Merge tag 'iommu-updates-v3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2012 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION \
69 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
70 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
71 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
72 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77 #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
78
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT (5*HZ)
81
82 static char version[] =
83 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88 "BCM57710/57711/57711E/"
89 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90 "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96
97
98 int num_queues;
99 module_param(num_queues, int, 0);
100 MODULE_PARM_DESC(num_queues,
101 " Set number of queues (default is as a number of CPUs)");
102
103 static int disable_tpa;
104 module_param(disable_tpa, int, 0);
105 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
106
107 #define INT_MODE_INTx 1
108 #define INT_MODE_MSI 2
109 int int_mode;
110 module_param(int_mode, int, 0);
111 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
112 "(1 INT#x; 2 MSI)");
113
114 static int dropless_fc;
115 module_param(dropless_fc, int, 0);
116 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
117
118 static int mrrs = -1;
119 module_param(mrrs, int, 0);
120 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
121
122 static int debug;
123 module_param(debug, int, 0);
124 MODULE_PARM_DESC(debug, " Default debug msglevel");
125
126
127
128 struct workqueue_struct *bnx2x_wq;
129
130 enum bnx2x_board_type {
131 BCM57710 = 0,
132 BCM57711,
133 BCM57711E,
134 BCM57712,
135 BCM57712_MF,
136 BCM57800,
137 BCM57800_MF,
138 BCM57810,
139 BCM57810_MF,
140 BCM57840_O,
141 BCM57840_4_10,
142 BCM57840_2_20,
143 BCM57840_MFO,
144 BCM57840_MF,
145 BCM57811,
146 BCM57811_MF
147 };
148
149 /* indexed by board_type, above */
150 static struct {
151 char *name;
152 } board_info[] = {
153 { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
154 { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
155 { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
156 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
157 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
158 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
159 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
160 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
161 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
162 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
163 { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
164 { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
165 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
166 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
167 { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet"},
168 { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function"},
169 };
170
171 #ifndef PCI_DEVICE_ID_NX2_57710
172 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57711
175 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57711E
178 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57712
181 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57712_MF
184 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57800
187 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57800_MF
190 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57810
193 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57810_MF
196 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57840_O
199 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
202 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
205 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
208 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57840_MF
211 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57811
214 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57811_MF
217 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
218 #endif
219 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
220 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
221 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
222 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
223 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
224 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
225 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
226 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
227 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
228 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
229 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
230 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
231 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
232 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
233 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
234 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
235 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
236 { 0 }
237 };
238
239 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
240
241 /* Global resources for unloading a previously loaded device */
242 #define BNX2X_PREV_WAIT_NEEDED 1
243 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
244 static LIST_HEAD(bnx2x_prev_list);
245 /****************************************************************************
246 * General service functions
247 ****************************************************************************/
248
249 static void __storm_memset_dma_mapping(struct bnx2x *bp,
250 u32 addr, dma_addr_t mapping)
251 {
252 REG_WR(bp, addr, U64_LO(mapping));
253 REG_WR(bp, addr + 4, U64_HI(mapping));
254 }
255
256 static void storm_memset_spq_addr(struct bnx2x *bp,
257 dma_addr_t mapping, u16 abs_fid)
258 {
259 u32 addr = XSEM_REG_FAST_MEMORY +
260 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
261
262 __storm_memset_dma_mapping(bp, addr, mapping);
263 }
264
265 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
266 u16 pf_id)
267 {
268 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
269 pf_id);
270 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
271 pf_id);
272 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
273 pf_id);
274 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
275 pf_id);
276 }
277
278 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
279 u8 enable)
280 {
281 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
282 enable);
283 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
284 enable);
285 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
286 enable);
287 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
288 enable);
289 }
290
291 static void storm_memset_eq_data(struct bnx2x *bp,
292 struct event_ring_data *eq_data,
293 u16 pfid)
294 {
295 size_t size = sizeof(struct event_ring_data);
296
297 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
298
299 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
300 }
301
302 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
303 u16 pfid)
304 {
305 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
306 REG_WR16(bp, addr, eq_prod);
307 }
308
309 /* used only at init
310 * locking is done by mcp
311 */
312 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
313 {
314 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
315 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
316 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
317 PCICFG_VENDOR_ID_OFFSET);
318 }
319
320 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
321 {
322 u32 val;
323
324 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
325 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
326 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
327 PCICFG_VENDOR_ID_OFFSET);
328
329 return val;
330 }
331
332 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
333 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
334 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
335 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
336 #define DMAE_DP_DST_NONE "dst_addr [none]"
337
338
339 /* copy command into DMAE command memory and set DMAE command go */
340 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
341 {
342 u32 cmd_offset;
343 int i;
344
345 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
346 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
347 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
348 }
349 REG_WR(bp, dmae_reg_go_c[idx], 1);
350 }
351
352 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
353 {
354 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
355 DMAE_CMD_C_ENABLE);
356 }
357
358 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
359 {
360 return opcode & ~DMAE_CMD_SRC_RESET;
361 }
362
363 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
364 bool with_comp, u8 comp_type)
365 {
366 u32 opcode = 0;
367
368 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
369 (dst_type << DMAE_COMMAND_DST_SHIFT));
370
371 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
372
373 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
374 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
375 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
376 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
377
378 #ifdef __BIG_ENDIAN
379 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
380 #else
381 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
382 #endif
383 if (with_comp)
384 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
385 return opcode;
386 }
387
388 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
389 struct dmae_command *dmae,
390 u8 src_type, u8 dst_type)
391 {
392 memset(dmae, 0, sizeof(struct dmae_command));
393
394 /* set the opcode */
395 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
396 true, DMAE_COMP_PCI);
397
398 /* fill in the completion parameters */
399 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
400 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
401 dmae->comp_val = DMAE_COMP_VAL;
402 }
403
404 /* issue a dmae command over the init-channel and wailt for completion */
405 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
406 struct dmae_command *dmae)
407 {
408 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
409 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
410 int rc = 0;
411
412 /*
413 * Lock the dmae channel. Disable BHs to prevent a dead-lock
414 * as long as this code is called both from syscall context and
415 * from ndo_set_rx_mode() flow that may be called from BH.
416 */
417 spin_lock_bh(&bp->dmae_lock);
418
419 /* reset completion */
420 *wb_comp = 0;
421
422 /* post the command on the channel used for initializations */
423 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
424
425 /* wait for completion */
426 udelay(5);
427 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
428
429 if (!cnt ||
430 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
431 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
432 BNX2X_ERR("DMAE timeout!\n");
433 rc = DMAE_TIMEOUT;
434 goto unlock;
435 }
436 cnt--;
437 udelay(50);
438 }
439 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
440 BNX2X_ERR("DMAE PCI error!\n");
441 rc = DMAE_PCI_ERROR;
442 }
443
444 unlock:
445 spin_unlock_bh(&bp->dmae_lock);
446 return rc;
447 }
448
449 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
450 u32 len32)
451 {
452 struct dmae_command dmae;
453
454 if (!bp->dmae_ready) {
455 u32 *data = bnx2x_sp(bp, wb_data[0]);
456
457 if (CHIP_IS_E1(bp))
458 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
459 else
460 bnx2x_init_str_wr(bp, dst_addr, data, len32);
461 return;
462 }
463
464 /* set opcode and fixed command fields */
465 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
466
467 /* fill in addresses and len */
468 dmae.src_addr_lo = U64_LO(dma_addr);
469 dmae.src_addr_hi = U64_HI(dma_addr);
470 dmae.dst_addr_lo = dst_addr >> 2;
471 dmae.dst_addr_hi = 0;
472 dmae.len = len32;
473
474 /* issue the command and wait for completion */
475 bnx2x_issue_dmae_with_comp(bp, &dmae);
476 }
477
478 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
479 {
480 struct dmae_command dmae;
481
482 if (!bp->dmae_ready) {
483 u32 *data = bnx2x_sp(bp, wb_data[0]);
484 int i;
485
486 if (CHIP_IS_E1(bp))
487 for (i = 0; i < len32; i++)
488 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
489 else
490 for (i = 0; i < len32; i++)
491 data[i] = REG_RD(bp, src_addr + i*4);
492
493 return;
494 }
495
496 /* set opcode and fixed command fields */
497 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
498
499 /* fill in addresses and len */
500 dmae.src_addr_lo = src_addr >> 2;
501 dmae.src_addr_hi = 0;
502 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
503 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
504 dmae.len = len32;
505
506 /* issue the command and wait for completion */
507 bnx2x_issue_dmae_with_comp(bp, &dmae);
508 }
509
510 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
511 u32 addr, u32 len)
512 {
513 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
514 int offset = 0;
515
516 while (len > dmae_wr_max) {
517 bnx2x_write_dmae(bp, phys_addr + offset,
518 addr + offset, dmae_wr_max);
519 offset += dmae_wr_max * 4;
520 len -= dmae_wr_max;
521 }
522
523 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
524 }
525
526 static int bnx2x_mc_assert(struct bnx2x *bp)
527 {
528 char last_idx;
529 int i, rc = 0;
530 u32 row0, row1, row2, row3;
531
532 /* XSTORM */
533 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
534 XSTORM_ASSERT_LIST_INDEX_OFFSET);
535 if (last_idx)
536 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
537
538 /* print the asserts */
539 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
540
541 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
542 XSTORM_ASSERT_LIST_OFFSET(i));
543 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
544 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
545 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
546 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
547 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
548 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
549
550 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
551 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
552 i, row3, row2, row1, row0);
553 rc++;
554 } else {
555 break;
556 }
557 }
558
559 /* TSTORM */
560 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
561 TSTORM_ASSERT_LIST_INDEX_OFFSET);
562 if (last_idx)
563 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
564
565 /* print the asserts */
566 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
567
568 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
569 TSTORM_ASSERT_LIST_OFFSET(i));
570 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
571 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
572 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
573 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
574 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
575 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
576
577 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
578 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
579 i, row3, row2, row1, row0);
580 rc++;
581 } else {
582 break;
583 }
584 }
585
586 /* CSTORM */
587 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
588 CSTORM_ASSERT_LIST_INDEX_OFFSET);
589 if (last_idx)
590 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
591
592 /* print the asserts */
593 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
594
595 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
596 CSTORM_ASSERT_LIST_OFFSET(i));
597 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
598 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
599 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
600 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
601 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
602 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
603
604 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
605 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
606 i, row3, row2, row1, row0);
607 rc++;
608 } else {
609 break;
610 }
611 }
612
613 /* USTORM */
614 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
615 USTORM_ASSERT_LIST_INDEX_OFFSET);
616 if (last_idx)
617 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
618
619 /* print the asserts */
620 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
621
622 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
623 USTORM_ASSERT_LIST_OFFSET(i));
624 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
625 USTORM_ASSERT_LIST_OFFSET(i) + 4);
626 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
627 USTORM_ASSERT_LIST_OFFSET(i) + 8);
628 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
629 USTORM_ASSERT_LIST_OFFSET(i) + 12);
630
631 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
632 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
633 i, row3, row2, row1, row0);
634 rc++;
635 } else {
636 break;
637 }
638 }
639
640 return rc;
641 }
642
643 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
644 {
645 u32 addr, val;
646 u32 mark, offset;
647 __be32 data[9];
648 int word;
649 u32 trace_shmem_base;
650 if (BP_NOMCP(bp)) {
651 BNX2X_ERR("NO MCP - can not dump\n");
652 return;
653 }
654 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
655 (bp->common.bc_ver & 0xff0000) >> 16,
656 (bp->common.bc_ver & 0xff00) >> 8,
657 (bp->common.bc_ver & 0xff));
658
659 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
660 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
661 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
662
663 if (BP_PATH(bp) == 0)
664 trace_shmem_base = bp->common.shmem_base;
665 else
666 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
667 addr = trace_shmem_base - 0x800;
668
669 /* validate TRCB signature */
670 mark = REG_RD(bp, addr);
671 if (mark != MFW_TRACE_SIGNATURE) {
672 BNX2X_ERR("Trace buffer signature is missing.");
673 return ;
674 }
675
676 /* read cyclic buffer pointer */
677 addr += 4;
678 mark = REG_RD(bp, addr);
679 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
680 + ((mark + 0x3) & ~0x3) - 0x08000000;
681 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
682
683 printk("%s", lvl);
684 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
685 for (word = 0; word < 8; word++)
686 data[word] = htonl(REG_RD(bp, offset + 4*word));
687 data[8] = 0x0;
688 pr_cont("%s", (char *)data);
689 }
690 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
691 for (word = 0; word < 8; word++)
692 data[word] = htonl(REG_RD(bp, offset + 4*word));
693 data[8] = 0x0;
694 pr_cont("%s", (char *)data);
695 }
696 printk("%s" "end of fw dump\n", lvl);
697 }
698
699 static void bnx2x_fw_dump(struct bnx2x *bp)
700 {
701 bnx2x_fw_dump_lvl(bp, KERN_ERR);
702 }
703
704 void bnx2x_panic_dump(struct bnx2x *bp)
705 {
706 int i;
707 u16 j;
708 struct hc_sp_status_block_data sp_sb_data;
709 int func = BP_FUNC(bp);
710 #ifdef BNX2X_STOP_ON_ERROR
711 u16 start = 0, end = 0;
712 u8 cos;
713 #endif
714
715 bp->stats_state = STATS_STATE_DISABLED;
716 bp->eth_stats.unrecoverable_error++;
717 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
718
719 BNX2X_ERR("begin crash dump -----------------\n");
720
721 /* Indices */
722 /* Common */
723 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
724 bp->def_idx, bp->def_att_idx, bp->attn_state,
725 bp->spq_prod_idx, bp->stats_counter);
726 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
727 bp->def_status_blk->atten_status_block.attn_bits,
728 bp->def_status_blk->atten_status_block.attn_bits_ack,
729 bp->def_status_blk->atten_status_block.status_block_id,
730 bp->def_status_blk->atten_status_block.attn_bits_index);
731 BNX2X_ERR(" def (");
732 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
733 pr_cont("0x%x%s",
734 bp->def_status_blk->sp_sb.index_values[i],
735 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
736
737 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
738 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
739 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
740 i*sizeof(u32));
741
742 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
743 sp_sb_data.igu_sb_id,
744 sp_sb_data.igu_seg_id,
745 sp_sb_data.p_func.pf_id,
746 sp_sb_data.p_func.vnic_id,
747 sp_sb_data.p_func.vf_id,
748 sp_sb_data.p_func.vf_valid,
749 sp_sb_data.state);
750
751
752 for_each_eth_queue(bp, i) {
753 struct bnx2x_fastpath *fp = &bp->fp[i];
754 int loop;
755 struct hc_status_block_data_e2 sb_data_e2;
756 struct hc_status_block_data_e1x sb_data_e1x;
757 struct hc_status_block_sm *hc_sm_p =
758 CHIP_IS_E1x(bp) ?
759 sb_data_e1x.common.state_machine :
760 sb_data_e2.common.state_machine;
761 struct hc_index_data *hc_index_p =
762 CHIP_IS_E1x(bp) ?
763 sb_data_e1x.index_data :
764 sb_data_e2.index_data;
765 u8 data_size, cos;
766 u32 *sb_data_p;
767 struct bnx2x_fp_txdata txdata;
768
769 /* Rx */
770 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
771 i, fp->rx_bd_prod, fp->rx_bd_cons,
772 fp->rx_comp_prod,
773 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
774 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
775 fp->rx_sge_prod, fp->last_max_sge,
776 le16_to_cpu(fp->fp_hc_idx));
777
778 /* Tx */
779 for_each_cos_in_tx_queue(fp, cos)
780 {
781 txdata = *fp->txdata_ptr[cos];
782 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
783 i, txdata.tx_pkt_prod,
784 txdata.tx_pkt_cons, txdata.tx_bd_prod,
785 txdata.tx_bd_cons,
786 le16_to_cpu(*txdata.tx_cons_sb));
787 }
788
789 loop = CHIP_IS_E1x(bp) ?
790 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
791
792 /* host sb data */
793
794 if (IS_FCOE_FP(fp))
795 continue;
796
797 BNX2X_ERR(" run indexes (");
798 for (j = 0; j < HC_SB_MAX_SM; j++)
799 pr_cont("0x%x%s",
800 fp->sb_running_index[j],
801 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
802
803 BNX2X_ERR(" indexes (");
804 for (j = 0; j < loop; j++)
805 pr_cont("0x%x%s",
806 fp->sb_index_values[j],
807 (j == loop - 1) ? ")" : " ");
808 /* fw sb data */
809 data_size = CHIP_IS_E1x(bp) ?
810 sizeof(struct hc_status_block_data_e1x) :
811 sizeof(struct hc_status_block_data_e2);
812 data_size /= sizeof(u32);
813 sb_data_p = CHIP_IS_E1x(bp) ?
814 (u32 *)&sb_data_e1x :
815 (u32 *)&sb_data_e2;
816 /* copy sb data in here */
817 for (j = 0; j < data_size; j++)
818 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
819 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
820 j * sizeof(u32));
821
822 if (!CHIP_IS_E1x(bp)) {
823 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
824 sb_data_e2.common.p_func.pf_id,
825 sb_data_e2.common.p_func.vf_id,
826 sb_data_e2.common.p_func.vf_valid,
827 sb_data_e2.common.p_func.vnic_id,
828 sb_data_e2.common.same_igu_sb_1b,
829 sb_data_e2.common.state);
830 } else {
831 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
832 sb_data_e1x.common.p_func.pf_id,
833 sb_data_e1x.common.p_func.vf_id,
834 sb_data_e1x.common.p_func.vf_valid,
835 sb_data_e1x.common.p_func.vnic_id,
836 sb_data_e1x.common.same_igu_sb_1b,
837 sb_data_e1x.common.state);
838 }
839
840 /* SB_SMs data */
841 for (j = 0; j < HC_SB_MAX_SM; j++) {
842 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
843 j, hc_sm_p[j].__flags,
844 hc_sm_p[j].igu_sb_id,
845 hc_sm_p[j].igu_seg_id,
846 hc_sm_p[j].time_to_expire,
847 hc_sm_p[j].timer_value);
848 }
849
850 /* Indecies data */
851 for (j = 0; j < loop; j++) {
852 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
853 hc_index_p[j].flags,
854 hc_index_p[j].timeout);
855 }
856 }
857
858 #ifdef BNX2X_STOP_ON_ERROR
859 /* Rings */
860 /* Rx */
861 for_each_valid_rx_queue(bp, i) {
862 struct bnx2x_fastpath *fp = &bp->fp[i];
863
864 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
865 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
866 for (j = start; j != end; j = RX_BD(j + 1)) {
867 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
868 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
869
870 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
871 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
872 }
873
874 start = RX_SGE(fp->rx_sge_prod);
875 end = RX_SGE(fp->last_max_sge);
876 for (j = start; j != end; j = RX_SGE(j + 1)) {
877 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
878 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
879
880 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
881 i, j, rx_sge[1], rx_sge[0], sw_page->page);
882 }
883
884 start = RCQ_BD(fp->rx_comp_cons - 10);
885 end = RCQ_BD(fp->rx_comp_cons + 503);
886 for (j = start; j != end; j = RCQ_BD(j + 1)) {
887 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
888
889 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
890 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
891 }
892 }
893
894 /* Tx */
895 for_each_valid_tx_queue(bp, i) {
896 struct bnx2x_fastpath *fp = &bp->fp[i];
897 for_each_cos_in_tx_queue(fp, cos) {
898 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
899
900 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
901 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
902 for (j = start; j != end; j = TX_BD(j + 1)) {
903 struct sw_tx_bd *sw_bd =
904 &txdata->tx_buf_ring[j];
905
906 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
907 i, cos, j, sw_bd->skb,
908 sw_bd->first_bd);
909 }
910
911 start = TX_BD(txdata->tx_bd_cons - 10);
912 end = TX_BD(txdata->tx_bd_cons + 254);
913 for (j = start; j != end; j = TX_BD(j + 1)) {
914 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
915
916 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
917 i, cos, j, tx_bd[0], tx_bd[1],
918 tx_bd[2], tx_bd[3]);
919 }
920 }
921 }
922 #endif
923 bnx2x_fw_dump(bp);
924 bnx2x_mc_assert(bp);
925 BNX2X_ERR("end crash dump -----------------\n");
926 }
927
928 /*
929 * FLR Support for E2
930 *
931 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
932 * initialization.
933 */
934 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
935 #define FLR_WAIT_INTERVAL 50 /* usec */
936 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
937
938 struct pbf_pN_buf_regs {
939 int pN;
940 u32 init_crd;
941 u32 crd;
942 u32 crd_freed;
943 };
944
945 struct pbf_pN_cmd_regs {
946 int pN;
947 u32 lines_occup;
948 u32 lines_freed;
949 };
950
951 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
952 struct pbf_pN_buf_regs *regs,
953 u32 poll_count)
954 {
955 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
956 u32 cur_cnt = poll_count;
957
958 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
959 crd = crd_start = REG_RD(bp, regs->crd);
960 init_crd = REG_RD(bp, regs->init_crd);
961
962 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
963 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
964 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
965
966 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
967 (init_crd - crd_start))) {
968 if (cur_cnt--) {
969 udelay(FLR_WAIT_INTERVAL);
970 crd = REG_RD(bp, regs->crd);
971 crd_freed = REG_RD(bp, regs->crd_freed);
972 } else {
973 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
974 regs->pN);
975 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
976 regs->pN, crd);
977 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
978 regs->pN, crd_freed);
979 break;
980 }
981 }
982 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
983 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
984 }
985
986 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
987 struct pbf_pN_cmd_regs *regs,
988 u32 poll_count)
989 {
990 u32 occup, to_free, freed, freed_start;
991 u32 cur_cnt = poll_count;
992
993 occup = to_free = REG_RD(bp, regs->lines_occup);
994 freed = freed_start = REG_RD(bp, regs->lines_freed);
995
996 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
997 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
998
999 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1000 if (cur_cnt--) {
1001 udelay(FLR_WAIT_INTERVAL);
1002 occup = REG_RD(bp, regs->lines_occup);
1003 freed = REG_RD(bp, regs->lines_freed);
1004 } else {
1005 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1006 regs->pN);
1007 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1008 regs->pN, occup);
1009 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1010 regs->pN, freed);
1011 break;
1012 }
1013 }
1014 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1015 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1016 }
1017
1018 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1019 u32 expected, u32 poll_count)
1020 {
1021 u32 cur_cnt = poll_count;
1022 u32 val;
1023
1024 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1025 udelay(FLR_WAIT_INTERVAL);
1026
1027 return val;
1028 }
1029
1030 static int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1031 char *msg, u32 poll_cnt)
1032 {
1033 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1034 if (val != 0) {
1035 BNX2X_ERR("%s usage count=%d\n", msg, val);
1036 return 1;
1037 }
1038 return 0;
1039 }
1040
1041 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1042 {
1043 /* adjust polling timeout */
1044 if (CHIP_REV_IS_EMUL(bp))
1045 return FLR_POLL_CNT * 2000;
1046
1047 if (CHIP_REV_IS_FPGA(bp))
1048 return FLR_POLL_CNT * 120;
1049
1050 return FLR_POLL_CNT;
1051 }
1052
1053 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1054 {
1055 struct pbf_pN_cmd_regs cmd_regs[] = {
1056 {0, (CHIP_IS_E3B0(bp)) ?
1057 PBF_REG_TQ_OCCUPANCY_Q0 :
1058 PBF_REG_P0_TQ_OCCUPANCY,
1059 (CHIP_IS_E3B0(bp)) ?
1060 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1061 PBF_REG_P0_TQ_LINES_FREED_CNT},
1062 {1, (CHIP_IS_E3B0(bp)) ?
1063 PBF_REG_TQ_OCCUPANCY_Q1 :
1064 PBF_REG_P1_TQ_OCCUPANCY,
1065 (CHIP_IS_E3B0(bp)) ?
1066 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1067 PBF_REG_P1_TQ_LINES_FREED_CNT},
1068 {4, (CHIP_IS_E3B0(bp)) ?
1069 PBF_REG_TQ_OCCUPANCY_LB_Q :
1070 PBF_REG_P4_TQ_OCCUPANCY,
1071 (CHIP_IS_E3B0(bp)) ?
1072 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1073 PBF_REG_P4_TQ_LINES_FREED_CNT}
1074 };
1075
1076 struct pbf_pN_buf_regs buf_regs[] = {
1077 {0, (CHIP_IS_E3B0(bp)) ?
1078 PBF_REG_INIT_CRD_Q0 :
1079 PBF_REG_P0_INIT_CRD ,
1080 (CHIP_IS_E3B0(bp)) ?
1081 PBF_REG_CREDIT_Q0 :
1082 PBF_REG_P0_CREDIT,
1083 (CHIP_IS_E3B0(bp)) ?
1084 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1085 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1086 {1, (CHIP_IS_E3B0(bp)) ?
1087 PBF_REG_INIT_CRD_Q1 :
1088 PBF_REG_P1_INIT_CRD,
1089 (CHIP_IS_E3B0(bp)) ?
1090 PBF_REG_CREDIT_Q1 :
1091 PBF_REG_P1_CREDIT,
1092 (CHIP_IS_E3B0(bp)) ?
1093 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1094 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1095 {4, (CHIP_IS_E3B0(bp)) ?
1096 PBF_REG_INIT_CRD_LB_Q :
1097 PBF_REG_P4_INIT_CRD,
1098 (CHIP_IS_E3B0(bp)) ?
1099 PBF_REG_CREDIT_LB_Q :
1100 PBF_REG_P4_CREDIT,
1101 (CHIP_IS_E3B0(bp)) ?
1102 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1103 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1104 };
1105
1106 int i;
1107
1108 /* Verify the command queues are flushed P0, P1, P4 */
1109 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1110 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1111
1112
1113 /* Verify the transmission buffers are flushed P0, P1, P4 */
1114 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1115 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1116 }
1117
1118 #define OP_GEN_PARAM(param) \
1119 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1120
1121 #define OP_GEN_TYPE(type) \
1122 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1123
1124 #define OP_GEN_AGG_VECT(index) \
1125 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1126
1127
1128 static int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1129 u32 poll_cnt)
1130 {
1131 struct sdm_op_gen op_gen = {0};
1132
1133 u32 comp_addr = BAR_CSTRORM_INTMEM +
1134 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1135 int ret = 0;
1136
1137 if (REG_RD(bp, comp_addr)) {
1138 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1139 return 1;
1140 }
1141
1142 op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1143 op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1144 op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1145 op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1146
1147 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1148 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1149
1150 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1151 BNX2X_ERR("FW final cleanup did not succeed\n");
1152 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1153 (REG_RD(bp, comp_addr)));
1154 ret = 1;
1155 }
1156 /* Zero completion for nxt FLR */
1157 REG_WR(bp, comp_addr, 0);
1158
1159 return ret;
1160 }
1161
1162 static u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1163 {
1164 u16 status;
1165
1166 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1167 return status & PCI_EXP_DEVSTA_TRPND;
1168 }
1169
1170 /* PF FLR specific routines
1171 */
1172 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1173 {
1174
1175 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1176 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1177 CFC_REG_NUM_LCIDS_INSIDE_PF,
1178 "CFC PF usage counter timed out",
1179 poll_cnt))
1180 return 1;
1181
1182
1183 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1184 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1185 DORQ_REG_PF_USAGE_CNT,
1186 "DQ PF usage counter timed out",
1187 poll_cnt))
1188 return 1;
1189
1190 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1191 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1192 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1193 "QM PF usage counter timed out",
1194 poll_cnt))
1195 return 1;
1196
1197 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1198 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1199 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1200 "Timers VNIC usage counter timed out",
1201 poll_cnt))
1202 return 1;
1203 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1204 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1205 "Timers NUM_SCANS usage counter timed out",
1206 poll_cnt))
1207 return 1;
1208
1209 /* Wait DMAE PF usage counter to zero */
1210 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1211 dmae_reg_go_c[INIT_DMAE_C(bp)],
1212 "DMAE dommand register timed out",
1213 poll_cnt))
1214 return 1;
1215
1216 return 0;
1217 }
1218
1219 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1220 {
1221 u32 val;
1222
1223 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1224 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1225
1226 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1227 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1228
1229 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1230 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1231
1232 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1233 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1234
1235 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1236 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1237
1238 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1239 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1240
1241 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1242 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1243
1244 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1245 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1246 val);
1247 }
1248
1249 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1250 {
1251 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1252
1253 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1254
1255 /* Re-enable PF target read access */
1256 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1257
1258 /* Poll HW usage counters */
1259 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1260 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1261 return -EBUSY;
1262
1263 /* Zero the igu 'trailing edge' and 'leading edge' */
1264
1265 /* Send the FW cleanup command */
1266 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1267 return -EBUSY;
1268
1269 /* ATC cleanup */
1270
1271 /* Verify TX hw is flushed */
1272 bnx2x_tx_hw_flushed(bp, poll_cnt);
1273
1274 /* Wait 100ms (not adjusted according to platform) */
1275 msleep(100);
1276
1277 /* Verify no pending pci transactions */
1278 if (bnx2x_is_pcie_pending(bp->pdev))
1279 BNX2X_ERR("PCIE Transactions still pending\n");
1280
1281 /* Debug */
1282 bnx2x_hw_enable_status(bp);
1283
1284 /*
1285 * Master enable - Due to WB DMAE writes performed before this
1286 * register is re-initialized as part of the regular function init
1287 */
1288 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1289
1290 return 0;
1291 }
1292
1293 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1294 {
1295 int port = BP_PORT(bp);
1296 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1297 u32 val = REG_RD(bp, addr);
1298 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1299 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1300 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1301
1302 if (msix) {
1303 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1304 HC_CONFIG_0_REG_INT_LINE_EN_0);
1305 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1306 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1307 if (single_msix)
1308 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1309 } else if (msi) {
1310 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1311 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1312 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1313 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1314 } else {
1315 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1316 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1317 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1318 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1319
1320 if (!CHIP_IS_E1(bp)) {
1321 DP(NETIF_MSG_IFUP,
1322 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1323
1324 REG_WR(bp, addr, val);
1325
1326 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1327 }
1328 }
1329
1330 if (CHIP_IS_E1(bp))
1331 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1332
1333 DP(NETIF_MSG_IFUP,
1334 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1335 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1336
1337 REG_WR(bp, addr, val);
1338 /*
1339 * Ensure that HC_CONFIG is written before leading/trailing edge config
1340 */
1341 mmiowb();
1342 barrier();
1343
1344 if (!CHIP_IS_E1(bp)) {
1345 /* init leading/trailing edge */
1346 if (IS_MF(bp)) {
1347 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1348 if (bp->port.pmf)
1349 /* enable nig and gpio3 attention */
1350 val |= 0x1100;
1351 } else
1352 val = 0xffff;
1353
1354 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1355 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1356 }
1357
1358 /* Make sure that interrupts are indeed enabled from here on */
1359 mmiowb();
1360 }
1361
1362 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1363 {
1364 u32 val;
1365 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1366 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1367 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1368
1369 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1370
1371 if (msix) {
1372 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1373 IGU_PF_CONF_SINGLE_ISR_EN);
1374 val |= (IGU_PF_CONF_FUNC_EN |
1375 IGU_PF_CONF_MSI_MSIX_EN |
1376 IGU_PF_CONF_ATTN_BIT_EN);
1377
1378 if (single_msix)
1379 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1380 } else if (msi) {
1381 val &= ~IGU_PF_CONF_INT_LINE_EN;
1382 val |= (IGU_PF_CONF_FUNC_EN |
1383 IGU_PF_CONF_MSI_MSIX_EN |
1384 IGU_PF_CONF_ATTN_BIT_EN |
1385 IGU_PF_CONF_SINGLE_ISR_EN);
1386 } else {
1387 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1388 val |= (IGU_PF_CONF_FUNC_EN |
1389 IGU_PF_CONF_INT_LINE_EN |
1390 IGU_PF_CONF_ATTN_BIT_EN |
1391 IGU_PF_CONF_SINGLE_ISR_EN);
1392 }
1393
1394 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1395 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1396
1397 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1398
1399 if (val & IGU_PF_CONF_INT_LINE_EN)
1400 pci_intx(bp->pdev, true);
1401
1402 barrier();
1403
1404 /* init leading/trailing edge */
1405 if (IS_MF(bp)) {
1406 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1407 if (bp->port.pmf)
1408 /* enable nig and gpio3 attention */
1409 val |= 0x1100;
1410 } else
1411 val = 0xffff;
1412
1413 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1414 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1415
1416 /* Make sure that interrupts are indeed enabled from here on */
1417 mmiowb();
1418 }
1419
1420 void bnx2x_int_enable(struct bnx2x *bp)
1421 {
1422 if (bp->common.int_block == INT_BLOCK_HC)
1423 bnx2x_hc_int_enable(bp);
1424 else
1425 bnx2x_igu_int_enable(bp);
1426 }
1427
1428 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1429 {
1430 int port = BP_PORT(bp);
1431 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1432 u32 val = REG_RD(bp, addr);
1433
1434 /*
1435 * in E1 we must use only PCI configuration space to disable
1436 * MSI/MSIX capablility
1437 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1438 */
1439 if (CHIP_IS_E1(bp)) {
1440 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
1441 * Use mask register to prevent from HC sending interrupts
1442 * after we exit the function
1443 */
1444 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1445
1446 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1447 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1448 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1449 } else
1450 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1451 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1452 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1453 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1454
1455 DP(NETIF_MSG_IFDOWN,
1456 "write %x to HC %d (addr 0x%x)\n",
1457 val, port, addr);
1458
1459 /* flush all outstanding writes */
1460 mmiowb();
1461
1462 REG_WR(bp, addr, val);
1463 if (REG_RD(bp, addr) != val)
1464 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1465 }
1466
1467 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1468 {
1469 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1470
1471 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1472 IGU_PF_CONF_INT_LINE_EN |
1473 IGU_PF_CONF_ATTN_BIT_EN);
1474
1475 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1476
1477 /* flush all outstanding writes */
1478 mmiowb();
1479
1480 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1481 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1482 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1483 }
1484
1485 static void bnx2x_int_disable(struct bnx2x *bp)
1486 {
1487 if (bp->common.int_block == INT_BLOCK_HC)
1488 bnx2x_hc_int_disable(bp);
1489 else
1490 bnx2x_igu_int_disable(bp);
1491 }
1492
1493 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1494 {
1495 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1496 int i, offset;
1497
1498 if (disable_hw)
1499 /* prevent the HW from sending interrupts */
1500 bnx2x_int_disable(bp);
1501
1502 /* make sure all ISRs are done */
1503 if (msix) {
1504 synchronize_irq(bp->msix_table[0].vector);
1505 offset = 1;
1506 if (CNIC_SUPPORT(bp))
1507 offset++;
1508 for_each_eth_queue(bp, i)
1509 synchronize_irq(bp->msix_table[offset++].vector);
1510 } else
1511 synchronize_irq(bp->pdev->irq);
1512
1513 /* make sure sp_task is not running */
1514 cancel_delayed_work(&bp->sp_task);
1515 cancel_delayed_work(&bp->period_task);
1516 flush_workqueue(bnx2x_wq);
1517 }
1518
1519 /* fast path */
1520
1521 /*
1522 * General service functions
1523 */
1524
1525 /* Return true if succeeded to acquire the lock */
1526 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1527 {
1528 u32 lock_status;
1529 u32 resource_bit = (1 << resource);
1530 int func = BP_FUNC(bp);
1531 u32 hw_lock_control_reg;
1532
1533 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1534 "Trying to take a lock on resource %d\n", resource);
1535
1536 /* Validating that the resource is within range */
1537 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1538 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1539 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1540 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1541 return false;
1542 }
1543
1544 if (func <= 5)
1545 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1546 else
1547 hw_lock_control_reg =
1548 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1549
1550 /* Try to acquire the lock */
1551 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1552 lock_status = REG_RD(bp, hw_lock_control_reg);
1553 if (lock_status & resource_bit)
1554 return true;
1555
1556 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1557 "Failed to get a lock on resource %d\n", resource);
1558 return false;
1559 }
1560
1561 /**
1562 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1563 *
1564 * @bp: driver handle
1565 *
1566 * Returns the recovery leader resource id according to the engine this function
1567 * belongs to. Currently only only 2 engines is supported.
1568 */
1569 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1570 {
1571 if (BP_PATH(bp))
1572 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1573 else
1574 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1575 }
1576
1577 /**
1578 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1579 *
1580 * @bp: driver handle
1581 *
1582 * Tries to aquire a leader lock for current engine.
1583 */
1584 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1585 {
1586 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1587 }
1588
1589 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1590
1591
1592 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1593 {
1594 struct bnx2x *bp = fp->bp;
1595 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1596 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1597 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1598 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1599
1600 DP(BNX2X_MSG_SP,
1601 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1602 fp->index, cid, command, bp->state,
1603 rr_cqe->ramrod_cqe.ramrod_type);
1604
1605 switch (command) {
1606 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1607 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1608 drv_cmd = BNX2X_Q_CMD_UPDATE;
1609 break;
1610
1611 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1612 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1613 drv_cmd = BNX2X_Q_CMD_SETUP;
1614 break;
1615
1616 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1617 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1618 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1619 break;
1620
1621 case (RAMROD_CMD_ID_ETH_HALT):
1622 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1623 drv_cmd = BNX2X_Q_CMD_HALT;
1624 break;
1625
1626 case (RAMROD_CMD_ID_ETH_TERMINATE):
1627 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1628 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1629 break;
1630
1631 case (RAMROD_CMD_ID_ETH_EMPTY):
1632 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1633 drv_cmd = BNX2X_Q_CMD_EMPTY;
1634 break;
1635
1636 default:
1637 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1638 command, fp->index);
1639 return;
1640 }
1641
1642 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1643 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1644 /* q_obj->complete_cmd() failure means that this was
1645 * an unexpected completion.
1646 *
1647 * In this case we don't want to increase the bp->spq_left
1648 * because apparently we haven't sent this command the first
1649 * place.
1650 */
1651 #ifdef BNX2X_STOP_ON_ERROR
1652 bnx2x_panic();
1653 #else
1654 return;
1655 #endif
1656
1657 smp_mb__before_atomic_inc();
1658 atomic_inc(&bp->cq_spq_left);
1659 /* push the change in bp->spq_left and towards the memory */
1660 smp_mb__after_atomic_inc();
1661
1662 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1663
1664 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1665 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1666 /* if Q update ramrod is completed for last Q in AFEX vif set
1667 * flow, then ACK MCP at the end
1668 *
1669 * mark pending ACK to MCP bit.
1670 * prevent case that both bits are cleared.
