flags);
2067 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2068 rx_info);
2069 if (!rx) {
2070 err = -ENOMEM;
2071 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2072 goto err_return;
2073 }
2074 rx_info->rx = rx;
2075 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2076
2077 INIT_WORK(&rx_info->rx_cleanup_work,
2078 (work_func_t)(bnad_rx_cleanup));
2079
2080 /*
2081 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2082 * so that IRQ handler cannot schedule NAPI at this point.
2083 */
2084 bnad_napi_add(bnad, rx_id);
2085
2086 /* Register ISR for the Rx object */
2087 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2088 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2089 rx_config->num_paths);
2090 if (err)
2091 goto err_return;
2092 }
2093
2094 spin_lock_irqsave(&bnad->bna_lock, flags);
2095 if (0 == rx_id) {
2096 /* Set up Dynamic Interrupt Moderation Vector */
2097 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2098 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2099
2100 /* Enable VLAN filtering only on the default Rx */
2101 bna_rx_vlanfilter_enable(rx);
2102
2103 /* Start the DIM timer */
2104 bnad_dim_timer_start(bnad);
2105 }
2106
2107 bna_rx_enable(rx);
2108 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2109
2110 return 0;
2111
2112 err_return:
2113 bnad_destroy_rx(bnad, rx_id);
2114 return err;
2115 }
2116
2117 /* Called with conf_lock & bnad->bna_lock held */
2118 void
2119 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2120 {
2121 struct bnad_tx_info *tx_info;
2122
2123 tx_info = &bnad->tx_info[0];
2124 if (!tx_info->tx)
2125 return;
2126
2127 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2128 }
2129
2130 /* Called with conf_lock & bnad->bna_lock held */
2131 void
2132 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2133 {
2134 struct bnad_rx_info *rx_info;
2135 int i;
2136
2137 for (i = 0; i < bnad->num_rx; i++) {
2138 rx_info = &bnad->rx_info[i];
2139 if (!rx_info->rx)
2140 continue;
2141 bna_rx_coalescing_timeo_set(rx_info->rx,
2142 bnad->rx_coalescing_timeo);
2143 }
2144 }
2145
2146 /*
2147 * Called with bnad->bna_lock held
2148 */
2149 int
2150 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2151 {
2152 int ret;
2153
2154 if (!is_valid_ether_addr(mac_addr))
2155 return -EADDRNOTAVAIL;
2156
2157 /* If datapath is down, pretend everything went through */
2158 if (!bnad->rx_info[0].rx)
2159 return 0;
2160
2161 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2162 if (ret != BNA_CB_SUCCESS)
2163 return -EADDRNOTAVAIL;
2164
2165 return 0;
2166 }
2167
2168 /* Should be called with conf_lock held */
2169 int
2170 bnad_enable_default_bcast(struct bnad *bnad)
2171 {
2172 struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2173 int ret;
2174 unsigned long flags;
2175
2176 init_completion(&bnad->bnad_completions.mcast_comp);
2177
2178 spin_lock_irqsave(&bnad->bna_lock, flags);
2179 ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2180 bnad_cb_rx_mcast_add);
2181 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2182
2183 if (ret == BNA_CB_SUCCESS)
2184 wait_for_completion(&bnad->bnad_completions.mcast_comp);
2185 else
2186 return -ENODEV;
2187
2188 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2189 return -ENODEV;
2190
2191 return 0;
2192 }
2193
2194 /* Called with mutex_lock(&bnad->conf_mutex) held */
2195 void
2196 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2197 {
2198 u16 vid;
2199 unsigned long flags;
2200
2201 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2202 spin_lock_irqsave(&bnad->bna_lock, flags);
2203 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2204 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2205 }
2206 }
2207
2208 /* Statistics utilities */
2209 void
2210 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2211 {
2212 int i, j;
2213
2214 for (i = 0; i < bnad->num_rx; i++) {
2215 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2216 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2217 stats->rx_packets += bnad->rx_info[i].
2218 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2219 stats->rx_bytes += bnad->rx_info[i].
2220 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2221 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2222 bnad->rx_info[i].rx_ctrl[j].ccb->
2223 rcb[1]->rxq) {
2224 stats->rx_packets +=
2225 bnad->rx_info[i].rx_ctrl[j].
2226 ccb->rcb[1]->rxq->rx_packets;
2227 stats->rx_bytes +=
2228 bnad->rx_info[i].rx_ctrl[j].
2229 ccb->rcb[1]->rxq->rx_bytes;
2230 }
2231 }
2232 }
2233 }
2234 for (i = 0; i < bnad->num_tx; i++) {
2235 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2236 if (bnad->tx_info[i].tcb[j]) {
2237 stats->tx_packets +=
2238 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2239 stats->tx_bytes +=
2240 bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2241 }
2242 }
2243 }
2244 }
2245
2246 /*
2247 * Must be called with the bna_lock held.
