net: use eth_hw_addr_random() and reset addr_assign_type
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2012 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION \
69 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
70 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
71 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
72 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT (5*HZ)
79
80 static char version[] __devinitdata =
81 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 "BCM57710/57711/57711E/"
87 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2);
94
95 static int multi_mode = 1;
96 module_param(multi_mode, int, 0);
97 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98 "(0 Disable; 1 Enable (default))");
99
100 int num_queues;
101 module_param(num_queues, int, 0);
102 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103 " (default is as a number of CPUs)");
104
105 static int disable_tpa;
106 module_param(disable_tpa, int, 0);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109 #define INT_MODE_INTx 1
110 #define INT_MODE_MSI 2
111 static int int_mode;
112 module_param(int_mode, int, 0);
113 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114 "(1 INT#x; 2 MSI)");
115
116 static int dropless_fc;
117 module_param(dropless_fc, int, 0);
118 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119
120 static int poll;
121 module_param(poll, int, 0);
122 MODULE_PARM_DESC(poll, " Use polling (for debug)");
123
124 static int mrrs = -1;
125 module_param(mrrs, int, 0);
126 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127
128 static int debug;
129 module_param(debug, int, 0);
130 MODULE_PARM_DESC(debug, " Default debug msglevel");
131
132
133
134 struct workqueue_struct *bnx2x_wq;
135
136 enum bnx2x_board_type {
137 BCM57710 = 0,
138 BCM57711,
139 BCM57711E,
140 BCM57712,
141 BCM57712_MF,
142 BCM57800,
143 BCM57800_MF,
144 BCM57810,
145 BCM57810_MF,
146 BCM57840,
147 BCM57840_MF
148 };
149
150 /* indexed by board_type, above */
151 static struct {
152 char *name;
153 } board_info[] __devinitdata = {
154 { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
155 { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
156 { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
157 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
158 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
159 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
160 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
161 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
162 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
163 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
164 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
165 "Ethernet Multi Function"}
166 };
167
168 #ifndef PCI_DEVICE_ID_NX2_57710
169 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
170 #endif
171 #ifndef PCI_DEVICE_ID_NX2_57711
172 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57711E
175 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57712
178 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57712_MF
181 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57800
184 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57800_MF
187 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57810
190 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57810_MF
193 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57840
196 #define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57840_MF
199 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
200 #endif
201 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
202 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
203 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
204 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
205 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
206 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
207 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
208 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
209 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
210 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
211 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
212 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
213 { 0 }
214 };
215
216 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
217
218 /****************************************************************************
219 * General service functions
220 ****************************************************************************/
221
222 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
223 u32 addr, dma_addr_t mapping)
224 {
225 REG_WR(bp, addr, U64_LO(mapping));
226 REG_WR(bp, addr + 4, U64_HI(mapping));
227 }
228
229 static inline void storm_memset_spq_addr(struct bnx2x *bp,
230 dma_addr_t mapping, u16 abs_fid)
231 {
232 u32 addr = XSEM_REG_FAST_MEMORY +
233 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
234
235 __storm_memset_dma_mapping(bp, addr, mapping);
236 }
237
238 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
239 u16 pf_id)
240 {
241 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
242 pf_id);
243 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
244 pf_id);
245 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
246 pf_id);
247 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
248 pf_id);
249 }
250
251 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
252 u8 enable)
253 {
254 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
255 enable);
256 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
257 enable);
258 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
259 enable);
260 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
261 enable);
262 }
263
264 static inline void storm_memset_eq_data(struct bnx2x *bp,
265 struct event_ring_data *eq_data,
266 u16 pfid)
267 {
268 size_t size = sizeof(struct event_ring_data);
269
270 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
271
272 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
273 }
274
275 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
276 u16 pfid)
277 {
278 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
279 REG_WR16(bp, addr, eq_prod);
280 }
281
282 /* used only at init
283 * locking is done by mcp
284 */
285 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
286 {
287 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
288 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
289 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
290 PCICFG_VENDOR_ID_OFFSET);
291 }
292
293 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
294 {
295 u32 val;
296
297 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
298 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
299 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
300 PCICFG_VENDOR_ID_OFFSET);
301
302 return val;
303 }
304
305 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
306 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
307 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
308 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
309 #define DMAE_DP_DST_NONE "dst_addr [none]"
310
311 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
312 int msglvl)
313 {
314 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
315
316 switch (dmae->opcode & DMAE_COMMAND_DST) {
317 case DMAE_CMD_DST_PCI:
318 if (src_type == DMAE_CMD_SRC_PCI)
319 DP(msglvl, "DMAE: opcode 0x%08x\n"
320 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
321 "comp_addr [%x:%08x], comp_val 0x%08x\n",
322 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
323 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
324 dmae->comp_addr_hi, dmae->comp_addr_lo,
325 dmae->comp_val);
326 else
327 DP(msglvl, "DMAE: opcode 0x%08x\n"
328 "src [%08x], len [%d*4], dst [%x:%08x]\n"
329 "comp_addr [%x:%08x], comp_val 0x%08x\n",
330 dmae->opcode, dmae->src_addr_lo >> 2,
331 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
332 dmae->comp_addr_hi, dmae->comp_addr_lo,
333 dmae->comp_val);
334 break;
335 case DMAE_CMD_DST_GRC:
336 if (src_type == DMAE_CMD_SRC_PCI)
337 DP(msglvl, "DMAE: opcode 0x%08x\n"
338 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
339 "comp_addr [%x:%08x], comp_val 0x%08x\n",
340 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
341 dmae->len, dmae->dst_addr_lo >> 2,
342 dmae->comp_addr_hi, dmae->comp_addr_lo,
343 dmae->comp_val);
344 else
345 DP(msglvl, "DMAE: opcode 0x%08x\n"
346 "src [%08x], len [%d*4], dst [%08x]\n"
347 "comp_addr [%x:%08x], comp_val 0x%08x\n",
348 dmae->opcode, dmae->src_addr_lo >> 2,
349 dmae->len, dmae->dst_addr_lo >> 2,
350 dmae->comp_addr_hi, dmae->comp_addr_lo,
351 dmae->comp_val);
352 break;
353 default:
354 if (src_type == DMAE_CMD_SRC_PCI)
355 DP(msglvl, "DMAE: opcode 0x%08x\n"
356 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
357 "comp_addr [%x:%08x] comp_val 0x%08x\n",
358 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
359 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
360 dmae->comp_val);
361 else
362 DP(msglvl, "DMAE: opcode 0x%08x\n"
363 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
364 "comp_addr [%x:%08x] comp_val 0x%08x\n",
365 dmae->opcode, dmae->src_addr_lo >> 2,
366 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
367 dmae->comp_val);
368 break;
369 }
370
371 }
372
373 /* copy command into DMAE command memory and set DMAE command go */
374 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
375 {
376 u32 cmd_offset;
377 int i;
378
379 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
380 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
381 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
382
383 DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
384 idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
385 }
386 REG_WR(bp, dmae_reg_go_c[idx], 1);
387 }
388
389 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
390 {
391 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
392 DMAE_CMD_C_ENABLE);
393 }
394
395 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
396 {
397 return opcode & ~DMAE_CMD_SRC_RESET;
398 }
399
400 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
401 bool with_comp, u8 comp_type)
402 {
403 u32 opcode = 0;
404
405 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
406 (dst_type << DMAE_COMMAND_DST_SHIFT));
407
408 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
409
410 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
411 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
412 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
413 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
414
415 #ifdef __BIG_ENDIAN
416 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
417 #else
418 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
419 #endif
420 if (with_comp)
421 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
422 return opcode;
423 }
424
425 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
426 struct dmae_command *dmae,
427 u8 src_type, u8 dst_type)
428 {
429 memset(dmae, 0, sizeof(struct dmae_command));
430
431 /* set the opcode */
432 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
433 true, DMAE_COMP_PCI);
434
435 /* fill in the completion parameters */
436 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
437 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
438 dmae->comp_val = DMAE_COMP_VAL;
439 }
440
441 /* issue a dmae command over the init-channel and wailt for completion */
442 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
443 struct dmae_command *dmae)
444 {
445 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
446 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
447 int rc = 0;
448
449 DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
450 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
451 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
452
453 /*
454 * Lock the dmae channel. Disable BHs to prevent a dead-lock
455 * as long as this code is called both from syscall context and
456 * from ndo_set_rx_mode() flow that may be called from BH.
457 */
458 spin_lock_bh(&bp->dmae_lock);
459
460 /* reset completion */
461 *wb_comp = 0;
462
463 /* post the command on the channel used for initializations */
464 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
465
466 /* wait for completion */
467 udelay(5);
468 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
469 DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
470
471 if (!cnt ||
472 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
473 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
474 BNX2X_ERR("DMAE timeout!\n");
475 rc = DMAE_TIMEOUT;
476 goto unlock;
477 }
478 cnt--;
479 udelay(50);
480 }
481 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
482 BNX2X_ERR("DMAE PCI error!\n");
483 rc = DMAE_PCI_ERROR;
484 }
485
486 DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
487 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
488 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
489
490 unlock:
491 spin_unlock_bh(&bp->dmae_lock);
492 return rc;
493 }
494
495 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
496 u32 len32)
497 {
498 struct dmae_command dmae;
499
500 if (!bp->dmae_ready) {
501 u32 *data = bnx2x_sp(bp, wb_data[0]);
502
503 DP(BNX2X_MSG_OFF,
504 "DMAE is not ready (dst_addr %08x len32 %d) using indirect\n",
505 dst_addr, len32);
506 if (CHIP_IS_E1(bp))
507 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
508 else
509 bnx2x_init_str_wr(bp, dst_addr, data, len32);
510 return;
511 }
512
513 /* set opcode and fixed command fields */
514 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
515
516 /* fill in addresses and len */
517 dmae.src_addr_lo = U64_LO(dma_addr);
518 dmae.src_addr_hi = U64_HI(dma_addr);
519 dmae.dst_addr_lo = dst_addr >> 2;
520 dmae.dst_addr_hi = 0;
521 dmae.len = len32;
522
523 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
524
525 /* issue the command and wait for completion */
526 bnx2x_issue_dmae_with_comp(bp, &dmae);
527 }
528
529 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
530 {
531 struct dmae_command dmae;
532
533 if (!bp->dmae_ready) {
534 u32 *data = bnx2x_sp(bp, wb_data[0]);
535 int i;
536
537 if (CHIP_IS_E1(bp)) {
538 DP(BNX2X_MSG_OFF,
539 "DMAE is not ready (src_addr %08x len32 %d) using indirect\n",
540 src_addr, len32);
541 for (i = 0; i < len32; i++)
542 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
543 } else
544 for (i = 0; i < len32; i++)
545 data[i] = REG_RD(bp, src_addr + i*4);
546
547 return;
548 }
549
550 /* set opcode and fixed command fields */
551 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
552
553 /* fill in addresses and len */
554 dmae.src_addr_lo = src_addr >> 2;
555 dmae.src_addr_hi = 0;
556 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
557 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
558 dmae.len = len32;
559
560 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
561
562 /* issue the command and wait for completion */
563 bnx2x_issue_dmae_with_comp(bp, &dmae);
564 }
565
566 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
567 u32 addr, u32 len)
568 {
569 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
570 int offset = 0;
571
572 while (len > dmae_wr_max) {
573 bnx2x_write_dmae(bp, phys_addr + offset,
574 addr + offset, dmae_wr_max);
575 offset += dmae_wr_max * 4;
576 len -= dmae_wr_max;
577 }
578
579 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
580 }
581
582 /* used only for slowpath so not inlined */
583 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
584 {
585 u32 wb_write[2];
586
587 wb_write[0] = val_hi;
588 wb_write[1] = val_lo;
589 REG_WR_DMAE(bp, reg, wb_write, 2);
590 }
591
592 #ifdef USE_WB_RD
593 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
594 {
595 u32 wb_data[2];
596
597 REG_RD_DMAE(bp, reg, wb_data, 2);
598
599 return HILO_U64(wb_data[0], wb_data[1]);
600 }
601 #endif
602
603 static int bnx2x_mc_assert(struct bnx2x *bp)
604 {
605 char last_idx;
606 int i, rc = 0;
607 u32 row0, row1, row2, row3;
608
609 /* XSTORM */
610 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
611 XSTORM_ASSERT_LIST_INDEX_OFFSET);
612 if (last_idx)
613 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
614
615 /* print the asserts */
616 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
617
618 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
619 XSTORM_ASSERT_LIST_OFFSET(i));
620 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
621 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
622 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
623 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
624 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
625 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
626
627 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
628 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
629 " 0x%08x 0x%08x 0x%08x\n",
630 i, row3, row2, row1, row0);
631 rc++;
632 } else {
633 break;
634 }
635 }
636
637 /* TSTORM */
638 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
639 TSTORM_ASSERT_LIST_INDEX_OFFSET);
640 if (last_idx)
641 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
642
643 /* print the asserts */
644 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
645
646 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
647 TSTORM_ASSERT_LIST_OFFSET(i));
648 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
649 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
650 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
651 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
652 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
653 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
654
655 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
656 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
657 " 0x%08x 0x%08x 0x%08x\n",
658 i, row3, row2, row1, row0);
659 rc++;
660 } else {
661 break;
662 }
663 }
664
665 /* CSTORM */
666 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
667 CSTORM_ASSERT_LIST_INDEX_OFFSET);
668 if (last_idx)
669 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
670
671 /* print the asserts */
672 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
673
674 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
675 CSTORM_ASSERT_LIST_OFFSET(i));
676 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
677 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
678 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
679 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
680 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
681 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
682
683 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
684 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
685 " 0x%08x 0x%08x 0x%08x\n",
686 i, row3, row2, row1, row0);
687 rc++;
688 } else {
689 break;
690 }
691 }
692
693 /* USTORM */
694 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
695 USTORM_ASSERT_LIST_INDEX_OFFSET);
696 if (last_idx)
697 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
698
699 /* print the asserts */
700 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
701
702 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
703 USTORM_ASSERT_LIST_OFFSET(i));
704 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
705 USTORM_ASSERT_LIST_OFFSET(i) + 4);
706 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
707 USTORM_ASSERT_LIST_OFFSET(i) + 8);
708 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
709 USTORM_ASSERT_LIST_OFFSET(i) + 12);
710
711 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
712 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
713 " 0x%08x 0x%08x 0x%08x\n",
714 i, row3, row2, row1, row0);
715 rc++;
716 } else {
717 break;
718 }
719 }
720
721 return rc;
722 }
723
724 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
725 {
726 u32 addr, val;
727 u32 mark, offset;
728 __be32 data[9];
729 int word;
730 u32 trace_shmem_base;
731 if (BP_NOMCP(bp)) {
732 BNX2X_ERR("NO MCP - can not dump\n");
733 return;
734 }
735 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
736 (bp->common.bc_ver & 0xff0000) >> 16,
737 (bp->common.bc_ver & 0xff00) >> 8,
738 (bp->common.bc_ver & 0xff));
739
740 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
741 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
742 printk("%s" "MCP PC at 0x%x\n", lvl, val);
743
744 if (BP_PATH(bp) == 0)
745 trace_shmem_base = bp->common.shmem_base;
746 else
747 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
748 addr = trace_shmem_base - 0x0800 + 4;
749 mark = REG_RD(bp, addr);
750 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
751 + ((mark + 0x3) & ~0x3) - 0x08000000;
752 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
753
754 printk("%s", lvl);
755 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
756 for (word = 0; word < 8; word++)
757 data[word] = htonl(REG_RD(bp, offset + 4*word));
758 data[8] = 0x0;
759 pr_cont("%s", (char *)data);
760 }
761 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
762 for (word = 0; word < 8; word++)
763 data[word] = htonl(REG_RD(bp, offset + 4*word));
764 data[8] = 0x0;
765 pr_cont("%s", (char *)data);
766 }
767 printk("%s" "end of fw dump\n", lvl);
768 }
769
770 static inline void bnx2x_fw_dump(struct bnx2x *bp)
771 {
772 bnx2x_fw_dump_lvl(bp, KERN_ERR);
773 }
774
775 void bnx2x_panic_dump(struct bnx2x *bp)
776 {
777 int i;
778 u16 j;
779 struct hc_sp_status_block_data sp_sb_data;
780 int func = BP_FUNC(bp);
781 #ifdef BNX2X_STOP_ON_ERROR
782 u16 start = 0, end = 0;
783 u8 cos;
784 #endif
785
786 bp->stats_state = STATS_STATE_DISABLED;
787 bp->eth_stats.unrecoverable_error++;
788 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
789
790 BNX2X_ERR("begin crash dump -----------------\n");
791
792 /* Indices */
793 /* Common */
794 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
795 " spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
796 bp->def_idx, bp->def_att_idx, bp->attn_state,
797 bp->spq_prod_idx, bp->stats_counter);
798 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
799 bp->def_status_blk->atten_status_block.attn_bits,
800 bp->def_status_blk->atten_status_block.attn_bits_ack,
801 bp->def_status_blk->atten_status_block.status_block_id,
802 bp->def_status_blk->atten_status_block.attn_bits_index);
803 BNX2X_ERR(" def (");
804 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
805 pr_cont("0x%x%s",
806 bp->def_status_blk->sp_sb.index_values[i],
807 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
808
809 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
810 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
811 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
812 i*sizeof(u32));
813
814 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
815 sp_sb_data.igu_sb_id,
816 sp_sb_data.igu_seg_id,
817 sp_sb_data.p_func.pf_id,
818 sp_sb_data.p_func.vnic_id,
819 sp_sb_data.p_func.vf_id,
820 sp_sb_data.p_func.vf_valid,
821 sp_sb_data.state);
822
823
824 for_each_eth_queue(bp, i) {
825 struct bnx2x_fastpath *fp = &bp->fp[i];
826 int loop;
827 struct hc_status_block_data_e2 sb_data_e2;
828 struct hc_status_block_data_e1x sb_data_e1x;
829 struct hc_status_block_sm *hc_sm_p =
830 CHIP_IS_E1x(bp) ?
831 sb_data_e1x.common.state_machine :
832 sb_data_e2.common.state_machine;
833 struct hc_index_data *hc_index_p =
834 CHIP_IS_E1x(bp) ?
835 sb_data_e1x.index_data :
836 sb_data_e2.index_data;
837 u8 data_size, cos;
838 u32 *sb_data_p;
839 struct bnx2x_fp_txdata txdata;
840
841 /* Rx */
842 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
843 " rx_comp_prod(0x%x)"
844 " rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
845 i, fp->rx_bd_prod, fp->rx_bd_cons,
846 fp->rx_comp_prod,
847 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
848 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
849 " fp_hc_idx(0x%x)\n",
850 fp->rx_sge_prod, fp->last_max_sge,
851 le16_to_cpu(fp->fp_hc_idx));
852
853 /* Tx */
854 for_each_cos_in_tx_queue(fp, cos)
855 {
856 txdata = fp->txdata[cos];
857 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
858 " tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
859 " *tx_cons_sb(0x%x)\n",
860 i, txdata.tx_pkt_prod,
861 txdata.tx_pkt_cons, txdata.tx_bd_prod,
862 txdata.tx_bd_cons,
863 le16_to_cpu(*txdata.tx_cons_sb));
864 }
865
866 loop = CHIP_IS_E1x(bp) ?
867 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
868
869 /* host sb data */
870
871 #ifdef BCM_CNIC
872 if (IS_FCOE_FP(fp))
873 continue;
874 #endif
875 BNX2X_ERR(" run indexes (");
876 for (j = 0; j < HC_SB_MAX_SM; j++)
877 pr_cont("0x%x%s",
878 fp->sb_running_index[j],
879 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
880
881 BNX2X_ERR(" indexes (");
882 for (j = 0; j < loop; j++)
883 pr_cont("0x%x%s",
884 fp->sb_index_values[j],
885 (j == loop - 1) ? ")" : " ");
886 /* fw sb data */
887 data_size = CHIP_IS_E1x(bp) ?
888 sizeof(struct hc_status_block_data_e1x) :
889 sizeof(struct hc_status_block_data_e2);
890 data_size /= sizeof(u32);
891 sb_data_p = CHIP_IS_E1x(bp) ?
892 (u32 *)&sb_data_e1x :
893 (u32 *)&sb_data_e2;
894 /* copy sb data in here */
895 for (j = 0; j < data_size; j++)
896 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
897 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
898 j * sizeof(u32));
899
900 if (!CHIP_IS_E1x(bp)) {
901 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
902 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
903 "state(0x%x)\n",
904 sb_data_e2.common.p_func.pf_id,
905 sb_data_e2.common.p_func.vf_id,
906 sb_data_e2.common.p_func.vf_valid,
907 sb_data_e2.common.p_func.vnic_id,
908 sb_data_e2.common.same_igu_sb_1b,
909 sb_data_e2.common.state);
910 } else {
911 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
912 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
913 "state(0x%x)\n",
914 sb_data_e1x.common.p_func.pf_id,
915 sb_data_e1x.common.p_func.vf_id,
916 sb_data_e1x.common.p_func.vf_valid,
917 sb_data_e1x.common.p_func.vnic_id,
918 sb_data_e1x.common.same_igu_sb_1b,
919 sb_data_e1x.common.state);
920 }
921
922 /* SB_SMs data */
923 for (j = 0; j < HC_SB_MAX_SM; j++) {
924 pr_cont("SM[%d] __flags (0x%x) "
925 "igu_sb_id (0x%x) igu_seg_id(0x%x) "
926 "time_to_expire (0x%x) "
927 "timer_value(0x%x)\n", j,
928 hc_sm_p[j].__flags,
929 hc_sm_p[j].igu_sb_id,
930 hc_sm_p[j].igu_seg_id,
931 hc_sm_p[j].time_to_expire,
932 hc_sm_p[j].timer_value);
933 }
934
935 /* Indecies data */
936 for (j = 0; j < loop; j++) {
937 pr_cont("INDEX[%d] flags (0x%x) "
938 "timeout (0x%x)\n", j,
939 hc_index_p[j].flags,
940 hc_index_p[j].timeout);
941 }
942 }
943
944 #ifdef BNX2X_STOP_ON_ERROR
945 /* Rings */
946 /* Rx */
947 for_each_rx_queue(bp, i) {
948 struct bnx2x_fastpath *fp = &bp->fp[i];
949
950 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
951 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
952 for (j = start; j != end; j = RX_BD(j + 1)) {
953 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
954 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
955
956 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
957 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
958 }
959
960 start = RX_SGE(fp->rx_sge_prod);
961 end = RX_SGE(fp->last_max_sge);
962 for (j = start; j != end; j = RX_SGE(j + 1)) {
963 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
964 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
965
966 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
967 i, j, rx_sge[1], rx_sge[0], sw_page->page);
968 }
969
970 start = RCQ_BD(fp->rx_comp_cons - 10);
971 end = RCQ_BD(fp->rx_comp_cons + 503);
972 for (j = start; j != end; j = RCQ_BD(j + 1)) {
973 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
974
975 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
976 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
977 }
978 }
979
980 /* Tx */
981 for_each_tx_queue(bp, i) {
982 struct bnx2x_fastpath *fp = &bp->fp[i];
983 for_each_cos_in_tx_queue(fp, cos) {
984 struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
985
986 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
987 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
988 for (j = start; j != end; j = TX_BD(j + 1)) {
989 struct sw_tx_bd *sw_bd =
990 &txdata->tx_buf_ring[j];
991
992 BNX2X_ERR("fp%d: txdata %d, "
993 "packet[%x]=[%p,%x]\n",
994 i, cos, j, sw_bd->skb,
995 sw_bd->first_bd);
996 }
997
998 start = TX_BD(txdata->tx_bd_cons - 10);
999 end = TX_BD(txdata->tx_bd_cons + 254);
1000 for (j = start; j != end; j = TX_BD(j + 1)) {
1001 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1002
1003 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
1004 "[%x:%x:%x:%x]\n",
1005 i, cos, j, tx_bd[0], tx_bd[1],
1006 tx_bd[2], tx_bd[3]);
1007 }
1008 }
1009 }
1010 #endif
1011 bnx2x_fw_dump(bp);
1012 bnx2x_mc_assert(bp);
1013 BNX2X_ERR("end crash dump -----------------\n");
1014 }
1015
1016 /*
1017 * FLR Support for E2
1018 *
1019 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1020 * initialization.
1021 */
1022 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
1023 #define FLR_WAIT_INTERVAL 50 /* usec */
1024 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1025
1026 struct pbf_pN_buf_regs {
1027 int pN;
1028 u32 init_crd;
1029 u32 crd;
1030 u32 crd_freed;
1031 };
1032
1033 struct pbf_pN_cmd_regs {
1034 int pN;
1035 u32 lines_occup;
1036 u32 lines_freed;
1037 };
1038
1039 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1040 struct pbf_pN_buf_regs *regs,
1041 u32 poll_count)
1042 {
1043 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1044 u32 cur_cnt = poll_count;
1045
1046 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1047 crd = crd_start = REG_RD(bp, regs->crd);
1048 init_crd = REG_RD(bp, regs->init_crd);
1049
1050 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1051 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1052 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1053
1054 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1055 (init_crd - crd_start))) {
1056 if (cur_cnt--) {
1057 udelay(FLR_WAIT_INTERVAL);
1058 crd = REG_RD(bp, regs->crd);
1059 crd_freed = REG_RD(bp, regs->crd_freed);
1060 } else {
1061 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1062 regs->pN);
1063 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1064 regs->pN, crd);
1065 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1066 regs->pN, crd_freed);
1067 break;
1068 }
1069 }
1070 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1071 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1072 }
1073
1074 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1075 struct pbf_pN_cmd_regs *regs,
1076 u32 poll_count)
1077 {
1078 u32 occup, to_free, freed, freed_start;
1079 u32 cur_cnt = poll_count;
1080
1081 occup = to_free = REG_RD(bp, regs->lines_occup);
1082 freed = freed_start = REG_RD(bp, regs->lines_freed);
1083
1084 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1085 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1086
1087 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1088 if (cur_cnt--) {
1089 udelay(FLR_WAIT_INTERVAL);
1090 occup = REG_RD(bp, regs->lines_occup);
1091 freed = REG_RD(bp, regs->lines_freed);
1092 } else {
1093 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1094 regs->pN);
1095 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1096 regs->pN, occup);
1097 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1098 regs->pN, freed);
1099 break;
1100 }
1101 }
1102 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1103 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1104 }
1105
1106 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1107 u32 expected, u32 poll_count)
1108 {
1109 u32 cur_cnt = poll_count;
1110 u32 val;
1111
1112 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1113 udelay(FLR_WAIT_INTERVAL);
1114
1115 return val;
1116 }
1117
1118 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1119 char *msg, u32 poll_cnt)
1120 {
1121 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1122 if (val != 0) {
1123 BNX2X_ERR("%s usage count=%d\n", msg, val);
1124 return 1;
1125 }
1126 return 0;
1127 }
1128
1129 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1130 {
1131 /* adjust polling timeout */
1132 if (CHIP_REV_IS_EMUL(bp))
1133 return FLR_POLL_CNT * 2000;
1134
1135 if (CHIP_REV_IS_FPGA(bp))
1136 return FLR_POLL_CNT * 120;
1137
1138 return FLR_POLL_CNT;
1139 }
1140
1141 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1142 {
1143 struct pbf_pN_cmd_regs cmd_regs[] = {
1144 {0, (CHIP_IS_E3B0(bp)) ?
1145 PBF_REG_TQ_OCCUPANCY_Q0 :
1146 PBF_REG_P0_TQ_OCCUPANCY,
1147 (CHIP_IS_E3B0(bp)) ?
1148 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1149 PBF_REG_P0_TQ_LINES_FREED_CNT},
1150 {1, (CHIP_IS_E3B0(bp)) ?
1151 PBF_REG_TQ_OCCUPANCY_Q1 :
1152 PBF_REG_P1_TQ_OCCUPANCY,
1153 (CHIP_IS_E3B0(bp)) ?
1154 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1155 PBF_REG_P1_TQ_LINES_FREED_CNT},
1156 {4, (CHIP_IS_E3B0(bp)) ?
1157 PBF_REG_TQ_OCCUPANCY_LB_Q :
1158 PBF_REG_P4_TQ_OCCUPANCY,
1159 (CHIP_IS_E3B0(bp)) ?
1160 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1161 PBF_REG_P4_TQ_LINES_FREED_CNT}
1162 };
1163
1164 struct pbf_pN_buf_regs buf_regs[] = {
1165 {0, (CHIP_IS_E3B0(bp)) ?
1166 PBF_REG_INIT_CRD_Q0 :
1167 PBF_REG_P0_INIT_CRD ,
1168 (CHIP_IS_E3B0(bp)) ?
1169 PBF_REG_CREDIT_Q0 :
1170 PBF_REG_P0_CREDIT,
1171 (CHIP_IS_E3B0(bp)) ?
1172 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1173 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1174 {1, (CHIP_IS_E3B0(bp)) ?
1175 PBF_REG_INIT_CRD_Q1 :
1176 PBF_REG_P1_INIT_CRD,
1177 (CHIP_IS_E3B0(bp)) ?
1178 PBF_REG_CREDIT_Q1 :
1179 PBF_REG_P1_CREDIT,
1180 (CHIP_IS_E3B0(bp)) ?
1181 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1182 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1183 {4, (CHIP_IS_E3B0(bp)) ?
1184 PBF_REG_INIT_CRD_LB_Q :
1185 PBF_REG_P4_INIT_CRD,
1186 (CHIP_IS_E3B0(bp)) ?
1187 PBF_REG_CREDIT_LB_Q :
1188 PBF_REG_P4_CREDIT,
1189 (CHIP_IS_E3B0(bp)) ?
1190 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1191 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1192 };
1193
1194 int i;
1195
1196 /* Verify the command queues are flushed P0, P1, P4 */
1197 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1198 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1199
1200
1201 /* Verify the transmission buffers are flushed P0, P1, P4 */
1202 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1203 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1204 }
1205
1206 #define OP_GEN_PARAM(param) \
1207 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1208
1209 #define OP_GEN_TYPE(type) \
1210 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1211
1212 #define OP_GEN_AGG_VECT(index) \
1213 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1214
1215
1216 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1217 u32 poll_cnt)
1218 {
1219 struct sdm_op_gen op_gen = {0};
1220
1221 u32 comp_addr = BAR_CSTRORM_INTMEM +
1222 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1223 int ret = 0;
1224
1225 if (REG_RD(bp, comp_addr)) {
1226 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1227 return 1;
1228 }
1229
1230 op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1231 op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1232 op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1233 op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1234
1235 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1236 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1237
1238 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1239 BNX2X_ERR("FW final cleanup did not succeed\n");
1240 ret = 1;
1241 }
1242 /* Zero completion for nxt FLR */
1243 REG_WR(bp, comp_addr, 0);
1244
1245 return ret;
1246 }
1247
1248 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1249 {
1250 int pos;
1251 u16 status;
1252
1253 pos = pci_pcie_cap(dev);
1254 if (!pos)
1255 return false;
1256
1257 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1258 return status & PCI_EXP_DEVSTA_TRPND;
1259 }
1260
1261 /* PF FLR specific routines
1262 */
1263 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1264 {
1265
1266 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1267 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1268 CFC_REG_NUM_LCIDS_INSIDE_PF,
1269 "CFC PF usage counter timed out",
1270 poll_cnt))
1271 return 1;
1272
1273
1274 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1275 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1276 DORQ_REG_PF_USAGE_CNT,
1277 "DQ PF usage counter timed out",
1278 poll_cnt))
1279 return 1;
1280
1281 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1282 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1283 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1284 "QM PF usage counter timed out",
1285 poll_cnt))
1286 return 1;
1287
1288 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1289 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1290 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1291 "Timers VNIC usage counter timed out",
1292 poll_cnt))
1293 return 1;
1294 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1295 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1296 "Timers NUM_SCANS usage counter timed out",
1297 poll_cnt))
1298 return 1;
1299
1300 /* Wait DMAE PF usage counter to zero */
1301 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1302 dmae_reg_go_c[INIT_DMAE_C(bp)],
1303 "DMAE dommand register timed out",
1304 poll_cnt))
1305 return 1;
1306
1307 return 0;
1308 }
1309
1310 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1311 {
1312 u32 val;
1313
1314 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1315 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1316
1317 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1318 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1319
1320 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1321 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1322
1323 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1324 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1325
1326 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1327 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1328
1329 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1330 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1331
1332 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1333 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1334
1335 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1336 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1337 val);
1338 }
1339
1340 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1341 {
1342 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1343
1344 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1345
1346 /* Re-enable PF target read access */
1347 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1348
1349 /* Poll HW usage counters */
1350 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1351 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1352 return -EBUSY;
1353
1354 /* Zero the igu 'trailing edge' and 'leading edge' */
1355
1356 /* Send the FW cleanup command */
1357 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1358 return -EBUSY;
1359
1360 /* ATC cleanup */
1361
1362 /* Verify TX hw is flushed */
1363 bnx2x_tx_hw_flushed(bp, poll_cnt);
1364
1365 /* Wait 100ms (not adjusted according to platform) */
1366 msleep(100);
1367
1368 /* Verify no pending pci transactions */
1369 if (bnx2x_is_pcie_pending(bp->pdev))
1370 BNX2X_ERR("PCIE Transactions still pending\n");
1371
1372 /* Debug */
1373 bnx2x_hw_enable_status(bp);
1374
1375 /*
1376 * Master enable - Due to WB DMAE writes performed before this
1377 * register is re-initialized as part of the regular function init
1378 */
1379 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1380
1381 return 0;
1382 }
1383
1384 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1385 {
1386 int port = BP_PORT(bp);
1387 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1388 u32 val = REG_RD(bp, addr);
1389 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1390 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1391
1392 if (msix) {
1393 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1394 HC_CONFIG_0_REG_INT_LINE_EN_0);
1395 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1396 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1397 } else if (msi) {
1398 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1399 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1400 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1401 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1402 } else {
1403 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1404 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1405 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1406 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1407
1408 if (!CHIP_IS_E1(bp)) {
1409 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1410 val, port, addr);
1411
1412 REG_WR(bp, addr, val);
1413
1414 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1415 }
1416 }
1417
1418 if (CHIP_IS_E1(bp))
1419 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1420
1421 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
1422 val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1423
1424 REG_WR(bp, addr, val);
1425 /*
1426 * Ensure that HC_CONFIG is written before leading/trailing edge config
1427 */
1428 mmiowb();
1429 barrier();
1430
1431 if (!CHIP_IS_E1(bp)) {
1432 /* init leading/trailing edge */
1433 if (IS_MF(bp)) {
1434 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1435 if (bp->port.pmf)
1436 /* enable nig and gpio3 attention */
1437 val |= 0x1100;
1438 } else
1439 val = 0xffff;
1440
1441 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1442 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1443 }
1444
1445 /* Make sure that interrupts are indeed enabled from here on */
1446 mmiowb();
1447 }
1448
1449 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1450 {
1451 u32 val;
1452 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1453 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1454
1455 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1456
1457 if (msix) {
1458 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1459 IGU_PF_CONF_SINGLE_ISR_EN);
1460 val |= (IGU_PF_CONF_FUNC_EN |
1461 IGU_PF_CONF_MSI_MSIX_EN |
1462 IGU_PF_CONF_ATTN_BIT_EN);
1463 } else if (msi) {
1464 val &= ~IGU_PF_CONF_INT_LINE_EN;
1465 val |= (IGU_PF_CONF_FUNC_EN |
1466 IGU_PF_CONF_MSI_MSIX_EN |
1467 IGU_PF_CONF_ATTN_BIT_EN |
1468 IGU_PF_CONF_SINGLE_ISR_EN);
1469 } else {
1470 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1471 val |= (IGU_PF_CONF_FUNC_EN |
1472 IGU_PF_CONF_INT_LINE_EN |
1473 IGU_PF_CONF_ATTN_BIT_EN |
1474 IGU_PF_CONF_SINGLE_ISR_EN);
1475 }
1476
1477 DP(NETIF_MSG_INTR, "write 0x%x to IGU mode %s\n",
1478 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1479
1480 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1481
1482 barrier();
1483
1484 /* init leading/trailing edge */
1485 if (IS_MF(bp)) {
1486 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1487 if (bp->port.pmf)
1488 /* enable nig and gpio3 attention */
1489 val |= 0x1100;
1490 } else
1491 val = 0xffff;
1492
1493 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1494 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1495
1496 /* Make sure that interrupts are indeed enabled from here on */
1497 mmiowb();
1498 }
1499
1500 void bnx2x_int_enable(struct bnx2x *bp)
1501 {
1502 if (bp->common.int_block == INT_BLOCK_HC)
1503 bnx2x_hc_int_enable(bp);
1504 else
1505 bnx2x_igu_int_enable(bp);
1506 }
1507
1508 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1509 {
1510 int port = BP_PORT(bp);
1511 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1512 u32 val = REG_RD(bp, addr);
1513
1514 /*
1515 * in E1 we must use only PCI configuration space to disable
1516 * MSI/MSIX capablility
1517 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1518 */
1519 if (CHIP_IS_E1(bp)) {
1520 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
1521 * Use mask register to prevent from HC sending interrupts
1522 * after we exit the function
1523 */
1524 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1525
1526 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1527 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1528 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1529 } else
1530 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1531 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1532 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1533 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1534
1535 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1536 val, port, addr);
1537
1538 /* flush all outstanding writes */
1539 mmiowb();
1540
1541 REG_WR(bp, addr, val);
1542 if (REG_RD(bp, addr) != val)
1543 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1544 }
1545
1546 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1547 {
1548 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1549
1550 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1551 IGU_PF_CONF_INT_LINE_EN |
1552 IGU_PF_CONF_ATTN_BIT_EN);
1553
1554 DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1555
1556 /* flush all outstanding writes */
1557 mmiowb();
1558
1559 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1560 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1561 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1562 }
1563
1564 void bnx2x_int_disable(struct bnx2x *bp)
1565 {
1566 if (bp->common.int_block == INT_BLOCK_HC)
1567 bnx2x_hc_int_disable(bp);
1568 else
1569 bnx2x_igu_int_disable(bp);
1570 }
1571
1572 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1573 {
1574 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1575 int i, offset;
1576
1577 if (disable_hw)
1578 /* prevent the HW from sending interrupts */
1579 bnx2x_int_disable(bp);
1580
1581 /* make sure all ISRs are done */
1582 if (msix) {
1583 synchronize_irq(bp->msix_table[0].vector);
1584 offset = 1;
1585 #ifdef BCM_CNIC
1586 offset++;
1587 #endif
1588 for_each_eth_queue(bp, i)
1589 synchronize_irq(bp->msix_table[offset++].vector);
1590 } else
1591 synchronize_irq(bp->pdev->irq);
1592
1593 /* make sure sp_task is not running */
1594 cancel_delayed_work(&bp->sp_task);
1595 cancel_delayed_work(&bp->period_task);
1596 flush_workqueue(bnx2x_wq);
1597 }
1598
1599 /* fast path */
1600
1601 /*
1602 * General service functions
1603 */
1604
1605 /* Return true if succeeded to acquire the lock */
1606 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1607 {
1608 u32 lock_status;
1609 u32 resource_bit = (1 << resource);
1610 int func = BP_FUNC(bp);
1611 u32 hw_lock_control_reg;
1612
1613 DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1614
1615 /* Validating that the resource is within range */
1616 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1617 DP(NETIF_MSG_HW,
1618 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1619 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1620 return false;
1621 }
1622
1623 if (func <= 5)
1624 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1625 else
1626 hw_lock_control_reg =
1627 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1628
1629 /* Try to acquire the lock */
1630 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1631 lock_status = REG_RD(bp, hw_lock_control_reg);
1632 if (lock_status & resource_bit)
1633 return true;
1634
1635 DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1636 return false;
1637 }
1638
1639 /**
1640 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1641 *
1642 * @bp: driver handle
1643 *
1644 * Returns the recovery leader resource id according to the engine this function
1645 * belongs to. Currently only only 2 engines is supported.