1671 * At the end of load/unload driver checks that
1672 * sp_state is cleaerd, and this order prevents
1673 * races
1674 */
1675 smp_mb__before_clear_bit();
1676 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1677 wmb();
1678 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1679 smp_mb__after_clear_bit();
1680
1681 /* schedule workqueue to send ack to MCP */
1682 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1683 }
1684
1685 return;
1686 }
1687
1688 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1689 u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1690 {
1691 u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1692
1693 bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1694 start);
1695 }
1696
1697 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1698 {
1699 struct bnx2x *bp = netdev_priv(dev_instance);
1700 u16 status = bnx2x_ack_int(bp);
1701 u16 mask;
1702 int i;
1703 u8 cos;
1704
1705 /* Return here if interrupt is shared and it's not for us */
1706 if (unlikely(status == 0)) {
1707 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1708 return IRQ_NONE;
1709 }
1710 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1711
1712 #ifdef BNX2X_STOP_ON_ERROR
1713 if (unlikely(bp->panic))
1714 return IRQ_HANDLED;
1715 #endif
1716
1717 for_each_eth_queue(bp, i) {
1718 struct bnx2x_fastpath *fp = &bp->fp[i];
1719
1720 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1721 if (status & mask) {
1722 /* Handle Rx or Tx according to SB id */
1723 prefetch(fp->rx_cons_sb);
1724 for_each_cos_in_tx_queue(fp, cos)
1725 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1726 prefetch(&fp->sb_running_index[SM_RX_ID]);
1727 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1728 status &= ~mask;
1729 }
1730 }
1731
1732 if (CNIC_SUPPORT(bp)) {
1733 mask = 0x2;
1734 if (status & (mask | 0x1)) {
1735 struct cnic_ops *c_ops = NULL;
1736
1737 if (likely(bp->state == BNX2X_STATE_OPEN)) {
1738 rcu_read_lock();
1739 c_ops = rcu_dereference(bp->cnic_ops);
1740 if (c_ops)
1741 c_ops->cnic_handler(bp->cnic_data,
1742 NULL);
1743 rcu_read_unlock();
1744 }
1745
1746 status &= ~mask;
1747 }
1748 }
1749
1750 if (unlikely(status & 0x1)) {
1751 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1752
1753 status &= ~0x1;
1754 if (!status)
1755 return IRQ_HANDLED;
1756 }
1757
1758 if (unlikely(status))
1759 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1760 status);
1761
1762 return IRQ_HANDLED;
1763 }
1764
1765 /* Link */
1766
1767 /*
1768 * General service functions
1769 */
1770
1771 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1772 {
1773 u32 lock_status;
1774 u32 resource_bit = (1 << resource);
1775 int func = BP_FUNC(bp);
1776 u32 hw_lock_control_reg;
1777 int cnt;
1778
1779 /* Validating that the resource is within range */
1780 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1781 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1782 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1783 return -EINVAL;
1784 }
1785
1786 if (func <= 5) {
1787 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1788 } else {
1789 hw_lock_control_reg =
1790 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1791 }
1792
1793 /* Validating that the resource is not already taken */
1794 lock_status = REG_RD(bp, hw_lock_control_reg);
1795 if (lock_status & resource_bit) {
1796 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
1797 lock_status, resource_bit);
1798 return -EEXIST;
1799 }
1800
1801 /* Try for 5 second every 5ms */
1802 for (cnt = 0; cnt < 1000; cnt++) {
1803 /* Try to acquire the lock */
1804 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1805 lock_status = REG_RD(bp, hw_lock_control_reg);
1806 if (lock_status & resource_bit)
1807 return 0;
1808
1809 msleep(5);
1810 }
1811 BNX2X_ERR("Timeout\n");
1812 return -EAGAIN;
1813 }
1814
1815 int bnx2x_release_leader_lock(struct bnx2x *bp)
1816 {
1817 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1818 }
1819
1820 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1821 {
1822 u32 lock_status;
1823 u32 resource_bit = (1 << resource);
1824 int func = BP_FUNC(bp);
1825 u32 hw_lock_control_reg;
1826
1827 /* Validating that the resource is within range */
1828 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1829 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1830 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1831 return -EINVAL;
1832 }
1833
1834 if (func <= 5) {
1835 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1836 } else {
1837 hw_lock_control_reg =
1838 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1839 }
1840
1841 /* Validating that the resource is currently taken */
1842 lock_status = REG_RD(bp, hw_lock_control_reg);
1843 if (!(lock_status & resource_bit)) {
1844 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1845 lock_status, resource_bit);
1846 return -EFAULT;
1847 }
1848
1849 REG_WR(bp, hw_lock_control_reg, resource_bit);
1850 return 0;
1851 }
1852
1853
1854 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1855 {
1856 /* The GPIO should be swapped if swap register is set and active */
1857 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1858 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1859 int gpio_shift = gpio_num +
1860 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1861 u32 gpio_mask = (1 << gpio_shift);
1862 u32 gpio_reg;
1863 int value;
1864
1865 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1866 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1867 return -EINVAL;
1868 }
1869
1870 /* read GPIO value */
1871 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1872
1873 /* get the requested pin value */
1874 if ((gpio_reg & gpio_mask) == gpio_mask)
1875 value = 1;
1876 else
1877 value = 0;
1878
1879 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
1880
1881 return value;
1882 }
1883
1884 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1885 {
1886 /* The GPIO should be swapped if swap register is set and active */
1887 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1888 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1889 int gpio_shift = gpio_num +
1890 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1891 u32 gpio_mask = (1 << gpio_shift);
1892 u32 gpio_reg;
1893
1894 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1895 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1896 return -EINVAL;
1897 }
1898
1899 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1900 /* read GPIO and mask except the float bits */
1901 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1902
1903 switch (mode) {
1904 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1905 DP(NETIF_MSG_LINK,
1906 "Set GPIO %d (shift %d) -> output low\n",
1907 gpio_num, gpio_shift);
1908 /* clear FLOAT and set CLR */
1909 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1910 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1911 break;
1912
1913 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1914 DP(NETIF_MSG_LINK,
1915 "Set GPIO %d (shift %d) -> output high\n",
1916 gpio_num, gpio_shift);
1917 /* clear FLOAT and set SET */
1918 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1919 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1920 break;
1921
1922 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1923 DP(NETIF_MSG_LINK,
1924 "Set GPIO %d (shift %d) -> input\n",
1925 gpio_num, gpio_shift);
1926 /* set FLOAT */
1927 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1928 break;
1929
1930 default:
1931 break;
1932 }
1933
1934 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1935 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1936
1937 return 0;
1938 }
1939
1940 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1941 {
1942 u32 gpio_reg = 0;
1943 int rc = 0;
1944
1945 /* Any port swapping should be handled by caller. */
1946
1947 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1948 /* read GPIO and mask except the float bits */
1949 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1950 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1951 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1952 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1953
1954 switch (mode) {
1955 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1956 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1957 /* set CLR */
1958 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1959 break;
1960
1961 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1962 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1963 /* set SET */
1964 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1965 break;
1966
1967 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1968 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
1969 /* set FLOAT */
1970 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1971 break;
1972
1973 default:
1974 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
1975 rc = -EINVAL;
1976 break;
1977 }
1978
1979 if (rc == 0)
1980 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1981
1982 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1983
1984 return rc;
1985 }
1986
1987 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1988 {
1989 /* The GPIO should be swapped if swap register is set and active */
1990 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1991 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1992 int gpio_shift = gpio_num +
1993 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1994 u32 gpio_mask = (1 << gpio_shift);
1995 u32 gpio_reg;
1996
1997 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1998 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1999 return -EINVAL;
2000 }
2001
2002 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2003 /* read GPIO int */
2004 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2005
2006 switch (mode) {
2007 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2008 DP(NETIF_MSG_LINK,
2009 "Clear GPIO INT %d (shift %d) -> output low\n",
2010 gpio_num, gpio_shift);
2011 /* clear SET and set CLR */
2012 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2013 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2014 break;
2015
2016 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2017 DP(NETIF_MSG_LINK,
2018 "Set GPIO INT %d (shift %d) -> output high\n",
2019 gpio_num, gpio_shift);
2020 /* clear CLR and set SET */
2021 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2022 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2023 break;
2024
2025 default:
2026 break;
2027 }
2028
2029 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2030 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2031
2032 return 0;
2033 }
2034
2035 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2036 {
2037 u32 spio_reg;
2038
2039 /* Only 2 SPIOs are configurable */
2040 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2041 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2042 return -EINVAL;
2043 }
2044
2045 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2046 /* read SPIO and mask except the float bits */
2047 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2048
2049 switch (mode) {
2050 case MISC_SPIO_OUTPUT_LOW:
2051 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2052 /* clear FLOAT and set CLR */
2053 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2054 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2055 break;
2056
2057 case MISC_SPIO_OUTPUT_HIGH:
2058 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2059 /* clear FLOAT and set SET */
2060 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2061 spio_reg |= (spio << MISC_SPIO_SET_POS);
2062 break;
2063
2064 case MISC_SPIO_INPUT_HI_Z:
2065 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2066 /* set FLOAT */
2067 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2068 break;
2069
2070 default:
2071 break;
2072 }
2073
2074 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2075 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2076
2077 return 0;
2078 }
2079
2080 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2081 {
2082 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2083 switch (bp->link_vars.ieee_fc &
2084 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2085 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2086 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2087 ADVERTISED_Pause);
2088 break;
2089
2090 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2091 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2092 ADVERTISED_Pause);
2093 break;
2094
2095 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2096 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2097 break;
2098
2099 default:
2100 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2101 ADVERTISED_Pause);
2102 break;
2103 }
2104 }
2105
2106 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2107 {
2108 /* Initialize link parameters structure variables
2109 * It is recommended to turn off RX FC for jumbo frames
2110 * for better performance
2111 */
2112 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2113 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2114 else
2115 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2116 }
2117
2118 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2119 {
2120 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2121 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2122
2123 if (!BP_NOMCP(bp)) {
2124 bnx2x_set_requested_fc(bp);
2125 bnx2x_acquire_phy_lock(bp);
2126
2127 if (load_mode == LOAD_DIAG) {
2128 struct link_params *lp = &bp->link_params;
2129 lp->loopback_mode = LOOPBACK_XGXS;
2130 /* do PHY loopback at 10G speed, if possible */
2131 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2132 if (lp->speed_cap_mask[cfx_idx] &
2133 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2134 lp->req_line_speed[cfx_idx] =
2135 SPEED_10000;
2136 else
2137 lp->req_line_speed[cfx_idx] =
2138 SPEED_1000;
2139 }
2140 }
2141
2142 if (load_mode == LOAD_LOOPBACK_EXT) {
2143 struct link_params *lp = &bp->link_params;
2144 lp->loopback_mode = LOOPBACK_EXT;
2145 }
2146
2147 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2148
2149 bnx2x_release_phy_lock(bp);
2150
2151 bnx2x_calc_fc_adv(bp);
2152
2153 if (bp->link_vars.link_up) {
2154 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2155 bnx2x_link_report(bp);
2156 }
2157 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2158 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2159 return rc;
2160 }
2161 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2162 return -EINVAL;
2163 }
2164
2165 void bnx2x_link_set(struct bnx2x *bp)
2166 {
2167 if (!BP_NOMCP(bp)) {
2168 bnx2x_acquire_phy_lock(bp);
2169 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2170 bnx2x_release_phy_lock(bp);
2171
2172 bnx2x_calc_fc_adv(bp);
2173 } else
2174 BNX2X_ERR("Bootcode is missing - can not set link\n");
2175 }
2176
2177 static void bnx2x__link_reset(struct bnx2x *bp)
2178 {
2179 if (!BP_NOMCP(bp)) {
2180 bnx2x_acquire_phy_lock(bp);
2181 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2182 bnx2x_release_phy_lock(bp);
2183 } else
2184 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2185 }
2186
2187 void bnx2x_force_link_reset(struct bnx2x *bp)
2188 {
2189 bnx2x_acquire_phy_lock(bp);
2190 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2191 bnx2x_release_phy_lock(bp);
2192 }
2193
2194 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2195 {
2196 u8 rc = 0;
2197
2198 if (!BP_NOMCP(bp)) {
2199 bnx2x_acquire_phy_lock(bp);
2200 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2201 is_serdes);
2202 bnx2x_release_phy_lock(bp);
2203 } else
2204 BNX2X_ERR("Bootcode is missing - can not test link\n");
2205
2206 return rc;
2207 }
2208
2209
2210 /* Calculates the sum of vn_min_rates.
2211 It's needed for further normalizing of the min_rates.
2212 Returns:
2213 sum of vn_min_rates.
2214 or
2215 0 - if all the min_rates are 0.
2216 In the later case fainess algorithm should be deactivated.
2217 If not all min_rates are zero then those that are zeroes will be set to 1.
2218 */
2219 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2220 struct cmng_init_input *input)
2221 {
2222 int all_zero = 1;
2223 int vn;
2224
2225 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2226 u32 vn_cfg = bp->mf_config[vn];
2227 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2228 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2229
2230 /* Skip hidden vns */
2231 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2232 vn_min_rate = 0;
2233 /* If min rate is zero - set it to 1 */
2234 else if (!vn_min_rate)
2235 vn_min_rate = DEF_MIN_RATE;
2236 else
2237 all_zero = 0;
2238
2239 input->vnic_min_rate[vn] = vn_min_rate;
2240 }
2241
2242 /* if ETS or all min rates are zeros - disable fairness */
2243 if (BNX2X_IS_ETS_ENABLED(bp)) {
2244 input->flags.cmng_enables &=
2245 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2246 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2247 } else if (all_zero) {
2248 input->flags.cmng_enables &=
2249 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2250 DP(NETIF_MSG_IFUP,
2251 "All MIN values are zeroes fairness will be disabled\n");
2252 } else
2253 input->flags.cmng_enables |=
2254 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2255 }
2256
2257 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2258 struct cmng_init_input *input)
2259 {
2260 u16 vn_max_rate;
2261 u32 vn_cfg = bp->mf_config[vn];
2262
2263 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2264 vn_max_rate = 0;
2265 else {
2266 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2267
2268 if (IS_MF_SI(bp)) {
2269 /* maxCfg in percents of linkspeed */
2270 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2271 } else /* SD modes */
2272 /* maxCfg is absolute in 100Mb units */
2273 vn_max_rate = maxCfg * 100;
2274 }
2275
2276 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2277
2278 input->vnic_max_rate[vn] = vn_max_rate;
2279 }
2280
2281
2282 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2283 {
2284 if (CHIP_REV_IS_SLOW(bp))
2285 return CMNG_FNS_NONE;
2286 if (IS_MF(bp))
2287 return CMNG_FNS_MINMAX;
2288
2289 return CMNG_FNS_NONE;
2290 }
2291
2292 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2293 {
2294 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2295
2296 if (BP_NOMCP(bp))
2297 return; /* what should be the default bvalue in this case */
2298
2299 /* For 2 port configuration the absolute function number formula
2300 * is:
2301 * abs_func = 2 * vn + BP_PORT + BP_PATH
2302 *
2303 * and there are 4 functions per port
2304 *
2305 * For 4 port configuration it is
2306 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2307 *
2308 * and there are 2 functions per port
2309 */
2310 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2311 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2312
2313 if (func >= E1H_FUNC_MAX)
2314 break;
2315
2316 bp->mf_config[vn] =
2317 MF_CFG_RD(bp, func_mf_config[func].config);
2318 }
2319 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2320 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2321 bp->flags |= MF_FUNC_DIS;
2322 } else {
2323 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2324 bp->flags &= ~MF_FUNC_DIS;
2325 }
2326 }
2327
2328 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2329 {
2330 struct cmng_init_input input;
2331 memset(&input, 0, sizeof(struct cmng_init_input));
2332
2333 input.port_rate = bp->link_vars.line_speed;
2334
2335 if (cmng_type == CMNG_FNS_MINMAX) {
2336 int vn;
2337
2338 /* read mf conf from shmem */
2339 if (read_cfg)
2340 bnx2x_read_mf_cfg(bp);
2341
2342 /* vn_weight_sum and enable fairness if not 0 */
2343 bnx2x_calc_vn_min(bp, &input);
2344
2345 /* calculate and set min-max rate for each vn */
2346 if (bp->port.pmf)
2347 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2348 bnx2x_calc_vn_max(bp, vn, &input);
2349
2350 /* always enable rate shaping and fairness */
2351 input.flags.cmng_enables |=
2352 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2353
2354 bnx2x_init_cmng(&input, &bp->cmng);
2355 return;
2356 }
2357
2358 /* rate shaping and fairness are disabled */
2359 DP(NETIF_MSG_IFUP,
2360 "rate shaping and fairness are disabled\n");
2361 }
2362
2363 static void storm_memset_cmng(struct bnx2x *bp,
2364 struct cmng_init *cmng,
2365 u8 port)
2366 {
2367 int vn;
2368 size_t size = sizeof(struct cmng_struct_per_port);
2369
2370 u32 addr = BAR_XSTRORM_INTMEM +
2371 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2372
2373 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2374
2375 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2376 int func = func_by_vn(bp, vn);
2377
2378 addr = BAR_XSTRORM_INTMEM +
2379 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2380 size = sizeof(struct rate_shaping_vars_per_vn);
2381 __storm_memset_struct(bp, addr, size,
2382 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2383
2384 addr = BAR_XSTRORM_INTMEM +
2385 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2386 size = sizeof(struct fairness_vars_per_vn);
2387 __storm_memset_struct(bp, addr, size,
2388 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2389 }
2390 }
2391
2392 /* This function is called upon link interrupt */
2393 static void bnx2x_link_attn(struct bnx2x *bp)
2394 {
2395 /* Make sure that we are synced with the current statistics */
2396 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2397
2398 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2399
2400 if (bp->link_vars.link_up) {
2401
2402 /* dropless flow control */
2403 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2404 int port = BP_PORT(bp);
2405 u32 pause_enabled = 0;
2406
2407 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2408 pause_enabled = 1;
2409
2410 REG_WR(bp, BAR_USTRORM_INTMEM +
2411 USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2412 pause_enabled);
2413 }
2414
2415 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2416 struct host_port_stats *pstats;
2417
2418 pstats = bnx2x_sp(bp, port_stats);
2419 /* reset old mac stats */
2420 memset(&(pstats->mac_stx[0]), 0,
2421 sizeof(struct mac_stx));
2422 }
2423 if (bp->state == BNX2X_STATE_OPEN)
2424 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2425 }
2426
2427 if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2428 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2429
2430 if (cmng_fns != CMNG_FNS_NONE) {
2431 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2432 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2433 } else
2434 /* rate shaping and fairness are disabled */
2435 DP(NETIF_MSG_IFUP,
2436 "single function mode without fairness\n");
2437 }
2438
2439 __bnx2x_link_report(bp);
2440
2441 if (IS_MF(bp))
2442 bnx2x_link_sync_notify(bp);
2443 }
2444
2445 void bnx2x__link_status_update(struct bnx2x *bp)
2446 {
2447 if (bp->state != BNX2X_STATE_OPEN)
2448 return;
2449
2450 /* read updated dcb configuration */
2451 bnx2x_dcbx_pmf_update(bp);
2452
2453 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2454
2455 if (bp->link_vars.link_up)
2456 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2457 else
2458 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2459
2460 /* indicate link status */
2461 bnx2x_link_report(bp);
2462 }
2463
2464 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2465 u16 vlan_val, u8 allowed_prio)
2466 {
2467 struct bnx2x_func_state_params func_params = {0};
2468 struct bnx2x_func_afex_update_params *f_update_params =
2469 &func_params.params.afex_update;
2470
2471 func_params.f_obj = &bp->func_obj;
2472 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2473
2474 /* no need to wait for RAMROD completion, so don't
2475 * set RAMROD_COMP_WAIT flag
2476 */
2477
2478 f_update_params->vif_id = vifid;
2479 f_update_params->afex_default_vlan = vlan_val;
2480 f_update_params->allowed_priorities = allowed_prio;
2481
2482 /* if ramrod can not be sent, response to MCP immediately */
2483 if (bnx2x_func_state_change(bp, &func_params) < 0)
2484 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2485
2486 return 0;
2487 }
2488
2489 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2490 u16 vif_index, u8 func_bit_map)
2491 {
2492 struct bnx2x_func_state_params func_params = {0};
2493 struct bnx2x_func_afex_viflists_params *update_params =
2494 &func_params.params.afex_viflists;
2495 int rc;
2496 u32 drv_msg_code;
2497
2498 /* validate only LIST_SET and LIST_GET are received from switch */
2499 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2500 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2501 cmd_type);
2502
2503 func_params.f_obj = &bp->func_obj;
2504 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2505
2506 /* set parameters according to cmd_type */
2507 update_params->afex_vif_list_command = cmd_type;
2508 update_params->vif_list_index = cpu_to_le16(vif_index);
2509 update_params->func_bit_map =
2510 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2511 update_params->func_to_clear = 0;
2512 drv_msg_code =
2513 (cmd_type == VIF_LIST_RULE_GET) ?
2514 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2515 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2516
2517 /* if ramrod can not be sent, respond to MCP immediately for
2518 * SET and GET requests (other are not triggered from MCP)
2519 */
2520 rc = bnx2x_func_state_change(bp, &func_params);
2521 if (rc < 0)
2522 bnx2x_fw_command(bp, drv_msg_code, 0);
2523
2524 return 0;
2525 }
2526
2527 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2528 {
2529 struct afex_stats afex_stats;
2530 u32 func = BP_ABS_FUNC(bp);
2531 u32 mf_config;
2532 u16 vlan_val;
2533 u32 vlan_prio;
2534 u16 vif_id;
2535 u8 allowed_prio;
2536 u8 vlan_mode;
2537 u32 addr_to_write, vifid, addrs, stats_type, i;
2538
2539 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2540 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2541 DP(BNX2X_MSG_MCP,
2542 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2543 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2544 }
2545
2546 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2547 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2548 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2549 DP(BNX2X_MSG_MCP,
2550 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2551 vifid, addrs);
2552 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2553 addrs);
2554 }
2555
2556 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2557 addr_to_write = SHMEM2_RD(bp,
2558 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2559 stats_type = SHMEM2_RD(bp,
2560 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2561
2562 DP(BNX2X_MSG_MCP,
2563 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2564 addr_to_write);
2565
2566 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2567
2568 /* write response to scratchpad, for MCP */
2569 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2570 REG_WR(bp, addr_to_write + i*sizeof(u32),
2571 *(((u32 *)(&afex_stats))+i));
2572
2573 /* send ack message to MCP */
2574 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2575 }
2576
2577 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2578 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2579 bp->mf_config[BP_VN(bp)] = mf_config;
2580 DP(BNX2X_MSG_MCP,
2581 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2582 mf_config);
2583
2584 /* if VIF_SET is "enabled" */
2585 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2586 /* set rate limit directly to internal RAM */
2587 struct cmng_init_input cmng_input;
2588 struct rate_shaping_vars_per_vn m_rs_vn;
2589 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2590 u32 addr = BAR_XSTRORM_INTMEM +
2591 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2592
2593 bp->mf_config[BP_VN(bp)] = mf_config;
2594
2595 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2596 m_rs_vn.vn_counter.rate =
2597 cmng_input.vnic_max_rate[BP_VN(bp)];
2598 m_rs_vn.vn_counter.quota =
2599 (m_rs_vn.vn_counter.rate *
2600 RS_PERIODIC_TIMEOUT_USEC) / 8;
2601
2602 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2603
2604 /* read relevant values from mf_cfg struct in shmem */
2605 vif_id =
2606 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2607 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2608 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2609 vlan_val =
2610 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2611 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2612 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2613 vlan_prio = (mf_config &
2614 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2615 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2616 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2617 vlan_mode =
2618 (MF_CFG_RD(bp,
2619 func_mf_config[func].afex_config) &
2620 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2621 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2622 allowed_prio =
2623 (MF_CFG_RD(bp,
2624 func_mf_config[func].afex_config) &
2625 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2626 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2627
2628 /* send ramrod to FW, return in case of failure */
2629 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2630 allowed_prio))
2631 return;
2632
2633 bp->afex_def_vlan_tag = vlan_val;
2634 bp->afex_vlan_mode = vlan_mode;
2635 } else {
2636 /* notify link down because BP->flags is disabled */
2637 bnx2x_link_report(bp);
2638
2639 /* send INVALID VIF ramrod to FW */
2640 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2641
2642 /* Reset the default afex VLAN */
2643 bp->afex_def_vlan_tag = -1;
2644 }
2645 }
2646 }
2647
2648 static void bnx2x_pmf_update(struct bnx2x *bp)
2649 {
2650 int port = BP_PORT(bp);
2651 u32 val;
2652
2653 bp->port.pmf = 1;
2654 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2655
2656 /*
2657 * We need the mb() to ensure the ordering between the writing to
2658 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2659 */
2660 smp_mb();
2661
2662 /* queue a periodic task */
2663 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2664
2665 bnx2x_dcbx_pmf_update(bp);
2666
2667 /* enable nig attention */
2668 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2669 if (bp->common.int_block == INT_BLOCK_HC) {
2670 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2671 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2672 } else if (!CHIP_IS_E1x(bp)) {
2673 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2674 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2675 }
2676
2677 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2678 }
2679
2680 /* end of Link */
2681
2682 /* slow path */
2683
2684 /*
2685 * General service functions
2686 */
2687
2688 /* send the MCP a request, block until there is a reply */
2689 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2690 {
2691 int mb_idx = BP_FW_MB_IDX(bp);
2692 u32 seq;
2693 u32 rc = 0;
2694 u32 cnt = 1;
2695 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2696
2697 mutex_lock(&bp->fw_mb_mutex);
2698 seq = ++bp->fw_seq;
2699 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2700 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2701
2702 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2703 (command | seq), param);
2704
2705 do {
2706 /* let the FW do it's magic ... */
2707 msleep(delay);
2708
2709 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2710
2711 /* Give the FW up to 5 second (500*10ms) */
2712 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2713
2714 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2715 cnt*delay, rc, seq);
2716
2717 /* is this a reply to our command? */
2718 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2719 rc &= FW_MSG_CODE_MASK;
2720 else {
2721 /* FW BUG! */
2722 BNX2X_ERR("FW failed to respond!\n");
2723 bnx2x_fw_dump(bp);
2724 rc = 0;
2725 }
2726 mutex_unlock(&bp->fw_mb_mutex);
2727
2728 return rc;
2729 }
2730
2731
2732 static void storm_memset_func_cfg(struct bnx2x *bp,
2733 struct tstorm_eth_function_common_config *tcfg,
2734 u16 abs_fid)
2735 {
2736 size_t size = sizeof(struct tstorm_eth_function_common_config);
2737
2738 u32 addr = BAR_TSTRORM_INTMEM +
2739 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2740
2741 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2742 }
2743
2744 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2745 {
2746 if (CHIP_IS_E1x(bp)) {
2747 struct tstorm_eth_function_common_config tcfg = {0};
2748
2749 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2750 }
2751
2752 /* Enable the function in the FW */
2753 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2754 storm_memset_func_en(bp, p->func_id, 1);
2755
2756 /* spq */
2757 if (p->func_flgs & FUNC_FLG_SPQ) {
2758 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2759 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2760 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2761 }
2762 }
2763
2764 /**
2765 * bnx2x_get_tx_only_flags - Return common flags
2766 *
2767 * @bp device handle
2768 * @fp queue handle
2769 * @zero_stats TRUE if statistics zeroing is needed
2770 *
2771 * Return the flags that are common for the Tx-only and not normal connections.
2772 */
2773 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2774 struct bnx2x_fastpath *fp,
2775 bool zero_stats)
2776 {
2777 unsigned long flags = 0;
2778
2779 /* PF driver will always initialize the Queue to an ACTIVE state */
2780 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2781
2782 /* tx only connections collect statistics (on the same index as the
2783 * parent connection). The statistics are zeroed when the parent
2784 * connection is initialized.
2785 */
2786
2787 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2788 if (zero_stats)
2789 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2790
2791
2792 return flags;
2793 }
2794
2795 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2796 struct bnx2x_fastpath *fp,
2797 bool leading)
2798 {
2799 unsigned long flags = 0;
2800
2801 /* calculate other queue flags */
2802 if (IS_MF_SD(bp))
2803 __set_bit(BNX2X_Q_FLG_OV, &flags);
2804
2805 if (IS_FCOE_FP(fp)) {
2806 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2807 /* For FCoE - force usage of default priority (for afex) */
2808 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2809 }
2810
2811 if (!fp->disable_tpa) {
2812 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2813 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2814 if (fp->mode == TPA_MODE_GRO)
2815 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2816 }
2817
2818 if (leading) {
2819 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2820 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2821 }
2822
2823 /* Always set HW VLAN stripping */
2824 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2825
2826 /* configure silent vlan removal */
2827 if (IS_MF_AFEX(bp))
2828 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
2829
2830
2831 return flags | bnx2x_get_common_flags(bp, fp, true);
2832 }
2833
2834 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2835 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2836 u8 cos)
2837 {
2838 gen_init->stat_id = bnx2x_stats_id(fp);
2839 gen_init->spcl_id = fp->cl_id;
2840
2841 /* Always use mini-jumbo MTU for FCoE L2 ring */
2842 if (IS_FCOE_FP(fp))
2843 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2844 else
2845 gen_init->mtu = bp->dev->mtu;
2846
2847 gen_init->cos = cos;
2848 }
2849
2850 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2851 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2852 struct bnx2x_rxq_setup_params *rxq_init)
2853 {
2854 u8 max_sge = 0;
2855 u16 sge_sz = 0;
2856 u16 tpa_agg_size = 0;
2857
2858 if (!fp->disable_tpa) {
2859 pause->sge_th_lo = SGE_TH_LO(bp);
2860 pause->sge_th_hi = SGE_TH_HI(bp);
2861
2862 /* validate SGE ring has enough to cross high threshold */
2863 WARN_ON(bp->dropless_fc &&
2864 pause->sge_th_hi + FW_PREFETCH_CNT >
2865 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2866
2867 tpa_agg_size = min_t(u32,
2868 (min_t(u32, 8, MAX_SKB_FRAGS) *
2869 SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2870 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2871 SGE_PAGE_SHIFT;
2872 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2873 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2874 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2875 0xffff);
2876 }
2877
2878 /* pause - not for e1 */
2879 if (!CHIP_IS_E1(bp)) {
2880 pause->bd_th_lo = BD_TH_LO(bp);
2881 pause->bd_th_hi = BD_TH_HI(bp);
2882
2883 pause->rcq_th_lo = RCQ_TH_LO(bp);
2884 pause->rcq_th_hi = RCQ_TH_HI(bp);
2885 /*
2886 * validate that rings have enough entries to cross
2887 * high thresholds
2888 */
2889 WARN_ON(bp->dropless_fc &&
2890 pause->bd_th_hi + FW_PREFETCH_CNT >
2891 bp->rx_ring_size);
2892 WARN_ON(bp->dropless_fc &&
2893 pause->rcq_th_hi + FW_PREFETCH_CNT >
2894 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2895
2896 pause->pri_map = 1;
2897 }
2898
2899 /* rxq setup */
2900 rxq_init->dscr_map = fp->rx_desc_mapping;
2901 rxq_init->sge_map = fp->rx_sge_mapping;
2902 rxq_init->rcq_map = fp->rx_comp_mapping;
2903 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2904
2905 /* This should be a maximum number of data bytes that may be
2906 * placed on the BD (not including paddings).
2907 */
2908 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2909 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
2910
2911 rxq_init->cl_qzone_id = fp->cl_qzone_id;
2912 rxq_init->tpa_agg_sz = tpa_agg_size;
2913 rxq_init->sge_buf_sz = sge_sz;
2914 rxq_init->max_sges_pkt = max_sge;
2915 rxq_init->rss_engine_id = BP_FUNC(bp);
2916 rxq_init->mcast_engine_id = BP_FUNC(bp);
2917
2918 /* Maximum number or simultaneous TPA aggregation for this Queue.
2919 *
2920 * For PF Clients it should be the maximum avaliable number.
2921 * VF driver(s) may want to define it to a smaller value.
2922 */
2923 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2924
2925 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2926 rxq_init->fw_sb_id = fp->fw_sb_id;
2927
2928 if (IS_FCOE_FP(fp))
2929 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2930 else
2931 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2932 /* configure silent vlan removal
2933 * if multi function mode is afex, then mask default vlan
2934 */
2935 if (IS_MF_AFEX(bp)) {
2936 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
2937 rxq_init->silent_removal_mask = VLAN_VID_MASK;
2938 }
2939 }
2940
2941 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2942 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2943 u8 cos)
2944 {
2945 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
2946 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2947 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2948 txq_init->fw_sb_id = fp->fw_sb_id;
2949
2950 /*
2951 * set the tss leading client id for TX classfication ==
2952 * leading RSS client id
2953 */
2954 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2955
2956 if (IS_FCOE_FP(fp)) {
2957 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2958 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2959 }
2960 }
2961
2962 static void bnx2x_pf_init(struct bnx2x *bp)
2963 {
2964 struct bnx2x_func_init_params func_init = {0};
2965 struct event_ring_data eq_data = { {0} };
2966 u16 flags;
2967
2968 if (!CHIP_IS_E1x(bp)) {
2969 /* reset IGU PF statistics: MSIX + ATTN */
2970 /* PF */
2971 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2972 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2973 (CHIP_MODE_IS_4_PORT(bp) ?
2974 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2975 /* ATTN */
2976 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2977 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2978 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2979 (CHIP_MODE_IS_4_PORT(bp) ?
2980 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2981 }
2982
2983 /* function setup flags */
2984 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2985
2986 /* This flag is relevant for E1x only.
2987 * E2 doesn't have a TPA configuration in a function level.
2988 */
2989 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2990
2991 func_init.func_flgs = flags;
2992 func_init.pf_id = BP_FUNC(bp);
2993 func_init.func_id = BP_FUNC(bp);
2994 func_init.spq_map = bp->spq_mapping;
2995 func_init.spq_prod = bp->spq_prod_idx;
2996
2997 bnx2x_func_init(bp, &func_init);
2998
2999 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3000
3001 /*
3002 * Congestion management values depend on the link rate
3003 * There is no active link so initial link rate is set to 10 Gbps.
3004 * When the link comes up The congestion management values are
3005 * re-calculated according to the actual link rate.
3006 */
3007 bp->link_vars.line_speed = SPEED_10000;
3008 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3009
3010 /* Only the PMF sets the HW */
3011 if (bp->port.pmf)
3012 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3013
3014 /* init Event Queue */
3015 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3016 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3017 eq_data.producer = bp->eq_prod;
3018 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3019 eq_data.sb_id = DEF_SB_ID;
3020 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3021 }
3022
3023
3024 static void bnx2x_e1h_disable(struct bnx2x *bp)
3025 {
3026 int port = BP_PORT(bp);
3027
3028 bnx2x_tx_disable(bp);
3029
3030 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3031 }
3032
3033 static void bnx2x_e1h_enable(struct bnx2x *bp)
3034 {
3035 int port = BP_PORT(bp);
3036
3037 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3038
3039 /* Tx queue should be only reenabled */
3040 netif_tx_wake_all_queues(bp->dev);
3041
3042 /*
3043 * Should not call netif_carrier_on since it will be called if the link
3044 * is up when checking for link state
3045 */
3046 }
3047
3048 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3049
3050 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3051 {
3052 struct eth_stats_info *ether_stat =
3053 &bp->slowpath->drv_info_to_mcp.ether_stat;
3054
3055 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3056 ETH_STAT_INFO_VERSION_LEN);
3057
3058 bp->sp_objs[0].mac_obj.get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3059 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3060 ether_stat->mac_local);
3061
3062 ether_stat->mtu_size = bp->dev->mtu;
3063
3064 if (bp->dev->features & NETIF_F_RXCSUM)
3065 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3066 if (bp->dev->features & NETIF_F_TSO)
3067 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3068 ether_stat->feature_flags |= bp->common.boot_mode;
3069
3070 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3071
3072 ether_stat->txq_size = bp->tx_ring_size;
3073 ether_stat->rxq_size = bp->rx_ring_size;
3074 }
3075
3076 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3077 {
3078 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3079 struct fcoe_stats_info *fcoe_stat =
3080 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3081
3082 if (!CNIC_LOADED(bp))
3083 return;
3084
3085 memcpy(fcoe_stat->mac_local + MAC_LEADING_ZERO_CNT,
3086 bp->fip_mac, ETH_ALEN);
3087
3088 fcoe_stat->qos_priority =
3089 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3090
3091 /* insert FCoE stats from ramrod response */
3092 if (!NO_FCOE(bp)) {
3093 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3094 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3095 tstorm_queue_statistics;
3096
3097 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3098 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3099 xstorm_queue_statistics;
3100
3101 struct fcoe_statistics_params *fw_fcoe_stat =
3102 &bp->fw_stats_data->fcoe;
3103
3104 ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
3105 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3106
3107 ADD_64(fcoe_stat->rx_bytes_hi,
3108 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3109 fcoe_stat->rx_bytes_lo,
3110 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3111
3112 ADD_64(fcoe_stat->rx_bytes_hi,
3113 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3114 fcoe_stat->rx_bytes_lo,
3115 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3116
3117 ADD_64(fcoe_stat->rx_bytes_hi,
3118 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3119 fcoe_stat->rx_bytes_lo,
3120 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3121
3122 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3123 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3124
3125 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3126 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3127
3128 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3129 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3130
3131 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3132 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3133
3134 ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3135 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3136
3137 ADD_64(fcoe_stat->tx_bytes_hi,
3138 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3139 fcoe_stat->tx_bytes_lo,
3140 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3141
3142 ADD_64(fcoe_stat->tx_bytes_hi,
3143 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3144 fcoe_stat->tx_bytes_lo,
3145 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3146
3147 ADD_64(fcoe_stat->tx_bytes_hi,
3148 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3149 fcoe_stat->tx_bytes_lo,
3150 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3151
3152 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3153 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3154
3155 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3156 fcoe_q_xstorm_stats->ucast_pkts_sent);
3157
3158 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3159 fcoe_q_xstorm_stats->bcast_pkts_sent);
3160
3161 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3162 fcoe_q_xstorm_stats->mcast_pkts_sent);
3163 }
3164
3165 /* ask L5 driver to add data to the struct */
3166 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3167 }
3168
3169 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3170 {
3171 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3172 struct iscsi_stats_info *iscsi_stat =
3173 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3174
3175 if (!CNIC_LOADED(bp))
3176 return;
3177
3178 memcpy(iscsi_stat->mac_local + MAC_LEADING_ZERO_CNT,
3179 bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3180
3181 iscsi_stat->qos_priority =
3182 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3183
3184 /* ask L5 driver to add data to the struct */
3185 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3186 }
3187
3188 /* called due to MCP event (on pmf):
3189 * reread new bandwidth configuration
3190 * configure FW
3191 * notify others function about the change
3192 */
3193 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3194 {
3195 if (bp->link_vars.link_up) {
3196 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3197 bnx2x_link_sync_notify(bp);
3198 }
3199 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3200 }
3201
3202 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3203 {
3204 bnx2x_config_mf_bw(bp);
3205 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3206 }
3207
3208 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3209 {
3210 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3211 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3212 }
3213
3214 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3215 {
3216 enum drv_info_opcode op_code;
3217 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3218
3219 /* if drv_info version supported by MFW doesn't match - send NACK */
3220 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3221 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3222 return;
3223 }
3224
3225 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3226 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3227
3228 memset(&bp->slowpath->drv_info_to_mcp, 0,
3229 sizeof(union drv_info_to_mcp));
3230
3231 switch (op_code) {
3232 case ETH_STATS_OPCODE:
3233 bnx2x_drv_info_ether_stat(bp);
3234 break;
3235 case FCOE_STATS_OPCODE:
3236 bnx2x_drv_info_fcoe_stat(bp);
3237 break;
3238 case ISCSI_STATS_OPCODE:
3239 bnx2x_drv_info_iscsi_stat(bp);
3240 break;
3241 default:
3242 /* if op code isn't supported - send NACK */
3243 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3244 return;
3245 }
3246
3247 /* if we got drv_info attn from MFW then these fields are defined in
3248 * shmem2 for sure
3249 */
3250 SHMEM2_WR(bp, drv_info_host_addr_lo,
3251 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3252 SHMEM2_WR(bp, drv_info_host_addr_hi,
3253 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3254
3255 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3256 }
3257
3258 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3259 {
3260 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3261
3262 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3263
3264 /*
3265 * This is the only place besides the function initialization
3266 * where the bp->flags can change so it is done without any
3267 * locks
3268 */
3269 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3270 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3271 bp->flags |= MF_FUNC_DIS;
3272
3273 bnx2x_e1h_disable(bp);
3274 } else {
3275 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3276 bp->flags &= ~MF_FUNC_DIS;
3277
3278 bnx2x_e1h_enable(bp);
3279 }
3280 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3281 }
3282 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3283 bnx2x_config_mf_bw(bp);
3284 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3285 }
3286
3287 /* Report results to MCP */
3288 if (dcc_event)
3289 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3290 else
3291 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3292 }
3293
3294 /* must be called under the spq lock */
3295 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3296 {
3297 struct eth_spe *next_spe = bp->spq_prod_bd;
3298
3299 if (bp->spq_prod_bd == bp->spq_last_bd) {
3300 bp->spq_prod_bd = bp->spq;
3301 bp->spq_prod_idx = 0;
3302 DP(BNX2X_MSG_SP, "end of spq\n");
3303 } else {
3304 bp->spq_prod_bd++;
3305 bp->spq_prod_idx++;
3306 }
3307 return next_spe;
3308 }
3309
3310 /* must be called under the spq lock */
3311 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3312 {
3313 int func = BP_FUNC(bp);
3314
3315 /*
3316 * Make sure that BD data is updated before writing the producer:
3317 * BD data is written to the memory, the producer is read from the
3318 * memory, thus we need a full memory barrier to ensure the ordering.
3319 */
3320 mb();
3321
3322 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3323 bp->spq_prod_idx);
3324 mmiowb();
3325 }
3326
3327 /**
3328 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3329 *
3330 * @cmd: command to check
3331 * @cmd_type: command type
3332 */
3333 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3334 {
3335 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3336 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3337 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3338 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3339 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3340 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3341 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3342 return true;
3343 else
3344 return false;
3345
3346 }
3347
3348
3349 /**
3350 * bnx2x_sp_post - place a single command on an SP ring
3351 *
3352 * @bp: driver handle
3353 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3354 * @cid: SW CID the command is related to
3355 * @data_hi: command private data address (high 32 bits)
3356 * @data_lo: command private data address (low 32 bits)
3357 * @cmd_type: command type (e.g. NONE, ETH)
3358 *
3359 * SP data is handled as if it's always an address pair, thus data fields are
3360 * not swapped to little endian in upper functions. Instead this function swaps
3361 * data as if it's two u32 fields.
3362 */
3363 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3364 u32 data_hi, u32 data_lo, int cmd_type)
3365 {
3366 struct eth_spe *spe;
3367 u16 type;
3368 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3369
3370 #ifdef BNX2X_STOP_ON_ERROR
3371 if (unlikely(bp->panic)) {
3372 BNX2X_ERR("Can't post SP when there is panic\n");
3373 return -EIO;
3374 }
3375 #endif
3376
3377 spin_lock_bh(&bp->spq_lock);
3378
3379 if (common) {
3380 if (!atomic_read(&bp->eq_spq_left)) {
3381 BNX2X_ERR("BUG! EQ ring full!\n");
3382 spin_unlock_bh(&bp->spq_lock);
3383 bnx2x_panic();
3384 return -EBUSY;
3385 }
3386 } else if (!atomic_read(&bp->cq_spq_left)) {
3387 BNX2X_ERR("BUG! SPQ ring full!\n");
3388 spin_unlock_bh(&bp->spq_lock);
3389 bnx2x_panic();
3390 return -EBUSY;
3391 }
3392
3393 spe = bnx2x_sp_get_next(bp);
3394
3395 /* CID needs port number to be encoded int it */
3396 spe->hdr.conn_and_cmd_data =
3397 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3398 HW_CID(bp, cid));
3399
3400 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3401
3402 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3403 SPE_HDR_FUNCTION_ID);
3404
3405 spe->hdr.type = cpu_to_le16(type);
3406
3407 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3408 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3409
3410 /*
3411 * It's ok if the actual decrement is issued towards the memory
3412 * somewhere between the spin_lock and spin_unlock. Thus no
3413 * more explict memory barrier is needed.
3414 */
3415 if (common)
3416 atomic_dec(&bp->eq_spq_left);
3417 else
3418 atomic_dec(&bp->cq_spq_left);
3419
3420
3421 DP(BNX2X_MSG_SP,
3422 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3423 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3424 (u32)(U64_LO(bp->spq_mapping) +
3425 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3426 HW_CID(bp, cid), data_hi, data_lo, type,
3427 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3428
3429 bnx2x_sp_prod_update(bp);
3430 spin_unlock_bh(&bp->spq_lock);
3431 return 0;
3432 }
3433
3434 /* acquire split MCP access lock register */
3435 static int bnx2x_acquire_alr(struct bnx2x *bp)
3436 {
3437 u32 j, val;
3438 int rc = 0;
3439
3440 might_sleep();
3441 for (j = 0; j < 1000; j++) {
3442 val = (1UL << 31);
3443 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3444 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3445 if (val & (1L << 31))
3446 break;
3447
3448 msleep(5);
3449 }
3450 if (!(val & (1L << 31))) {
3451 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3452 rc = -EBUSY;
3453 }
3454
3455 return rc;
3456 }
3457
3458 /* release split MCP access lock register */
3459 static void bnx2x_release_alr(struct bnx2x *bp)
3460 {
3461 REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3462 }
3463
3464 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3465 #define BNX2X_DEF_SB_IDX 0x0002
3466
3467 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3468 {
3469 struct host_sp_status_block *def_sb = bp->def_status_blk;
3470 u16 rc = 0;
3471
3472 barrier(); /* status block is written to by the chip */
3473 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3474 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3475 rc |= BNX2X_DEF_SB_ATT_IDX;
3476 }
3477
3478 if (bp->def_idx != def_sb->sp_sb.running_index) {
3479 bp->def_idx = def_sb->sp_sb.running_index;
3480 rc |= BNX2X_DEF_SB_IDX;
3481 }
3482
3483 /* Do not reorder: indecies reading should complete before handling */
3484 barrier();
3485 return rc;
3486 }
3487
3488 /*
3489 * slow path service functions
3490 */
3491
3492 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3493 {
3494 int port = BP_PORT(bp);
3495 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3496 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3497 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3498 NIG_REG_MASK_INTERRUPT_PORT0;
3499 u32 aeu_mask;
3500 u32 nig_mask = 0;
3501 u32 reg_addr;
3502
3503 if (bp->attn_state & asserted)
3504 BNX2X_ERR("IGU ERROR\n");
3505
3506 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3507 aeu_mask = REG_RD(bp, aeu_addr);
3508
3509 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3510 aeu_mask, asserted);
3511 aeu_mask &= ~(asserted & 0x3ff);
3512 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3513
3514 REG_WR(bp, aeu_addr, aeu_mask);
3515 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3516
3517 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3518 bp->attn_state |= asserted;
3519 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3520
3521 if (asserted & ATTN_HARD_WIRED_MASK) {
3522 if (asserted & ATTN_NIG_FOR_FUNC) {
3523
3524 bnx2x_acquire_phy_lock(bp);
3525
3526 /* save nig interrupt mask */
3527 nig_mask = REG_RD(bp, nig_int_mask_addr);
3528
3529 /* If nig_mask is not set, no need to call the update
3530 * function.