2248 */
2249 void
2250 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2251 {
2252 struct bfi_enet_stats_mac *mac_stats;
2253 u32 bmap;
2254 int i;
2255
2256 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2257 stats->rx_errors =
2258 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2259 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2260 mac_stats->rx_undersize;
2261 stats->tx_errors = mac_stats->tx_fcs_error +
2262 mac_stats->tx_undersize;
2263 stats->rx_dropped = mac_stats->rx_drop;
2264 stats->tx_dropped = mac_stats->tx_drop;
2265 stats->multicast = mac_stats->rx_multicast;
2266 stats->collisions = mac_stats->tx_total_collision;
2267
2268 stats->rx_length_errors = mac_stats->rx_frame_length_error;
2269
2270 /* receive ring buffer overflow ?? */
2271
2272 stats->rx_crc_errors = mac_stats->rx_fcs_error;
2273 stats->rx_frame_errors = mac_stats->rx_alignment_error;
2274 /* recv'r fifo overrun */
2275 bmap = bna_rx_rid_mask(&bnad->bna);
2276 for (i = 0; bmap; i++) {
2277 if (bmap & 1) {
2278 stats->rx_fifo_errors +=
2279 bnad->stats.bna_stats->
2280 hw_stats.rxf_stats[i].frame_drops;
2281 break;
2282 }
2283 bmap >>= 1;
2284 }
2285 }
2286
2287 static void
2288 bnad_mbox_irq_sync(struct bnad *bnad)
2289 {
2290 u32 irq;
2291 unsigned long flags;
2292
2293 spin_lock_irqsave(&bnad->bna_lock, flags);
2294 if (bnad->cfg_flags & BNAD_CF_MSIX)
2295 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2296 else
2297 irq = bnad->pcidev->irq;
2298 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2299
2300 synchronize_irq(irq);
2301 }
2302
2303 /* Utility used by bnad_start_xmit, for doing TSO */
2304 static int
2305 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2306 {
2307 int err;
2308
2309 if (skb_header_cloned(skb)) {
2310 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2311 if (err) {
2312 BNAD_UPDATE_CTR(bnad, tso_err);
2313 return err;
2314 }
2315 }
2316
2317 /*
2318 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2319 * excluding the length field.
2320 */
2321 if (skb->protocol == htons(ETH_P_IP)) {
2322 struct iphdr *iph = ip_hdr(skb);
2323
2324 /* Do we really need these? */
2325 iph->tot_len = 0;
2326 iph->check = 0;
2327
2328 tcp_hdr(skb)->check =
2329 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2330 IPPROTO_TCP, 0);
2331 BNAD_UPDATE_CTR(bnad, tso4);
2332 } else {
2333 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2334
2335 ipv6h->payload_len = 0;
2336 tcp_hdr(skb)->check =
2337 ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2338 IPPROTO_TCP, 0);
2339 BNAD_UPDATE_CTR(bnad, tso6);
2340 }
2341
2342 return 0;
2343 }
2344
2345 /*
2346 * Initialize Q numbers depending on Rx Paths
2347 * Called with bnad->bna_lock held, because of cfg_flags
2348 * access.
2349 */
2350 static void
2351 bnad_q_num_init(struct bnad *bnad)
2352 {
2353 int rxps;
2354
2355 rxps = min((uint)num_online_cpus(),
2356 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2357
2358 if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2359 rxps = 1; /* INTx */
2360
2361 bnad->num_rx = 1;
2362 bnad->num_tx = 1;
2363 bnad->num_rxp_per_rx = rxps;
2364 bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2365 }
2366
2367 /*
2368 * Adjusts the Q numbers, given a number of msix vectors
2369 * Give preference to RSS as opposed to Tx priority Queues,
2370 * in such a case, just use 1 Tx Q
2371 * Called with bnad->bna_lock held b'cos of cfg_flags access
2372 */
2373 static void
2374 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2375 {
2376 bnad->num_txq_per_tx = 1;
2377 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
2378 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2379 (bnad->cfg_flags & BNAD_CF_MSIX)) {
2380 bnad->num_rxp_per_rx = msix_vectors -
2381 (bnad->num_tx * bnad->num_txq_per_tx) -
2382 BNAD_MAILBOX_MSIX_VECTORS;
2383 } else
2384 bnad->num_rxp_per_rx = 1;
2385 }
2386
2387 /* Enable / disable ioceth */
2388 static int
2389 bnad_ioceth_disable(struct bnad *bnad)
2390 {
2391 unsigned long flags;
2392 int err = 0;
2393
2394 spin_lock_irqsave(&bnad->bna_lock, flags);
2395 init_completion(&bnad->bnad_completions.ioc_comp);
2396 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2397 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2398
2399 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2400 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2401
2402 err = bnad->bnad_completions.ioc_comp_status;
2403 return err;
2404 }
2405
2406 static int
2407 bnad_ioceth_enable(struct bnad *bnad)
2408 {
2409 int err = 0;
2410 unsigned long flags;
2411
2412 spin_lock_irqsave(&bnad->bna_lock, flags);
2413 init_completion(&bnad->bnad_completions.ioc_comp);
2414 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2415 bna_ioceth_enable(&bnad->bna.ioceth);
2416 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2417
2418 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2419 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2420
2421 err = bnad->bnad_completions.ioc_comp_status;
2422
2423 return err;
2424 }
2425
2426 /* Free BNA resources */
2427 static void
2428 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2429 u32 res_val_max)
2430 {
2431 int i;
2432
2433 for (i = 0; i < res_val_max; i++)
2434 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2435 }
2436
2437 /* Allocates memory and interrupt resources for BNA */
2438 static int
2439 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2440 u32 res_val_max)
2441 {
2442 int i, err;
2443
2444 for (i = 0; i < res_val_max; i++) {