1646 */
1647 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1648 {
1649 if (BP_PATH(bp))
1650 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1651 else
1652 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1653 }
1654
1655 /**
1656 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1657 *
1658 * @bp: driver handle
1659 *
1660 * Tries to aquire a leader lock for cuurent engine.
1661 */
1662 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1663 {
1664 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1665 }
1666
1667 #ifdef BCM_CNIC
1668 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1669 #endif
1670
1671 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1672 {
1673 struct bnx2x *bp = fp->bp;
1674 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1675 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1676 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1677 struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1678
1679 DP(BNX2X_MSG_SP,
1680 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1681 fp->index, cid, command, bp->state,
1682 rr_cqe->ramrod_cqe.ramrod_type);
1683
1684 switch (command) {
1685 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1686 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1687 drv_cmd = BNX2X_Q_CMD_UPDATE;
1688 break;
1689
1690 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1691 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1692 drv_cmd = BNX2X_Q_CMD_SETUP;
1693 break;
1694
1695 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1696 DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1697 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1698 break;
1699
1700 case (RAMROD_CMD_ID_ETH_HALT):
1701 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1702 drv_cmd = BNX2X_Q_CMD_HALT;
1703 break;
1704
1705 case (RAMROD_CMD_ID_ETH_TERMINATE):
1706 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1707 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1708 break;
1709
1710 case (RAMROD_CMD_ID_ETH_EMPTY):
1711 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1712 drv_cmd = BNX2X_Q_CMD_EMPTY;
1713 break;
1714
1715 default:
1716 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1717 command, fp->index);
1718 return;
1719 }
1720
1721 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1722 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1723 /* q_obj->complete_cmd() failure means that this was
1724 * an unexpected completion.
1725 *
1726 * In this case we don't want to increase the bp->spq_left
1727 * because apparently we haven't sent this command the first
1728 * place.
1729 */
1730 #ifdef BNX2X_STOP_ON_ERROR
1731 bnx2x_panic();
1732 #else
1733 return;
1734 #endif
1735
1736 smp_mb__before_atomic_inc();
1737 atomic_inc(&bp->cq_spq_left);
1738 /* push the change in bp->spq_left and towards the memory */
1739 smp_mb__after_atomic_inc();
1740
1741 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1742
1743 return;
1744 }
1745
1746 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1747 u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1748 {
1749 u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1750
1751 bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1752 start);
1753 }
1754
1755 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1756 {
1757 struct bnx2x *bp = netdev_priv(dev_instance);
1758 u16 status = bnx2x_ack_int(bp);
1759 u16 mask;
1760 int i;
1761 u8 cos;
1762
1763 /* Return here if interrupt is shared and it's not for us */
1764 if (unlikely(status == 0)) {
1765 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1766 return IRQ_NONE;
1767 }
1768 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1769
1770 #ifdef BNX2X_STOP_ON_ERROR
1771 if (unlikely(bp->panic))
1772 return IRQ_HANDLED;
1773 #endif
1774
1775 for_each_eth_queue(bp, i) {
1776 struct bnx2x_fastpath *fp = &bp->fp[i];
1777
1778 mask = 0x2 << (fp->index + CNIC_PRESENT);
1779 if (status & mask) {
1780 /* Handle Rx or Tx according to SB id */
1781 prefetch(fp->rx_cons_sb);
1782 for_each_cos_in_tx_queue(fp, cos)
1783 prefetch(fp->txdata[cos].tx_cons_sb);
1784 prefetch(&fp->sb_running_index[SM_RX_ID]);
1785 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1786 status &= ~mask;
1787 }
1788 }
1789
1790 #ifdef BCM_CNIC
1791 mask = 0x2;
1792 if (status & (mask | 0x1)) {
1793 struct cnic_ops *c_ops = NULL;
1794
1795 if (likely(bp->state == BNX2X_STATE_OPEN)) {
1796 rcu_read_lock();
1797 c_ops = rcu_dereference(bp->cnic_ops);
1798 if (c_ops)
1799 c_ops->cnic_handler(bp->cnic_data, NULL);
1800 rcu_read_unlock();
1801 }
1802
1803 status &= ~mask;
1804 }
1805 #endif
1806
1807 if (unlikely(status & 0x1)) {
1808 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1809
1810 status &= ~0x1;
1811 if (!status)
1812 return IRQ_HANDLED;
1813 }
1814
1815 if (unlikely(status))
1816 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1817 status);
1818
1819 return IRQ_HANDLED;
1820 }
1821
1822 /* Link */
1823
1824 /*
1825 * General service functions
1826 */
1827
1828 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1829 {
1830 u32 lock_status;
1831 u32 resource_bit = (1 << resource);
1832 int func = BP_FUNC(bp);
1833 u32 hw_lock_control_reg;
1834 int cnt;
1835
1836 /* Validating that the resource is within range */
1837 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1838 DP(NETIF_MSG_HW,
1839 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1840 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1841 return -EINVAL;
1842 }
1843
1844 if (func <= 5) {
1845 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1846 } else {
1847 hw_lock_control_reg =
1848 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1849 }
1850
1851 /* Validating that the resource is not already taken */
1852 lock_status = REG_RD(bp, hw_lock_control_reg);
1853 if (lock_status & resource_bit) {
1854 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1855 lock_status, resource_bit);
1856 return -EEXIST;
1857 }
1858
1859 /* Try for 5 second every 5ms */
1860 for (cnt = 0; cnt < 1000; cnt++) {
1861 /* Try to acquire the lock */
1862 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1863 lock_status = REG_RD(bp, hw_lock_control_reg);
1864 if (lock_status & resource_bit)
1865 return 0;
1866
1867 msleep(5);
1868 }
1869 DP(NETIF_MSG_HW, "Timeout\n");
1870 return -EAGAIN;
1871 }
1872
1873 int bnx2x_release_leader_lock(struct bnx2x *bp)
1874 {
1875 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1876 }
1877
1878 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1879 {
1880 u32 lock_status;
1881 u32 resource_bit = (1 << resource);
1882 int func = BP_FUNC(bp);
1883 u32 hw_lock_control_reg;
1884
1885 DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1886
1887 /* Validating that the resource is within range */
1888 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1889 DP(NETIF_MSG_HW,
1890 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1891 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1892 return -EINVAL;
1893 }
1894
1895 if (func <= 5) {
1896 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1897 } else {
1898 hw_lock_control_reg =
1899 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1900 }
1901
1902 /* Validating that the resource is currently taken */
1903 lock_status = REG_RD(bp, hw_lock_control_reg);
1904 if (!(lock_status & resource_bit)) {
1905 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1906 lock_status, resource_bit);
1907 return -EFAULT;
1908 }
1909
1910 REG_WR(bp, hw_lock_control_reg, resource_bit);
1911 return 0;
1912 }
1913
1914
1915 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1916 {
1917 /* The GPIO should be swapped if swap register is set and active */
1918 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1919 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1920 int gpio_shift = gpio_num +
1921 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1922 u32 gpio_mask = (1 << gpio_shift);
1923 u32 gpio_reg;
1924 int value;
1925
1926 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1927 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1928 return -EINVAL;
1929 }
1930
1931 /* read GPIO value */
1932 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1933
1934 /* get the requested pin value */
1935 if ((gpio_reg & gpio_mask) == gpio_mask)
1936 value = 1;
1937 else
1938 value = 0;
1939
1940 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
1941
1942 return value;
1943 }
1944
1945 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1946 {
1947 /* The GPIO should be swapped if swap register is set and active */
1948 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1949 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1950 int gpio_shift = gpio_num +
1951 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1952 u32 gpio_mask = (1 << gpio_shift);
1953 u32 gpio_reg;
1954
1955 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1956 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1957 return -EINVAL;
1958 }
1959
1960 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1961 /* read GPIO and mask except the float bits */
1962 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1963
1964 switch (mode) {
1965 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1966 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1967 gpio_num, gpio_shift);
1968 /* clear FLOAT and set CLR */
1969 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1970 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1971 break;
1972
1973 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1974 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1975 gpio_num, gpio_shift);
1976 /* clear FLOAT and set SET */
1977 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1978 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1979 break;
1980
1981 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1982 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1983 gpio_num, gpio_shift);
1984 /* set FLOAT */
1985 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1986 break;
1987
1988 default:
1989 break;
1990 }
1991
1992 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1993 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1994
1995 return 0;
1996 }
1997
1998 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1999 {
2000 u32 gpio_reg = 0;
2001 int rc = 0;
2002
2003 /* Any port swapping should be handled by caller. */
2004
2005 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2006 /* read GPIO and mask except the float bits */
2007 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2008 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2009 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2010 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2011
2012 switch (mode) {
2013 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2014 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2015 /* set CLR */
2016 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2017 break;
2018
2019 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2020 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2021 /* set SET */
2022 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2023 break;
2024
2025 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2026 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2027 /* set FLOAT */
2028 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2029 break;
2030
2031 default:
2032 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2033 rc = -EINVAL;
2034 break;
2035 }
2036
2037 if (rc == 0)
2038 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2039
2040 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2041
2042 return rc;
2043 }
2044
2045 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2046 {
2047 /* The GPIO should be swapped if swap register is set and active */
2048 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2049 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2050 int gpio_shift = gpio_num +
2051 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2052 u32 gpio_mask = (1 << gpio_shift);
2053 u32 gpio_reg;
2054
2055 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2056 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2057 return -EINVAL;
2058 }
2059
2060 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2061 /* read GPIO int */
2062 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2063
2064 switch (mode) {
2065 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2066 DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2067 "output low\n", gpio_num, gpio_shift);
2068 /* clear SET and set CLR */
2069 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2070 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2071 break;
2072
2073 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2074 DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2075 "output high\n", gpio_num, gpio_shift);
2076 /* clear CLR and set SET */
2077 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2078 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2079 break;
2080
2081 default:
2082 break;
2083 }
2084
2085 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2086 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2087
2088 return 0;
2089 }
2090
2091 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2092 {
2093 u32 spio_mask = (1 << spio_num);
2094 u32 spio_reg;
2095
2096 if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2097 (spio_num > MISC_REGISTERS_SPIO_7)) {
2098 BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2099 return -EINVAL;
2100 }
2101
2102 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2103 /* read SPIO and mask except the float bits */
2104 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2105
2106 switch (mode) {
2107 case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2108 DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2109 /* clear FLOAT and set CLR */
2110 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2111 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2112 break;
2113
2114 case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2115 DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2116 /* clear FLOAT and set SET */
2117 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2118 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2119 break;
2120
2121 case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2122 DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2123 /* set FLOAT */
2124 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2125 break;
2126
2127 default:
2128 break;
2129 }
2130
2131 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2132 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2133
2134 return 0;
2135 }
2136
2137 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2138 {
2139 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2140 switch (bp->link_vars.ieee_fc &
2141 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2142 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2143 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2144 ADVERTISED_Pause);
2145 break;
2146
2147 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2148 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2149 ADVERTISED_Pause);
2150 break;
2151
2152 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2153 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2154 break;
2155
2156 default:
2157 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2158 ADVERTISED_Pause);
2159 break;
2160 }
2161 }
2162
2163 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2164 {
2165 if (!BP_NOMCP(bp)) {
2166 u8 rc;
2167 int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2168 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2169 /*
2170 * Initialize link parameters structure variables
2171 * It is recommended to turn off RX FC for jumbo frames
2172 * for better performance
2173 */
2174 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2175 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2176 else
2177 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2178
2179 bnx2x_acquire_phy_lock(bp);
2180
2181 if (load_mode == LOAD_DIAG) {
2182 struct link_params *lp = &bp->link_params;
2183 lp->loopback_mode = LOOPBACK_XGXS;
2184 /* do PHY loopback at 10G speed, if possible */
2185 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2186 if (lp->speed_cap_mask[cfx_idx] &
2187 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2188 lp->req_line_speed[cfx_idx] =
2189 SPEED_10000;
2190 else
2191 lp->req_line_speed[cfx_idx] =
2192 SPEED_1000;
2193 }
2194 }
2195
2196 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2197
2198 bnx2x_release_phy_lock(bp);
2199
2200 bnx2x_calc_fc_adv(bp);
2201
2202 if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2203 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2204 bnx2x_link_report(bp);
2205 } else
2206 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2207 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2208 return rc;
2209 }
2210 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2211 return -EINVAL;
2212 }
2213
2214 void bnx2x_link_set(struct bnx2x *bp)
2215 {
2216 if (!BP_NOMCP(bp)) {
2217 bnx2x_acquire_phy_lock(bp);
2218 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2219 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2220 bnx2x_release_phy_lock(bp);
2221
2222 bnx2x_calc_fc_adv(bp);
2223 } else
2224 BNX2X_ERR("Bootcode is missing - can not set link\n");
2225 }
2226
2227 static void bnx2x__link_reset(struct bnx2x *bp)
2228 {
2229 if (!BP_NOMCP(bp)) {
2230 bnx2x_acquire_phy_lock(bp);
2231 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2232 bnx2x_release_phy_lock(bp);
2233 } else
2234 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2235 }
2236
2237 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2238 {
2239 u8 rc = 0;
2240
2241 if (!BP_NOMCP(bp)) {
2242 bnx2x_acquire_phy_lock(bp);
2243 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2244 is_serdes);
2245 bnx2x_release_phy_lock(bp);
2246 } else
2247 BNX2X_ERR("Bootcode is missing - can not test link\n");
2248
2249 return rc;
2250 }
2251
2252 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2253 {
2254 u32 r_param = bp->link_vars.line_speed / 8;
2255 u32 fair_periodic_timeout_usec;
2256 u32 t_fair;
2257
2258 memset(&(bp->cmng.rs_vars), 0,
2259 sizeof(struct rate_shaping_vars_per_port));
2260 memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2261
2262 /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2263 bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2264
2265 /* this is the threshold below which no timer arming will occur
2266 1.25 coefficient is for the threshold to be a little bigger
2267 than the real time, to compensate for timer in-accuracy */
2268 bp->cmng.rs_vars.rs_threshold =
2269 (RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2270
2271 /* resolution of fairness timer */
2272 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2273 /* for 10G it is 1000usec. for 1G it is 10000usec. */
2274 t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2275
2276 /* this is the threshold below which we won't arm the timer anymore */
2277 bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2278
2279 /* we multiply by 1e3/8 to get bytes/msec.
2280 We don't want the credits to pass a credit
2281 of the t_fair*FAIR_MEM (algorithm resolution) */
2282 bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2283 /* since each tick is 4 usec */
2284 bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2285 }
2286
2287 /* Calculates the sum of vn_min_rates.
2288 It's needed for further normalizing of the min_rates.
2289 Returns:
2290 sum of vn_min_rates.
2291 or
2292 0 - if all the min_rates are 0.
2293 In the later case fainess algorithm should be deactivated.
2294 If not all min_rates are zero then those that are zeroes will be set to 1.
2295 */
2296 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2297 {
2298 int all_zero = 1;
2299 int vn;
2300
2301 bp->vn_weight_sum = 0;
2302 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2303 u32 vn_cfg = bp->mf_config[vn];
2304 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2305 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2306
2307 /* Skip hidden vns */
2308 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2309 continue;
2310
2311 /* If min rate is zero - set it to 1 */
2312 if (!vn_min_rate)
2313 vn_min_rate = DEF_MIN_RATE;
2314 else
2315 all_zero = 0;
2316
2317 bp->vn_weight_sum += vn_min_rate;
2318 }
2319
2320 /* if ETS or all min rates are zeros - disable fairness */
2321 if (BNX2X_IS_ETS_ENABLED(bp)) {
2322 bp->cmng.flags.cmng_enables &=
2323 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2324 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2325 } else if (all_zero) {
2326 bp->cmng.flags.cmng_enables &=
2327 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2328 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2329 " fairness will be disabled\n");
2330 } else
2331 bp->cmng.flags.cmng_enables |=
2332 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2333 }
2334
2335 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2336 {
2337 struct rate_shaping_vars_per_vn m_rs_vn;
2338 struct fairness_vars_per_vn m_fair_vn;
2339 u32 vn_cfg = bp->mf_config[vn];
2340 int func = func_by_vn(bp, vn);
2341 u16 vn_min_rate, vn_max_rate;
2342 int i;
2343
2344 /* If function is hidden - set min and max to zeroes */
2345 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2346 vn_min_rate = 0;
2347 vn_max_rate = 0;
2348
2349 } else {
2350 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2351
2352 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2353 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2354 /* If fairness is enabled (not all min rates are zeroes) and
2355 if current min rate is zero - set it to 1.
2356 This is a requirement of the algorithm. */
2357 if (bp->vn_weight_sum && (vn_min_rate == 0))
2358 vn_min_rate = DEF_MIN_RATE;
2359
2360 if (IS_MF_SI(bp))
2361 /* maxCfg in percents of linkspeed */
2362 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2363 else
2364 /* maxCfg is absolute in 100Mb units */
2365 vn_max_rate = maxCfg * 100;
2366 }
2367
2368 DP(NETIF_MSG_IFUP,
2369 "func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
2370 func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2371
2372 memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2373 memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2374
2375 /* global vn counter - maximal Mbps for this vn */
2376 m_rs_vn.vn_counter.rate = vn_max_rate;
2377
2378 /* quota - number of bytes transmitted in this period */
2379 m_rs_vn.vn_counter.quota =
2380 (vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2381
2382 if (bp->vn_weight_sum) {
2383 /* credit for each period of the fairness algorithm:
2384 number of bytes in T_FAIR (the vn share the port rate).
2385 vn_weight_sum should not be larger than 10000, thus
2386 T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2387 than zero */
2388 m_fair_vn.vn_credit_delta =
2389 max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2390 (8 * bp->vn_weight_sum))),
2391 (bp->cmng.fair_vars.fair_threshold +
2392 MIN_ABOVE_THRESH));
2393 DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2394 m_fair_vn.vn_credit_delta);
2395 }
2396
2397 /* Store it to internal memory */
2398 for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2399 REG_WR(bp, BAR_XSTRORM_INTMEM +
2400 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2401 ((u32 *)(&m_rs_vn))[i]);
2402
2403 for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2404 REG_WR(bp, BAR_XSTRORM_INTMEM +
2405 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2406 ((u32 *)(&m_fair_vn))[i]);
2407 }
2408
2409 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2410 {
2411 if (CHIP_REV_IS_SLOW(bp))
2412 return CMNG_FNS_NONE;
2413 if (IS_MF(bp))
2414 return CMNG_FNS_MINMAX;
2415
2416 return CMNG_FNS_NONE;
2417 }
2418
2419 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2420 {
2421 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2422
2423 if (BP_NOMCP(bp))
2424 return; /* what should be the default bvalue in this case */
2425
2426 /* For 2 port configuration the absolute function number formula
2427 * is:
2428 * abs_func = 2 * vn + BP_PORT + BP_PATH
2429 *
2430 * and there are 4 functions per port
2431 *
2432 * For 4 port configuration it is
2433 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2434 *
2435 * and there are 2 functions per port
2436 */
2437 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2438 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2439
2440 if (func >= E1H_FUNC_MAX)
2441 break;
2442
2443 bp->mf_config[vn] =
2444 MF_CFG_RD(bp, func_mf_config[func].config);
2445 }
2446 }
2447
2448 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2449 {
2450
2451 if (cmng_type == CMNG_FNS_MINMAX) {
2452 int vn;
2453
2454 /* clear cmng_enables */
2455 bp->cmng.flags.cmng_enables = 0;
2456
2457 /* read mf conf from shmem */
2458 if (read_cfg)
2459 bnx2x_read_mf_cfg(bp);
2460
2461 /* Init rate shaping and fairness contexts */
2462 bnx2x_init_port_minmax(bp);
2463
2464 /* vn_weight_sum and enable fairness if not 0 */
2465 bnx2x_calc_vn_weight_sum(bp);
2466
2467 /* calculate and set min-max rate for each vn */
2468 if (bp->port.pmf)
2469 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2470 bnx2x_init_vn_minmax(bp, vn);
2471
2472 /* always enable rate shaping and fairness */
2473 bp->cmng.flags.cmng_enables |=
2474 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2475 if (!bp->vn_weight_sum)
2476 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2477 " fairness will be disabled\n");
2478 return;
2479 }
2480
2481 /* rate shaping and fairness are disabled */
2482 DP(NETIF_MSG_IFUP,
2483 "rate shaping and fairness are disabled\n");
2484 }
2485
2486 /* This function is called upon link interrupt */
2487 static void bnx2x_link_attn(struct bnx2x *bp)
2488 {
2489 /* Make sure that we are synced with the current statistics */
2490 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2491
2492 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2493
2494 if (bp->link_vars.link_up) {
2495
2496 /* dropless flow control */
2497 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2498 int port = BP_PORT(bp);
2499 u32 pause_enabled = 0;
2500
2501 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2502 pause_enabled = 1;
2503
2504 REG_WR(bp, BAR_USTRORM_INTMEM +
2505 USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2506 pause_enabled);
2507 }
2508
2509 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2510 struct host_port_stats *pstats;
2511
2512 pstats = bnx2x_sp(bp, port_stats);
2513 /* reset old mac stats */
2514 memset(&(pstats->mac_stx[0]), 0,
2515 sizeof(struct mac_stx));
2516 }
2517 if (bp->state == BNX2X_STATE_OPEN)
2518 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2519 }
2520
2521 if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2522 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2523
2524 if (cmng_fns != CMNG_FNS_NONE) {
2525 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2526 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2527 } else
2528 /* rate shaping and fairness are disabled */
2529 DP(NETIF_MSG_IFUP,
2530 "single function mode without fairness\n");
2531 }
2532
2533 __bnx2x_link_report(bp);
2534
2535 if (IS_MF(bp))
2536 bnx2x_link_sync_notify(bp);
2537 }
2538
2539 void bnx2x__link_status_update(struct bnx2x *bp)
2540 {
2541 if (bp->state != BNX2X_STATE_OPEN)
2542 return;
2543
2544 /* read updated dcb configuration */
2545 bnx2x_dcbx_pmf_update(bp);
2546
2547 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2548
2549 if (bp->link_vars.link_up)
2550 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2551 else
2552 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2553
2554 /* indicate link status */
2555 bnx2x_link_report(bp);
2556 }
2557
2558 static void bnx2x_pmf_update(struct bnx2x *bp)
2559 {
2560 int port = BP_PORT(bp);
2561 u32 val;
2562
2563 bp->port.pmf = 1;
2564 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2565
2566 /*
2567 * We need the mb() to ensure the ordering between the writing to
2568 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2569 */
2570 smp_mb();
2571
2572 /* queue a periodic task */
2573 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2574
2575 bnx2x_dcbx_pmf_update(bp);
2576
2577 /* enable nig attention */
2578 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2579 if (bp->common.int_block == INT_BLOCK_HC) {
2580 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2581 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2582 } else if (!CHIP_IS_E1x(bp)) {
2583 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2584 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2585 }
2586
2587 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2588 }
2589
2590 /* end of Link */
2591
2592 /* slow path */
2593
2594 /*
2595 * General service functions
2596 */
2597
2598 /* send the MCP a request, block until there is a reply */
2599 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2600 {
2601 int mb_idx = BP_FW_MB_IDX(bp);
2602 u32 seq;
2603 u32 rc = 0;
2604 u32 cnt = 1;
2605 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2606
2607 mutex_lock(&bp->fw_mb_mutex);
2608 seq = ++bp->fw_seq;
2609 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2610 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2611
2612 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2613 (command | seq), param);
2614
2615 do {
2616 /* let the FW do it's magic ... */
2617 msleep(delay);
2618
2619 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2620
2621 /* Give the FW up to 5 second (500*10ms) */
2622 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2623
2624 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2625 cnt*delay, rc, seq);
2626
2627 /* is this a reply to our command? */
2628 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2629 rc &= FW_MSG_CODE_MASK;
2630 else {
2631 /* FW BUG! */
2632 BNX2X_ERR("FW failed to respond!\n");
2633 bnx2x_fw_dump(bp);
2634 rc = 0;
2635 }
2636 mutex_unlock(&bp->fw_mb_mutex);
2637
2638 return rc;
2639 }
2640
2641
2642 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2643 {
2644 if (CHIP_IS_E1x(bp)) {
2645 struct tstorm_eth_function_common_config tcfg = {0};
2646
2647 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2648 }
2649
2650 /* Enable the function in the FW */
2651 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2652 storm_memset_func_en(bp, p->func_id, 1);
2653
2654 /* spq */
2655 if (p->func_flgs & FUNC_FLG_SPQ) {
2656 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2657 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2658 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2659 }
2660 }
2661
2662 /**
2663 * bnx2x_get_tx_only_flags - Return common flags
2664 *
2665 * @bp device handle
2666 * @fp queue handle
2667 * @zero_stats TRUE if statistics zeroing is needed
2668 *
2669 * Return the flags that are common for the Tx-only and not normal connections.
2670 */
2671 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2672 struct bnx2x_fastpath *fp,
2673 bool zero_stats)
2674 {
2675 unsigned long flags = 0;
2676
2677 /* PF driver will always initialize the Queue to an ACTIVE state */
2678 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2679
2680 /* tx only connections collect statistics (on the same index as the
2681 * parent connection). The statistics are zeroed when the parent
2682 * connection is initialized.
2683 */
2684
2685 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2686 if (zero_stats)
2687 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2688
2689
2690 return flags;
2691 }
2692
2693 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2694 struct bnx2x_fastpath *fp,
2695 bool leading)
2696 {
2697 unsigned long flags = 0;
2698
2699 /* calculate other queue flags */
2700 if (IS_MF_SD(bp))
2701 __set_bit(BNX2X_Q_FLG_OV, &flags);
2702
2703 if (IS_FCOE_FP(fp))
2704 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2705
2706 if (!fp->disable_tpa) {
2707 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2708 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2709 }
2710
2711 if (leading) {
2712 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2713 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2714 }
2715
2716 /* Always set HW VLAN stripping */
2717 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2718
2719
2720 return flags | bnx2x_get_common_flags(bp, fp, true);
2721 }
2722
2723 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2724 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2725 u8 cos)
2726 {
2727 gen_init->stat_id = bnx2x_stats_id(fp);
2728 gen_init->spcl_id = fp->cl_id;
2729
2730 /* Always use mini-jumbo MTU for FCoE L2 ring */
2731 if (IS_FCOE_FP(fp))
2732 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2733 else
2734 gen_init->mtu = bp->dev->mtu;
2735
2736 gen_init->cos = cos;
2737 }
2738
2739 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2740 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2741 struct bnx2x_rxq_setup_params *rxq_init)
2742 {
2743 u8 max_sge = 0;
2744 u16 sge_sz = 0;
2745 u16 tpa_agg_size = 0;
2746
2747 if (!fp->disable_tpa) {
2748 pause->sge_th_lo = SGE_TH_LO(bp);
2749 pause->sge_th_hi = SGE_TH_HI(bp);
2750
2751 /* validate SGE ring has enough to cross high threshold */
2752 WARN_ON(bp->dropless_fc &&
2753 pause->sge_th_hi + FW_PREFETCH_CNT >
2754 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2755
2756 tpa_agg_size = min_t(u32,
2757 (min_t(u32, 8, MAX_SKB_FRAGS) *
2758 SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2759 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2760 SGE_PAGE_SHIFT;
2761 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2762 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2763 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2764 0xffff);
2765 }
2766
2767 /* pause - not for e1 */
2768 if (!CHIP_IS_E1(bp)) {
2769 pause->bd_th_lo = BD_TH_LO(bp);
2770 pause->bd_th_hi = BD_TH_HI(bp);
2771
2772 pause->rcq_th_lo = RCQ_TH_LO(bp);
2773 pause->rcq_th_hi = RCQ_TH_HI(bp);
2774 /*
2775 * validate that rings have enough entries to cross
2776 * high thresholds
2777 */
2778 WARN_ON(bp->dropless_fc &&
2779 pause->bd_th_hi + FW_PREFETCH_CNT >
2780 bp->rx_ring_size);
2781 WARN_ON(bp->dropless_fc &&
2782 pause->rcq_th_hi + FW_PREFETCH_CNT >
2783 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2784
2785 pause->pri_map = 1;
2786 }
2787
2788 /* rxq setup */
2789 rxq_init->dscr_map = fp->rx_desc_mapping;
2790 rxq_init->sge_map = fp->rx_sge_mapping;
2791 rxq_init->rcq_map = fp->rx_comp_mapping;
2792 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2793
2794 /* This should be a maximum number of data bytes that may be
2795 * placed on the BD (not including paddings).
2796 */
2797 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2798 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
2799
2800 rxq_init->cl_qzone_id = fp->cl_qzone_id;
2801 rxq_init->tpa_agg_sz = tpa_agg_size;
2802 rxq_init->sge_buf_sz = sge_sz;
2803 rxq_init->max_sges_pkt = max_sge;
2804 rxq_init->rss_engine_id = BP_FUNC(bp);
2805
2806 /* Maximum number or simultaneous TPA aggregation for this Queue.
2807 *
2808 * For PF Clients it should be the maximum avaliable number.
2809 * VF driver(s) may want to define it to a smaller value.
2810 */
2811 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2812
2813 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2814 rxq_init->fw_sb_id = fp->fw_sb_id;
2815
2816 if (IS_FCOE_FP(fp))
2817 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2818 else
2819 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2820 }
2821
2822 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2823 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2824 u8 cos)
2825 {
2826 txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2827 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2828 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2829 txq_init->fw_sb_id = fp->fw_sb_id;
2830
2831 /*
2832 * set the tss leading client id for TX classfication ==
2833 * leading RSS client id
2834 */
2835 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2836
2837 if (IS_FCOE_FP(fp)) {
2838 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2839 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2840 }
2841 }
2842
2843 static void bnx2x_pf_init(struct bnx2x *bp)
2844 {
2845 struct bnx2x_func_init_params func_init = {0};
2846 struct event_ring_data eq_data = { {0} };
2847 u16 flags;
2848
2849 if (!CHIP_IS_E1x(bp)) {
2850 /* reset IGU PF statistics: MSIX + ATTN */
2851 /* PF */
2852 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2853 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2854 (CHIP_MODE_IS_4_PORT(bp) ?
2855 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2856 /* ATTN */
2857 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2858 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2859 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2860 (CHIP_MODE_IS_4_PORT(bp) ?
2861 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2862 }
2863
2864 /* function setup flags */
2865 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2866
2867 /* This flag is relevant for E1x only.
2868 * E2 doesn't have a TPA configuration in a function level.
2869 */
2870 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2871
2872 func_init.func_flgs = flags;
2873 func_init.pf_id = BP_FUNC(bp);
2874 func_init.func_id = BP_FUNC(bp);
2875 func_init.spq_map = bp->spq_mapping;
2876 func_init.spq_prod = bp->spq_prod_idx;
2877
2878 bnx2x_func_init(bp, &func_init);
2879
2880 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2881
2882 /*
2883 * Congestion management values depend on the link rate
2884 * There is no active link so initial link rate is set to 10 Gbps.
2885 * When the link comes up The congestion management values are
2886 * re-calculated according to the actual link rate.
2887 */
2888 bp->link_vars.line_speed = SPEED_10000;
2889 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2890
2891 /* Only the PMF sets the HW */
2892 if (bp->port.pmf)
2893 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2894
2895 /* init Event Queue */
2896 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2897 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2898 eq_data.producer = bp->eq_prod;
2899 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2900 eq_data.sb_id = DEF_SB_ID;
2901 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2902 }
2903
2904
2905 static void bnx2x_e1h_disable(struct bnx2x *bp)
2906 {
2907 int port = BP_PORT(bp);
2908
2909 bnx2x_tx_disable(bp);
2910
2911 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2912 }
2913
2914 static void bnx2x_e1h_enable(struct bnx2x *bp)
2915 {
2916 int port = BP_PORT(bp);
2917
2918 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2919
2920 /* Tx queue should be only reenabled */
2921 netif_tx_wake_all_queues(bp->dev);
2922
2923 /*
2924 * Should not call netif_carrier_on since it will be called if the link
2925 * is up when checking for link state
2926 */
2927 }
2928
2929 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2930
2931 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2932 {
2933 struct eth_stats_info *ether_stat =
2934 &bp->slowpath->drv_info_to_mcp.ether_stat;
2935
2936 /* leave last char as NULL */
2937 memcpy(ether_stat->version, DRV_MODULE_VERSION,
2938 ETH_STAT_INFO_VERSION_LEN - 1);
2939
2940 bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2941 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2942 ether_stat->mac_local);
2943
2944 ether_stat->mtu_size = bp->dev->mtu;
2945
2946 if (bp->dev->features & NETIF_F_RXCSUM)
2947 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2948 if (bp->dev->features & NETIF_F_TSO)
2949 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2950 ether_stat->feature_flags |= bp->common.boot_mode;
2951
2952 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2953
2954 ether_stat->txq_size = bp->tx_ring_size;
2955 ether_stat->rxq_size = bp->rx_ring_size;
2956 }
2957
2958 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2959 {
2960 #ifdef BCM_CNIC
2961 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2962 struct fcoe_stats_info *fcoe_stat =
2963 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
2964
2965 memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2966
2967 fcoe_stat->qos_priority =
2968 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2969
2970 /* insert FCoE stats from ramrod response */
2971 if (!NO_FCOE(bp)) {
2972 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2973 &bp->fw_stats_data->queue_stats[FCOE_IDX].
2974 tstorm_queue_statistics;
2975
2976 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2977 &bp->fw_stats_data->queue_stats[FCOE_IDX].
2978 xstorm_queue_statistics;
2979
2980 struct fcoe_statistics_params *fw_fcoe_stat =
2981 &bp->fw_stats_data->fcoe;
2982
2983 ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2984 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2985
2986 ADD_64(fcoe_stat->rx_bytes_hi,
2987 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2988 fcoe_stat->rx_bytes_lo,
2989 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2990
2991 ADD_64(fcoe_stat->rx_bytes_hi,
2992 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2993 fcoe_stat->rx_bytes_lo,
2994 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2995
2996 ADD_64(fcoe_stat->rx_bytes_hi,
2997 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2998 fcoe_stat->rx_bytes_lo,
2999 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3000
3001 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3002 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3003
3004 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3005 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3006
3007 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3008 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3009
3010 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3011 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3012
3013 ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3014 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3015
3016 ADD_64(fcoe_stat->tx_bytes_hi,
3017 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3018 fcoe_stat->tx_bytes_lo,
3019 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3020
3021 ADD_64(fcoe_stat->tx_bytes_hi,
3022 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3023 fcoe_stat->tx_bytes_lo,
3024 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3025
3026 ADD_64(fcoe_stat->tx_bytes_hi,
3027 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3028 fcoe_stat->tx_bytes_lo,
3029 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3030
3031 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3032 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3033
3034 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3035 fcoe_q_xstorm_stats->ucast_pkts_sent);
3036
3037 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3038 fcoe_q_xstorm_stats->bcast_pkts_sent);
3039
3040 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3041 fcoe_q_xstorm_stats->mcast_pkts_sent);
3042 }
3043
3044 /* ask L5 driver to add data to the struct */
3045 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3046 #endif
3047 }
3048
3049 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3050 {
3051 #ifdef BCM_CNIC
3052 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3053 struct iscsi_stats_info *iscsi_stat =
3054 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3055
3056 memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3057
3058 iscsi_stat->qos_priority =
3059 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3060
3061 /* ask L5 driver to add data to the struct */
3062 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3063 #endif
3064 }
3065
3066 /* called due to MCP event (on pmf):
3067 * reread new bandwidth configuration
3068 * configure FW
3069 * notify others function about the change
3070 */
3071 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3072 {
3073 if (bp->link_vars.link_up) {
3074 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3075 bnx2x_link_sync_notify(bp);
3076 }
3077 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3078 }
3079
3080 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3081 {
3082 bnx2x_config_mf_bw(bp);
3083 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3084 }
3085
3086 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3087 {
3088 enum drv_info_opcode op_code;
3089 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3090
3091 /* if drv_info version supported by MFW doesn't match - send NACK */
3092 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3093 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3094 return;
3095 }
3096
3097 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3098 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3099
3100 memset(&bp->slowpath->drv_info_to_mcp, 0,
3101 sizeof(union drv_info_to_mcp));
3102
3103 switch (op_code) {
3104 case ETH_STATS_OPCODE:
3105 bnx2x_drv_info_ether_stat(bp);
3106 break;
3107 case FCOE_STATS_OPCODE:
3108 bnx2x_drv_info_fcoe_stat(bp);
3109 break;
3110 case ISCSI_STATS_OPCODE:
3111 bnx2x_drv_info_iscsi_stat(bp);
3112 break;
3113 default:
3114 /* if op code isn't supported - send NACK */
3115 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3116 return;
3117 }
3118
3119 /* if we got drv_info attn from MFW then these fields are defined in
3120 * shmem2 for sure
3121 */
3122 SHMEM2_WR(bp, drv_info_host_addr_lo,
3123 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3124 SHMEM2_WR(bp, drv_info_host_addr_hi,
3125 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3126
3127 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3128 }
3129
3130 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3131 {
3132 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3133
3134 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3135
3136 /*
3137 * This is the only place besides the function initialization
3138 * where the bp->flags can change so it is done without any
3139 * locks
3140 */
3141 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3142 DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
3143 bp->flags |= MF_FUNC_DIS;
3144
3145 bnx2x_e1h_disable(bp);
3146 } else {
3147 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
3148 bp->flags &= ~MF_FUNC_DIS;
3149
3150 bnx2x_e1h_enable(bp);
3151 }
3152 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3153 }
3154 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3155 bnx2x_config_mf_bw(bp);
3156 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3157 }
3158
3159 /* Report results to MCP */
3160 if (dcc_event)
3161 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3162 else
3163 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3164 }
3165
3166 /* must be called under the spq lock */
3167 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3168 {
3169 struct eth_spe *next_spe = bp->spq_prod_bd;
3170
3171 if (bp->spq_prod_bd == bp->spq_last_bd) {
3172 bp->spq_prod_bd = bp->spq;
3173 bp->spq_prod_idx = 0;
3174 DP(NETIF_MSG_TIMER, "end of spq\n");
3175 } else {
3176 bp->spq_prod_bd++;
3177 bp->spq_prod_idx++;
3178 }
3179 return next_spe;
3180 }
3181
3182 /* must be called under the spq lock */
3183 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3184 {
3185 int func = BP_FUNC(bp);
3186
3187 /*
3188 * Make sure that BD data is updated before writing the producer:
3189 * BD data is written to the memory, the producer is read from the
3190 * memory, thus we need a full memory barrier to ensure the ordering.