3531 */
3532 if (nig_mask) {
3533 REG_WR(bp, nig_int_mask_addr, 0);
3534
3535 bnx2x_link_attn(bp);
3536 }
3537
3538 /* handle unicore attn? */
3539 }
3540 if (asserted & ATTN_SW_TIMER_4_FUNC)
3541 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3542
3543 if (asserted & GPIO_2_FUNC)
3544 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3545
3546 if (asserted & GPIO_3_FUNC)
3547 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3548
3549 if (asserted & GPIO_4_FUNC)
3550 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3551
3552 if (port == 0) {
3553 if (asserted & ATTN_GENERAL_ATTN_1) {
3554 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3555 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3556 }
3557 if (asserted & ATTN_GENERAL_ATTN_2) {
3558 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3559 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3560 }
3561 if (asserted & ATTN_GENERAL_ATTN_3) {
3562 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3563 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3564 }
3565 } else {
3566 if (asserted & ATTN_GENERAL_ATTN_4) {
3567 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3568 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3569 }
3570 if (asserted & ATTN_GENERAL_ATTN_5) {
3571 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3572 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3573 }
3574 if (asserted & ATTN_GENERAL_ATTN_6) {
3575 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3576 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3577 }
3578 }
3579
3580 } /* if hardwired */
3581
3582 if (bp->common.int_block == INT_BLOCK_HC)
3583 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3584 COMMAND_REG_ATTN_BITS_SET);
3585 else
3586 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3587
3588 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3589 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3590 REG_WR(bp, reg_addr, asserted);
3591
3592 /* now set back the mask */
3593 if (asserted & ATTN_NIG_FOR_FUNC) {
3594 /* Verify that IGU ack through BAR was written before restoring
3595 * NIG mask. This loop should exit after 2-3 iterations max.
3596 */
3597 if (bp->common.int_block != INT_BLOCK_HC) {
3598 u32 cnt = 0, igu_acked;
3599 do {
3600 igu_acked = REG_RD(bp,
3601 IGU_REG_ATTENTION_ACK_BITS);
3602 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3603 (++cnt < MAX_IGU_ATTN_ACK_TO));
3604 if (!igu_acked)
3605 DP(NETIF_MSG_HW,
3606 "Failed to verify IGU ack on time\n");
3607 barrier();
3608 }
3609 REG_WR(bp, nig_int_mask_addr, nig_mask);
3610 bnx2x_release_phy_lock(bp);
3611 }
3612 }
3613
3614 static void bnx2x_fan_failure(struct bnx2x *bp)
3615 {
3616 int port = BP_PORT(bp);
3617 u32 ext_phy_config;
3618 /* mark the failure */
3619 ext_phy_config =
3620 SHMEM_RD(bp,
3621 dev_info.port_hw_config[port].external_phy_config);
3622
3623 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3624 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3625 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3626 ext_phy_config);
3627
3628 /* log the failure */
3629 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3630 "Please contact OEM Support for assistance\n");
3631
3632 /*
3633 * Scheudle device reset (unload)
3634 * This is due to some boards consuming sufficient power when driver is
3635 * up to overheat if fan fails.
3636 */
3637 smp_mb__before_clear_bit();
3638 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3639 smp_mb__after_clear_bit();
3640 schedule_delayed_work(&bp->sp_rtnl_task, 0);
3641
3642 }
3643
3644 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3645 {
3646 int port = BP_PORT(bp);
3647 int reg_offset;
3648 u32 val;
3649
3650 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3651 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3652
3653 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3654
3655 val = REG_RD(bp, reg_offset);
3656 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3657 REG_WR(bp, reg_offset, val);
3658
3659 BNX2X_ERR("SPIO5 hw attention\n");
3660
3661 /* Fan failure attention */
3662 bnx2x_hw_reset_phy(&bp->link_params);
3663 bnx2x_fan_failure(bp);
3664 }
3665
3666 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3667 bnx2x_acquire_phy_lock(bp);
3668 bnx2x_handle_module_detect_int(&bp->link_params);
3669 bnx2x_release_phy_lock(bp);
3670 }
3671
3672 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3673
3674 val = REG_RD(bp, reg_offset);
3675 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3676 REG_WR(bp, reg_offset, val);
3677
3678 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3679 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3680 bnx2x_panic();
3681 }
3682 }
3683
3684 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3685 {
3686 u32 val;
3687
3688 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3689
3690 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3691 BNX2X_ERR("DB hw attention 0x%x\n", val);
3692 /* DORQ discard attention */
3693 if (val & 0x2)
3694 BNX2X_ERR("FATAL error from DORQ\n");
3695 }
3696
3697 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3698
3699 int port = BP_PORT(bp);
3700 int reg_offset;
3701
3702 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3703 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3704
3705 val = REG_RD(bp, reg_offset);
3706 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3707 REG_WR(bp, reg_offset, val);
3708
3709 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3710 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3711 bnx2x_panic();
3712 }
3713 }
3714
3715 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3716 {
3717 u32 val;
3718
3719 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3720
3721 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3722 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3723 /* CFC error attention */
3724 if (val & 0x2)
3725 BNX2X_ERR("FATAL error from CFC\n");
3726 }
3727
3728 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3729 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3730 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3731 /* RQ_USDMDP_FIFO_OVERFLOW */
3732 if (val & 0x18000)
3733 BNX2X_ERR("FATAL error from PXP\n");
3734
3735 if (!CHIP_IS_E1x(bp)) {
3736 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3737 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3738 }
3739 }
3740
3741 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3742
3743 int port = BP_PORT(bp);
3744 int reg_offset;
3745
3746 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3747 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3748
3749 val = REG_RD(bp, reg_offset);
3750 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3751 REG_WR(bp, reg_offset, val);
3752
3753 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3754 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3755 bnx2x_panic();
3756 }
3757 }
3758
3759 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3760 {
3761 u32 val;
3762
3763 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3764
3765 if (attn & BNX2X_PMF_LINK_ASSERT) {
3766 int func = BP_FUNC(bp);
3767
3768 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3769 bnx2x_read_mf_cfg(bp);
3770 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3771 func_mf_config[BP_ABS_FUNC(bp)].config);
3772 val = SHMEM_RD(bp,
3773 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3774 if (val & DRV_STATUS_DCC_EVENT_MASK)
3775 bnx2x_dcc_event(bp,
3776 (val & DRV_STATUS_DCC_EVENT_MASK));
3777
3778 if (val & DRV_STATUS_SET_MF_BW)
3779 bnx2x_set_mf_bw(bp);
3780
3781 if (val & DRV_STATUS_DRV_INFO_REQ)
3782 bnx2x_handle_drv_info_req(bp);
3783 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3784 bnx2x_pmf_update(bp);
3785
3786 if (bp->port.pmf &&
3787 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3788 bp->dcbx_enabled > 0)
3789 /* start dcbx state machine */
3790 bnx2x_dcbx_set_params(bp,
3791 BNX2X_DCBX_STATE_NEG_RECEIVED);
3792 if (val & DRV_STATUS_AFEX_EVENT_MASK)
3793 bnx2x_handle_afex_cmd(bp,
3794 val & DRV_STATUS_AFEX_EVENT_MASK);
3795 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3796 bnx2x_handle_eee_event(bp);
3797 if (bp->link_vars.periodic_flags &
3798 PERIODIC_FLAGS_LINK_EVENT) {
3799 /* sync with link */
3800 bnx2x_acquire_phy_lock(bp);
3801 bp->link_vars.periodic_flags &=
3802 ~PERIODIC_FLAGS_LINK_EVENT;
3803 bnx2x_release_phy_lock(bp);
3804 if (IS_MF(bp))
3805 bnx2x_link_sync_notify(bp);
3806 bnx2x_link_report(bp);
3807 }
3808 /* Always call it here: bnx2x_link_report() will
3809 * prevent the link indication duplication.
3810 */
3811 bnx2x__link_status_update(bp);
3812 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3813
3814 BNX2X_ERR("MC assert!\n");
3815 bnx2x_mc_assert(bp);
3816 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3817 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3818 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3819 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3820 bnx2x_panic();
3821
3822 } else if (attn & BNX2X_MCP_ASSERT) {
3823
3824 BNX2X_ERR("MCP assert!\n");
3825 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3826 bnx2x_fw_dump(bp);
3827
3828 } else
3829 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3830 }
3831
3832 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3833 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3834 if (attn & BNX2X_GRC_TIMEOUT) {
3835 val = CHIP_IS_E1(bp) ? 0 :
3836 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3837 BNX2X_ERR("GRC time-out 0x%08x\n", val);
3838 }
3839 if (attn & BNX2X_GRC_RSV) {
3840 val = CHIP_IS_E1(bp) ? 0 :
3841 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3842 BNX2X_ERR("GRC reserved 0x%08x\n", val);
3843 }
3844 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3845 }
3846 }
3847
3848 /*
3849 * Bits map:
3850 * 0-7 - Engine0 load counter.
3851 * 8-15 - Engine1 load counter.
3852 * 16 - Engine0 RESET_IN_PROGRESS bit.
3853 * 17 - Engine1 RESET_IN_PROGRESS bit.
3854 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3855 * on the engine
3856 * 19 - Engine1 ONE_IS_LOADED.
3857 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
3858 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
3859 * just the one belonging to its engine).
3860 *
3861 */
3862 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
3863
3864 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
3865 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
3866 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
3867 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
3868 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
3869 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
3870 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
3871
3872 /*
3873 * Set the GLOBAL_RESET bit.
3874 *
3875 * Should be run under rtnl lock
3876 */
3877 void bnx2x_set_reset_global(struct bnx2x *bp)
3878 {
3879 u32 val;
3880 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3881 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3882 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3883 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3884 }
3885
3886 /*
3887 * Clear the GLOBAL_RESET bit.
3888 *
3889 * Should be run under rtnl lock
3890 */
3891 static void bnx2x_clear_reset_global(struct bnx2x *bp)
3892 {
3893 u32 val;
3894 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3895 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3896 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3897 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3898 }
3899
3900 /*
3901 * Checks the GLOBAL_RESET bit.
3902 *
3903 * should be run under rtnl lock
3904 */
3905 static bool bnx2x_reset_is_global(struct bnx2x *bp)
3906 {
3907 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3908
3909 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3910 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3911 }
3912
3913 /*
3914 * Clear RESET_IN_PROGRESS bit for the current engine.
3915 *
3916 * Should be run under rtnl lock
3917 */
3918 static void bnx2x_set_reset_done(struct bnx2x *bp)
3919 {
3920 u32 val;
3921 u32 bit = BP_PATH(bp) ?
3922 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3923 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3924 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3925
3926 /* Clear the bit */
3927 val &= ~bit;
3928 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3929
3930 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3931 }
3932
3933 /*
3934 * Set RESET_IN_PROGRESS for the current engine.
3935 *
3936 * should be run under rtnl lock
3937 */
3938 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3939 {
3940 u32 val;
3941 u32 bit = BP_PATH(bp) ?
3942 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3943 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3944 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3945
3946 /* Set the bit */
3947 val |= bit;
3948 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3949 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3950 }
3951
3952 /*
3953 * Checks the RESET_IN_PROGRESS bit for the given engine.
3954 * should be run under rtnl lock
3955 */
3956 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3957 {
3958 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3959 u32 bit = engine ?
3960 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3961
3962 /* return false if bit is set */
3963 return (val & bit) ? false : true;
3964 }
3965
3966 /*
3967 * set pf load for the current pf.
3968 *
3969 * should be run under rtnl lock
3970 */
3971 void bnx2x_set_pf_load(struct bnx2x *bp)
3972 {
3973 u32 val1, val;
3974 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3975 BNX2X_PATH0_LOAD_CNT_MASK;
3976 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3977 BNX2X_PATH0_LOAD_CNT_SHIFT;
3978
3979 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3980 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3981
3982 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3983
3984 /* get the current counter value */
3985 val1 = (val & mask) >> shift;
3986
3987 /* set bit of that PF */
3988 val1 |= (1 << bp->pf_num);
3989
3990 /* clear the old value */
3991 val &= ~mask;
3992
3993 /* set the new one */
3994 val |= ((val1 << shift) & mask);
3995
3996 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3997 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3998 }
3999
4000 /**
4001 * bnx2x_clear_pf_load - clear pf load mark
4002 *
4003 * @bp: driver handle
4004 *
4005 * Should be run under rtnl lock.
4006 * Decrements the load counter for the current engine. Returns
4007 * whether other functions are still loaded
4008 */
4009 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4010 {
4011 u32 val1, val;
4012 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4013 BNX2X_PATH0_LOAD_CNT_MASK;
4014 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4015 BNX2X_PATH0_LOAD_CNT_SHIFT;
4016
4017 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4018 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4019 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4020
4021 /* get the current counter value */
4022 val1 = (val & mask) >> shift;
4023
4024 /* clear bit of that PF */
4025 val1 &= ~(1 << bp->pf_num);
4026
4027 /* clear the old value */
4028 val &= ~mask;
4029
4030 /* set the new one */
4031 val |= ((val1 << shift) & mask);
4032
4033 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4034 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4035 return val1 != 0;
4036 }
4037
4038 /*
4039 * Read the load status for the current engine.
4040 *
4041 * should be run under rtnl lock
4042 */
4043 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4044 {
4045 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4046 BNX2X_PATH0_LOAD_CNT_MASK);
4047 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4048 BNX2X_PATH0_LOAD_CNT_SHIFT);
4049 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4050
4051 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4052
4053 val = (val & mask) >> shift;
4054
4055 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4056 engine, val);
4057
4058 return val != 0;
4059 }
4060
4061 static void _print_next_block(int idx, const char *blk)
4062 {
4063 pr_cont("%s%s", idx ? ", " : "", blk);
4064 }
4065
4066 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4067 bool print)
4068 {
4069 int i = 0;
4070 u32 cur_bit = 0;
4071 for (i = 0; sig; i++) {
4072 cur_bit = ((u32)0x1 << i);
4073 if (sig & cur_bit) {
4074 switch (cur_bit) {
4075 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4076 if (print)
4077 _print_next_block(par_num++, "BRB");
4078 break;
4079 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4080 if (print)
4081 _print_next_block(par_num++, "PARSER");
4082 break;
4083 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4084 if (print)
4085 _print_next_block(par_num++, "TSDM");
4086 break;
4087 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4088 if (print)
4089 _print_next_block(par_num++,
4090 "SEARCHER");
4091 break;
4092 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4093 if (print)
4094 _print_next_block(par_num++, "TCM");
4095 break;
4096 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4097 if (print)
4098 _print_next_block(par_num++, "TSEMI");
4099 break;
4100 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4101 if (print)
4102 _print_next_block(par_num++, "XPB");
4103 break;
4104 }
4105
4106 /* Clear the bit */
4107 sig &= ~cur_bit;
4108 }
4109 }
4110
4111 return par_num;
4112 }
4113
4114 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4115 bool *global, bool print)
4116 {
4117 int i = 0;
4118 u32 cur_bit = 0;
4119 for (i = 0; sig; i++) {
4120 cur_bit = ((u32)0x1 << i);
4121 if (sig & cur_bit) {
4122 switch (cur_bit) {
4123 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4124 if (print)
4125 _print_next_block(par_num++, "PBF");
4126 break;
4127 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4128 if (print)
4129 _print_next_block(par_num++, "QM");
4130 break;
4131 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4132 if (print)
4133 _print_next_block(par_num++, "TM");
4134 break;
4135 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4136 if (print)
4137 _print_next_block(par_num++, "XSDM");
4138 break;
4139 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4140 if (print)
4141 _print_next_block(par_num++, "XCM");
4142 break;
4143 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4144 if (print)
4145 _print_next_block(par_num++, "XSEMI");
4146 break;
4147 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4148 if (print)
4149 _print_next_block(par_num++,
4150 "DOORBELLQ");
4151 break;
4152 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4153 if (print)
4154 _print_next_block(par_num++, "NIG");
4155 break;
4156 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4157 if (print)
4158 _print_next_block(par_num++,
4159 "VAUX PCI CORE");
4160 *global = true;
4161 break;
4162 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4163 if (print)
4164 _print_next_block(par_num++, "DEBUG");
4165 break;
4166 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4167 if (print)
4168 _print_next_block(par_num++, "USDM");
4169 break;
4170 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4171 if (print)
4172 _print_next_block(par_num++, "UCM");
4173 break;
4174 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4175 if (print)
4176 _print_next_block(par_num++, "USEMI");
4177 break;
4178 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4179 if (print)
4180 _print_next_block(par_num++, "UPB");
4181 break;
4182 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4183 if (print)
4184 _print_next_block(par_num++, "CSDM");
4185 break;
4186 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4187 if (print)
4188 _print_next_block(par_num++, "CCM");
4189 break;
4190 }
4191
4192 /* Clear the bit */
4193 sig &= ~cur_bit;
4194 }
4195 }
4196
4197 return par_num;
4198 }
4199
4200 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4201 bool print)
4202 {
4203 int i = 0;
4204 u32 cur_bit = 0;
4205 for (i = 0; sig; i++) {
4206 cur_bit = ((u32)0x1 << i);
4207 if (sig & cur_bit) {
4208 switch (cur_bit) {
4209 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4210 if (print)
4211 _print_next_block(par_num++, "CSEMI");
4212 break;
4213 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4214 if (print)
4215 _print_next_block(par_num++, "PXP");
4216 break;
4217 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4218 if (print)
4219 _print_next_block(par_num++,
4220 "PXPPCICLOCKCLIENT");
4221 break;
4222 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4223 if (print)
4224 _print_next_block(par_num++, "CFC");
4225 break;
4226 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4227 if (print)
4228 _print_next_block(par_num++, "CDU");
4229 break;
4230 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4231 if (print)
4232 _print_next_block(par_num++, "DMAE");
4233 break;
4234 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4235 if (print)
4236 _print_next_block(par_num++, "IGU");
4237 break;
4238 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4239 if (print)
4240 _print_next_block(par_num++, "MISC");
4241 break;
4242 }
4243
4244 /* Clear the bit */
4245 sig &= ~cur_bit;
4246 }
4247 }
4248
4249 return par_num;
4250 }
4251
4252 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4253 bool *global, bool print)
4254 {
4255 int i = 0;
4256 u32 cur_bit = 0;
4257 for (i = 0; sig; i++) {
4258 cur_bit = ((u32)0x1 << i);
4259 if (sig & cur_bit) {
4260 switch (cur_bit) {
4261 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4262 if (print)
4263 _print_next_block(par_num++, "MCP ROM");
4264 *global = true;
4265 break;
4266 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4267 if (print)
4268 _print_next_block(par_num++,
4269 "MCP UMP RX");
4270 *global = true;
4271 break;
4272 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4273 if (print)
4274 _print_next_block(par_num++,
4275 "MCP UMP TX");
4276 *global = true;
4277 break;
4278 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4279 if (print)
4280 _print_next_block(par_num++,
4281 "MCP SCPAD");
4282 *global = true;
4283 break;
4284 }
4285
4286 /* Clear the bit */
4287 sig &= ~cur_bit;
4288 }
4289 }
4290
4291 return par_num;
4292 }
4293
4294 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4295 bool print)
4296 {
4297 int i = 0;
4298 u32 cur_bit = 0;
4299 for (i = 0; sig; i++) {
4300 cur_bit = ((u32)0x1 << i);
4301 if (sig & cur_bit) {
4302 switch (cur_bit) {
4303 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4304 if (print)
4305 _print_next_block(par_num++, "PGLUE_B");
4306 break;
4307 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4308 if (print)
4309 _print_next_block(par_num++, "ATC");
4310 break;
4311 }
4312
4313 /* Clear the bit */
4314 sig &= ~cur_bit;
4315 }
4316 }
4317
4318 return par_num;
4319 }
4320
4321 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4322 u32 *sig)
4323 {
4324 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4325 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4326 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4327 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4328 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4329 int par_num = 0;
4330 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4331 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4332 sig[0] & HW_PRTY_ASSERT_SET_0,
4333 sig[1] & HW_PRTY_ASSERT_SET_1,
4334 sig[2] & HW_PRTY_ASSERT_SET_2,
4335 sig[3] & HW_PRTY_ASSERT_SET_3,
4336 sig[4] & HW_PRTY_ASSERT_SET_4);
4337 if (print)
4338 netdev_err(bp->dev,
4339 "Parity errors detected in blocks: ");
4340 par_num = bnx2x_check_blocks_with_parity0(
4341 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4342 par_num = bnx2x_check_blocks_with_parity1(
4343 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4344 par_num = bnx2x_check_blocks_with_parity2(
4345 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4346 par_num = bnx2x_check_blocks_with_parity3(
4347 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4348 par_num = bnx2x_check_blocks_with_parity4(
4349 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4350
4351 if (print)
4352 pr_cont("\n");
4353
4354 return true;
4355 } else
4356 return false;
4357 }
4358
4359 /**
4360 * bnx2x_chk_parity_attn - checks for parity attentions.
4361 *
4362 * @bp: driver handle
4363 * @global: true if there was a global attention
4364 * @print: show parity attention in syslog
4365 */
4366 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4367 {
4368 struct attn_route attn = { {0} };
4369 int port = BP_PORT(bp);
4370
4371 attn.sig[0] = REG_RD(bp,
4372 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4373 port*4);
4374 attn.sig[1] = REG_RD(bp,
4375 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4376 port*4);
4377 attn.sig[2] = REG_RD(bp,
4378 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4379 port*4);
4380 attn.sig[3] = REG_RD(bp,
4381 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4382 port*4);
4383
4384 if (!CHIP_IS_E1x(bp))
4385 attn.sig[4] = REG_RD(bp,
4386 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4387 port*4);
4388
4389 return bnx2x_parity_attn(bp, global, print, attn.sig);
4390 }
4391
4392
4393 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4394 {
4395 u32 val;
4396 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4397
4398 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4399 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4400 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4401 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4402 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4403 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4404 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4405 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4406 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4407 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4408 if (val &
4409 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4410 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4411 if (val &
4412 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4413 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4414 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4415 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4416 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4417 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4418 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4419 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4420 }
4421 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4422 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4423 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4424 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4425 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4426 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4427 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4428 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4429 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4430 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4431 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4432 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4433 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4434 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4435 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4436 }
4437
4438 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4439 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4440 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4441 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4442 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4443 }
4444
4445 }
4446
4447 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4448 {
4449 struct attn_route attn, *group_mask;
4450 int port = BP_PORT(bp);
4451 int index;
4452 u32 reg_addr;
4453 u32 val;
4454 u32 aeu_mask;
4455 bool global = false;
4456
4457 /* need to take HW lock because MCP or other port might also
4458 try to handle this event */
4459 bnx2x_acquire_alr(bp);
4460
4461 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4462 #ifndef BNX2X_STOP_ON_ERROR
4463 bp->recovery_state = BNX2X_RECOVERY_INIT;
4464 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4465 /* Disable HW interrupts */
4466 bnx2x_int_disable(bp);
4467 /* In case of parity errors don't handle attentions so that
4468 * other function would "see" parity errors.
4469 */
4470 #else
4471 bnx2x_panic();
4472 #endif
4473 bnx2x_release_alr(bp);
4474 return;
4475 }
4476
4477 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4478 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4479 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4480 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4481 if (!CHIP_IS_E1x(bp))
4482 attn.sig[4] =
4483 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4484 else
4485 attn.sig[4] = 0;
4486
4487 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4488 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4489
4490 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4491 if (deasserted & (1 << index)) {
4492 group_mask = &bp->attn_group[index];
4493
4494 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4495 index,
4496 group_mask->sig[0], group_mask->sig[1],
4497 group_mask->sig[2], group_mask->sig[3],
4498 group_mask->sig[4]);
4499
4500 bnx2x_attn_int_deasserted4(bp,
4501 attn.sig[4] & group_mask->sig[4]);
4502 bnx2x_attn_int_deasserted3(bp,
4503 attn.sig[3] & group_mask->sig[3]);
4504 bnx2x_attn_int_deasserted1(bp,
4505 attn.sig[1] & group_mask->sig[1]);
4506 bnx2x_attn_int_deasserted2(bp,
4507 attn.sig[2] & group_mask->sig[2]);
4508 bnx2x_attn_int_deasserted0(bp,
4509 attn.sig[0] & group_mask->sig[0]);
4510 }
4511 }
4512
4513 bnx2x_release_alr(bp);
4514
4515 if (bp->common.int_block == INT_BLOCK_HC)
4516 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4517 COMMAND_REG_ATTN_BITS_CLR);
4518 else
4519 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4520
4521 val = ~deasserted;
4522 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4523 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4524 REG_WR(bp, reg_addr, val);
4525
4526 if (~bp->attn_state & deasserted)
4527 BNX2X_ERR("IGU ERROR\n");
4528
4529 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4530 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4531
4532 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4533 aeu_mask = REG_RD(bp, reg_addr);
4534
4535 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4536 aeu_mask, deasserted);
4537 aeu_mask |= (deasserted & 0x3ff);
4538 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4539
4540 REG_WR(bp, reg_addr, aeu_mask);
4541 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4542
4543 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4544 bp->attn_state &= ~deasserted;
4545 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4546 }
4547
4548 static void bnx2x_attn_int(struct bnx2x *bp)
4549 {
4550 /* read local copy of bits */
4551 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4552 attn_bits);
4553 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4554 attn_bits_ack);
4555 u32 attn_state = bp->attn_state;
4556
4557 /* look for changed bits */
4558 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4559 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4560
4561 DP(NETIF_MSG_HW,
4562 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4563 attn_bits, attn_ack, asserted, deasserted);
4564
4565 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4566 BNX2X_ERR("BAD attention state\n");
4567
4568 /* handle bits that were raised */
4569 if (asserted)
4570 bnx2x_attn_int_asserted(bp, asserted);
4571
4572 if (deasserted)
4573 bnx2x_attn_int_deasserted(bp, deasserted);
4574 }
4575
4576 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4577 u16 index, u8 op, u8 update)
4578 {
4579 u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4580
4581 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4582 igu_addr);
4583 }
4584
4585 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4586 {
4587 /* No memory barriers */
4588 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4589 mmiowb(); /* keep prod updates ordered */
4590 }
4591
4592 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4593 union event_ring_elem *elem)
4594 {
4595 u8 err = elem->message.error;
4596
4597 if (!bp->cnic_eth_dev.starting_cid ||
4598 (cid < bp->cnic_eth_dev.starting_cid &&
4599 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4600 return 1;
4601
4602 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4603
4604 if (unlikely(err)) {
4605
4606 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4607 cid);
4608 bnx2x_panic_dump(bp);
4609 }
4610 bnx2x_cnic_cfc_comp(bp, cid, err);
4611 return 0;
4612 }
4613
4614 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4615 {
4616 struct bnx2x_mcast_ramrod_params rparam;
4617 int rc;
4618
4619 memset(&rparam, 0, sizeof(rparam));
4620
4621 rparam.mcast_obj = &bp->mcast_obj;
4622
4623 netif_addr_lock_bh(bp->dev);
4624
4625 /* Clear pending state for the last command */
4626 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4627
4628 /* If there are pending mcast commands - send them */
4629 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4630 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4631 if (rc < 0)
4632 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4633 rc);
4634 }
4635
4636 netif_addr_unlock_bh(bp->dev);
4637 }
4638
4639 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4640 union event_ring_elem *elem)
4641 {
4642 unsigned long ramrod_flags = 0;
4643 int rc = 0;
4644 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4645 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4646
4647 /* Always push next commands out, don't wait here */
4648 __set_bit(RAMROD_CONT, &ramrod_flags);
4649
4650 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4651 case BNX2X_FILTER_MAC_PENDING:
4652 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4653 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4654 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4655 else
4656 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4657
4658 break;
4659 case BNX2X_FILTER_MCAST_PENDING:
4660 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4661 /* This is only relevant for 57710 where multicast MACs are
4662 * configured as unicast MACs using the same ramrod.
4663 */
4664 bnx2x_handle_mcast_eqe(bp);
4665 return;
4666 default:
4667 BNX2X_ERR("Unsupported classification command: %d\n",
4668 elem->message.data.eth_event.echo);
4669 return;
4670 }
4671
4672 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4673
4674 if (rc < 0)
4675 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4676 else if (rc > 0)
4677 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4678
4679 }
4680
4681 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4682
4683 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4684 {
4685 netif_addr_lock_bh(bp->dev);
4686
4687 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4688
4689 /* Send rx_mode command again if was requested */
4690 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4691 bnx2x_set_storm_rx_mode(bp);
4692 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4693 &bp->sp_state))
4694 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4695 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4696 &bp->sp_state))
4697 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4698
4699 netif_addr_unlock_bh(bp->dev);
4700 }
4701
4702 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4703 union event_ring_elem *elem)
4704 {
4705 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4706 DP(BNX2X_MSG_SP,
4707 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4708 elem->message.data.vif_list_event.func_bit_map);
4709 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4710 elem->message.data.vif_list_event.func_bit_map);
4711 } else if (elem->message.data.vif_list_event.echo ==
4712 VIF_LIST_RULE_SET) {
4713 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4714 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4715 }
4716 }
4717
4718 /* called with rtnl_lock */
4719 static void bnx2x_after_function_update(struct bnx2x *bp)
4720 {
4721 int q, rc;
4722 struct bnx2x_fastpath *fp;
4723 struct bnx2x_queue_state_params queue_params = {NULL};
4724 struct bnx2x_queue_update_params *q_update_params =
4725 &queue_params.params.update;
4726
4727 /* Send Q update command with afex vlan removal values for all Qs */
4728 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4729
4730 /* set silent vlan removal values according to vlan mode */
4731 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4732 &q_update_params->update_flags);
4733 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4734 &q_update_params->update_flags);
4735 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4736
4737 /* in access mode mark mask and value are 0 to strip all vlans */
4738 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4739 q_update_params->silent_removal_value = 0;
4740 q_update_params->silent_removal_mask = 0;
4741 } else {
4742 q_update_params->silent_removal_value =
4743 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
4744 q_update_params->silent_removal_mask = VLAN_VID_MASK;
4745 }
4746
4747 for_each_eth_queue(bp, q) {
4748 /* Set the appropriate Queue object */
4749 fp = &bp->fp[q];
4750 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4751
4752 /* send the ramrod */
4753 rc = bnx2x_queue_state_change(bp, &queue_params);
4754 if (rc < 0)
4755 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4756 q);
4757 }
4758
4759 if (!NO_FCOE(bp)) {
4760 fp = &bp->fp[FCOE_IDX(bp)];
4761 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4762
4763 /* clear pending completion bit */
4764 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4765
4766 /* mark latest Q bit */
4767 smp_mb__before_clear_bit();
4768 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4769 smp_mb__after_clear_bit();
4770
4771 /* send Q update ramrod for FCoE Q */
4772 rc = bnx2x_queue_state_change(bp, &queue_params);
4773 if (rc < 0)
4774 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4775 q);
4776 } else {
4777 /* If no FCoE ring - ACK MCP now */
4778 bnx2x_link_report(bp);
4779 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4780 }
4781 }
4782
4783 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4784 struct bnx2x *bp, u32 cid)
4785 {
4786 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4787
4788 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
4789 return &bnx2x_fcoe_sp_obj(bp, q_obj);
4790 else
4791 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
4792 }
4793
4794 static void bnx2x_eq_int(struct bnx2x *bp)
4795 {
4796 u16 hw_cons, sw_cons, sw_prod;
4797 union event_ring_elem *elem;
4798 u8 echo;
4799 u32 cid;
4800 u8 opcode;
4801 int spqe_cnt = 0;
4802 struct bnx2x_queue_sp_obj *q_obj;
4803 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4804 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4805
4806 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4807
4808 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4809 * when we get the the next-page we nned to adjust so the loop
4810 * condition below will be met. The next element is the size of a
4811 * regular element and hence incrementing by 1
4812 */
4813 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4814 hw_cons++;
4815
4816 /* This function may never run in parallel with itself for a
4817 * specific bp, thus there is no need in "paired" read memory
4818 * barrier here.
4819 */
4820 sw_cons = bp->eq_cons;
4821 sw_prod = bp->eq_prod;
4822
4823 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
4824 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4825
4826 for (; sw_cons != hw_cons;
4827 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4828
4829
4830 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4831
4832 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4833 opcode = elem->message.opcode;
4834
4835
4836 /* handle eq element */
4837 switch (opcode) {
4838 case EVENT_RING_OPCODE_STAT_QUERY:
4839 DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4840 "got statistics comp event %d\n",
4841 bp->stats_comp++);
4842 /* nothing to do with stats comp */
4843 goto next_spqe;
4844
4845 case EVENT_RING_OPCODE_CFC_DEL:
4846 /* handle according to cid range */
4847 /*
4848 * we may want to verify here that the bp state is
4849 * HALTING
4850 */
4851 DP(BNX2X_MSG_SP,
4852 "got delete ramrod for MULTI[%d]\n", cid);
4853
4854 if (CNIC_LOADED(bp) &&
4855 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4856 goto next_spqe;
4857
4858 q_obj = bnx2x_cid_to_q_obj(bp, cid);
4859
4860 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4861 break;
4862
4863
4864
4865 goto next_spqe;
4866
4867 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4868 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4869 if (f_obj->complete_cmd(bp, f_obj,
4870 BNX2X_F_CMD_TX_STOP))
4871 break;
4872 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4873 goto next_spqe;
4874
4875 case EVENT_RING_OPCODE_START_TRAFFIC:
4876 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4877 if (f_obj->complete_cmd(bp, f_obj,
4878 BNX2X_F_CMD_TX_START))
4879 break;
4880 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4881 goto next_spqe;
4882
4883 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4884 echo = elem->message.data.function_update_event.echo;
4885 if (echo == SWITCH_UPDATE) {
4886 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4887 "got FUNC_SWITCH_UPDATE ramrod\n");
4888 if (f_obj->complete_cmd(
4889 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
4890 break;
4891
4892 } else {
4893 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
4894 "AFEX: ramrod completed FUNCTION_UPDATE\n");
4895 f_obj->complete_cmd(bp, f_obj,
4896 BNX2X_F_CMD_AFEX_UPDATE);
4897
4898 /* We will perform the Queues update from
4899 * sp_rtnl task as all Queue SP operations
4900 * should run under rtnl_lock.
4901 */
4902 smp_mb__before_clear_bit();
4903 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
4904 &bp->sp_rtnl_state);
4905 smp_mb__after_clear_bit();
4906
4907 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4908 }
4909
4910 goto next_spqe;
4911
4912 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
4913 f_obj->complete_cmd(bp, f_obj,
4914 BNX2X_F_CMD_AFEX_VIFLISTS);
4915 bnx2x_after_afex_vif_lists(bp, elem);
4916 goto next_spqe;
4917 case EVENT_RING_OPCODE_FUNCTION_START:
4918 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4919 "got FUNC_START ramrod\n");
4920 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4921 break;
4922
4923 goto next_spqe;
4924
4925 case EVENT_RING_OPCODE_FUNCTION_STOP:
4926 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4927 "got FUNC_STOP ramrod\n");
4928 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4929 break;
4930
4931 goto next_spqe;
4932 }
4933
4934 switch (opcode | bp->state) {
4935 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4936 BNX2X_STATE_OPEN):
4937 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4938 BNX2X_STATE_OPENING_WAIT4_PORT):
4939 cid = elem->message.data.eth_event.echo &
4940 BNX2X_SWCID_MASK;
4941 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4942 cid);
4943 rss_raw->clear_pending(rss_raw);
4944 break;
4945
4946 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4947 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4948 case (EVENT_RING_OPCODE_SET_MAC |
4949 BNX2X_STATE_CLOSING_WAIT4_HALT):
4950 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4951 BNX2X_STATE_OPEN):
4952 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4953 BNX2X_STATE_DIAG):
4954 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4955 BNX2X_STATE_CLOSING_WAIT4_HALT):
4956 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4957 bnx2x_handle_classification_eqe(bp, elem);
4958 break;
4959
4960 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4961 BNX2X_STATE_OPEN):
4962 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4963 BNX2X_STATE_DIAG):
4964 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4965 BNX2X_STATE_CLOSING_WAIT4_HALT):
4966 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4967 bnx2x_handle_mcast_eqe(bp);
4968 break;
4969
4970 case (EVENT_RING_OPCODE_FILTERS_RULES |
4971 BNX2X_STATE_OPEN):
4972 case (EVENT_RING_OPCODE_FILTERS_RULES |
4973 BNX2X_STATE_DIAG):
4974 case (EVENT_RING_OPCODE_FILTERS_RULES |
4975 BNX2X_STATE_CLOSING_WAIT4_HALT):
4976 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4977 bnx2x_handle_rx_mode_eqe(bp);
4978 break;
4979 default:
4980 /* unknown event log error and continue */
4981 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4982 elem->message.opcode, bp->state);
4983 }
4984 next_spqe:
4985 spqe_cnt++;
4986 } /* for */
4987
4988 smp_mb__before_atomic_inc();
4989 atomic_add(spqe_cnt, &bp->eq_spq_left);
4990
4991 bp->eq_cons = sw_cons;
4992 bp->eq_prod = sw_prod;
4993 /* Make sure that above mem writes were issued towards the memory */
4994 smp_wmb();
4995
4996 /* update producer */
4997 bnx2x_update_eq_prod(bp, bp->eq_prod);
4998 }
4999
5000 static void bnx2x_sp_task(struct work_struct *work)
5001 {
5002 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5003 u16 status;
5004
5005 status = bnx2x_update_dsb_idx(bp);
5006 /* if (status == 0) */
5007 /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
5008
5009 DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
5010
5011 /* HW attentions */
5012 if (status & BNX2X_DEF_SB_ATT_IDX) {
5013 bnx2x_attn_int(bp);
5014 status &= ~BNX2X_DEF_SB_ATT_IDX;
5015 }
5016
5017 /* SP events: STAT_QUERY and others */
5018 if (status & BNX2X_DEF_SB_IDX) {
5019 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5020
5021 if (FCOE_INIT(bp) &&
5022 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5023 /*
5024 * Prevent local bottom-halves from running as
5025 * we are going to change the local NAPI list.