2445 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2446 if (err)
2447 goto err_return;
2448 }
2449 return 0;
2450
2451 err_return:
2452 bnad_res_free(bnad, res_info, res_val_max);
2453 return err;
2454 }
2455
2456 /* Interrupt enable / disable */
2457 static void
2458 bnad_enable_msix(struct bnad *bnad)
2459 {
2460 int i, ret;
2461 unsigned long flags;
2462
2463 spin_lock_irqsave(&bnad->bna_lock, flags);
2464 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2465 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2466 return;
2467 }
2468 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2469
2470 if (bnad->msix_table)
2471 return;
2472
2473 bnad->msix_table =
2474 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2475
2476 if (!bnad->msix_table)
2477 goto intx_mode;
2478
2479 for (i = 0; i < bnad->msix_num; i++)
2480 bnad->msix_table[i].entry = i;
2481
2482 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2483 if (ret > 0) {
2484 /* Not enough MSI-X vectors. */
2485 pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2486 ret, bnad->msix_num);
2487
2488 spin_lock_irqsave(&bnad->bna_lock, flags);
2489 /* ret = #of vectors that we got */
2490 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2491 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2492 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2493
2494 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2495 BNAD_MAILBOX_MSIX_VECTORS;
2496
2497 if (bnad->msix_num > ret)
2498 goto intx_mode;
2499
2500 /* Try once more with adjusted numbers */
2501 /* If this fails, fall back to INTx */
2502 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2503 bnad->msix_num);
2504 if (ret)
2505 goto intx_mode;
2506
2507 } else if (ret < 0)
2508 goto intx_mode;
2509
2510 pci_intx(bnad->pcidev, 0);
2511
2512 return;
2513
2514 intx_mode:
2515 pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2516
2517 kfree(bnad->msix_table);
2518 bnad->msix_table = NULL;
2519 bnad->msix_num = 0;
2520 spin_lock_irqsave(&bnad->bna_lock, flags);
2521 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2522 bnad_q_num_init(bnad);
2523 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2524 }
2525
2526 static void
2527 bnad_disable_msix(struct bnad *bnad)
2528 {
2529 u32 cfg_flags;
2530 unsigned long flags;
2531
2532 spin_lock_irqsave(&bnad->bna_lock, flags);
2533 cfg_flags = bnad->cfg_flags;
2534 if (bnad->cfg_flags & BNAD_CF_MSIX)
2535 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2536 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2537
2538 if (cfg_flags & BNAD_CF_MSIX) {
2539 pci_disable_msix(bnad->pcidev);
2540 kfree(bnad->msix_table);
2541 bnad->msix_table = NULL;
2542 }
2543 }
2544
2545 /* Netdev entry points */
2546 static int
2547 bnad_open(struct net_device *netdev)
2548 {
2549 int err;
2550 struct bnad *bnad = netdev_priv(netdev);
2551 struct bna_pause_config pause_config;
2552 int mtu;
2553 unsigned long flags;
2554
2555 mutex_lock(&bnad->conf_mutex);
2556
2557 /* Tx */
2558 err = bnad_setup_tx(bnad, 0);
2559 if (err)
2560 goto err_return;
2561
2562 /* Rx */
2563 err = bnad_setup_rx(bnad, 0);
2564 if (err)
2565 goto cleanup_tx;
2566
2567 /* Port */
2568 pause_config.tx_pause = 0;
2569 pause_config.rx_pause = 0;
2570
2571 mtu = ETH_HLEN + VLAN_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2572
2573 spin_lock_irqsave(&bnad->bna_lock, flags);
2574 bna_enet_mtu_set(&bnad->bna.enet, mtu, NULL);
2575 bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2576 bna_enet_enable(&bnad->bna.enet);
2577 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2578
2579 /* Enable broadcast */
2580 bnad_enable_default_bcast(bnad);
2581
2582 /* Restore VLANs, if any */
2583 bnad_restore_vlans(bnad, 0);
2584
2585 /* Set the UCAST address */
2586 spin_lock_irqsave(&bnad->bna_lock, flags);
2587 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2588 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2589
2590 /* Start the stats timer */
2591 bnad_stats_timer_start(bnad);
2592
2593 mutex_unlock(&bnad->conf_mutex);
2594
2595 return 0;
2596
2597 cleanup_tx:
2598 bnad_destroy_tx(bnad, 0);
2599
2600 err_return:
2601 mutex_unlock(&bnad->conf_mutex);
2602 return err;
2603 }
2604
2605 static int
2606 bnad_stop(struct net_device *netdev)
2607 {
2608 struct bnad *bnad = netdev_priv(netdev);
2609 unsigned long flags;
2610
2611 mutex_lock(&bnad->conf_mutex);
2612
2613 /* Stop the stats timer */
2614 bnad_stats_timer_stop(bnad);
2615
2616 init_completion(&bnad->bnad_completions.enet_comp);
2617
2618 spin_lock_irqsave(&bnad->bna_lock, flags);
2619 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2620 bnad_cb_enet_disabled);
2621 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2622
2623 wait_for_completion(&bnad->bnad_completions.enet_comp);
2624
2625 bnad_destroy_tx(bnad, 0);
2626 bnad_destroy_rx(bnad, 0);
2627
2628 /* Synchronize mailbox IRQ */
2629 bnad_mbox_irq_sync(bnad);
2630
2631 mutex_unlock(&bnad->conf_mutex);
2632
2633 return 0;
2634 }
2635
2636 /* TX */
2637 /* Returns 0 for success */
2638 static int
2639 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2640 struct sk_buff *skb, struct bna_txq_entry *txqent)
2641 {
2642 u16 flags = 0;
2643 u32 gso_size;
2644 u16 vlan_tag = 0;
2645
2646 if (vlan_tx_tag_present(skb)) {
2647 vlan_tag = (u16)vlan_tx_tag_get(skb);
2648 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2649 }
2650 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2651 vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2652 | (vlan_tag & 0x1fff);
2653 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2654 }