3191 */
3192 mb();
3193
3194 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3195 bp->spq_prod_idx);
3196 mmiowb();
3197 }
3198
3199 /**
3200 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3201 *
3202 * @cmd: command to check
3203 * @cmd_type: command type
3204 */
3205 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3206 {
3207 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3208 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3209 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3210 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3211 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3212 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3213 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3214 return true;
3215 else
3216 return false;
3217
3218 }
3219
3220
3221 /**
3222 * bnx2x_sp_post - place a single command on an SP ring
3223 *
3224 * @bp: driver handle
3225 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3226 * @cid: SW CID the command is related to
3227 * @data_hi: command private data address (high 32 bits)
3228 * @data_lo: command private data address (low 32 bits)
3229 * @cmd_type: command type (e.g. NONE, ETH)
3230 *
3231 * SP data is handled as if it's always an address pair, thus data fields are
3232 * not swapped to little endian in upper functions. Instead this function swaps
3233 * data as if it's two u32 fields.
3234 */
3235 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3236 u32 data_hi, u32 data_lo, int cmd_type)
3237 {
3238 struct eth_spe *spe;
3239 u16 type;
3240 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3241
3242 #ifdef BNX2X_STOP_ON_ERROR
3243 if (unlikely(bp->panic))
3244 return -EIO;
3245 #endif
3246
3247 spin_lock_bh(&bp->spq_lock);
3248
3249 if (common) {
3250 if (!atomic_read(&bp->eq_spq_left)) {
3251 BNX2X_ERR("BUG! EQ ring full!\n");
3252 spin_unlock_bh(&bp->spq_lock);
3253 bnx2x_panic();
3254 return -EBUSY;
3255 }
3256 } else if (!atomic_read(&bp->cq_spq_left)) {
3257 BNX2X_ERR("BUG! SPQ ring full!\n");
3258 spin_unlock_bh(&bp->spq_lock);
3259 bnx2x_panic();
3260 return -EBUSY;
3261 }
3262
3263 spe = bnx2x_sp_get_next(bp);
3264
3265 /* CID needs port number to be encoded int it */
3266 spe->hdr.conn_and_cmd_data =
3267 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3268 HW_CID(bp, cid));
3269
3270 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3271
3272 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3273 SPE_HDR_FUNCTION_ID);
3274
3275 spe->hdr.type = cpu_to_le16(type);
3276
3277 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3278 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3279
3280 /*
3281 * It's ok if the actual decrement is issued towards the memory
3282 * somewhere between the spin_lock and spin_unlock. Thus no
3283 * more explict memory barrier is needed.
3284 */
3285 if (common)
3286 atomic_dec(&bp->eq_spq_left);
3287 else
3288 atomic_dec(&bp->cq_spq_left);
3289
3290
3291 DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3292 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) "
3293 "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3294 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3295 (u32)(U64_LO(bp->spq_mapping) +
3296 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3297 HW_CID(bp, cid), data_hi, data_lo, type,
3298 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3299
3300 bnx2x_sp_prod_update(bp);
3301 spin_unlock_bh(&bp->spq_lock);
3302 return 0;
3303 }
3304
3305 /* acquire split MCP access lock register */
3306 static int bnx2x_acquire_alr(struct bnx2x *bp)
3307 {
3308 u32 j, val;
3309 int rc = 0;
3310
3311 might_sleep();
3312 for (j = 0; j < 1000; j++) {
3313 val = (1UL << 31);
3314 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3315 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3316 if (val & (1L << 31))
3317 break;
3318
3319 msleep(5);
3320 }
3321 if (!(val & (1L << 31))) {
3322 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3323 rc = -EBUSY;
3324 }
3325
3326 return rc;
3327 }
3328
3329 /* release split MCP access lock register */
3330 static void bnx2x_release_alr(struct bnx2x *bp)
3331 {
3332 REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3333 }
3334
3335 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3336 #define BNX2X_DEF_SB_IDX 0x0002
3337
3338 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3339 {
3340 struct host_sp_status_block *def_sb = bp->def_status_blk;
3341 u16 rc = 0;
3342
3343 barrier(); /* status block is written to by the chip */
3344 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3345 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3346 rc |= BNX2X_DEF_SB_ATT_IDX;
3347 }
3348
3349 if (bp->def_idx != def_sb->sp_sb.running_index) {
3350 bp->def_idx = def_sb->sp_sb.running_index;
3351 rc |= BNX2X_DEF_SB_IDX;
3352 }
3353
3354 /* Do not reorder: indecies reading should complete before handling */
3355 barrier();
3356 return rc;
3357 }
3358
3359 /*
3360 * slow path service functions
3361 */
3362
3363 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3364 {
3365 int port = BP_PORT(bp);
3366 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3367 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3368 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3369 NIG_REG_MASK_INTERRUPT_PORT0;
3370 u32 aeu_mask;
3371 u32 nig_mask = 0;
3372 u32 reg_addr;
3373
3374 if (bp->attn_state & asserted)
3375 BNX2X_ERR("IGU ERROR\n");
3376
3377 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3378 aeu_mask = REG_RD(bp, aeu_addr);
3379
3380 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3381 aeu_mask, asserted);
3382 aeu_mask &= ~(asserted & 0x3ff);
3383 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3384
3385 REG_WR(bp, aeu_addr, aeu_mask);
3386 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3387
3388 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3389 bp->attn_state |= asserted;
3390 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3391
3392 if (asserted & ATTN_HARD_WIRED_MASK) {
3393 if (asserted & ATTN_NIG_FOR_FUNC) {
3394
3395 bnx2x_acquire_phy_lock(bp);
3396
3397 /* save nig interrupt mask */
3398 nig_mask = REG_RD(bp, nig_int_mask_addr);
3399
3400 /* If nig_mask is not set, no need to call the update
3401 * function.
3402 */
3403 if (nig_mask) {
3404 REG_WR(bp, nig_int_mask_addr, 0);
3405
3406 bnx2x_link_attn(bp);
3407 }
3408
3409 /* handle unicore attn? */
3410 }
3411 if (asserted & ATTN_SW_TIMER_4_FUNC)
3412 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3413
3414 if (asserted & GPIO_2_FUNC)
3415 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3416
3417 if (asserted & GPIO_3_FUNC)
3418 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3419
3420 if (asserted & GPIO_4_FUNC)
3421 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3422
3423 if (port == 0) {
3424 if (asserted & ATTN_GENERAL_ATTN_1) {
3425 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3426 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3427 }
3428 if (asserted & ATTN_GENERAL_ATTN_2) {
3429 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3430 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3431 }
3432 if (asserted & ATTN_GENERAL_ATTN_3) {
3433 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3434 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3435 }
3436 } else {
3437 if (asserted & ATTN_GENERAL_ATTN_4) {
3438 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3439 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3440 }
3441 if (asserted & ATTN_GENERAL_ATTN_5) {
3442 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3443 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3444 }
3445 if (asserted & ATTN_GENERAL_ATTN_6) {
3446 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3447 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3448 }
3449 }
3450
3451 } /* if hardwired */
3452
3453 if (bp->common.int_block == INT_BLOCK_HC)
3454 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3455 COMMAND_REG_ATTN_BITS_SET);
3456 else
3457 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3458
3459 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3460 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3461 REG_WR(bp, reg_addr, asserted);
3462
3463 /* now set back the mask */
3464 if (asserted & ATTN_NIG_FOR_FUNC) {
3465 REG_WR(bp, nig_int_mask_addr, nig_mask);
3466 bnx2x_release_phy_lock(bp);
3467 }
3468 }
3469
3470 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3471 {
3472 int port = BP_PORT(bp);
3473 u32 ext_phy_config;
3474 /* mark the failure */
3475 ext_phy_config =
3476 SHMEM_RD(bp,
3477 dev_info.port_hw_config[port].external_phy_config);
3478
3479 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3480 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3481 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3482 ext_phy_config);
3483
3484 /* log the failure */
3485 netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3486 " the driver to shutdown the card to prevent permanent"
3487 " damage. Please contact OEM Support for assistance\n");
3488
3489 /*
3490 * Scheudle device reset (unload)
3491 * This is due to some boards consuming sufficient power when driver is
3492 * up to overheat if fan fails.
3493 */
3494 smp_mb__before_clear_bit();
3495 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3496 smp_mb__after_clear_bit();
3497 schedule_delayed_work(&bp->sp_rtnl_task, 0);
3498
3499 }
3500
3501 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3502 {
3503 int port = BP_PORT(bp);
3504 int reg_offset;
3505 u32 val;
3506
3507 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3508 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3509
3510 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3511
3512 val = REG_RD(bp, reg_offset);
3513 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3514 REG_WR(bp, reg_offset, val);
3515
3516 BNX2X_ERR("SPIO5 hw attention\n");
3517
3518 /* Fan failure attention */
3519 bnx2x_hw_reset_phy(&bp->link_params);
3520 bnx2x_fan_failure(bp);
3521 }
3522
3523 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3524 bnx2x_acquire_phy_lock(bp);
3525 bnx2x_handle_module_detect_int(&bp->link_params);
3526 bnx2x_release_phy_lock(bp);
3527 }
3528
3529 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3530
3531 val = REG_RD(bp, reg_offset);
3532 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3533 REG_WR(bp, reg_offset, val);
3534
3535 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3536 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3537 bnx2x_panic();
3538 }
3539 }
3540
3541 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3542 {
3543 u32 val;
3544
3545 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3546
3547 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3548 BNX2X_ERR("DB hw attention 0x%x\n", val);
3549 /* DORQ discard attention */
3550 if (val & 0x2)
3551 BNX2X_ERR("FATAL error from DORQ\n");
3552 }
3553
3554 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3555
3556 int port = BP_PORT(bp);
3557 int reg_offset;
3558
3559 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3560 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3561
3562 val = REG_RD(bp, reg_offset);
3563 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3564 REG_WR(bp, reg_offset, val);
3565
3566 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3567 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3568 bnx2x_panic();
3569 }
3570 }
3571
3572 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3573 {
3574 u32 val;
3575
3576 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3577
3578 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3579 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3580 /* CFC error attention */
3581 if (val & 0x2)
3582 BNX2X_ERR("FATAL error from CFC\n");
3583 }
3584
3585 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3586 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3587 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3588 /* RQ_USDMDP_FIFO_OVERFLOW */
3589 if (val & 0x18000)
3590 BNX2X_ERR("FATAL error from PXP\n");
3591
3592 if (!CHIP_IS_E1x(bp)) {
3593 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3594 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3595 }
3596 }
3597
3598 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3599
3600 int port = BP_PORT(bp);
3601 int reg_offset;
3602
3603 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3604 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3605
3606 val = REG_RD(bp, reg_offset);
3607 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3608 REG_WR(bp, reg_offset, val);
3609
3610 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3611 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3612 bnx2x_panic();
3613 }
3614 }
3615
3616 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3617 {
3618 u32 val;
3619
3620 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3621
3622 if (attn & BNX2X_PMF_LINK_ASSERT) {
3623 int func = BP_FUNC(bp);
3624
3625 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3626 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3627 func_mf_config[BP_ABS_FUNC(bp)].config);
3628 val = SHMEM_RD(bp,
3629 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3630 if (val & DRV_STATUS_DCC_EVENT_MASK)
3631 bnx2x_dcc_event(bp,
3632 (val & DRV_STATUS_DCC_EVENT_MASK));
3633
3634 if (val & DRV_STATUS_SET_MF_BW)
3635 bnx2x_set_mf_bw(bp);
3636
3637 if (val & DRV_STATUS_DRV_INFO_REQ)
3638 bnx2x_handle_drv_info_req(bp);
3639 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3640 bnx2x_pmf_update(bp);
3641
3642 if (bp->port.pmf &&
3643 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3644 bp->dcbx_enabled > 0)
3645 /* start dcbx state machine */
3646 bnx2x_dcbx_set_params(bp,
3647 BNX2X_DCBX_STATE_NEG_RECEIVED);
3648 if (bp->link_vars.periodic_flags &
3649 PERIODIC_FLAGS_LINK_EVENT) {
3650 /* sync with link */
3651 bnx2x_acquire_phy_lock(bp);
3652 bp->link_vars.periodic_flags &=
3653 ~PERIODIC_FLAGS_LINK_EVENT;
3654 bnx2x_release_phy_lock(bp);
3655 if (IS_MF(bp))
3656 bnx2x_link_sync_notify(bp);
3657 bnx2x_link_report(bp);
3658 }
3659 /* Always call it here: bnx2x_link_report() will
3660 * prevent the link indication duplication.
3661 */
3662 bnx2x__link_status_update(bp);
3663 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3664
3665 BNX2X_ERR("MC assert!\n");
3666 bnx2x_mc_assert(bp);
3667 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3668 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3669 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3670 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3671 bnx2x_panic();
3672
3673 } else if (attn & BNX2X_MCP_ASSERT) {
3674
3675 BNX2X_ERR("MCP assert!\n");
3676 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3677 bnx2x_fw_dump(bp);
3678
3679 } else
3680 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3681 }
3682
3683 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3684 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3685 if (attn & BNX2X_GRC_TIMEOUT) {
3686 val = CHIP_IS_E1(bp) ? 0 :
3687 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3688 BNX2X_ERR("GRC time-out 0x%08x\n", val);
3689 }
3690 if (attn & BNX2X_GRC_RSV) {
3691 val = CHIP_IS_E1(bp) ? 0 :
3692 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3693 BNX2X_ERR("GRC reserved 0x%08x\n", val);
3694 }
3695 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3696 }
3697 }
3698
3699 /*
3700 * Bits map:
3701 * 0-7 - Engine0 load counter.
3702 * 8-15 - Engine1 load counter.
3703 * 16 - Engine0 RESET_IN_PROGRESS bit.
3704 * 17 - Engine1 RESET_IN_PROGRESS bit.
3705 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3706 * on the engine
3707 * 19 - Engine1 ONE_IS_LOADED.
3708 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
3709 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
3710 * just the one belonging to its engine).
3711 *
3712 */
3713 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
3714
3715 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
3716 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
3717 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
3718 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
3719 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
3720 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
3721 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
3722
3723 /*
3724 * Set the GLOBAL_RESET bit.
3725 *
3726 * Should be run under rtnl lock
3727 */
3728 void bnx2x_set_reset_global(struct bnx2x *bp)
3729 {
3730 u32 val;
3731 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3732 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3733 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3734 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3735 }
3736
3737 /*
3738 * Clear the GLOBAL_RESET bit.
3739 *
3740 * Should be run under rtnl lock
3741 */
3742 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3743 {
3744 u32 val;
3745 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3746 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3747 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3748 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3749 }
3750
3751 /*
3752 * Checks the GLOBAL_RESET bit.
3753 *
3754 * should be run under rtnl lock
3755 */
3756 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3757 {
3758 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3759
3760 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3761 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3762 }
3763
3764 /*
3765 * Clear RESET_IN_PROGRESS bit for the current engine.
3766 *
3767 * Should be run under rtnl lock
3768 */
3769 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3770 {
3771 u32 val;
3772 u32 bit = BP_PATH(bp) ?
3773 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3774 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3775 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3776
3777 /* Clear the bit */
3778 val &= ~bit;
3779 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3780
3781 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3782 }
3783
3784 /*
3785 * Set RESET_IN_PROGRESS for the current engine.
3786 *
3787 * should be run under rtnl lock
3788 */
3789 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3790 {
3791 u32 val;
3792 u32 bit = BP_PATH(bp) ?
3793 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3794 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3795 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3796
3797 /* Set the bit */
3798 val |= bit;
3799 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3800 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3801 }
3802
3803 /*
3804 * Checks the RESET_IN_PROGRESS bit for the given engine.
3805 * should be run under rtnl lock
3806 */
3807 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3808 {
3809 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3810 u32 bit = engine ?
3811 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3812
3813 /* return false if bit is set */
3814 return (val & bit) ? false : true;
3815 }
3816
3817 /*
3818 * set pf load for the current pf.
3819 *
3820 * should be run under rtnl lock
3821 */
3822 void bnx2x_set_pf_load(struct bnx2x *bp)
3823 {
3824 u32 val1, val;
3825 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3826 BNX2X_PATH0_LOAD_CNT_MASK;
3827 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3828 BNX2X_PATH0_LOAD_CNT_SHIFT;
3829
3830 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3831 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3832
3833 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3834
3835 /* get the current counter value */
3836 val1 = (val & mask) >> shift;
3837
3838 /* set bit of that PF */
3839 val1 |= (1 << bp->pf_num);
3840
3841 /* clear the old value */
3842 val &= ~mask;
3843
3844 /* set the new one */
3845 val |= ((val1 << shift) & mask);
3846
3847 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3848 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3849 }
3850
3851 /**
3852 * bnx2x_clear_pf_load - clear pf load mark
3853 *
3854 * @bp: driver handle
3855 *
3856 * Should be run under rtnl lock.
3857 * Decrements the load counter for the current engine. Returns
3858 * whether other functions are still loaded
3859 */
3860 bool bnx2x_clear_pf_load(struct bnx2x *bp)
3861 {
3862 u32 val1, val;
3863 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3864 BNX2X_PATH0_LOAD_CNT_MASK;
3865 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3866 BNX2X_PATH0_LOAD_CNT_SHIFT;
3867
3868 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3869 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3870 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3871
3872 /* get the current counter value */
3873 val1 = (val & mask) >> shift;
3874
3875 /* clear bit of that PF */
3876 val1 &= ~(1 << bp->pf_num);
3877
3878 /* clear the old value */
3879 val &= ~mask;
3880
3881 /* set the new one */
3882 val |= ((val1 << shift) & mask);
3883
3884 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3885 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3886 return val1 != 0;
3887 }
3888
3889 /*
3890 * Read the load status for the current engine.
3891 *
3892 * should be run under rtnl lock
3893 */
3894 static inline bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
3895 {
3896 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3897 BNX2X_PATH0_LOAD_CNT_MASK);
3898 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3899 BNX2X_PATH0_LOAD_CNT_SHIFT);
3900 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3901
3902 DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3903
3904 val = (val & mask) >> shift;
3905
3906 DP(NETIF_MSG_HW, "load mask for engine %d = 0x%x\n", engine, val);
3907
3908 return val != 0;
3909 }
3910
3911 /*
3912 * Reset the load status for the current engine.
3913 */
3914 static inline void bnx2x_clear_load_status(struct bnx2x *bp)
3915 {
3916 u32 val;
3917 u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3918 BNX2X_PATH0_LOAD_CNT_MASK);
3919 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3920 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3921 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3922 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3923 }
3924
3925 static inline void _print_next_block(int idx, const char *blk)
3926 {
3927 pr_cont("%s%s", idx ? ", " : "", blk);
3928 }
3929
3930 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3931 bool print)
3932 {
3933 int i = 0;
3934 u32 cur_bit = 0;
3935 for (i = 0; sig; i++) {
3936 cur_bit = ((u32)0x1 << i);
3937 if (sig & cur_bit) {
3938 switch (cur_bit) {
3939 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3940 if (print)
3941 _print_next_block(par_num++, "BRB");
3942 break;
3943 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3944 if (print)
3945 _print_next_block(par_num++, "PARSER");
3946 break;
3947 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3948 if (print)
3949 _print_next_block(par_num++, "TSDM");
3950 break;
3951 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3952 if (print)
3953 _print_next_block(par_num++,
3954 "SEARCHER");
3955 break;
3956 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3957 if (print)
3958 _print_next_block(par_num++, "TCM");
3959 break;
3960 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3961 if (print)
3962 _print_next_block(par_num++, "TSEMI");
3963 break;
3964 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3965 if (print)
3966 _print_next_block(par_num++, "XPB");
3967 break;
3968 }
3969
3970 /* Clear the bit */
3971 sig &= ~cur_bit;
3972 }
3973 }
3974
3975 return par_num;
3976 }
3977
3978 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3979 bool *global, bool print)
3980 {
3981 int i = 0;
3982 u32 cur_bit = 0;
3983 for (i = 0; sig; i++) {
3984 cur_bit = ((u32)0x1 << i);
3985 if (sig & cur_bit) {
3986 switch (cur_bit) {
3987 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3988 if (print)
3989 _print_next_block(par_num++, "PBF");
3990 break;
3991 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3992 if (print)
3993 _print_next_block(par_num++, "QM");
3994 break;
3995 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3996 if (print)
3997 _print_next_block(par_num++, "TM");
3998 break;
3999 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4000 if (print)
4001 _print_next_block(par_num++, "XSDM");
4002 break;
4003 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4004 if (print)
4005 _print_next_block(par_num++, "XCM");
4006 break;
4007 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4008 if (print)
4009 _print_next_block(par_num++, "XSEMI");
4010 break;
4011 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4012 if (print)
4013 _print_next_block(par_num++,
4014 "DOORBELLQ");
4015 break;
4016 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4017 if (print)
4018 _print_next_block(par_num++, "NIG");
4019 break;
4020 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4021 if (print)
4022 _print_next_block(par_num++,
4023 "VAUX PCI CORE");
4024 *global = true;
4025 break;
4026 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4027 if (print)
4028 _print_next_block(par_num++, "DEBUG");
4029 break;
4030 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4031 if (print)
4032 _print_next_block(par_num++, "USDM");
4033 break;
4034 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4035 if (print)
4036 _print_next_block(par_num++, "UCM");
4037 break;
4038 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4039 if (print)
4040 _print_next_block(par_num++, "USEMI");
4041 break;
4042 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4043 if (print)
4044 _print_next_block(par_num++, "UPB");
4045 break;
4046 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4047 if (print)
4048 _print_next_block(par_num++, "CSDM");
4049 break;
4050 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4051 if (print)
4052 _print_next_block(par_num++, "CCM");
4053 break;
4054 }
4055
4056 /* Clear the bit */
4057 sig &= ~cur_bit;
4058 }
4059 }
4060
4061 return par_num;
4062 }
4063
4064 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4065 bool print)
4066 {
4067 int i = 0;
4068 u32 cur_bit = 0;
4069 for (i = 0; sig; i++) {
4070 cur_bit = ((u32)0x1 << i);
4071 if (sig & cur_bit) {
4072 switch (cur_bit) {
4073 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4074 if (print)
4075 _print_next_block(par_num++, "CSEMI");
4076 break;
4077 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4078 if (print)
4079 _print_next_block(par_num++, "PXP");
4080 break;
4081 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4082 if (print)
4083 _print_next_block(par_num++,
4084 "PXPPCICLOCKCLIENT");
4085 break;
4086 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4087 if (print)
4088 _print_next_block(par_num++, "CFC");
4089 break;
4090 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4091 if (print)
4092 _print_next_block(par_num++, "CDU");
4093 break;
4094 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4095 if (print)
4096 _print_next_block(par_num++, "DMAE");
4097 break;
4098 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4099 if (print)
4100 _print_next_block(par_num++, "IGU");
4101 break;
4102 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4103 if (print)
4104 _print_next_block(par_num++, "MISC");
4105 break;
4106 }
4107
4108 /* Clear the bit */
4109 sig &= ~cur_bit;
4110 }
4111 }
4112
4113 return par_num;
4114 }
4115
4116 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4117 bool *global, bool print)
4118 {
4119 int i = 0;
4120 u32 cur_bit = 0;
4121 for (i = 0; sig; i++) {
4122 cur_bit = ((u32)0x1 << i);
4123 if (sig & cur_bit) {
4124 switch (cur_bit) {
4125 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4126 if (print)
4127 _print_next_block(par_num++, "MCP ROM");
4128 *global = true;
4129 break;
4130 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4131 if (print)
4132 _print_next_block(par_num++,
4133 "MCP UMP RX");
4134 *global = true;
4135 break;
4136 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4137 if (print)
4138 _print_next_block(par_num++,
4139 "MCP UMP TX");
4140 *global = true;
4141 break;
4142 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4143 if (print)
4144 _print_next_block(par_num++,
4145 "MCP SCPAD");
4146 *global = true;
4147 break;
4148 }
4149
4150 /* Clear the bit */
4151 sig &= ~cur_bit;
4152 }
4153 }
4154
4155 return par_num;
4156 }
4157
4158 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4159 bool print)
4160 {
4161 int i = 0;
4162 u32 cur_bit = 0;
4163 for (i = 0; sig; i++) {
4164 cur_bit = ((u32)0x1 << i);
4165 if (sig & cur_bit) {
4166 switch (cur_bit) {
4167 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4168 if (print)
4169 _print_next_block(par_num++, "PGLUE_B");
4170 break;
4171 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4172 if (print)
4173 _print_next_block(par_num++, "ATC");
4174 break;
4175 }
4176
4177 /* Clear the bit */
4178 sig &= ~cur_bit;
4179 }
4180 }
4181
4182 return par_num;
4183 }
4184
4185 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4186 u32 *sig)
4187 {
4188 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4189 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4190 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4191 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4192 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4193 int par_num = 0;
4194 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
4195 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4196 "[4]:0x%08x\n",
4197 sig[0] & HW_PRTY_ASSERT_SET_0,
4198 sig[1] & HW_PRTY_ASSERT_SET_1,
4199 sig[2] & HW_PRTY_ASSERT_SET_2,
4200 sig[3] & HW_PRTY_ASSERT_SET_3,
4201 sig[4] & HW_PRTY_ASSERT_SET_4);
4202 if (print)
4203 netdev_err(bp->dev,
4204 "Parity errors detected in blocks: ");
4205 par_num = bnx2x_check_blocks_with_parity0(
4206 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4207 par_num = bnx2x_check_blocks_with_parity1(
4208 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4209 par_num = bnx2x_check_blocks_with_parity2(
4210 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4211 par_num = bnx2x_check_blocks_with_parity3(
4212 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4213 par_num = bnx2x_check_blocks_with_parity4(
4214 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4215
4216 if (print)
4217 pr_cont("\n");
4218
4219 return true;
4220 } else
4221 return false;
4222 }
4223
4224 /**
4225 * bnx2x_chk_parity_attn - checks for parity attentions.
4226 *
4227 * @bp: driver handle
4228 * @global: true if there was a global attention
4229 * @print: show parity attention in syslog
4230 */
4231 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4232 {
4233 struct attn_route attn = { {0} };
4234 int port = BP_PORT(bp);
4235
4236 attn.sig[0] = REG_RD(bp,
4237 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4238 port*4);
4239 attn.sig[1] = REG_RD(bp,
4240 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4241 port*4);
4242 attn.sig[2] = REG_RD(bp,
4243 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4244 port*4);
4245 attn.sig[3] = REG_RD(bp,
4246 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4247 port*4);
4248
4249 if (!CHIP_IS_E1x(bp))
4250 attn.sig[4] = REG_RD(bp,
4251 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4252 port*4);
4253
4254 return bnx2x_parity_attn(bp, global, print, attn.sig);
4255 }
4256
4257
4258 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4259 {
4260 u32 val;
4261 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4262
4263 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4264 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4265 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4266 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4267 "ADDRESS_ERROR\n");
4268 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4269 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4270 "INCORRECT_RCV_BEHAVIOR\n");
4271 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4272 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4273 "WAS_ERROR_ATTN\n");
4274 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4275 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4276 "VF_LENGTH_VIOLATION_ATTN\n");
4277 if (val &
4278 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4279 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4280 "VF_GRC_SPACE_VIOLATION_ATTN\n");
4281 if (val &
4282 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4283 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4284 "VF_MSIX_BAR_VIOLATION_ATTN\n");
4285 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4286 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4287 "TCPL_ERROR_ATTN\n");
4288 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4289 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4290 "TCPL_IN_TWO_RCBS_ATTN\n");
4291 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4292 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4293 "CSSNOOP_FIFO_OVERFLOW\n");
4294 }
4295 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4296 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4297 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4298 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4299 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4300 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4301 BNX2X_ERR("ATC_ATC_INT_STS_REG"
4302 "_ATC_TCPL_TO_NOT_PEND\n");
4303 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4304 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4305 "ATC_GPA_MULTIPLE_HITS\n");
4306 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4307 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4308 "ATC_RCPL_TO_EMPTY_CNT\n");
4309 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4310 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4311 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4312 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4313 "ATC_IREQ_LESS_THAN_STU\n");
4314 }
4315
4316 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4317 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4318 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4319 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4320 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4321 }
4322
4323 }
4324
4325 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4326 {
4327 struct attn_route attn, *group_mask;
4328 int port = BP_PORT(bp);
4329 int index;
4330 u32 reg_addr;
4331 u32 val;
4332 u32 aeu_mask;
4333 bool global = false;
4334
4335 /* need to take HW lock because MCP or other port might also
4336 try to handle this event */
4337 bnx2x_acquire_alr(bp);
4338
4339 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4340 #ifndef BNX2X_STOP_ON_ERROR
4341 bp->recovery_state = BNX2X_RECOVERY_INIT;
4342 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4343 /* Disable HW interrupts */
4344 bnx2x_int_disable(bp);
4345 /* In case of parity errors don't handle attentions so that
4346 * other function would "see" parity errors.
4347 */
4348 #else
4349 bnx2x_panic();
4350 #endif
4351 bnx2x_release_alr(bp);
4352 return;
4353 }
4354
4355 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4356 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4357 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4358 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4359 if (!CHIP_IS_E1x(bp))
4360 attn.sig[4] =
4361 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4362 else
4363 attn.sig[4] = 0;
4364
4365 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4366 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4367
4368 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4369 if (deasserted & (1 << index)) {
4370 group_mask = &bp->attn_group[index];
4371
4372 DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4373 "%08x %08x %08x\n",
4374 index,
4375 group_mask->sig[0], group_mask->sig[1],
4376 group_mask->sig[2], group_mask->sig[3],
4377 group_mask->sig[4]);
4378
4379 bnx2x_attn_int_deasserted4(bp,
4380 attn.sig[4] & group_mask->sig[4]);
4381 bnx2x_attn_int_deasserted3(bp,
4382 attn.sig[3] & group_mask->sig[3]);
4383 bnx2x_attn_int_deasserted1(bp,
4384 attn.sig[1] & group_mask->sig[1]);
4385 bnx2x_attn_int_deasserted2(bp,
4386 attn.sig[2] & group_mask->sig[2]);
4387 bnx2x_attn_int_deasserted0(bp,
4388 attn.sig[0] & group_mask->sig[0]);
4389 }
4390 }
4391
4392 bnx2x_release_alr(bp);
4393
4394 if (bp->common.int_block == INT_BLOCK_HC)
4395 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4396 COMMAND_REG_ATTN_BITS_CLR);
4397 else
4398 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4399
4400 val = ~deasserted;
4401 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4402 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4403 REG_WR(bp, reg_addr, val);
4404
4405 if (~bp->attn_state & deasserted)
4406 BNX2X_ERR("IGU ERROR\n");
4407
4408 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4409 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4410
4411 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4412 aeu_mask = REG_RD(bp, reg_addr);
4413
4414 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4415 aeu_mask, deasserted);
4416 aeu_mask |= (deasserted & 0x3ff);
4417 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4418
4419 REG_WR(bp, reg_addr, aeu_mask);
4420 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4421
4422 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4423 bp->attn_state &= ~deasserted;
4424 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4425 }
4426
4427 static void bnx2x_attn_int(struct bnx2x *bp)
4428 {
4429 /* read local copy of bits */
4430 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4431 attn_bits);
4432 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4433 attn_bits_ack);
4434 u32 attn_state = bp->attn_state;
4435
4436 /* look for changed bits */
4437 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4438 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4439
4440 DP(NETIF_MSG_HW,
4441 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4442 attn_bits, attn_ack, asserted, deasserted);
4443
4444 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4445 BNX2X_ERR("BAD attention state\n");
4446
4447 /* handle bits that were raised */
4448 if (asserted)
4449 bnx2x_attn_int_asserted(bp, asserted);
4450
4451 if (deasserted)
4452 bnx2x_attn_int_deasserted(bp, deasserted);
4453 }
4454
4455 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4456 u16 index, u8 op, u8 update)
4457 {
4458 u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4459
4460 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4461 igu_addr);
4462 }
4463
4464 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4465 {
4466 /* No memory barriers */
4467 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4468 mmiowb(); /* keep prod updates ordered */
4469 }
4470
4471 #ifdef BCM_CNIC
4472 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4473 union event_ring_elem *elem)
4474 {
4475 u8 err = elem->message.error;
4476
4477 if (!bp->cnic_eth_dev.starting_cid ||
4478 (cid < bp->cnic_eth_dev.starting_cid &&
4479 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4480 return 1;
4481
4482 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4483
4484 if (unlikely(err)) {
4485
4486 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4487 cid);
4488 bnx2x_panic_dump(bp);
4489 }
4490 bnx2x_cnic_cfc_comp(bp, cid, err);
4491 return 0;
4492 }
4493 #endif
4494
4495 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4496 {
4497 struct bnx2x_mcast_ramrod_params rparam;
4498 int rc;
4499
4500 memset(&rparam, 0, sizeof(rparam));
4501
4502 rparam.mcast_obj = &bp->mcast_obj;
4503
4504 netif_addr_lock_bh(bp->dev);
4505
4506 /* Clear pending state for the last command */
4507 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4508
4509 /* If there are pending mcast commands - send them */
4510 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4511 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4512 if (rc < 0)
4513 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4514 rc);
4515 }
4516
4517 netif_addr_unlock_bh(bp->dev);
4518 }
4519
4520 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4521 union event_ring_elem *elem)
4522 {
4523 unsigned long ramrod_flags = 0;
4524 int rc = 0;
4525 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4526 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4527
4528 /* Always push next commands out, don't wait here */
4529 __set_bit(RAMROD_CONT, &ramrod_flags);
4530
4531 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4532 case BNX2X_FILTER_MAC_PENDING:
4533 #ifdef BCM_CNIC
4534 if (cid == BNX2X_ISCSI_ETH_CID)
4535 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4536 else
4537 #endif
4538 vlan_mac_obj = &bp->fp[cid].mac_obj;
4539
4540 break;
4541 case BNX2X_FILTER_MCAST_PENDING:
4542 /* This is only relevant for 57710 where multicast MACs are
4543 * configured as unicast MACs using the same ramrod.
4544 */
4545 bnx2x_handle_mcast_eqe(bp);
4546 return;
4547 default:
4548 BNX2X_ERR("Unsupported classification command: %d\n",
4549 elem->message.data.eth_event.echo);
4550 return;
4551 }
4552
4553 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4554
4555 if (rc < 0)
4556 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4557 else if (rc > 0)
4558 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4559
4560 }
4561
4562 #ifdef BCM_CNIC
4563 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4564 #endif
4565
4566 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4567 {
4568 netif_addr_lock_bh(bp->dev);
4569
4570 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4571
4572 /* Send rx_mode command again if was requested */
4573 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4574 bnx2x_set_storm_rx_mode(bp);
4575 #ifdef BCM_CNIC
4576 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4577 &bp->sp_state))
4578 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4579 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4580 &bp->sp_state))
4581 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4582 #endif
4583
4584 netif_addr_unlock_bh(bp->dev);
4585 }
4586
4587 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4588 struct bnx2x *bp, u32 cid)
4589 {
4590 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4591 #ifdef BCM_CNIC
4592 if (cid == BNX2X_FCOE_ETH_CID)
4593 return &bnx2x_fcoe(bp, q_obj);
4594 else
4595 #endif
4596 return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4597 }
4598
4599 static void bnx2x_eq_int(struct bnx2x *bp)
4600 {
4601 u16 hw_cons, sw_cons, sw_prod;
4602 union event_ring_elem *elem;
4603 u32 cid;
4604 u8 opcode;
4605 int spqe_cnt = 0;
4606 struct bnx2x_queue_sp_obj *q_obj;
4607 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4608 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4609
4610 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4611
4612 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4613 * when we get the the next-page we nned to adjust so the loop
4614 * condition below will be met. The next element is the size of a
4615 * regular element and hence incrementing by 1
4616 */
4617 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4618 hw_cons++;
4619
4620 /* This function may never run in parallel with itself for a
4621 * specific bp, thus there is no need in "paired" read memory
4622 * barrier here.