5026 */
5027 local_bh_disable();
5028 napi_schedule(&bnx2x_fcoe(bp, napi));
5029 local_bh_enable();
5030 }
5031
5032 /* Handle EQ completions */
5033 bnx2x_eq_int(bp);
5034
5035 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5036 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5037
5038 status &= ~BNX2X_DEF_SB_IDX;
5039 }
5040
5041 if (unlikely(status))
5042 DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
5043 status);
5044
5045 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5046 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5047
5048 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5049 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5050 &bp->sp_state)) {
5051 bnx2x_link_report(bp);
5052 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5053 }
5054 }
5055
5056 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5057 {
5058 struct net_device *dev = dev_instance;
5059 struct bnx2x *bp = netdev_priv(dev);
5060
5061 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5062 IGU_INT_DISABLE, 0);
5063
5064 #ifdef BNX2X_STOP_ON_ERROR
5065 if (unlikely(bp->panic))
5066 return IRQ_HANDLED;
5067 #endif
5068
5069 if (CNIC_LOADED(bp)) {
5070 struct cnic_ops *c_ops;
5071
5072 rcu_read_lock();
5073 c_ops = rcu_dereference(bp->cnic_ops);
5074 if (c_ops)
5075 c_ops->cnic_handler(bp->cnic_data, NULL);
5076 rcu_read_unlock();
5077 }
5078
5079 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
5080
5081 return IRQ_HANDLED;
5082 }
5083
5084 /* end of slow path */
5085
5086
5087 void bnx2x_drv_pulse(struct bnx2x *bp)
5088 {
5089 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5090 bp->fw_drv_pulse_wr_seq);
5091 }
5092
5093
5094 static void bnx2x_timer(unsigned long data)
5095 {
5096 struct bnx2x *bp = (struct bnx2x *) data;
5097
5098 if (!netif_running(bp->dev))
5099 return;
5100
5101 if (!BP_NOMCP(bp)) {
5102 int mb_idx = BP_FW_MB_IDX(bp);
5103 u32 drv_pulse;
5104 u32 mcp_pulse;
5105
5106 ++bp->fw_drv_pulse_wr_seq;
5107 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5108 /* TBD - add SYSTEM_TIME */
5109 drv_pulse = bp->fw_drv_pulse_wr_seq;
5110 bnx2x_drv_pulse(bp);
5111
5112 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5113 MCP_PULSE_SEQ_MASK);
5114 /* The delta between driver pulse and mcp response
5115 * should be 1 (before mcp response) or 0 (after mcp response)
5116 */
5117 if ((drv_pulse != mcp_pulse) &&
5118 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5119 /* someone lost a heartbeat... */
5120 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5121 drv_pulse, mcp_pulse);
5122 }
5123 }
5124
5125 if (bp->state == BNX2X_STATE_OPEN)
5126 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5127
5128 mod_timer(&bp->timer, jiffies + bp->current_interval);
5129 }
5130
5131 /* end of Statistics */
5132
5133 /* nic init */
5134
5135 /*
5136 * nic init service functions
5137 */
5138
5139 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5140 {
5141 u32 i;
5142 if (!(len%4) && !(addr%4))
5143 for (i = 0; i < len; i += 4)
5144 REG_WR(bp, addr + i, fill);
5145 else
5146 for (i = 0; i < len; i++)
5147 REG_WR8(bp, addr + i, fill);
5148
5149 }
5150
5151 /* helper: writes FP SP data to FW - data_size in dwords */
5152 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5153 int fw_sb_id,
5154 u32 *sb_data_p,
5155 u32 data_size)
5156 {
5157 int index;
5158 for (index = 0; index < data_size; index++)
5159 REG_WR(bp, BAR_CSTRORM_INTMEM +
5160 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5161 sizeof(u32)*index,
5162 *(sb_data_p + index));
5163 }
5164
5165 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5166 {
5167 u32 *sb_data_p;
5168 u32 data_size = 0;
5169 struct hc_status_block_data_e2 sb_data_e2;
5170 struct hc_status_block_data_e1x sb_data_e1x;
5171
5172 /* disable the function first */
5173 if (!CHIP_IS_E1x(bp)) {
5174 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5175 sb_data_e2.common.state = SB_DISABLED;
5176 sb_data_e2.common.p_func.vf_valid = false;
5177 sb_data_p = (u32 *)&sb_data_e2;
5178 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5179 } else {
5180 memset(&sb_data_e1x, 0,
5181 sizeof(struct hc_status_block_data_e1x));
5182 sb_data_e1x.common.state = SB_DISABLED;
5183 sb_data_e1x.common.p_func.vf_valid = false;
5184 sb_data_p = (u32 *)&sb_data_e1x;
5185 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5186 }
5187 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5188
5189 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5190 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5191 CSTORM_STATUS_BLOCK_SIZE);
5192 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5193 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5194 CSTORM_SYNC_BLOCK_SIZE);
5195 }
5196
5197 /* helper: writes SP SB data to FW */
5198 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5199 struct hc_sp_status_block_data *sp_sb_data)
5200 {
5201 int func = BP_FUNC(bp);
5202 int i;
5203 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5204 REG_WR(bp, BAR_CSTRORM_INTMEM +
5205 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5206 i*sizeof(u32),
5207 *((u32 *)sp_sb_data + i));
5208 }
5209
5210 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5211 {
5212 int func = BP_FUNC(bp);
5213 struct hc_sp_status_block_data sp_sb_data;
5214 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5215
5216 sp_sb_data.state = SB_DISABLED;
5217 sp_sb_data.p_func.vf_valid = false;
5218
5219 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5220
5221 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5222 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5223 CSTORM_SP_STATUS_BLOCK_SIZE);
5224 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5225 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5226 CSTORM_SP_SYNC_BLOCK_SIZE);
5227
5228 }
5229
5230
5231 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5232 int igu_sb_id, int igu_seg_id)
5233 {
5234 hc_sm->igu_sb_id = igu_sb_id;
5235 hc_sm->igu_seg_id = igu_seg_id;
5236 hc_sm->timer_value = 0xFF;
5237 hc_sm->time_to_expire = 0xFFFFFFFF;
5238 }
5239
5240
5241 /* allocates state machine ids. */
5242 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5243 {
5244 /* zero out state machine indices */
5245 /* rx indices */
5246 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5247
5248 /* tx indices */
5249 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5250 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5251 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5252 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5253
5254 /* map indices */
5255 /* rx indices */
5256 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5257 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5258
5259 /* tx indices */
5260 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5261 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5262 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5263 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5264 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5265 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5266 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5267 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5268 }
5269
5270 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5271 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5272 {
5273 int igu_seg_id;
5274
5275 struct hc_status_block_data_e2 sb_data_e2;
5276 struct hc_status_block_data_e1x sb_data_e1x;
5277 struct hc_status_block_sm *hc_sm_p;
5278 int data_size;
5279 u32 *sb_data_p;
5280
5281 if (CHIP_INT_MODE_IS_BC(bp))
5282 igu_seg_id = HC_SEG_ACCESS_NORM;
5283 else
5284 igu_seg_id = IGU_SEG_ACCESS_NORM;
5285
5286 bnx2x_zero_fp_sb(bp, fw_sb_id);
5287
5288 if (!CHIP_IS_E1x(bp)) {
5289 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5290 sb_data_e2.common.state = SB_ENABLED;
5291 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5292 sb_data_e2.common.p_func.vf_id = vfid;
5293 sb_data_e2.common.p_func.vf_valid = vf_valid;
5294 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5295 sb_data_e2.common.same_igu_sb_1b = true;
5296 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5297 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5298 hc_sm_p = sb_data_e2.common.state_machine;
5299 sb_data_p = (u32 *)&sb_data_e2;
5300 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5301 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5302 } else {
5303 memset(&sb_data_e1x, 0,
5304 sizeof(struct hc_status_block_data_e1x));
5305 sb_data_e1x.common.state = SB_ENABLED;
5306 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5307 sb_data_e1x.common.p_func.vf_id = 0xff;
5308 sb_data_e1x.common.p_func.vf_valid = false;
5309 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5310 sb_data_e1x.common.same_igu_sb_1b = true;
5311 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5312 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5313 hc_sm_p = sb_data_e1x.common.state_machine;
5314 sb_data_p = (u32 *)&sb_data_e1x;
5315 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5316 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5317 }
5318
5319 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5320 igu_sb_id, igu_seg_id);
5321 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5322 igu_sb_id, igu_seg_id);
5323
5324 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5325
5326 /* write indecies to HW */
5327 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5328 }
5329
5330 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5331 u16 tx_usec, u16 rx_usec)
5332 {
5333 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5334 false, rx_usec);
5335 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5336 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5337 tx_usec);
5338 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5339 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5340 tx_usec);
5341 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5342 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5343 tx_usec);
5344 }
5345
5346 static void bnx2x_init_def_sb(struct bnx2x *bp)
5347 {
5348 struct host_sp_status_block *def_sb = bp->def_status_blk;
5349 dma_addr_t mapping = bp->def_status_blk_mapping;
5350 int igu_sp_sb_index;
5351 int igu_seg_id;
5352 int port = BP_PORT(bp);
5353 int func = BP_FUNC(bp);
5354 int reg_offset, reg_offset_en5;
5355 u64 section;
5356 int index;
5357 struct hc_sp_status_block_data sp_sb_data;
5358 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5359
5360 if (CHIP_INT_MODE_IS_BC(bp)) {
5361 igu_sp_sb_index = DEF_SB_IGU_ID;
5362 igu_seg_id = HC_SEG_ACCESS_DEF;
5363 } else {
5364 igu_sp_sb_index = bp->igu_dsb_id;
5365 igu_seg_id = IGU_SEG_ACCESS_DEF;
5366 }
5367
5368 /* ATTN */
5369 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5370 atten_status_block);
5371 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5372
5373 bp->attn_state = 0;
5374
5375 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5376 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5377 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5378 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5379 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5380 int sindex;
5381 /* take care of sig[0]..sig[4] */
5382 for (sindex = 0; sindex < 4; sindex++)
5383 bp->attn_group[index].sig[sindex] =
5384 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5385
5386 if (!CHIP_IS_E1x(bp))
5387 /*
5388 * enable5 is separate from the rest of the registers,
5389 * and therefore the address skip is 4
5390 * and not 16 between the different groups
5391 */
5392 bp->attn_group[index].sig[4] = REG_RD(bp,
5393 reg_offset_en5 + 0x4*index);
5394 else
5395 bp->attn_group[index].sig[4] = 0;
5396 }
5397
5398 if (bp->common.int_block == INT_BLOCK_HC) {
5399 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5400 HC_REG_ATTN_MSG0_ADDR_L);
5401
5402 REG_WR(bp, reg_offset, U64_LO(section));
5403 REG_WR(bp, reg_offset + 4, U64_HI(section));
5404 } else if (!CHIP_IS_E1x(bp)) {
5405 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5406 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5407 }
5408
5409 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5410 sp_sb);
5411
5412 bnx2x_zero_sp_sb(bp);
5413
5414 sp_sb_data.state = SB_ENABLED;
5415 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5416 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5417 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5418 sp_sb_data.igu_seg_id = igu_seg_id;
5419 sp_sb_data.p_func.pf_id = func;
5420 sp_sb_data.p_func.vnic_id = BP_VN(bp);
5421 sp_sb_data.p_func.vf_id = 0xff;
5422
5423 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5424
5425 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5426 }
5427
5428 void bnx2x_update_coalesce(struct bnx2x *bp)
5429 {
5430 int i;
5431
5432 for_each_eth_queue(bp, i)
5433 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5434 bp->tx_ticks, bp->rx_ticks);
5435 }
5436
5437 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5438 {
5439 spin_lock_init(&bp->spq_lock);
5440 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5441
5442 bp->spq_prod_idx = 0;
5443 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5444 bp->spq_prod_bd = bp->spq;
5445 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5446 }
5447
5448 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5449 {
5450 int i;
5451 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5452 union event_ring_elem *elem =
5453 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5454
5455 elem->next_page.addr.hi =
5456 cpu_to_le32(U64_HI(bp->eq_mapping +
5457 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5458 elem->next_page.addr.lo =
5459 cpu_to_le32(U64_LO(bp->eq_mapping +
5460 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5461 }
5462 bp->eq_cons = 0;
5463 bp->eq_prod = NUM_EQ_DESC;
5464 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5465 /* we want a warning message before it gets rought... */
5466 atomic_set(&bp->eq_spq_left,
5467 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5468 }
5469
5470
5471 /* called with netif_addr_lock_bh() */
5472 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5473 unsigned long rx_mode_flags,
5474 unsigned long rx_accept_flags,
5475 unsigned long tx_accept_flags,
5476 unsigned long ramrod_flags)
5477 {
5478 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5479 int rc;
5480
5481 memset(&ramrod_param, 0, sizeof(ramrod_param));
5482
5483 /* Prepare ramrod parameters */
5484 ramrod_param.cid = 0;
5485 ramrod_param.cl_id = cl_id;
5486 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5487 ramrod_param.func_id = BP_FUNC(bp);
5488
5489 ramrod_param.pstate = &bp->sp_state;
5490 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5491
5492 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5493 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5494
5495 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5496
5497 ramrod_param.ramrod_flags = ramrod_flags;
5498 ramrod_param.rx_mode_flags = rx_mode_flags;
5499
5500 ramrod_param.rx_accept_flags = rx_accept_flags;
5501 ramrod_param.tx_accept_flags = tx_accept_flags;
5502
5503 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5504 if (rc < 0) {
5505 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5506 return;
5507 }
5508 }
5509
5510 /* called with netif_addr_lock_bh() */
5511 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5512 {
5513 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5514 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5515
5516 if (!NO_FCOE(bp))
5517
5518 /* Configure rx_mode of FCoE Queue */
5519 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5520
5521 switch (bp->rx_mode) {
5522 case BNX2X_RX_MODE_NONE:
5523 /*
5524 * 'drop all' supersedes any accept flags that may have been
5525 * passed to the function.
5526 */
5527 break;
5528 case BNX2X_RX_MODE_NORMAL:
5529 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5530 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5531 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5532
5533 /* internal switching mode */
5534 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5535 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5536 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5537
5538 break;
5539 case BNX2X_RX_MODE_ALLMULTI:
5540 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5541 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5542 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5543
5544 /* internal switching mode */
5545 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5546 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5547 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5548
5549 break;
5550 case BNX2X_RX_MODE_PROMISC:
5551 /* According to deffinition of SI mode, iface in promisc mode
5552 * should receive matched and unmatched (in resolution of port)
5553 * unicast packets.
5554 */
5555 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5556 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5557 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5558 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5559
5560 /* internal switching mode */
5561 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5562 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5563
5564 if (IS_MF_SI(bp))
5565 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5566 else
5567 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5568
5569 break;
5570 default:
5571 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5572 return;
5573 }
5574
5575 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5576 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5577 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5578 }
5579
5580 __set_bit(RAMROD_RX, &ramrod_flags);
5581 __set_bit(RAMROD_TX, &ramrod_flags);
5582
5583 bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5584 tx_accept_flags, ramrod_flags);
5585 }
5586
5587 static void bnx2x_init_internal_common(struct bnx2x *bp)
5588 {
5589 int i;
5590
5591 if (IS_MF_SI(bp))
5592 /*
5593 * In switch independent mode, the TSTORM needs to accept
5594 * packets that failed classification, since approximate match
5595 * mac addresses aren't written to NIG LLH
5596 */
5597 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5598 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5599 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5600 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5601 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5602
5603 /* Zero this manually as its initialization is
5604 currently missing in the initTool */
5605 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5606 REG_WR(bp, BAR_USTRORM_INTMEM +
5607 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5608 if (!CHIP_IS_E1x(bp)) {
5609 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5610 CHIP_INT_MODE_IS_BC(bp) ?
5611 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5612 }
5613 }
5614
5615 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5616 {
5617 switch (load_code) {
5618 case FW_MSG_CODE_DRV_LOAD_COMMON:
5619 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5620 bnx2x_init_internal_common(bp);
5621 /* no break */
5622
5623 case FW_MSG_CODE_DRV_LOAD_PORT:
5624 /* nothing to do */
5625 /* no break */
5626
5627 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5628 /* internal memory per function is
5629 initialized inside bnx2x_pf_init */
5630 break;
5631
5632 default:
5633 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5634 break;
5635 }
5636 }
5637
5638 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5639 {
5640 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5641 }
5642
5643 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5644 {
5645 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
5646 }
5647
5648 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5649 {
5650 if (CHIP_IS_E1x(fp->bp))
5651 return BP_L_ID(fp->bp) + fp->index;
5652 else /* We want Client ID to be the same as IGU SB ID for 57712 */
5653 return bnx2x_fp_igu_sb_id(fp);
5654 }
5655
5656 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5657 {
5658 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5659 u8 cos;
5660 unsigned long q_type = 0;
5661 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5662 fp->rx_queue = fp_idx;
5663 fp->cid = fp_idx;
5664 fp->cl_id = bnx2x_fp_cl_id(fp);
5665 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5666 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5667 /* qZone id equals to FW (per path) client id */
5668 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
5669
5670 /* init shortcut */
5671 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5672
5673 /* Setup SB indicies */
5674 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5675
5676 /* Configure Queue State object */
5677 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5678 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5679
5680 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5681
5682 /* init tx data */
5683 for_each_cos_in_tx_queue(fp, cos) {
5684 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
5685 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
5686 FP_COS_TO_TXQ(fp, cos, bp),
5687 BNX2X_TX_SB_INDEX_BASE + cos, fp);
5688 cids[cos] = fp->txdata_ptr[cos]->cid;
5689 }
5690
5691 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
5692 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5693 bnx2x_sp_mapping(bp, q_rdata), q_type);
5694
5695 /**
5696 * Configure classification DBs: Always enable Tx switching
5697 */
5698 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5699
5700 DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
5701 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5702 fp->igu_sb_id);
5703 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5704 fp->fw_sb_id, fp->igu_sb_id);
5705
5706 bnx2x_update_fpsb_idx(fp);
5707 }
5708
5709 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5710 {
5711 int i;
5712
5713 for (i = 1; i <= NUM_TX_RINGS; i++) {
5714 struct eth_tx_next_bd *tx_next_bd =
5715 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5716
5717 tx_next_bd->addr_hi =
5718 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5719 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5720 tx_next_bd->addr_lo =
5721 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5722 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5723 }
5724
5725 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5726 txdata->tx_db.data.zero_fill1 = 0;
5727 txdata->tx_db.data.prod = 0;
5728
5729 txdata->tx_pkt_prod = 0;
5730 txdata->tx_pkt_cons = 0;
5731 txdata->tx_bd_prod = 0;
5732 txdata->tx_bd_cons = 0;
5733 txdata->tx_pkt = 0;
5734 }
5735
5736 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
5737 {
5738 int i;
5739
5740 for_each_tx_queue_cnic(bp, i)
5741 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
5742 }
5743 static void bnx2x_init_tx_rings(struct bnx2x *bp)
5744 {
5745 int i;
5746 u8 cos;
5747
5748 for_each_eth_queue(bp, i)
5749 for_each_cos_in_tx_queue(&bp->fp[i], cos)
5750 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
5751 }
5752
5753 void bnx2x_nic_init_cnic(struct bnx2x *bp)
5754 {
5755 if (!NO_FCOE(bp))
5756 bnx2x_init_fcoe_fp(bp);
5757
5758 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5759 BNX2X_VF_ID_INVALID, false,
5760 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5761
5762 /* ensure status block indices were read */
5763 rmb();
5764 bnx2x_init_rx_rings_cnic(bp);
5765 bnx2x_init_tx_rings_cnic(bp);
5766
5767 /* flush all */
5768 mb();
5769 mmiowb();
5770 }
5771
5772 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5773 {
5774 int i;
5775
5776 for_each_eth_queue(bp, i)
5777 bnx2x_init_eth_fp(bp, i);
5778 /* Initialize MOD_ABS interrupts */
5779 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5780 bp->common.shmem_base, bp->common.shmem2_base,
5781 BP_PORT(bp));
5782 /* ensure status block indices were read */
5783 rmb();
5784
5785 bnx2x_init_def_sb(bp);
5786 bnx2x_update_dsb_idx(bp);
5787 bnx2x_init_rx_rings(bp);
5788 bnx2x_init_tx_rings(bp);
5789 bnx2x_init_sp_ring(bp);
5790 bnx2x_init_eq_ring(bp);
5791 bnx2x_init_internal(bp, load_code);
5792 bnx2x_pf_init(bp);
5793 bnx2x_stats_init(bp);
5794
5795 /* flush all before enabling interrupts */
5796 mb();
5797 mmiowb();
5798
5799 bnx2x_int_enable(bp);
5800
5801 /* Check for SPIO5 */
5802 bnx2x_attn_int_deasserted0(bp,
5803 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5804 AEU_INPUTS_ATTN_BITS_SPIO5);
5805 }
5806
5807 /* end of nic init */
5808
5809 /*
5810 * gzip service functions
5811 */
5812
5813 static int bnx2x_gunzip_init(struct bnx2x *bp)
5814 {
5815 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5816 &bp->gunzip_mapping, GFP_KERNEL);
5817 if (bp->gunzip_buf == NULL)
5818 goto gunzip_nomem1;
5819
5820 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5821 if (bp->strm == NULL)
5822 goto gunzip_nomem2;
5823
5824 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5825 if (bp->strm->workspace == NULL)
5826 goto gunzip_nomem3;
5827
5828 return 0;
5829
5830 gunzip_nomem3:
5831 kfree(bp->strm);
5832 bp->strm = NULL;
5833
5834 gunzip_nomem2:
5835 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5836 bp->gunzip_mapping);
5837 bp->gunzip_buf = NULL;
5838
5839 gunzip_nomem1:
5840 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5841 return -ENOMEM;
5842 }
5843
5844 static void bnx2x_gunzip_end(struct bnx2x *bp)
5845 {
5846 if (bp->strm) {
5847 vfree(bp->strm->workspace);
5848 kfree(bp->strm);
5849 bp->strm = NULL;
5850 }
5851
5852 if (bp->gunzip_buf) {
5853 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5854 bp->gunzip_mapping);
5855 bp->gunzip_buf = NULL;
5856 }
5857 }
5858
5859 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5860 {
5861 int n, rc;
5862
5863 /* check gzip header */
5864 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5865 BNX2X_ERR("Bad gzip header\n");
5866 return -EINVAL;
5867 }
5868
5869 n = 10;
5870
5871 #define FNAME 0x8
5872
5873 if (zbuf[3] & FNAME)
5874 while ((zbuf[n++] != 0) && (n < len));
5875
5876 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5877 bp->strm->avail_in = len - n;
5878 bp->strm->next_out = bp->gunzip_buf;
5879 bp->strm->avail_out = FW_BUF_SIZE;
5880
5881 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5882 if (rc != Z_OK)
5883 return rc;
5884
5885 rc = zlib_inflate(bp->strm, Z_FINISH);
5886 if ((rc != Z_OK) && (rc != Z_STREAM_END))
5887 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5888 bp->strm->msg);
5889
5890 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5891 if (bp->gunzip_outlen & 0x3)
5892 netdev_err(bp->dev,
5893 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5894 bp->gunzip_outlen);
5895 bp->gunzip_outlen >>= 2;
5896
5897 zlib_inflateEnd(bp->strm);
5898
5899 if (rc == Z_STREAM_END)
5900 return 0;
5901
5902 return rc;
5903 }
5904
5905 /* nic load/unload */
5906
5907 /*
5908 * General service functions
5909 */
5910
5911 /* send a NIG loopback debug packet */
5912 static void bnx2x_lb_pckt(struct bnx2x *bp)
5913 {
5914 u32 wb_write[3];
5915
5916 /* Ethernet source and destination addresses */
5917 wb_write[0] = 0x55555555;
5918 wb_write[1] = 0x55555555;
5919 wb_write[2] = 0x20; /* SOP */
5920 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5921
5922 /* NON-IP protocol */
5923 wb_write[0] = 0x09000000;
5924 wb_write[1] = 0x55555555;
5925 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
5926 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5927 }
5928
5929 /* some of the internal memories
5930 * are not directly readable from the driver
5931 * to test them we send debug packets
5932 */
5933 static int bnx2x_int_mem_test(struct bnx2x *bp)
5934 {
5935 int factor;
5936 int count, i;
5937 u32 val = 0;
5938
5939 if (CHIP_REV_IS_FPGA(bp))
5940 factor = 120;
5941 else if (CHIP_REV_IS_EMUL(bp))
5942 factor = 200;
5943 else
5944 factor = 1;
5945
5946 /* Disable inputs of parser neighbor blocks */
5947 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5948 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5949 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5950 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5951
5952 /* Write 0 to parser credits for CFC search request */
5953 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5954
5955 /* send Ethernet packet */
5956 bnx2x_lb_pckt(bp);
5957
5958 /* TODO do i reset NIG statistic? */
5959 /* Wait until NIG register shows 1 packet of size 0x10 */
5960 count = 1000 * factor;
5961 while (count) {
5962
5963 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5964 val = *bnx2x_sp(bp, wb_data[0]);
5965 if (val == 0x10)
5966 break;
5967
5968 msleep(10);
5969 count--;
5970 }
5971 if (val != 0x10) {
5972 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5973 return -1;
5974 }
5975
5976 /* Wait until PRS register shows 1 packet */
5977 count = 1000 * factor;
5978 while (count) {
5979 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5980 if (val == 1)
5981 break;
5982
5983 msleep(10);
5984 count--;
5985 }
5986 if (val != 0x1) {
5987 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5988 return -2;
5989 }
5990
5991 /* Reset and init BRB, PRS */
5992 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5993 msleep(50);
5994 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5995 msleep(50);
5996 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5997 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5998
5999 DP(NETIF_MSG_HW, "part2\n");
6000
6001 /* Disable inputs of parser neighbor blocks */
6002 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6003 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6004 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6005 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6006
6007 /* Write 0 to parser credits for CFC search request */
6008 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6009
6010 /* send 10 Ethernet packets */
6011 for (i = 0; i < 10; i++)
6012 bnx2x_lb_pckt(bp);
6013
6014 /* Wait until NIG register shows 10 + 1
6015 packets of size 11*0x10 = 0xb0 */
6016 count = 1000 * factor;
6017 while (count) {
6018
6019 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6020 val = *bnx2x_sp(bp, wb_data[0]);
6021 if (val == 0xb0)
6022 break;
6023
6024 msleep(10);
6025 count--;
6026 }
6027 if (val != 0xb0) {
6028 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6029 return -3;
6030 }
6031
6032 /* Wait until PRS register shows 2 packets */
6033 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6034 if (val != 2)
6035 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6036
6037 /* Write 1 to parser credits for CFC search request */
6038 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6039
6040 /* Wait until PRS register shows 3 packets */
6041 msleep(10 * factor);
6042 /* Wait until NIG register shows 1 packet of size 0x10 */
6043 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6044 if (val != 3)
6045 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6046
6047 /* clear NIG EOP FIFO */
6048 for (i = 0; i < 11; i++)
6049 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6050 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6051 if (val != 1) {
6052 BNX2X_ERR("clear of NIG failed\n");
6053 return -4;
6054 }
6055
6056 /* Reset and init BRB, PRS, NIG */
6057 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6058 msleep(50);
6059 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6060 msleep(50);
6061 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6062 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6063 if (!CNIC_SUPPORT(bp))
6064 /* set NIC mode */
6065 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6066
6067 /* Enable inputs of parser neighbor blocks */
6068 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6069 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6070 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6071 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6072
6073 DP(NETIF_MSG_HW, "done\n");
6074
6075 return 0; /* OK */
6076 }
6077
6078 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6079 {
6080 u32 val;
6081
6082 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6083 if (!CHIP_IS_E1x(bp))
6084 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6085 else
6086 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6087 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6088 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6089 /*
6090 * mask read length error interrupts in brb for parser
6091 * (parsing unit and 'checksum and crc' unit)
6092 * these errors are legal (PU reads fixed length and CAC can cause
6093 * read length error on truncated packets)
6094 */
6095 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6096 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6097 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6098 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6099 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6100 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6101 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6102 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6103 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6104 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6105 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6106 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6107 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6108 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6109 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6110 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6111 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6112 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6113 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6114
6115 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6116 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6117 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6118 if (!CHIP_IS_E1x(bp))
6119 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6120 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6121 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6122
6123 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6124 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6125 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6126 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6127
6128 if (!CHIP_IS_E1x(bp))
6129 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6130 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6131
6132 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6133 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6134 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6135 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6136 }
6137
6138 static void bnx2x_reset_common(struct bnx2x *bp)
6139 {
6140 u32 val = 0x1400;
6141
6142 /* reset_common */
6143 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6144 0xd3ffff7f);
6145
6146 if (CHIP_IS_E3(bp)) {
6147 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6148 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6149 }
6150
6151 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6152 }
6153
6154 static void bnx2x_setup_dmae(struct bnx2x *bp)
6155 {
6156 bp->dmae_ready = 0;
6157 spin_lock_init(&bp->dmae_lock);
6158 }
6159
6160 static void bnx2x_init_pxp(struct bnx2x *bp)
6161 {
6162 u16 devctl;
6163 int r_order, w_order;
6164
6165 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6166 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6167 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6168 if (bp->mrrs == -1)
6169 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6170 else {
6171 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6172 r_order = bp->mrrs;
6173 }
6174
6175 bnx2x_init_pxp_arb(bp, r_order, w_order);
6176 }
6177
6178 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6179 {
6180 int is_required;
6181 u32 val;
6182 int port;
6183
6184 if (BP_NOMCP(bp))
6185 return;
6186
6187 is_required = 0;
6188 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6189 SHARED_HW_CFG_FAN_FAILURE_MASK;
6190
6191 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6192 is_required = 1;
6193
6194 /*
6195 * The fan failure mechanism is usually related to the PHY type since
6196 * the power consumption of the board is affected by the PHY. Currently,
6197 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6198 */
6199 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6200 for (port = PORT_0; port < PORT_MAX; port++) {
6201 is_required |=
6202 bnx2x_fan_failure_det_req(
6203 bp,
6204 bp->common.shmem_base,
6205 bp->common.shmem2_base,
6206 port);
6207 }
6208
6209 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6210
6211 if (is_required == 0)
6212 return;
6213
6214 /* Fan failure is indicated by SPIO 5 */
6215 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6216
6217 /* set to active low mode */
6218 val = REG_RD(bp, MISC_REG_SPIO_INT);
6219 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6220 REG_WR(bp, MISC_REG_SPIO_INT, val);
6221
6222 /* enable interrupt to signal the IGU */
6223 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6224 val |= MISC_SPIO_SPIO5;
6225 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6226 }
6227
6228 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
6229 {
6230 u32 offset = 0;
6231
6232 if (CHIP_IS_E1(bp))
6233 return;
6234 if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
6235 return;
6236
6237 switch (BP_ABS_FUNC(bp)) {
6238 case 0:
6239 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
6240 break;
6241 case 1:
6242 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
6243 break;
6244 case 2:
6245 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
6246 break;
6247 case 3:
6248 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
6249 break;
6250 case 4:
6251 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
6252 break;
6253 case 5:
6254 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
6255 break;
6256 case 6:
6257 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
6258 break;
6259 case 7:
6260 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
6261 break;
6262 default:
6263 return;
6264 }
6265
6266 REG_WR(bp, offset, pretend_func_num);
6267 REG_RD(bp, offset);
6268 DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
6269 }
6270
6271 void bnx2x_pf_disable(struct bnx2x *bp)
6272 {
6273 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6274 val &= ~IGU_PF_CONF_FUNC_EN;
6275
6276 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6277 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6278 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6279 }
6280
6281 static void bnx2x__common_init_phy(struct bnx2x *bp)
6282 {
6283 u32 shmem_base[2], shmem2_base[2];
6284 /* Avoid common init in case MFW supports LFA */
6285 if (SHMEM2_RD(bp, size) >
6286 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6287 return;
6288 shmem_base[0] = bp->common.shmem_base;
6289 shmem2_base[0] = bp->common.shmem2_base;
6290 if (!CHIP_IS_E1x(bp)) {
6291 shmem_base[1] =
6292 SHMEM2_RD(bp, other_shmem_base_addr);
6293 shmem2_base[1] =
6294 SHMEM2_RD(bp, other_shmem2_base_addr);
6295 }
6296 bnx2x_acquire_phy_lock(bp);
6297 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6298 bp->common.chip_id);
6299 bnx2x_release_phy_lock(bp);
6300 }
6301
6302 /**
6303 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6304 *
6305 * @bp: driver handle
6306 */
6307 static int bnx2x_init_hw_common(struct bnx2x *bp)
6308 {
6309 u32 val;
6310
6311 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
6312
6313 /*
6314 * take the UNDI lock to protect undi_unload flow from accessing
6315 * registers while we're resetting the chip
6316 */
6317 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6318
6319 bnx2x_reset_common(bp);
6320 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6321
6322 val = 0xfffc;
6323 if (CHIP_IS_E3(bp)) {
6324 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6325 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6326 }
6327 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6328
6329 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6330
6331 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6332
6333 if (!CHIP_IS_E1x(bp)) {
6334 u8 abs_func_id;
6335
6336 /**
6337 * 4-port mode or 2-port mode we need to turn of master-enable
6338 * for everyone, after that, turn it back on for self.
6339 * so, we disregard multi-function or not, and always disable
6340 * for all functions on the given path, this means 0,2,4,6 for
6341 * path 0 and 1,3,5,7 for path 1
6342 */
6343 for (abs_func_id = BP_PATH(bp);
6344 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6345 if (abs_func_id == BP_ABS_FUNC(bp)) {
6346 REG_WR(bp,
6347 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6348 1);
6349 continue;
6350 }
6351
6352 bnx2x_pretend_func(bp, abs_func_id);
6353 /* clear pf enable */
6354 bnx2x_pf_disable(bp);
6355 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6356 }
6357 }
6358
6359 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6360 if (CHIP_IS_E1(bp)) {
6361 /* enable HW interrupt from PXP on USDM overflow
6362 bit 16 on INT_MASK_0 */
6363 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6364 }
6365
6366 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6367 bnx2x_init_pxp(bp);
6368
6369 #ifdef __BIG_ENDIAN
6370 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6371 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6372 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6373 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6374 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6375 /* make sure this value is 0 */
6376 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6377
6378 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6379 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6380 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6381 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6382 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6383 #endif
6384
6385 bnx2x_ilt_init_page_size(bp, INITOP_SET);
6386
6387 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6388 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6389
6390 /* let the HW do it's magic ... */
6391 msleep(100);
6392 /* finish PXP init */
6393 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6394 if (val != 1) {
6395 BNX2X_ERR("PXP2 CFG failed\n");
6396 return -EBUSY;
6397 }
6398 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6399 if (val != 1) {
6400 BNX2X_ERR("PXP2 RD_INIT failed\n");
6401 return -EBUSY;
6402 }
6403
6404 /* Timers bug workaround E2 only. We need to set the entire ILT to
6405 * have entries with value "0" and valid bit on.
6406 * This needs to be done by the first PF that is loaded in a path
6407 * (i.e. common phase)
6408 */
6409 if (!CHIP_IS_E1x(bp)) {
6410 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6411 * (i.e. vnic3) to start even if it is marked as "scan-off".
6412 * This occurs when a different function (func2,3) is being marked
6413 * as "scan-off". Real-life scenario for example: if a driver is being
6414 * load-unloaded while func6,7 are down. This will cause the timer to access
6415 * the ilt, translate to a logical address and send a request to read/write.
6416 * Since the ilt for the function that is down is not valid, this will cause
6417 * a translation error which is unrecoverable.
6418 * The Workaround is intended to make sure that when this happens nothing fatal
6419 * will occur. The workaround:
6420 * 1. First PF driver which loads on a path will:
6421 * a. After taking the chip out of reset, by using pretend,
6422 * it will write "0" to the following registers of
6423 * the other vnics.
6424 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6425 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6426 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6427 * And for itself it will write '1' to
6428 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6429 * dmae-operations (writing to pram for example.)
6430 * note: can be done for only function 6,7 but cleaner this
6431 * way.
6432 * b. Write zero+valid to the entire ILT.
6433 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6434 * VNIC3 (of that port). The range allocated will be the
6435 * entire ILT. This is needed to prevent ILT range error.
6436 * 2. Any PF driver load flow:
6437 * a. ILT update with the physical addresses of the allocated
6438 * logical pages.
6439 * b. Wait 20msec. - note that this timeout is needed to make
6440 * sure there are no requests in one of the PXP internal
6441 * queues with "old" ILT addresses.
6442 * c. PF enable in the PGLC.
6443 * d. Clear the was_error of the PF in the PGLC. (could have
6444 * occured while driver was down)
6445 * e. PF enable in the CFC (WEAK + STRONG)
6446 * f. Timers scan enable
6447 * 3. PF driver unload flow:
6448 * a. Clear the Timers scan_en.
6449 * b. Polling for scan_on=0 for that PF.
6450 * c. Clear the PF enable bit in the PXP.
6451 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6452 * e. Write zero+valid to all ILT entries (The valid bit must
6453 * stay set)
6454 * f. If this is VNIC 3 of a port then also init
6455 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6456 * to the last enrty in the ILT.
6457 *
6458 * Notes:
6459 * Currently the PF error in the PGLC is non recoverable.
6460 * In the future the there will be a recovery routine for this error.
6461 * Currently attention is masked.
6462 * Having an MCP lock on the load/unload process does not guarantee that
6463 * there is no Timer disable during Func6/7 enable. This is because the
6464 * Timers scan is currently being cleared by the MCP on FLR.
6465 * Step 2.d can be done only for PF6/7 and the driver can also check if
6466 * there is error before clearing it. But the flow above is simpler and
6467 * more general.
6468 * All ILT entries are written by zero+valid and not just PF6/7
6469 * ILT entries since in the future the ILT entries allocation for
6470 * PF-s might be dynamic.
6471 */
6472 struct ilt_client_info ilt_cli;
6473 struct bnx2x_ilt ilt;
6474 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6475 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6476
6477 /* initialize dummy TM client */
6478 ilt_cli.start = 0;
6479 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6480 ilt_cli.client_num = ILT_CLIENT_TM;
6481
6482 /* Step 1: set zeroes to all ilt page entries with valid bit on
6483 * Step 2: set the timers first/last ilt entry to point
6484 * to the entire range to prevent ILT range error for 3rd/4th
6485 * vnic (this code assumes existance of the vnic)
6486 *
6487 * both steps performed by call to bnx2x_ilt_client_init_op()
6488 * with dummy TM client
6489 *
6490 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6491 * and his brother are split registers
6492 */
6493 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6494 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6495 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6496
6497 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6498 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6499 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6500 }
6501
6502
6503 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6504 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6505
6506 if (!CHIP_IS_E1x(bp)) {
6507 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6508 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6509 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6510
6511 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6512
6513 /* let the HW do it's magic ... */
6514 do {
6515 msleep(200);
6516 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6517 } while (factor-- && (val != 1));
6518
6519 if (val != 1) {
6520 BNX2X_ERR("ATC_INIT failed\n");
6521 return -EBUSY;
6522 }
6523 }
6524
6525 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6526
6527 /* clean the DMAE memory */
6528 bp->dmae_ready = 1;
6529 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6530
6531 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6532
6533 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6534
6535 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6536
6537 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6538
6539 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6540 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6541 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6542 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6543
6544 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6545
6546
6547 /* QM queues pointers table */
6548 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6549
6550 /* soft reset pulse */
6551 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6552 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6553
6554 if (CNIC_SUPPORT(bp))
6555 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6556
6557 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6558 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6559 if (!CHIP_REV_IS_SLOW(bp))
6560 /* enable hw interrupt from doorbell Q */
6561 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6562
6563 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6564
6565 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6566 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6567
6568 if (!CHIP_IS_E1(bp))
6569 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6570
6571 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6572 if (IS_MF_AFEX(bp)) {
6573 /* configure that VNTag and VLAN headers must be
6574 * received in afex mode
6575 */
6576 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6577 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6578 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6579 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6580 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6581 } else {
6582 /* Bit-map indicating which L2 hdrs may appear
6583 * after the basic Ethernet header
6584 */
6585 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6586 bp->path_has_ovlan ? 7 : 6);
6587 }
6588 }
6589
6590 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6591 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6592 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6593 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6594
6595 if (!CHIP_IS_E1x(bp)) {
6596 /* reset VFC memories */
6597 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6598 VFC_MEMORIES_RST_REG_CAM_RST |
6599 VFC_MEMORIES_RST_REG_RAM_RST);
6600 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6601 VFC_MEMORIES_RST_REG_CAM_RST |
6602 VFC_MEMORIES_RST_REG_RAM_RST);
6603
6604 msleep(20);
6605 }
6606
6607 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6608 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6609 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6610 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6611
6612 /* sync semi rtc */
6613 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6614 0x80000000);
6615 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6616 0x80000000);
6617
6618 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6619 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6620 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6621
6622 if (!CHIP_IS_E1x(bp)) {
6623 if (IS_MF_AFEX(bp)) {
6624 /* configure that VNTag and VLAN headers must be
6625 * sent in afex mode
6626 */
6627 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6628 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6629 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6630 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6631 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6632 } else {
6633 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6634 bp->path_has_ovlan ? 7 : 6);
6635 }
6636 }
6637
6638 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6639
6640 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6641
6642 if (CNIC_SUPPORT(bp)) {
6643 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6644 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6645 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6646 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6647 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6648 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6649 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6650 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6651 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6652 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6653 }
6654 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6655
6656 if (sizeof(union cdu_context) != 1024)
6657 /* we currently assume that a context is 1024 bytes */
6658 dev_alert(&bp->pdev->dev,
6659 "please adjust the size of cdu_context(%ld)\n",
6660 (long)sizeof(union cdu_context));
6661
6662 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6663 val = (4 << 24) + (0 << 12) + 1024;
6664 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6665
6666 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6667 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6668 /* enable context validation interrupt from CFC */
6669 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6670
6671 /* set the thresholds to prevent CFC/CDU race */
6672 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6673
6674 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6675
6676 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6677 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6678
6679 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6680 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6681
6682 /* Reset PCIE errors for debug */
6683 REG_WR(bp, 0x2814, 0xffffffff);
6684 REG_WR(bp, 0x3820, 0xffffffff);
6685
6686 if (!CHIP_IS_E1x(bp)) {
6687 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6688 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6689 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6690 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6691 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6692 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6693 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6694 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6695 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6696 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6697 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6698 }
6699
6700 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6701 if (!CHIP_IS_E1(bp)) {
6702 /* in E3 this done in per-port section */
6703 if (!CHIP_IS_E3(bp))
6704 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6705 }
6706 if (CHIP_IS_E1H(bp))
6707 /* not applicable for E2 (and above ...) */
6708 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6709
6710 if (CHIP_REV_IS_SLOW(bp))
6711 msleep(200);
6712
6713 /* finish CFC init */
6714 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6715 if (val != 1) {
6716 BNX2X_ERR("CFC LL_INIT failed\n");
6717 return -EBUSY;
6718 }
6719 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6720 if (val != 1) {
6721 BNX2X_ERR("CFC AC_INIT failed\n");
6722 return -EBUSY;
6723 }
6724 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6725 if (val != 1) {
6726 BNX2X_ERR("CFC CAM_INIT failed\n");
6727 return -EBUSY;
6728 }
6729 REG_WR(bp, CFC_REG_DEBUG0, 0);
6730
6731 if (CHIP_IS_E1(bp)) {
6732 /* read NIG statistic
6733 to see if this is our first up since powerup */
6734 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6735 val = *bnx2x_sp(bp, wb_data[0]);
6736
6737 /* do internal memory self test */
6738 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6739 BNX2X_ERR("internal mem self test failed\n");
6740 return -EBUSY;
6741 }
6742 }
6743
6744 bnx2x_setup_fan_failure_detection(bp);
6745
6746 /* clear PXP2 attentions */
6747 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6748
6749 bnx2x_enable_blocks_attention(bp);
6750 bnx2x_enable_blocks_parity(bp);
6751
6752 if (!BP_NOMCP(bp)) {
6753 if (CHIP_IS_E1x(bp))
6754 bnx2x__common_init_phy(bp);
6755 } else
6756 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6757
6758 return 0;
6759 }
6760
6761 /**
6762 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6763 *
6764 * @bp: driver handle
6765 */
6766 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6767 {
6768 int rc = bnx2x_init_hw_common(bp);
6769
6770 if (rc)
6771 return rc;
6772
6773 /* In E2 2-PORT mode, same ext phy is used for the two paths */
6774 if (!BP_NOMCP(bp))
6775 bnx2x__common_init_phy(bp);
6776
6777 return 0;
6778 }
6779
6780 static int bnx2x_init_hw_port(struct bnx2x *bp)
6781 {
6782 int port = BP_PORT(bp);
6783 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6784 u32 low, high;
6785 u32 val;
6786
6787
6788 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
6789
6790 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6791
6792 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6793 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6794 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6795
6796 /* Timers bug workaround: disables the pf_master bit in pglue at
6797 * common phase, we need to enable it here before any dmae access are
6798 * attempted. Therefore we manually added the enable-master to the
6799 * port phase (it also happens in the function phase)
6800 */
6801 if (!CHIP_IS_E1x(bp))
6802 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6803
6804 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6805 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6806 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6807 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6808
6809 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6810 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6811 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6812 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6813
6814 /* QM cid (connection) count */
6815 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6816
6817 if (CNIC_SUPPORT(bp)) {
6818 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6819 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6820 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6821 }
6822
6823 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6824
6825 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6826
6827 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6828
6829 if (IS_MF(bp))
6830 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6831 else if (bp->dev->mtu > 4096) {
6832 if (bp->flags & ONE_PORT_FLAG)
6833 low = 160;
6834 else {
6835 val = bp->dev->mtu;
6836 /* (24*1024 + val*4)/256 */
6837 low = 96 + (val/64) +
6838 ((val % 64) ? 1 : 0);
6839 }
6840 } else
6841 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6842 high = low + 56; /* 14*1024/256 */
6843 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6844 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6845 }
6846
6847 if (CHIP_MODE_IS_4_PORT(bp))
6848 REG_WR(bp, (BP_PORT(bp) ?
6849 BRB1_REG_MAC_GUARANTIED_1 :
6850 BRB1_REG_MAC_GUARANTIED_0), 40);
6851
6852
6853 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6854 if (CHIP_IS_E3B0(bp)) {
6855 if (IS_MF_AFEX(bp)) {
6856 /* configure headers for AFEX mode */
6857 REG_WR(bp, BP_PORT(bp) ?
6858 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6859 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
6860 REG_WR(bp, BP_PORT(bp) ?
6861 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
6862 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
6863 REG_WR(bp, BP_PORT(bp) ?
6864 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
6865 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
6866 } else {
6867 /* Ovlan exists only if we are in multi-function +
6868 * switch-dependent mode, in switch-independent there
6869 * is no ovlan headers
6870 */
6871 REG_WR(bp, BP_PORT(bp) ?
6872 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6873 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6874 (bp->path_has_ovlan ? 7 : 6));
6875 }
6876 }
6877
6878 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6879 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6880 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6881 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6882
6883 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6884 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6885 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6886 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6887
6888 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6889 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6890
6891 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6892
6893 if (CHIP_IS_E1x(bp)) {
6894 /* configure PBF to work without PAUSE mtu 9000 */
6895 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6896
6897 /* update threshold */
6898 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6899 /* update init credit */
6900 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6901
6902 /* probe changes */
6903 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6904 udelay(50);
6905 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6906 }
6907
6908 if (CNIC_SUPPORT(bp))
6909 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6910
6911 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6912 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6913
6914 if (CHIP_IS_E1(bp)) {
6915 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6916 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6917 }
6918 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6919
6920 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6921
6922 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6923 /* init aeu_mask_attn_func_0/1:
6924 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6925 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6926 * bits 4-7 are used for "per vn group attention" */
6927 val = IS_MF(bp) ? 0xF7 : 0x7;
6928 /* Enable DCBX attention for all but E1 */
6929 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6930 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6931
6932 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6933
6934 if (!CHIP_IS_E1x(bp)) {
6935 /* Bit-map indicating which L2 hdrs may appear after the
6936 * basic Ethernet header
6937 */
6938 if (IS_MF_AFEX(bp))
6939 REG_WR(bp, BP_PORT(bp) ?
6940 NIG_REG_P1_HDRS_AFTER_BASIC :
6941 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
6942 else
6943 REG_WR(bp, BP_PORT(bp) ?
6944 NIG_REG_P1_HDRS_AFTER_BASIC :
6945 NIG_REG_P0_HDRS_AFTER_BASIC,
6946 IS_MF_SD(bp) ? 7 : 6);
6947
6948 if (CHIP_IS_E3(bp))
6949 REG_WR(bp, BP_PORT(bp) ?
6950 NIG_REG_LLH1_MF_MODE :
6951 NIG_REG_LLH_MF_MODE, IS_MF(bp));
6952 }
6953 if (!CHIP_IS_E3(bp))
6954 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6955
6956 if (!CHIP_IS_E1(bp)) {
6957 /* 0x2 disable mf_ov, 0x1 enable */
6958 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6959 (IS_MF_SD(bp) ? 0x1 : 0x2));
6960
6961 if (!CHIP_IS_E1x(bp)) {
6962 val = 0;
6963 switch (bp->mf_mode) {
6964 case MULTI_FUNCTION_SD:
6965 val = 1;
6966 break;
6967 case MULTI_FUNCTION_SI:
6968 case MULTI_FUNCTION_AFEX:
6969 val = 2;
6970 break;
6971 }
6972
6973 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6974 NIG_REG_LLH0_CLS_TYPE), val);
6975 }
6976 {
6977 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6978 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6979 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6980 }
6981 }
6982
6983
6984 /* If SPIO5 is set to generate interrupts, enable it for this port */
6985 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6986 if (val & MISC_SPIO_SPIO5) {
6987 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6988 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6989 val = REG_RD(bp, reg_addr);
6990 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6991 REG_WR(bp, reg_addr, val);
6992 }
6993
6994 return 0;
6995 }
6996
6997 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6998 {
6999 int reg;
7000 u32 wb_write[2];
7001
7002 if (CHIP_IS_E1(bp))
7003 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7004 else
7005 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7006
7007 wb_write[0] = ONCHIP_ADDR1(addr);
7008 wb_write[1] = ONCHIP_ADDR2(addr);
7009 REG_WR_DMAE(bp, reg, wb_write, 2);
7010 }
7011
7012 static void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
7013 u8 idu_sb_id, bool is_Pf)
7014 {
7015 u32 data, ctl, cnt = 100;
7016 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7017 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7018 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7019 u32 sb_bit = 1 << (idu_sb_id%32);
7020 u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7021 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7022
7023 /* Not supported in BC mode */
7024 if (CHIP_INT_MODE_IS_BC(bp))
7025 return;
7026
7027 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7028 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7029 IGU_REGULAR_CLEANUP_SET |
7030 IGU_REGULAR_BCLEANUP;
7031
7032 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7033 func_encode << IGU_CTRL_REG_FID_SHIFT |
7034 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7035
7036 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7037 data, igu_addr_data);
7038 REG_WR(bp, igu_addr_data, data);
7039 mmiowb();
7040 barrier();
7041 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7042 ctl, igu_addr_ctl);
7043 REG_WR(bp, igu_addr_ctl, ctl);
7044 mmiowb();
7045 barrier();
7046
7047 /* wait for clean up to finish */
7048 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7049 msleep(20);
7050
7051
7052 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7053 DP(NETIF_MSG_HW,
7054 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7055 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7056 }
7057 }
7058
7059 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7060 {
7061 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7062 }
7063
7064 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7065 {
7066 u32 i, base = FUNC_ILT_BASE(func);
7067 for (i = base; i < base + ILT_PER_FUNC; i++)
7068 bnx2x_ilt_wr(bp, i, 0);
7069 }
7070
7071
7072 static void bnx2x_init_searcher(struct bnx2x *bp)
7073 {
7074 int port = BP_PORT(bp);
7075 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7076 /* T1 hash bits value determines the T1 number of entries */
7077 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7078 }
7079
7080 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7081 {
7082 int rc;
7083 struct bnx2x_func_state_params func_params = {NULL};
7084 struct bnx2x_func_switch_update_params *switch_update_params =
7085 &func_params.params.switch_update;
7086
7087 /* Prepare parameters for function state transitions */
7088 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7089 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7090
7091 func_params.f_obj = &bp->func_obj;
7092 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7093
7094 /* Function parameters */
7095 switch_update_params->suspend = suspend;
7096
7097 rc = bnx2x_func_state_change(bp, &func_params);
7098
7099 return rc;
7100 }
7101
7102 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7103 {
7104 int rc, i, port = BP_PORT(bp);
7105 int vlan_en = 0, mac_en[NUM_MACS];
7106
7107
7108 /* Close input from network */
7109 if (bp->mf_mode == SINGLE_FUNCTION) {
7110 bnx2x_set_rx_filter(&bp->link_params, 0);
7111 } else {
7112 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7113 NIG_REG_LLH0_FUNC_EN);
7114 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7115 NIG_REG_LLH0_FUNC_EN, 0);
7116 for (i = 0; i < NUM_MACS; i++) {
7117 mac_en[i] = REG_RD(bp, port ?