2655 txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2656
2657 if (skb_is_gso(skb)) {
2658 gso_size = skb_shinfo(skb)->gso_size;
2659 if (unlikely(gso_size > bnad->netdev->mtu)) {
2660 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2661 return -EINVAL;
2662 }
2663 if (unlikely((gso_size + skb_transport_offset(skb) +
2664 tcp_hdrlen(skb)) >= skb->len)) {
2665 txqent->hdr.wi.opcode =
2666 __constant_htons(BNA_TXQ_WI_SEND);
2667 txqent->hdr.wi.lso_mss = 0;
2668 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2669 } else {
2670 txqent->hdr.wi.opcode =
2671 __constant_htons(BNA_TXQ_WI_SEND_LSO);
2672 txqent->hdr.wi.lso_mss = htons(gso_size);
2673 }
2674
2675 if (bnad_tso_prepare(bnad, skb)) {
2676 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2677 return -EINVAL;
2678 }
2679
2680 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2681 txqent->hdr.wi.l4_hdr_size_n_offset =
2682 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2683 tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2684 } else {
2685 txqent->hdr.wi.opcode = __constant_htons(BNA_TXQ_WI_SEND);
2686 txqent->hdr.wi.lso_mss = 0;
2687
2688 if (unlikely(skb->len > (bnad->netdev->mtu + ETH_HLEN))) {
2689 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2690 return -EINVAL;
2691 }
2692
2693 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2694 u8 proto = 0;
2695
2696 if (skb->protocol == __constant_htons(ETH_P_IP))
2697 proto = ip_hdr(skb)->protocol;
2698 #ifdef NETIF_F_IPV6_CSUM
2699 else if (skb->protocol ==
2700 __constant_htons(ETH_P_IPV6)) {
2701 /* nexthdr may not be TCP immediately. */
2702 proto = ipv6_hdr(skb)->nexthdr;
2703 }
2704 #endif
2705 if (proto == IPPROTO_TCP) {
2706 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2707 txqent->hdr.wi.l4_hdr_size_n_offset =
2708 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2709 (0, skb_transport_offset(skb)));
2710
2711 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2712
2713 if (unlikely(skb_headlen(skb) <
2714 skb_transport_offset(skb) +
2715 tcp_hdrlen(skb))) {
2716 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2717 return -EINVAL;
2718 }
2719 } else if (proto == IPPROTO_UDP) {
2720 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2721 txqent->hdr.wi.l4_hdr_size_n_offset =
2722 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2723 (0, skb_transport_offset(skb)));
2724
2725 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2726 if (unlikely(skb_headlen(skb) <
2727 skb_transport_offset(skb) +
2728 sizeof(struct udphdr))) {
2729 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2730 return -EINVAL;
2731 }
2732 } else {
2733
2734 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2735 return -EINVAL;
2736 }
2737 } else
2738 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2739 }
2740
2741 txqent->hdr.wi.flags = htons(flags);
2742 txqent->hdr.wi.frame_length = htonl(skb->len);
2743
2744 return 0;
2745 }
2746
2747 /*
2748 * bnad_start_xmit : Netdev entry point for Transmit
2749 * Called under lock held by net_device
2750 */
2751 static netdev_tx_t
2752 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2753 {
2754 struct bnad *bnad = netdev_priv(netdev);
2755 u32 txq_id = 0;
2756 struct bna_tcb *tcb = NULL;
2757 struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2758 u32 prod, q_depth, vect_id;
2759 u32 wis, vectors, len;
2760 int i;
2761 dma_addr_t dma_addr;
2762 struct bna_txq_entry *txqent;
2763
2764 len = skb_headlen(skb);
2765
2766 /* Sanity checks for the skb */
2767
2768 if (unlikely(skb->len <= ETH_HLEN)) {
2769 dev_kfree_skb(skb);
2770 BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2771 return NETDEV_TX_OK;
2772 }
2773 if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2774 dev_kfree_skb(skb);
2775 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2776 return NETDEV_TX_OK;
2777 }
2778 if (unlikely(len == 0)) {
2779 dev_kfree_skb(skb);
2780 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2781 return NETDEV_TX_OK;
2782 }
2783
2784 tcb = bnad->tx_info[0].tcb[txq_id];
2785 q_depth = tcb->q_depth;
2786 prod = tcb->producer_index;
2787
2788 unmap_q = tcb->unmap_q;
2789
2790 /*
2791 * Takes care of the Tx that is scheduled between clearing the flag
2792 * and the netif_tx_stop_all_queues() call.
2793 */
2794 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2795 dev_kfree_skb(skb);
2796 BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2797 return NETDEV_TX_OK;
2798 }
2799
2800 vectors = 1 + skb_shinfo(skb)->nr_frags;
2801 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
2802
2803 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2804 dev_kfree_skb(skb);
2805 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2806 return NETDEV_TX_OK;
2807 }
2808
2809 /* Check for available TxQ resources */
2810 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2811 if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2812 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2813 u32 sent;
2814 sent = bnad_txcmpl_process(bnad, tcb);
2815 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2816 bna_ib_ack(tcb->i_dbell, sent);
2817 smp_mb__before_clear_bit();
2818 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2819 } else {
2820 netif_stop_queue(netdev);
2821 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2822 }
2823
2824 smp_mb();
2825 /*
2826 * Check again to deal with race condition between
2827 * netif_stop_queue here, and netif_wake_queue in
2828 * interrupt handler which is not inside netif tx lock.