4623 */
4624 sw_cons = bp->eq_cons;
4625 sw_prod = bp->eq_prod;
4626
4627 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
4628 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4629
4630 for (; sw_cons != hw_cons;
4631 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4632
4633
4634 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4635
4636 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4637 opcode = elem->message.opcode;
4638
4639
4640 /* handle eq element */
4641 switch (opcode) {
4642 case EVENT_RING_OPCODE_STAT_QUERY:
4643 DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4644 bp->stats_comp++);
4645 /* nothing to do with stats comp */
4646 goto next_spqe;
4647
4648 case EVENT_RING_OPCODE_CFC_DEL:
4649 /* handle according to cid range */
4650 /*
4651 * we may want to verify here that the bp state is
4652 * HALTING
4653 */
4654 DP(BNX2X_MSG_SP,
4655 "got delete ramrod for MULTI[%d]\n", cid);
4656 #ifdef BCM_CNIC
4657 if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4658 goto next_spqe;
4659 #endif
4660 q_obj = bnx2x_cid_to_q_obj(bp, cid);
4661
4662 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4663 break;
4664
4665
4666
4667 goto next_spqe;
4668
4669 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4670 DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4671 if (f_obj->complete_cmd(bp, f_obj,
4672 BNX2X_F_CMD_TX_STOP))
4673 break;
4674 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4675 goto next_spqe;
4676
4677 case EVENT_RING_OPCODE_START_TRAFFIC:
4678 DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4679 if (f_obj->complete_cmd(bp, f_obj,
4680 BNX2X_F_CMD_TX_START))
4681 break;
4682 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4683 goto next_spqe;
4684 case EVENT_RING_OPCODE_FUNCTION_START:
4685 DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4686 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4687 break;
4688
4689 goto next_spqe;
4690
4691 case EVENT_RING_OPCODE_FUNCTION_STOP:
4692 DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4693 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4694 break;
4695
4696 goto next_spqe;
4697 }
4698
4699 switch (opcode | bp->state) {
4700 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4701 BNX2X_STATE_OPEN):
4702 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4703 BNX2X_STATE_OPENING_WAIT4_PORT):
4704 cid = elem->message.data.eth_event.echo &
4705 BNX2X_SWCID_MASK;
4706 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4707 cid);
4708 rss_raw->clear_pending(rss_raw);
4709 break;
4710
4711 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4712 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4713 case (EVENT_RING_OPCODE_SET_MAC |
4714 BNX2X_STATE_CLOSING_WAIT4_HALT):
4715 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4716 BNX2X_STATE_OPEN):
4717 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4718 BNX2X_STATE_DIAG):
4719 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4720 BNX2X_STATE_CLOSING_WAIT4_HALT):
4721 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4722 bnx2x_handle_classification_eqe(bp, elem);
4723 break;
4724
4725 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4726 BNX2X_STATE_OPEN):
4727 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4728 BNX2X_STATE_DIAG):
4729 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4730 BNX2X_STATE_CLOSING_WAIT4_HALT):
4731 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4732 bnx2x_handle_mcast_eqe(bp);
4733 break;
4734
4735 case (EVENT_RING_OPCODE_FILTERS_RULES |
4736 BNX2X_STATE_OPEN):
4737 case (EVENT_RING_OPCODE_FILTERS_RULES |
4738 BNX2X_STATE_DIAG):
4739 case (EVENT_RING_OPCODE_FILTERS_RULES |
4740 BNX2X_STATE_CLOSING_WAIT4_HALT):
4741 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4742 bnx2x_handle_rx_mode_eqe(bp);
4743 break;
4744 default:
4745 /* unknown event log error and continue */
4746 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4747 elem->message.opcode, bp->state);
4748 }
4749 next_spqe:
4750 spqe_cnt++;
4751 } /* for */
4752
4753 smp_mb__before_atomic_inc();
4754 atomic_add(spqe_cnt, &bp->eq_spq_left);
4755
4756 bp->eq_cons = sw_cons;
4757 bp->eq_prod = sw_prod;
4758 /* Make sure that above mem writes were issued towards the memory */
4759 smp_wmb();
4760
4761 /* update producer */
4762 bnx2x_update_eq_prod(bp, bp->eq_prod);
4763 }
4764
4765 static void bnx2x_sp_task(struct work_struct *work)
4766 {
4767 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4768 u16 status;
4769
4770 status = bnx2x_update_dsb_idx(bp);
4771 /* if (status == 0) */
4772 /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
4773
4774 DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4775
4776 /* HW attentions */
4777 if (status & BNX2X_DEF_SB_ATT_IDX) {
4778 bnx2x_attn_int(bp);
4779 status &= ~BNX2X_DEF_SB_ATT_IDX;
4780 }
4781
4782 /* SP events: STAT_QUERY and others */
4783 if (status & BNX2X_DEF_SB_IDX) {
4784 #ifdef BCM_CNIC
4785 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4786
4787 if ((!NO_FCOE(bp)) &&
4788 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4789 /*
4790 * Prevent local bottom-halves from running as
4791 * we are going to change the local NAPI list.
4792 */
4793 local_bh_disable();
4794 napi_schedule(&bnx2x_fcoe(bp, napi));
4795 local_bh_enable();
4796 }
4797 #endif
4798 /* Handle EQ completions */
4799 bnx2x_eq_int(bp);
4800
4801 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4802 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4803
4804 status &= ~BNX2X_DEF_SB_IDX;
4805 }
4806
4807 if (unlikely(status))
4808 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4809 status);
4810
4811 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4812 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4813 }
4814
4815 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4816 {
4817 struct net_device *dev = dev_instance;
4818 struct bnx2x *bp = netdev_priv(dev);
4819
4820 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4821 IGU_INT_DISABLE, 0);
4822
4823 #ifdef BNX2X_STOP_ON_ERROR
4824 if (unlikely(bp->panic))
4825 return IRQ_HANDLED;
4826 #endif
4827
4828 #ifdef BCM_CNIC
4829 {
4830 struct cnic_ops *c_ops;
4831
4832 rcu_read_lock();
4833 c_ops = rcu_dereference(bp->cnic_ops);
4834 if (c_ops)
4835 c_ops->cnic_handler(bp->cnic_data, NULL);
4836 rcu_read_unlock();
4837 }
4838 #endif
4839 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4840
4841 return IRQ_HANDLED;
4842 }
4843
4844 /* end of slow path */
4845
4846
4847 void bnx2x_drv_pulse(struct bnx2x *bp)
4848 {
4849 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4850 bp->fw_drv_pulse_wr_seq);
4851 }
4852
4853
4854 static void bnx2x_timer(unsigned long data)
4855 {
4856 u8 cos;
4857 struct bnx2x *bp = (struct bnx2x *) data;
4858
4859 if (!netif_running(bp->dev))
4860 return;
4861
4862 if (poll) {
4863 struct bnx2x_fastpath *fp = &bp->fp[0];
4864
4865 for_each_cos_in_tx_queue(fp, cos)
4866 bnx2x_tx_int(bp, &fp->txdata[cos]);
4867 bnx2x_rx_int(fp, 1000);
4868 }
4869
4870 if (!BP_NOMCP(bp)) {
4871 int mb_idx = BP_FW_MB_IDX(bp);
4872 u32 drv_pulse;
4873 u32 mcp_pulse;
4874
4875 ++bp->fw_drv_pulse_wr_seq;
4876 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4877 /* TBD - add SYSTEM_TIME */
4878 drv_pulse = bp->fw_drv_pulse_wr_seq;
4879 bnx2x_drv_pulse(bp);
4880
4881 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4882 MCP_PULSE_SEQ_MASK);
4883 /* The delta between driver pulse and mcp response
4884 * should be 1 (before mcp response) or 0 (after mcp response)
4885 */
4886 if ((drv_pulse != mcp_pulse) &&
4887 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4888 /* someone lost a heartbeat... */
4889 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4890 drv_pulse, mcp_pulse);
4891 }
4892 }
4893
4894 if (bp->state == BNX2X_STATE_OPEN)
4895 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4896
4897 mod_timer(&bp->timer, jiffies + bp->current_interval);
4898 }
4899
4900 /* end of Statistics */
4901
4902 /* nic init */
4903
4904 /*
4905 * nic init service functions
4906 */
4907
4908 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4909 {
4910 u32 i;
4911 if (!(len%4) && !(addr%4))
4912 for (i = 0; i < len; i += 4)
4913 REG_WR(bp, addr + i, fill);
4914 else
4915 for (i = 0; i < len; i++)
4916 REG_WR8(bp, addr + i, fill);
4917
4918 }
4919
4920 /* helper: writes FP SP data to FW - data_size in dwords */
4921 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4922 int fw_sb_id,
4923 u32 *sb_data_p,
4924 u32 data_size)
4925 {
4926 int index;
4927 for (index = 0; index < data_size; index++)
4928 REG_WR(bp, BAR_CSTRORM_INTMEM +
4929 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4930 sizeof(u32)*index,
4931 *(sb_data_p + index));
4932 }
4933
4934 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4935 {
4936 u32 *sb_data_p;
4937 u32 data_size = 0;
4938 struct hc_status_block_data_e2 sb_data_e2;
4939 struct hc_status_block_data_e1x sb_data_e1x;
4940
4941 /* disable the function first */
4942 if (!CHIP_IS_E1x(bp)) {
4943 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4944 sb_data_e2.common.state = SB_DISABLED;
4945 sb_data_e2.common.p_func.vf_valid = false;
4946 sb_data_p = (u32 *)&sb_data_e2;
4947 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4948 } else {
4949 memset(&sb_data_e1x, 0,
4950 sizeof(struct hc_status_block_data_e1x));
4951 sb_data_e1x.common.state = SB_DISABLED;
4952 sb_data_e1x.common.p_func.vf_valid = false;
4953 sb_data_p = (u32 *)&sb_data_e1x;
4954 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4955 }
4956 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4957
4958 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4959 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4960 CSTORM_STATUS_BLOCK_SIZE);
4961 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4962 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4963 CSTORM_SYNC_BLOCK_SIZE);
4964 }
4965
4966 /* helper: writes SP SB data to FW */
4967 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4968 struct hc_sp_status_block_data *sp_sb_data)
4969 {
4970 int func = BP_FUNC(bp);
4971 int i;
4972 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4973 REG_WR(bp, BAR_CSTRORM_INTMEM +
4974 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4975 i*sizeof(u32),
4976 *((u32 *)sp_sb_data + i));
4977 }
4978
4979 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4980 {
4981 int func = BP_FUNC(bp);
4982 struct hc_sp_status_block_data sp_sb_data;
4983 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4984
4985 sp_sb_data.state = SB_DISABLED;
4986 sp_sb_data.p_func.vf_valid = false;
4987
4988 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4989
4990 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4991 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4992 CSTORM_SP_STATUS_BLOCK_SIZE);
4993 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4994 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4995 CSTORM_SP_SYNC_BLOCK_SIZE);
4996
4997 }
4998
4999
5000 static inline
5001 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5002 int igu_sb_id, int igu_seg_id)
5003 {
5004 hc_sm->igu_sb_id = igu_sb_id;
5005 hc_sm->igu_seg_id = igu_seg_id;
5006 hc_sm->timer_value = 0xFF;
5007 hc_sm->time_to_expire = 0xFFFFFFFF;
5008 }
5009
5010
5011 /* allocates state machine ids. */
5012 static inline
5013 void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5014 {
5015 /* zero out state machine indices */
5016 /* rx indices */
5017 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5018
5019 /* tx indices */
5020 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5021 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5022 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5023 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5024
5025 /* map indices */
5026 /* rx indices */
5027 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5028 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5029
5030 /* tx indices */
5031 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5032 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5033 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5034 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5035 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5036 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5037 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5038 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5039 }
5040
5041 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5042 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5043 {
5044 int igu_seg_id;
5045
5046 struct hc_status_block_data_e2 sb_data_e2;
5047 struct hc_status_block_data_e1x sb_data_e1x;
5048 struct hc_status_block_sm *hc_sm_p;
5049 int data_size;
5050 u32 *sb_data_p;
5051
5052 if (CHIP_INT_MODE_IS_BC(bp))
5053 igu_seg_id = HC_SEG_ACCESS_NORM;
5054 else
5055 igu_seg_id = IGU_SEG_ACCESS_NORM;
5056
5057 bnx2x_zero_fp_sb(bp, fw_sb_id);
5058
5059 if (!CHIP_IS_E1x(bp)) {
5060 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5061 sb_data_e2.common.state = SB_ENABLED;
5062 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5063 sb_data_e2.common.p_func.vf_id = vfid;
5064 sb_data_e2.common.p_func.vf_valid = vf_valid;
5065 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5066 sb_data_e2.common.same_igu_sb_1b = true;
5067 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5068 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5069 hc_sm_p = sb_data_e2.common.state_machine;
5070 sb_data_p = (u32 *)&sb_data_e2;
5071 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5072 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5073 } else {
5074 memset(&sb_data_e1x, 0,
5075 sizeof(struct hc_status_block_data_e1x));
5076 sb_data_e1x.common.state = SB_ENABLED;
5077 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5078 sb_data_e1x.common.p_func.vf_id = 0xff;
5079 sb_data_e1x.common.p_func.vf_valid = false;
5080 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5081 sb_data_e1x.common.same_igu_sb_1b = true;
5082 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5083 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5084 hc_sm_p = sb_data_e1x.common.state_machine;
5085 sb_data_p = (u32 *)&sb_data_e1x;
5086 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5087 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5088 }
5089
5090 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5091 igu_sb_id, igu_seg_id);
5092 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5093 igu_sb_id, igu_seg_id);
5094
5095 DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
5096
5097 /* write indecies to HW */
5098 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5099 }
5100
5101 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5102 u16 tx_usec, u16 rx_usec)
5103 {
5104 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5105 false, rx_usec);
5106 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5107 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5108 tx_usec);
5109 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5110 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5111 tx_usec);
5112 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5113 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5114 tx_usec);
5115 }
5116
5117 static void bnx2x_init_def_sb(struct bnx2x *bp)
5118 {
5119 struct host_sp_status_block *def_sb = bp->def_status_blk;
5120 dma_addr_t mapping = bp->def_status_blk_mapping;
5121 int igu_sp_sb_index;
5122 int igu_seg_id;
5123 int port = BP_PORT(bp);
5124 int func = BP_FUNC(bp);
5125 int reg_offset, reg_offset_en5;
5126 u64 section;
5127 int index;
5128 struct hc_sp_status_block_data sp_sb_data;
5129 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5130
5131 if (CHIP_INT_MODE_IS_BC(bp)) {
5132 igu_sp_sb_index = DEF_SB_IGU_ID;
5133 igu_seg_id = HC_SEG_ACCESS_DEF;
5134 } else {
5135 igu_sp_sb_index = bp->igu_dsb_id;
5136 igu_seg_id = IGU_SEG_ACCESS_DEF;
5137 }
5138
5139 /* ATTN */
5140 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5141 atten_status_block);
5142 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5143
5144 bp->attn_state = 0;
5145
5146 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5147 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5148 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5149 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5150 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5151 int sindex;
5152 /* take care of sig[0]..sig[4] */
5153 for (sindex = 0; sindex < 4; sindex++)
5154 bp->attn_group[index].sig[sindex] =
5155 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5156
5157 if (!CHIP_IS_E1x(bp))
5158 /*
5159 * enable5 is separate from the rest of the registers,
5160 * and therefore the address skip is 4
5161 * and not 16 between the different groups
5162 */
5163 bp->attn_group[index].sig[4] = REG_RD(bp,
5164 reg_offset_en5 + 0x4*index);
5165 else
5166 bp->attn_group[index].sig[4] = 0;
5167 }
5168
5169 if (bp->common.int_block == INT_BLOCK_HC) {
5170 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5171 HC_REG_ATTN_MSG0_ADDR_L);
5172
5173 REG_WR(bp, reg_offset, U64_LO(section));
5174 REG_WR(bp, reg_offset + 4, U64_HI(section));
5175 } else if (!CHIP_IS_E1x(bp)) {
5176 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5177 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5178 }
5179
5180 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5181 sp_sb);
5182
5183 bnx2x_zero_sp_sb(bp);
5184
5185 sp_sb_data.state = SB_ENABLED;
5186 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5187 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5188 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5189 sp_sb_data.igu_seg_id = igu_seg_id;
5190 sp_sb_data.p_func.pf_id = func;
5191 sp_sb_data.p_func.vnic_id = BP_VN(bp);
5192 sp_sb_data.p_func.vf_id = 0xff;
5193
5194 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5195
5196 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5197 }
5198
5199 void bnx2x_update_coalesce(struct bnx2x *bp)
5200 {
5201 int i;
5202
5203 for_each_eth_queue(bp, i)
5204 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5205 bp->tx_ticks, bp->rx_ticks);
5206 }
5207
5208 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5209 {
5210 spin_lock_init(&bp->spq_lock);
5211 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5212
5213 bp->spq_prod_idx = 0;
5214 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5215 bp->spq_prod_bd = bp->spq;
5216 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5217 }
5218
5219 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5220 {
5221 int i;
5222 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5223 union event_ring_elem *elem =
5224 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5225
5226 elem->next_page.addr.hi =
5227 cpu_to_le32(U64_HI(bp->eq_mapping +
5228 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5229 elem->next_page.addr.lo =
5230 cpu_to_le32(U64_LO(bp->eq_mapping +
5231 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5232 }
5233 bp->eq_cons = 0;
5234 bp->eq_prod = NUM_EQ_DESC;
5235 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5236 /* we want a warning message before it gets rought... */
5237 atomic_set(&bp->eq_spq_left,
5238 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5239 }
5240
5241
5242 /* called with netif_addr_lock_bh() */
5243 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5244 unsigned long rx_mode_flags,
5245 unsigned long rx_accept_flags,
5246 unsigned long tx_accept_flags,
5247 unsigned long ramrod_flags)
5248 {
5249 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5250 int rc;
5251
5252 memset(&ramrod_param, 0, sizeof(ramrod_param));
5253
5254 /* Prepare ramrod parameters */
5255 ramrod_param.cid = 0;
5256 ramrod_param.cl_id = cl_id;
5257 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5258 ramrod_param.func_id = BP_FUNC(bp);
5259
5260 ramrod_param.pstate = &bp->sp_state;
5261 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5262
5263 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5264 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5265
5266 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5267
5268 ramrod_param.ramrod_flags = ramrod_flags;
5269 ramrod_param.rx_mode_flags = rx_mode_flags;
5270
5271 ramrod_param.rx_accept_flags = rx_accept_flags;
5272 ramrod_param.tx_accept_flags = tx_accept_flags;
5273
5274 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5275 if (rc < 0) {
5276 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5277 return;
5278 }
5279 }
5280
5281 /* called with netif_addr_lock_bh() */
5282 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5283 {
5284 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5285 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5286
5287 #ifdef BCM_CNIC
5288 if (!NO_FCOE(bp))
5289
5290 /* Configure rx_mode of FCoE Queue */
5291 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5292 #endif
5293
5294 switch (bp->rx_mode) {
5295 case BNX2X_RX_MODE_NONE:
5296 /*
5297 * 'drop all' supersedes any accept flags that may have been
5298 * passed to the function.
5299 */
5300 break;
5301 case BNX2X_RX_MODE_NORMAL:
5302 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5303 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5304 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5305
5306 /* internal switching mode */
5307 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5308 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5309 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5310
5311 break;
5312 case BNX2X_RX_MODE_ALLMULTI:
5313 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5314 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5315 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5316
5317 /* internal switching mode */
5318 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5319 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5320 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5321
5322 break;
5323 case BNX2X_RX_MODE_PROMISC:
5324 /* According to deffinition of SI mode, iface in promisc mode
5325 * should receive matched and unmatched (in resolution of port)
5326 * unicast packets.
5327 */
5328 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5329 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5330 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5331 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5332
5333 /* internal switching mode */
5334 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5335 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5336
5337 if (IS_MF_SI(bp))
5338 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5339 else
5340 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5341
5342 break;
5343 default:
5344 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5345 return;
5346 }
5347
5348 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5349 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5350 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5351 }
5352
5353 __set_bit(RAMROD_RX, &ramrod_flags);
5354 __set_bit(RAMROD_TX, &ramrod_flags);
5355
5356 bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5357 tx_accept_flags, ramrod_flags);
5358 }
5359
5360 static void bnx2x_init_internal_common(struct bnx2x *bp)
5361 {
5362 int i;
5363
5364 if (IS_MF_SI(bp))
5365 /*
5366 * In switch independent mode, the TSTORM needs to accept
5367 * packets that failed classification, since approximate match
5368 * mac addresses aren't written to NIG LLH
5369 */
5370 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5371 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5372 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5373 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5374 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5375
5376 /* Zero this manually as its initialization is
5377 currently missing in the initTool */
5378 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5379 REG_WR(bp, BAR_USTRORM_INTMEM +
5380 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5381 if (!CHIP_IS_E1x(bp)) {
5382 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5383 CHIP_INT_MODE_IS_BC(bp) ?
5384 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5385 }
5386 }
5387
5388 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5389 {
5390 switch (load_code) {
5391 case FW_MSG_CODE_DRV_LOAD_COMMON:
5392 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5393 bnx2x_init_internal_common(bp);
5394 /* no break */
5395
5396 case FW_MSG_CODE_DRV_LOAD_PORT:
5397 /* nothing to do */
5398 /* no break */
5399
5400 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5401 /* internal memory per function is
5402 initialized inside bnx2x_pf_init */
5403 break;
5404
5405 default:
5406 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5407 break;
5408 }
5409 }
5410
5411 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5412 {
5413 return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5414 }
5415
5416 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5417 {
5418 return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5419 }
5420
5421 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5422 {
5423 if (CHIP_IS_E1x(fp->bp))
5424 return BP_L_ID(fp->bp) + fp->index;
5425 else /* We want Client ID to be the same as IGU SB ID for 57712 */
5426 return bnx2x_fp_igu_sb_id(fp);
5427 }
5428
5429 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5430 {
5431 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5432 u8 cos;
5433 unsigned long q_type = 0;
5434 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5435 fp->rx_queue = fp_idx;
5436 fp->cid = fp_idx;
5437 fp->cl_id = bnx2x_fp_cl_id(fp);
5438 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5439 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5440 /* qZone id equals to FW (per path) client id */
5441 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
5442
5443 /* init shortcut */
5444 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5445
5446 /* Setup SB indicies */
5447 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5448
5449 /* Configure Queue State object */
5450 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5451 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5452
5453 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5454
5455 /* init tx data */
5456 for_each_cos_in_tx_queue(fp, cos) {
5457 bnx2x_init_txdata(bp, &fp->txdata[cos],
5458 CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5459 FP_COS_TO_TXQ(fp, cos),
5460 BNX2X_TX_SB_INDEX_BASE + cos);
5461 cids[cos] = fp->txdata[cos].cid;
5462 }
5463
5464 bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5465 BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5466 bnx2x_sp_mapping(bp, q_rdata), q_type);
5467
5468 /**
5469 * Configure classification DBs: Always enable Tx switching
5470 */
5471 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5472
5473 DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) "
5474 "cl_id %d fw_sb %d igu_sb %d\n",
5475 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5476 fp->igu_sb_id);
5477 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5478 fp->fw_sb_id, fp->igu_sb_id);
5479
5480 bnx2x_update_fpsb_idx(fp);
5481 }
5482
5483 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5484 {
5485 int i;
5486
5487 for_each_eth_queue(bp, i)
5488 bnx2x_init_eth_fp(bp, i);
5489 #ifdef BCM_CNIC
5490 if (!NO_FCOE(bp))
5491 bnx2x_init_fcoe_fp(bp);
5492
5493 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5494 BNX2X_VF_ID_INVALID, false,
5495 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5496
5497 #endif
5498
5499 /* Initialize MOD_ABS interrupts */
5500 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5501 bp->common.shmem_base, bp->common.shmem2_base,
5502 BP_PORT(bp));
5503 /* ensure status block indices were read */
5504 rmb();
5505
5506 bnx2x_init_def_sb(bp);
5507 bnx2x_update_dsb_idx(bp);
5508 bnx2x_init_rx_rings(bp);
5509 bnx2x_init_tx_rings(bp);
5510 bnx2x_init_sp_ring(bp);
5511 bnx2x_init_eq_ring(bp);
5512 bnx2x_init_internal(bp, load_code);
5513 bnx2x_pf_init(bp);
5514 bnx2x_stats_init(bp);
5515
5516 /* flush all before enabling interrupts */
5517 mb();
5518 mmiowb();
5519
5520 bnx2x_int_enable(bp);
5521
5522 /* Check for SPIO5 */
5523 bnx2x_attn_int_deasserted0(bp,
5524 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5525 AEU_INPUTS_ATTN_BITS_SPIO5);
5526 }
5527
5528 /* end of nic init */
5529
5530 /*
5531 * gzip service functions
5532 */
5533
5534 static int bnx2x_gunzip_init(struct bnx2x *bp)
5535 {
5536 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5537 &bp->gunzip_mapping, GFP_KERNEL);
5538 if (bp->gunzip_buf == NULL)
5539 goto gunzip_nomem1;
5540
5541 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5542 if (bp->strm == NULL)
5543 goto gunzip_nomem2;
5544
5545 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5546 if (bp->strm->workspace == NULL)
5547 goto gunzip_nomem3;
5548
5549 return 0;
5550
5551 gunzip_nomem3:
5552 kfree(bp->strm);
5553 bp->strm = NULL;
5554
5555 gunzip_nomem2:
5556 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5557 bp->gunzip_mapping);
5558 bp->gunzip_buf = NULL;
5559
5560 gunzip_nomem1:
5561 netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5562 " un-compression\n");
5563 return -ENOMEM;
5564 }
5565
5566 static void bnx2x_gunzip_end(struct bnx2x *bp)
5567 {
5568 if (bp->strm) {
5569 vfree(bp->strm->workspace);
5570 kfree(bp->strm);
5571 bp->strm = NULL;
5572 }
5573
5574 if (bp->gunzip_buf) {
5575 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5576 bp->gunzip_mapping);
5577 bp->gunzip_buf = NULL;
5578 }
5579 }
5580
5581 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5582 {
5583 int n, rc;
5584
5585 /* check gzip header */
5586 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5587 BNX2X_ERR("Bad gzip header\n");
5588 return -EINVAL;
5589 }
5590
5591 n = 10;
5592
5593 #define FNAME 0x8
5594
5595 if (zbuf[3] & FNAME)
5596 while ((zbuf[n++] != 0) && (n < len));
5597
5598 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5599 bp->strm->avail_in = len - n;
5600 bp->strm->next_out = bp->gunzip_buf;
5601 bp->strm->avail_out = FW_BUF_SIZE;
5602
5603 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5604 if (rc != Z_OK)
5605 return rc;
5606
5607 rc = zlib_inflate(bp->strm, Z_FINISH);
5608 if ((rc != Z_OK) && (rc != Z_STREAM_END))
5609 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5610 bp->strm->msg);
5611
5612 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5613 if (bp->gunzip_outlen & 0x3)
5614 netdev_err(bp->dev, "Firmware decompression error:"
5615 " gunzip_outlen (%d) not aligned\n",
5616 bp->gunzip_outlen);
5617 bp->gunzip_outlen >>= 2;
5618
5619 zlib_inflateEnd(bp->strm);
5620
5621 if (rc == Z_STREAM_END)
5622 return 0;
5623
5624 return rc;
5625 }
5626
5627 /* nic load/unload */
5628
5629 /*
5630 * General service functions
5631 */
5632
5633 /* send a NIG loopback debug packet */
5634 static void bnx2x_lb_pckt(struct bnx2x *bp)
5635 {
5636 u32 wb_write[3];
5637
5638 /* Ethernet source and destination addresses */
5639 wb_write[0] = 0x55555555;
5640 wb_write[1] = 0x55555555;
5641 wb_write[2] = 0x20; /* SOP */
5642 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5643
5644 /* NON-IP protocol */
5645 wb_write[0] = 0x09000000;
5646 wb_write[1] = 0x55555555;
5647 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
5648 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5649 }
5650
5651 /* some of the internal memories
5652 * are not directly readable from the driver
5653 * to test them we send debug packets
5654 */
5655 static int bnx2x_int_mem_test(struct bnx2x *bp)
5656 {
5657 int factor;
5658 int count, i;
5659 u32 val = 0;
5660
5661 if (CHIP_REV_IS_FPGA(bp))
5662 factor = 120;
5663 else if (CHIP_REV_IS_EMUL(bp))
5664 factor = 200;
5665 else
5666 factor = 1;
5667
5668 /* Disable inputs of parser neighbor blocks */
5669 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5670 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5671 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5672 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5673
5674 /* Write 0 to parser credits for CFC search request */
5675 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5676
5677 /* send Ethernet packet */
5678 bnx2x_lb_pckt(bp);
5679
5680 /* TODO do i reset NIG statistic? */
5681 /* Wait until NIG register shows 1 packet of size 0x10 */
5682 count = 1000 * factor;
5683 while (count) {
5684
5685 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5686 val = *bnx2x_sp(bp, wb_data[0]);
5687 if (val == 0x10)
5688 break;
5689
5690 msleep(10);
5691 count--;
5692 }
5693 if (val != 0x10) {
5694 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5695 return -1;
5696 }
5697
5698 /* Wait until PRS register shows 1 packet */
5699 count = 1000 * factor;
5700 while (count) {
5701 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5702 if (val == 1)
5703 break;
5704
5705 msleep(10);
5706 count--;
5707 }
5708 if (val != 0x1) {
5709 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5710 return -2;
5711 }
5712
5713 /* Reset and init BRB, PRS */
5714 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5715 msleep(50);
5716 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5717 msleep(50);
5718 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5719 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5720
5721 DP(NETIF_MSG_HW, "part2\n");
5722
5723 /* Disable inputs of parser neighbor blocks */
5724 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5725 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5726 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5727 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5728
5729 /* Write 0 to parser credits for CFC search request */
5730 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5731
5732 /* send 10 Ethernet packets */
5733 for (i = 0; i < 10; i++)
5734 bnx2x_lb_pckt(bp);
5735
5736 /* Wait until NIG register shows 10 + 1
5737 packets of size 11*0x10 = 0xb0 */
5738 count = 1000 * factor;
5739 while (count) {
5740
5741 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5742 val = *bnx2x_sp(bp, wb_data[0]);
5743 if (val == 0xb0)
5744 break;
5745
5746 msleep(10);
5747 count--;
5748 }
5749 if (val != 0xb0) {
5750 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5751 return -3;
5752 }
5753
5754 /* Wait until PRS register shows 2 packets */
5755 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5756 if (val != 2)
5757 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5758
5759 /* Write 1 to parser credits for CFC search request */
5760 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5761
5762 /* Wait until PRS register shows 3 packets */
5763 msleep(10 * factor);
5764 /* Wait until NIG register shows 1 packet of size 0x10 */
5765 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5766 if (val != 3)
5767 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5768
5769 /* clear NIG EOP FIFO */
5770 for (i = 0; i < 11; i++)
5771 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5772 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5773 if (val != 1) {
5774 BNX2X_ERR("clear of NIG failed\n");
5775 return -4;
5776 }
5777
5778 /* Reset and init BRB, PRS, NIG */
5779 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5780 msleep(50);
5781 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5782 msleep(50);
5783 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5784 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5785 #ifndef BCM_CNIC
5786 /* set NIC mode */
5787 REG_WR(bp, PRS_REG_NIC_MODE, 1);
5788 #endif
5789
5790 /* Enable inputs of parser neighbor blocks */
5791 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5792 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5793 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5794 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5795
5796 DP(NETIF_MSG_HW, "done\n");
5797
5798 return 0; /* OK */
5799 }
5800
5801 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5802 {
5803 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5804 if (!CHIP_IS_E1x(bp))
5805 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5806 else
5807 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5808 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5809 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5810 /*
5811 * mask read length error interrupts in brb for parser
5812 * (parsing unit and 'checksum and crc' unit)
5813 * these errors are legal (PU reads fixed length and CAC can cause
5814 * read length error on truncated packets)
5815 */
5816 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5817 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5818 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5819 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5820 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5821 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5822 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5823 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5824 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5825 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5826 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5827 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5828 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5829 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5830 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5831 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5832 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5833 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5834 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5835
5836 if (CHIP_REV_IS_FPGA(bp))
5837 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5838 else if (!CHIP_IS_E1x(bp))
5839 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5840 (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5841 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5842 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5843 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5844 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5845 else
5846 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5847 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5848 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5849 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5850 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5851
5852 if (!CHIP_IS_E1x(bp))
5853 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5854 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5855
5856 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5857 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5858 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5859 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
5860 }
5861
5862 static void bnx2x_reset_common(struct bnx2x *bp)
5863 {
5864 u32 val = 0x1400;
5865
5866 /* reset_common */
5867 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5868 0xd3ffff7f);
5869
5870 if (CHIP_IS_E3(bp)) {
5871 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5872 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5873 }
5874
5875 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5876 }
5877
5878 static void bnx2x_setup_dmae(struct bnx2x *bp)
5879 {
5880 bp->dmae_ready = 0;
5881 spin_lock_init(&bp->dmae_lock);
5882 }
5883
5884 static void bnx2x_init_pxp(struct bnx2x *bp)
5885 {
5886 u16 devctl;
5887 int r_order, w_order;
5888
5889 pci_read_config_word(bp->pdev,
5890 pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5891 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5892 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5893 if (bp->mrrs == -1)
5894 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5895 else {
5896 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5897 r_order = bp->mrrs;
5898 }
5899
5900 bnx2x_init_pxp_arb(bp, r_order, w_order);
5901 }
5902
5903 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5904 {
5905 int is_required;
5906 u32 val;
5907 int port;
5908
5909 if (BP_NOMCP(bp))
5910 return;
5911
5912 is_required = 0;
5913 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5914 SHARED_HW_CFG_FAN_FAILURE_MASK;
5915
5916 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5917 is_required = 1;
5918
5919 /*
5920 * The fan failure mechanism is usually related to the PHY type since
5921 * the power consumption of the board is affected by the PHY. Currently,
5922 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5923 */
5924 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5925 for (port = PORT_0; port < PORT_MAX; port++) {
5926 is_required |=
5927 bnx2x_fan_failure_det_req(
5928 bp,
5929 bp->common.shmem_base,
5930 bp->common.shmem2_base,
5931 port);
5932 }
5933
5934 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5935
5936 if (is_required == 0)
5937 return;
5938
5939 /* Fan failure is indicated by SPIO 5 */
5940 bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5941 MISC_REGISTERS_SPIO_INPUT_HI_Z);
5942
5943 /* set to active low mode */
5944 val = REG_RD(bp, MISC_REG_SPIO_INT);
5945 val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5946 MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5947 REG_WR(bp, MISC_REG_SPIO_INT, val);
5948
5949 /* enable interrupt to signal the IGU */
5950 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5951 val |= (1 << MISC_REGISTERS_SPIO_5);
5952 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5953 }
5954
5955 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5956 {
5957 u32 offset = 0;
5958
5959 if (CHIP_IS_E1(bp))
5960 return;
5961 if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5962 return;
5963
5964 switch (BP_ABS_FUNC(bp)) {
5965 case 0:
5966 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5967 break;
5968 case 1:
5969 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5970 break;
5971 case 2:
5972 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5973 break;
5974 case 3:
5975 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5976 break;
5977 case 4:
5978 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5979 break;
5980 case 5:
5981 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5982 break;
5983 case 6:
5984 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5985 break;
5986 case 7:
5987 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5988 break;
5989 default:
5990 return;
5991 }
5992
5993 REG_WR(bp, offset, pretend_func_num);
5994 REG_RD(bp, offset);
5995 DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5996 }
5997
5998 void bnx2x_pf_disable(struct bnx2x *bp)
5999 {
6000 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6001 val &= ~IGU_PF_CONF_FUNC_EN;
6002
6003 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6004 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6005 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6006 }
6007
6008 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
6009 {
6010 u32 shmem_base[2], shmem2_base[2];
6011 shmem_base[0] = bp->common.shmem_base;
6012 shmem2_base[0] = bp->common.shmem2_base;
6013 if (!CHIP_IS_E1x(bp)) {
6014 shmem_base[1] =
6015 SHMEM2_RD(bp, other_shmem_base_addr);
6016 shmem2_base[1] =
6017 SHMEM2_RD(bp, other_shmem2_base_addr);
6018 }
6019 bnx2x_acquire_phy_lock(bp);
6020 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6021 bp->common.chip_id);
6022 bnx2x_release_phy_lock(bp);
6023 }
6024
6025 /**
6026 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6027 *
6028 * @bp: driver handle
6029 */
6030 static int bnx2x_init_hw_common(struct bnx2x *bp)
6031 {
6032 u32 val;
6033
6034 DP(BNX2X_MSG_MCP, "starting common init func %d\n", BP_ABS_FUNC(bp));
6035
6036 /*
6037 * take the UNDI lock to protect undi_unload flow from accessing
6038 * registers while we're resetting the chip
6039 */
6040 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6041
6042 bnx2x_reset_common(bp);
6043 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6044
6045 val = 0xfffc;
6046 if (CHIP_IS_E3(bp)) {
6047 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6048 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6049 }
6050 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6051
6052 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6053
6054 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6055
6056 if (!CHIP_IS_E1x(bp)) {
6057 u8 abs_func_id;
6058
6059 /**
6060 * 4-port mode or 2-port mode we need to turn of master-enable
6061 * for everyone, after that, turn it back on for self.
6062 * so, we disregard multi-function or not, and always disable
6063 * for all functions on the given path, this means 0,2,4,6 for
6064 * path 0 and 1,3,5,7 for path 1
6065 */
6066 for (abs_func_id = BP_PATH(bp);
6067 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6068 if (abs_func_id == BP_ABS_FUNC(bp)) {
6069 REG_WR(bp,
6070 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6071 1);
6072 continue;
6073 }
6074
6075 bnx2x_pretend_func(bp, abs_func_id);
6076 /* clear pf enable */
6077 bnx2x_pf_disable(bp);
6078 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6079 }
6080 }
6081
6082 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6083 if (CHIP_IS_E1(bp)) {
6084 /* enable HW interrupt from PXP on USDM overflow
6085 bit 16 on INT_MASK_0 */
6086 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6087 }
6088
6089 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6090 bnx2x_init_pxp(bp);
6091
6092 #ifdef __BIG_ENDIAN
6093 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6094 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6095 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6096 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6097 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6098 /* make sure this value is 0 */
6099 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6100
6101 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6102 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6103 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6104 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6105 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6106 #endif
6107
6108 bnx2x_ilt_init_page_size(bp, INITOP_SET);
6109
6110 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6111 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6112
6113 /* let the HW do it's magic ... */
6114 msleep(100);
6115 /* finish PXP init */
6116 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6117 if (val != 1) {
6118 BNX2X_ERR("PXP2 CFG failed\n");
6119 return -EBUSY;
6120 }
6121 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6122 if (val != 1) {
6123 BNX2X_ERR("PXP2 RD_INIT failed\n");
6124 return -EBUSY;
6125 }
6126
6127 /* Timers bug workaround E2 only. We need to set the entire ILT to
6128 * have entries with value "0" and valid bit on.
6129 * This needs to be done by the first PF that is loaded in a path
6130 * (i.e. common phase)
6131 */
6132 if (!CHIP_IS_E1x(bp)) {
6133 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6134 * (i.e. vnic3) to start even if it is marked as "scan-off".
6135 * This occurs when a different function (func2,3) is being marked
6136 * as "scan-off". Real-life scenario for example: if a driver is being
6137 * load-unloaded while func6,7 are down. This will cause the timer to access
6138 * the ilt, translate to a logical address and send a request to read/write.
6139 * Since the ilt for the function that is down is not valid, this will cause
6140 * a translation error which is unrecoverable.
6141 * The Workaround is intended to make sure that when this happens nothing fatal
6142 * will occur. The workaround:
6143 * 1. First PF driver which loads on a path will:
6144 * a. After taking the chip out of reset, by using pretend,
6145 * it will write "0" to the following registers of
6146 * the other vnics.
6147 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6148 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6149 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6150 * And for itself it will write '1' to
6151 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6152 * dmae-operations (writing to pram for example.)
6153 * note: can be done for only function 6,7 but cleaner this
6154 * way.