7118 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7119 4 * i) :
7120 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7121 4 * i));
7122 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7123 4 * i) :
7124 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7125 }
7126 }
7127
7128 /* Close BMC to host */
7129 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7130 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7131
7132 /* Suspend Tx switching to the PF. Completion of this ramrod
7133 * further guarantees that all the packets of that PF / child
7134 * VFs in BRB were processed by the Parser, so it is safe to
7135 * change the NIC_MODE register.
7136 */
7137 rc = bnx2x_func_switch_update(bp, 1);
7138 if (rc) {
7139 BNX2X_ERR("Can't suspend tx-switching!\n");
7140 return rc;
7141 }
7142
7143 /* Change NIC_MODE register */
7144 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7145
7146 /* Open input from network */
7147 if (bp->mf_mode == SINGLE_FUNCTION) {
7148 bnx2x_set_rx_filter(&bp->link_params, 1);
7149 } else {
7150 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7151 NIG_REG_LLH0_FUNC_EN, vlan_en);
7152 for (i = 0; i < NUM_MACS; i++) {
7153 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7154 4 * i) :
7155 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7156 mac_en[i]);
7157 }
7158 }
7159
7160 /* Enable BMC to host */
7161 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7162 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7163
7164 /* Resume Tx switching to the PF */
7165 rc = bnx2x_func_switch_update(bp, 0);
7166 if (rc) {
7167 BNX2X_ERR("Can't resume tx-switching!\n");
7168 return rc;
7169 }
7170
7171 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7172 return 0;
7173 }
7174
7175 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7176 {
7177 int rc;
7178
7179 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7180
7181 if (CONFIGURE_NIC_MODE(bp)) {
7182 /* Configrue searcher as part of function hw init */
7183 bnx2x_init_searcher(bp);
7184
7185 /* Reset NIC mode */
7186 rc = bnx2x_reset_nic_mode(bp);
7187 if (rc)
7188 BNX2X_ERR("Can't change NIC mode!\n");
7189 return rc;
7190 }
7191
7192 return 0;
7193 }
7194
7195 static int bnx2x_init_hw_func(struct bnx2x *bp)
7196 {
7197 int port = BP_PORT(bp);
7198 int func = BP_FUNC(bp);
7199 int init_phase = PHASE_PF0 + func;
7200 struct bnx2x_ilt *ilt = BP_ILT(bp);
7201 u16 cdu_ilt_start;
7202 u32 addr, val;
7203 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7204 int i, main_mem_width, rc;
7205
7206 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7207
7208 /* FLR cleanup - hmmm */
7209 if (!CHIP_IS_E1x(bp)) {
7210 rc = bnx2x_pf_flr_clnup(bp);
7211 if (rc)
7212 return rc;
7213 }
7214
7215 /* set MSI reconfigure capability */
7216 if (bp->common.int_block == INT_BLOCK_HC) {
7217 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7218 val = REG_RD(bp, addr);
7219 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7220 REG_WR(bp, addr, val);
7221 }
7222
7223 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7224 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7225
7226 ilt = BP_ILT(bp);
7227 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7228
7229 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7230 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7231 ilt->lines[cdu_ilt_start + i].page_mapping =
7232 bp->context[i].cxt_mapping;
7233 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7234 }
7235 bnx2x_ilt_init_op(bp, INITOP_SET);
7236
7237 if (!CONFIGURE_NIC_MODE(bp)) {
7238 bnx2x_init_searcher(bp);
7239 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7240 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7241 } else {
7242 /* Set NIC mode */
7243 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7244 DP(NETIF_MSG_IFUP, "NIC MODE configrued\n");
7245
7246 }
7247
7248 if (!CHIP_IS_E1x(bp)) {
7249 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7250
7251 /* Turn on a single ISR mode in IGU if driver is going to use
7252 * INT#x or MSI
7253 */
7254 if (!(bp->flags & USING_MSIX_FLAG))
7255 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7256 /*
7257 * Timers workaround bug: function init part.
7258 * Need to wait 20msec after initializing ILT,
7259 * needed to make sure there are no requests in
7260 * one of the PXP internal queues with "old" ILT addresses
7261 */
7262 msleep(20);
7263 /*
7264 * Master enable - Due to WB DMAE writes performed before this
7265 * register is re-initialized as part of the regular function
7266 * init
7267 */
7268 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7269 /* Enable the function in IGU */
7270 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7271 }
7272
7273 bp->dmae_ready = 1;
7274
7275 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7276
7277 if (!CHIP_IS_E1x(bp))
7278 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7279
7280 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7281 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7282 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7283 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7284 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7285 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7286 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7287 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7288 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7289 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7290 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7291 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7292 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7293
7294 if (!CHIP_IS_E1x(bp))
7295 REG_WR(bp, QM_REG_PF_EN, 1);
7296
7297 if (!CHIP_IS_E1x(bp)) {
7298 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7299 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7300 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7301 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7302 }
7303 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7304
7305 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7306 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7307 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7308 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7309 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7310 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7311 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7312 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7313 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7314 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7315 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7316 if (!CHIP_IS_E1x(bp))
7317 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7318
7319 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7320
7321 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7322
7323 if (!CHIP_IS_E1x(bp))
7324 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7325
7326 if (IS_MF(bp)) {
7327 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7328 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7329 }
7330
7331 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7332
7333 /* HC init per function */
7334 if (bp->common.int_block == INT_BLOCK_HC) {
7335 if (CHIP_IS_E1H(bp)) {
7336 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7337
7338 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7339 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7340 }
7341 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7342
7343 } else {
7344 int num_segs, sb_idx, prod_offset;
7345
7346 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7347
7348 if (!CHIP_IS_E1x(bp)) {
7349 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7350 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7351 }
7352
7353 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7354
7355 if (!CHIP_IS_E1x(bp)) {
7356 int dsb_idx = 0;
7357 /**
7358 * Producer memory:
7359 * E2 mode: address 0-135 match to the mapping memory;
7360 * 136 - PF0 default prod; 137 - PF1 default prod;
7361 * 138 - PF2 default prod; 139 - PF3 default prod;
7362 * 140 - PF0 attn prod; 141 - PF1 attn prod;
7363 * 142 - PF2 attn prod; 143 - PF3 attn prod;
7364 * 144-147 reserved.
7365 *
7366 * E1.5 mode - In backward compatible mode;
7367 * for non default SB; each even line in the memory
7368 * holds the U producer and each odd line hold
7369 * the C producer. The first 128 producers are for
7370 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7371 * producers are for the DSB for each PF.
7372 * Each PF has five segments: (the order inside each
7373 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7374 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7375 * 144-147 attn prods;
7376 */
7377 /* non-default-status-blocks */
7378 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7379 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7380 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7381 prod_offset = (bp->igu_base_sb + sb_idx) *
7382 num_segs;
7383
7384 for (i = 0; i < num_segs; i++) {
7385 addr = IGU_REG_PROD_CONS_MEMORY +
7386 (prod_offset + i) * 4;
7387 REG_WR(bp, addr, 0);
7388 }
7389 /* send consumer update with value 0 */
7390 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7391 USTORM_ID, 0, IGU_INT_NOP, 1);
7392 bnx2x_igu_clear_sb(bp,
7393 bp->igu_base_sb + sb_idx);
7394 }
7395
7396 /* default-status-blocks */
7397 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7398 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7399
7400 if (CHIP_MODE_IS_4_PORT(bp))
7401 dsb_idx = BP_FUNC(bp);
7402 else
7403 dsb_idx = BP_VN(bp);
7404
7405 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7406 IGU_BC_BASE_DSB_PROD + dsb_idx :
7407 IGU_NORM_BASE_DSB_PROD + dsb_idx);
7408
7409 /*
7410 * igu prods come in chunks of E1HVN_MAX (4) -
7411 * does not matters what is the current chip mode
7412 */
7413 for (i = 0; i < (num_segs * E1HVN_MAX);
7414 i += E1HVN_MAX) {
7415 addr = IGU_REG_PROD_CONS_MEMORY +
7416 (prod_offset + i)*4;
7417 REG_WR(bp, addr, 0);
7418 }
7419 /* send consumer update with 0 */
7420 if (CHIP_INT_MODE_IS_BC(bp)) {
7421 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7422 USTORM_ID, 0, IGU_INT_NOP, 1);
7423 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7424 CSTORM_ID, 0, IGU_INT_NOP, 1);
7425 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7426 XSTORM_ID, 0, IGU_INT_NOP, 1);
7427 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7428 TSTORM_ID, 0, IGU_INT_NOP, 1);
7429 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7430 ATTENTION_ID, 0, IGU_INT_NOP, 1);
7431 } else {
7432 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7433 USTORM_ID, 0, IGU_INT_NOP, 1);
7434 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7435 ATTENTION_ID, 0, IGU_INT_NOP, 1);
7436 }
7437 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7438
7439 /* !!! these should become driver const once
7440 rf-tool supports split-68 const */
7441 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7442 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7443 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7444 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7445 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7446 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7447 }
7448 }
7449
7450 /* Reset PCIE errors for debug */
7451 REG_WR(bp, 0x2114, 0xffffffff);
7452 REG_WR(bp, 0x2120, 0xffffffff);
7453
7454 if (CHIP_IS_E1x(bp)) {
7455 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7456 main_mem_base = HC_REG_MAIN_MEMORY +
7457 BP_PORT(bp) * (main_mem_size * 4);
7458 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7459 main_mem_width = 8;
7460
7461 val = REG_RD(bp, main_mem_prty_clr);
7462 if (val)
7463 DP(NETIF_MSG_HW,
7464 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7465 val);
7466
7467 /* Clear "false" parity errors in MSI-X table */
7468 for (i = main_mem_base;
7469 i < main_mem_base + main_mem_size * 4;
7470 i += main_mem_width) {
7471 bnx2x_read_dmae(bp, i, main_mem_width / 4);
7472 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7473 i, main_mem_width / 4);
7474 }
7475 /* Clear HC parity attention */
7476 REG_RD(bp, main_mem_prty_clr);
7477 }
7478
7479 #ifdef BNX2X_STOP_ON_ERROR
7480 /* Enable STORMs SP logging */
7481 REG_WR8(bp, BAR_USTRORM_INTMEM +
7482 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7483 REG_WR8(bp, BAR_TSTRORM_INTMEM +
7484 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7485 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7486 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7487 REG_WR8(bp, BAR_XSTRORM_INTMEM +
7488 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7489 #endif
7490
7491 bnx2x_phy_probe(&bp->link_params);
7492
7493 return 0;
7494 }
7495
7496
7497 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7498 {
7499 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7500
7501 if (!CHIP_IS_E1x(bp))
7502 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7503 sizeof(struct host_hc_status_block_e2));
7504 else
7505 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7506 sizeof(struct host_hc_status_block_e1x));
7507
7508 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7509 }
7510
7511 void bnx2x_free_mem(struct bnx2x *bp)
7512 {
7513 int i;
7514
7515 /* fastpath */
7516 bnx2x_free_fp_mem(bp);
7517 /* end of fastpath */
7518
7519 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7520 sizeof(struct host_sp_status_block));
7521
7522 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7523 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7524
7525 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7526 sizeof(struct bnx2x_slowpath));
7527
7528 for (i = 0; i < L2_ILT_LINES(bp); i++)
7529 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7530 bp->context[i].size);
7531 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7532
7533 BNX2X_FREE(bp->ilt->lines);
7534
7535 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7536
7537 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7538 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7539 }
7540
7541 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7542 {
7543 int num_groups;
7544 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7545
7546 /* number of queues for statistics is number of eth queues + FCoE */
7547 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7548
7549 /* Total number of FW statistics requests =
7550 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7551 * num of queues
7552 */
7553 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7554
7555
7556 /* Request is built from stats_query_header and an array of
7557 * stats_query_cmd_group each of which contains
7558 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7559 * configured in the stats_query_header.
7560 */
7561 num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7562 (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7563
7564 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7565 num_groups * sizeof(struct stats_query_cmd_group);
7566
7567 /* Data for statistics requests + stats_conter
7568 *
7569 * stats_counter holds per-STORM counters that are incremented
7570 * when STORM has finished with the current request.
7571 *
7572 * memory for FCoE offloaded statistics are counted anyway,
7573 * even if they will not be sent.
7574 */
7575 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7576 sizeof(struct per_pf_stats) +
7577 sizeof(struct fcoe_statistics_params) +
7578 sizeof(struct per_queue_stats) * num_queue_stats +
7579 sizeof(struct stats_counter);
7580
7581 BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7582 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7583
7584 /* Set shortcuts */
7585 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7586 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7587
7588 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7589 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7590
7591 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7592 bp->fw_stats_req_sz;
7593 return 0;
7594
7595 alloc_mem_err:
7596 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7597 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7598 BNX2X_ERR("Can't allocate memory\n");
7599 return -ENOMEM;
7600 }
7601
7602 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7603 {
7604 if (!CHIP_IS_E1x(bp))
7605 /* size = the status block + ramrod buffers */
7606 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7607 sizeof(struct host_hc_status_block_e2));
7608 else
7609 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7610 &bp->cnic_sb_mapping,
7611 sizeof(struct
7612 host_hc_status_block_e1x));
7613
7614 if (CONFIGURE_NIC_MODE(bp))
7615 /* allocate searcher T2 table, as it wan't allocated before */
7616 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7617
7618 /* write address to which L5 should insert its values */
7619 bp->cnic_eth_dev.addr_drv_info_to_mcp =
7620 &bp->slowpath->drv_info_to_mcp;
7621
7622 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7623 goto alloc_mem_err;
7624
7625 return 0;
7626
7627 alloc_mem_err:
7628 bnx2x_free_mem_cnic(bp);
7629 BNX2X_ERR("Can't allocate memory\n");
7630 return -ENOMEM;
7631 }
7632
7633 int bnx2x_alloc_mem(struct bnx2x *bp)
7634 {
7635 int i, allocated, context_size;
7636
7637 if (!CONFIGURE_NIC_MODE(bp))
7638 /* allocate searcher T2 table */
7639 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7640
7641 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7642 sizeof(struct host_sp_status_block));
7643
7644 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7645 sizeof(struct bnx2x_slowpath));
7646
7647 /* Allocated memory for FW statistics */
7648 if (bnx2x_alloc_fw_stats_mem(bp))
7649 goto alloc_mem_err;
7650
7651 /* Allocate memory for CDU context:
7652 * This memory is allocated separately and not in the generic ILT
7653 * functions because CDU differs in few aspects:
7654 * 1. There are multiple entities allocating memory for context -
7655 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7656 * its own ILT lines.
7657 * 2. Since CDU page-size is not a single 4KB page (which is the case
7658 * for the other ILT clients), to be efficient we want to support
7659 * allocation of sub-page-size in the last entry.
7660 * 3. Context pointers are used by the driver to pass to FW / update
7661 * the context (for the other ILT clients the pointers are used just to
7662 * free the memory during unload).
7663 */
7664 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7665
7666 for (i = 0, allocated = 0; allocated < context_size; i++) {
7667 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7668 (context_size - allocated));
7669 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7670 &bp->context[i].cxt_mapping,
7671 bp->context[i].size);
7672 allocated += bp->context[i].size;
7673 }
7674 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7675
7676 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7677 goto alloc_mem_err;
7678
7679 /* Slow path ring */
7680 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7681
7682 /* EQ */
7683 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7684 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7685
7686
7687 /* fastpath */
7688 /* need to be done at the end, since it's self adjusting to amount
7689 * of memory available for RSS queues
7690 */
7691 if (bnx2x_alloc_fp_mem(bp))
7692 goto alloc_mem_err;
7693 return 0;
7694
7695 alloc_mem_err:
7696 bnx2x_free_mem(bp);
7697 BNX2X_ERR("Can't allocate memory\n");
7698 return -ENOMEM;
7699 }
7700
7701 /*
7702 * Init service functions
7703 */
7704
7705 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7706 struct bnx2x_vlan_mac_obj *obj, bool set,
7707 int mac_type, unsigned long *ramrod_flags)
7708 {
7709 int rc;
7710 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7711
7712 memset(&ramrod_param, 0, sizeof(ramrod_param));
7713
7714 /* Fill general parameters */
7715 ramrod_param.vlan_mac_obj = obj;
7716 ramrod_param.ramrod_flags = *ramrod_flags;
7717
7718 /* Fill a user request section if needed */
7719 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7720 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7721
7722 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7723
7724 /* Set the command: ADD or DEL */
7725 if (set)
7726 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7727 else
7728 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7729 }
7730
7731 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7732
7733 if (rc == -EEXIST) {
7734 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7735 /* do not treat adding same MAC as error */
7736 rc = 0;
7737 } else if (rc < 0)
7738 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7739
7740 return rc;
7741 }
7742
7743 int bnx2x_del_all_macs(struct bnx2x *bp,
7744 struct bnx2x_vlan_mac_obj *mac_obj,
7745 int mac_type, bool wait_for_comp)
7746 {
7747 int rc;
7748 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7749
7750 /* Wait for completion of requested */
7751 if (wait_for_comp)
7752 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7753
7754 /* Set the mac type of addresses we want to clear */
7755 __set_bit(mac_type, &vlan_mac_flags);
7756
7757 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7758 if (rc < 0)
7759 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7760
7761 return rc;
7762 }
7763
7764 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7765 {
7766 unsigned long ramrod_flags = 0;
7767
7768 if (is_zero_ether_addr(bp->dev->dev_addr) &&
7769 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7770 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7771 "Ignoring Zero MAC for STORAGE SD mode\n");
7772 return 0;
7773 }
7774
7775 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7776
7777 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7778 /* Eth MAC is set on RSS leading client (fp[0]) */
7779 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj,
7780 set, BNX2X_ETH_MAC, &ramrod_flags);
7781 }
7782
7783 int bnx2x_setup_leading(struct bnx2x *bp)
7784 {
7785 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7786 }
7787
7788 /**
7789 * bnx2x_set_int_mode - configure interrupt mode
7790 *
7791 * @bp: driver handle
7792 *
7793 * In case of MSI-X it will also try to enable MSI-X.
7794 */
7795 void bnx2x_set_int_mode(struct bnx2x *bp)
7796 {
7797 switch (int_mode) {
7798 case INT_MODE_MSI:
7799 bnx2x_enable_msi(bp);
7800 /* falling through... */
7801 case INT_MODE_INTx:
7802 bp->num_ethernet_queues = 1;
7803 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
7804 BNX2X_DEV_INFO("set number of queues to 1\n");
7805 break;
7806 default:
7807 /* if we can't use MSI-X we only need one fp,
7808 * so try to enable MSI-X with the requested number of fp's
7809 * and fallback to MSI or legacy INTx with one fp
7810 */
7811 if (bnx2x_enable_msix(bp) ||
7812 bp->flags & USING_SINGLE_MSIX_FLAG) {
7813 /* failed to enable multiple MSI-X */
7814 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7815 bp->num_queues,
7816 1 + bp->num_cnic_queues);
7817
7818 bp->num_queues = 1 + bp->num_cnic_queues;
7819
7820 /* Try to enable MSI */
7821 if (!(bp->flags & USING_SINGLE_MSIX_FLAG) &&
7822 !(bp->flags & DISABLE_MSI_FLAG))
7823 bnx2x_enable_msi(bp);
7824 }
7825 break;
7826 }
7827 }
7828
7829 /* must be called prioir to any HW initializations */
7830 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7831 {
7832 return L2_ILT_LINES(bp);
7833 }
7834
7835 void bnx2x_ilt_set_info(struct bnx2x *bp)
7836 {
7837 struct ilt_client_info *ilt_client;
7838 struct bnx2x_ilt *ilt = BP_ILT(bp);
7839 u16 line = 0;
7840
7841 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7842 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7843
7844 /* CDU */
7845 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7846 ilt_client->client_num = ILT_CLIENT_CDU;
7847 ilt_client->page_size = CDU_ILT_PAGE_SZ;
7848 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7849 ilt_client->start = line;
7850 line += bnx2x_cid_ilt_lines(bp);
7851
7852 if (CNIC_SUPPORT(bp))
7853 line += CNIC_ILT_LINES;
7854 ilt_client->end = line - 1;
7855
7856 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7857 ilt_client->start,
7858 ilt_client->end,
7859 ilt_client->page_size,
7860 ilt_client->flags,
7861 ilog2(ilt_client->page_size >> 12));
7862
7863 /* QM */
7864 if (QM_INIT(bp->qm_cid_count)) {
7865 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7866 ilt_client->client_num = ILT_CLIENT_QM;
7867 ilt_client->page_size = QM_ILT_PAGE_SZ;
7868 ilt_client->flags = 0;
7869 ilt_client->start = line;
7870
7871 /* 4 bytes for each cid */
7872 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7873 QM_ILT_PAGE_SZ);
7874
7875 ilt_client->end = line - 1;
7876
7877 DP(NETIF_MSG_IFUP,
7878 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7879 ilt_client->start,
7880 ilt_client->end,
7881 ilt_client->page_size,
7882 ilt_client->flags,
7883 ilog2(ilt_client->page_size >> 12));
7884
7885 }
7886
7887 if (CNIC_SUPPORT(bp)) {
7888 /* SRC */
7889 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7890 ilt_client->client_num = ILT_CLIENT_SRC;
7891 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7892 ilt_client->flags = 0;
7893 ilt_client->start = line;
7894 line += SRC_ILT_LINES;
7895 ilt_client->end = line - 1;
7896
7897 DP(NETIF_MSG_IFUP,
7898 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7899 ilt_client->start,
7900 ilt_client->end,
7901 ilt_client->page_size,
7902 ilt_client->flags,
7903 ilog2(ilt_client->page_size >> 12));
7904
7905 /* TM */
7906 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7907 ilt_client->client_num = ILT_CLIENT_TM;
7908 ilt_client->page_size = TM_ILT_PAGE_SZ;
7909 ilt_client->flags = 0;
7910 ilt_client->start = line;
7911 line += TM_ILT_LINES;
7912 ilt_client->end = line - 1;
7913
7914 DP(NETIF_MSG_IFUP,
7915 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7916 ilt_client->start,
7917 ilt_client->end,
7918 ilt_client->page_size,
7919 ilt_client->flags,
7920 ilog2(ilt_client->page_size >> 12));
7921 }
7922
7923 BUG_ON(line > ILT_MAX_LINES);
7924 }
7925
7926 /**
7927 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7928 *
7929 * @bp: driver handle
7930 * @fp: pointer to fastpath
7931 * @init_params: pointer to parameters structure
7932 *
7933 * parameters configured:
7934 * - HC configuration
7935 * - Queue's CDU context
7936 */
7937 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7938 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7939 {
7940
7941 u8 cos;
7942 int cxt_index, cxt_offset;
7943
7944 /* FCoE Queue uses Default SB, thus has no HC capabilities */
7945 if (!IS_FCOE_FP(fp)) {
7946 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7947 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7948
7949 /* If HC is supporterd, enable host coalescing in the transition
7950 * to INIT state.
7951 */
7952 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7953 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7954
7955 /* HC rate */
7956 init_params->rx.hc_rate = bp->rx_ticks ?
7957 (1000000 / bp->rx_ticks) : 0;
7958 init_params->tx.hc_rate = bp->tx_ticks ?
7959 (1000000 / bp->tx_ticks) : 0;
7960
7961 /* FW SB ID */
7962 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7963 fp->fw_sb_id;
7964
7965 /*
7966 * CQ index among the SB indices: FCoE clients uses the default
7967 * SB, therefore it's different.
7968 */
7969 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7970 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7971 }
7972
7973 /* set maximum number of COSs supported by this queue */
7974 init_params->max_cos = fp->max_cos;
7975
7976 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7977 fp->index, init_params->max_cos);
7978
7979 /* set the context pointers queue object */
7980 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
7981 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
7982 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
7983 ILT_PAGE_CIDS);
7984 init_params->cxts[cos] =
7985 &bp->context[cxt_index].vcxt[cxt_offset].eth;
7986 }
7987 }
7988
7989 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7990 struct bnx2x_queue_state_params *q_params,
7991 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7992 int tx_index, bool leading)
7993 {
7994 memset(tx_only_params, 0, sizeof(*tx_only_params));
7995
7996 /* Set the command */
7997 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7998
7999 /* Set tx-only QUEUE flags: don't zero statistics */
8000 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8001
8002 /* choose the index of the cid to send the slow path on */
8003 tx_only_params->cid_index = tx_index;
8004
8005 /* Set general TX_ONLY_SETUP parameters */
8006 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8007
8008 /* Set Tx TX_ONLY_SETUP parameters */
8009 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8010
8011 DP(NETIF_MSG_IFUP,
8012 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8013 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8014 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8015 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8016
8017 /* send the ramrod */
8018 return bnx2x_queue_state_change(bp, q_params);
8019 }
8020
8021
8022 /**
8023 * bnx2x_setup_queue - setup queue
8024 *
8025 * @bp: driver handle
8026 * @fp: pointer to fastpath
8027 * @leading: is leading
8028 *
8029 * This function performs 2 steps in a Queue state machine
8030 * actually: 1) RESET->INIT 2) INIT->SETUP
8031 */
8032
8033 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8034 bool leading)
8035 {
8036 struct bnx2x_queue_state_params q_params = {NULL};
8037 struct bnx2x_queue_setup_params *setup_params =
8038 &q_params.params.setup;
8039 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8040 &q_params.params.tx_only;
8041 int rc;
8042 u8 tx_index;
8043
8044 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8045
8046 /* reset IGU state skip FCoE L2 queue */
8047 if (!IS_FCOE_FP(fp))
8048 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8049 IGU_INT_ENABLE, 0);
8050
8051 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8052 /* We want to wait for completion in this context */
8053 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8054
8055 /* Prepare the INIT parameters */
8056 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8057
8058 /* Set the command */
8059 q_params.cmd = BNX2X_Q_CMD_INIT;
8060
8061 /* Change the state to INIT */
8062 rc = bnx2x_queue_state_change(bp, &q_params);
8063 if (rc) {
8064 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8065 return rc;
8066 }
8067
8068 DP(NETIF_MSG_IFUP, "init complete\n");
8069
8070
8071 /* Now move the Queue to the SETUP state... */
8072 memset(setup_params, 0, sizeof(*setup_params));
8073
8074 /* Set QUEUE flags */
8075 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8076
8077 /* Set general SETUP parameters */
8078 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8079 FIRST_TX_COS_INDEX);
8080
8081 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8082 &setup_params->rxq_params);
8083
8084 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8085 FIRST_TX_COS_INDEX);
8086
8087 /* Set the command */
8088 q_params.cmd = BNX2X_Q_CMD_SETUP;
8089
8090 if (IS_FCOE_FP(fp))
8091 bp->fcoe_init = true;
8092
8093 /* Change the state to SETUP */
8094 rc = bnx2x_queue_state_change(bp, &q_params);
8095 if (rc) {
8096 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8097 return rc;
8098 }
8099
8100 /* loop through the relevant tx-only indices */
8101 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8102 tx_index < fp->max_cos;
8103 tx_index++) {
8104
8105 /* prepare and send tx-only ramrod*/
8106 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8107 tx_only_params, tx_index, leading);
8108 if (rc) {
8109 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8110 fp->index, tx_index);
8111 return rc;
8112 }
8113 }
8114
8115 return rc;
8116 }
8117
8118 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8119 {
8120 struct bnx2x_fastpath *fp = &bp->fp[index];
8121 struct bnx2x_fp_txdata *txdata;
8122 struct bnx2x_queue_state_params q_params = {NULL};
8123 int rc, tx_index;
8124
8125 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8126
8127 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8128 /* We want to wait for completion in this context */
8129 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8130
8131
8132 /* close tx-only connections */
8133 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8134 tx_index < fp->max_cos;
8135 tx_index++){
8136
8137 /* ascertain this is a normal queue*/
8138 txdata = fp->txdata_ptr[tx_index];
8139
8140 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8141 txdata->txq_index);
8142
8143 /* send halt terminate on tx-only connection */
8144 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8145 memset(&q_params.params.terminate, 0,
8146 sizeof(q_params.params.terminate));
8147 q_params.params.terminate.cid_index = tx_index;
8148
8149 rc = bnx2x_queue_state_change(bp, &q_params);
8150 if (rc)
8151 return rc;
8152
8153 /* send halt terminate on tx-only connection */
8154 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8155 memset(&q_params.params.cfc_del, 0,
8156 sizeof(q_params.params.cfc_del));
8157 q_params.params.cfc_del.cid_index = tx_index;
8158 rc = bnx2x_queue_state_change(bp, &q_params);
8159 if (rc)
8160 return rc;
8161 }
8162 /* Stop the primary connection: */
8163 /* ...halt the connection */
8164 q_params.cmd = BNX2X_Q_CMD_HALT;
8165 rc = bnx2x_queue_state_change(bp, &q_params);
8166 if (rc)
8167 return rc;
8168
8169 /* ...terminate the connection */
8170 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8171 memset(&q_params.params.terminate, 0,
8172 sizeof(q_params.params.terminate));
8173 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8174 rc = bnx2x_queue_state_change(bp, &q_params);
8175 if (rc)
8176 return rc;
8177 /* ...delete cfc entry */
8178 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8179 memset(&q_params.params.cfc_del, 0,
8180 sizeof(q_params.params.cfc_del));
8181 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8182 return bnx2x_queue_state_change(bp, &q_params);
8183 }
8184
8185
8186 static void bnx2x_reset_func(struct bnx2x *bp)
8187 {
8188 int port = BP_PORT(bp);
8189 int func = BP_FUNC(bp);
8190 int i;
8191
8192 /* Disable the function in the FW */
8193 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8194 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8195 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8196 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8197
8198 /* FP SBs */
8199 for_each_eth_queue(bp, i) {
8200 struct bnx2x_fastpath *fp = &bp->fp[i];
8201 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8202 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8203 SB_DISABLED);
8204 }
8205
8206 if (CNIC_LOADED(bp))
8207 /* CNIC SB */
8208 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8209 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8210 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8211
8212 /* SP SB */
8213 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8214 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8215 SB_DISABLED);
8216
8217 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8218 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8219 0);
8220
8221 /* Configure IGU */
8222 if (bp->common.int_block == INT_BLOCK_HC) {
8223 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8224 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8225 } else {
8226 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8227 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8228 }
8229
8230 if (CNIC_LOADED(bp)) {
8231 /* Disable Timer scan */
8232 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8233 /*
8234 * Wait for at least 10ms and up to 2 second for the timers
8235 * scan to complete
8236 */
8237 for (i = 0; i < 200; i++) {
8238 msleep(10);
8239 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8240 break;
8241 }
8242 }
8243 /* Clear ILT */
8244 bnx2x_clear_func_ilt(bp, func);
8245
8246 /* Timers workaround bug for E2: if this is vnic-3,
8247 * we need to set the entire ilt range for this timers.
8248 */
8249 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8250 struct ilt_client_info ilt_cli;
8251 /* use dummy TM client */
8252 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8253 ilt_cli.start = 0;
8254 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8255 ilt_cli.client_num = ILT_CLIENT_TM;
8256
8257 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8258 }
8259
8260 /* this assumes that reset_port() called before reset_func()*/
8261 if (!CHIP_IS_E1x(bp))
8262 bnx2x_pf_disable(bp);
8263
8264 bp->dmae_ready = 0;
8265 }
8266
8267 static void bnx2x_reset_port(struct bnx2x *bp)
8268 {
8269 int port = BP_PORT(bp);
8270 u32 val;
8271
8272 /* Reset physical Link */
8273 bnx2x__link_reset(bp);
8274
8275 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8276
8277 /* Do not rcv packets to BRB */
8278 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8279 /* Do not direct rcv packets that are not for MCP to the BRB */
8280 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8281 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8282
8283 /* Configure AEU */
8284 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8285
8286 msleep(100);
8287 /* Check for BRB port occupancy */
8288 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8289 if (val)
8290 DP(NETIF_MSG_IFDOWN,
8291 "BRB1 is not empty %d blocks are occupied\n", val);
8292
8293 /* TODO: Close Doorbell port? */
8294 }
8295
8296 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8297 {
8298 struct bnx2x_func_state_params func_params = {NULL};
8299
8300 /* Prepare parameters for function state transitions */
8301 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8302
8303 func_params.f_obj = &bp->func_obj;
8304 func_params.cmd = BNX2X_F_CMD_HW_RESET;
8305
8306 func_params.params.hw_init.load_phase = load_code;
8307
8308 return bnx2x_func_state_change(bp, &func_params);
8309 }
8310
8311 static int bnx2x_func_stop(struct bnx2x *bp)
8312 {
8313 struct bnx2x_func_state_params func_params = {NULL};
8314 int rc;
8315
8316 /* Prepare parameters for function state transitions */
8317 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8318 func_params.f_obj = &bp->func_obj;
8319 func_params.cmd = BNX2X_F_CMD_STOP;
8320
8321 /*
8322 * Try to stop the function the 'good way'. If fails (in case
8323 * of a parity error during bnx2x_chip_cleanup()) and we are
8324 * not in a debug mode, perform a state transaction in order to
8325 * enable further HW_RESET transaction.
8326 */
8327 rc = bnx2x_func_state_change(bp, &func_params);
8328 if (rc) {
8329 #ifdef BNX2X_STOP_ON_ERROR
8330 return rc;
8331 #else
8332 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8333 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8334 return bnx2x_func_state_change(bp, &func_params);
8335 #endif
8336 }
8337
8338 return 0;
8339 }
8340
8341 /**
8342 * bnx2x_send_unload_req - request unload mode from the MCP.
8343 *
8344 * @bp: driver handle
8345 * @unload_mode: requested function's unload mode
8346 *
8347 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8348 */
8349 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8350 {
8351 u32 reset_code = 0;
8352 int port = BP_PORT(bp);
8353
8354 /* Select the UNLOAD request mode */
8355 if (unload_mode == UNLOAD_NORMAL)
8356 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8357
8358 else if (bp->flags & NO_WOL_FLAG)
8359 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8360
8361 else if (bp->wol) {
8362 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8363 u8 *mac_addr = bp->dev->dev_addr;
8364 u32 val;
8365 u16 pmc;
8366
8367 /* The mac address is written to entries 1-4 to
8368 * preserve entry 0 which is used by the PMF
8369 */
8370 u8 entry = (BP_VN(bp) + 1)*8;
8371
8372 val = (mac_addr[0] << 8) | mac_addr[1];
8373 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8374
8375 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8376 (mac_addr[4] << 8) | mac_addr[5];
8377 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8378
8379 /* Enable the PME and clear the status */
8380 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8381 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8382 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8383
8384 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8385
8386 } else
8387 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8388
8389 /* Send the request to the MCP */
8390 if (!BP_NOMCP(bp))
8391 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8392 else {
8393 int path = BP_PATH(bp);
8394
8395 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
8396 path, load_count[path][0], load_count[path][1],
8397 load_count[path][2]);
8398 load_count[path][0]--;
8399 load_count[path][1 + port]--;
8400 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
8401 path, load_count[path][0], load_count[path][1],
8402 load_count[path][2]);
8403 if (load_count[path][0] == 0)
8404 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8405 else if (load_count[path][1 + port] == 0)
8406 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8407 else
8408 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8409 }
8410
8411 return reset_code;
8412 }
8413
8414 /**
8415 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8416 *
8417 * @bp: driver handle
8418 * @keep_link: true iff link should be kept up
8419 */
8420 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8421 {
8422 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8423
8424 /* Report UNLOAD_DONE to MCP */
8425 if (!BP_NOMCP(bp))
8426 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8427 }
8428
8429 static int bnx2x_func_wait_started(struct bnx2x *bp)
8430 {
8431 int tout = 50;
8432 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8433
8434 if (!bp->port.pmf)
8435 return 0;
8436
8437 /*
8438 * (assumption: No Attention from MCP at this stage)
8439 * PMF probably in the middle of TXdisable/enable transaction
8440 * 1. Sync IRS for default SB
8441 * 2. Sync SP queue - this guarantes us that attention handling started
8442 * 3. Wait, that TXdisable/enable transaction completes
8443 *
8444 * 1+2 guranty that if DCBx attention was scheduled it already changed
8445 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8446 * received complettion for the transaction the state is TX_STOPPED.
8447 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8448 * transaction.
8449 */
8450
8451 /* make sure default SB ISR is done */
8452 if (msix)
8453 synchronize_irq(bp->msix_table[0].vector);
8454 else
8455 synchronize_irq(bp->pdev->irq);
8456
8457 flush_workqueue(bnx2x_wq);
8458
8459 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8460 BNX2X_F_STATE_STARTED && tout--)
8461 msleep(20);
8462
8463 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8464 BNX2X_F_STATE_STARTED) {
8465 #ifdef BNX2X_STOP_ON_ERROR
8466 BNX2X_ERR("Wrong function state\n");
8467 return -EBUSY;
8468 #else
8469 /*
8470 * Failed to complete the transaction in a "good way"
8471 * Force both transactions with CLR bit
8472 */
8473 struct bnx2x_func_state_params func_params = {NULL};
8474
8475 DP(NETIF_MSG_IFDOWN,
8476 "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8477
8478 func_params.f_obj = &bp->func_obj;
8479 __set_bit(RAMROD_DRV_CLR_ONLY,
8480 &func_params.ramrod_flags);
8481
8482 /* STARTED-->TX_ST0PPED */
8483 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8484 bnx2x_func_state_change(bp, &func_params);
8485
8486 /* TX_ST0PPED-->STARTED */
8487 func_params.cmd = BNX2X_F_CMD_TX_START;
8488 return bnx2x_func_state_change(bp, &func_params);
8489 #endif
8490 }
8491
8492 return 0;
8493 }
8494
8495 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8496 {
8497 int port = BP_PORT(bp);
8498 int i, rc = 0;
8499 u8 cos;
8500 struct bnx2x_mcast_ramrod_params rparam = {NULL};
8501 u32 reset_code;
8502
8503 /* Wait until tx fastpath tasks complete */
8504 for_each_tx_queue(bp, i) {
8505 struct bnx2x_fastpath *fp = &bp->fp[i];
8506
8507 for_each_cos_in_tx_queue(fp, cos)
8508 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8509 #ifdef BNX2X_STOP_ON_ERROR
8510 if (rc)
8511 return;
8512 #endif
8513 }
8514
8515 /* Give HW time to discard old tx messages */
8516 usleep_range(1000, 1000);
8517
8518 /* Clean all ETH MACs */
8519 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8520 false);
8521 if (rc < 0)
8522 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8523
8524 /* Clean up UC list */
8525 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8526 true);
8527 if (rc < 0)
8528 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8529 rc);
8530
8531 /* Disable LLH */
8532 if (!CHIP_IS_E1(bp))
8533 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8534
8535 /* Set "drop all" (stop Rx).
8536 * We need to take a netif_addr_lock() here in order to prevent
8537 * a race between the completion code and this code.