2829 */
2830 if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2831 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2832 return NETDEV_TX_BUSY;
2833 } else {
2834 netif_wake_queue(netdev);
2835 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2836 }
2837 }
2838
2839 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
2840 head_unmap = &unmap_q[prod];
2841
2842 /* Program the opcode, flags, frame_len, num_vectors in WI */
2843 if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
2844 dev_kfree_skb(skb);
2845 return NETDEV_TX_OK;
2846 }
2847 txqent->hdr.wi.reserved = 0;
2848 txqent->hdr.wi.num_vectors = vectors;
2849
2850 head_unmap->skb = skb;
2851 head_unmap->nvecs = 0;
2852
2853 /* Program the vectors */
2854 unmap = head_unmap;
2855 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
2856 len, DMA_TO_DEVICE);
2857 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
2858 txqent->vector[0].length = htons(len);
2859 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
2860 head_unmap->nvecs++;
2861
2862 for (i = 0, vect_id = 0; i < vectors - 1; i++) {
2863 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2864 u16 size = skb_frag_size(frag);
2865
2866 if (unlikely(size == 0)) {
2867 /* Undo the changes starting at tcb->producer_index */
2868 bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
2869 tcb->producer_index);
2870 dev_kfree_skb(skb);
2871 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
2872 return NETDEV_TX_OK;
2873 }
2874
2875 len += size;
2876
2877 vect_id++;
2878 if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2879 vect_id = 0;
2880 BNA_QE_INDX_INC(prod, q_depth);
2881 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
2882 txqent->hdr.wi_ext.opcode =
2883 __constant_htons(BNA_TXQ_WI_EXTENSION);
2884 unmap = &unmap_q[prod];
2885 }
2886
2887 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
2888 0, size, DMA_TO_DEVICE);
2889 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2890 txqent->vector[vect_id].length = htons(size);
2891 dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
2892 dma_addr);
2893 head_unmap->nvecs++;
2894 }
2895
2896 if (unlikely(len != skb->len)) {
2897 /* Undo the changes starting at tcb->producer_index */
2898 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
2899 dev_kfree_skb(skb);
2900 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
2901 return NETDEV_TX_OK;
2902 }
2903
2904 BNA_QE_INDX_INC(prod, q_depth);
2905 tcb->producer_index = prod;
2906
2907 wmb();
2908
2909 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2910 return NETDEV_TX_OK;
2911
2912 bna_txq_prod_indx_doorbell(tcb);
2913
2914 return NETDEV_TX_OK;
2915 }
2916
2917 /*
2918 * Used spin_lock to synchronize reading of stats structures, which
2919 * is written by BNA under the same lock.
2920 */
2921 static struct rtnl_link_stats64 *
2922 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2923 {
2924 struct bnad *bnad = netdev_priv(netdev);
2925 unsigned long flags;
2926
2927 spin_lock_irqsave(&bnad->bna_lock, flags);
2928
2929 bnad_netdev_qstats_fill(bnad, stats);
2930 bnad_netdev_hwstats_fill(bnad, stats);
2931
2932 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2933
2934 return stats;
2935 }
2936
2937 void
2938 bnad_set_rx_mode(struct net_device *netdev)
2939 {
2940 struct bnad *bnad = netdev_priv(netdev);
2941 u32 new_mask, valid_mask;
2942 unsigned long flags;
2943
2944 spin_lock_irqsave(&bnad->bna_lock, flags);
2945
2946 new_mask = valid_mask = 0;
2947
2948 if (netdev->flags & IFF_PROMISC) {
2949 if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2950 new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2951 valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2952 bnad->cfg_flags |= BNAD_CF_PROMISC;
2953 }
2954 } else {
2955 if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2956 new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2957 valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2958 bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2959 }
2960 }
2961
2962 if (netdev->flags & IFF_ALLMULTI) {
2963 if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2964 new_mask |= BNA_RXMODE_ALLMULTI;
2965 valid_mask |= BNA_RXMODE_ALLMULTI;
2966 bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2967 }
2968 } else {
2969 if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2970 new_mask &= ~BNA_RXMODE_ALLMULTI;
2971 valid_mask |= BNA_RXMODE_ALLMULTI;
2972 bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2973 }
2974 }
2975
2976 if (bnad->rx_info[0].rx == NULL)
2977 goto unlock;
2978
2979 bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2980
2981 if (!netdev_mc_empty(netdev)) {
2982 u8 *mcaddr_list;
2983 int mc_count = netdev_mc_count(netdev);
2984
2985 /* Index 0 holds the broadcast address */
2986 mcaddr_list =
2987 kzalloc((mc_count + 1) * ETH_ALEN,
2988 GFP_ATOMIC);
2989 if (!mcaddr_list)
2990 goto unlock;
2991
2992 memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2993
2994 /* Copy rest of the MC addresses */
2995 bnad_netdev_mc_list_get(netdev, mcaddr_list);
2996
2997 bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2998 mcaddr_list, NULL);
2999
3000 /* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
3001 kfree(mcaddr_list);
3002 }
3003 unlock:
3004 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3005 }
3006
3007 /*
3008 * bna_lock is used to sync writes to netdev->addr
3009 * conf_lock cannot be used since this call may be made
3010 * in a non-blocking context.