6155 * b. Write zero+valid to the entire ILT.
6156 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6157 * VNIC3 (of that port). The range allocated will be the
6158 * entire ILT. This is needed to prevent ILT range error.
6159 * 2. Any PF driver load flow:
6160 * a. ILT update with the physical addresses of the allocated
6161 * logical pages.
6162 * b. Wait 20msec. - note that this timeout is needed to make
6163 * sure there are no requests in one of the PXP internal
6164 * queues with "old" ILT addresses.
6165 * c. PF enable in the PGLC.
6166 * d. Clear the was_error of the PF in the PGLC. (could have
6167 * occured while driver was down)
6168 * e. PF enable in the CFC (WEAK + STRONG)
6169 * f. Timers scan enable
6170 * 3. PF driver unload flow:
6171 * a. Clear the Timers scan_en.
6172 * b. Polling for scan_on=0 for that PF.
6173 * c. Clear the PF enable bit in the PXP.
6174 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6175 * e. Write zero+valid to all ILT entries (The valid bit must
6176 * stay set)
6177 * f. If this is VNIC 3 of a port then also init
6178 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6179 * to the last enrty in the ILT.
6180 *
6181 * Notes:
6182 * Currently the PF error in the PGLC is non recoverable.
6183 * In the future the there will be a recovery routine for this error.
6184 * Currently attention is masked.
6185 * Having an MCP lock on the load/unload process does not guarantee that
6186 * there is no Timer disable during Func6/7 enable. This is because the
6187 * Timers scan is currently being cleared by the MCP on FLR.
6188 * Step 2.d can be done only for PF6/7 and the driver can also check if
6189 * there is error before clearing it. But the flow above is simpler and
6190 * more general.
6191 * All ILT entries are written by zero+valid and not just PF6/7
6192 * ILT entries since in the future the ILT entries allocation for
6193 * PF-s might be dynamic.
6194 */
6195 struct ilt_client_info ilt_cli;
6196 struct bnx2x_ilt ilt;
6197 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6198 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6199
6200 /* initialize dummy TM client */
6201 ilt_cli.start = 0;
6202 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6203 ilt_cli.client_num = ILT_CLIENT_TM;
6204
6205 /* Step 1: set zeroes to all ilt page entries with valid bit on
6206 * Step 2: set the timers first/last ilt entry to point
6207 * to the entire range to prevent ILT range error for 3rd/4th
6208 * vnic (this code assumes existance of the vnic)
6209 *
6210 * both steps performed by call to bnx2x_ilt_client_init_op()
6211 * with dummy TM client
6212 *
6213 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6214 * and his brother are split registers
6215 */
6216 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6217 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6218 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6219
6220 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6221 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6222 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6223 }
6224
6225
6226 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6227 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6228
6229 if (!CHIP_IS_E1x(bp)) {
6230 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6231 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6232 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6233
6234 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6235
6236 /* let the HW do it's magic ... */
6237 do {
6238 msleep(200);
6239 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6240 } while (factor-- && (val != 1));
6241
6242 if (val != 1) {
6243 BNX2X_ERR("ATC_INIT failed\n");
6244 return -EBUSY;
6245 }
6246 }
6247
6248 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6249
6250 /* clean the DMAE memory */
6251 bp->dmae_ready = 1;
6252 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6253
6254 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6255
6256 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6257
6258 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6259
6260 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6261
6262 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6263 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6264 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6265 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6266
6267 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6268
6269
6270 /* QM queues pointers table */
6271 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6272
6273 /* soft reset pulse */
6274 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6275 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6276
6277 #ifdef BCM_CNIC
6278 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6279 #endif
6280
6281 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6282 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6283 if (!CHIP_REV_IS_SLOW(bp))
6284 /* enable hw interrupt from doorbell Q */
6285 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6286
6287 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6288
6289 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6290 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6291
6292 if (!CHIP_IS_E1(bp))
6293 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6294
6295 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6296 /* Bit-map indicating which L2 hdrs may appear
6297 * after the basic Ethernet header
6298 */
6299 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6300 bp->path_has_ovlan ? 7 : 6);
6301
6302 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6303 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6304 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6305 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6306
6307 if (!CHIP_IS_E1x(bp)) {
6308 /* reset VFC memories */
6309 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6310 VFC_MEMORIES_RST_REG_CAM_RST |
6311 VFC_MEMORIES_RST_REG_RAM_RST);
6312 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6313 VFC_MEMORIES_RST_REG_CAM_RST |
6314 VFC_MEMORIES_RST_REG_RAM_RST);
6315
6316 msleep(20);
6317 }
6318
6319 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6320 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6321 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6322 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6323
6324 /* sync semi rtc */
6325 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6326 0x80000000);
6327 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6328 0x80000000);
6329
6330 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6331 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6332 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6333
6334 if (!CHIP_IS_E1x(bp))
6335 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6336 bp->path_has_ovlan ? 7 : 6);
6337
6338 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6339
6340 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6341
6342 #ifdef BCM_CNIC
6343 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6344 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6345 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6346 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6347 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6348 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6349 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6350 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6351 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6352 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6353 #endif
6354 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6355
6356 if (sizeof(union cdu_context) != 1024)
6357 /* we currently assume that a context is 1024 bytes */
6358 dev_alert(&bp->pdev->dev, "please adjust the size "
6359 "of cdu_context(%ld)\n",
6360 (long)sizeof(union cdu_context));
6361
6362 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6363 val = (4 << 24) + (0 << 12) + 1024;
6364 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6365
6366 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6367 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6368 /* enable context validation interrupt from CFC */
6369 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6370
6371 /* set the thresholds to prevent CFC/CDU race */
6372 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6373
6374 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6375
6376 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6377 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6378
6379 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6380 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6381
6382 /* Reset PCIE errors for debug */
6383 REG_WR(bp, 0x2814, 0xffffffff);
6384 REG_WR(bp, 0x3820, 0xffffffff);
6385
6386 if (!CHIP_IS_E1x(bp)) {
6387 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6388 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6389 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6390 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6391 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6392 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6393 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6394 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6395 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6396 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6397 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6398 }
6399
6400 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6401 if (!CHIP_IS_E1(bp)) {
6402 /* in E3 this done in per-port section */
6403 if (!CHIP_IS_E3(bp))
6404 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6405 }
6406 if (CHIP_IS_E1H(bp))
6407 /* not applicable for E2 (and above ...) */
6408 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6409
6410 if (CHIP_REV_IS_SLOW(bp))
6411 msleep(200);
6412
6413 /* finish CFC init */
6414 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6415 if (val != 1) {
6416 BNX2X_ERR("CFC LL_INIT failed\n");
6417 return -EBUSY;
6418 }
6419 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6420 if (val != 1) {
6421 BNX2X_ERR("CFC AC_INIT failed\n");
6422 return -EBUSY;
6423 }
6424 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6425 if (val != 1) {
6426 BNX2X_ERR("CFC CAM_INIT failed\n");
6427 return -EBUSY;
6428 }
6429 REG_WR(bp, CFC_REG_DEBUG0, 0);
6430
6431 if (CHIP_IS_E1(bp)) {
6432 /* read NIG statistic
6433 to see if this is our first up since powerup */
6434 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6435 val = *bnx2x_sp(bp, wb_data[0]);
6436
6437 /* do internal memory self test */
6438 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6439 BNX2X_ERR("internal mem self test failed\n");
6440 return -EBUSY;
6441 }
6442 }
6443
6444 bnx2x_setup_fan_failure_detection(bp);
6445
6446 /* clear PXP2 attentions */
6447 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6448
6449 bnx2x_enable_blocks_attention(bp);
6450 bnx2x_enable_blocks_parity(bp);
6451
6452 if (!BP_NOMCP(bp)) {
6453 if (CHIP_IS_E1x(bp))
6454 bnx2x__common_init_phy(bp);
6455 } else
6456 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6457
6458 return 0;
6459 }
6460
6461 /**
6462 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6463 *
6464 * @bp: driver handle
6465 */
6466 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6467 {
6468 int rc = bnx2x_init_hw_common(bp);
6469
6470 if (rc)
6471 return rc;
6472
6473 /* In E2 2-PORT mode, same ext phy is used for the two paths */
6474 if (!BP_NOMCP(bp))
6475 bnx2x__common_init_phy(bp);
6476
6477 return 0;
6478 }
6479
6480 static int bnx2x_init_hw_port(struct bnx2x *bp)
6481 {
6482 int port = BP_PORT(bp);
6483 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6484 u32 low, high;
6485 u32 val;
6486
6487 bnx2x__link_reset(bp);
6488
6489 DP(BNX2X_MSG_MCP, "starting port init port %d\n", port);
6490
6491 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6492
6493 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6494 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6495 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6496
6497 /* Timers bug workaround: disables the pf_master bit in pglue at
6498 * common phase, we need to enable it here before any dmae access are
6499 * attempted. Therefore we manually added the enable-master to the
6500 * port phase (it also happens in the function phase)
6501 */
6502 if (!CHIP_IS_E1x(bp))
6503 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6504
6505 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6506 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6507 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6508 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6509
6510 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6511 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6512 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6513 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6514
6515 /* QM cid (connection) count */
6516 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6517
6518 #ifdef BCM_CNIC
6519 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6520 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6521 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6522 #endif
6523
6524 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6525
6526 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6527 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6528
6529 if (IS_MF(bp))
6530 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6531 else if (bp->dev->mtu > 4096) {
6532 if (bp->flags & ONE_PORT_FLAG)
6533 low = 160;
6534 else {
6535 val = bp->dev->mtu;
6536 /* (24*1024 + val*4)/256 */
6537 low = 96 + (val/64) +
6538 ((val % 64) ? 1 : 0);
6539 }
6540 } else
6541 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6542 high = low + 56; /* 14*1024/256 */
6543 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6544 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6545 }
6546
6547 if (CHIP_MODE_IS_4_PORT(bp))
6548 REG_WR(bp, (BP_PORT(bp) ?
6549 BRB1_REG_MAC_GUARANTIED_1 :
6550 BRB1_REG_MAC_GUARANTIED_0), 40);
6551
6552
6553 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6554 if (CHIP_IS_E3B0(bp))
6555 /* Ovlan exists only if we are in multi-function +
6556 * switch-dependent mode, in switch-independent there
6557 * is no ovlan headers
6558 */
6559 REG_WR(bp, BP_PORT(bp) ?
6560 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6561 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6562 (bp->path_has_ovlan ? 7 : 6));
6563
6564 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6565 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6566 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6567 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6568
6569 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6570 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6571 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6572 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6573
6574 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6575 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6576
6577 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6578
6579 if (CHIP_IS_E1x(bp)) {
6580 /* configure PBF to work without PAUSE mtu 9000 */
6581 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6582
6583 /* update threshold */
6584 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6585 /* update init credit */
6586 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6587
6588 /* probe changes */
6589 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6590 udelay(50);
6591 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6592 }
6593
6594 #ifdef BCM_CNIC
6595 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6596 #endif
6597 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6598 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6599
6600 if (CHIP_IS_E1(bp)) {
6601 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6602 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6603 }
6604 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6605
6606 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6607
6608 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6609 /* init aeu_mask_attn_func_0/1:
6610 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6611 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6612 * bits 4-7 are used for "per vn group attention" */
6613 val = IS_MF(bp) ? 0xF7 : 0x7;
6614 /* Enable DCBX attention for all but E1 */
6615 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6616 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6617
6618 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6619
6620 if (!CHIP_IS_E1x(bp)) {
6621 /* Bit-map indicating which L2 hdrs may appear after the
6622 * basic Ethernet header
6623 */
6624 REG_WR(bp, BP_PORT(bp) ?
6625 NIG_REG_P1_HDRS_AFTER_BASIC :
6626 NIG_REG_P0_HDRS_AFTER_BASIC,
6627 IS_MF_SD(bp) ? 7 : 6);
6628
6629 if (CHIP_IS_E3(bp))
6630 REG_WR(bp, BP_PORT(bp) ?
6631 NIG_REG_LLH1_MF_MODE :
6632 NIG_REG_LLH_MF_MODE, IS_MF(bp));
6633 }
6634 if (!CHIP_IS_E3(bp))
6635 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6636
6637 if (!CHIP_IS_E1(bp)) {
6638 /* 0x2 disable mf_ov, 0x1 enable */
6639 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6640 (IS_MF_SD(bp) ? 0x1 : 0x2));
6641
6642 if (!CHIP_IS_E1x(bp)) {
6643 val = 0;
6644 switch (bp->mf_mode) {
6645 case MULTI_FUNCTION_SD:
6646 val = 1;
6647 break;
6648 case MULTI_FUNCTION_SI:
6649 val = 2;
6650 break;
6651 }
6652
6653 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6654 NIG_REG_LLH0_CLS_TYPE), val);
6655 }
6656 {
6657 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6658 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6659 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6660 }
6661 }
6662
6663
6664 /* If SPIO5 is set to generate interrupts, enable it for this port */
6665 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6666 if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6667 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6668 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6669 val = REG_RD(bp, reg_addr);
6670 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6671 REG_WR(bp, reg_addr, val);
6672 }
6673
6674 return 0;
6675 }
6676
6677 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6678 {
6679 int reg;
6680
6681 if (CHIP_IS_E1(bp))
6682 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6683 else
6684 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6685
6686 bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6687 }
6688
6689 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6690 {
6691 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6692 }
6693
6694 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6695 {
6696 u32 i, base = FUNC_ILT_BASE(func);
6697 for (i = base; i < base + ILT_PER_FUNC; i++)
6698 bnx2x_ilt_wr(bp, i, 0);
6699 }
6700
6701 static int bnx2x_init_hw_func(struct bnx2x *bp)
6702 {
6703 int port = BP_PORT(bp);
6704 int func = BP_FUNC(bp);
6705 int init_phase = PHASE_PF0 + func;
6706 struct bnx2x_ilt *ilt = BP_ILT(bp);
6707 u16 cdu_ilt_start;
6708 u32 addr, val;
6709 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6710 int i, main_mem_width, rc;
6711
6712 DP(BNX2X_MSG_MCP, "starting func init func %d\n", func);
6713
6714 /* FLR cleanup - hmmm */
6715 if (!CHIP_IS_E1x(bp)) {
6716 rc = bnx2x_pf_flr_clnup(bp);
6717 if (rc)
6718 return rc;
6719 }
6720
6721 /* set MSI reconfigure capability */
6722 if (bp->common.int_block == INT_BLOCK_HC) {
6723 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6724 val = REG_RD(bp, addr);
6725 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6726 REG_WR(bp, addr, val);
6727 }
6728
6729 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6730 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6731
6732 ilt = BP_ILT(bp);
6733 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6734
6735 for (i = 0; i < L2_ILT_LINES(bp); i++) {
6736 ilt->lines[cdu_ilt_start + i].page =
6737 bp->context.vcxt + (ILT_PAGE_CIDS * i);
6738 ilt->lines[cdu_ilt_start + i].page_mapping =
6739 bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6740 /* cdu ilt pages are allocated manually so there's no need to
6741 set the size */
6742 }
6743 bnx2x_ilt_init_op(bp, INITOP_SET);
6744
6745 #ifdef BCM_CNIC
6746 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6747
6748 /* T1 hash bits value determines the T1 number of entries */
6749 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6750 #endif
6751
6752 #ifndef BCM_CNIC
6753 /* set NIC mode */
6754 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6755 #endif /* BCM_CNIC */
6756
6757 if (!CHIP_IS_E1x(bp)) {
6758 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6759
6760 /* Turn on a single ISR mode in IGU if driver is going to use
6761 * INT#x or MSI
6762 */
6763 if (!(bp->flags & USING_MSIX_FLAG))
6764 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6765 /*
6766 * Timers workaround bug: function init part.
6767 * Need to wait 20msec after initializing ILT,
6768 * needed to make sure there are no requests in
6769 * one of the PXP internal queues with "old" ILT addresses
6770 */
6771 msleep(20);
6772 /*
6773 * Master enable - Due to WB DMAE writes performed before this
6774 * register is re-initialized as part of the regular function
6775 * init
6776 */
6777 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6778 /* Enable the function in IGU */
6779 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6780 }
6781
6782 bp->dmae_ready = 1;
6783
6784 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6785
6786 if (!CHIP_IS_E1x(bp))
6787 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6788
6789 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6790 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6791 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6792 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6793 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6794 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6795 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6796 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6797 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6798 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6799 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6800 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6801 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6802
6803 if (!CHIP_IS_E1x(bp))
6804 REG_WR(bp, QM_REG_PF_EN, 1);
6805
6806 if (!CHIP_IS_E1x(bp)) {
6807 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6808 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6809 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6810 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6811 }
6812 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6813
6814 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6815 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6816 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6817 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6818 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6819 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6820 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6821 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6822 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6823 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6824 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6825 if (!CHIP_IS_E1x(bp))
6826 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6827
6828 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6829
6830 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6831
6832 if (!CHIP_IS_E1x(bp))
6833 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6834
6835 if (IS_MF(bp)) {
6836 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6837 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6838 }
6839
6840 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6841
6842 /* HC init per function */
6843 if (bp->common.int_block == INT_BLOCK_HC) {
6844 if (CHIP_IS_E1H(bp)) {
6845 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6846
6847 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6848 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6849 }
6850 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6851
6852 } else {
6853 int num_segs, sb_idx, prod_offset;
6854
6855 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6856
6857 if (!CHIP_IS_E1x(bp)) {
6858 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6859 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6860 }
6861
6862 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6863
6864 if (!CHIP_IS_E1x(bp)) {
6865 int dsb_idx = 0;
6866 /**
6867 * Producer memory:
6868 * E2 mode: address 0-135 match to the mapping memory;
6869 * 136 - PF0 default prod; 137 - PF1 default prod;
6870 * 138 - PF2 default prod; 139 - PF3 default prod;
6871 * 140 - PF0 attn prod; 141 - PF1 attn prod;
6872 * 142 - PF2 attn prod; 143 - PF3 attn prod;
6873 * 144-147 reserved.
6874 *
6875 * E1.5 mode - In backward compatible mode;
6876 * for non default SB; each even line in the memory
6877 * holds the U producer and each odd line hold
6878 * the C producer. The first 128 producers are for
6879 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6880 * producers are for the DSB for each PF.
6881 * Each PF has five segments: (the order inside each
6882 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6883 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6884 * 144-147 attn prods;
6885 */
6886 /* non-default-status-blocks */
6887 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6888 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6889 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6890 prod_offset = (bp->igu_base_sb + sb_idx) *
6891 num_segs;
6892
6893 for (i = 0; i < num_segs; i++) {
6894 addr = IGU_REG_PROD_CONS_MEMORY +
6895 (prod_offset + i) * 4;
6896 REG_WR(bp, addr, 0);
6897 }
6898 /* send consumer update with value 0 */
6899 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6900 USTORM_ID, 0, IGU_INT_NOP, 1);
6901 bnx2x_igu_clear_sb(bp,
6902 bp->igu_base_sb + sb_idx);
6903 }
6904
6905 /* default-status-blocks */
6906 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6907 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6908
6909 if (CHIP_MODE_IS_4_PORT(bp))
6910 dsb_idx = BP_FUNC(bp);
6911 else
6912 dsb_idx = BP_VN(bp);
6913
6914 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6915 IGU_BC_BASE_DSB_PROD + dsb_idx :
6916 IGU_NORM_BASE_DSB_PROD + dsb_idx);
6917
6918 /*
6919 * igu prods come in chunks of E1HVN_MAX (4) -
6920 * does not matters what is the current chip mode
6921 */
6922 for (i = 0; i < (num_segs * E1HVN_MAX);
6923 i += E1HVN_MAX) {
6924 addr = IGU_REG_PROD_CONS_MEMORY +
6925 (prod_offset + i)*4;
6926 REG_WR(bp, addr, 0);
6927 }
6928 /* send consumer update with 0 */
6929 if (CHIP_INT_MODE_IS_BC(bp)) {
6930 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6931 USTORM_ID, 0, IGU_INT_NOP, 1);
6932 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6933 CSTORM_ID, 0, IGU_INT_NOP, 1);
6934 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6935 XSTORM_ID, 0, IGU_INT_NOP, 1);
6936 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6937 TSTORM_ID, 0, IGU_INT_NOP, 1);
6938 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6939 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6940 } else {
6941 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6942 USTORM_ID, 0, IGU_INT_NOP, 1);
6943 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6944 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6945 }
6946 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6947
6948 /* !!! these should become driver const once
6949 rf-tool supports split-68 const */
6950 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6951 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6952 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6953 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6954 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6955 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6956 }
6957 }
6958
6959 /* Reset PCIE errors for debug */
6960 REG_WR(bp, 0x2114, 0xffffffff);
6961 REG_WR(bp, 0x2120, 0xffffffff);
6962
6963 if (CHIP_IS_E1x(bp)) {
6964 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6965 main_mem_base = HC_REG_MAIN_MEMORY +
6966 BP_PORT(bp) * (main_mem_size * 4);
6967 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6968 main_mem_width = 8;
6969
6970 val = REG_RD(bp, main_mem_prty_clr);
6971 if (val)
6972 DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6973 "block during "
6974 "function init (0x%x)!\n", val);
6975
6976 /* Clear "false" parity errors in MSI-X table */
6977 for (i = main_mem_base;
6978 i < main_mem_base + main_mem_size * 4;
6979 i += main_mem_width) {
6980 bnx2x_read_dmae(bp, i, main_mem_width / 4);
6981 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6982 i, main_mem_width / 4);
6983 }
6984 /* Clear HC parity attention */
6985 REG_RD(bp, main_mem_prty_clr);
6986 }
6987
6988 #ifdef BNX2X_STOP_ON_ERROR
6989 /* Enable STORMs SP logging */
6990 REG_WR8(bp, BAR_USTRORM_INTMEM +
6991 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6992 REG_WR8(bp, BAR_TSTRORM_INTMEM +
6993 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6994 REG_WR8(bp, BAR_CSTRORM_INTMEM +
6995 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6996 REG_WR8(bp, BAR_XSTRORM_INTMEM +
6997 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6998 #endif
6999
7000 bnx2x_phy_probe(&bp->link_params);
7001
7002 return 0;
7003 }
7004
7005
7006 void bnx2x_free_mem(struct bnx2x *bp)
7007 {
7008 /* fastpath */
7009 bnx2x_free_fp_mem(bp);
7010 /* end of fastpath */
7011
7012 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7013 sizeof(struct host_sp_status_block));
7014
7015 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7016 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7017
7018 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7019 sizeof(struct bnx2x_slowpath));
7020
7021 BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
7022 bp->context.size);
7023
7024 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7025
7026 BNX2X_FREE(bp->ilt->lines);
7027
7028 #ifdef BCM_CNIC
7029 if (!CHIP_IS_E1x(bp))
7030 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7031 sizeof(struct host_hc_status_block_e2));
7032 else
7033 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7034 sizeof(struct host_hc_status_block_e1x));
7035
7036 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7037 #endif
7038
7039 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7040
7041 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7042 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7043 }
7044
7045 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7046 {
7047 int num_groups;
7048 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7049
7050 /* number of queues for statistics is number of eth queues + FCoE */
7051 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7052
7053 /* Total number of FW statistics requests =
7054 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7055 * num of queues
7056 */
7057 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7058
7059
7060 /* Request is built from stats_query_header and an array of
7061 * stats_query_cmd_group each of which contains
7062 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7063 * configured in the stats_query_header.
7064 */
7065 num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7066 (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7067
7068 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7069 num_groups * sizeof(struct stats_query_cmd_group);
7070
7071 /* Data for statistics requests + stats_conter
7072 *
7073 * stats_counter holds per-STORM counters that are incremented
7074 * when STORM has finished with the current request.
7075 *
7076 * memory for FCoE offloaded statistics are counted anyway,
7077 * even if they will not be sent.
7078 */
7079 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7080 sizeof(struct per_pf_stats) +
7081 sizeof(struct fcoe_statistics_params) +
7082 sizeof(struct per_queue_stats) * num_queue_stats +
7083 sizeof(struct stats_counter);
7084
7085 BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7086 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7087
7088 /* Set shortcuts */
7089 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7090 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7091
7092 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7093 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7094
7095 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7096 bp->fw_stats_req_sz;
7097 return 0;
7098
7099 alloc_mem_err:
7100 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7101 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7102 return -ENOMEM;
7103 }
7104
7105
7106 int bnx2x_alloc_mem(struct bnx2x *bp)
7107 {
7108 #ifdef BCM_CNIC
7109 if (!CHIP_IS_E1x(bp))
7110 /* size = the status block + ramrod buffers */
7111 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7112 sizeof(struct host_hc_status_block_e2));
7113 else
7114 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7115 sizeof(struct host_hc_status_block_e1x));
7116
7117 /* allocate searcher T2 table */
7118 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7119 #endif
7120
7121
7122 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7123 sizeof(struct host_sp_status_block));
7124
7125 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7126 sizeof(struct bnx2x_slowpath));
7127
7128 #ifdef BCM_CNIC
7129 /* write address to which L5 should insert its values */
7130 bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp;
7131 #endif
7132
7133 /* Allocated memory for FW statistics */
7134 if (bnx2x_alloc_fw_stats_mem(bp))
7135 goto alloc_mem_err;
7136
7137 bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7138
7139 BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7140 bp->context.size);
7141
7142 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7143
7144 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7145 goto alloc_mem_err;
7146
7147 /* Slow path ring */
7148 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7149
7150 /* EQ */
7151 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7152 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7153
7154
7155 /* fastpath */
7156 /* need to be done at the end, since it's self adjusting to amount
7157 * of memory available for RSS queues
7158 */
7159 if (bnx2x_alloc_fp_mem(bp))
7160 goto alloc_mem_err;
7161 return 0;
7162
7163 alloc_mem_err:
7164 bnx2x_free_mem(bp);
7165 return -ENOMEM;
7166 }
7167
7168 /*
7169 * Init service functions
7170 */
7171
7172 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7173 struct bnx2x_vlan_mac_obj *obj, bool set,
7174 int mac_type, unsigned long *ramrod_flags)
7175 {
7176 int rc;
7177 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7178
7179 memset(&ramrod_param, 0, sizeof(ramrod_param));
7180
7181 /* Fill general parameters */
7182 ramrod_param.vlan_mac_obj = obj;
7183 ramrod_param.ramrod_flags = *ramrod_flags;
7184
7185 /* Fill a user request section if needed */
7186 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7187 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7188
7189 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7190
7191 /* Set the command: ADD or DEL */
7192 if (set)
7193 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7194 else
7195 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7196 }
7197
7198 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7199 if (rc < 0)
7200 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7201 return rc;
7202 }
7203
7204 int bnx2x_del_all_macs(struct bnx2x *bp,
7205 struct bnx2x_vlan_mac_obj *mac_obj,
7206 int mac_type, bool wait_for_comp)
7207 {
7208 int rc;
7209 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7210
7211 /* Wait for completion of requested */
7212 if (wait_for_comp)
7213 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7214
7215 /* Set the mac type of addresses we want to clear */
7216 __set_bit(mac_type, &vlan_mac_flags);
7217
7218 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7219 if (rc < 0)
7220 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7221
7222 return rc;
7223 }
7224
7225 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7226 {
7227 unsigned long ramrod_flags = 0;
7228
7229 #ifdef BCM_CNIC
7230 if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
7231 DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
7232 return 0;
7233 }
7234 #endif
7235
7236 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7237
7238 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7239 /* Eth MAC is set on RSS leading client (fp[0]) */
7240 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7241 BNX2X_ETH_MAC, &ramrod_flags);
7242 }
7243
7244 int bnx2x_setup_leading(struct bnx2x *bp)
7245 {
7246 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7247 }
7248
7249 /**
7250 * bnx2x_set_int_mode - configure interrupt mode
7251 *
7252 * @bp: driver handle
7253 *
7254 * In case of MSI-X it will also try to enable MSI-X.
7255 */
7256 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7257 {
7258 switch (int_mode) {
7259 case INT_MODE_MSI:
7260 bnx2x_enable_msi(bp);
7261 /* falling through... */
7262 case INT_MODE_INTx:
7263 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7264 DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7265 break;
7266 default:
7267 /* Set number of queues according to bp->multi_mode value */
7268 bnx2x_set_num_queues(bp);
7269
7270 DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7271 bp->num_queues);
7272
7273 /* if we can't use MSI-X we only need one fp,
7274 * so try to enable MSI-X with the requested number of fp's
7275 * and fallback to MSI or legacy INTx with one fp
7276 */
7277 if (bnx2x_enable_msix(bp)) {
7278 /* failed to enable MSI-X */
7279 if (bp->multi_mode)
7280 DP(NETIF_MSG_IFUP,
7281 "Multi requested but failed to "
7282 "enable MSI-X (%d), "
7283 "set number of queues to %d\n",
7284 bp->num_queues,
7285 1 + NON_ETH_CONTEXT_USE);
7286 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7287
7288 /* Try to enable MSI */
7289 if (!(bp->flags & DISABLE_MSI_FLAG))
7290 bnx2x_enable_msi(bp);
7291 }
7292 break;
7293 }
7294 }
7295
7296 /* must be called prioir to any HW initializations */
7297 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7298 {
7299 return L2_ILT_LINES(bp);
7300 }
7301
7302 void bnx2x_ilt_set_info(struct bnx2x *bp)
7303 {
7304 struct ilt_client_info *ilt_client;
7305 struct bnx2x_ilt *ilt = BP_ILT(bp);
7306 u16 line = 0;
7307
7308 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7309 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7310
7311 /* CDU */
7312 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7313 ilt_client->client_num = ILT_CLIENT_CDU;
7314 ilt_client->page_size = CDU_ILT_PAGE_SZ;
7315 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7316 ilt_client->start = line;
7317 line += bnx2x_cid_ilt_lines(bp);
7318 #ifdef BCM_CNIC
7319 line += CNIC_ILT_LINES;
7320 #endif
7321 ilt_client->end = line - 1;
7322
7323 DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7324 "flags 0x%x, hw psz %d\n",
7325 ilt_client->start,
7326 ilt_client->end,
7327 ilt_client->page_size,
7328 ilt_client->flags,
7329 ilog2(ilt_client->page_size >> 12));
7330
7331 /* QM */
7332 if (QM_INIT(bp->qm_cid_count)) {
7333 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7334 ilt_client->client_num = ILT_CLIENT_QM;
7335 ilt_client->page_size = QM_ILT_PAGE_SZ;
7336 ilt_client->flags = 0;
7337 ilt_client->start = line;
7338
7339 /* 4 bytes for each cid */
7340 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7341 QM_ILT_PAGE_SZ);
7342
7343 ilt_client->end = line - 1;
7344
7345 DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7346 "flags 0x%x, hw psz %d\n",
7347 ilt_client->start,
7348 ilt_client->end,
7349 ilt_client->page_size,
7350 ilt_client->flags,
7351 ilog2(ilt_client->page_size >> 12));
7352
7353 }
7354 /* SRC */
7355 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7356 #ifdef BCM_CNIC
7357 ilt_client->client_num = ILT_CLIENT_SRC;
7358 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7359 ilt_client->flags = 0;
7360 ilt_client->start = line;
7361 line += SRC_ILT_LINES;
7362 ilt_client->end = line - 1;
7363
7364 DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7365 "flags 0x%x, hw psz %d\n",
7366 ilt_client->start,
7367 ilt_client->end,
7368 ilt_client->page_size,
7369 ilt_client->flags,
7370 ilog2(ilt_client->page_size >> 12));
7371
7372 #else
7373 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7374 #endif
7375
7376 /* TM */
7377 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7378 #ifdef BCM_CNIC
7379 ilt_client->client_num = ILT_CLIENT_TM;
7380 ilt_client->page_size = TM_ILT_PAGE_SZ;
7381 ilt_client->flags = 0;
7382 ilt_client->start = line;
7383 line += TM_ILT_LINES;
7384 ilt_client->end = line - 1;
7385
7386 DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7387 "flags 0x%x, hw psz %d\n",
7388 ilt_client->start,
7389 ilt_client->end,
7390 ilt_client->page_size,
7391 ilt_client->flags,
7392 ilog2(ilt_client->page_size >> 12));
7393
7394 #else
7395 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7396 #endif
7397 BUG_ON(line > ILT_MAX_LINES);
7398 }
7399
7400 /**
7401 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7402 *
7403 * @bp: driver handle
7404 * @fp: pointer to fastpath
7405 * @init_params: pointer to parameters structure
7406 *
7407 * parameters configured:
7408 * - HC configuration
7409 * - Queue's CDU context
7410 */
7411 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7412 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7413 {
7414
7415 u8 cos;
7416 /* FCoE Queue uses Default SB, thus has no HC capabilities */
7417 if (!IS_FCOE_FP(fp)) {
7418 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7419 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7420
7421 /* If HC is supporterd, enable host coalescing in the transition
7422 * to INIT state.
7423 */
7424 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7425 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7426
7427 /* HC rate */
7428 init_params->rx.hc_rate = bp->rx_ticks ?
7429 (1000000 / bp->rx_ticks) : 0;
7430 init_params->tx.hc_rate = bp->tx_ticks ?
7431 (1000000 / bp->tx_ticks) : 0;
7432
7433 /* FW SB ID */
7434 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7435 fp->fw_sb_id;
7436
7437 /*
7438 * CQ index among the SB indices: FCoE clients uses the default
7439 * SB, therefore it's different.
7440 */
7441 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7442 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7443 }
7444
7445 /* set maximum number of COSs supported by this queue */
7446 init_params->max_cos = fp->max_cos;
7447
7448 DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7449 fp->index, init_params->max_cos);
7450
7451 /* set the context pointers queue object */
7452 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7453 init_params->cxts[cos] =
7454 &bp->context.vcxt[fp->txdata[cos].cid].eth;
7455 }
7456
7457 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7458 struct bnx2x_queue_state_params *q_params,
7459 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7460 int tx_index, bool leading)
7461 {
7462 memset(tx_only_params, 0, sizeof(*tx_only_params));
7463
7464 /* Set the command */
7465 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7466
7467 /* Set tx-only QUEUE flags: don't zero statistics */
7468 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7469
7470 /* choose the index of the cid to send the slow path on */
7471 tx_only_params->cid_index = tx_index;
7472
7473 /* Set general TX_ONLY_SETUP parameters */
7474 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7475
7476 /* Set Tx TX_ONLY_SETUP parameters */
7477 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7478
7479 DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7480 "cos %d, primary cid %d, cid %d, "
7481 "client id %d, sp-client id %d, flags %lx\n",
7482 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7483 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7484 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7485
7486 /* send the ramrod */
7487 return bnx2x_queue_state_change(bp, q_params);
7488 }
7489
7490
7491 /**
7492 * bnx2x_setup_queue - setup queue
7493 *
7494 * @bp: driver handle
7495 * @fp: pointer to fastpath
7496 * @leading: is leading
7497 *
7498 * This function performs 2 steps in a Queue state machine
7499 * actually: 1) RESET->INIT 2) INIT->SETUP
7500 */
7501
7502 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7503 bool leading)
7504 {
7505 struct bnx2x_queue_state_params q_params = {0};
7506 struct bnx2x_queue_setup_params *setup_params =
7507 &q_params.params.setup;
7508 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7509 &q_params.params.tx_only;
7510 int rc;
7511 u8 tx_index;
7512
7513 DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7514
7515 /* reset IGU state skip FCoE L2 queue */
7516 if (!IS_FCOE_FP(fp))
7517 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7518 IGU_INT_ENABLE, 0);
7519
7520 q_params.q_obj = &fp->q_obj;
7521 /* We want to wait for completion in this context */
7522 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7523
7524 /* Prepare the INIT parameters */
7525 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7526
7527 /* Set the command */
7528 q_params.cmd = BNX2X_Q_CMD_INIT;
7529
7530 /* Change the state to INIT */
7531 rc = bnx2x_queue_state_change(bp, &q_params);
7532 if (rc) {
7533 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7534 return rc;
7535 }
7536
7537 DP(BNX2X_MSG_SP, "init complete\n");
7538
7539
7540 /* Now move the Queue to the SETUP state... */
7541 memset(setup_params, 0, sizeof(*setup_params));
7542
7543 /* Set QUEUE flags */
7544 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7545
7546 /* Set general SETUP parameters */
7547 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7548 FIRST_TX_COS_INDEX);
7549
7550 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7551 &setup_params->rxq_params);
7552
7553 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7554 FIRST_TX_COS_INDEX);
7555
7556 /* Set the command */
7557 q_params.cmd = BNX2X_Q_CMD_SETUP;
7558
7559 /* Change the state to SETUP */
7560 rc = bnx2x_queue_state_change(bp, &q_params);
7561 if (rc) {
7562 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7563 return rc;
7564 }
7565
7566 /* loop through the relevant tx-only indices */
7567 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7568 tx_index < fp->max_cos;
7569 tx_index++) {
7570
7571 /* prepare and send tx-only ramrod*/
7572 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7573 tx_only_params, tx_index, leading);
7574 if (rc) {
7575 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7576 fp->index, tx_index);
7577 return rc;
7578 }
7579 }
7580
7581 return rc;
7582 }
7583
7584 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7585 {
7586 struct bnx2x_fastpath *fp = &bp->fp[index];
7587 struct bnx2x_fp_txdata *txdata;
7588 struct bnx2x_queue_state_params q_params = {0};
7589 int rc, tx_index;
7590
7591 DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7592
7593 q_params.q_obj = &fp->q_obj;
7594 /* We want to wait for completion in this context */
7595 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7596
7597
7598 /* close tx-only connections */
7599 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7600 tx_index < fp->max_cos;
7601 tx_index++){
7602
7603 /* ascertain this is a normal queue*/
7604 txdata = &fp->txdata[tx_index];
7605
7606 DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7607 txdata->txq_index);
7608
7609 /* send halt terminate on tx-only connection */
7610 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7611 memset(&q_params.params.terminate, 0,
7612 sizeof(q_params.params.terminate));
7613 q_params.params.terminate.cid_index = tx_index;
7614
7615 rc = bnx2x_queue_state_change(bp, &q_params);
7616 if (rc)
7617 return rc;
7618
7619 /* send halt terminate on tx-only connection */
7620 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7621 memset(&q_params.params.cfc_del, 0,
7622 sizeof(q_params.params.cfc_del));
7623 q_params.params.cfc_del.cid_index = tx_index;
7624 rc = bnx2x_queue_state_change(bp, &q_params);
7625 if (rc)
7626 return rc;
7627 }
7628 /* Stop the primary connection: */
7629 /* ...halt the connection */
7630 q_params.cmd = BNX2X_Q_CMD_HALT;
7631 rc = bnx2x_queue_state_change(bp, &q_params);
7632 if (rc)
7633 return rc;
7634
7635 /* ...terminate the connection */
7636 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7637 memset(&q_params.params.terminate, 0,
7638 sizeof(q_params.params.terminate));
7639 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7640 rc = bnx2x_queue_state_change(bp, &q_params);
7641 if (rc)
7642 return rc;
7643 /* ...delete cfc entry */
7644 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7645 memset(&q_params.params.cfc_del, 0,
7646 sizeof(q_params.params.cfc_del));
7647 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7648 return bnx2x_queue_state_change(bp, &q_params);
7649 }
7650
7651
7652 static void bnx2x_reset_func(struct bnx2x *bp)
7653 {
7654 int port = BP_PORT(bp);
7655 int func = BP_FUNC(bp);
7656 int i;
7657
7658 /* Disable the function in the FW */
7659 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7660 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7661 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7662 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7663
7664 /* FP SBs */
7665 for_each_eth_queue(bp, i) {
7666 struct bnx2x_fastpath *fp = &bp->fp[i];
7667 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7668 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7669 SB_DISABLED);
7670 }
7671
7672 #ifdef BCM_CNIC
7673 /* CNIC SB */
7674 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7675 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7676 SB_DISABLED);
7677 #endif
7678 /* SP SB */
7679 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7680 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7681 SB_DISABLED);
7682
7683 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7684 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7685 0);
7686
7687 /* Configure IGU */
7688 if (bp->common.int_block == INT_BLOCK_HC) {
7689 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7690 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7691 } else {
7692 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7693 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7694 }
7695
7696 #ifdef BCM_CNIC
7697 /* Disable Timer scan */
7698 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7699 /*
7700 * Wait for at least 10ms and up to 2 second for the timers scan to
7701 * complete
7702 */
7703 for (i = 0; i < 200; i++) {
7704 msleep(10);
7705 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7706 break;
7707 }
7708 #endif
7709 /* Clear ILT */
7710 bnx2x_clear_func_ilt(bp, func);
7711
7712 /* Timers workaround bug for E2: if this is vnic-3,
7713 * we need to set the entire ilt range for this timers.