8538 */
8539 netif_addr_lock_bh(bp->dev);
8540 /* Schedule the rx_mode command */
8541 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8542 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8543 else
8544 bnx2x_set_storm_rx_mode(bp);
8545
8546 /* Cleanup multicast configuration */
8547 rparam.mcast_obj = &bp->mcast_obj;
8548 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8549 if (rc < 0)
8550 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8551
8552 netif_addr_unlock_bh(bp->dev);
8553
8554
8555
8556 /*
8557 * Send the UNLOAD_REQUEST to the MCP. This will return if
8558 * this function should perform FUNC, PORT or COMMON HW
8559 * reset.
8560 */
8561 reset_code = bnx2x_send_unload_req(bp, unload_mode);
8562
8563 /*
8564 * (assumption: No Attention from MCP at this stage)
8565 * PMF probably in the middle of TXdisable/enable transaction
8566 */
8567 rc = bnx2x_func_wait_started(bp);
8568 if (rc) {
8569 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8570 #ifdef BNX2X_STOP_ON_ERROR
8571 return;
8572 #endif
8573 }
8574
8575 /* Close multi and leading connections
8576 * Completions for ramrods are collected in a synchronous way
8577 */
8578 for_each_eth_queue(bp, i)
8579 if (bnx2x_stop_queue(bp, i))
8580 #ifdef BNX2X_STOP_ON_ERROR
8581 return;
8582 #else
8583 goto unload_error;
8584 #endif
8585
8586 if (CNIC_LOADED(bp)) {
8587 for_each_cnic_queue(bp, i)
8588 if (bnx2x_stop_queue(bp, i))
8589 #ifdef BNX2X_STOP_ON_ERROR
8590 return;
8591 #else
8592 goto unload_error;
8593 #endif
8594 }
8595
8596 /* If SP settings didn't get completed so far - something
8597 * very wrong has happen.
8598 */
8599 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8600 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8601
8602 #ifndef BNX2X_STOP_ON_ERROR
8603 unload_error:
8604 #endif
8605 rc = bnx2x_func_stop(bp);
8606 if (rc) {
8607 BNX2X_ERR("Function stop failed!\n");
8608 #ifdef BNX2X_STOP_ON_ERROR
8609 return;
8610 #endif
8611 }
8612
8613 /* Disable HW interrupts, NAPI */
8614 bnx2x_netif_stop(bp, 1);
8615 /* Delete all NAPI objects */
8616 bnx2x_del_all_napi(bp);
8617 if (CNIC_LOADED(bp))
8618 bnx2x_del_all_napi_cnic(bp);
8619
8620 /* Release IRQs */
8621 bnx2x_free_irq(bp);
8622
8623 /* Reset the chip */
8624 rc = bnx2x_reset_hw(bp, reset_code);
8625 if (rc)
8626 BNX2X_ERR("HW_RESET failed\n");
8627
8628
8629 /* Report UNLOAD_DONE to MCP */
8630 bnx2x_send_unload_done(bp, keep_link);
8631 }
8632
8633 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8634 {
8635 u32 val;
8636
8637 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8638
8639 if (CHIP_IS_E1(bp)) {
8640 int port = BP_PORT(bp);
8641 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8642 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8643
8644 val = REG_RD(bp, addr);
8645 val &= ~(0x300);
8646 REG_WR(bp, addr, val);
8647 } else {
8648 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8649 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8650 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8651 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8652 }
8653 }
8654
8655 /* Close gates #2, #3 and #4: */
8656 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8657 {
8658 u32 val;
8659
8660 /* Gates #2 and #4a are closed/opened for "not E1" only */
8661 if (!CHIP_IS_E1(bp)) {
8662 /* #4 */
8663 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8664 /* #2 */
8665 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8666 }
8667
8668 /* #3 */
8669 if (CHIP_IS_E1x(bp)) {
8670 /* Prevent interrupts from HC on both ports */
8671 val = REG_RD(bp, HC_REG_CONFIG_1);
8672 REG_WR(bp, HC_REG_CONFIG_1,
8673 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8674 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8675
8676 val = REG_RD(bp, HC_REG_CONFIG_0);
8677 REG_WR(bp, HC_REG_CONFIG_0,
8678 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8679 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8680 } else {
8681 /* Prevent incomming interrupts in IGU */
8682 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8683
8684 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8685 (!close) ?
8686 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8687 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8688 }
8689
8690 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8691 close ? "closing" : "opening");
8692 mmiowb();
8693 }
8694
8695 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
8696
8697 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8698 {
8699 /* Do some magic... */
8700 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8701 *magic_val = val & SHARED_MF_CLP_MAGIC;
8702 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8703 }
8704
8705 /**
8706 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8707 *
8708 * @bp: driver handle
8709 * @magic_val: old value of the `magic' bit.
8710 */
8711 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8712 {
8713 /* Restore the `magic' bit value... */
8714 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8715 MF_CFG_WR(bp, shared_mf_config.clp_mb,
8716 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8717 }
8718
8719 /**
8720 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8721 *
8722 * @bp: driver handle
8723 * @magic_val: old value of 'magic' bit.
8724 *
8725 * Takes care of CLP configurations.
8726 */
8727 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8728 {
8729 u32 shmem;
8730 u32 validity_offset;
8731
8732 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8733
8734 /* Set `magic' bit in order to save MF config */
8735 if (!CHIP_IS_E1(bp))
8736 bnx2x_clp_reset_prep(bp, magic_val);
8737
8738 /* Get shmem offset */
8739 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8740 validity_offset =
8741 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
8742
8743 /* Clear validity map flags */
8744 if (shmem > 0)
8745 REG_WR(bp, shmem + validity_offset, 0);
8746 }
8747
8748 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
8749 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
8750
8751 /**
8752 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8753 *
8754 * @bp: driver handle
8755 */
8756 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8757 {
8758 /* special handling for emulation and FPGA,
8759 wait 10 times longer */
8760 if (CHIP_REV_IS_SLOW(bp))
8761 msleep(MCP_ONE_TIMEOUT*10);
8762 else
8763 msleep(MCP_ONE_TIMEOUT);
8764 }
8765
8766 /*
8767 * initializes bp->common.shmem_base and waits for validity signature to appear
8768 */
8769 static int bnx2x_init_shmem(struct bnx2x *bp)
8770 {
8771 int cnt = 0;
8772 u32 val = 0;
8773
8774 do {
8775 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8776 if (bp->common.shmem_base) {
8777 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8778 if (val & SHR_MEM_VALIDITY_MB)
8779 return 0;
8780 }
8781
8782 bnx2x_mcp_wait_one(bp);
8783
8784 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8785
8786 BNX2X_ERR("BAD MCP validity signature\n");
8787
8788 return -ENODEV;
8789 }
8790
8791 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8792 {
8793 int rc = bnx2x_init_shmem(bp);
8794
8795 /* Restore the `magic' bit value */
8796 if (!CHIP_IS_E1(bp))
8797 bnx2x_clp_reset_done(bp, magic_val);
8798
8799 return rc;
8800 }
8801
8802 static void bnx2x_pxp_prep(struct bnx2x *bp)
8803 {
8804 if (!CHIP_IS_E1(bp)) {
8805 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8806 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8807 mmiowb();
8808 }
8809 }
8810
8811 /*
8812 * Reset the whole chip except for:
8813 * - PCIE core
8814 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8815 * one reset bit)
8816 * - IGU
8817 * - MISC (including AEU)
8818 * - GRC
8819 * - RBCN, RBCP
8820 */
8821 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8822 {
8823 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8824 u32 global_bits2, stay_reset2;
8825
8826 /*
8827 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8828 * (per chip) blocks.
8829 */
8830 global_bits2 =
8831 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8832 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8833
8834 /* Don't reset the following blocks.
8835 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
8836 * reset, as in 4 port device they might still be owned
8837 * by the MCP (there is only one leader per path).
8838 */
8839 not_reset_mask1 =
8840 MISC_REGISTERS_RESET_REG_1_RST_HC |
8841 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8842 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8843
8844 not_reset_mask2 =
8845 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8846 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8847 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8848 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8849 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8850 MISC_REGISTERS_RESET_REG_2_RST_GRC |
8851 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8852 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8853 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8854 MISC_REGISTERS_RESET_REG_2_PGLC |
8855 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8856 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8857 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8858 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8859 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8860 MISC_REGISTERS_RESET_REG_2_UMAC1;
8861
8862 /*
8863 * Keep the following blocks in reset:
8864 * - all xxMACs are handled by the bnx2x_link code.
8865 */
8866 stay_reset2 =
8867 MISC_REGISTERS_RESET_REG_2_XMAC |
8868 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8869
8870 /* Full reset masks according to the chip */
8871 reset_mask1 = 0xffffffff;
8872
8873 if (CHIP_IS_E1(bp))
8874 reset_mask2 = 0xffff;
8875 else if (CHIP_IS_E1H(bp))
8876 reset_mask2 = 0x1ffff;
8877 else if (CHIP_IS_E2(bp))
8878 reset_mask2 = 0xfffff;
8879 else /* CHIP_IS_E3 */
8880 reset_mask2 = 0x3ffffff;
8881
8882 /* Don't reset global blocks unless we need to */
8883 if (!global)
8884 reset_mask2 &= ~global_bits2;
8885
8886 /*
8887 * In case of attention in the QM, we need to reset PXP
8888 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8889 * because otherwise QM reset would release 'close the gates' shortly
8890 * before resetting the PXP, then the PSWRQ would send a write
8891 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8892 * read the payload data from PSWWR, but PSWWR would not
8893 * respond. The write queue in PGLUE would stuck, dmae commands
8894 * would not return. Therefore it's important to reset the second
8895 * reset register (containing the
8896 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8897 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8898 * bit).
8899 */
8900 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8901 reset_mask2 & (~not_reset_mask2));
8902
8903 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8904 reset_mask1 & (~not_reset_mask1));
8905
8906 barrier();
8907 mmiowb();
8908
8909 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8910 reset_mask2 & (~stay_reset2));
8911
8912 barrier();
8913 mmiowb();
8914
8915 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8916 mmiowb();
8917 }
8918
8919 /**
8920 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8921 * It should get cleared in no more than 1s.
8922 *
8923 * @bp: driver handle
8924 *
8925 * It should get cleared in no more than 1s. Returns 0 if
8926 * pending writes bit gets cleared.
8927 */
8928 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8929 {
8930 u32 cnt = 1000;
8931 u32 pend_bits = 0;
8932
8933 do {
8934 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8935
8936 if (pend_bits == 0)
8937 break;
8938
8939 usleep_range(1000, 1000);
8940 } while (cnt-- > 0);
8941
8942 if (cnt <= 0) {
8943 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8944 pend_bits);
8945 return -EBUSY;
8946 }
8947
8948 return 0;
8949 }
8950
8951 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8952 {
8953 int cnt = 1000;
8954 u32 val = 0;
8955 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8956 u32 tags_63_32 = 0;
8957
8958
8959 /* Empty the Tetris buffer, wait for 1s */
8960 do {
8961 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8962 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8963 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8964 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8965 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8966 if (CHIP_IS_E3(bp))
8967 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
8968
8969 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8970 ((port_is_idle_0 & 0x1) == 0x1) &&
8971 ((port_is_idle_1 & 0x1) == 0x1) &&
8972 (pgl_exp_rom2 == 0xffffffff) &&
8973 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
8974 break;
8975 usleep_range(1000, 1000);
8976 } while (cnt-- > 0);
8977
8978 if (cnt <= 0) {
8979 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8980 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8981 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8982 pgl_exp_rom2);
8983 return -EAGAIN;
8984 }
8985
8986 barrier();
8987
8988 /* Close gates #2, #3 and #4 */
8989 bnx2x_set_234_gates(bp, true);
8990
8991 /* Poll for IGU VQs for 57712 and newer chips */
8992 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8993 return -EAGAIN;
8994
8995
8996 /* TBD: Indicate that "process kill" is in progress to MCP */
8997
8998 /* Clear "unprepared" bit */
8999 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9000 barrier();
9001
9002 /* Make sure all is written to the chip before the reset */
9003 mmiowb();
9004
9005 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9006 * PSWHST, GRC and PSWRD Tetris buffer.
9007 */
9008 usleep_range(1000, 1000);
9009
9010 /* Prepare to chip reset: */
9011 /* MCP */
9012 if (global)
9013 bnx2x_reset_mcp_prep(bp, &val);
9014
9015 /* PXP */
9016 bnx2x_pxp_prep(bp);
9017 barrier();
9018
9019 /* reset the chip */
9020 bnx2x_process_kill_chip_reset(bp, global);
9021 barrier();
9022
9023 /* Recover after reset: */
9024 /* MCP */
9025 if (global && bnx2x_reset_mcp_comp(bp, val))
9026 return -EAGAIN;
9027
9028 /* TBD: Add resetting the NO_MCP mode DB here */
9029
9030 /* Open the gates #2, #3 and #4 */
9031 bnx2x_set_234_gates(bp, false);
9032
9033 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9034 * reset state, re-enable attentions. */
9035
9036 return 0;
9037 }
9038
9039 static int bnx2x_leader_reset(struct bnx2x *bp)
9040 {
9041 int rc = 0;
9042 bool global = bnx2x_reset_is_global(bp);
9043 u32 load_code;
9044
9045 /* if not going to reset MCP - load "fake" driver to reset HW while
9046 * driver is owner of the HW
9047 */
9048 if (!global && !BP_NOMCP(bp)) {
9049 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9050 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9051 if (!load_code) {
9052 BNX2X_ERR("MCP response failure, aborting\n");
9053 rc = -EAGAIN;
9054 goto exit_leader_reset;
9055 }
9056 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9057 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9058 BNX2X_ERR("MCP unexpected resp, aborting\n");
9059 rc = -EAGAIN;
9060 goto exit_leader_reset2;
9061 }
9062 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9063 if (!load_code) {
9064 BNX2X_ERR("MCP response failure, aborting\n");
9065 rc = -EAGAIN;
9066 goto exit_leader_reset2;
9067 }
9068 }
9069
9070 /* Try to recover after the failure */
9071 if (bnx2x_process_kill(bp, global)) {
9072 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9073 BP_PATH(bp));
9074 rc = -EAGAIN;
9075 goto exit_leader_reset2;
9076 }
9077
9078 /*
9079 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9080 * state.
9081 */
9082 bnx2x_set_reset_done(bp);
9083 if (global)
9084 bnx2x_clear_reset_global(bp);
9085
9086 exit_leader_reset2:
9087 /* unload "fake driver" if it was loaded */
9088 if (!global && !BP_NOMCP(bp)) {
9089 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9090 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9091 }
9092 exit_leader_reset:
9093 bp->is_leader = 0;
9094 bnx2x_release_leader_lock(bp);
9095 smp_mb();
9096 return rc;
9097 }
9098
9099 static void bnx2x_recovery_failed(struct bnx2x *bp)
9100 {
9101 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9102
9103 /* Disconnect this device */
9104 netif_device_detach(bp->dev);
9105
9106 /*
9107 * Block ifup for all function on this engine until "process kill"
9108 * or power cycle.
9109 */
9110 bnx2x_set_reset_in_progress(bp);
9111
9112 /* Shut down the power */
9113 bnx2x_set_power_state(bp, PCI_D3hot);
9114
9115 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9116
9117 smp_mb();
9118 }
9119
9120 /*
9121 * Assumption: runs under rtnl lock. This together with the fact
9122 * that it's called only from bnx2x_sp_rtnl() ensure that it
9123 * will never be called when netif_running(bp->dev) is false.
9124 */
9125 static void bnx2x_parity_recover(struct bnx2x *bp)
9126 {
9127 bool global = false;
9128 u32 error_recovered, error_unrecovered;
9129 bool is_parity;
9130
9131 DP(NETIF_MSG_HW, "Handling parity\n");
9132 while (1) {
9133 switch (bp->recovery_state) {
9134 case BNX2X_RECOVERY_INIT:
9135 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9136 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9137 WARN_ON(!is_parity);
9138
9139 /* Try to get a LEADER_LOCK HW lock */
9140 if (bnx2x_trylock_leader_lock(bp)) {
9141 bnx2x_set_reset_in_progress(bp);
9142 /*
9143 * Check if there is a global attention and if
9144 * there was a global attention, set the global
9145 * reset bit.
9146 */
9147
9148 if (global)
9149 bnx2x_set_reset_global(bp);
9150
9151 bp->is_leader = 1;
9152 }
9153
9154 /* Stop the driver */
9155 /* If interface has been removed - break */
9156 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9157 return;
9158
9159 bp->recovery_state = BNX2X_RECOVERY_WAIT;
9160
9161 /* Ensure "is_leader", MCP command sequence and
9162 * "recovery_state" update values are seen on other
9163 * CPUs.
9164 */
9165 smp_mb();
9166 break;
9167
9168 case BNX2X_RECOVERY_WAIT:
9169 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9170 if (bp->is_leader) {
9171 int other_engine = BP_PATH(bp) ? 0 : 1;
9172 bool other_load_status =
9173 bnx2x_get_load_status(bp, other_engine);
9174 bool load_status =
9175 bnx2x_get_load_status(bp, BP_PATH(bp));
9176 global = bnx2x_reset_is_global(bp);
9177
9178 /*
9179 * In case of a parity in a global block, let
9180 * the first leader that performs a
9181 * leader_reset() reset the global blocks in
9182 * order to clear global attentions. Otherwise
9183 * the the gates will remain closed for that
9184 * engine.
9185 */
9186 if (load_status ||
9187 (global && other_load_status)) {
9188 /* Wait until all other functions get
9189 * down.
9190 */
9191 schedule_delayed_work(&bp->sp_rtnl_task,
9192 HZ/10);
9193 return;
9194 } else {
9195 /* If all other functions got down -
9196 * try to bring the chip back to
9197 * normal. In any case it's an exit
9198 * point for a leader.
9199 */
9200 if (bnx2x_leader_reset(bp)) {
9201 bnx2x_recovery_failed(bp);
9202 return;
9203 }
9204
9205 /* If we are here, means that the
9206 * leader has succeeded and doesn't
9207 * want to be a leader any more. Try
9208 * to continue as a none-leader.
9209 */
9210 break;
9211 }
9212 } else { /* non-leader */
9213 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9214 /* Try to get a LEADER_LOCK HW lock as
9215 * long as a former leader may have
9216 * been unloaded by the user or
9217 * released a leadership by another
9218 * reason.
9219 */
9220 if (bnx2x_trylock_leader_lock(bp)) {
9221 /* I'm a leader now! Restart a
9222 * switch case.
9223 */
9224 bp->is_leader = 1;
9225 break;
9226 }
9227
9228 schedule_delayed_work(&bp->sp_rtnl_task,
9229 HZ/10);
9230 return;
9231
9232 } else {
9233 /*
9234 * If there was a global attention, wait
9235 * for it to be cleared.
9236 */
9237 if (bnx2x_reset_is_global(bp)) {
9238 schedule_delayed_work(
9239 &bp->sp_rtnl_task,
9240 HZ/10);
9241 return;
9242 }
9243
9244 error_recovered =
9245 bp->eth_stats.recoverable_error;
9246 error_unrecovered =
9247 bp->eth_stats.unrecoverable_error;
9248 bp->recovery_state =
9249 BNX2X_RECOVERY_NIC_LOADING;
9250 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9251 error_unrecovered++;
9252 netdev_err(bp->dev,
9253 "Recovery failed. Power cycle needed\n");
9254 /* Disconnect this device */
9255 netif_device_detach(bp->dev);
9256 /* Shut down the power */
9257 bnx2x_set_power_state(
9258 bp, PCI_D3hot);
9259 smp_mb();
9260 } else {
9261 bp->recovery_state =
9262 BNX2X_RECOVERY_DONE;
9263 error_recovered++;
9264 smp_mb();
9265 }
9266 bp->eth_stats.recoverable_error =
9267 error_recovered;
9268 bp->eth_stats.unrecoverable_error =
9269 error_unrecovered;
9270
9271 return;
9272 }
9273 }
9274 default:
9275 return;
9276 }
9277 }
9278 }
9279
9280 static int bnx2x_close(struct net_device *dev);
9281
9282 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9283 * scheduled on a general queue in order to prevent a dead lock.
9284 */
9285 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9286 {
9287 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9288
9289 rtnl_lock();
9290
9291 if (!netif_running(bp->dev))
9292 goto sp_rtnl_exit;
9293
9294 /* if stop on error is defined no recovery flows should be executed */
9295 #ifdef BNX2X_STOP_ON_ERROR
9296 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9297 "you will need to reboot when done\n");
9298 goto sp_rtnl_not_reset;
9299 #endif
9300
9301 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9302 /*
9303 * Clear all pending SP commands as we are going to reset the
9304 * function anyway.
9305 */
9306 bp->sp_rtnl_state = 0;
9307 smp_mb();
9308
9309 bnx2x_parity_recover(bp);
9310
9311 goto sp_rtnl_exit;
9312 }
9313
9314 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9315 /*
9316 * Clear all pending SP commands as we are going to reset the
9317 * function anyway.
9318 */
9319 bp->sp_rtnl_state = 0;
9320 smp_mb();
9321
9322 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9323 bnx2x_nic_load(bp, LOAD_NORMAL);
9324
9325 goto sp_rtnl_exit;
9326 }
9327 #ifdef BNX2X_STOP_ON_ERROR
9328 sp_rtnl_not_reset:
9329 #endif
9330 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9331 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9332 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9333 bnx2x_after_function_update(bp);
9334 /*
9335 * in case of fan failure we need to reset id if the "stop on error"
9336 * debug flag is set, since we trying to prevent permanent overheating
9337 * damage
9338 */
9339 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9340 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9341 netif_device_detach(bp->dev);
9342 bnx2x_close(bp->dev);
9343 }
9344
9345 sp_rtnl_exit:
9346 rtnl_unlock();
9347 }
9348
9349 /* end of nic load/unload */
9350
9351 static void bnx2x_period_task(struct work_struct *work)
9352 {
9353 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9354
9355 if (!netif_running(bp->dev))
9356 goto period_task_exit;
9357
9358 if (CHIP_REV_IS_SLOW(bp)) {
9359 BNX2X_ERR("period task called on emulation, ignoring\n");
9360 goto period_task_exit;
9361 }
9362
9363 bnx2x_acquire_phy_lock(bp);
9364 /*
9365 * The barrier is needed to ensure the ordering between the writing to
9366 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9367 * the reading here.
9368 */
9369 smp_mb();
9370 if (bp->port.pmf) {
9371 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9372
9373 /* Re-queue task in 1 sec */
9374 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9375 }
9376
9377 bnx2x_release_phy_lock(bp);
9378 period_task_exit:
9379 return;
9380 }
9381
9382 /*
9383 * Init service functions
9384 */
9385
9386 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9387 {
9388 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9389 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9390 return base + (BP_ABS_FUNC(bp)) * stride;
9391 }
9392
9393 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
9394 {
9395 u32 reg = bnx2x_get_pretend_reg(bp);
9396
9397 /* Flush all outstanding writes */
9398 mmiowb();
9399
9400 /* Pretend to be function 0 */
9401 REG_WR(bp, reg, 0);
9402 REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
9403
9404 /* From now we are in the "like-E1" mode */
9405 bnx2x_int_disable(bp);
9406
9407 /* Flush all outstanding writes */
9408 mmiowb();
9409
9410 /* Restore the original function */
9411 REG_WR(bp, reg, BP_ABS_FUNC(bp));
9412 REG_RD(bp, reg);
9413 }
9414
9415 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
9416 {
9417 if (CHIP_IS_E1(bp))
9418 bnx2x_int_disable(bp);
9419 else
9420 bnx2x_undi_int_disable_e1h(bp);
9421 }
9422
9423 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp)
9424 {
9425 u32 val, base_addr, offset, mask, reset_reg;
9426 bool mac_stopped = false;
9427 u8 port = BP_PORT(bp);
9428
9429 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9430
9431 if (!CHIP_IS_E3(bp)) {
9432 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9433 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9434 if ((mask & reset_reg) && val) {
9435 u32 wb_data[2];
9436 BNX2X_DEV_INFO("Disable bmac Rx\n");
9437 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9438 : NIG_REG_INGRESS_BMAC0_MEM;
9439 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9440 : BIGMAC_REGISTER_BMAC_CONTROL;
9441
9442 /*
9443 * use rd/wr since we cannot use dmae. This is safe
9444 * since MCP won't access the bus due to the request
9445 * to unload, and no function on the path can be
9446 * loaded at this time.
9447 */
9448 wb_data[0] = REG_RD(bp, base_addr + offset);
9449 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9450 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9451 REG_WR(bp, base_addr + offset, wb_data[0]);
9452 REG_WR(bp, base_addr + offset + 0x4, wb_data[1]);
9453
9454 }
9455 BNX2X_DEV_INFO("Disable emac Rx\n");
9456 REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0);
9457
9458 mac_stopped = true;
9459 } else {
9460 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9461 BNX2X_DEV_INFO("Disable xmac Rx\n");
9462 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9463 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9464 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9465 val & ~(1 << 1));
9466 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9467 val | (1 << 1));
9468 REG_WR(bp, base_addr + XMAC_REG_CTRL, 0);
9469 mac_stopped = true;
9470 }
9471 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9472 if (mask & reset_reg) {
9473 BNX2X_DEV_INFO("Disable umac Rx\n");
9474 base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9475 REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0);
9476 mac_stopped = true;
9477 }
9478 }
9479
9480 if (mac_stopped)
9481 msleep(20);
9482
9483 }
9484
9485 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9486 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
9487 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
9488 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9489
9490 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9491 {
9492 u16 rcq, bd;
9493 u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9494
9495 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9496 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9497
9498 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9499 REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9500
9501 BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9502 port, bd, rcq);
9503 }
9504
9505 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9506 {
9507 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9508 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9509 if (!rc) {
9510 BNX2X_ERR("MCP response failure, aborting\n");
9511 return -EBUSY;
9512 }
9513
9514 return 0;
9515 }
9516
9517 static struct bnx2x_prev_path_list *
9518 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9519 {
9520 struct bnx2x_prev_path_list *tmp_list;
9521
9522 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9523 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9524 bp->pdev->bus->number == tmp_list->bus &&
9525 BP_PATH(bp) == tmp_list->path)
9526 return tmp_list;
9527
9528 return NULL;
9529 }
9530
9531 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9532 {
9533 struct bnx2x_prev_path_list *tmp_list;
9534 int rc = false;
9535
9536 if (down_trylock(&bnx2x_prev_sem))
9537 return false;
9538
9539 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
9540 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9541 bp->pdev->bus->number == tmp_list->bus &&
9542 BP_PATH(bp) == tmp_list->path) {
9543 rc = true;
9544 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9545 BP_PATH(bp));
9546 break;
9547 }
9548 }
9549
9550 up(&bnx2x_prev_sem);
9551
9552 return rc;
9553 }
9554
9555 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9556 {
9557 struct bnx2x_prev_path_list *tmp_list;
9558 int rc;
9559
9560 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9561 if (!tmp_list) {
9562 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9563 return -ENOMEM;
9564 }
9565
9566 tmp_list->bus = bp->pdev->bus->number;
9567 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9568 tmp_list->path = BP_PATH(bp);
9569 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9570
9571 rc = down_interruptible(&bnx2x_prev_sem);
9572 if (rc) {
9573 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9574 kfree(tmp_list);
9575 } else {
9576 BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
9577 BP_PATH(bp));
9578 list_add(&tmp_list->list, &bnx2x_prev_list);
9579 up(&bnx2x_prev_sem);
9580 }
9581
9582 return rc;
9583 }
9584
9585 static int bnx2x_do_flr(struct bnx2x *bp)
9586 {
9587 int i;
9588 u16 status;
9589 struct pci_dev *dev = bp->pdev;
9590
9591
9592 if (CHIP_IS_E1x(bp)) {
9593 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9594 return -EINVAL;
9595 }
9596
9597 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9598 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9599 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9600 bp->common.bc_ver);
9601 return -EINVAL;
9602 }
9603
9604 /* Wait for Transaction Pending bit clean */
9605 for (i = 0; i < 4; i++) {
9606 if (i)
9607 msleep((1 << (i - 1)) * 100);
9608
9609 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9610 if (!(status & PCI_EXP_DEVSTA_TRPND))
9611 goto clear;
9612 }
9613
9614 dev_err(&dev->dev,
9615 "transaction is not cleared; proceeding with reset anyway\n");
9616
9617 clear:
9618
9619 BNX2X_DEV_INFO("Initiating FLR\n");
9620 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9621
9622 return 0;
9623 }
9624
9625 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9626 {
9627 int rc;
9628
9629 BNX2X_DEV_INFO("Uncommon unload Flow\n");
9630
9631 /* Test if previous unload process was already finished for this path */
9632 if (bnx2x_prev_is_path_marked(bp))
9633 return bnx2x_prev_mcp_done(bp);
9634
9635 /* If function has FLR capabilities, and existing FW version matches
9636 * the one required, then FLR will be sufficient to clean any residue
9637 * left by previous driver
9638 */
9639 rc = bnx2x_test_firmware_version(bp, false);
9640
9641 if (!rc) {
9642 /* fw version is good */
9643 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9644 rc = bnx2x_do_flr(bp);
9645 }
9646
9647 if (!rc) {
9648 /* FLR was performed */
9649 BNX2X_DEV_INFO("FLR successful\n");
9650 return 0;
9651 }
9652
9653 BNX2X_DEV_INFO("Could not FLR\n");
9654
9655 /* Close the MCP request, return failure*/
9656 rc = bnx2x_prev_mcp_done(bp);
9657 if (!rc)
9658 rc = BNX2X_PREV_WAIT_NEEDED;
9659
9660 return rc;
9661 }
9662
9663 static int bnx2x_prev_unload_common(struct bnx2x *bp)
9664 {
9665 u32 reset_reg, tmp_reg = 0, rc;
9666 bool prev_undi = false;
9667 /* It is possible a previous function received 'common' answer,
9668 * but hasn't loaded yet, therefore creating a scenario of
9669 * multiple functions receiving 'common' on the same path.
9670 */
9671 BNX2X_DEV_INFO("Common unload Flow\n");
9672
9673 if (bnx2x_prev_is_path_marked(bp))
9674 return bnx2x_prev_mcp_done(bp);
9675
9676 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9677
9678 /* Reset should be performed after BRB is emptied */
9679 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9680 u32 timer_count = 1000;
9681
9682 /* Close the MAC Rx to prevent BRB from filling up */
9683 bnx2x_prev_unload_close_mac(bp);
9684
9685 /* Check if the UNDI driver was previously loaded
9686 * UNDI driver initializes CID offset for normal bell to 0x7
9687 */
9688 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9689 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9690 tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9691 if (tmp_reg == 0x7) {
9692 BNX2X_DEV_INFO("UNDI previously loaded\n");
9693 prev_undi = true;
9694 /* clear the UNDI indication */
9695 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9696 }
9697 }
9698 /* wait until BRB is empty */
9699 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9700 while (timer_count) {
9701 u32 prev_brb = tmp_reg;
9702
9703 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9704 if (!tmp_reg)
9705 break;
9706
9707 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9708
9709 /* reset timer as long as BRB actually gets emptied */
9710 if (prev_brb > tmp_reg)
9711 timer_count = 1000;
9712 else
9713 timer_count--;
9714
9715 /* If UNDI resides in memory, manually increment it */
9716 if (prev_undi)
9717 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9718
9719 udelay(10);
9720 }
9721
9722 if (!timer_count)
9723 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9724
9725 }
9726
9727 /* No packets are in the pipeline, path is ready for reset */
9728 bnx2x_reset_common(bp);
9729
9730 rc = bnx2x_prev_mark_path(bp, prev_undi);
9731 if (rc) {
9732 bnx2x_prev_mcp_done(bp);
9733 return rc;
9734 }
9735
9736 return bnx2x_prev_mcp_done(bp);
9737 }
9738
9739 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9740 * and boot began, or when kdump kernel was loaded. Either case would invalidate
9741 * the addresses of the transaction, resulting in was-error bit set in the pci
9742 * causing all hw-to-host pcie transactions to timeout. If this happened we want
9743 * to clear the interrupt which detected this from the pglueb and the was done
9744 * bit
9745 */
9746 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9747 {
9748 if (!CHIP_IS_E1x(bp)) {
9749 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9750 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9751 BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
9752 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9753 1 << BP_FUNC(bp));
9754 }
9755 }
9756 }
9757
9758 static int bnx2x_prev_unload(struct bnx2x *bp)
9759 {
9760 int time_counter = 10;
9761 u32 rc, fw, hw_lock_reg, hw_lock_val;
9762 struct bnx2x_prev_path_list *prev_list;
9763 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9764
9765 /* clear hw from errors which may have resulted from an interrupted
9766 * dmae transaction.
9767 */
9768 bnx2x_prev_interrupted_dmae(bp);
9769
9770 /* Release previously held locks */
9771 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9772 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9773 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9774
9775 hw_lock_val = (REG_RD(bp, hw_lock_reg));
9776 if (hw_lock_val) {
9777 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9778 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9779 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9780 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9781 }
9782
9783 BNX2X_DEV_INFO("Release Previously held hw lock\n");
9784 REG_WR(bp, hw_lock_reg, 0xffffffff);
9785 } else
9786 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9787
9788 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9789 BNX2X_DEV_INFO("Release previously held alr\n");
9790 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9791 }
9792
9793
9794 do {
9795 /* Lock MCP using an unload request */
9796 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9797 if (!fw) {
9798 BNX2X_ERR("MCP response failure, aborting\n");
9799 rc = -EBUSY;
9800 break;
9801 }
9802
9803 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9804 rc = bnx2x_prev_unload_common(bp);
9805 break;
9806 }
9807
9808 /* non-common reply from MCP night require looping */
9809 rc = bnx2x_prev_unload_uncommon(bp);
9810 if (rc != BNX2X_PREV_WAIT_NEEDED)
9811 break;
9812
9813 msleep(20);
9814 } while (--time_counter);
9815
9816 if (!time_counter || rc) {
9817 BNX2X_ERR("Failed unloading previous driver, aborting\n");
9818 rc = -EBUSY;
9819 }
9820
9821 /* Mark function if its port was used to boot from SAN */
9822 prev_list = bnx2x_prev_path_get_entry(bp);
9823 if (prev_list && (prev_list->undi & (1 << BP_PORT(bp))))
9824 bp->link_params.feature_config_flags |=
9825 FEATURE_CONFIG_BOOT_FROM_SAN;
9826
9827 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9828
9829 return rc;
9830 }
9831
9832 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
9833 {
9834 u32 val, val2, val3, val4, id, boot_mode;
9835 u16 pmc;
9836
9837 /* Get the chip revision id and number. */
9838 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9839 val = REG_RD(bp, MISC_REG_CHIP_NUM);
9840 id = ((val & 0xffff) << 16);
9841 val = REG_RD(bp, MISC_REG_CHIP_REV);
9842 id |= ((val & 0xf) << 12);
9843 val = REG_RD(bp, MISC_REG_CHIP_METAL);
9844 id |= ((val & 0xff) << 4);
9845 val = REG_RD(bp, MISC_REG_BOND_ID);
9846 id |= (val & 0xf);
9847 bp->common.chip_id = id;
9848
9849 /* force 57811 according to MISC register */
9850 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
9851 if (CHIP_IS_57810(bp))
9852 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
9853 (bp->common.chip_id & 0x0000FFFF);
9854 else if (CHIP_IS_57810_MF(bp))
9855 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
9856 (bp->common.chip_id & 0x0000FFFF);
9857 bp->common.chip_id |= 0x1;
9858 }
9859
9860 /* Set doorbell size */
9861 bp->db_size = (1 << BNX2X_DB_SHIFT);
9862
9863 if (!CHIP_IS_E1x(bp)) {
9864 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9865 if ((val & 1) == 0)
9866 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9867 else
9868 val = (val >> 1) & 1;
9869 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9870 "2_PORT_MODE");
9871 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9872 CHIP_2_PORT_MODE;
9873
9874 if (CHIP_MODE_IS_4_PORT(bp))
9875 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
9876 else
9877 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
9878 } else {
9879 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9880 bp->pfid = bp->pf_num; /* 0..7 */
9881 }
9882
9883 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9884
9885 bp->link_params.chip_id = bp->common.chip_id;
9886 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9887
9888 val = (REG_RD(bp, 0x2874) & 0x55);
9889 if ((bp->common.chip_id & 0x1) ||
9890 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9891 bp->flags |= ONE_PORT_FLAG;
9892 BNX2X_DEV_INFO("single port device\n");
9893 }
9894
9895 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9896 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9897 (val & MCPR_NVM_CFG4_FLASH_SIZE));
9898 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9899 bp->common.flash_size, bp->common.flash_size);
9900
9901 bnx2x_init_shmem(bp);
9902
9903
9904
9905 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9906 MISC_REG_GENERIC_CR_1 :
9907 MISC_REG_GENERIC_CR_0));
9908
9909 bp->link_params.shmem_base = bp->common.shmem_base;
9910 bp->link_params.shmem2_base = bp->common.shmem2_base;
9911 if (SHMEM2_RD(bp, size) >
9912 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
9913 bp->link_params.lfa_base =
9914 REG_RD(bp, bp->common.shmem2_base +
9915 (u32)offsetof(struct shmem2_region,
9916 lfa_host_addr[BP_PORT(bp)]));
9917 else
9918 bp->link_params.lfa_base = 0;
9919 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
9920 bp->common.shmem_base, bp->common.shmem2_base);
9921
9922 if (!bp->common.shmem_base) {
9923 BNX2X_DEV_INFO("MCP not active\n");
9924 bp->flags |= NO_MCP_FLAG;
9925 return;
9926 }
9927
9928 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9929 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9930
9931 bp->link_params.hw_led_mode = ((bp->common.hw_config &
9932 SHARED_HW_CFG_LED_MODE_MASK) >>
9933 SHARED_HW_CFG_LED_MODE_SHIFT);
9934
9935 bp->link_params.feature_config_flags = 0;
9936 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9937 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9938 bp->link_params.feature_config_flags |=
9939 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9940 else
9941 bp->link_params.feature_config_flags &=
9942 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9943
9944 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9945 bp->common.bc_ver = val;
9946 BNX2X_DEV_INFO("bc_ver %X\n", val);
9947 if (val < BNX2X_BC_VER) {
9948 /* for now only warn
9949 * later we might need to enforce this */
9950 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9951 BNX2X_BC_VER, val);
9952 }
9953 bp->link_params.feature_config_flags |=
9954 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9955 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9956
9957 bp->link_params.feature_config_flags |=
9958 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9959 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9960 bp->link_params.feature_config_flags |=
9961 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
9962 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
9963 bp->link_params.feature_config_flags |=
9964 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9965 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9966
9967 bp->link_params.feature_config_flags |=
9968 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
9969 FEATURE_CONFIG_MT_SUPPORT : 0;
9970
9971 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9972 BC_SUPPORTS_PFC_STATS : 0;
9973
9974 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
9975 BC_SUPPORTS_FCOE_FEATURES : 0;
9976
9977 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
9978 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
9979 boot_mode = SHMEM_RD(bp,
9980 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9981 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9982 switch (boot_mode) {
9983 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9984 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9985 break;
9986 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9987 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9988 break;
9989 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9990 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9991 break;
9992 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9993 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9994 break;
9995 }
9996
9997 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9998 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9999
10000 BNX2X_DEV_INFO("%sWoL capable\n",
10001 (bp->flags & NO_WOL_FLAG) ? "not " : "");
10002
10003 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10004 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10005 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10006 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10007
10008 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10009 val, val2, val3, val4);
10010 }
10011
10012 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10013 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10014
10015 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10016 {
10017 int pfid = BP_FUNC(bp);
10018 int igu_sb_id;
10019 u32 val;
10020 u8 fid, igu_sb_cnt = 0;
10021
10022 bp->igu_base_sb = 0xff;
10023 if (CHIP_INT_MODE_IS_BC(bp)) {
10024 int vn = BP_VN(bp);
10025 igu_sb_cnt = bp->igu_sb_cnt;
10026 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10027 FP_SB_MAX_E1x;
10028
10029 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
10030 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10031
10032 return 0;
10033 }
10034
10035 /* IGU in normal mode - read CAM */
10036 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10037 igu_sb_id++) {
10038 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10039 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10040 continue;
10041 fid = IGU_FID(val);
10042 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10043 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10044 continue;
10045 if (IGU_VEC(val) == 0)
10046 /* default status block */
10047 bp->igu_dsb_id = igu_sb_id;
10048 else {
10049 if (bp->igu_base_sb == 0xff)
10050 bp->igu_base_sb = igu_sb_id;
10051 igu_sb_cnt++;
10052 }
10053 }
10054 }
10055
10056 #ifdef CONFIG_PCI_MSI
10057 /* Due to new PF resource allocation by MFW T7.4 and above, it's
10058 * optional that number of CAM entries will not be equal to the value
10059 * advertised in PCI.