3011 */
3012 static int
3013 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
3014 {
3015 int err;
3016 struct bnad *bnad = netdev_priv(netdev);
3017 struct sockaddr *sa = (struct sockaddr *)mac_addr;
3018 unsigned long flags;
3019
3020 spin_lock_irqsave(&bnad->bna_lock, flags);
3021
3022 err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3023
3024 if (!err)
3025 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
3026
3027 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3028
3029 return err;
3030 }
3031
3032 static int
3033 bnad_mtu_set(struct bnad *bnad, int mtu)
3034 {
3035 unsigned long flags;
3036
3037 init_completion(&bnad->bnad_completions.mtu_comp);
3038
3039 spin_lock_irqsave(&bnad->bna_lock, flags);
3040 bna_enet_mtu_set(&bnad->bna.enet, mtu, bnad_cb_enet_mtu_set);
3041 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3042
3043 wait_for_completion(&bnad->bnad_completions.mtu_comp);
3044
3045 return bnad->bnad_completions.mtu_comp_status;
3046 }
3047
3048 static int
3049 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3050 {
3051 int err, mtu = netdev->mtu;
3052 struct bnad *bnad = netdev_priv(netdev);
3053
3054 if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3055 return -EINVAL;
3056
3057 mutex_lock(&bnad->conf_mutex);
3058
3059 netdev->mtu = new_mtu;
3060
3061 mtu = ETH_HLEN + VLAN_HLEN + new_mtu + ETH_FCS_LEN;
3062 err = bnad_mtu_set(bnad, mtu);
3063 if (err)
3064 err = -EBUSY;
3065
3066 mutex_unlock(&bnad->conf_mutex);
3067 return err;
3068 }
3069
3070 static int
3071 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3072 {
3073 struct bnad *bnad = netdev_priv(netdev);
3074 unsigned long flags;
3075
3076 if (!bnad->rx_info[0].rx)
3077 return 0;
3078
3079 mutex_lock(&bnad->conf_mutex);
3080
3081 spin_lock_irqsave(&bnad->bna_lock, flags);
3082 bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3083 set_bit(vid, bnad->active_vlans);
3084 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3085
3086 mutex_unlock(&bnad->conf_mutex);
3087
3088 return 0;
3089 }
3090
3091 static int
3092 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3093 {
3094 struct bnad *bnad = netdev_priv(netdev);
3095 unsigned long flags;
3096
3097 if (!bnad->rx_info[0].rx)
3098 return 0;
3099
3100 mutex_lock(&bnad->conf_mutex);
3101
3102 spin_lock_irqsave(&bnad->bna_lock, flags);
3103 clear_bit(vid, bnad->active_vlans);
3104 bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3105 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3106
3107 mutex_unlock(&bnad->conf_mutex);
3108
3109 return 0;
3110 }
3111
3112 #ifdef CONFIG_NET_POLL_CONTROLLER
3113 static void
3114 bnad_netpoll(struct net_device *netdev)
3115 {
3116 struct bnad *bnad = netdev_priv(netdev);
3117 struct bnad_rx_info *rx_info;
3118 struct bnad_rx_ctrl *rx_ctrl;
3119 u32 curr_mask;
3120 int i, j;
3121
3122 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3123 bna_intx_disable(&bnad->bna, curr_mask);
3124 bnad_isr(bnad->pcidev->irq, netdev);
3125 bna_intx_enable(&bnad->bna, curr_mask);
3126 } else {
3127 /*
3128 * Tx processing may happen in sending context, so no need
3129 * to explicitly process completions here
3130 */
3131
3132 /* Rx processing */
3133 for (i = 0; i < bnad->num_rx; i++) {
3134 rx_info = &bnad->rx_info[i];
3135 if (!rx_info->rx)
3136 continue;
3137 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3138 rx_ctrl = &rx_info->rx_ctrl[j];
3139 if (rx_ctrl->ccb)
3140 bnad_netif_rx_schedule_poll(bnad,
3141 rx_ctrl->ccb);
3142 }
3143 }
3144 }
3145 }
3146 #endif
3147
3148 static const struct net_device_ops bnad_netdev_ops = {
3149 .ndo_open = bnad_open,
3150 .ndo_stop = bnad_stop,
3151 .ndo_start_xmit = bnad_start_xmit,
3152 .ndo_get_stats64 = bnad_get_stats64,
3153 .ndo_set_rx_mode = bnad_set_rx_mode,
3154 .ndo_validate_addr = eth_validate_addr,
3155 .ndo_set_mac_address = bnad_set_mac_address,
3156 .ndo_change_mtu = bnad_change_mtu,
3157 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
3158 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
3159 #ifdef CONFIG_NET_POLL_CONTROLLER
3160 .ndo_poll_controller = bnad_netpoll
3161 #endif
3162 };
3163
3164 static void
3165 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3166 {
3167 struct net_device *netdev = bnad->netdev;
3168
3169 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3170 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3171 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX;
3172
3173 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3174 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3175 NETIF_F_TSO | NETIF_F_TSO6;
3176
3177 netdev->features |= netdev->hw_features |
3178 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
3179
3180 if (using_dac)
3181 netdev->features |= NETIF_F_HIGHDMA;
3182
3183 netdev->mem_start = bnad->mmio_start;
3184 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3185
3186 netdev->netdev_ops = &bnad_netdev_ops;
3187 bnad_set_ethtool_ops(netdev);
3188 }
3189
3190 /*
3191 * 1. Initialize the bnad structure
3192 * 2. Setup netdev pointer in pci_dev
3193 * 3. Initialize no. of TxQ & CQs & MSIX vectors
3194 * 4. Initialize work queue.
3195 */
3196 static int
3197 bnad_init(struct bnad *bnad,
3198 struct pci_dev *pdev, struct net_device *netdev)
3199 {
3200 unsigned long flags;
3201
3202 SET_NETDEV_DEV(netdev, &pdev->dev);
3203 pci_set_drvdata(pdev, netdev);
3204
3205 bnad->netdev = netdev;
3206 bnad->pcidev = pdev;
3207 bnad->mmio_start = pci_resource_start(pdev, 0);
3208 bnad->mmio_len = pci_resource_len(pdev, 0);
3209 bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3210 if (!bnad->bar0) {
3211 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3212 pci_set_drvdata(pdev, NULL);
3213 return -ENOMEM;
3214 }
3215 pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3216 (unsigned long long) bnad->mmio_len);
3217
3218 spin_lock_irqsave(&bnad->bna_lock, flags);
3219 if (!bnad_msix_disable)
3220 bnad->cfg_flags = BNAD_CF_MSIX;
3221
3222 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3223
3224 bnad_q_num_init(bnad);
3225 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3226
3227 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3228 (bnad->num_rx * bnad->num_rxp_per_rx) +
3229 BNAD_MAILBOX_MSIX_VECTORS;
3230
3231 bnad->txq_depth = BNAD_TXQ_DEPTH;
3232 bnad->rxq_depth = BNAD_RXQ_DEPTH;
3233
3234 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3235 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3236
3237 sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3238 bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3239 if (!bnad->work_q) {
3240 iounmap(bnad->bar0);
3241 return -ENOMEM;
3242 }
3243
3244 return 0;
3245 }
3246
3247 /*
3248 * Must be called after bnad_pci_uninit()
3249 * so that iounmap() and pci_set_drvdata(NULL)
3250 * happens only after PCI uninitialization.