7714 */
7715 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7716 struct ilt_client_info ilt_cli;
7717 /* use dummy TM client */
7718 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7719 ilt_cli.start = 0;
7720 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7721 ilt_cli.client_num = ILT_CLIENT_TM;
7722
7723 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7724 }
7725
7726 /* this assumes that reset_port() called before reset_func()*/
7727 if (!CHIP_IS_E1x(bp))
7728 bnx2x_pf_disable(bp);
7729
7730 bp->dmae_ready = 0;
7731 }
7732
7733 static void bnx2x_reset_port(struct bnx2x *bp)
7734 {
7735 int port = BP_PORT(bp);
7736 u32 val;
7737
7738 /* Reset physical Link */
7739 bnx2x__link_reset(bp);
7740
7741 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7742
7743 /* Do not rcv packets to BRB */
7744 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7745 /* Do not direct rcv packets that are not for MCP to the BRB */
7746 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7747 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7748
7749 /* Configure AEU */
7750 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7751
7752 msleep(100);
7753 /* Check for BRB port occupancy */
7754 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7755 if (val)
7756 DP(NETIF_MSG_IFDOWN,
7757 "BRB1 is not empty %d blocks are occupied\n", val);
7758
7759 /* TODO: Close Doorbell port? */
7760 }
7761
7762 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7763 {
7764 struct bnx2x_func_state_params func_params = {0};
7765
7766 /* Prepare parameters for function state transitions */
7767 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7768
7769 func_params.f_obj = &bp->func_obj;
7770 func_params.cmd = BNX2X_F_CMD_HW_RESET;
7771
7772 func_params.params.hw_init.load_phase = load_code;
7773
7774 return bnx2x_func_state_change(bp, &func_params);
7775 }
7776
7777 static inline int bnx2x_func_stop(struct bnx2x *bp)
7778 {
7779 struct bnx2x_func_state_params func_params = {0};
7780 int rc;
7781
7782 /* Prepare parameters for function state transitions */
7783 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7784 func_params.f_obj = &bp->func_obj;
7785 func_params.cmd = BNX2X_F_CMD_STOP;
7786
7787 /*
7788 * Try to stop the function the 'good way'. If fails (in case
7789 * of a parity error during bnx2x_chip_cleanup()) and we are
7790 * not in a debug mode, perform a state transaction in order to
7791 * enable further HW_RESET transaction.
7792 */
7793 rc = bnx2x_func_state_change(bp, &func_params);
7794 if (rc) {
7795 #ifdef BNX2X_STOP_ON_ERROR
7796 return rc;
7797 #else
7798 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7799 "transaction\n");
7800 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7801 return bnx2x_func_state_change(bp, &func_params);
7802 #endif
7803 }
7804
7805 return 0;
7806 }
7807
7808 /**
7809 * bnx2x_send_unload_req - request unload mode from the MCP.
7810 *
7811 * @bp: driver handle
7812 * @unload_mode: requested function's unload mode
7813 *
7814 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7815 */
7816 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7817 {
7818 u32 reset_code = 0;
7819 int port = BP_PORT(bp);
7820
7821 /* Select the UNLOAD request mode */
7822 if (unload_mode == UNLOAD_NORMAL)
7823 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7824
7825 else if (bp->flags & NO_WOL_FLAG)
7826 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7827
7828 else if (bp->wol) {
7829 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7830 u8 *mac_addr = bp->dev->dev_addr;
7831 u32 val;
7832 u16 pmc;
7833
7834 /* The mac address is written to entries 1-4 to
7835 * preserve entry 0 which is used by the PMF
7836 */
7837 u8 entry = (BP_VN(bp) + 1)*8;
7838
7839 val = (mac_addr[0] << 8) | mac_addr[1];
7840 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7841
7842 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7843 (mac_addr[4] << 8) | mac_addr[5];
7844 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7845
7846 /* Enable the PME and clear the status */
7847 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7848 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7849 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7850
7851 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7852
7853 } else
7854 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7855
7856 /* Send the request to the MCP */
7857 if (!BP_NOMCP(bp))
7858 reset_code = bnx2x_fw_command(bp, reset_code, 0);
7859 else {
7860 int path = BP_PATH(bp);
7861
7862 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] "
7863 "%d, %d, %d\n",
7864 path, load_count[path][0], load_count[path][1],
7865 load_count[path][2]);
7866 load_count[path][0]--;
7867 load_count[path][1 + port]--;
7868 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] "
7869 "%d, %d, %d\n",
7870 path, load_count[path][0], load_count[path][1],
7871 load_count[path][2]);
7872 if (load_count[path][0] == 0)
7873 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7874 else if (load_count[path][1 + port] == 0)
7875 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7876 else
7877 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7878 }
7879
7880 return reset_code;
7881 }
7882
7883 /**
7884 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7885 *
7886 * @bp: driver handle
7887 */
7888 void bnx2x_send_unload_done(struct bnx2x *bp)
7889 {
7890 /* Report UNLOAD_DONE to MCP */
7891 if (!BP_NOMCP(bp))
7892 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7893 }
7894
7895 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7896 {
7897 int tout = 50;
7898 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7899
7900 if (!bp->port.pmf)
7901 return 0;
7902
7903 /*
7904 * (assumption: No Attention from MCP at this stage)
7905 * PMF probably in the middle of TXdisable/enable transaction
7906 * 1. Sync IRS for default SB
7907 * 2. Sync SP queue - this guarantes us that attention handling started
7908 * 3. Wait, that TXdisable/enable transaction completes
7909 *
7910 * 1+2 guranty that if DCBx attention was scheduled it already changed
7911 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7912 * received complettion for the transaction the state is TX_STOPPED.
7913 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7914 * transaction.
7915 */
7916
7917 /* make sure default SB ISR is done */
7918 if (msix)
7919 synchronize_irq(bp->msix_table[0].vector);
7920 else
7921 synchronize_irq(bp->pdev->irq);
7922
7923 flush_workqueue(bnx2x_wq);
7924
7925 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7926 BNX2X_F_STATE_STARTED && tout--)
7927 msleep(20);
7928
7929 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7930 BNX2X_F_STATE_STARTED) {
7931 #ifdef BNX2X_STOP_ON_ERROR
7932 return -EBUSY;
7933 #else
7934 /*
7935 * Failed to complete the transaction in a "good way"
7936 * Force both transactions with CLR bit
7937 */
7938 struct bnx2x_func_state_params func_params = {0};
7939
7940 DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7941 "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7942
7943 func_params.f_obj = &bp->func_obj;
7944 __set_bit(RAMROD_DRV_CLR_ONLY,
7945 &func_params.ramrod_flags);
7946
7947 /* STARTED-->TX_ST0PPED */
7948 func_params.cmd = BNX2X_F_CMD_TX_STOP;
7949 bnx2x_func_state_change(bp, &func_params);
7950
7951 /* TX_ST0PPED-->STARTED */
7952 func_params.cmd = BNX2X_F_CMD_TX_START;
7953 return bnx2x_func_state_change(bp, &func_params);
7954 #endif
7955 }
7956
7957 return 0;
7958 }
7959
7960 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7961 {
7962 int port = BP_PORT(bp);
7963 int i, rc = 0;
7964 u8 cos;
7965 struct bnx2x_mcast_ramrod_params rparam = {0};
7966 u32 reset_code;
7967
7968 /* Wait until tx fastpath tasks complete */
7969 for_each_tx_queue(bp, i) {
7970 struct bnx2x_fastpath *fp = &bp->fp[i];
7971
7972 for_each_cos_in_tx_queue(fp, cos)
7973 rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7974 #ifdef BNX2X_STOP_ON_ERROR
7975 if (rc)
7976 return;
7977 #endif
7978 }
7979
7980 /* Give HW time to discard old tx messages */
7981 usleep_range(1000, 1000);
7982
7983 /* Clean all ETH MACs */
7984 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7985 if (rc < 0)
7986 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7987
7988 /* Clean up UC list */
7989 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7990 true);
7991 if (rc < 0)
7992 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7993 "%d\n", rc);
7994
7995 /* Disable LLH */
7996 if (!CHIP_IS_E1(bp))
7997 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7998
7999 /* Set "drop all" (stop Rx).
8000 * We need to take a netif_addr_lock() here in order to prevent
8001 * a race between the completion code and this code.
8002 */
8003 netif_addr_lock_bh(bp->dev);
8004 /* Schedule the rx_mode command */
8005 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8006 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8007 else
8008 bnx2x_set_storm_rx_mode(bp);
8009
8010 /* Cleanup multicast configuration */
8011 rparam.mcast_obj = &bp->mcast_obj;
8012 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8013 if (rc < 0)
8014 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8015
8016 netif_addr_unlock_bh(bp->dev);
8017
8018
8019
8020 /*
8021 * Send the UNLOAD_REQUEST to the MCP. This will return if
8022 * this function should perform FUNC, PORT or COMMON HW
8023 * reset.
8024 */
8025 reset_code = bnx2x_send_unload_req(bp, unload_mode);
8026
8027 /*
8028 * (assumption: No Attention from MCP at this stage)
8029 * PMF probably in the middle of TXdisable/enable transaction
8030 */
8031 rc = bnx2x_func_wait_started(bp);
8032 if (rc) {
8033 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8034 #ifdef BNX2X_STOP_ON_ERROR
8035 return;
8036 #endif
8037 }
8038
8039 /* Close multi and leading connections
8040 * Completions for ramrods are collected in a synchronous way
8041 */
8042 for_each_queue(bp, i)
8043 if (bnx2x_stop_queue(bp, i))
8044 #ifdef BNX2X_STOP_ON_ERROR
8045 return;
8046 #else
8047 goto unload_error;
8048 #endif
8049 /* If SP settings didn't get completed so far - something
8050 * very wrong has happen.
8051 */
8052 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8053 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8054
8055 #ifndef BNX2X_STOP_ON_ERROR
8056 unload_error:
8057 #endif
8058 rc = bnx2x_func_stop(bp);
8059 if (rc) {
8060 BNX2X_ERR("Function stop failed!\n");
8061 #ifdef BNX2X_STOP_ON_ERROR
8062 return;
8063 #endif
8064 }
8065
8066 /* Disable HW interrupts, NAPI */
8067 bnx2x_netif_stop(bp, 1);
8068
8069 /* Release IRQs */
8070 bnx2x_free_irq(bp);
8071
8072 /* Reset the chip */
8073 rc = bnx2x_reset_hw(bp, reset_code);
8074 if (rc)
8075 BNX2X_ERR("HW_RESET failed\n");
8076
8077
8078 /* Report UNLOAD_DONE to MCP */
8079 bnx2x_send_unload_done(bp);
8080 }
8081
8082 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8083 {
8084 u32 val;
8085
8086 DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
8087
8088 if (CHIP_IS_E1(bp)) {
8089 int port = BP_PORT(bp);
8090 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8091 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8092
8093 val = REG_RD(bp, addr);
8094 val &= ~(0x300);
8095 REG_WR(bp, addr, val);
8096 } else {
8097 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8098 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8099 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8100 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8101 }
8102 }
8103
8104 /* Close gates #2, #3 and #4: */
8105 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8106 {
8107 u32 val;
8108
8109 /* Gates #2 and #4a are closed/opened for "not E1" only */
8110 if (!CHIP_IS_E1(bp)) {
8111 /* #4 */
8112 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8113 /* #2 */
8114 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8115 }
8116
8117 /* #3 */
8118 if (CHIP_IS_E1x(bp)) {
8119 /* Prevent interrupts from HC on both ports */
8120 val = REG_RD(bp, HC_REG_CONFIG_1);
8121 REG_WR(bp, HC_REG_CONFIG_1,
8122 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8123 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8124
8125 val = REG_RD(bp, HC_REG_CONFIG_0);
8126 REG_WR(bp, HC_REG_CONFIG_0,
8127 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8128 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8129 } else {
8130 /* Prevent incomming interrupts in IGU */
8131 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8132
8133 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8134 (!close) ?
8135 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8136 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8137 }
8138
8139 DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
8140 close ? "closing" : "opening");
8141 mmiowb();
8142 }
8143
8144 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
8145
8146 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8147 {
8148 /* Do some magic... */
8149 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8150 *magic_val = val & SHARED_MF_CLP_MAGIC;
8151 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8152 }
8153
8154 /**
8155 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8156 *
8157 * @bp: driver handle
8158 * @magic_val: old value of the `magic' bit.
8159 */
8160 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8161 {
8162 /* Restore the `magic' bit value... */
8163 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8164 MF_CFG_WR(bp, shared_mf_config.clp_mb,
8165 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8166 }
8167
8168 /**
8169 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8170 *
8171 * @bp: driver handle
8172 * @magic_val: old value of 'magic' bit.
8173 *
8174 * Takes care of CLP configurations.
8175 */
8176 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8177 {
8178 u32 shmem;
8179 u32 validity_offset;
8180
8181 DP(NETIF_MSG_HW, "Starting\n");
8182
8183 /* Set `magic' bit in order to save MF config */
8184 if (!CHIP_IS_E1(bp))
8185 bnx2x_clp_reset_prep(bp, magic_val);
8186
8187 /* Get shmem offset */
8188 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8189 validity_offset = offsetof(struct shmem_region, validity_map[0]);
8190
8191 /* Clear validity map flags */
8192 if (shmem > 0)
8193 REG_WR(bp, shmem + validity_offset, 0);
8194 }
8195
8196 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
8197 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
8198
8199 /**
8200 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8201 *
8202 * @bp: driver handle
8203 */
8204 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8205 {
8206 /* special handling for emulation and FPGA,
8207 wait 10 times longer */
8208 if (CHIP_REV_IS_SLOW(bp))
8209 msleep(MCP_ONE_TIMEOUT*10);
8210 else
8211 msleep(MCP_ONE_TIMEOUT);
8212 }
8213
8214 /*
8215 * initializes bp->common.shmem_base and waits for validity signature to appear
8216 */
8217 static int bnx2x_init_shmem(struct bnx2x *bp)
8218 {
8219 int cnt = 0;
8220 u32 val = 0;
8221
8222 do {
8223 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8224 if (bp->common.shmem_base) {
8225 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8226 if (val & SHR_MEM_VALIDITY_MB)
8227 return 0;
8228 }
8229
8230 bnx2x_mcp_wait_one(bp);
8231
8232 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8233
8234 BNX2X_ERR("BAD MCP validity signature\n");
8235
8236 return -ENODEV;
8237 }
8238
8239 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8240 {
8241 int rc = bnx2x_init_shmem(bp);
8242
8243 /* Restore the `magic' bit value */
8244 if (!CHIP_IS_E1(bp))
8245 bnx2x_clp_reset_done(bp, magic_val);
8246
8247 return rc;
8248 }
8249
8250 static void bnx2x_pxp_prep(struct bnx2x *bp)
8251 {
8252 if (!CHIP_IS_E1(bp)) {
8253 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8254 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8255 mmiowb();
8256 }
8257 }
8258
8259 /*
8260 * Reset the whole chip except for:
8261 * - PCIE core
8262 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8263 * one reset bit)
8264 * - IGU
8265 * - MISC (including AEU)
8266 * - GRC
8267 * - RBCN, RBCP
8268 */
8269 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8270 {
8271 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8272 u32 global_bits2, stay_reset2;
8273
8274 /*
8275 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8276 * (per chip) blocks.
8277 */
8278 global_bits2 =
8279 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8280 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8281
8282 /* Don't reset the following blocks */
8283 not_reset_mask1 =
8284 MISC_REGISTERS_RESET_REG_1_RST_HC |
8285 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8286 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8287
8288 not_reset_mask2 =
8289 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8290 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8291 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8292 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8293 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8294 MISC_REGISTERS_RESET_REG_2_RST_GRC |
8295 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8296 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8297 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8298 MISC_REGISTERS_RESET_REG_2_PGLC;
8299
8300 /*
8301 * Keep the following blocks in reset:
8302 * - all xxMACs are handled by the bnx2x_link code.
8303 */
8304 stay_reset2 =
8305 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8306 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8307 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8308 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8309 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8310 MISC_REGISTERS_RESET_REG_2_UMAC1 |
8311 MISC_REGISTERS_RESET_REG_2_XMAC |
8312 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8313
8314 /* Full reset masks according to the chip */
8315 reset_mask1 = 0xffffffff;
8316
8317 if (CHIP_IS_E1(bp))
8318 reset_mask2 = 0xffff;
8319 else if (CHIP_IS_E1H(bp))
8320 reset_mask2 = 0x1ffff;
8321 else if (CHIP_IS_E2(bp))
8322 reset_mask2 = 0xfffff;
8323 else /* CHIP_IS_E3 */
8324 reset_mask2 = 0x3ffffff;
8325
8326 /* Don't reset global blocks unless we need to */
8327 if (!global)
8328 reset_mask2 &= ~global_bits2;
8329
8330 /*
8331 * In case of attention in the QM, we need to reset PXP
8332 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8333 * because otherwise QM reset would release 'close the gates' shortly
8334 * before resetting the PXP, then the PSWRQ would send a write
8335 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8336 * read the payload data from PSWWR, but PSWWR would not
8337 * respond. The write queue in PGLUE would stuck, dmae commands
8338 * would not return. Therefore it's important to reset the second
8339 * reset register (containing the
8340 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8341 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8342 * bit).
8343 */
8344 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8345 reset_mask2 & (~not_reset_mask2));
8346
8347 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8348 reset_mask1 & (~not_reset_mask1));
8349
8350 barrier();
8351 mmiowb();
8352
8353 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8354 reset_mask2 & (~stay_reset2));
8355
8356 barrier();
8357 mmiowb();
8358
8359 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8360 mmiowb();
8361 }
8362
8363 /**
8364 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8365 * It should get cleared in no more than 1s.
8366 *
8367 * @bp: driver handle
8368 *
8369 * It should get cleared in no more than 1s. Returns 0 if
8370 * pending writes bit gets cleared.
8371 */
8372 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8373 {
8374 u32 cnt = 1000;
8375 u32 pend_bits = 0;
8376
8377 do {
8378 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8379
8380 if (pend_bits == 0)
8381 break;
8382
8383 usleep_range(1000, 1000);
8384 } while (cnt-- > 0);
8385
8386 if (cnt <= 0) {
8387 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8388 pend_bits);
8389 return -EBUSY;
8390 }
8391
8392 return 0;
8393 }
8394
8395 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8396 {
8397 int cnt = 1000;
8398 u32 val = 0;
8399 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8400
8401
8402 /* Empty the Tetris buffer, wait for 1s */
8403 do {
8404 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8405 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8406 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8407 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8408 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8409 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8410 ((port_is_idle_0 & 0x1) == 0x1) &&
8411 ((port_is_idle_1 & 0x1) == 0x1) &&
8412 (pgl_exp_rom2 == 0xffffffff))
8413 break;
8414 usleep_range(1000, 1000);
8415 } while (cnt-- > 0);
8416
8417 if (cnt <= 0) {
8418 DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8419 " are still"
8420 " outstanding read requests after 1s!\n");
8421 DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8422 " port_is_idle_0=0x%08x,"
8423 " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8424 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8425 pgl_exp_rom2);
8426 return -EAGAIN;
8427 }
8428
8429 barrier();
8430
8431 /* Close gates #2, #3 and #4 */
8432 bnx2x_set_234_gates(bp, true);
8433
8434 /* Poll for IGU VQs for 57712 and newer chips */
8435 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8436 return -EAGAIN;
8437
8438
8439 /* TBD: Indicate that "process kill" is in progress to MCP */
8440
8441 /* Clear "unprepared" bit */
8442 REG_WR(bp, MISC_REG_UNPREPARED, 0);
8443 barrier();
8444
8445 /* Make sure all is written to the chip before the reset */
8446 mmiowb();
8447
8448 /* Wait for 1ms to empty GLUE and PCI-E core queues,
8449 * PSWHST, GRC and PSWRD Tetris buffer.
8450 */
8451 usleep_range(1000, 1000);
8452
8453 /* Prepare to chip reset: */
8454 /* MCP */
8455 if (global)
8456 bnx2x_reset_mcp_prep(bp, &val);
8457
8458 /* PXP */
8459 bnx2x_pxp_prep(bp);
8460 barrier();
8461
8462 /* reset the chip */
8463 bnx2x_process_kill_chip_reset(bp, global);
8464 barrier();
8465
8466 /* Recover after reset: */
8467 /* MCP */
8468 if (global && bnx2x_reset_mcp_comp(bp, val))
8469 return -EAGAIN;
8470
8471 /* TBD: Add resetting the NO_MCP mode DB here */
8472
8473 /* PXP */
8474 bnx2x_pxp_prep(bp);
8475
8476 /* Open the gates #2, #3 and #4 */
8477 bnx2x_set_234_gates(bp, false);
8478
8479 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8480 * reset state, re-enable attentions. */
8481
8482 return 0;
8483 }
8484
8485 int bnx2x_leader_reset(struct bnx2x *bp)
8486 {
8487 int rc = 0;
8488 bool global = bnx2x_reset_is_global(bp);
8489 u32 load_code;
8490
8491 /* if not going to reset MCP - load "fake" driver to reset HW while
8492 * driver is owner of the HW
8493 */
8494 if (!global && !BP_NOMCP(bp)) {
8495 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0);
8496 if (!load_code) {
8497 BNX2X_ERR("MCP response failure, aborting\n");
8498 rc = -EAGAIN;
8499 goto exit_leader_reset;
8500 }
8501 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
8502 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
8503 BNX2X_ERR("MCP unexpected resp, aborting\n");
8504 rc = -EAGAIN;
8505 goto exit_leader_reset2;
8506 }
8507 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
8508 if (!load_code) {
8509 BNX2X_ERR("MCP response failure, aborting\n");
8510 rc = -EAGAIN;
8511 goto exit_leader_reset2;
8512 }
8513 }
8514
8515 /* Try to recover after the failure */
8516 if (bnx2x_process_kill(bp, global)) {
8517 netdev_err(bp->dev, "Something bad had happen on engine %d! "
8518 "Aii!\n", BP_PATH(bp));
8519 rc = -EAGAIN;
8520 goto exit_leader_reset2;
8521 }
8522
8523 /*
8524 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8525 * state.
8526 */
8527 bnx2x_set_reset_done(bp);
8528 if (global)
8529 bnx2x_clear_reset_global(bp);
8530
8531 exit_leader_reset2:
8532 /* unload "fake driver" if it was loaded */
8533 if (!global && !BP_NOMCP(bp)) {
8534 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
8535 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8536 }
8537 exit_leader_reset:
8538 bp->is_leader = 0;
8539 bnx2x_release_leader_lock(bp);
8540 smp_mb();
8541 return rc;
8542 }
8543
8544 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8545 {
8546 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8547
8548 /* Disconnect this device */
8549 netif_device_detach(bp->dev);
8550
8551 /*
8552 * Block ifup for all function on this engine until "process kill"
8553 * or power cycle.
8554 */
8555 bnx2x_set_reset_in_progress(bp);
8556
8557 /* Shut down the power */
8558 bnx2x_set_power_state(bp, PCI_D3hot);
8559
8560 bp->recovery_state = BNX2X_RECOVERY_FAILED;
8561
8562 smp_mb();
8563 }
8564
8565 /*
8566 * Assumption: runs under rtnl lock. This together with the fact
8567 * that it's called only from bnx2x_sp_rtnl() ensure that it
8568 * will never be called when netif_running(bp->dev) is false.
8569 */
8570 static void bnx2x_parity_recover(struct bnx2x *bp)
8571 {
8572 bool global = false;
8573 u32 error_recovered, error_unrecovered;
8574 bool is_parity;
8575
8576 DP(NETIF_MSG_HW, "Handling parity\n");
8577 while (1) {
8578 switch (bp->recovery_state) {
8579 case BNX2X_RECOVERY_INIT:
8580 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8581 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
8582 WARN_ON(!is_parity);
8583
8584 /* Try to get a LEADER_LOCK HW lock */
8585 if (bnx2x_trylock_leader_lock(bp)) {
8586 bnx2x_set_reset_in_progress(bp);
8587 /*
8588 * Check if there is a global attention and if
8589 * there was a global attention, set the global
8590 * reset bit.
8591 */
8592
8593 if (global)
8594 bnx2x_set_reset_global(bp);
8595
8596 bp->is_leader = 1;
8597 }
8598
8599 /* Stop the driver */
8600 /* If interface has been removed - break */
8601 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8602 return;
8603
8604 bp->recovery_state = BNX2X_RECOVERY_WAIT;
8605
8606 /* Ensure "is_leader", MCP command sequence and
8607 * "recovery_state" update values are seen on other
8608 * CPUs.
8609 */
8610 smp_mb();
8611 break;
8612
8613 case BNX2X_RECOVERY_WAIT:
8614 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8615 if (bp->is_leader) {
8616 int other_engine = BP_PATH(bp) ? 0 : 1;
8617 bool other_load_status =
8618 bnx2x_get_load_status(bp, other_engine);
8619 bool load_status =
8620 bnx2x_get_load_status(bp, BP_PATH(bp));
8621 global = bnx2x_reset_is_global(bp);
8622
8623 /*
8624 * In case of a parity in a global block, let
8625 * the first leader that performs a
8626 * leader_reset() reset the global blocks in
8627 * order to clear global attentions. Otherwise
8628 * the the gates will remain closed for that
8629 * engine.
8630 */
8631 if (load_status ||
8632 (global && other_load_status)) {
8633 /* Wait until all other functions get
8634 * down.
8635 */
8636 schedule_delayed_work(&bp->sp_rtnl_task,
8637 HZ/10);
8638 return;
8639 } else {
8640 /* If all other functions got down -
8641 * try to bring the chip back to
8642 * normal. In any case it's an exit
8643 * point for a leader.
8644 */
8645 if (bnx2x_leader_reset(bp)) {
8646 bnx2x_recovery_failed(bp);
8647 return;
8648 }
8649
8650 /* If we are here, means that the
8651 * leader has succeeded and doesn't
8652 * want to be a leader any more. Try
8653 * to continue as a none-leader.
8654 */
8655 break;
8656 }
8657 } else { /* non-leader */
8658 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8659 /* Try to get a LEADER_LOCK HW lock as
8660 * long as a former leader may have
8661 * been unloaded by the user or
8662 * released a leadership by another
8663 * reason.
8664 */
8665 if (bnx2x_trylock_leader_lock(bp)) {
8666 /* I'm a leader now! Restart a
8667 * switch case.
8668 */
8669 bp->is_leader = 1;
8670 break;
8671 }
8672
8673 schedule_delayed_work(&bp->sp_rtnl_task,
8674 HZ/10);
8675 return;
8676
8677 } else {
8678 /*
8679 * If there was a global attention, wait
8680 * for it to be cleared.
8681 */
8682 if (bnx2x_reset_is_global(bp)) {
8683 schedule_delayed_work(
8684 &bp->sp_rtnl_task,
8685 HZ/10);
8686 return;
8687 }
8688
8689 error_recovered =
8690 bp->eth_stats.recoverable_error;
8691 error_unrecovered =
8692 bp->eth_stats.unrecoverable_error;
8693 bp->recovery_state =
8694 BNX2X_RECOVERY_NIC_LOADING;
8695 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
8696 error_unrecovered++;
8697 netdev_err(bp->dev,
8698 "Recovery failed. "
8699 "Power cycle "
8700 "needed\n");
8701 /* Disconnect this device */
8702 netif_device_detach(bp->dev);
8703 /* Shut down the power */
8704 bnx2x_set_power_state(
8705 bp, PCI_D3hot);
8706 smp_mb();
8707 } else {
8708 bp->recovery_state =
8709 BNX2X_RECOVERY_DONE;
8710 error_recovered++;
8711 smp_mb();
8712 }
8713 bp->eth_stats.recoverable_error =
8714 error_recovered;
8715 bp->eth_stats.unrecoverable_error =
8716 error_unrecovered;
8717
8718 return;
8719 }
8720 }
8721 default:
8722 return;
8723 }
8724 }
8725 }
8726
8727 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8728 * scheduled on a general queue in order to prevent a dead lock.
8729 */
8730 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8731 {
8732 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8733
8734 rtnl_lock();
8735
8736 if (!netif_running(bp->dev))
8737 goto sp_rtnl_exit;
8738
8739 /* if stop on error is defined no recovery flows should be executed */
8740 #ifdef BNX2X_STOP_ON_ERROR
8741 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8742 "so reset not done to allow debug dump,\n"
8743 "you will need to reboot when done\n");
8744 goto sp_rtnl_not_reset;
8745 #endif
8746
8747 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8748 /*
8749 * Clear all pending SP commands as we are going to reset the
8750 * function anyway.
8751 */
8752 bp->sp_rtnl_state = 0;
8753 smp_mb();
8754
8755 bnx2x_parity_recover(bp);
8756
8757 goto sp_rtnl_exit;
8758 }
8759
8760 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8761 /*
8762 * Clear all pending SP commands as we are going to reset the
8763 * function anyway.
8764 */
8765 bp->sp_rtnl_state = 0;
8766 smp_mb();
8767
8768 bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8769 bnx2x_nic_load(bp, LOAD_NORMAL);
8770
8771 goto sp_rtnl_exit;
8772 }
8773 #ifdef BNX2X_STOP_ON_ERROR
8774 sp_rtnl_not_reset:
8775 #endif
8776 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8777 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8778
8779 /*
8780 * in case of fan failure we need to reset id if the "stop on error"
8781 * debug flag is set, since we trying to prevent permanent overheating
8782 * damage
8783 */
8784 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8785 DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
8786 netif_device_detach(bp->dev);
8787 bnx2x_close(bp->dev);
8788 }
8789
8790 sp_rtnl_exit:
8791 rtnl_unlock();
8792 }
8793
8794 /* end of nic load/unload */
8795
8796 static void bnx2x_period_task(struct work_struct *work)
8797 {
8798 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8799
8800 if (!netif_running(bp->dev))
8801 goto period_task_exit;
8802
8803 if (CHIP_REV_IS_SLOW(bp)) {
8804 BNX2X_ERR("period task called on emulation, ignoring\n");
8805 goto period_task_exit;
8806 }
8807
8808 bnx2x_acquire_phy_lock(bp);
8809 /*
8810 * The barrier is needed to ensure the ordering between the writing to
8811 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8812 * the reading here.
8813 */
8814 smp_mb();
8815 if (bp->port.pmf) {
8816 bnx2x_period_func(&bp->link_params, &bp->link_vars);
8817
8818 /* Re-queue task in 1 sec */
8819 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8820 }
8821
8822 bnx2x_release_phy_lock(bp);
8823 period_task_exit:
8824 return;
8825 }
8826
8827 /*
8828 * Init service functions
8829 */
8830
8831 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8832 {
8833 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8834 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8835 return base + (BP_ABS_FUNC(bp)) * stride;
8836 }
8837
8838 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8839 {
8840 u32 reg = bnx2x_get_pretend_reg(bp);
8841
8842 /* Flush all outstanding writes */
8843 mmiowb();
8844
8845 /* Pretend to be function 0 */
8846 REG_WR(bp, reg, 0);
8847 REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
8848
8849 /* From now we are in the "like-E1" mode */
8850 bnx2x_int_disable(bp);
8851
8852 /* Flush all outstanding writes */
8853 mmiowb();
8854
8855 /* Restore the original function */
8856 REG_WR(bp, reg, BP_ABS_FUNC(bp));
8857 REG_RD(bp, reg);
8858 }
8859
8860 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8861 {
8862 if (CHIP_IS_E1(bp))
8863 bnx2x_int_disable(bp);
8864 else
8865 bnx2x_undi_int_disable_e1h(bp);
8866 }
8867
8868 static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8869 {
8870 u32 val;
8871
8872 /* possibly another driver is trying to reset the chip */
8873 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8874
8875 /* check if doorbell queue is reset */
8876 if (REG_RD(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET)
8877 & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
8878
8879 /*
8880 * Check if it is the UNDI driver
8881 * UNDI driver initializes CID offset for normal bell to 0x7
8882 */
8883 val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8884 if (val == 0x7) {
8885 u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8886 /* save our pf_num */
8887 int orig_pf_num = bp->pf_num;
8888 int port;
8889 u32 swap_en, swap_val, value;
8890
8891 /* clear the UNDI indication */
8892 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8893
8894 BNX2X_DEV_INFO("UNDI is active! reset device\n");
8895
8896 /* try unload UNDI on port 0 */
8897 bp->pf_num = 0;
8898 bp->fw_seq =
8899 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8900 DRV_MSG_SEQ_NUMBER_MASK);
8901 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8902
8903 /* if UNDI is loaded on the other port */
8904 if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8905
8906 /* send "DONE" for previous unload */
8907 bnx2x_fw_command(bp,
8908 DRV_MSG_CODE_UNLOAD_DONE, 0);
8909
8910 /* unload UNDI on port 1 */
8911 bp->pf_num = 1;
8912 bp->fw_seq =
8913 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8914 DRV_MSG_SEQ_NUMBER_MASK);
8915 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8916
8917 bnx2x_fw_command(bp, reset_code, 0);
8918 }
8919
8920 bnx2x_undi_int_disable(bp);
8921 port = BP_PORT(bp);
8922
8923 /* close input traffic and wait for it */
8924 /* Do not rcv packets to BRB */
8925 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8926 NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8927 /* Do not direct rcv packets that are not for MCP to
8928 * the BRB */
8929 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8930 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8931 /* clear AEU */
8932 REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8933 MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8934 msleep(10);
8935
8936 /* save NIG port swap info */
8937 swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8938 swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8939 /* reset device */
8940 REG_WR(bp,
8941 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8942 0xd3ffffff);
8943
8944 value = 0x1400;
8945 if (CHIP_IS_E3(bp)) {
8946 value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8947 value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8948 }
8949
8950 REG_WR(bp,
8951 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8952 value);
8953
8954 /* take the NIG out of reset and restore swap values */
8955 REG_WR(bp,
8956 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8957 MISC_REGISTERS_RESET_REG_1_RST_NIG);
8958 REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8959 REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8960
8961 /* send unload done to the MCP */
8962 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8963
8964 /* restore our func and fw_seq */
8965 bp->pf_num = orig_pf_num;
8966 }
8967 }
8968
8969 /* now it's safe to release the lock */
8970 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8971 }
8972
8973 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8974 {
8975 u32 val, val2, val3, val4, id, boot_mode;
8976 u16 pmc;
8977
8978 /* Get the chip revision id and number. */
8979 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8980 val = REG_RD(bp, MISC_REG_CHIP_NUM);
8981 id = ((val & 0xffff) << 16);
8982 val = REG_RD(bp, MISC_REG_CHIP_REV);
8983 id |= ((val & 0xf) << 12);
8984 val = REG_RD(bp, MISC_REG_CHIP_METAL);
8985 id |= ((val & 0xff) << 4);
8986 val = REG_RD(bp, MISC_REG_BOND_ID);
8987 id |= (val & 0xf);
8988 bp->common.chip_id = id;
8989
8990 /* Set doorbell size */
8991 bp->db_size = (1 << BNX2X_DB_SHIFT);
8992
8993 if (!CHIP_IS_E1x(bp)) {
8994 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8995 if ((val & 1) == 0)
8996 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8997 else
8998 val = (val >> 1) & 1;
8999 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9000 "2_PORT_MODE");
9001 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9002 CHIP_2_PORT_MODE;
9003
9004 if (CHIP_MODE_IS_4_PORT(bp))
9005 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
9006 else
9007 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
9008 } else {
9009 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9010 bp->pfid = bp->pf_num; /* 0..7 */
9011 }
9012
9013 bp->link_params.chip_id = bp->common.chip_id;
9014 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9015
9016 val = (REG_RD(bp, 0x2874) & 0x55);
9017 if ((bp->common.chip_id & 0x1) ||
9018 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9019 bp->flags |= ONE_PORT_FLAG;
9020 BNX2X_DEV_INFO("single port device\n");
9021 }
9022
9023 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9024 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9025 (val & MCPR_NVM_CFG4_FLASH_SIZE));
9026 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9027 bp->common.flash_size, bp->common.flash_size);
9028
9029 bnx2x_init_shmem(bp);
9030
9031
9032
9033 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9034 MISC_REG_GENERIC_CR_1 :
9035 MISC_REG_GENERIC_CR_0));
9036
9037 bp->link_params.shmem_base = bp->common.shmem_base;
9038 bp->link_params.shmem2_base = bp->common.shmem2_base;
9039 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
9040 bp->common.shmem_base, bp->common.shmem2_base);
9041
9042 if (!bp->common.shmem_base) {
9043 BNX2X_DEV_INFO("MCP not active\n");
9044 bp->flags |= NO_MCP_FLAG;
9045 return;
9046 }
9047
9048 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9049 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9050
9051 bp->link_params.hw_led_mode = ((bp->common.hw_config &
9052 SHARED_HW_CFG_LED_MODE_MASK) >>
9053 SHARED_HW_CFG_LED_MODE_SHIFT);
9054
9055 bp->link_params.feature_config_flags = 0;
9056 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9057 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9058 bp->link_params.feature_config_flags |=
9059 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9060 else
9061 bp->link_params.feature_config_flags &=
9062 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9063
9064 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9065 bp->common.bc_ver = val;
9066 BNX2X_DEV_INFO("bc_ver %X\n", val);
9067 if (val < BNX2X_BC_VER) {
9068 /* for now only warn
9069 * later we might need to enforce this */
9070 BNX2X_ERR("This driver needs bc_ver %X but found %X, "
9071 "please upgrade BC\n", BNX2X_BC_VER, val);
9072 }
9073 bp->link_params.feature_config_flags |=
9074 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9075 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9076
9077 bp->link_params.feature_config_flags |=
9078 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9079 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9080
9081 bp->link_params.feature_config_flags |=
9082 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9083 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9084 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9085 BC_SUPPORTS_PFC_STATS : 0;
9086
9087 boot_mode = SHMEM_RD(bp,
9088 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9089 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9090 switch (boot_mode) {
9091 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9092 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9093 break;
9094 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9095 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9096 break;
9097 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9098 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9099 break;
9100 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9101 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9102 break;
9103 }
9104
9105 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9106 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9107
9108 BNX2X_DEV_INFO("%sWoL capable\n",
9109 (bp->flags & NO_WOL_FLAG) ? "not " : "");
9110
9111 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9112 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9113 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9114 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9115
9116 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9117 val, val2, val3, val4);
9118 }
9119
9120 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9121 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9122
9123 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9124 {
9125 int pfid = BP_FUNC(bp);
9126 int igu_sb_id;
9127 u32 val;
9128 u8 fid, igu_sb_cnt = 0;
9129
9130 bp->igu_base_sb = 0xff;
9131 if (CHIP_INT_MODE_IS_BC(bp)) {
9132 int vn = BP_VN(bp);
9133 igu_sb_cnt = bp->igu_sb_cnt;
9134 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9135 FP_SB_MAX_E1x;
9136
9137 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
9138 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9139
9140 return;
9141 }
9142
9143 /* IGU in normal mode - read CAM */
9144 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9145 igu_sb_id++) {
9146 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9147 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9148 continue;
9149 fid = IGU_FID(val);
9150 if ((fid & IGU_FID_ENCODE_IS_PF)) {
9151 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9152 continue;
9153 if (IGU_VEC(val) == 0)
9154 /* default status block */
9155 bp->igu_dsb_id = igu_sb_id;
9156 else {
9157 if (bp->igu_base_sb == 0xff)
9158 bp->igu_base_sb = igu_sb_id;
9159 igu_sb_cnt++;
9160 }
9161 }
9162 }
9163
9164 #ifdef CONFIG_PCI_MSI
9165 /*
9166 * It's expected that number of CAM entries for this functions is equal
9167 * to the number evaluated based on the MSI-X table size. We want a
9168 * harsh warning if these values are different!