10060 * Driver should use the minimal value of both as the actual status
10061 * block count
10062 */
10063 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10064 #endif
10065
10066 if (igu_sb_cnt == 0) {
10067 BNX2X_ERR("CAM configuration error\n");
10068 return -EINVAL;
10069 }
10070
10071 return 0;
10072 }
10073
10074 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10075 {
10076 int cfg_size = 0, idx, port = BP_PORT(bp);
10077
10078 /* Aggregation of supported attributes of all external phys */
10079 bp->port.supported[0] = 0;
10080 bp->port.supported[1] = 0;
10081 switch (bp->link_params.num_phys) {
10082 case 1:
10083 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10084 cfg_size = 1;
10085 break;
10086 case 2:
10087 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10088 cfg_size = 1;
10089 break;
10090 case 3:
10091 if (bp->link_params.multi_phy_config &
10092 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10093 bp->port.supported[1] =
10094 bp->link_params.phy[EXT_PHY1].supported;
10095 bp->port.supported[0] =
10096 bp->link_params.phy[EXT_PHY2].supported;
10097 } else {
10098 bp->port.supported[0] =
10099 bp->link_params.phy[EXT_PHY1].supported;
10100 bp->port.supported[1] =
10101 bp->link_params.phy[EXT_PHY2].supported;
10102 }
10103 cfg_size = 2;
10104 break;
10105 }
10106
10107 if (!(bp->port.supported[0] || bp->port.supported[1])) {
10108 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10109 SHMEM_RD(bp,
10110 dev_info.port_hw_config[port].external_phy_config),
10111 SHMEM_RD(bp,
10112 dev_info.port_hw_config[port].external_phy_config2));
10113 return;
10114 }
10115
10116 if (CHIP_IS_E3(bp))
10117 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10118 else {
10119 switch (switch_cfg) {
10120 case SWITCH_CFG_1G:
10121 bp->port.phy_addr = REG_RD(
10122 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10123 break;
10124 case SWITCH_CFG_10G:
10125 bp->port.phy_addr = REG_RD(
10126 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10127 break;
10128 default:
10129 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10130 bp->port.link_config[0]);
10131 return;
10132 }
10133 }
10134 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10135 /* mask what we support according to speed_cap_mask per configuration */
10136 for (idx = 0; idx < cfg_size; idx++) {
10137 if (!(bp->link_params.speed_cap_mask[idx] &
10138 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10139 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10140
10141 if (!(bp->link_params.speed_cap_mask[idx] &
10142 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10143 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10144
10145 if (!(bp->link_params.speed_cap_mask[idx] &
10146 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10147 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10148
10149 if (!(bp->link_params.speed_cap_mask[idx] &
10150 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10151 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10152
10153 if (!(bp->link_params.speed_cap_mask[idx] &
10154 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10155 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10156 SUPPORTED_1000baseT_Full);
10157
10158 if (!(bp->link_params.speed_cap_mask[idx] &
10159 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10160 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10161
10162 if (!(bp->link_params.speed_cap_mask[idx] &
10163 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10164 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10165
10166 }
10167
10168 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10169 bp->port.supported[1]);
10170 }
10171
10172 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10173 {
10174 u32 link_config, idx, cfg_size = 0;
10175 bp->port.advertising[0] = 0;
10176 bp->port.advertising[1] = 0;
10177 switch (bp->link_params.num_phys) {
10178 case 1:
10179 case 2:
10180 cfg_size = 1;
10181 break;
10182 case 3:
10183 cfg_size = 2;
10184 break;
10185 }
10186 for (idx = 0; idx < cfg_size; idx++) {
10187 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10188 link_config = bp->port.link_config[idx];
10189 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10190 case PORT_FEATURE_LINK_SPEED_AUTO:
10191 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10192 bp->link_params.req_line_speed[idx] =
10193 SPEED_AUTO_NEG;
10194 bp->port.advertising[idx] |=
10195 bp->port.supported[idx];
10196 if (bp->link_params.phy[EXT_PHY1].type ==
10197 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10198 bp->port.advertising[idx] |=
10199 (SUPPORTED_100baseT_Half |
10200 SUPPORTED_100baseT_Full);
10201 } else {
10202 /* force 10G, no AN */
10203 bp->link_params.req_line_speed[idx] =
10204 SPEED_10000;
10205 bp->port.advertising[idx] |=
10206 (ADVERTISED_10000baseT_Full |
10207 ADVERTISED_FIBRE);
10208 continue;
10209 }
10210 break;
10211
10212 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10213 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10214 bp->link_params.req_line_speed[idx] =
10215 SPEED_10;
10216 bp->port.advertising[idx] |=
10217 (ADVERTISED_10baseT_Full |
10218 ADVERTISED_TP);
10219 } else {
10220 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10221 link_config,
10222 bp->link_params.speed_cap_mask[idx]);
10223 return;
10224 }
10225 break;
10226
10227 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10228 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10229 bp->link_params.req_line_speed[idx] =
10230 SPEED_10;
10231 bp->link_params.req_duplex[idx] =
10232 DUPLEX_HALF;
10233 bp->port.advertising[idx] |=
10234 (ADVERTISED_10baseT_Half |
10235 ADVERTISED_TP);
10236 } else {
10237 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10238 link_config,
10239 bp->link_params.speed_cap_mask[idx]);
10240 return;
10241 }
10242 break;
10243
10244 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10245 if (bp->port.supported[idx] &
10246 SUPPORTED_100baseT_Full) {
10247 bp->link_params.req_line_speed[idx] =
10248 SPEED_100;
10249 bp->port.advertising[idx] |=
10250 (ADVERTISED_100baseT_Full |
10251 ADVERTISED_TP);
10252 } else {
10253 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10254 link_config,
10255 bp->link_params.speed_cap_mask[idx]);
10256 return;
10257 }
10258 break;
10259
10260 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10261 if (bp->port.supported[idx] &
10262 SUPPORTED_100baseT_Half) {
10263 bp->link_params.req_line_speed[idx] =
10264 SPEED_100;
10265 bp->link_params.req_duplex[idx] =
10266 DUPLEX_HALF;
10267 bp->port.advertising[idx] |=
10268 (ADVERTISED_100baseT_Half |
10269 ADVERTISED_TP);
10270 } else {
10271 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10272 link_config,
10273 bp->link_params.speed_cap_mask[idx]);
10274 return;
10275 }
10276 break;
10277
10278 case PORT_FEATURE_LINK_SPEED_1G:
10279 if (bp->port.supported[idx] &
10280 SUPPORTED_1000baseT_Full) {
10281 bp->link_params.req_line_speed[idx] =
10282 SPEED_1000;
10283 bp->port.advertising[idx] |=
10284 (ADVERTISED_1000baseT_Full |
10285 ADVERTISED_TP);
10286 } else {
10287 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10288 link_config,
10289 bp->link_params.speed_cap_mask[idx]);
10290 return;
10291 }
10292 break;
10293
10294 case PORT_FEATURE_LINK_SPEED_2_5G:
10295 if (bp->port.supported[idx] &
10296 SUPPORTED_2500baseX_Full) {
10297 bp->link_params.req_line_speed[idx] =
10298 SPEED_2500;
10299 bp->port.advertising[idx] |=
10300 (ADVERTISED_2500baseX_Full |
10301 ADVERTISED_TP);
10302 } else {
10303 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10304 link_config,
10305 bp->link_params.speed_cap_mask[idx]);
10306 return;
10307 }
10308 break;
10309
10310 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10311 if (bp->port.supported[idx] &
10312 SUPPORTED_10000baseT_Full) {
10313 bp->link_params.req_line_speed[idx] =
10314 SPEED_10000;
10315 bp->port.advertising[idx] |=
10316 (ADVERTISED_10000baseT_Full |
10317 ADVERTISED_FIBRE);
10318 } else {
10319 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
10320 link_config,
10321 bp->link_params.speed_cap_mask[idx]);
10322 return;
10323 }
10324 break;
10325 case PORT_FEATURE_LINK_SPEED_20G:
10326 bp->link_params.req_line_speed[idx] = SPEED_20000;
10327
10328 break;
10329 default:
10330 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10331 link_config);
10332 bp->link_params.req_line_speed[idx] =
10333 SPEED_AUTO_NEG;
10334 bp->port.advertising[idx] =
10335 bp->port.supported[idx];
10336 break;
10337 }
10338
10339 bp->link_params.req_flow_ctrl[idx] = (link_config &
10340 PORT_FEATURE_FLOW_CONTROL_MASK);
10341 if (bp->link_params.req_flow_ctrl[idx] ==
10342 BNX2X_FLOW_CTRL_AUTO) {
10343 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10344 bp->link_params.req_flow_ctrl[idx] =
10345 BNX2X_FLOW_CTRL_NONE;
10346 else
10347 bnx2x_set_requested_fc(bp);
10348 }
10349
10350 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10351 bp->link_params.req_line_speed[idx],
10352 bp->link_params.req_duplex[idx],
10353 bp->link_params.req_flow_ctrl[idx],
10354 bp->port.advertising[idx]);
10355 }
10356 }
10357
10358 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10359 {
10360 mac_hi = cpu_to_be16(mac_hi);
10361 mac_lo = cpu_to_be32(mac_lo);
10362 memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
10363 memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
10364 }
10365
10366 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10367 {
10368 int port = BP_PORT(bp);
10369 u32 config;
10370 u32 ext_phy_type, ext_phy_config, eee_mode;
10371
10372 bp->link_params.bp = bp;
10373 bp->link_params.port = port;
10374
10375 bp->link_params.lane_config =
10376 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10377
10378 bp->link_params.speed_cap_mask[0] =
10379 SHMEM_RD(bp,
10380 dev_info.port_hw_config[port].speed_capability_mask);
10381 bp->link_params.speed_cap_mask[1] =
10382 SHMEM_RD(bp,
10383 dev_info.port_hw_config[port].speed_capability_mask2);
10384 bp->port.link_config[0] =
10385 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10386
10387 bp->port.link_config[1] =
10388 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10389
10390 bp->link_params.multi_phy_config =
10391 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10392 /* If the device is capable of WoL, set the default state according
10393 * to the HW
10394 */
10395 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10396 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10397 (config & PORT_FEATURE_WOL_ENABLED));
10398
10399 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
10400 bp->link_params.lane_config,
10401 bp->link_params.speed_cap_mask[0],
10402 bp->port.link_config[0]);
10403
10404 bp->link_params.switch_cfg = (bp->port.link_config[0] &
10405 PORT_FEATURE_CONNECTED_SWITCH_MASK);
10406 bnx2x_phy_probe(&bp->link_params);
10407 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10408
10409 bnx2x_link_settings_requested(bp);
10410
10411 /*
10412 * If connected directly, work with the internal PHY, otherwise, work
10413 * with the external PHY
10414 */
10415 ext_phy_config =
10416 SHMEM_RD(bp,
10417 dev_info.port_hw_config[port].external_phy_config);
10418 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10419 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10420 bp->mdio.prtad = bp->port.phy_addr;
10421
10422 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10423 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10424 bp->mdio.prtad =
10425 XGXS_EXT_PHY_ADDR(ext_phy_config);
10426
10427 /* Configure link feature according to nvram value */
10428 eee_mode = (((SHMEM_RD(bp, dev_info.
10429 port_feature_config[port].eee_power_mode)) &
10430 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10431 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10432 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10433 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10434 EEE_MODE_ENABLE_LPI |
10435 EEE_MODE_OUTPUT_TIME;
10436 } else {
10437 bp->link_params.eee_mode = 0;
10438 }
10439 }
10440
10441 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10442 {
10443 u32 no_flags = NO_ISCSI_FLAG;
10444 int port = BP_PORT(bp);
10445 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10446 drv_lic_key[port].max_iscsi_conn);
10447
10448 if (!CNIC_SUPPORT(bp)) {
10449 bp->flags |= no_flags;
10450 return;
10451 }
10452
10453 /* Get the number of maximum allowed iSCSI connections */
10454 bp->cnic_eth_dev.max_iscsi_conn =
10455 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10456 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10457
10458 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10459 bp->cnic_eth_dev.max_iscsi_conn);
10460
10461 /*
10462 * If maximum allowed number of connections is zero -
10463 * disable the feature.
10464 */
10465 if (!bp->cnic_eth_dev.max_iscsi_conn)
10466 bp->flags |= no_flags;
10467
10468 }
10469
10470 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10471 {
10472 /* Port info */
10473 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10474 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10475 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10476 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10477
10478 /* Node info */
10479 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10480 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10481 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10482 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10483 }
10484 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10485 {
10486 int port = BP_PORT(bp);
10487 int func = BP_ABS_FUNC(bp);
10488 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10489 drv_lic_key[port].max_fcoe_conn);
10490
10491 if (!CNIC_SUPPORT(bp)) {
10492 bp->flags |= NO_FCOE_FLAG;
10493 return;
10494 }
10495
10496 /* Get the number of maximum allowed FCoE connections */
10497 bp->cnic_eth_dev.max_fcoe_conn =
10498 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10499 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10500
10501 /* Read the WWN: */
10502 if (!IS_MF(bp)) {
10503 /* Port info */
10504 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10505 SHMEM_RD(bp,
10506 dev_info.port_hw_config[port].
10507 fcoe_wwn_port_name_upper);
10508 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10509 SHMEM_RD(bp,
10510 dev_info.port_hw_config[port].
10511 fcoe_wwn_port_name_lower);
10512
10513 /* Node info */
10514 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10515 SHMEM_RD(bp,
10516 dev_info.port_hw_config[port].
10517 fcoe_wwn_node_name_upper);
10518 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10519 SHMEM_RD(bp,
10520 dev_info.port_hw_config[port].
10521 fcoe_wwn_node_name_lower);
10522 } else if (!IS_MF_SD(bp)) {
10523 /*
10524 * Read the WWN info only if the FCoE feature is enabled for
10525 * this function.
10526 */
10527 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10528 bnx2x_get_ext_wwn_info(bp, func);
10529
10530 } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10531 bnx2x_get_ext_wwn_info(bp, func);
10532 }
10533
10534 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10535
10536 /*
10537 * If maximum allowed number of connections is zero -
10538 * disable the feature.
10539 */
10540 if (!bp->cnic_eth_dev.max_fcoe_conn)
10541 bp->flags |= NO_FCOE_FLAG;
10542 }
10543
10544 static void bnx2x_get_cnic_info(struct bnx2x *bp)
10545 {
10546 /*
10547 * iSCSI may be dynamically disabled but reading
10548 * info here we will decrease memory usage by driver
10549 * if the feature is disabled for good
10550 */
10551 bnx2x_get_iscsi_info(bp);
10552 bnx2x_get_fcoe_info(bp);
10553 }
10554
10555 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
10556 {
10557 u32 val, val2;
10558 int func = BP_ABS_FUNC(bp);
10559 int port = BP_PORT(bp);
10560 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10561 u8 *fip_mac = bp->fip_mac;
10562
10563 if (IS_MF(bp)) {
10564 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10565 * FCoE MAC then the appropriate feature should be disabled.
10566 * In non SD mode features configuration comes from struct
10567 * func_ext_config.
10568 */
10569 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
10570 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10571 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10572 val2 = MF_CFG_RD(bp, func_ext_config[func].
10573 iscsi_mac_addr_upper);
10574 val = MF_CFG_RD(bp, func_ext_config[func].
10575 iscsi_mac_addr_lower);
10576 bnx2x_set_mac_buf(iscsi_mac, val, val2);
10577 BNX2X_DEV_INFO
10578 ("Read iSCSI MAC: %pM\n", iscsi_mac);
10579 } else {
10580 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10581 }
10582
10583 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10584 val2 = MF_CFG_RD(bp, func_ext_config[func].
10585 fcoe_mac_addr_upper);
10586 val = MF_CFG_RD(bp, func_ext_config[func].
10587 fcoe_mac_addr_lower);
10588 bnx2x_set_mac_buf(fip_mac, val, val2);
10589 BNX2X_DEV_INFO
10590 ("Read FCoE L2 MAC: %pM\n", fip_mac);
10591 } else {
10592 bp->flags |= NO_FCOE_FLAG;
10593 }
10594
10595 bp->mf_ext_config = cfg;
10596
10597 } else { /* SD MODE */
10598 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10599 /* use primary mac as iscsi mac */
10600 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
10601
10602 BNX2X_DEV_INFO("SD ISCSI MODE\n");
10603 BNX2X_DEV_INFO
10604 ("Read iSCSI MAC: %pM\n", iscsi_mac);
10605 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
10606 /* use primary mac as fip mac */
10607 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
10608 BNX2X_DEV_INFO("SD FCoE MODE\n");
10609 BNX2X_DEV_INFO
10610 ("Read FIP MAC: %pM\n", fip_mac);
10611 }
10612 }
10613
10614 if (IS_MF_STORAGE_SD(bp))
10615 /* Zero primary MAC configuration */
10616 memset(bp->dev->dev_addr, 0, ETH_ALEN);
10617
10618 if (IS_MF_FCOE_AFEX(bp))
10619 /* use FIP MAC as primary MAC */
10620 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10621
10622 } else {
10623 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10624 iscsi_mac_upper);
10625 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10626 iscsi_mac_lower);
10627 bnx2x_set_mac_buf(iscsi_mac, val, val2);
10628
10629 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10630 fcoe_fip_mac_upper);
10631 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10632 fcoe_fip_mac_lower);
10633 bnx2x_set_mac_buf(fip_mac, val, val2);
10634 }
10635
10636 /* Disable iSCSI OOO if MAC configuration is invalid. */
10637 if (!is_valid_ether_addr(iscsi_mac)) {
10638 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10639 memset(iscsi_mac, 0, ETH_ALEN);
10640 }
10641
10642 /* Disable FCoE if MAC configuration is invalid. */
10643 if (!is_valid_ether_addr(fip_mac)) {
10644 bp->flags |= NO_FCOE_FLAG;
10645 memset(bp->fip_mac, 0, ETH_ALEN);
10646 }
10647 }
10648
10649 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10650 {
10651 u32 val, val2;
10652 int func = BP_ABS_FUNC(bp);
10653 int port = BP_PORT(bp);
10654
10655 /* Zero primary MAC configuration */
10656 memset(bp->dev->dev_addr, 0, ETH_ALEN);
10657
10658 if (BP_NOMCP(bp)) {
10659 BNX2X_ERROR("warning: random MAC workaround active\n");
10660 eth_hw_addr_random(bp->dev);
10661 } else if (IS_MF(bp)) {
10662 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10663 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10664 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10665 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10666 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10667
10668 if (CNIC_SUPPORT(bp))
10669 bnx2x_get_cnic_mac_hwinfo(bp);
10670 } else {
10671 /* in SF read MACs from port configuration */
10672 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10673 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10674 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10675
10676 if (CNIC_SUPPORT(bp))
10677 bnx2x_get_cnic_mac_hwinfo(bp);
10678 }
10679
10680 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10681 memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
10682
10683 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10684 dev_err(&bp->pdev->dev,
10685 "bad Ethernet MAC address configuration: %pM\n"
10686 "change it manually before bringing up the appropriate network interface\n",
10687 bp->dev->dev_addr);
10688 }
10689
10690 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
10691 {
10692 int tmp;
10693 u32 cfg;
10694
10695 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
10696 /* Take function: tmp = func */
10697 tmp = BP_ABS_FUNC(bp);
10698 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
10699 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
10700 } else {
10701 /* Take port: tmp = port */
10702 tmp = BP_PORT(bp);
10703 cfg = SHMEM_RD(bp,
10704 dev_info.port_hw_config[tmp].generic_features);
10705 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
10706 }
10707 return cfg;
10708 }
10709
10710 static int bnx2x_get_hwinfo(struct bnx2x *bp)
10711 {
10712 int /*abs*/func = BP_ABS_FUNC(bp);
10713 int vn;
10714 u32 val = 0;
10715 int rc = 0;
10716
10717 bnx2x_get_common_hwinfo(bp);
10718
10719 /*
10720 * initialize IGU parameters
10721 */
10722 if (CHIP_IS_E1x(bp)) {
10723 bp->common.int_block = INT_BLOCK_HC;
10724
10725 bp->igu_dsb_id = DEF_SB_IGU_ID;
10726 bp->igu_base_sb = 0;
10727 } else {
10728 bp->common.int_block = INT_BLOCK_IGU;
10729
10730 /* do not allow device reset during IGU info preocessing */
10731 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10732
10733 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10734
10735 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10736 int tout = 5000;
10737
10738 BNX2X_DEV_INFO("FORCING Normal Mode\n");
10739
10740 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10741 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10742 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10743
10744 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10745 tout--;
10746 usleep_range(1000, 1000);
10747 }
10748
10749 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10750 dev_err(&bp->pdev->dev,
10751 "FORCING Normal Mode failed!!!\n");
10752 bnx2x_release_hw_lock(bp,
10753 HW_LOCK_RESOURCE_RESET);
10754 return -EPERM;
10755 }
10756 }
10757
10758 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10759 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10760 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10761 } else
10762 BNX2X_DEV_INFO("IGU Normal Mode\n");
10763
10764 rc = bnx2x_get_igu_cam_info(bp);
10765 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10766 if (rc)
10767 return rc;
10768 }
10769
10770 /*
10771 * set base FW non-default (fast path) status block id, this value is
10772 * used to initialize the fw_sb_id saved on the fp/queue structure to
10773 * determine the id used by the FW.
10774 */
10775 if (CHIP_IS_E1x(bp))
10776 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10777 else /*
10778 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10779 * the same queue are indicated on the same IGU SB). So we prefer
10780 * FW and IGU SBs to be the same value.
10781 */
10782 bp->base_fw_ndsb = bp->igu_base_sb;
10783
10784 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
10785 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10786 bp->igu_sb_cnt, bp->base_fw_ndsb);
10787
10788 /*
10789 * Initialize MF configuration
10790 */
10791
10792 bp->mf_ov = 0;
10793 bp->mf_mode = 0;
10794 vn = BP_VN(bp);
10795
10796 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10797 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10798 bp->common.shmem2_base, SHMEM2_RD(bp, size),
10799 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10800
10801 if (SHMEM2_HAS(bp, mf_cfg_addr))
10802 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10803 else
10804 bp->common.mf_cfg_base = bp->common.shmem_base +
10805 offsetof(struct shmem_region, func_mb) +
10806 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10807 /*
10808 * get mf configuration:
10809 * 1. existence of MF configuration
10810 * 2. MAC address must be legal (check only upper bytes)
10811 * for Switch-Independent mode;
10812 * OVLAN must be legal for Switch-Dependent mode
10813 * 3. SF_MODE configures specific MF mode
10814 */
10815 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10816 /* get mf configuration */
10817 val = SHMEM_RD(bp,
10818 dev_info.shared_feature_config.config);
10819 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10820
10821 switch (val) {
10822 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10823 val = MF_CFG_RD(bp, func_mf_config[func].
10824 mac_upper);
10825 /* check for legal mac (upper bytes)*/
10826 if (val != 0xffff) {
10827 bp->mf_mode = MULTI_FUNCTION_SI;
10828 bp->mf_config[vn] = MF_CFG_RD(bp,
10829 func_mf_config[func].config);
10830 } else
10831 BNX2X_DEV_INFO("illegal MAC address for SI\n");
10832 break;
10833 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
10834 if ((!CHIP_IS_E1x(bp)) &&
10835 (MF_CFG_RD(bp, func_mf_config[func].
10836 mac_upper) != 0xffff) &&
10837 (SHMEM2_HAS(bp,
10838 afex_driver_support))) {
10839 bp->mf_mode = MULTI_FUNCTION_AFEX;
10840 bp->mf_config[vn] = MF_CFG_RD(bp,
10841 func_mf_config[func].config);
10842 } else {
10843 BNX2X_DEV_INFO("can not configure afex mode\n");
10844 }
10845 break;
10846 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10847 /* get OV configuration */
10848 val = MF_CFG_RD(bp,
10849 func_mf_config[FUNC_0].e1hov_tag);
10850 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10851
10852 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10853 bp->mf_mode = MULTI_FUNCTION_SD;
10854 bp->mf_config[vn] = MF_CFG_RD(bp,
10855 func_mf_config[func].config);
10856 } else
10857 BNX2X_DEV_INFO("illegal OV for SD\n");
10858 break;
10859 default:
10860 /* Unknown configuration: reset mf_config */
10861 bp->mf_config[vn] = 0;
10862 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10863 }
10864 }
10865
10866 BNX2X_DEV_INFO("%s function mode\n",
10867 IS_MF(bp) ? "multi" : "single");
10868
10869 switch (bp->mf_mode) {
10870 case MULTI_FUNCTION_SD:
10871 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10872 FUNC_MF_CFG_E1HOV_TAG_MASK;
10873 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10874 bp->mf_ov = val;
10875 bp->path_has_ovlan = true;
10876
10877 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10878 func, bp->mf_ov, bp->mf_ov);
10879 } else {
10880 dev_err(&bp->pdev->dev,
10881 "No valid MF OV for func %d, aborting\n",
10882 func);
10883 return -EPERM;
10884 }
10885 break;
10886 case MULTI_FUNCTION_AFEX:
10887 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
10888 break;
10889 case MULTI_FUNCTION_SI:
10890 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10891 func);
10892 break;
10893 default:
10894 if (vn) {
10895 dev_err(&bp->pdev->dev,
10896 "VN %d is in a single function mode, aborting\n",
10897 vn);
10898 return -EPERM;
10899 }
10900 break;
10901 }
10902
10903 /* check if other port on the path needs ovlan:
10904 * Since MF configuration is shared between ports
10905 * Possible mixed modes are only
10906 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10907 */
10908 if (CHIP_MODE_IS_4_PORT(bp) &&
10909 !bp->path_has_ovlan &&
10910 !IS_MF(bp) &&
10911 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10912 u8 other_port = !BP_PORT(bp);
10913 u8 other_func = BP_PATH(bp) + 2*other_port;
10914 val = MF_CFG_RD(bp,
10915 func_mf_config[other_func].e1hov_tag);
10916 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10917 bp->path_has_ovlan = true;
10918 }
10919 }
10920
10921 /* adjust igu_sb_cnt to MF for E1x */
10922 if (CHIP_IS_E1x(bp) && IS_MF(bp))
10923 bp->igu_sb_cnt /= E1HVN_MAX;
10924
10925 /* port info */
10926 bnx2x_get_port_hwinfo(bp);
10927
10928 /* Get MAC addresses */
10929 bnx2x_get_mac_hwinfo(bp);
10930
10931 bnx2x_get_cnic_info(bp);
10932
10933 return rc;
10934 }
10935
10936 static void bnx2x_read_fwinfo(struct bnx2x *bp)
10937 {
10938 int cnt, i, block_end, rodi;
10939 char vpd_start[BNX2X_VPD_LEN+1];
10940 char str_id_reg[VENDOR_ID_LEN+1];
10941 char str_id_cap[VENDOR_ID_LEN+1];
10942 char *vpd_data;
10943 char *vpd_extended_data = NULL;
10944 u8 len;
10945
10946 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10947 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10948
10949 if (cnt < BNX2X_VPD_LEN)
10950 goto out_not_found;
10951
10952 /* VPD RO tag should be first tag after identifier string, hence
10953 * we should be able to find it in first BNX2X_VPD_LEN chars
10954 */
10955 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
10956 PCI_VPD_LRDT_RO_DATA);
10957 if (i < 0)
10958 goto out_not_found;
10959
10960 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
10961 pci_vpd_lrdt_size(&vpd_start[i]);
10962
10963 i += PCI_VPD_LRDT_TAG_SIZE;
10964
10965 if (block_end > BNX2X_VPD_LEN) {
10966 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
10967 if (vpd_extended_data == NULL)
10968 goto out_not_found;
10969
10970 /* read rest of vpd image into vpd_extended_data */
10971 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
10972 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
10973 block_end - BNX2X_VPD_LEN,
10974 vpd_extended_data + BNX2X_VPD_LEN);
10975 if (cnt < (block_end - BNX2X_VPD_LEN))
10976 goto out_not_found;
10977 vpd_data = vpd_extended_data;
10978 } else
10979 vpd_data = vpd_start;
10980
10981 /* now vpd_data holds full vpd content in both cases */
10982
10983 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10984 PCI_VPD_RO_KEYWORD_MFR_ID);
10985 if (rodi < 0)
10986 goto out_not_found;
10987
10988 len = pci_vpd_info_field_size(&vpd_data[rodi]);
10989
10990 if (len != VENDOR_ID_LEN)
10991 goto out_not_found;
10992
10993 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10994
10995 /* vendor specific info */
10996 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10997 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10998 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10999 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11000
11001 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11002 PCI_VPD_RO_KEYWORD_VENDOR0);
11003 if (rodi >= 0) {
11004 len = pci_vpd_info_field_size(&vpd_data[rodi]);
11005
11006 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11007
11008 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11009 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11010 bp->fw_ver[len] = ' ';
11011 }
11012 }
11013 kfree(vpd_extended_data);
11014 return;
11015 }
11016 out_not_found:
11017 kfree(vpd_extended_data);
11018 return;
11019 }
11020
11021 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11022 {
11023 u32 flags = 0;
11024
11025 if (CHIP_REV_IS_FPGA(bp))
11026 SET_FLAGS(flags, MODE_FPGA);
11027 else if (CHIP_REV_IS_EMUL(bp))
11028 SET_FLAGS(flags, MODE_EMUL);
11029 else
11030 SET_FLAGS(flags, MODE_ASIC);
11031
11032 if (CHIP_MODE_IS_4_PORT(bp))
11033 SET_FLAGS(flags, MODE_PORT4);
11034 else
11035 SET_FLAGS(flags, MODE_PORT2);
11036
11037 if (CHIP_IS_E2(bp))
11038 SET_FLAGS(flags, MODE_E2);
11039 else if (CHIP_IS_E3(bp)) {
11040 SET_FLAGS(flags, MODE_E3);
11041 if (CHIP_REV(bp) == CHIP_REV_Ax)
11042 SET_FLAGS(flags, MODE_E3_A0);
11043 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11044 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11045 }
11046
11047 if (IS_MF(bp)) {
11048 SET_FLAGS(flags, MODE_MF);
11049 switch (bp->mf_mode) {
11050 case MULTI_FUNCTION_SD:
11051 SET_FLAGS(flags, MODE_MF_SD);
11052 break;
11053 case MULTI_FUNCTION_SI:
11054 SET_FLAGS(flags, MODE_MF_SI);
11055 break;
11056 case MULTI_FUNCTION_AFEX:
11057 SET_FLAGS(flags, MODE_MF_AFEX);
11058 break;
11059 }
11060 } else
11061 SET_FLAGS(flags, MODE_SF);
11062
11063 #if defined(__LITTLE_ENDIAN)
11064 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11065 #else /*(__BIG_ENDIAN)*/
11066 SET_FLAGS(flags, MODE_BIG_ENDIAN);
11067 #endif
11068 INIT_MODE_FLAGS(bp) = flags;
11069 }
11070
11071 static int bnx2x_init_bp(struct bnx2x *bp)
11072 {
11073 int func;
11074 int rc;
11075
11076 mutex_init(&bp->port.phy_mutex);
11077 mutex_init(&bp->fw_mb_mutex);
11078 spin_lock_init(&bp->stats_lock);
11079
11080
11081 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11082 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11083 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11084 rc = bnx2x_get_hwinfo(bp);
11085 if (rc)
11086 return rc;
11087
11088 bnx2x_set_modes_bitmap(bp);
11089
11090 rc = bnx2x_alloc_mem_bp(bp);
11091 if (rc)
11092 return rc;
11093
11094 bnx2x_read_fwinfo(bp);
11095
11096 func = BP_FUNC(bp);
11097
11098 /* need to reset chip if undi was active */
11099 if (!BP_NOMCP(bp)) {
11100 /* init fw_seq */
11101 bp->fw_seq =
11102 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11103 DRV_MSG_SEQ_NUMBER_MASK;
11104 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11105
11106 bnx2x_prev_unload(bp);
11107 }
11108
11109
11110 if (CHIP_REV_IS_FPGA(bp))
11111 dev_err(&bp->pdev->dev, "FPGA detected\n");
11112
11113 if (BP_NOMCP(bp) && (func == 0))
11114 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11115
11116 bp->disable_tpa = disable_tpa;
11117 bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11118
11119 /* Set TPA flags */
11120 if (bp->disable_tpa) {
11121 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11122 bp->dev->features &= ~NETIF_F_LRO;
11123 } else {
11124 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11125 bp->dev->features |= NETIF_F_LRO;
11126 }
11127
11128 if (CHIP_IS_E1(bp))
11129 bp->dropless_fc = 0;
11130 else
11131 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11132
11133 bp->mrrs = mrrs;
11134
11135 bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11136
11137 /* make sure that the numbers are in the right granularity */
11138 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11139 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11140
11141 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11142
11143 init_timer(&bp->timer);
11144 bp->timer.expires = jiffies + bp->current_interval;
11145 bp->timer.data = (unsigned long) bp;
11146 bp->timer.function = bnx2x_timer;
11147
11148 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11149 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11150 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11151 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11152 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11153 bnx2x_dcbx_init_params(bp);
11154 } else {
11155 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11156 }
11157
11158 if (CHIP_IS_E1x(bp))
11159 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11160 else
11161 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11162
11163 /* multiple tx priority */
11164 if (CHIP_IS_E1x(bp))
11165 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11166 if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11167 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11168 if (CHIP_IS_E3B0(bp))
11169 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11170
11171 /* We need at least one default status block for slow-path events,
11172 * second status block for the L2 queue, and a third status block for
11173 * CNIC if supproted.
11174 */
11175 if (CNIC_SUPPORT(bp))
11176 bp->min_msix_vec_cnt = 3;
11177 else
11178 bp->min_msix_vec_cnt = 2;
11179 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11180
11181 return rc;
11182 }
11183
11184
11185 /****************************************************************************
11186 * General service functions
11187 ****************************************************************************/
11188
11189 /*
11190 * net_device service functions
11191 */
11192
11193 /* called with rtnl_lock */
11194 static int bnx2x_open(struct net_device *dev)
11195 {
11196 struct bnx2x *bp = netdev_priv(dev);
11197 bool global = false;
11198 int other_engine = BP_PATH(bp) ? 0 : 1;
11199 bool other_load_status, load_status;
11200
11201 bp->stats_init = true;
11202
11203 netif_carrier_off(dev);
11204
11205 bnx2x_set_power_state(bp, PCI_D0);
11206
11207 other_load_status = bnx2x_get_load_status(bp, other_engine);
11208 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11209
11210 /*
11211 * If parity had happen during the unload, then attentions
11212 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11213 * want the first function loaded on the current engine to
11214 * complete the recovery.
11215 */
11216 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11217 bnx2x_chk_parity_attn(bp, &global, true))
11218 do {
11219 /*
11220 * If there are attentions and they are in a global
11221 * blocks, set the GLOBAL_RESET bit regardless whether
11222 * it will be this function that will complete the
11223 * recovery or not.
11224 */
11225 if (global)
11226 bnx2x_set_reset_global(bp);
11227
11228 /*
11229 * Only the first function on the current engine should
11230 * try to recover in open. In case of attentions in
11231 * global blocks only the first in the chip should try
11232 * to recover.
11233 */
11234 if ((!load_status &&
11235 (!global || !other_load_status)) &&
11236 bnx2x_trylock_leader_lock(bp) &&
11237 !bnx2x_leader_reset(bp)) {
11238 netdev_info(bp->dev, "Recovered in open\n");
11239 break;
11240 }
11241
11242 /* recovery has failed... */
11243 bnx2x_set_power_state(bp, PCI_D3hot);
11244 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11245
11246 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11247 "If you still see this message after a few retries then power cycle is required.\n");
11248
11249 return -EAGAIN;
11250 } while (0);
11251
11252 bp->recovery_state = BNX2X_RECOVERY_DONE;
11253 return bnx2x_nic_load(bp, LOAD_OPEN);
11254 }
11255
11256 /* called with rtnl_lock */
11257 static int bnx2x_close(struct net_device *dev)
11258 {
11259 struct bnx2x *bp = netdev_priv(dev);
11260
11261 /* Unload the driver, release IRQs */
11262 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11263
11264 /* Power off */
11265 bnx2x_set_power_state(bp, PCI_D3hot);
11266
11267 return 0;
11268 }
11269
11270 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11271 struct bnx2x_mcast_ramrod_params *p)
11272 {
11273 int mc_count = netdev_mc_count(bp->dev);
11274 struct bnx2x_mcast_list_elem *mc_mac =
11275 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11276 struct netdev_hw_addr *ha;
11277
11278 if (!mc_mac)
11279 return -ENOMEM;
11280
11281 INIT_LIST_HEAD(&p->mcast_list);
11282
11283 netdev_for_each_mc_addr(ha, bp->dev) {
11284 mc_mac->mac = bnx2x_mc_addr(ha);
11285 list_add_tail(&mc_mac->link, &p->mcast_list);
11286 mc_mac++;
11287 }
11288
11289 p->mcast_list_len = mc_count;
11290
11291 return 0;
11292 }
11293
11294 static void bnx2x_free_mcast_macs_list(
11295 struct bnx2x_mcast_ramrod_params *p)
11296 {
11297 struct bnx2x_mcast_list_elem *mc_mac =
11298 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11299 link);
11300
11301 WARN_ON(!mc_mac);
11302 kfree(mc_mac);
11303 }
11304
11305 /**
11306 * bnx2x_set_uc_list - configure a new unicast MACs list.
11307 *
11308 * @bp: driver handle
11309 *
11310 * We will use zero (0) as a MAC type for these MACs.
11311 */
11312 static int bnx2x_set_uc_list(struct bnx2x *bp)
11313 {
11314 int rc;
11315 struct net_device *dev = bp->dev;
11316 struct netdev_hw_addr *ha;
11317 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11318 unsigned long ramrod_flags = 0;
11319
11320 /* First schedule a cleanup up of old configuration */
11321 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11322 if (rc < 0) {
11323 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11324 return rc;
11325 }
11326
11327 netdev_for_each_uc_addr(ha, dev) {
11328 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11329 BNX2X_UC_LIST_MAC, &ramrod_flags);
11330 if (rc == -EEXIST) {
11331 DP(BNX2X_MSG_SP,
11332 "Failed to schedule ADD operations: %d\n", rc);
11333 /* do not treat adding same MAC as error */
11334 rc = 0;
11335
11336 } else if (rc < 0) {
11337
11338 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11339 rc);
11340 return rc;
11341 }
11342 }
11343
11344 /* Execute the pending commands */
11345 __set_bit(RAMROD_CONT, &ramrod_flags);
11346 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11347 BNX2X_UC_LIST_MAC, &ramrod_flags);
11348 }
11349
11350 static int bnx2x_set_mc_list(struct bnx2x *bp)
11351 {
11352 struct net_device *dev = bp->dev;
11353 struct bnx2x_mcast_ramrod_params rparam = {NULL};
11354 int rc = 0;
11355
11356 rparam.mcast_obj = &bp->mcast_obj;
11357
11358 /* first, clear all configured multicast MACs */
11359 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11360 if (rc < 0) {
11361 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11362 return rc;
11363 }
11364
11365 /* then, configure a new MACs list */
11366 if (netdev_mc_count(dev)) {
11367 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11368 if (rc) {
11369 BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11370 rc);
11371 return rc;
11372 }
11373
11374 /* Now add the new MACs */
11375 rc = bnx2x_config_mcast(bp, &rparam,
11376 BNX2X_MCAST_CMD_ADD);
11377 if (rc < 0)
11378 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11379 rc);
11380
11381 bnx2x_free_mcast_macs_list(&rparam);
11382 }
11383
11384 return rc;
11385 }
11386
11387
11388 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11389 void bnx2x_set_rx_mode(struct net_device *dev)
11390 {
11391 struct bnx2x *bp = netdev_priv(dev);
11392 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11393
11394 if (bp->state != BNX2X_STATE_OPEN) {
11395 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11396 return;
11397 }
11398
11399 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11400
11401 if (dev->flags & IFF_PROMISC)
11402 rx_mode = BNX2X_RX_MODE_PROMISC;
11403 else if ((dev->flags & IFF_ALLMULTI) ||
11404 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11405 CHIP_IS_E1(bp)))
11406 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11407 else {
11408 /* some multicasts */
11409 if (bnx2x_set_mc_list(bp) < 0)
11410 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11411
11412 if (bnx2x_set_uc_list(bp) < 0)
11413 rx_mode = BNX2X_RX_MODE_PROMISC;
11414 }
11415
11416 bp->rx_mode = rx_mode;
11417 /* handle ISCSI SD mode */
11418 if (IS_MF_ISCSI_SD(bp))
11419 bp->rx_mode = BNX2X_RX_MODE_NONE;
11420
11421 /* Schedule the rx_mode command */
11422 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11423 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11424 return;
11425 }
11426
11427 bnx2x_set_storm_rx_mode(bp);
11428 }
11429
11430 /* called with rtnl_lock */
11431 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11432 int devad, u16 addr)
11433 {
11434 struct bnx2x *bp = netdev_priv(netdev);
11435 u16 value;
11436 int rc;
11437
11438 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11439 prtad, devad, addr);
11440
11441 /* The HW expects different devad if CL22 is used */
11442 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11443
11444 bnx2x_acquire_phy_lock(bp);
11445 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11446 bnx2x_release_phy_lock(bp);
11447 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11448
11449 if (!rc)
11450 rc = value;
11451 return rc;
11452 }
11453
11454 /* called with rtnl_lock */
11455 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11456 u16 addr, u16 value)
11457 {
11458 struct bnx2x *bp = netdev_priv(netdev);
11459 int rc;
11460
11461 DP(NETIF_MSG_LINK,
11462 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11463 prtad, devad, addr, value);
11464
11465 /* The HW expects different devad if CL22 is used */
11466 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11467
11468 bnx2x_acquire_phy_lock(bp);
11469 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11470 bnx2x_release_phy_lock(bp);
11471 return rc;
11472 }
11473
11474 /* called with rtnl_lock */
11475 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11476 {
11477 struct bnx2x *bp = netdev_priv(dev);
11478 struct mii_ioctl_data *mdio = if_mii(ifr);
11479
11480 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11481 mdio->phy_id, mdio->reg_num, mdio->val_in);
11482
11483 if (!netif_running(dev))
11484 return -EAGAIN;
11485
11486 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11487 }
11488
11489 #ifdef CONFIG_NET_POLL_CONTROLLER
11490 static void poll_bnx2x(struct net_device *dev)
11491 {
11492 struct bnx2x *bp = netdev_priv(dev);
11493 int i;
11494
11495 for_each_eth_queue(bp, i) {
11496 struct bnx2x_fastpath *fp = &bp->fp[i];
11497 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11498 }
11499 }
11500 #endif
11501
11502 static int bnx2x_validate_addr(struct net_device *dev)
11503 {
11504 struct bnx2x *bp = netdev_priv(dev);
11505
11506 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11507 BNX2X_ERR("Non-valid Ethernet address\n");
11508 return -EADDRNOTAVAIL;
11509 }
11510 return 0;
11511 }
11512
11513 static const struct net_device_ops bnx2x_netdev_ops = {
11514 .ndo_open = bnx2x_open,
11515 .ndo_stop = bnx2x_close,
11516 .ndo_start_xmit = bnx2x_start_xmit,
11517 .ndo_select_queue = bnx2x_select_queue,
11518 .ndo_set_rx_mode = bnx2x_set_rx_mode,
11519 .ndo_set_mac_address = bnx2x_change_mac_addr,
11520 .ndo_validate_addr = bnx2x_validate_addr,
11521 .ndo_do_ioctl = bnx2x_ioctl,
11522 .ndo_change_mtu = bnx2x_change_mtu,
11523 .ndo_fix_features = bnx2x_fix_features,
11524 .ndo_set_features = bnx2x_set_features,
11525 .ndo_tx_timeout = bnx2x_tx_timeout,
11526 #ifdef CONFIG_NET_POLL_CONTROLLER
11527 .ndo_poll_controller = poll_bnx2x,
11528 #endif
11529 .ndo_setup_tc = bnx2x_setup_tc,
11530
11531 #ifdef NETDEV_FCOE_WWNN
11532 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
11533 #endif
11534 };
11535
11536 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11537 {
11538 struct device *dev = &bp->pdev->dev;
11539
11540 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11541 bp->flags |= USING_DAC_FLAG;
11542 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11543 dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11544 return -EIO;
11545 }
11546 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11547 dev_err(dev, "System does not support DMA, aborting\n");
11548 return -EIO;
11549 }
11550
11551 return 0;
11552 }
11553
11554 static int bnx2x_init_dev(struct pci_dev *pdev, struct net_device *dev,
11555 unsigned long board_type)
11556 {
11557 struct bnx2x *bp;
11558 int rc;
11559 u32 pci_cfg_dword;
11560 bool chip_is_e1x = (board_type == BCM57710 ||
11561 board_type == BCM57711 ||
11562 board_type == BCM57711E);
11563
11564 SET_NETDEV_DEV(dev, &pdev->dev);
11565 bp = netdev_priv(dev);
11566
11567 bp->dev = dev;
11568 bp->pdev = pdev;
11569 bp->flags = 0;
11570
11571 rc = pci_enable_device(pdev);
11572 if (rc) {
11573 dev_err(&bp->pdev->dev,
11574 "Cannot enable PCI device, aborting\n");
11575 goto err_out;
11576 }
11577
11578 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11579 dev_err(&bp->pdev->dev,
11580 "Cannot find PCI device base address, aborting\n");
11581 rc = -ENODEV;
11582 goto err_out_disable;
11583 }
11584
11585 if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11586 dev_err(&bp->pdev->dev, "Cannot find second PCI device"
11587 " base address, aborting\n");
11588 rc = -ENODEV;
11589 goto err_out_disable;
11590 }
11591
11592 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
11593 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
11594 PCICFG_REVESION_ID_ERROR_VAL) {
11595 pr_err("PCI device error, probably due to fan failure, aborting\n");
11596 rc = -ENODEV;
11597 goto err_out_disable;
11598 }
11599
11600 if (atomic_read(&pdev->enable_cnt) == 1) {
11601 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11602 if (rc) {
11603 dev_err(&bp->pdev->dev,
11604 "Cannot obtain PCI resources, aborting\n");
11605 goto err_out_disable;
11606 }
11607
11608 pci_set_master(pdev);
11609 pci_save_state(pdev);
11610 }
11611
11612 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11613 if (bp->pm_cap == 0) {
11614 dev_err(&bp->pdev->dev,
11615 "Cannot find power management capability, aborting\n");
11616 rc = -EIO;
11617 goto err_out_release;
11618 }
11619
11620 if (!pci_is_pcie(pdev)) {
11621 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11622 rc = -EIO;
11623 goto err_out_release;
11624 }
11625
11626 rc = bnx2x_set_coherency_mask(bp);
11627 if (rc)
11628 goto err_out_release;
11629
11630 dev->mem_start = pci_resource_start(pdev, 0);
11631 dev->base_addr = dev->mem_start;
11632 dev->mem_end = pci_resource_end(pdev, 0);
11633
11634 dev->irq = pdev->irq;
11635
11636 bp->regview = pci_ioremap_bar(pdev, 0);
11637 if (!bp->regview) {
11638 dev_err(&bp->pdev->dev,
11639 "Cannot map register space, aborting\n");
11640 rc = -ENOMEM;
11641 goto err_out_release;
11642 }
11643
11644 /* In E1/E1H use pci device function given by kernel.