3251 */
3252 static void
3253 bnad_uninit(struct bnad *bnad)
3254 {
3255 if (bnad->work_q) {
3256 flush_workqueue(bnad->work_q);
3257 destroy_workqueue(bnad->work_q);
3258 bnad->work_q = NULL;
3259 }
3260
3261 if (bnad->bar0)
3262 iounmap(bnad->bar0);
3263 pci_set_drvdata(bnad->pcidev, NULL);
3264 }
3265
3266 /*
3267 * Initialize locks
3268 a) Per ioceth mutes used for serializing configuration
3269 changes from OS interface
3270 b) spin lock used to protect bna state machine
3271 */
3272 static void
3273 bnad_lock_init(struct bnad *bnad)
3274 {
3275 spin_lock_init(&bnad->bna_lock);
3276 mutex_init(&bnad->conf_mutex);
3277 mutex_init(&bnad_list_mutex);
3278 }
3279
3280 static void
3281 bnad_lock_uninit(struct bnad *bnad)
3282 {
3283 mutex_destroy(&bnad->conf_mutex);
3284 mutex_destroy(&bnad_list_mutex);
3285 }
3286
3287 /* PCI Initialization */
3288 static int
3289 bnad_pci_init(struct bnad *bnad,
3290 struct pci_dev *pdev, bool *using_dac)
3291 {
3292 int err;
3293
3294 err = pci_enable_device(pdev);
3295 if (err)
3296 return err;
3297 err = pci_request_regions(pdev, BNAD_NAME);
3298 if (err)
3299 goto disable_device;
3300 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3301 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3302 *using_dac = true;
3303 } else {
3304 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3305 if (err) {
3306 err = dma_set_coherent_mask(&pdev->dev,
3307 DMA_BIT_MASK(32));
3308 if (err)
3309 goto release_regions;
3310 }
3311 *using_dac = false;
3312 }
3313 pci_set_master(pdev);
3314 return 0;
3315
3316 release_regions:
3317 pci_release_regions(pdev);
3318 disable_device:
3319 pci_disable_device(pdev);
3320
3321 return err;
3322 }
3323
3324 static void
3325 bnad_pci_uninit(struct pci_dev *pdev)
3326 {
3327 pci_release_regions(pdev);
3328 pci_disable_device(pdev);
3329 }
3330
3331 static int
3332 bnad_pci_probe(struct pci_dev *pdev,
3333 const struct pci_device_id *pcidev_id)
3334 {
3335 bool using_dac;
3336 int err;
3337 struct bnad *bnad;
3338 struct bna *bna;
3339 struct net_device *netdev;
3340 struct bfa_pcidev pcidev_info;
3341 unsigned long flags;
3342
3343 pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3344 pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3345
3346 mutex_lock(&bnad_fwimg_mutex);
3347 if (!cna_get_firmware_buf(pdev)) {
3348 mutex_unlock(&bnad_fwimg_mutex);
3349 pr_warn("Failed to load Firmware Image!\n");
3350 return -ENODEV;
3351 }
3352 mutex_unlock(&bnad_fwimg_mutex);
3353
3354 /*
3355 * Allocates sizeof(struct net_device + struct bnad)
3356 * bnad = netdev->priv
3357 */
3358 netdev = alloc_etherdev(sizeof(struct bnad));
3359 if (!netdev) {
3360 err = -ENOMEM;
3361 return err;
3362 }
3363 bnad = netdev_priv(netdev);
3364 bnad_lock_init(bnad);
3365 bnad_add_to_list(bnad);
3366
3367 mutex_lock(&bnad->conf_mutex);
3368 /*
3369 * PCI initialization
3370 * Output : using_dac = 1 for 64 bit DMA
3371 * = 0 for 32 bit DMA
3372 */
3373 using_dac = false;
3374 err = bnad_pci_init(bnad, pdev, &using_dac);
3375 if (err)
3376 goto unlock_mutex;
3377
3378 /*
3379 * Initialize bnad structure
3380 * Setup relation between pci_dev & netdev
3381 */
3382 err = bnad_init(bnad, pdev, netdev);
3383 if (err)
3384 goto pci_uninit;
3385
3386 /* Initialize netdev structure, set up ethtool ops */
3387 bnad_netdev_init(bnad, using_dac);
3388
3389 /* Set link to down state */
3390 netif_carrier_off(netdev);
3391
3392 /* Setup the debugfs node for this bfad */
3393 if (bna_debugfs_enable)
3394 bnad_debugfs_init(bnad);
3395
3396 /* Get resource requirement form bna */
3397 spin_lock_irqsave(&bnad->bna_lock, flags);
3398 bna_res_req(&bnad->res_info[0]);
3399 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3400
3401 /* Allocate resources from bna */
3402 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3403 if (err)
3404 goto drv_uninit;
3405
3406 bna = &bnad->bna;
3407
3408 /* Setup pcidev_info for bna_init() */
3409 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3410 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3411 pcidev_info.device_id = bnad->pcidev->device;
3412 pcidev_info.pci_bar_kva = bnad->bar0;
3413
3414 spin_lock_irqsave(&bnad->bna_lock, flags);
3415 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3416 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3417
3418 bnad->stats.bna_stats = &bna->stats;
3419
3420 bnad_enable_msix(bnad);
3421 err = bnad_mbox_irq_alloc(bnad);
3422 if (err)
3423 goto res_free;
3424
3425 /* Set up timers */
3426 setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3427 ((unsigned long)bnad));
3428 setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3429 ((unsigned long)bnad));
3430 setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3431 ((unsigned long)bnad));
3432 setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3433 ((unsigned long)bnad));
3434
3435 /* Now start the timer before calling IOC */
3436 mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
3437 jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3438
3439 /*
3440 * Start the chip
3441 * If the call back comes with error, we bail out.