9169 */
9170 WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9171 #endif
9172
9173 if (igu_sb_cnt == 0)
9174 BNX2X_ERR("CAM configuration error\n");
9175 }
9176
9177 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9178 u32 switch_cfg)
9179 {
9180 int cfg_size = 0, idx, port = BP_PORT(bp);
9181
9182 /* Aggregation of supported attributes of all external phys */
9183 bp->port.supported[0] = 0;
9184 bp->port.supported[1] = 0;
9185 switch (bp->link_params.num_phys) {
9186 case 1:
9187 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9188 cfg_size = 1;
9189 break;
9190 case 2:
9191 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9192 cfg_size = 1;
9193 break;
9194 case 3:
9195 if (bp->link_params.multi_phy_config &
9196 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9197 bp->port.supported[1] =
9198 bp->link_params.phy[EXT_PHY1].supported;
9199 bp->port.supported[0] =
9200 bp->link_params.phy[EXT_PHY2].supported;
9201 } else {
9202 bp->port.supported[0] =
9203 bp->link_params.phy[EXT_PHY1].supported;
9204 bp->port.supported[1] =
9205 bp->link_params.phy[EXT_PHY2].supported;
9206 }
9207 cfg_size = 2;
9208 break;
9209 }
9210
9211 if (!(bp->port.supported[0] || bp->port.supported[1])) {
9212 BNX2X_ERR("NVRAM config error. BAD phy config."
9213 "PHY1 config 0x%x, PHY2 config 0x%x\n",
9214 SHMEM_RD(bp,
9215 dev_info.port_hw_config[port].external_phy_config),
9216 SHMEM_RD(bp,
9217 dev_info.port_hw_config[port].external_phy_config2));
9218 return;
9219 }
9220
9221 if (CHIP_IS_E3(bp))
9222 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9223 else {
9224 switch (switch_cfg) {
9225 case SWITCH_CFG_1G:
9226 bp->port.phy_addr = REG_RD(
9227 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9228 break;
9229 case SWITCH_CFG_10G:
9230 bp->port.phy_addr = REG_RD(
9231 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9232 break;
9233 default:
9234 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9235 bp->port.link_config[0]);
9236 return;
9237 }
9238 }
9239 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9240 /* mask what we support according to speed_cap_mask per configuration */
9241 for (idx = 0; idx < cfg_size; idx++) {
9242 if (!(bp->link_params.speed_cap_mask[idx] &
9243 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9244 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9245
9246 if (!(bp->link_params.speed_cap_mask[idx] &
9247 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9248 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9249
9250 if (!(bp->link_params.speed_cap_mask[idx] &
9251 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9252 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9253
9254 if (!(bp->link_params.speed_cap_mask[idx] &
9255 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9256 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9257
9258 if (!(bp->link_params.speed_cap_mask[idx] &
9259 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9260 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9261 SUPPORTED_1000baseT_Full);
9262
9263 if (!(bp->link_params.speed_cap_mask[idx] &
9264 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9265 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9266
9267 if (!(bp->link_params.speed_cap_mask[idx] &
9268 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9269 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9270
9271 }
9272
9273 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9274 bp->port.supported[1]);
9275 }
9276
9277 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9278 {
9279 u32 link_config, idx, cfg_size = 0;
9280 bp->port.advertising[0] = 0;
9281 bp->port.advertising[1] = 0;
9282 switch (bp->link_params.num_phys) {
9283 case 1:
9284 case 2:
9285 cfg_size = 1;
9286 break;
9287 case 3:
9288 cfg_size = 2;
9289 break;
9290 }
9291 for (idx = 0; idx < cfg_size; idx++) {
9292 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9293 link_config = bp->port.link_config[idx];
9294 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9295 case PORT_FEATURE_LINK_SPEED_AUTO:
9296 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9297 bp->link_params.req_line_speed[idx] =
9298 SPEED_AUTO_NEG;
9299 bp->port.advertising[idx] |=
9300 bp->port.supported[idx];
9301 if (bp->link_params.phy[EXT_PHY1].type ==
9302 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
9303 bp->port.advertising[idx] |=
9304 (SUPPORTED_100baseT_Half |
9305 SUPPORTED_100baseT_Full);
9306 } else {
9307 /* force 10G, no AN */
9308 bp->link_params.req_line_speed[idx] =
9309 SPEED_10000;
9310 bp->port.advertising[idx] |=
9311 (ADVERTISED_10000baseT_Full |
9312 ADVERTISED_FIBRE);
9313 continue;
9314 }
9315 break;
9316
9317 case PORT_FEATURE_LINK_SPEED_10M_FULL:
9318 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9319 bp->link_params.req_line_speed[idx] =
9320 SPEED_10;
9321 bp->port.advertising[idx] |=
9322 (ADVERTISED_10baseT_Full |
9323 ADVERTISED_TP);
9324 } else {
9325 BNX2X_ERR("NVRAM config error. "
9326 "Invalid link_config 0x%x"
9327 " speed_cap_mask 0x%x\n",
9328 link_config,
9329 bp->link_params.speed_cap_mask[idx]);
9330 return;
9331 }
9332 break;
9333
9334 case PORT_FEATURE_LINK_SPEED_10M_HALF:
9335 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9336 bp->link_params.req_line_speed[idx] =
9337 SPEED_10;
9338 bp->link_params.req_duplex[idx] =
9339 DUPLEX_HALF;
9340 bp->port.advertising[idx] |=
9341 (ADVERTISED_10baseT_Half |
9342 ADVERTISED_TP);
9343 } else {
9344 BNX2X_ERR("NVRAM config error. "
9345 "Invalid link_config 0x%x"
9346 " speed_cap_mask 0x%x\n",
9347 link_config,
9348 bp->link_params.speed_cap_mask[idx]);
9349 return;
9350 }
9351 break;
9352
9353 case PORT_FEATURE_LINK_SPEED_100M_FULL:
9354 if (bp->port.supported[idx] &
9355 SUPPORTED_100baseT_Full) {
9356 bp->link_params.req_line_speed[idx] =
9357 SPEED_100;
9358 bp->port.advertising[idx] |=
9359 (ADVERTISED_100baseT_Full |
9360 ADVERTISED_TP);
9361 } else {
9362 BNX2X_ERR("NVRAM config error. "
9363 "Invalid link_config 0x%x"
9364 " speed_cap_mask 0x%x\n",
9365 link_config,
9366 bp->link_params.speed_cap_mask[idx]);
9367 return;
9368 }
9369 break;
9370
9371 case PORT_FEATURE_LINK_SPEED_100M_HALF:
9372 if (bp->port.supported[idx] &
9373 SUPPORTED_100baseT_Half) {
9374 bp->link_params.req_line_speed[idx] =
9375 SPEED_100;
9376 bp->link_params.req_duplex[idx] =
9377 DUPLEX_HALF;
9378 bp->port.advertising[idx] |=
9379 (ADVERTISED_100baseT_Half |
9380 ADVERTISED_TP);
9381 } else {
9382 BNX2X_ERR("NVRAM config error. "
9383 "Invalid link_config 0x%x"
9384 " speed_cap_mask 0x%x\n",
9385 link_config,
9386 bp->link_params.speed_cap_mask[idx]);
9387 return;
9388 }
9389 break;
9390
9391 case PORT_FEATURE_LINK_SPEED_1G:
9392 if (bp->port.supported[idx] &
9393 SUPPORTED_1000baseT_Full) {
9394 bp->link_params.req_line_speed[idx] =
9395 SPEED_1000;
9396 bp->port.advertising[idx] |=
9397 (ADVERTISED_1000baseT_Full |
9398 ADVERTISED_TP);
9399 } else {
9400 BNX2X_ERR("NVRAM config error. "
9401 "Invalid link_config 0x%x"
9402 " speed_cap_mask 0x%x\n",
9403 link_config,
9404 bp->link_params.speed_cap_mask[idx]);
9405 return;
9406 }
9407 break;
9408
9409 case PORT_FEATURE_LINK_SPEED_2_5G:
9410 if (bp->port.supported[idx] &
9411 SUPPORTED_2500baseX_Full) {
9412 bp->link_params.req_line_speed[idx] =
9413 SPEED_2500;
9414 bp->port.advertising[idx] |=
9415 (ADVERTISED_2500baseX_Full |
9416 ADVERTISED_TP);
9417 } else {
9418 BNX2X_ERR("NVRAM config error. "
9419 "Invalid link_config 0x%x"
9420 " speed_cap_mask 0x%x\n",
9421 link_config,
9422 bp->link_params.speed_cap_mask[idx]);
9423 return;
9424 }
9425 break;
9426
9427 case PORT_FEATURE_LINK_SPEED_10G_CX4:
9428 if (bp->port.supported[idx] &
9429 SUPPORTED_10000baseT_Full) {
9430 bp->link_params.req_line_speed[idx] =
9431 SPEED_10000;
9432 bp->port.advertising[idx] |=
9433 (ADVERTISED_10000baseT_Full |
9434 ADVERTISED_FIBRE);
9435 } else {
9436 BNX2X_ERR("NVRAM config error. "
9437 "Invalid link_config 0x%x"
9438 " speed_cap_mask 0x%x\n",
9439 link_config,
9440 bp->link_params.speed_cap_mask[idx]);
9441 return;
9442 }
9443 break;
9444 case PORT_FEATURE_LINK_SPEED_20G:
9445 bp->link_params.req_line_speed[idx] = SPEED_20000;
9446
9447 break;
9448 default:
9449 BNX2X_ERR("NVRAM config error. "
9450 "BAD link speed link_config 0x%x\n",
9451 link_config);
9452 bp->link_params.req_line_speed[idx] =
9453 SPEED_AUTO_NEG;
9454 bp->port.advertising[idx] =
9455 bp->port.supported[idx];
9456 break;
9457 }
9458
9459 bp->link_params.req_flow_ctrl[idx] = (link_config &
9460 PORT_FEATURE_FLOW_CONTROL_MASK);
9461 if ((bp->link_params.req_flow_ctrl[idx] ==
9462 BNX2X_FLOW_CTRL_AUTO) &&
9463 !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9464 bp->link_params.req_flow_ctrl[idx] =
9465 BNX2X_FLOW_CTRL_NONE;
9466 }
9467
9468 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
9469 " 0x%x advertising 0x%x\n",
9470 bp->link_params.req_line_speed[idx],
9471 bp->link_params.req_duplex[idx],
9472 bp->link_params.req_flow_ctrl[idx],
9473 bp->port.advertising[idx]);
9474 }
9475 }
9476
9477 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9478 {
9479 mac_hi = cpu_to_be16(mac_hi);
9480 mac_lo = cpu_to_be32(mac_lo);
9481 memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9482 memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9483 }
9484
9485 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9486 {
9487 int port = BP_PORT(bp);
9488 u32 config;
9489 u32 ext_phy_type, ext_phy_config;
9490
9491 bp->link_params.bp = bp;
9492 bp->link_params.port = port;
9493
9494 bp->link_params.lane_config =
9495 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9496
9497 bp->link_params.speed_cap_mask[0] =
9498 SHMEM_RD(bp,
9499 dev_info.port_hw_config[port].speed_capability_mask);
9500 bp->link_params.speed_cap_mask[1] =
9501 SHMEM_RD(bp,
9502 dev_info.port_hw_config[port].speed_capability_mask2);
9503 bp->port.link_config[0] =
9504 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9505
9506 bp->port.link_config[1] =
9507 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9508
9509 bp->link_params.multi_phy_config =
9510 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9511 /* If the device is capable of WoL, set the default state according
9512 * to the HW
9513 */
9514 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9515 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9516 (config & PORT_FEATURE_WOL_ENABLED));
9517
9518 BNX2X_DEV_INFO("lane_config 0x%08x "
9519 "speed_cap_mask0 0x%08x link_config0 0x%08x\n",
9520 bp->link_params.lane_config,
9521 bp->link_params.speed_cap_mask[0],
9522 bp->port.link_config[0]);
9523
9524 bp->link_params.switch_cfg = (bp->port.link_config[0] &
9525 PORT_FEATURE_CONNECTED_SWITCH_MASK);
9526 bnx2x_phy_probe(&bp->link_params);
9527 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9528
9529 bnx2x_link_settings_requested(bp);
9530
9531 /*
9532 * If connected directly, work with the internal PHY, otherwise, work
9533 * with the external PHY
9534 */
9535 ext_phy_config =
9536 SHMEM_RD(bp,
9537 dev_info.port_hw_config[port].external_phy_config);
9538 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9539 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9540 bp->mdio.prtad = bp->port.phy_addr;
9541
9542 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9543 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9544 bp->mdio.prtad =
9545 XGXS_EXT_PHY_ADDR(ext_phy_config);
9546
9547 /*
9548 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9549 * In MF mode, it is set to cover self test cases
9550 */
9551 if (IS_MF(bp))
9552 bp->port.need_hw_lock = 1;
9553 else
9554 bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9555 bp->common.shmem_base,
9556 bp->common.shmem2_base);
9557 }
9558
9559 void bnx2x_get_iscsi_info(struct bnx2x *bp)
9560 {
9561 #ifdef BCM_CNIC
9562 int port = BP_PORT(bp);
9563
9564 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9565 drv_lic_key[port].max_iscsi_conn);
9566
9567 /* Get the number of maximum allowed iSCSI connections */
9568 bp->cnic_eth_dev.max_iscsi_conn =
9569 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9570 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9571
9572 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9573 bp->cnic_eth_dev.max_iscsi_conn);
9574
9575 /*
9576 * If maximum allowed number of connections is zero -
9577 * disable the feature.
9578 */
9579 if (!bp->cnic_eth_dev.max_iscsi_conn)
9580 bp->flags |= NO_ISCSI_FLAG;
9581 #else
9582 bp->flags |= NO_ISCSI_FLAG;
9583 #endif
9584 }
9585
9586 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9587 {
9588 #ifdef BCM_CNIC
9589 int port = BP_PORT(bp);
9590 int func = BP_ABS_FUNC(bp);
9591
9592 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9593 drv_lic_key[port].max_fcoe_conn);
9594
9595 /* Get the number of maximum allowed FCoE connections */
9596 bp->cnic_eth_dev.max_fcoe_conn =
9597 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9598 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9599
9600 /* Read the WWN: */
9601 if (!IS_MF(bp)) {
9602 /* Port info */
9603 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9604 SHMEM_RD(bp,
9605 dev_info.port_hw_config[port].
9606 fcoe_wwn_port_name_upper);
9607 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9608 SHMEM_RD(bp,
9609 dev_info.port_hw_config[port].
9610 fcoe_wwn_port_name_lower);
9611
9612 /* Node info */
9613 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9614 SHMEM_RD(bp,
9615 dev_info.port_hw_config[port].
9616 fcoe_wwn_node_name_upper);
9617 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9618 SHMEM_RD(bp,
9619 dev_info.port_hw_config[port].
9620 fcoe_wwn_node_name_lower);
9621 } else if (!IS_MF_SD(bp)) {
9622 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9623
9624 /*
9625 * Read the WWN info only if the FCoE feature is enabled for
9626 * this function.
9627 */
9628 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9629 /* Port info */
9630 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9631 MF_CFG_RD(bp, func_ext_config[func].
9632 fcoe_wwn_port_name_upper);
9633 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9634 MF_CFG_RD(bp, func_ext_config[func].
9635 fcoe_wwn_port_name_lower);
9636
9637 /* Node info */
9638 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9639 MF_CFG_RD(bp, func_ext_config[func].
9640 fcoe_wwn_node_name_upper);
9641 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9642 MF_CFG_RD(bp, func_ext_config[func].
9643 fcoe_wwn_node_name_lower);
9644 }
9645 }
9646
9647 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9648
9649 /*
9650 * If maximum allowed number of connections is zero -
9651 * disable the feature.
9652 */
9653 if (!bp->cnic_eth_dev.max_fcoe_conn)
9654 bp->flags |= NO_FCOE_FLAG;
9655 #else
9656 bp->flags |= NO_FCOE_FLAG;
9657 #endif
9658 }
9659
9660 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9661 {
9662 /*
9663 * iSCSI may be dynamically disabled but reading
9664 * info here we will decrease memory usage by driver
9665 * if the feature is disabled for good
9666 */
9667 bnx2x_get_iscsi_info(bp);
9668 bnx2x_get_fcoe_info(bp);
9669 }
9670
9671 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9672 {
9673 u32 val, val2;
9674 int func = BP_ABS_FUNC(bp);
9675 int port = BP_PORT(bp);
9676 #ifdef BCM_CNIC
9677 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9678 u8 *fip_mac = bp->fip_mac;
9679 #endif
9680
9681 /* Zero primary MAC configuration */
9682 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9683
9684 if (BP_NOMCP(bp)) {
9685 BNX2X_ERROR("warning: random MAC workaround active\n");
9686 eth_hw_addr_random(bp->dev);
9687 } else if (IS_MF(bp)) {
9688 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9689 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9690 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9691 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9692 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9693
9694 #ifdef BCM_CNIC
9695 /*
9696 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9697 * FCoE MAC then the appropriate feature should be disabled.
9698 */
9699 if (IS_MF_SI(bp)) {
9700 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9701 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9702 val2 = MF_CFG_RD(bp, func_ext_config[func].
9703 iscsi_mac_addr_upper);
9704 val = MF_CFG_RD(bp, func_ext_config[func].
9705 iscsi_mac_addr_lower);
9706 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9707 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9708 iscsi_mac);
9709 } else
9710 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9711
9712 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9713 val2 = MF_CFG_RD(bp, func_ext_config[func].
9714 fcoe_mac_addr_upper);
9715 val = MF_CFG_RD(bp, func_ext_config[func].
9716 fcoe_mac_addr_lower);
9717 bnx2x_set_mac_buf(fip_mac, val, val2);
9718 BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9719 fip_mac);
9720
9721 } else
9722 bp->flags |= NO_FCOE_FLAG;
9723 } else { /* SD mode */
9724 if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
9725 /* use primary mac as iscsi mac */
9726 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
9727 /* Zero primary MAC configuration */
9728 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9729
9730 BNX2X_DEV_INFO("SD ISCSI MODE\n");
9731 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9732 iscsi_mac);
9733 }
9734 }
9735 #endif
9736 } else {
9737 /* in SF read MACs from port configuration */
9738 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9739 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9740 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9741
9742 #ifdef BCM_CNIC
9743 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9744 iscsi_mac_upper);
9745 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9746 iscsi_mac_lower);
9747 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9748
9749 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9750 fcoe_fip_mac_upper);
9751 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9752 fcoe_fip_mac_lower);
9753 bnx2x_set_mac_buf(fip_mac, val, val2);
9754 #endif
9755 }
9756
9757 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9758 memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9759
9760 #ifdef BCM_CNIC
9761 /* Set the FCoE MAC in MF_SD mode */
9762 if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9763 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9764
9765 /* Disable iSCSI if MAC configuration is
9766 * invalid.
9767 */
9768 if (!is_valid_ether_addr(iscsi_mac)) {
9769 bp->flags |= NO_ISCSI_FLAG;
9770 memset(iscsi_mac, 0, ETH_ALEN);
9771 }
9772
9773 /* Disable FCoE if MAC configuration is
9774 * invalid.
9775 */
9776 if (!is_valid_ether_addr(fip_mac)) {
9777 bp->flags |= NO_FCOE_FLAG;
9778 memset(bp->fip_mac, 0, ETH_ALEN);
9779 }
9780 #endif
9781
9782 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9783 dev_err(&bp->pdev->dev,
9784 "bad Ethernet MAC address configuration: "
9785 "%pM, change it manually before bringing up "
9786 "the appropriate network interface\n",
9787 bp->dev->dev_addr);
9788 }
9789
9790 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9791 {
9792 int /*abs*/func = BP_ABS_FUNC(bp);
9793 int vn;
9794 u32 val = 0;
9795 int rc = 0;
9796
9797 bnx2x_get_common_hwinfo(bp);
9798
9799 /*
9800 * initialize IGU parameters
9801 */
9802 if (CHIP_IS_E1x(bp)) {
9803 bp->common.int_block = INT_BLOCK_HC;
9804
9805 bp->igu_dsb_id = DEF_SB_IGU_ID;
9806 bp->igu_base_sb = 0;
9807 } else {
9808 bp->common.int_block = INT_BLOCK_IGU;
9809
9810 /* do not allow device reset during IGU info preocessing */
9811 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9812
9813 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9814
9815 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9816 int tout = 5000;
9817
9818 BNX2X_DEV_INFO("FORCING Normal Mode\n");
9819
9820 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9821 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9822 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9823
9824 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9825 tout--;
9826 usleep_range(1000, 1000);
9827 }
9828
9829 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9830 dev_err(&bp->pdev->dev,
9831 "FORCING Normal Mode failed!!!\n");
9832 return -EPERM;
9833 }
9834 }
9835
9836 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9837 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9838 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9839 } else
9840 BNX2X_DEV_INFO("IGU Normal Mode\n");
9841
9842 bnx2x_get_igu_cam_info(bp);
9843
9844 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9845 }
9846
9847 /*
9848 * set base FW non-default (fast path) status block id, this value is
9849 * used to initialize the fw_sb_id saved on the fp/queue structure to
9850 * determine the id used by the FW.
9851 */
9852 if (CHIP_IS_E1x(bp))
9853 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9854 else /*
9855 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9856 * the same queue are indicated on the same IGU SB). So we prefer
9857 * FW and IGU SBs to be the same value.
9858 */
9859 bp->base_fw_ndsb = bp->igu_base_sb;
9860
9861 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
9862 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9863 bp->igu_sb_cnt, bp->base_fw_ndsb);
9864
9865 /*
9866 * Initialize MF configuration
9867 */
9868
9869 bp->mf_ov = 0;
9870 bp->mf_mode = 0;
9871 vn = BP_VN(bp);
9872
9873 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9874 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9875 bp->common.shmem2_base, SHMEM2_RD(bp, size),
9876 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9877
9878 if (SHMEM2_HAS(bp, mf_cfg_addr))
9879 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9880 else
9881 bp->common.mf_cfg_base = bp->common.shmem_base +
9882 offsetof(struct shmem_region, func_mb) +
9883 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9884 /*
9885 * get mf configuration:
9886 * 1. existence of MF configuration
9887 * 2. MAC address must be legal (check only upper bytes)
9888 * for Switch-Independent mode;
9889 * OVLAN must be legal for Switch-Dependent mode
9890 * 3. SF_MODE configures specific MF mode
9891 */
9892 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9893 /* get mf configuration */
9894 val = SHMEM_RD(bp,
9895 dev_info.shared_feature_config.config);
9896 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9897
9898 switch (val) {
9899 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9900 val = MF_CFG_RD(bp, func_mf_config[func].
9901 mac_upper);
9902 /* check for legal mac (upper bytes)*/
9903 if (val != 0xffff) {
9904 bp->mf_mode = MULTI_FUNCTION_SI;
9905 bp->mf_config[vn] = MF_CFG_RD(bp,
9906 func_mf_config[func].config);
9907 } else
9908 BNX2X_DEV_INFO("illegal MAC address "
9909 "for SI\n");
9910 break;
9911 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9912 /* get OV configuration */
9913 val = MF_CFG_RD(bp,
9914 func_mf_config[FUNC_0].e1hov_tag);
9915 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9916
9917 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9918 bp->mf_mode = MULTI_FUNCTION_SD;
9919 bp->mf_config[vn] = MF_CFG_RD(bp,
9920 func_mf_config[func].config);
9921 } else
9922 BNX2X_DEV_INFO("illegal OV for SD\n");
9923 break;
9924 default:
9925 /* Unknown configuration: reset mf_config */
9926 bp->mf_config[vn] = 0;
9927 BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9928 }
9929 }
9930
9931 BNX2X_DEV_INFO("%s function mode\n",
9932 IS_MF(bp) ? "multi" : "single");
9933
9934 switch (bp->mf_mode) {
9935 case MULTI_FUNCTION_SD:
9936 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9937 FUNC_MF_CFG_E1HOV_TAG_MASK;
9938 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9939 bp->mf_ov = val;
9940 bp->path_has_ovlan = true;
9941
9942 BNX2X_DEV_INFO("MF OV for func %d is %d "
9943 "(0x%04x)\n", func, bp->mf_ov,
9944 bp->mf_ov);
9945 } else {
9946 dev_err(&bp->pdev->dev,
9947 "No valid MF OV for func %d, "
9948 "aborting\n", func);
9949 return -EPERM;
9950 }
9951 break;
9952 case MULTI_FUNCTION_SI:
9953 BNX2X_DEV_INFO("func %d is in MF "
9954 "switch-independent mode\n", func);
9955 break;
9956 default:
9957 if (vn) {
9958 dev_err(&bp->pdev->dev,
9959 "VN %d is in a single function mode, "
9960 "aborting\n", vn);
9961 return -EPERM;
9962 }
9963 break;
9964 }
9965
9966 /* check if other port on the path needs ovlan:
9967 * Since MF configuration is shared between ports
9968 * Possible mixed modes are only
9969 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9970 */
9971 if (CHIP_MODE_IS_4_PORT(bp) &&
9972 !bp->path_has_ovlan &&
9973 !IS_MF(bp) &&
9974 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9975 u8 other_port = !BP_PORT(bp);
9976 u8 other_func = BP_PATH(bp) + 2*other_port;
9977 val = MF_CFG_RD(bp,
9978 func_mf_config[other_func].e1hov_tag);
9979 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9980 bp->path_has_ovlan = true;
9981 }
9982 }
9983
9984 /* adjust igu_sb_cnt to MF for E1x */
9985 if (CHIP_IS_E1x(bp) && IS_MF(bp))
9986 bp->igu_sb_cnt /= E1HVN_MAX;
9987
9988 /* port info */
9989 bnx2x_get_port_hwinfo(bp);
9990
9991 /* Get MAC addresses */
9992 bnx2x_get_mac_hwinfo(bp);
9993
9994 bnx2x_get_cnic_info(bp);
9995
9996 return rc;
9997 }
9998
9999 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
10000 {
10001 int cnt, i, block_end, rodi;
10002 char vpd_start[BNX2X_VPD_LEN+1];
10003 char str_id_reg[VENDOR_ID_LEN+1];
10004 char str_id_cap[VENDOR_ID_LEN+1];
10005 char *vpd_data;
10006 char *vpd_extended_data = NULL;
10007 u8 len;
10008
10009 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10010 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10011
10012 if (cnt < BNX2X_VPD_LEN)
10013 goto out_not_found;
10014
10015 /* VPD RO tag should be first tag after identifier string, hence
10016 * we should be able to find it in first BNX2X_VPD_LEN chars
10017 */
10018 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
10019 PCI_VPD_LRDT_RO_DATA);
10020 if (i < 0)
10021 goto out_not_found;
10022
10023 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
10024 pci_vpd_lrdt_size(&vpd_start[i]);
10025
10026 i += PCI_VPD_LRDT_TAG_SIZE;
10027
10028 if (block_end > BNX2X_VPD_LEN) {
10029 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
10030 if (vpd_extended_data == NULL)
10031 goto out_not_found;
10032
10033 /* read rest of vpd image into vpd_extended_data */
10034 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
10035 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
10036 block_end - BNX2X_VPD_LEN,
10037 vpd_extended_data + BNX2X_VPD_LEN);
10038 if (cnt < (block_end - BNX2X_VPD_LEN))
10039 goto out_not_found;
10040 vpd_data = vpd_extended_data;
10041 } else
10042 vpd_data = vpd_start;
10043
10044 /* now vpd_data holds full vpd content in both cases */
10045
10046 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10047 PCI_VPD_RO_KEYWORD_MFR_ID);
10048 if (rodi < 0)
10049 goto out_not_found;
10050
10051 len = pci_vpd_info_field_size(&vpd_data[rodi]);
10052
10053 if (len != VENDOR_ID_LEN)
10054 goto out_not_found;
10055
10056 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10057
10058 /* vendor specific info */
10059 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10060 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10061 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10062 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10063
10064 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10065 PCI_VPD_RO_KEYWORD_VENDOR0);
10066 if (rodi >= 0) {
10067 len = pci_vpd_info_field_size(&vpd_data[rodi]);
10068
10069 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10070
10071 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10072 memcpy(bp->fw_ver, &vpd_data[rodi], len);
10073 bp->fw_ver[len] = ' ';
10074 }
10075 }
10076 kfree(vpd_extended_data);
10077 return;
10078 }
10079 out_not_found:
10080 kfree(vpd_extended_data);
10081 return;
10082 }
10083
10084 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10085 {
10086 u32 flags = 0;
10087
10088 if (CHIP_REV_IS_FPGA(bp))
10089 SET_FLAGS(flags, MODE_FPGA);
10090 else if (CHIP_REV_IS_EMUL(bp))
10091 SET_FLAGS(flags, MODE_EMUL);
10092 else
10093 SET_FLAGS(flags, MODE_ASIC);
10094
10095 if (CHIP_MODE_IS_4_PORT(bp))
10096 SET_FLAGS(flags, MODE_PORT4);
10097 else
10098 SET_FLAGS(flags, MODE_PORT2);
10099
10100 if (CHIP_IS_E2(bp))
10101 SET_FLAGS(flags, MODE_E2);
10102 else if (CHIP_IS_E3(bp)) {
10103 SET_FLAGS(flags, MODE_E3);
10104 if (CHIP_REV(bp) == CHIP_REV_Ax)
10105 SET_FLAGS(flags, MODE_E3_A0);
10106 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10107 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10108 }
10109
10110 if (IS_MF(bp)) {
10111 SET_FLAGS(flags, MODE_MF);
10112 switch (bp->mf_mode) {
10113 case MULTI_FUNCTION_SD:
10114 SET_FLAGS(flags, MODE_MF_SD);
10115 break;
10116 case MULTI_FUNCTION_SI:
10117 SET_FLAGS(flags, MODE_MF_SI);
10118 break;
10119 }
10120 } else
10121 SET_FLAGS(flags, MODE_SF);
10122
10123 #if defined(__LITTLE_ENDIAN)
10124 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10125 #else /*(__BIG_ENDIAN)*/
10126 SET_FLAGS(flags, MODE_BIG_ENDIAN);
10127 #endif
10128 INIT_MODE_FLAGS(bp) = flags;
10129 }
10130
10131 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10132 {
10133 int func;
10134 int timer_interval;
10135 int rc;
10136
10137 mutex_init(&bp->port.phy_mutex);
10138 mutex_init(&bp->fw_mb_mutex);
10139 spin_lock_init(&bp->stats_lock);
10140 #ifdef BCM_CNIC
10141 mutex_init(&bp->cnic_mutex);
10142 #endif
10143
10144 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10145 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10146 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10147 rc = bnx2x_get_hwinfo(bp);
10148 if (rc)
10149 return rc;
10150
10151 bnx2x_set_modes_bitmap(bp);
10152
10153 rc = bnx2x_alloc_mem_bp(bp);
10154 if (rc)
10155 return rc;
10156
10157 bnx2x_read_fwinfo(bp);
10158
10159 func = BP_FUNC(bp);
10160
10161 /* need to reset chip if undi was active */
10162 if (!BP_NOMCP(bp))
10163 bnx2x_undi_unload(bp);
10164
10165 if (CHIP_REV_IS_FPGA(bp))
10166 dev_err(&bp->pdev->dev, "FPGA detected\n");
10167
10168 if (BP_NOMCP(bp) && (func == 0))
10169 dev_err(&bp->pdev->dev, "MCP disabled, "
10170 "must load devices in order!\n");
10171
10172 bp->multi_mode = multi_mode;
10173
10174 bp->disable_tpa = disable_tpa;
10175
10176 #ifdef BCM_CNIC
10177 bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
10178 #endif
10179
10180 /* Set TPA flags */
10181 if (bp->disable_tpa) {
10182 bp->flags &= ~TPA_ENABLE_FLAG;
10183 bp->dev->features &= ~NETIF_F_LRO;
10184 } else {
10185 bp->flags |= TPA_ENABLE_FLAG;
10186 bp->dev->features |= NETIF_F_LRO;
10187 }
10188
10189 if (CHIP_IS_E1(bp))
10190 bp->dropless_fc = 0;
10191 else
10192 bp->dropless_fc = dropless_fc;
10193
10194 bp->mrrs = mrrs;
10195
10196 bp->tx_ring_size = MAX_TX_AVAIL;
10197
10198 /* make sure that the numbers are in the right granularity */
10199 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10200 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10201
10202 timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
10203 bp->current_interval = (poll ? poll : timer_interval);
10204
10205 init_timer(&bp->timer);
10206 bp->timer.expires = jiffies + bp->current_interval;
10207 bp->timer.data = (unsigned long) bp;
10208 bp->timer.function = bnx2x_timer;
10209
10210 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10211 bnx2x_dcbx_init_params(bp);
10212
10213 #ifdef BCM_CNIC
10214 if (CHIP_IS_E1x(bp))
10215 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10216 else
10217 bp->cnic_base_cl_id = FP_SB_MAX_E2;
10218 #endif
10219
10220 /* multiple tx priority */
10221 if (CHIP_IS_E1x(bp))
10222 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10223 if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10224 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10225 if (CHIP_IS_E3B0(bp))
10226 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10227
10228 return rc;
10229 }
10230
10231
10232 /****************************************************************************
10233 * General service functions
10234 ****************************************************************************/
10235
10236 /*
10237 * net_device service functions
10238 */
10239
10240 /* called with rtnl_lock */
10241 static int bnx2x_open(struct net_device *dev)
10242 {
10243 struct bnx2x *bp = netdev_priv(dev);
10244 bool global = false;
10245 int other_engine = BP_PATH(bp) ? 0 : 1;
10246 bool other_load_status, load_status;
10247
10248 bp->stats_init = true;
10249
10250 netif_carrier_off(dev);
10251
10252 bnx2x_set_power_state(bp, PCI_D0);
10253
10254 other_load_status = bnx2x_get_load_status(bp, other_engine);
10255 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
10256
10257 /*
10258 * If parity had happen during the unload, then attentions
10259 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10260 * want the first function loaded on the current engine to
10261 * complete the recovery.
10262 */
10263 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10264 bnx2x_chk_parity_attn(bp, &global, true))
10265 do {
10266 /*
10267 * If there are attentions and they are in a global
10268 * blocks, set the GLOBAL_RESET bit regardless whether
10269 * it will be this function that will complete the
10270 * recovery or not.
10271 */
10272 if (global)
10273 bnx2x_set_reset_global(bp);
10274
10275 /*
10276 * Only the first function on the current engine should
10277 * try to recover in open. In case of attentions in
10278 * global blocks only the first in the chip should try
10279 * to recover.