11645 * In E2/E3 read physical function from ME register since these chips
11646 * support Physical Device Assignment where kernel BDF maybe arbitrary
11647 * (depending on hypervisor).
11648 */
11649 if (chip_is_e1x)
11650 bp->pf_num = PCI_FUNC(pdev->devfn);
11651 else {/* chip is E2/3*/
11652 pci_read_config_dword(bp->pdev,
11653 PCICFG_ME_REGISTER, &pci_cfg_dword);
11654 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
11655 ME_REG_ABS_PF_NUM_SHIFT);
11656 }
11657 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
11658
11659 bnx2x_set_power_state(bp, PCI_D0);
11660
11661 /* clean indirect addresses */
11662 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
11663 PCICFG_VENDOR_ID_OFFSET);
11664 /*
11665 * Clean the following indirect addresses for all functions since it
11666 * is not used by the driver.
11667 */
11668 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
11669 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
11670 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
11671 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
11672
11673 if (chip_is_e1x) {
11674 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
11675 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
11676 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
11677 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
11678 }
11679
11680 /*
11681 * Enable internal target-read (in case we are probed after PF FLR).
11682 * Must be done prior to any BAR read access. Only for 57712 and up
11683 */
11684 if (!chip_is_e1x)
11685 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11686
11687 dev->watchdog_timeo = TX_TIMEOUT;
11688
11689 dev->netdev_ops = &bnx2x_netdev_ops;
11690 bnx2x_set_ethtool_ops(dev);
11691
11692 dev->priv_flags |= IFF_UNICAST_FLT;
11693
11694 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11695 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
11696 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
11697 NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
11698
11699 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11700 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
11701
11702 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
11703 if (bp->flags & USING_DAC_FLAG)
11704 dev->features |= NETIF_F_HIGHDMA;
11705
11706 /* Add Loopback capability to the device */
11707 dev->hw_features |= NETIF_F_LOOPBACK;
11708
11709 #ifdef BCM_DCBNL
11710 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
11711 #endif
11712
11713 /* get_port_hwinfo() will set prtad and mmds properly */
11714 bp->mdio.prtad = MDIO_PRTAD_NONE;
11715 bp->mdio.mmds = 0;
11716 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
11717 bp->mdio.dev = dev;
11718 bp->mdio.mdio_read = bnx2x_mdio_read;
11719 bp->mdio.mdio_write = bnx2x_mdio_write;
11720
11721 return 0;
11722
11723 err_out_release:
11724 if (atomic_read(&pdev->enable_cnt) == 1)
11725 pci_release_regions(pdev);
11726
11727 err_out_disable:
11728 pci_disable_device(pdev);
11729 pci_set_drvdata(pdev, NULL);
11730
11731 err_out:
11732 return rc;
11733 }
11734
11735 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, int *speed)
11736 {
11737 u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
11738
11739 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
11740
11741 /* return value of 1=2.5GHz 2=5GHz */
11742 *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
11743 }
11744
11745 static int bnx2x_check_firmware(struct bnx2x *bp)
11746 {
11747 const struct firmware *firmware = bp->firmware;
11748 struct bnx2x_fw_file_hdr *fw_hdr;
11749 struct bnx2x_fw_file_section *sections;
11750 u32 offset, len, num_ops;
11751 u16 *ops_offsets;
11752 int i;
11753 const u8 *fw_ver;
11754
11755 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11756 BNX2X_ERR("Wrong FW size\n");
11757 return -EINVAL;
11758 }
11759
11760 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11761 sections = (struct bnx2x_fw_file_section *)fw_hdr;
11762
11763 /* Make sure none of the offsets and sizes make us read beyond
11764 * the end of the firmware data */
11765 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11766 offset = be32_to_cpu(sections[i].offset);
11767 len = be32_to_cpu(sections[i].len);
11768 if (offset + len > firmware->size) {
11769 BNX2X_ERR("Section %d length is out of bounds\n", i);
11770 return -EINVAL;
11771 }
11772 }
11773
11774 /* Likewise for the init_ops offsets */
11775 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11776 ops_offsets = (u16 *)(firmware->data + offset);
11777 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11778
11779 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11780 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11781 BNX2X_ERR("Section offset %d is out of bounds\n", i);
11782 return -EINVAL;
11783 }
11784 }
11785
11786 /* Check FW version */
11787 offset = be32_to_cpu(fw_hdr->fw_version.offset);
11788 fw_ver = firmware->data + offset;
11789 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11790 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11791 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11792 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11793 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11794 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11795 BCM_5710_FW_MAJOR_VERSION,
11796 BCM_5710_FW_MINOR_VERSION,
11797 BCM_5710_FW_REVISION_VERSION,
11798 BCM_5710_FW_ENGINEERING_VERSION);
11799 return -EINVAL;
11800 }
11801
11802 return 0;
11803 }
11804
11805 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11806 {
11807 const __be32 *source = (const __be32 *)_source;
11808 u32 *target = (u32 *)_target;
11809 u32 i;
11810
11811 for (i = 0; i < n/4; i++)
11812 target[i] = be32_to_cpu(source[i]);
11813 }
11814
11815 /*
11816 Ops array is stored in the following format:
11817 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11818 */
11819 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11820 {
11821 const __be32 *source = (const __be32 *)_source;
11822 struct raw_op *target = (struct raw_op *)_target;
11823 u32 i, j, tmp;
11824
11825 for (i = 0, j = 0; i < n/8; i++, j += 2) {
11826 tmp = be32_to_cpu(source[j]);
11827 target[i].op = (tmp >> 24) & 0xff;
11828 target[i].offset = tmp & 0xffffff;
11829 target[i].raw_data = be32_to_cpu(source[j + 1]);
11830 }
11831 }
11832
11833 /* IRO array is stored in the following format:
11834 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11835 */
11836 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11837 {
11838 const __be32 *source = (const __be32 *)_source;
11839 struct iro *target = (struct iro *)_target;
11840 u32 i, j, tmp;
11841
11842 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11843 target[i].base = be32_to_cpu(source[j]);
11844 j++;
11845 tmp = be32_to_cpu(source[j]);
11846 target[i].m1 = (tmp >> 16) & 0xffff;
11847 target[i].m2 = tmp & 0xffff;
11848 j++;
11849 tmp = be32_to_cpu(source[j]);
11850 target[i].m3 = (tmp >> 16) & 0xffff;
11851 target[i].size = tmp & 0xffff;
11852 j++;
11853 }
11854 }
11855
11856 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11857 {
11858 const __be16 *source = (const __be16 *)_source;
11859 u16 *target = (u16 *)_target;
11860 u32 i;
11861
11862 for (i = 0; i < n/2; i++)
11863 target[i] = be16_to_cpu(source[i]);
11864 }
11865
11866 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
11867 do { \
11868 u32 len = be32_to_cpu(fw_hdr->arr.len); \
11869 bp->arr = kmalloc(len, GFP_KERNEL); \
11870 if (!bp->arr) \
11871 goto lbl; \
11872 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
11873 (u8 *)bp->arr, len); \
11874 } while (0)
11875
11876 static int bnx2x_init_firmware(struct bnx2x *bp)
11877 {
11878 const char *fw_file_name;
11879 struct bnx2x_fw_file_hdr *fw_hdr;
11880 int rc;
11881
11882 if (bp->firmware)
11883 return 0;
11884
11885 if (CHIP_IS_E1(bp))
11886 fw_file_name = FW_FILE_NAME_E1;
11887 else if (CHIP_IS_E1H(bp))
11888 fw_file_name = FW_FILE_NAME_E1H;
11889 else if (!CHIP_IS_E1x(bp))
11890 fw_file_name = FW_FILE_NAME_E2;
11891 else {
11892 BNX2X_ERR("Unsupported chip revision\n");
11893 return -EINVAL;
11894 }
11895 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
11896
11897 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
11898 if (rc) {
11899 BNX2X_ERR("Can't load firmware file %s\n",
11900 fw_file_name);
11901 goto request_firmware_exit;
11902 }
11903
11904 rc = bnx2x_check_firmware(bp);
11905 if (rc) {
11906 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
11907 goto request_firmware_exit;
11908 }
11909
11910 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
11911
11912 /* Initialize the pointers to the init arrays */
11913 /* Blob */
11914 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
11915
11916 /* Opcodes */
11917 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
11918
11919 /* Offsets */
11920 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
11921 be16_to_cpu_n);
11922
11923 /* STORMs firmware */
11924 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11925 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
11926 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
11927 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
11928 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11929 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
11930 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
11931 be32_to_cpu(fw_hdr->usem_pram_data.offset);
11932 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11933 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
11934 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
11935 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
11936 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11937 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
11938 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
11939 be32_to_cpu(fw_hdr->csem_pram_data.offset);
11940 /* IRO */
11941 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
11942
11943 return 0;
11944
11945 iro_alloc_err:
11946 kfree(bp->init_ops_offsets);
11947 init_offsets_alloc_err:
11948 kfree(bp->init_ops);
11949 init_ops_alloc_err:
11950 kfree(bp->init_data);
11951 request_firmware_exit:
11952 release_firmware(bp->firmware);
11953 bp->firmware = NULL;
11954
11955 return rc;
11956 }
11957
11958 static void bnx2x_release_firmware(struct bnx2x *bp)
11959 {
11960 kfree(bp->init_ops_offsets);
11961 kfree(bp->init_ops);
11962 kfree(bp->init_data);
11963 release_firmware(bp->firmware);
11964 bp->firmware = NULL;
11965 }
11966
11967
11968 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
11969 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
11970 .init_hw_cmn = bnx2x_init_hw_common,
11971 .init_hw_port = bnx2x_init_hw_port,
11972 .init_hw_func = bnx2x_init_hw_func,
11973
11974 .reset_hw_cmn = bnx2x_reset_common,
11975 .reset_hw_port = bnx2x_reset_port,
11976 .reset_hw_func = bnx2x_reset_func,
11977
11978 .gunzip_init = bnx2x_gunzip_init,
11979 .gunzip_end = bnx2x_gunzip_end,
11980
11981 .init_fw = bnx2x_init_firmware,
11982 .release_fw = bnx2x_release_firmware,
11983 };
11984
11985 void bnx2x__init_func_obj(struct bnx2x *bp)
11986 {
11987 /* Prepare DMAE related driver resources */
11988 bnx2x_setup_dmae(bp);
11989
11990 bnx2x_init_func_obj(bp, &bp->func_obj,
11991 bnx2x_sp(bp, func_rdata),
11992 bnx2x_sp_mapping(bp, func_rdata),
11993 bnx2x_sp(bp, func_afex_rdata),
11994 bnx2x_sp_mapping(bp, func_afex_rdata),
11995 &bnx2x_func_sp_drv);
11996 }
11997
11998 /* must be called after sriov-enable */
11999 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12000 {
12001 int cid_count = BNX2X_L2_MAX_CID(bp);
12002
12003 if (CNIC_SUPPORT(bp))
12004 cid_count += CNIC_CID_MAX;
12005 return roundup(cid_count, QM_CID_ROUND);
12006 }
12007
12008 /**
12009 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12010 *
12011 * @dev: pci device
12012 *
12013 */
12014 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12015 int cnic_cnt)
12016 {
12017 int pos;
12018 u16 control;
12019
12020 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12021
12022 /*
12023 * If MSI-X is not supported - return number of SBs needed to support
12024 * one fast path queue: one FP queue + SB for CNIC
12025 */
12026 if (!pos)
12027 return 1 + cnic_cnt;
12028
12029 /*
12030 * The value in the PCI configuration space is the index of the last
12031 * entry, namely one less than the actual size of the table, which is
12032 * exactly what we want to return from this function: number of all SBs
12033 * without the default SB.
12034 */
12035 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
12036 return control & PCI_MSIX_FLAGS_QSIZE;
12037 }
12038
12039 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *);
12040
12041 static int bnx2x_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
12042 {
12043 struct net_device *dev = NULL;
12044 struct bnx2x *bp;
12045 int pcie_width, pcie_speed;
12046 int rc, max_non_def_sbs;
12047 int rx_count, tx_count, rss_count, doorbell_size;
12048 int cnic_cnt;
12049 /*
12050 * An estimated maximum supported CoS number according to the chip
12051 * version.
12052 * We will try to roughly estimate the maximum number of CoSes this chip
12053 * may support in order to minimize the memory allocated for Tx
12054 * netdev_queue's. This number will be accurately calculated during the
12055 * initialization of bp->max_cos based on the chip versions AND chip
12056 * revision in the bnx2x_init_bp().
12057 */
12058 u8 max_cos_est = 0;
12059
12060 switch (ent->driver_data) {
12061 case BCM57710:
12062 case BCM57711:
12063 case BCM57711E:
12064 max_cos_est = BNX2X_MULTI_TX_COS_E1X;
12065 break;
12066
12067 case BCM57712:
12068 case BCM57712_MF:
12069 max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
12070 break;
12071
12072 case BCM57800:
12073 case BCM57800_MF:
12074 case BCM57810:
12075 case BCM57810_MF:
12076 case BCM57840_O:
12077 case BCM57840_4_10:
12078 case BCM57840_2_20:
12079 case BCM57840_MFO:
12080 case BCM57840_MF:
12081 case BCM57811:
12082 case BCM57811_MF:
12083 max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
12084 break;
12085
12086 default:
12087 pr_err("Unknown board_type (%ld), aborting\n",
12088 ent->driver_data);
12089 return -ENODEV;
12090 }
12091
12092 cnic_cnt = 1;
12093 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12094
12095 WARN_ON(!max_non_def_sbs);
12096
12097 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12098 rss_count = max_non_def_sbs - cnic_cnt;
12099
12100 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12101 rx_count = rss_count + cnic_cnt;
12102
12103 /*
12104 * Maximum number of netdev Tx queues:
12105 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
12106 */
12107 tx_count = rss_count * max_cos_est + cnic_cnt;
12108
12109 /* dev zeroed in init_etherdev */
12110 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12111 if (!dev)
12112 return -ENOMEM;
12113
12114 bp = netdev_priv(dev);
12115
12116 bp->igu_sb_cnt = max_non_def_sbs;
12117 bp->msg_enable = debug;
12118 bp->cnic_support = cnic_cnt;
12119 bp->cnic_probe = bnx2x_cnic_probe;
12120
12121 pci_set_drvdata(pdev, dev);
12122
12123 rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
12124 if (rc < 0) {
12125 free_netdev(dev);
12126 return rc;
12127 }
12128
12129 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12130 BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
12131
12132 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12133 tx_count, rx_count);
12134
12135 rc = bnx2x_init_bp(bp);
12136 if (rc)
12137 goto init_one_exit;
12138
12139 /*
12140 * Map doorbels here as we need the real value of bp->max_cos which
12141 * is initialized in bnx2x_init_bp().
12142 */
12143 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12144 if (doorbell_size > pci_resource_len(pdev, 2)) {
12145 dev_err(&bp->pdev->dev,
12146 "Cannot map doorbells, bar size too small, aborting\n");
12147 rc = -ENOMEM;
12148 goto init_one_exit;
12149 }
12150 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12151 doorbell_size);
12152 if (!bp->doorbells) {
12153 dev_err(&bp->pdev->dev,
12154 "Cannot map doorbell space, aborting\n");
12155 rc = -ENOMEM;
12156 goto init_one_exit;
12157 }
12158
12159 /* calc qm_cid_count */
12160 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12161
12162 /* disable FCOE L2 queue for E1x*/
12163 if (CHIP_IS_E1x(bp))
12164 bp->flags |= NO_FCOE_FLAG;
12165
12166 /* disable FCOE for 57840 device, until FW supports it */
12167 switch (ent->driver_data) {
12168 case BCM57840_O:
12169 case BCM57840_4_10:
12170 case BCM57840_2_20:
12171 case BCM57840_MFO:
12172 case BCM57840_MF:
12173 bp->flags |= NO_FCOE_FLAG;
12174 }
12175
12176 /* Set bp->num_queues for MSI-X mode*/
12177 bnx2x_set_num_queues(bp);
12178
12179 /* Configure interrupt mode: try to enable MSI-X/MSI if
12180 * needed.
12181 */
12182 bnx2x_set_int_mode(bp);
12183
12184 rc = register_netdev(dev);
12185 if (rc) {
12186 dev_err(&pdev->dev, "Cannot register net device\n");
12187 goto init_one_exit;
12188 }
12189
12190
12191 if (!NO_FCOE(bp)) {
12192 /* Add storage MAC address */
12193 rtnl_lock();
12194 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12195 rtnl_unlock();
12196 }
12197
12198 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12199
12200 BNX2X_DEV_INFO(
12201 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12202 board_info[ent->driver_data].name,
12203 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12204 pcie_width,
12205 ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
12206 (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
12207 "5GHz (Gen2)" : "2.5GHz",
12208 dev->base_addr, bp->pdev->irq, dev->dev_addr);
12209
12210 return 0;
12211
12212 init_one_exit:
12213 if (bp->regview)
12214 iounmap(bp->regview);
12215
12216 if (bp->doorbells)
12217 iounmap(bp->doorbells);
12218
12219 free_netdev(dev);
12220
12221 if (atomic_read(&pdev->enable_cnt) == 1)
12222 pci_release_regions(pdev);
12223
12224 pci_disable_device(pdev);
12225 pci_set_drvdata(pdev, NULL);
12226
12227 return rc;
12228 }
12229
12230 static void bnx2x_remove_one(struct pci_dev *pdev)
12231 {
12232 struct net_device *dev = pci_get_drvdata(pdev);
12233 struct bnx2x *bp;
12234
12235 if (!dev) {
12236 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12237 return;
12238 }
12239 bp = netdev_priv(dev);
12240
12241 /* Delete storage MAC address */
12242 if (!NO_FCOE(bp)) {
12243 rtnl_lock();
12244 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12245 rtnl_unlock();
12246 }
12247
12248 #ifdef BCM_DCBNL
12249 /* Delete app tlvs from dcbnl */
12250 bnx2x_dcbnl_update_applist(bp, true);
12251 #endif
12252
12253 unregister_netdev(dev);
12254
12255 /* Power on: we can't let PCI layer write to us while we are in D3 */
12256 bnx2x_set_power_state(bp, PCI_D0);
12257
12258 /* Disable MSI/MSI-X */
12259 bnx2x_disable_msi(bp);
12260
12261 /* Power off */
12262 bnx2x_set_power_state(bp, PCI_D3hot);
12263
12264 /* Make sure RESET task is not scheduled before continuing */
12265 cancel_delayed_work_sync(&bp->sp_rtnl_task);
12266
12267 if (bp->regview)
12268 iounmap(bp->regview);
12269
12270 if (bp->doorbells)
12271 iounmap(bp->doorbells);
12272
12273 bnx2x_release_firmware(bp);
12274
12275 bnx2x_free_mem_bp(bp);
12276
12277 free_netdev(dev);
12278
12279 if (atomic_read(&pdev->enable_cnt) == 1)
12280 pci_release_regions(pdev);
12281
12282 pci_disable_device(pdev);
12283 pci_set_drvdata(pdev, NULL);
12284 }
12285
12286 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12287 {
12288 int i;
12289
12290 bp->state = BNX2X_STATE_ERROR;
12291
12292 bp->rx_mode = BNX2X_RX_MODE_NONE;
12293
12294 if (CNIC_LOADED(bp))
12295 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12296
12297 /* Stop Tx */
12298 bnx2x_tx_disable(bp);
12299
12300 bnx2x_netif_stop(bp, 0);
12301 /* Delete all NAPI objects */
12302 bnx2x_del_all_napi(bp);
12303 if (CNIC_LOADED(bp))
12304 bnx2x_del_all_napi_cnic(bp);
12305
12306 del_timer_sync(&bp->timer);
12307
12308 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
12309
12310 /* Release IRQs */
12311 bnx2x_free_irq(bp);
12312
12313 /* Free SKBs, SGEs, TPA pool and driver internals */
12314 bnx2x_free_skbs(bp);
12315
12316 for_each_rx_queue(bp, i)
12317 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
12318
12319 bnx2x_free_mem(bp);
12320
12321 bp->state = BNX2X_STATE_CLOSED;
12322
12323 netif_carrier_off(bp->dev);
12324
12325 return 0;
12326 }
12327
12328 static void bnx2x_eeh_recover(struct bnx2x *bp)
12329 {
12330 u32 val;
12331
12332 mutex_init(&bp->port.phy_mutex);
12333
12334
12335 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
12336 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12337 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12338 BNX2X_ERR("BAD MCP validity signature\n");
12339 }
12340
12341 /**
12342 * bnx2x_io_error_detected - called when PCI error is detected
12343 * @pdev: Pointer to PCI device
12344 * @state: The current pci connection state
12345 *
12346 * This function is called after a PCI bus error affecting
12347 * this device has been detected.
12348 */
12349 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12350 pci_channel_state_t state)
12351 {
12352 struct net_device *dev = pci_get_drvdata(pdev);
12353 struct bnx2x *bp = netdev_priv(dev);
12354
12355 rtnl_lock();
12356
12357 netif_device_detach(dev);
12358
12359 if (state == pci_channel_io_perm_failure) {
12360 rtnl_unlock();
12361 return PCI_ERS_RESULT_DISCONNECT;
12362 }
12363
12364 if (netif_running(dev))
12365 bnx2x_eeh_nic_unload(bp);
12366
12367 pci_disable_device(pdev);
12368
12369 rtnl_unlock();
12370
12371 /* Request a slot reset */
12372 return PCI_ERS_RESULT_NEED_RESET;
12373 }
12374
12375 /**
12376 * bnx2x_io_slot_reset - called after the PCI bus has been reset
12377 * @pdev: Pointer to PCI device
12378 *
12379 * Restart the card from scratch, as if from a cold-boot.
12380 */
12381 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12382 {
12383 struct net_device *dev = pci_get_drvdata(pdev);
12384 struct bnx2x *bp = netdev_priv(dev);
12385
12386 rtnl_lock();
12387
12388 if (pci_enable_device(pdev)) {
12389 dev_err(&pdev->dev,
12390 "Cannot re-enable PCI device after reset\n");
12391 rtnl_unlock();
12392 return PCI_ERS_RESULT_DISCONNECT;
12393 }
12394
12395 pci_set_master(pdev);
12396 pci_restore_state(pdev);
12397
12398 if (netif_running(dev))
12399 bnx2x_set_power_state(bp, PCI_D0);
12400
12401 rtnl_unlock();
12402
12403 return PCI_ERS_RESULT_RECOVERED;
12404 }
12405
12406 /**
12407 * bnx2x_io_resume - called when traffic can start flowing again
12408 * @pdev: Pointer to PCI device
12409 *
12410 * This callback is called when the error recovery driver tells us that
12411 * its OK to resume normal operation.
12412 */
12413 static void bnx2x_io_resume(struct pci_dev *pdev)
12414 {
12415 struct net_device *dev = pci_get_drvdata(pdev);
12416 struct bnx2x *bp = netdev_priv(dev);
12417
12418 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12419 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12420 return;
12421 }
12422
12423 rtnl_lock();
12424
12425 bnx2x_eeh_recover(bp);
12426
12427 if (netif_running(dev))
12428 bnx2x_nic_load(bp, LOAD_NORMAL);
12429
12430 netif_device_attach(dev);
12431
12432 rtnl_unlock();
12433 }
12434
12435 static const struct pci_error_handlers bnx2x_err_handler = {
12436 .error_detected = bnx2x_io_error_detected,
12437 .slot_reset = bnx2x_io_slot_reset,
12438 .resume = bnx2x_io_resume,
12439 };
12440
12441 static struct pci_driver bnx2x_pci_driver = {
12442 .name = DRV_MODULE_NAME,
12443 .id_table = bnx2x_pci_tbl,
12444 .probe = bnx2x_init_one,
12445 .remove = bnx2x_remove_one,
12446 .suspend = bnx2x_suspend,
12447 .resume = bnx2x_resume,
12448 .err_handler = &bnx2x_err_handler,
12449 };
12450
12451 static int __init bnx2x_init(void)
12452 {
12453 int ret;
12454
12455 pr_info("%s", version);
12456
12457 bnx2x_wq = create_singlethread_workqueue("bnx2x");
12458 if (bnx2x_wq == NULL) {
12459 pr_err("Cannot create workqueue\n");
12460 return -ENOMEM;
12461 }
12462
12463 ret = pci_register_driver(&bnx2x_pci_driver);
12464 if (ret) {
12465 pr_err("Cannot register driver\n");
12466 destroy_workqueue(bnx2x_wq);
12467 }
12468 return ret;
12469 }
12470
12471 static void __exit bnx2x_cleanup(void)
12472 {
12473 struct list_head *pos, *q;
12474 pci_unregister_driver(&bnx2x_pci_driver);
12475
12476 destroy_workqueue(bnx2x_wq);
12477
12478 /* Free globablly allocated resources */
12479 list_for_each_safe(pos, q, &bnx2x_prev_list) {
12480 struct bnx2x_prev_path_list *tmp =
12481 list_entry(pos, struct bnx2x_prev_path_list, list);
12482 list_del(pos);
12483 kfree(tmp);
12484 }
12485 }
12486
12487 void bnx2x_notify_link_changed(struct bnx2x *bp)
12488 {
12489 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12490 }
12491
12492 module_init(bnx2x_init);
12493 module_exit(bnx2x_cleanup);
12494
12495 /**
12496 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12497 *
12498 * @bp: driver handle
12499 * @set: set or clear the CAM entry
12500 *
12501 * This function will wait until the ramdord completion returns.
12502 * Return 0 if success, -ENODEV if ramrod doesn't return.
12503 */
12504 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12505 {
12506 unsigned long ramrod_flags = 0;
12507
12508 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12509 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12510 &bp->iscsi_l2_mac_obj, true,
12511 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12512 }
12513
12514 /* count denotes the number of new completions we have seen */
12515 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12516 {
12517 struct eth_spe *spe;
12518 int cxt_index, cxt_offset;
12519
12520 #ifdef BNX2X_STOP_ON_ERROR
12521 if (unlikely(bp->panic))
12522 return;
12523 #endif
12524
12525 spin_lock_bh(&bp->spq_lock);
12526 BUG_ON(bp->cnic_spq_pending < count);
12527 bp->cnic_spq_pending -= count;
12528
12529
12530 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
12531 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
12532 & SPE_HDR_CONN_TYPE) >>
12533 SPE_HDR_CONN_TYPE_SHIFT;
12534 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
12535 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
12536
12537 /* Set validation for iSCSI L2 client before sending SETUP
12538 * ramrod
12539 */
12540 if (type == ETH_CONNECTION_TYPE) {
12541 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
12542 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
12543 ILT_PAGE_CIDS;
12544 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
12545 (cxt_index * ILT_PAGE_CIDS);
12546 bnx2x_set_ctx_validation(bp,
12547 &bp->context[cxt_index].
12548 vcxt[cxt_offset].eth,
12549 BNX2X_ISCSI_ETH_CID(bp));
12550 }
12551 }
12552
12553 /*
12554 * There may be not more than 8 L2, not more than 8 L5 SPEs
12555 * and in the air. We also check that number of outstanding
12556 * COMMON ramrods is not more than the EQ and SPQ can
12557 * accommodate.
12558 */
12559 if (type == ETH_CONNECTION_TYPE) {
12560 if (!atomic_read(&bp->cq_spq_left))
12561 break;
12562 else
12563 atomic_dec(&bp->cq_spq_left);
12564 } else if (type == NONE_CONNECTION_TYPE) {
12565 if (!atomic_read(&bp->eq_spq_left))
12566 break;
12567 else
12568 atomic_dec(&bp->eq_spq_left);
12569 } else if ((type == ISCSI_CONNECTION_TYPE) ||
12570 (type == FCOE_CONNECTION_TYPE)) {
12571 if (bp->cnic_spq_pending >=
12572 bp->cnic_eth_dev.max_kwqe_pending)
12573 break;
12574 else
12575 bp->cnic_spq_pending++;
12576 } else {
12577 BNX2X_ERR("Unknown SPE type: %d\n", type);
12578 bnx2x_panic();
12579 break;
12580 }
12581
12582 spe = bnx2x_sp_get_next(bp);
12583 *spe = *bp->cnic_kwq_cons;
12584
12585 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
12586 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
12587
12588 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
12589 bp->cnic_kwq_cons = bp->cnic_kwq;
12590 else
12591 bp->cnic_kwq_cons++;
12592 }
12593 bnx2x_sp_prod_update(bp);
12594 spin_unlock_bh(&bp->spq_lock);
12595 }
12596
12597 static int bnx2x_cnic_sp_queue(struct net_device *dev,
12598 struct kwqe_16 *kwqes[], u32 count)
12599 {
12600 struct bnx2x *bp = netdev_priv(dev);
12601 int i;
12602
12603 #ifdef BNX2X_STOP_ON_ERROR
12604 if (unlikely(bp->panic)) {
12605 BNX2X_ERR("Can't post to SP queue while panic\n");
12606 return -EIO;
12607 }
12608 #endif
12609
12610 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
12611 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
12612 BNX2X_ERR("Handling parity error recovery. Try again later\n");
12613 return -EAGAIN;
12614 }
12615
12616 spin_lock_bh(&bp->spq_lock);
12617
12618 for (i = 0; i < count; i++) {
12619 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
12620
12621 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
12622 break;
12623
12624 *bp->cnic_kwq_prod = *spe;
12625
12626 bp->cnic_kwq_pending++;
12627
12628 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
12629 spe->hdr.conn_and_cmd_data, spe->hdr.type,
12630 spe->data.update_data_addr.hi,
12631 spe->data.update_data_addr.lo,
12632 bp->cnic_kwq_pending);
12633
12634 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
12635 bp->cnic_kwq_prod = bp->cnic_kwq;
12636 else
12637 bp->cnic_kwq_prod++;
12638 }
12639
12640 spin_unlock_bh(&bp->spq_lock);
12641
12642 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
12643 bnx2x_cnic_sp_post(bp, 0);
12644
12645 return i;
12646 }
12647
12648 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12649 {
12650 struct cnic_ops *c_ops;
12651 int rc = 0;
12652
12653 mutex_lock(&bp->cnic_mutex);
12654 c_ops = rcu_dereference_protected(bp->cnic_ops,
12655 lockdep_is_held(&bp->cnic_mutex));
12656 if (c_ops)
12657 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12658 mutex_unlock(&bp->cnic_mutex);
12659
12660 return rc;
12661 }
12662
12663 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12664 {
12665 struct cnic_ops *c_ops;
12666 int rc = 0;
12667
12668 rcu_read_lock();
12669 c_ops = rcu_dereference(bp->cnic_ops);
12670 if (c_ops)
12671 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12672 rcu_read_unlock();
12673
12674 return rc;
12675 }
12676
12677 /*
12678 * for commands that have no data
12679 */
12680 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
12681 {
12682 struct cnic_ctl_info ctl = {0};
12683
12684 ctl.cmd = cmd;
12685
12686 return bnx2x_cnic_ctl_send(bp, &ctl);
12687 }
12688
12689 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
12690 {
12691 struct cnic_ctl_info ctl = {0};
12692
12693 /* first we tell CNIC and only then we count this as a completion */
12694 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
12695 ctl.data.comp.cid = cid;
12696 ctl.data.comp.error = err;
12697
12698 bnx2x_cnic_ctl_send_bh(bp, &ctl);
12699 bnx2x_cnic_sp_post(bp, 0);
12700 }
12701
12702
12703 /* Called with netif_addr_lock_bh() taken.
12704 * Sets an rx_mode config for an iSCSI ETH client.
12705 * Doesn't block.
12706 * Completion should be checked outside.
12707 */
12708 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
12709 {
12710 unsigned long accept_flags = 0, ramrod_flags = 0;
12711 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12712 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
12713
12714 if (start) {
12715 /* Start accepting on iSCSI L2 ring. Accept all multicasts
12716 * because it's the only way for UIO Queue to accept
12717 * multicasts (in non-promiscuous mode only one Queue per
12718 * function will receive multicast packets (leading in our
12719 * case).
12720 */
12721 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
12722 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
12723 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
12724 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
12725
12726 /* Clear STOP_PENDING bit if START is requested */
12727 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
12728
12729 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
12730 } else
12731 /* Clear START_PENDING bit if STOP is requested */
12732 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
12733
12734 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
12735 set_bit(sched_state, &bp->sp_state);
12736 else {
12737 __set_bit(RAMROD_RX, &ramrod_flags);
12738 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
12739 ramrod_flags);
12740 }
12741 }
12742
12743
12744 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
12745 {
12746 struct bnx2x *bp = netdev_priv(dev);
12747 int rc = 0;
12748
12749 switch (ctl->cmd) {
12750 case DRV_CTL_CTXTBL_WR_CMD: {
12751 u32 index = ctl->data.io.offset;
12752 dma_addr_t addr = ctl->data.io.dma_addr;
12753
12754 bnx2x_ilt_wr(bp, index, addr);
12755 break;
12756 }
12757
12758 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
12759 int count = ctl->data.credit.credit_count;
12760
12761 bnx2x_cnic_sp_post(bp, count);
12762 break;
12763 }
12764
12765 /* rtnl_lock is held. */
12766 case DRV_CTL_START_L2_CMD: {
12767 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12768 unsigned long sp_bits = 0;
12769
12770 /* Configure the iSCSI classification object */
12771 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12772 cp->iscsi_l2_client_id,
12773 cp->iscsi_l2_cid, BP_FUNC(bp),
12774 bnx2x_sp(bp, mac_rdata),
12775 bnx2x_sp_mapping(bp, mac_rdata),
12776 BNX2X_FILTER_MAC_PENDING,
12777 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12778 &bp->macs_pool);
12779
12780 /* Set iSCSI MAC address */
12781 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12782 if (rc)
12783 break;
12784
12785 mmiowb();
12786 barrier();
12787
12788 /* Start accepting on iSCSI L2 ring */
12789
12790 netif_addr_lock_bh(dev);
12791 bnx2x_set_iscsi_eth_rx_mode(bp, true);
12792 netif_addr_unlock_bh(dev);
12793
12794 /* bits to wait on */
12795 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12796 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12797
12798 if (!bnx2x_wait_sp_comp(bp, sp_bits))
12799 BNX2X_ERR("rx_mode completion timed out!\n");
12800
12801 break;
12802 }
12803
12804 /* rtnl_lock is held. */
12805 case DRV_CTL_STOP_L2_CMD: {
12806 unsigned long sp_bits = 0;
12807
12808 /* Stop accepting on iSCSI L2 ring */
12809 netif_addr_lock_bh(dev);
12810 bnx2x_set_iscsi_eth_rx_mode(bp, false);
12811 netif_addr_unlock_bh(dev);
12812
12813 /* bits to wait on */
12814 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12815 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
12816
12817 if (!bnx2x_wait_sp_comp(bp, sp_bits))
12818 BNX2X_ERR("rx_mode completion timed out!\n");
12819
12820 mmiowb();
12821 barrier();
12822
12823 /* Unset iSCSI L2 MAC */
12824 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
12825 BNX2X_ISCSI_ETH_MAC, true);
12826 break;
12827 }
12828 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
12829 int count = ctl->data.credit.credit_count;
12830
12831 smp_mb__before_atomic_inc();
12832 atomic_add(count, &bp->cq_spq_left);
12833 smp_mb__after_atomic_inc();
12834 break;
12835 }
12836 case DRV_CTL_ULP_REGISTER_CMD: {
12837 int ulp_type = ctl->data.register_data.ulp_type;
12838
12839 if (CHIP_IS_E3(bp)) {
12840 int idx = BP_FW_MB_IDX(bp);
12841 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12842 int path = BP_PATH(bp);
12843 int port = BP_PORT(bp);
12844 int i;
12845 u32 scratch_offset;
12846 u32 *host_addr;
12847
12848 /* first write capability to shmem2 */
12849 if (ulp_type == CNIC_ULP_ISCSI)
12850 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12851 else if (ulp_type == CNIC_ULP_FCOE)
12852 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12853 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12854
12855 if ((ulp_type != CNIC_ULP_FCOE) ||
12856 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
12857 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
12858 break;
12859
12860 /* if reached here - should write fcoe capabilities */
12861 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
12862 if (!scratch_offset)
12863 break;
12864 scratch_offset += offsetof(struct glob_ncsi_oem_data,
12865 fcoe_features[path][port]);
12866 host_addr = (u32 *) &(ctl->data.register_data.
12867 fcoe_features);
12868 for (i = 0; i < sizeof(struct fcoe_capabilities);
12869 i += 4)
12870 REG_WR(bp, scratch_offset + i,
12871 *(host_addr + i/4));
12872 }
12873 break;
12874 }
12875
12876 case DRV_CTL_ULP_UNREGISTER_CMD: {
12877 int ulp_type = ctl->data.ulp_type;
12878
12879 if (CHIP_IS_E3(bp)) {
12880 int idx = BP_FW_MB_IDX(bp);
12881 u32 cap;
12882
12883 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12884 if (ulp_type == CNIC_ULP_ISCSI)
12885 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12886 else if (ulp_type == CNIC_ULP_FCOE)
12887 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12888 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12889 }
12890 break;
12891 }
12892
12893 default:
12894 BNX2X_ERR("unknown command %x\n", ctl->cmd);
12895 rc = -EINVAL;
12896 }
12897
12898 return rc;
12899 }
12900
12901 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
12902 {
12903 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12904
12905 if (bp->flags & USING_MSIX_FLAG) {
12906 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
12907 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
12908 cp->irq_arr[0].vector = bp->msix_table[1].vector;
12909 } else {
12910 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
12911 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
12912 }
12913 if (!CHIP_IS_E1x(bp))
12914 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
12915 else
12916 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
12917
12918 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
12919 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
12920 cp->irq_arr[1].status_blk = bp->def_status_blk;
12921 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
12922 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
12923
12924 cp->num_irq = 2;
12925 }
12926
12927 void bnx2x_setup_cnic_info(struct bnx2x *bp)
12928 {
12929 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12930
12931
12932 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12933 bnx2x_cid_ilt_lines(bp);
12934 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12935 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
12936 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
12937
12938 if (NO_ISCSI_OOO(bp))
12939 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12940 }
12941
12942 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
12943 void *data)
12944 {
12945 struct bnx2x *bp = netdev_priv(dev);
12946 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12947 int rc;
12948
12949 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
12950
12951 if (ops == NULL) {
12952 BNX2X_ERR("NULL ops received\n");
12953 return -EINVAL;
12954 }
12955
12956 if (!CNIC_SUPPORT(bp)) {
12957 BNX2X_ERR("Can't register CNIC when not supported\n");
12958 return -EOPNOTSUPP;
12959 }
12960
12961 if (!CNIC_LOADED(bp)) {
12962 rc = bnx2x_load_cnic(bp);
12963 if (rc) {
12964 BNX2X_ERR("CNIC-related load failed\n");
12965 return rc;
12966 }
12967
12968 }
12969
12970 bp->cnic_enabled = true;
12971
12972 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
12973 if (!bp->cnic_kwq)
12974 return -ENOMEM;
12975
12976 bp->cnic_kwq_cons = bp->cnic_kwq;
12977 bp->cnic_kwq_prod = bp->cnic_kwq;
12978 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
12979
12980 bp->cnic_spq_pending = 0;
12981 bp->cnic_kwq_pending = 0;
12982
12983 bp->cnic_data = data;
12984
12985 cp->num_irq = 0;
12986 cp->drv_state |= CNIC_DRV_STATE_REGD;
12987 cp->iro_arr = bp->iro_arr;
12988
12989 bnx2x_setup_cnic_irq_info(bp);
12990
12991 rcu_assign_pointer(bp->cnic_ops, ops);
12992
12993 return 0;
12994 }
12995
12996 static int bnx2x_unregister_cnic(struct net_device *dev)
12997 {
12998 struct bnx2x *bp = netdev_priv(dev);
12999 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13000
13001 mutex_lock(&bp->cnic_mutex);
13002 cp->drv_state = 0;
13003 RCU_INIT_POINTER(bp->cnic_ops, NULL);
13004 mutex_unlock(&bp->cnic_mutex);
13005 synchronize_rcu();
13006 kfree(bp->cnic_kwq);
13007 bp->cnic_kwq = NULL;
13008
13009 return 0;
13010 }
13011
13012 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13013 {
13014 struct bnx2x *bp = netdev_priv(dev);
13015 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13016
13017 /* If both iSCSI and FCoE are disabled - return NULL in
13018 * order to indicate CNIC that it should not try to work
13019 * with this device.
13020 */
13021 if (NO_ISCSI(bp) && NO_FCOE(bp))
13022 return NULL;
13023
13024 cp->drv_owner = THIS_MODULE;
13025 cp->chip_id = CHIP_ID(bp);
13026 cp->pdev = bp->pdev;
13027 cp->io_base = bp->regview;
13028 cp->io_base2 = bp->doorbells;
13029 cp->max_kwqe_pending = 8;
13030 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13031 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13032 bnx2x_cid_ilt_lines(bp);
13033 cp->ctx_tbl_len = CNIC_ILT_LINES;
13034 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13035 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13036 cp->drv_ctl = bnx2x_drv_ctl;
13037 cp->drv_register_cnic = bnx2x_register_cnic;
13038 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13039 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13040 cp->iscsi_l2_client_id =
13041 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13042 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13043
13044 if (NO_ISCSI_OOO(bp))
13045 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13046
13047 if (NO_ISCSI(bp))
13048 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13049
13050 if (NO_FCOE(bp))
13051 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13052
13053 BNX2X_DEV_INFO(
13054 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13055 cp->ctx_blk_size,
13056 cp->ctx_tbl_offset,
13057 cp->ctx_tbl_len,
13058 cp->starting_cid);
13059 return cp;
13060 }
13061
13062