3442 * This is a catastrophic error.
3443 */
3444 err = bnad_ioceth_enable(bnad);
3445 if (err) {
3446 pr_err("BNA: Initialization failed err=%d\n",
3447 err);
3448 goto probe_success;
3449 }
3450
3451 spin_lock_irqsave(&bnad->bna_lock, flags);
3452 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3453 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3454 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3455 bna_attr(bna)->num_rxp - 1);
3456 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3457 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3458 err = -EIO;
3459 }
3460 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3461 if (err)
3462 goto disable_ioceth;
3463
3464 spin_lock_irqsave(&bnad->bna_lock, flags);
3465 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3466 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3467
3468 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3469 if (err) {
3470 err = -EIO;
3471 goto disable_ioceth;
3472 }
3473
3474 spin_lock_irqsave(&bnad->bna_lock, flags);
3475 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3476 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3477
3478 /* Get the burnt-in mac */
3479 spin_lock_irqsave(&bnad->bna_lock, flags);
3480 bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3481 bnad_set_netdev_perm_addr(bnad);
3482 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3483
3484 mutex_unlock(&bnad->conf_mutex);
3485
3486 /* Finally, reguister with net_device layer */
3487 err = register_netdev(netdev);
3488 if (err) {
3489 pr_err("BNA : Registering with netdev failed\n");
3490 goto probe_uninit;
3491 }
3492 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3493
3494 return 0;
3495
3496 probe_success:
3497 mutex_unlock(&bnad->conf_mutex);
3498 return 0;
3499
3500 probe_uninit:
3501 mutex_lock(&bnad->conf_mutex);
3502 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3503 disable_ioceth:
3504 bnad_ioceth_disable(bnad);
3505 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3506 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3507 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3508 spin_lock_irqsave(&bnad->bna_lock, flags);
3509 bna_uninit(bna);
3510 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3511 bnad_mbox_irq_free(bnad);
3512 bnad_disable_msix(bnad);
3513 res_free:
3514 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3515 drv_uninit:
3516 /* Remove the debugfs node for this bnad */
3517 kfree(bnad->regdata);
3518 bnad_debugfs_uninit(bnad);
3519 bnad_uninit(bnad);
3520 pci_uninit:
3521 bnad_pci_uninit(pdev);
3522 unlock_mutex:
3523 mutex_unlock(&bnad->conf_mutex);
3524 bnad_remove_from_list(bnad);
3525 bnad_lock_uninit(bnad);
3526 free_netdev(netdev);
3527 return err;
3528 }
3529
3530 static void
3531 bnad_pci_remove(struct pci_dev *pdev)
3532 {
3533 struct net_device *netdev = pci_get_drvdata(pdev);
3534 struct bnad *bnad;
3535 struct bna *bna;
3536 unsigned long flags;
3537
3538 if (!netdev)
3539 return;
3540
3541 pr_info("%s bnad_pci_remove\n", netdev->name);
3542 bnad = netdev_priv(netdev);
3543 bna = &bnad->bna;
3544
3545 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3546 unregister_netdev(netdev);
3547
3548 mutex_lock(&bnad->conf_mutex);
3549 bnad_ioceth_disable(bnad);
3550 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3551 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3552 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3553 spin_lock_irqsave(&bnad->bna_lock, flags);
3554 bna_uninit(bna);
3555 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3556
3557 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3558 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3559 bnad_mbox_irq_free(bnad);
3560 bnad_disable_msix(bnad);
3561 bnad_pci_uninit(pdev);
3562 mutex_unlock(&bnad->conf_mutex);
3563 bnad_remove_from_list(bnad);
3564 bnad_lock_uninit(bnad);
3565 /* Remove the debugfs node for this bnad */
3566 kfree(bnad->regdata);
3567 bnad_debugfs_uninit(bnad);
3568 bnad_uninit(bnad);
3569 free_netdev(netdev);
3570 }
3571
3572 static DEFINE_PCI_DEVICE_TABLE(bnad_pci_id_table) = {
3573 {
3574 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3575 PCI_DEVICE_ID_BROCADE_CT),
3576 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3577 .class_mask = 0xffff00
3578 },
3579 {
3580 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3581 BFA_PCI_DEVICE_ID_CT2),
3582 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3583 .class_mask = 0xffff00
3584 },
3585 {0, },
3586 };
3587
3588 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3589
3590 static struct pci_driver bnad_pci_driver = {
3591 .name = BNAD_NAME,
3592 .id_table = bnad_pci_id_table,
3593 .probe = bnad_pci_probe,
3594 .remove = bnad_pci_remove,
3595 };
3596
3597 static int __init
3598 bnad_module_init(void)
3599 {
3600 int err;
3601
3602 pr_info("Brocade 10G Ethernet driver - version: %s\n",
3603 BNAD_VERSION);
3604
3605 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3606
3607 err = pci_register_driver(&bnad_pci_driver);
3608 if (err < 0) {
3609 pr_err("bna : PCI registration failed in module init "
3610 "(%d)\n", err);
3611 return err;
3612 }
3613
3614 return 0;
3615 }
3616
3617 static void __exit
3618 bnad_module_exit(void)
3619 {
3620 pci_unregister_driver(&bnad_pci_driver);
3621 release_firmware(bfi_fw);
3622 }
3623
3624 module_init(bnad_module_init);
3625 module_exit(bnad_module_exit);
3626
3627 MODULE_AUTHOR("Brocade");
3628 MODULE_LICENSE("GPL");
3629 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3630 MODULE_VERSION(BNAD_VERSION);
3631 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3632 MODULE_FIRMWARE(CNA_FW_FILE_CT2);