10280 */
10281 if ((!load_status &&
10282 (!global || !other_load_status)) &&
10283 bnx2x_trylock_leader_lock(bp) &&
10284 !bnx2x_leader_reset(bp)) {
10285 netdev_info(bp->dev, "Recovered in open\n");
10286 break;
10287 }
10288
10289 /* recovery has failed... */
10290 bnx2x_set_power_state(bp, PCI_D3hot);
10291 bp->recovery_state = BNX2X_RECOVERY_FAILED;
10292
10293 netdev_err(bp->dev, "Recovery flow hasn't been properly"
10294 " completed yet. Try again later. If u still see this"
10295 " message after a few retries then power cycle is"
10296 " required.\n");
10297
10298 return -EAGAIN;
10299 } while (0);
10300
10301 bp->recovery_state = BNX2X_RECOVERY_DONE;
10302 return bnx2x_nic_load(bp, LOAD_OPEN);
10303 }
10304
10305 /* called with rtnl_lock */
10306 int bnx2x_close(struct net_device *dev)
10307 {
10308 struct bnx2x *bp = netdev_priv(dev);
10309
10310 /* Unload the driver, release IRQs */
10311 bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10312
10313 /* Power off */
10314 bnx2x_set_power_state(bp, PCI_D3hot);
10315
10316 return 0;
10317 }
10318
10319 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10320 struct bnx2x_mcast_ramrod_params *p)
10321 {
10322 int mc_count = netdev_mc_count(bp->dev);
10323 struct bnx2x_mcast_list_elem *mc_mac =
10324 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10325 struct netdev_hw_addr *ha;
10326
10327 if (!mc_mac)
10328 return -ENOMEM;
10329
10330 INIT_LIST_HEAD(&p->mcast_list);
10331
10332 netdev_for_each_mc_addr(ha, bp->dev) {
10333 mc_mac->mac = bnx2x_mc_addr(ha);
10334 list_add_tail(&mc_mac->link, &p->mcast_list);
10335 mc_mac++;
10336 }
10337
10338 p->mcast_list_len = mc_count;
10339
10340 return 0;
10341 }
10342
10343 static inline void bnx2x_free_mcast_macs_list(
10344 struct bnx2x_mcast_ramrod_params *p)
10345 {
10346 struct bnx2x_mcast_list_elem *mc_mac =
10347 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10348 link);
10349
10350 WARN_ON(!mc_mac);
10351 kfree(mc_mac);
10352 }
10353
10354 /**
10355 * bnx2x_set_uc_list - configure a new unicast MACs list.
10356 *
10357 * @bp: driver handle
10358 *
10359 * We will use zero (0) as a MAC type for these MACs.
10360 */
10361 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10362 {
10363 int rc;
10364 struct net_device *dev = bp->dev;
10365 struct netdev_hw_addr *ha;
10366 struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10367 unsigned long ramrod_flags = 0;
10368
10369 /* First schedule a cleanup up of old configuration */
10370 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10371 if (rc < 0) {
10372 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10373 return rc;
10374 }
10375
10376 netdev_for_each_uc_addr(ha, dev) {
10377 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10378 BNX2X_UC_LIST_MAC, &ramrod_flags);
10379 if (rc < 0) {
10380 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10381 rc);
10382 return rc;
10383 }
10384 }
10385
10386 /* Execute the pending commands */
10387 __set_bit(RAMROD_CONT, &ramrod_flags);
10388 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10389 BNX2X_UC_LIST_MAC, &ramrod_flags);
10390 }
10391
10392 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10393 {
10394 struct net_device *dev = bp->dev;
10395 struct bnx2x_mcast_ramrod_params rparam = {0};
10396 int rc = 0;
10397
10398 rparam.mcast_obj = &bp->mcast_obj;
10399
10400 /* first, clear all configured multicast MACs */
10401 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10402 if (rc < 0) {
10403 BNX2X_ERR("Failed to clear multicast "
10404 "configuration: %d\n", rc);
10405 return rc;
10406 }
10407
10408 /* then, configure a new MACs list */
10409 if (netdev_mc_count(dev)) {
10410 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10411 if (rc) {
10412 BNX2X_ERR("Failed to create multicast MACs "
10413 "list: %d\n", rc);
10414 return rc;
10415 }
10416
10417 /* Now add the new MACs */
10418 rc = bnx2x_config_mcast(bp, &rparam,
10419 BNX2X_MCAST_CMD_ADD);
10420 if (rc < 0)
10421 BNX2X_ERR("Failed to set a new multicast "
10422 "configuration: %d\n", rc);
10423
10424 bnx2x_free_mcast_macs_list(&rparam);
10425 }
10426
10427 return rc;
10428 }
10429
10430
10431 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10432 void bnx2x_set_rx_mode(struct net_device *dev)
10433 {
10434 struct bnx2x *bp = netdev_priv(dev);
10435 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10436
10437 if (bp->state != BNX2X_STATE_OPEN) {
10438 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10439 return;
10440 }
10441
10442 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10443
10444 if (dev->flags & IFF_PROMISC)
10445 rx_mode = BNX2X_RX_MODE_PROMISC;
10446 else if ((dev->flags & IFF_ALLMULTI) ||
10447 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10448 CHIP_IS_E1(bp)))
10449 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10450 else {
10451 /* some multicasts */
10452 if (bnx2x_set_mc_list(bp) < 0)
10453 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10454
10455 if (bnx2x_set_uc_list(bp) < 0)
10456 rx_mode = BNX2X_RX_MODE_PROMISC;
10457 }
10458
10459 bp->rx_mode = rx_mode;
10460 #ifdef BCM_CNIC
10461 /* handle ISCSI SD mode */
10462 if (IS_MF_ISCSI_SD(bp))
10463 bp->rx_mode = BNX2X_RX_MODE_NONE;
10464 #endif
10465
10466 /* Schedule the rx_mode command */
10467 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10468 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10469 return;
10470 }
10471
10472 bnx2x_set_storm_rx_mode(bp);
10473 }
10474
10475 /* called with rtnl_lock */
10476 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10477 int devad, u16 addr)
10478 {
10479 struct bnx2x *bp = netdev_priv(netdev);
10480 u16 value;
10481 int rc;
10482
10483 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10484 prtad, devad, addr);
10485
10486 /* The HW expects different devad if CL22 is used */
10487 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10488
10489 bnx2x_acquire_phy_lock(bp);
10490 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10491 bnx2x_release_phy_lock(bp);
10492 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10493
10494 if (!rc)
10495 rc = value;
10496 return rc;
10497 }
10498
10499 /* called with rtnl_lock */
10500 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10501 u16 addr, u16 value)
10502 {
10503 struct bnx2x *bp = netdev_priv(netdev);
10504 int rc;
10505
10506 DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10507 " value 0x%x\n", prtad, devad, addr, value);
10508
10509 /* The HW expects different devad if CL22 is used */
10510 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10511
10512 bnx2x_acquire_phy_lock(bp);
10513 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10514 bnx2x_release_phy_lock(bp);
10515 return rc;
10516 }
10517
10518 /* called with rtnl_lock */
10519 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10520 {
10521 struct bnx2x *bp = netdev_priv(dev);
10522 struct mii_ioctl_data *mdio = if_mii(ifr);
10523
10524 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10525 mdio->phy_id, mdio->reg_num, mdio->val_in);
10526
10527 if (!netif_running(dev))
10528 return -EAGAIN;
10529
10530 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10531 }
10532
10533 #ifdef CONFIG_NET_POLL_CONTROLLER
10534 static void poll_bnx2x(struct net_device *dev)
10535 {
10536 struct bnx2x *bp = netdev_priv(dev);
10537
10538 disable_irq(bp->pdev->irq);
10539 bnx2x_interrupt(bp->pdev->irq, dev);
10540 enable_irq(bp->pdev->irq);
10541 }
10542 #endif
10543
10544 static int bnx2x_validate_addr(struct net_device *dev)
10545 {
10546 struct bnx2x *bp = netdev_priv(dev);
10547
10548 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
10549 return -EADDRNOTAVAIL;
10550 return 0;
10551 }
10552
10553 static const struct net_device_ops bnx2x_netdev_ops = {
10554 .ndo_open = bnx2x_open,
10555 .ndo_stop = bnx2x_close,
10556 .ndo_start_xmit = bnx2x_start_xmit,
10557 .ndo_select_queue = bnx2x_select_queue,
10558 .ndo_set_rx_mode = bnx2x_set_rx_mode,
10559 .ndo_set_mac_address = bnx2x_change_mac_addr,
10560 .ndo_validate_addr = bnx2x_validate_addr,
10561 .ndo_do_ioctl = bnx2x_ioctl,
10562 .ndo_change_mtu = bnx2x_change_mtu,
10563 .ndo_fix_features = bnx2x_fix_features,
10564 .ndo_set_features = bnx2x_set_features,
10565 .ndo_tx_timeout = bnx2x_tx_timeout,
10566 #ifdef CONFIG_NET_POLL_CONTROLLER
10567 .ndo_poll_controller = poll_bnx2x,
10568 #endif
10569 .ndo_setup_tc = bnx2x_setup_tc,
10570
10571 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10572 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
10573 #endif
10574 };
10575
10576 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10577 {
10578 struct device *dev = &bp->pdev->dev;
10579
10580 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10581 bp->flags |= USING_DAC_FLAG;
10582 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10583 dev_err(dev, "dma_set_coherent_mask failed, "
10584 "aborting\n");
10585 return -EIO;
10586 }
10587 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10588 dev_err(dev, "System does not support DMA, aborting\n");
10589 return -EIO;
10590 }
10591
10592 return 0;
10593 }
10594
10595 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10596 struct net_device *dev,
10597 unsigned long board_type)
10598 {
10599 struct bnx2x *bp;
10600 int rc;
10601 u32 pci_cfg_dword;
10602 bool chip_is_e1x = (board_type == BCM57710 ||
10603 board_type == BCM57711 ||
10604 board_type == BCM57711E);
10605
10606 SET_NETDEV_DEV(dev, &pdev->dev);
10607 bp = netdev_priv(dev);
10608
10609 bp->dev = dev;
10610 bp->pdev = pdev;
10611 bp->flags = 0;
10612
10613 rc = pci_enable_device(pdev);
10614 if (rc) {
10615 dev_err(&bp->pdev->dev,
10616 "Cannot enable PCI device, aborting\n");
10617 goto err_out;
10618 }
10619
10620 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10621 dev_err(&bp->pdev->dev,
10622 "Cannot find PCI device base address, aborting\n");
10623 rc = -ENODEV;
10624 goto err_out_disable;
10625 }
10626
10627 if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10628 dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10629 " base address, aborting\n");
10630 rc = -ENODEV;
10631 goto err_out_disable;
10632 }
10633
10634 if (atomic_read(&pdev->enable_cnt) == 1) {
10635 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10636 if (rc) {
10637 dev_err(&bp->pdev->dev,
10638 "Cannot obtain PCI resources, aborting\n");
10639 goto err_out_disable;
10640 }
10641
10642 pci_set_master(pdev);
10643 pci_save_state(pdev);
10644 }
10645
10646 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10647 if (bp->pm_cap == 0) {
10648 dev_err(&bp->pdev->dev,
10649 "Cannot find power management capability, aborting\n");
10650 rc = -EIO;
10651 goto err_out_release;
10652 }
10653
10654 if (!pci_is_pcie(pdev)) {
10655 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
10656 rc = -EIO;
10657 goto err_out_release;
10658 }
10659
10660 rc = bnx2x_set_coherency_mask(bp);
10661 if (rc)
10662 goto err_out_release;
10663
10664 dev->mem_start = pci_resource_start(pdev, 0);
10665 dev->base_addr = dev->mem_start;
10666 dev->mem_end = pci_resource_end(pdev, 0);
10667
10668 dev->irq = pdev->irq;
10669
10670 bp->regview = pci_ioremap_bar(pdev, 0);
10671 if (!bp->regview) {
10672 dev_err(&bp->pdev->dev,
10673 "Cannot map register space, aborting\n");
10674 rc = -ENOMEM;
10675 goto err_out_release;
10676 }
10677
10678 /* In E1/E1H use pci device function given by kernel.
10679 * In E2/E3 read physical function from ME register since these chips
10680 * support Physical Device Assignment where kernel BDF maybe arbitrary
10681 * (depending on hypervisor).
10682 */
10683 if (chip_is_e1x)
10684 bp->pf_num = PCI_FUNC(pdev->devfn);
10685 else {/* chip is E2/3*/
10686 pci_read_config_dword(bp->pdev,
10687 PCICFG_ME_REGISTER, &pci_cfg_dword);
10688 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
10689 ME_REG_ABS_PF_NUM_SHIFT);
10690 }
10691 DP(BNX2X_MSG_SP, "me reg PF num: %d\n", bp->pf_num);
10692
10693 bnx2x_set_power_state(bp, PCI_D0);
10694
10695 /* clean indirect addresses */
10696 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10697 PCICFG_VENDOR_ID_OFFSET);
10698 /*
10699 * Clean the following indirect addresses for all functions since it
10700 * is not used by the driver.
10701 */
10702 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10703 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10704 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10705 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10706
10707 if (chip_is_e1x) {
10708 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10709 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10710 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10711 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10712 }
10713
10714 /*
10715 * Enable internal target-read (in case we are probed after PF FLR).
10716 * Must be done prior to any BAR read access. Only for 57712 and up
10717 */
10718 if (!chip_is_e1x)
10719 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10720
10721 /* Reset the load counter */
10722 bnx2x_clear_load_status(bp);
10723
10724 dev->watchdog_timeo = TX_TIMEOUT;
10725
10726 dev->netdev_ops = &bnx2x_netdev_ops;
10727 bnx2x_set_ethtool_ops(dev);
10728
10729 dev->priv_flags |= IFF_UNICAST_FLT;
10730
10731 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10732 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10733 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10734
10735 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10736 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10737
10738 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10739 if (bp->flags & USING_DAC_FLAG)
10740 dev->features |= NETIF_F_HIGHDMA;
10741
10742 /* Add Loopback capability to the device */
10743 dev->hw_features |= NETIF_F_LOOPBACK;
10744
10745 #ifdef BCM_DCBNL
10746 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10747 #endif
10748
10749 /* get_port_hwinfo() will set prtad and mmds properly */
10750 bp->mdio.prtad = MDIO_PRTAD_NONE;
10751 bp->mdio.mmds = 0;
10752 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10753 bp->mdio.dev = dev;
10754 bp->mdio.mdio_read = bnx2x_mdio_read;
10755 bp->mdio.mdio_write = bnx2x_mdio_write;
10756
10757 return 0;
10758
10759 err_out_release:
10760 if (atomic_read(&pdev->enable_cnt) == 1)
10761 pci_release_regions(pdev);
10762
10763 err_out_disable:
10764 pci_disable_device(pdev);
10765 pci_set_drvdata(pdev, NULL);
10766
10767 err_out:
10768 return rc;
10769 }
10770
10771 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10772 int *width, int *speed)
10773 {
10774 u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10775
10776 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10777
10778 /* return value of 1=2.5GHz 2=5GHz */
10779 *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10780 }
10781
10782 static int bnx2x_check_firmware(struct bnx2x *bp)
10783 {
10784 const struct firmware *firmware = bp->firmware;
10785 struct bnx2x_fw_file_hdr *fw_hdr;
10786 struct bnx2x_fw_file_section *sections;
10787 u32 offset, len, num_ops;
10788 u16 *ops_offsets;
10789 int i;
10790 const u8 *fw_ver;
10791
10792 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10793 return -EINVAL;
10794
10795 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10796 sections = (struct bnx2x_fw_file_section *)fw_hdr;
10797
10798 /* Make sure none of the offsets and sizes make us read beyond
10799 * the end of the firmware data */
10800 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10801 offset = be32_to_cpu(sections[i].offset);
10802 len = be32_to_cpu(sections[i].len);
10803 if (offset + len > firmware->size) {
10804 dev_err(&bp->pdev->dev,
10805 "Section %d length is out of bounds\n", i);
10806 return -EINVAL;
10807 }
10808 }
10809
10810 /* Likewise for the init_ops offsets */
10811 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10812 ops_offsets = (u16 *)(firmware->data + offset);
10813 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10814
10815 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10816 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10817 dev_err(&bp->pdev->dev,
10818 "Section offset %d is out of bounds\n", i);
10819 return -EINVAL;
10820 }
10821 }
10822
10823 /* Check FW version */
10824 offset = be32_to_cpu(fw_hdr->fw_version.offset);
10825 fw_ver = firmware->data + offset;
10826 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10827 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10828 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10829 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10830 dev_err(&bp->pdev->dev,
10831 "Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10832 fw_ver[0], fw_ver[1], fw_ver[2],
10833 fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10834 BCM_5710_FW_MINOR_VERSION,
10835 BCM_5710_FW_REVISION_VERSION,
10836 BCM_5710_FW_ENGINEERING_VERSION);
10837 return -EINVAL;
10838 }
10839
10840 return 0;
10841 }
10842
10843 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10844 {
10845 const __be32 *source = (const __be32 *)_source;
10846 u32 *target = (u32 *)_target;
10847 u32 i;
10848
10849 for (i = 0; i < n/4; i++)
10850 target[i] = be32_to_cpu(source[i]);
10851 }
10852
10853 /*
10854 Ops array is stored in the following format:
10855 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10856 */
10857 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10858 {
10859 const __be32 *source = (const __be32 *)_source;
10860 struct raw_op *target = (struct raw_op *)_target;
10861 u32 i, j, tmp;
10862
10863 for (i = 0, j = 0; i < n/8; i++, j += 2) {
10864 tmp = be32_to_cpu(source[j]);
10865 target[i].op = (tmp >> 24) & 0xff;
10866 target[i].offset = tmp & 0xffffff;
10867 target[i].raw_data = be32_to_cpu(source[j + 1]);
10868 }
10869 }
10870
10871 /**
10872 * IRO array is stored in the following format:
10873 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10874 */
10875 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10876 {
10877 const __be32 *source = (const __be32 *)_source;
10878 struct iro *target = (struct iro *)_target;
10879 u32 i, j, tmp;
10880
10881 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10882 target[i].base = be32_to_cpu(source[j]);
10883 j++;
10884 tmp = be32_to_cpu(source[j]);
10885 target[i].m1 = (tmp >> 16) & 0xffff;
10886 target[i].m2 = tmp & 0xffff;
10887 j++;
10888 tmp = be32_to_cpu(source[j]);
10889 target[i].m3 = (tmp >> 16) & 0xffff;
10890 target[i].size = tmp & 0xffff;
10891 j++;
10892 }
10893 }
10894
10895 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10896 {
10897 const __be16 *source = (const __be16 *)_source;
10898 u16 *target = (u16 *)_target;
10899 u32 i;
10900
10901 for (i = 0; i < n/2; i++)
10902 target[i] = be16_to_cpu(source[i]);
10903 }
10904
10905 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
10906 do { \
10907 u32 len = be32_to_cpu(fw_hdr->arr.len); \
10908 bp->arr = kmalloc(len, GFP_KERNEL); \
10909 if (!bp->arr) \
10910 goto lbl; \
10911 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
10912 (u8 *)bp->arr, len); \
10913 } while (0)
10914
10915 int bnx2x_init_firmware(struct bnx2x *bp)
10916 {
10917 struct bnx2x_fw_file_hdr *fw_hdr;
10918 int rc;
10919
10920
10921 if (!bp->firmware) {
10922 const char *fw_file_name;
10923
10924 if (CHIP_IS_E1(bp))
10925 fw_file_name = FW_FILE_NAME_E1;
10926 else if (CHIP_IS_E1H(bp))
10927 fw_file_name = FW_FILE_NAME_E1H;
10928 else if (!CHIP_IS_E1x(bp))
10929 fw_file_name = FW_FILE_NAME_E2;
10930 else {
10931 BNX2X_ERR("Unsupported chip revision\n");
10932 return -EINVAL;
10933 }
10934 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10935
10936 rc = request_firmware(&bp->firmware, fw_file_name,
10937 &bp->pdev->dev);
10938 if (rc) {
10939 BNX2X_ERR("Can't load firmware file %s\n",
10940 fw_file_name);
10941 goto request_firmware_exit;
10942 }
10943
10944 rc = bnx2x_check_firmware(bp);
10945 if (rc) {
10946 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10947 goto request_firmware_exit;
10948 }
10949 }
10950
10951 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10952
10953 /* Initialize the pointers to the init arrays */
10954 /* Blob */
10955 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10956
10957 /* Opcodes */
10958 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10959
10960 /* Offsets */
10961 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10962 be16_to_cpu_n);
10963
10964 /* STORMs firmware */
10965 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10966 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10967 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
10968 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10969 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10970 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10971 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
10972 be32_to_cpu(fw_hdr->usem_pram_data.offset);
10973 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10974 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10975 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
10976 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10977 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10978 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10979 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
10980 be32_to_cpu(fw_hdr->csem_pram_data.offset);
10981 /* IRO */
10982 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10983
10984 return 0;
10985
10986 iro_alloc_err:
10987 kfree(bp->init_ops_offsets);
10988 init_offsets_alloc_err:
10989 kfree(bp->init_ops);
10990 init_ops_alloc_err:
10991 kfree(bp->init_data);
10992 request_firmware_exit:
10993 release_firmware(bp->firmware);
10994
10995 return rc;
10996 }
10997
10998 static void bnx2x_release_firmware(struct bnx2x *bp)
10999 {
11000 kfree(bp->init_ops_offsets);
11001 kfree(bp->init_ops);
11002 kfree(bp->init_data);
11003 release_firmware(bp->firmware);
11004 bp->firmware = NULL;
11005 }
11006
11007
11008 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
11009 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
11010 .init_hw_cmn = bnx2x_init_hw_common,
11011 .init_hw_port = bnx2x_init_hw_port,
11012 .init_hw_func = bnx2x_init_hw_func,
11013
11014 .reset_hw_cmn = bnx2x_reset_common,
11015 .reset_hw_port = bnx2x_reset_port,
11016 .reset_hw_func = bnx2x_reset_func,
11017
11018 .gunzip_init = bnx2x_gunzip_init,
11019 .gunzip_end = bnx2x_gunzip_end,
11020
11021 .init_fw = bnx2x_init_firmware,
11022 .release_fw = bnx2x_release_firmware,
11023 };
11024
11025 void bnx2x__init_func_obj(struct bnx2x *bp)
11026 {
11027 /* Prepare DMAE related driver resources */
11028 bnx2x_setup_dmae(bp);
11029
11030 bnx2x_init_func_obj(bp, &bp->func_obj,
11031 bnx2x_sp(bp, func_rdata),
11032 bnx2x_sp_mapping(bp, func_rdata),
11033 &bnx2x_func_sp_drv);
11034 }
11035
11036 /* must be called after sriov-enable */
11037 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
11038 {
11039 int cid_count = BNX2X_L2_CID_COUNT(bp);
11040
11041 #ifdef BCM_CNIC
11042 cid_count += CNIC_CID_MAX;
11043 #endif
11044 return roundup(cid_count, QM_CID_ROUND);
11045 }
11046
11047 /**
11048 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
11049 *
11050 * @dev: pci device
11051 *
11052 */
11053 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
11054 {
11055 int pos;
11056 u16 control;
11057
11058 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
11059
11060 /*
11061 * If MSI-X is not supported - return number of SBs needed to support
11062 * one fast path queue: one FP queue + SB for CNIC
11063 */
11064 if (!pos)
11065 return 1 + CNIC_PRESENT;
11066
11067 /*
11068 * The value in the PCI configuration space is the index of the last
11069 * entry, namely one less than the actual size of the table, which is
11070 * exactly what we want to return from this function: number of all SBs
11071 * without the default SB.
11072 */
11073 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
11074 return control & PCI_MSIX_FLAGS_QSIZE;
11075 }
11076
11077 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11078 const struct pci_device_id *ent)
11079 {
11080 struct net_device *dev = NULL;
11081 struct bnx2x *bp;
11082 int pcie_width, pcie_speed;
11083 int rc, max_non_def_sbs;
11084 int rx_count, tx_count, rss_count;
11085 /*
11086 * An estimated maximum supported CoS number according to the chip
11087 * version.
11088 * We will try to roughly estimate the maximum number of CoSes this chip
11089 * may support in order to minimize the memory allocated for Tx
11090 * netdev_queue's. This number will be accurately calculated during the
11091 * initialization of bp->max_cos based on the chip versions AND chip
11092 * revision in the bnx2x_init_bp().
11093 */
11094 u8 max_cos_est = 0;
11095
11096 switch (ent->driver_data) {
11097 case BCM57710:
11098 case BCM57711:
11099 case BCM57711E:
11100 max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11101 break;
11102
11103 case BCM57712:
11104 case BCM57712_MF:
11105 max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11106 break;
11107
11108 case BCM57800:
11109 case BCM57800_MF:
11110 case BCM57810:
11111 case BCM57810_MF:
11112 case BCM57840:
11113 case BCM57840_MF:
11114 max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11115 break;
11116
11117 default:
11118 pr_err("Unknown board_type (%ld), aborting\n",
11119 ent->driver_data);
11120 return -ENODEV;
11121 }
11122
11123 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11124
11125 /* !!! FIXME !!!
11126 * Do not allow the maximum SB count to grow above 16
11127 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11128 * We will use the FP_SB_MAX_E1x macro for this matter.
11129 */
11130 max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11131
11132 WARN_ON(!max_non_def_sbs);
11133
11134 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
11135 rss_count = max_non_def_sbs - CNIC_PRESENT;
11136
11137 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11138 rx_count = rss_count + FCOE_PRESENT;
11139
11140 /*
11141 * Maximum number of netdev Tx queues:
11142 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
11143 */
11144 tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11145
11146 /* dev zeroed in init_etherdev */
11147 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11148 if (!dev)
11149 return -ENOMEM;
11150
11151 bp = netdev_priv(dev);
11152
11153 DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
11154 tx_count, rx_count);
11155
11156 bp->igu_sb_cnt = max_non_def_sbs;
11157 bp->msg_enable = debug;
11158 pci_set_drvdata(pdev, dev);
11159
11160 rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11161 if (rc < 0) {
11162 free_netdev(dev);
11163 return rc;
11164 }
11165
11166 DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
11167
11168 rc = bnx2x_init_bp(bp);
11169 if (rc)
11170 goto init_one_exit;
11171
11172 /*
11173 * Map doorbels here as we need the real value of bp->max_cos which
11174 * is initialized in bnx2x_init_bp().
11175 */
11176 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11177 min_t(u64, BNX2X_DB_SIZE(bp),
11178 pci_resource_len(pdev, 2)));
11179 if (!bp->doorbells) {
11180 dev_err(&bp->pdev->dev,
11181 "Cannot map doorbell space, aborting\n");
11182 rc = -ENOMEM;
11183 goto init_one_exit;
11184 }
11185
11186 /* calc qm_cid_count */
11187 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11188
11189 #ifdef BCM_CNIC
11190 /* disable FCOE L2 queue for E1x */
11191 if (CHIP_IS_E1x(bp))
11192 bp->flags |= NO_FCOE_FLAG;
11193
11194 #endif
11195
11196 /* Configure interrupt mode: try to enable MSI-X/MSI if
11197 * needed, set bp->num_queues appropriately.
11198 */
11199 bnx2x_set_int_mode(bp);
11200
11201 /* Add all NAPI objects */
11202 bnx2x_add_all_napi(bp);
11203
11204 rc = register_netdev(dev);
11205 if (rc) {
11206 dev_err(&pdev->dev, "Cannot register net device\n");
11207 goto init_one_exit;
11208 }
11209
11210 #ifdef BCM_CNIC
11211 if (!NO_FCOE(bp)) {
11212 /* Add storage MAC address */
11213 rtnl_lock();
11214 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11215 rtnl_unlock();
11216 }
11217 #endif
11218
11219 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11220
11221 netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11222 board_info[ent->driver_data].name,
11223 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11224 pcie_width,
11225 ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11226 (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11227 "5GHz (Gen2)" : "2.5GHz",
11228 dev->base_addr, bp->pdev->irq, dev->dev_addr);
11229
11230 return 0;
11231
11232 init_one_exit:
11233 if (bp->regview)
11234 iounmap(bp->regview);
11235
11236 if (bp->doorbells)
11237 iounmap(bp->doorbells);
11238
11239 free_netdev(dev);
11240
11241 if (atomic_read(&pdev->enable_cnt) == 1)
11242 pci_release_regions(pdev);
11243
11244 pci_disable_device(pdev);
11245 pci_set_drvdata(pdev, NULL);
11246
11247 return rc;
11248 }
11249
11250 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11251 {
11252 struct net_device *dev = pci_get_drvdata(pdev);
11253 struct bnx2x *bp;
11254
11255 if (!dev) {
11256 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11257 return;
11258 }
11259 bp = netdev_priv(dev);
11260
11261 #ifdef BCM_CNIC
11262 /* Delete storage MAC address */
11263 if (!NO_FCOE(bp)) {
11264 rtnl_lock();
11265 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11266 rtnl_unlock();
11267 }
11268 #endif
11269
11270 #ifdef BCM_DCBNL
11271 /* Delete app tlvs from dcbnl */
11272 bnx2x_dcbnl_update_applist(bp, true);
11273 #endif
11274
11275 unregister_netdev(dev);
11276
11277 /* Delete all NAPI objects */
11278 bnx2x_del_all_napi(bp);
11279
11280 /* Power on: we can't let PCI layer write to us while we are in D3 */
11281 bnx2x_set_power_state(bp, PCI_D0);
11282
11283 /* Disable MSI/MSI-X */
11284 bnx2x_disable_msi(bp);
11285
11286 /* Power off */
11287 bnx2x_set_power_state(bp, PCI_D3hot);
11288
11289 /* Make sure RESET task is not scheduled before continuing */
11290 cancel_delayed_work_sync(&bp->sp_rtnl_task);
11291
11292 if (bp->regview)
11293 iounmap(bp->regview);
11294
11295 if (bp->doorbells)
11296 iounmap(bp->doorbells);
11297
11298 bnx2x_release_firmware(bp);
11299
11300 bnx2x_free_mem_bp(bp);
11301
11302 free_netdev(dev);
11303
11304 if (atomic_read(&pdev->enable_cnt) == 1)
11305 pci_release_regions(pdev);
11306
11307 pci_disable_device(pdev);
11308 pci_set_drvdata(pdev, NULL);
11309 }
11310
11311 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11312 {
11313 int i;
11314
11315 bp->state = BNX2X_STATE_ERROR;
11316
11317 bp->rx_mode = BNX2X_RX_MODE_NONE;
11318
11319 #ifdef BCM_CNIC
11320 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11321 #endif
11322 /* Stop Tx */
11323 bnx2x_tx_disable(bp);
11324
11325 bnx2x_netif_stop(bp, 0);
11326
11327 del_timer_sync(&bp->timer);
11328
11329 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11330
11331 /* Release IRQs */
11332 bnx2x_free_irq(bp);
11333
11334 /* Free SKBs, SGEs, TPA pool and driver internals */
11335 bnx2x_free_skbs(bp);
11336
11337 for_each_rx_queue(bp, i)
11338 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11339
11340 bnx2x_free_mem(bp);
11341
11342 bp->state = BNX2X_STATE_CLOSED;
11343
11344 netif_carrier_off(bp->dev);
11345
11346 return 0;
11347 }
11348
11349 static void bnx2x_eeh_recover(struct bnx2x *bp)
11350 {
11351 u32 val;
11352
11353 mutex_init(&bp->port.phy_mutex);
11354
11355
11356 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11357 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11358 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11359 BNX2X_ERR("BAD MCP validity signature\n");
11360 }
11361
11362 /**
11363 * bnx2x_io_error_detected - called when PCI error is detected
11364 * @pdev: Pointer to PCI device
11365 * @state: The current pci connection state
11366 *
11367 * This function is called after a PCI bus error affecting
11368 * this device has been detected.
11369 */
11370 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11371 pci_channel_state_t state)
11372 {
11373 struct net_device *dev = pci_get_drvdata(pdev);
11374 struct bnx2x *bp = netdev_priv(dev);
11375
11376 rtnl_lock();
11377
11378 netif_device_detach(dev);
11379
11380 if (state == pci_channel_io_perm_failure) {
11381 rtnl_unlock();
11382 return PCI_ERS_RESULT_DISCONNECT;
11383 }
11384
11385 if (netif_running(dev))
11386 bnx2x_eeh_nic_unload(bp);
11387
11388 pci_disable_device(pdev);
11389
11390 rtnl_unlock();
11391
11392 /* Request a slot reset */
11393 return PCI_ERS_RESULT_NEED_RESET;
11394 }
11395
11396 /**
11397 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11398 * @pdev: Pointer to PCI device
11399 *
11400 * Restart the card from scratch, as if from a cold-boot.
11401 */
11402 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11403 {
11404 struct net_device *dev = pci_get_drvdata(pdev);
11405 struct bnx2x *bp = netdev_priv(dev);
11406
11407 rtnl_lock();
11408
11409 if (pci_enable_device(pdev)) {
11410 dev_err(&pdev->dev,
11411 "Cannot re-enable PCI device after reset\n");
11412 rtnl_unlock();
11413 return PCI_ERS_RESULT_DISCONNECT;
11414 }
11415
11416 pci_set_master(pdev);
11417 pci_restore_state(pdev);
11418
11419 if (netif_running(dev))
11420 bnx2x_set_power_state(bp, PCI_D0);
11421
11422 rtnl_unlock();
11423
11424 return PCI_ERS_RESULT_RECOVERED;
11425 }
11426
11427 /**
11428 * bnx2x_io_resume - called when traffic can start flowing again
11429 * @pdev: Pointer to PCI device
11430 *
11431 * This callback is called when the error recovery driver tells us that
11432 * its OK to resume normal operation.
11433 */
11434 static void bnx2x_io_resume(struct pci_dev *pdev)
11435 {
11436 struct net_device *dev = pci_get_drvdata(pdev);
11437 struct bnx2x *bp = netdev_priv(dev);
11438
11439 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11440 netdev_err(bp->dev, "Handling parity error recovery. "
11441 "Try again later\n");
11442 return;
11443 }
11444
11445 rtnl_lock();
11446
11447 bnx2x_eeh_recover(bp);
11448
11449 if (netif_running(dev))
11450 bnx2x_nic_load(bp, LOAD_NORMAL);
11451
11452 netif_device_attach(dev);
11453
11454 rtnl_unlock();
11455 }
11456
11457 static struct pci_error_handlers bnx2x_err_handler = {
11458 .error_detected = bnx2x_io_error_detected,
11459 .slot_reset = bnx2x_io_slot_reset,
11460 .resume = bnx2x_io_resume,
11461 };
11462
11463 static struct pci_driver bnx2x_pci_driver = {
11464 .name = DRV_MODULE_NAME,
11465 .id_table = bnx2x_pci_tbl,
11466 .probe = bnx2x_init_one,
11467 .remove = __devexit_p(bnx2x_remove_one),
11468 .suspend = bnx2x_suspend,
11469 .resume = bnx2x_resume,
11470 .err_handler = &bnx2x_err_handler,
11471 };
11472
11473 static int __init bnx2x_init(void)
11474 {
11475 int ret;
11476
11477 pr_info("%s", version);
11478
11479 bnx2x_wq = create_singlethread_workqueue("bnx2x");
11480 if (bnx2x_wq == NULL) {
11481 pr_err("Cannot create workqueue\n");
11482 return -ENOMEM;
11483 }
11484
11485 ret = pci_register_driver(&bnx2x_pci_driver);
11486 if (ret) {
11487 pr_err("Cannot register driver\n");
11488 destroy_workqueue(bnx2x_wq);
11489 }
11490 return ret;
11491 }
11492
11493 static void __exit bnx2x_cleanup(void)
11494 {
11495 pci_unregister_driver(&bnx2x_pci_driver);
11496
11497 destroy_workqueue(bnx2x_wq);
11498 }
11499
11500 void bnx2x_notify_link_changed(struct bnx2x *bp)
11501 {
11502 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11503 }
11504
11505 module_init(bnx2x_init);
11506 module_exit(bnx2x_cleanup);
11507
11508 #ifdef BCM_CNIC
11509 /**
11510 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11511 *
11512 * @bp: driver handle
11513 * @set: set or clear the CAM entry
11514 *
11515 * This function will wait until the ramdord completion returns.
11516 * Return 0 if success, -ENODEV if ramrod doesn't return.
11517 */
11518 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11519 {
11520 unsigned long ramrod_flags = 0;
11521
11522 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11523 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11524 &bp->iscsi_l2_mac_obj, true,
11525 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11526 }
11527
11528 /* count denotes the number of new completions we have seen */
11529 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11530 {
11531 struct eth_spe *spe;
11532
11533 #ifdef BNX2X_STOP_ON_ERROR
11534 if (unlikely(bp->panic))
11535 return;
11536 #endif
11537
11538 spin_lock_bh(&bp->spq_lock);
11539 BUG_ON(bp->cnic_spq_pending < count);
11540 bp->cnic_spq_pending -= count;
11541
11542
11543 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11544 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11545 & SPE_HDR_CONN_TYPE) >>
11546 SPE_HDR_CONN_TYPE_SHIFT;
11547 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11548 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11549
11550 /* Set validation for iSCSI L2 client before sending SETUP
11551 * ramrod
11552 */
11553 if (type == ETH_CONNECTION_TYPE) {
11554 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11555 bnx2x_set_ctx_validation(bp, &bp->context.
11556 vcxt[BNX2X_ISCSI_ETH_CID].eth,
11557 BNX2X_ISCSI_ETH_CID);
11558 }
11559
11560 /*
11561 * There may be not more than 8 L2, not more than 8 L5 SPEs
11562 * and in the air. We also check that number of outstanding
11563 * COMMON ramrods is not more than the EQ and SPQ can
11564 * accommodate.
11565 */
11566 if (type == ETH_CONNECTION_TYPE) {
11567 if (!atomic_read(&bp->cq_spq_left))
11568 break;
11569 else
11570 atomic_dec(&bp->cq_spq_left);
11571 } else if (type == NONE_CONNECTION_TYPE) {
11572 if (!atomic_read(&bp->eq_spq_left))
11573 break;
11574 else
11575 atomic_dec(&bp->eq_spq_left);
11576 } else if ((type == ISCSI_CONNECTION_TYPE) ||
11577 (type == FCOE_CONNECTION_TYPE)) {
11578 if (bp->cnic_spq_pending >=
11579 bp->cnic_eth_dev.max_kwqe_pending)
11580 break;
11581 else
11582 bp->cnic_spq_pending++;
11583 } else {
11584 BNX2X_ERR("Unknown SPE type: %d\n", type);
11585 bnx2x_panic();
11586 break;
11587 }
11588
11589 spe = bnx2x_sp_get_next(bp);
11590 *spe = *bp->cnic_kwq_cons;
11591
11592 DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11593 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11594
11595 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11596 bp->cnic_kwq_cons = bp->cnic_kwq;
11597 else
11598 bp->cnic_kwq_cons++;
11599 }
11600 bnx2x_sp_prod_update(bp);
11601 spin_unlock_bh(&bp->spq_lock);
11602 }
11603
11604 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11605 struct kwqe_16 *kwqes[], u32 count)
11606 {
11607 struct bnx2x *bp = netdev_priv(dev);
11608 int i;
11609
11610 #ifdef BNX2X_STOP_ON_ERROR
11611 if (unlikely(bp->panic))
11612 return -EIO;
11613 #endif
11614
11615 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
11616 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
11617 netdev_err(dev, "Handling parity error recovery. Try again "
11618 "later\n");
11619 return -EAGAIN;
11620 }
11621
11622 spin_lock_bh(&bp->spq_lock);
11623
11624 for (i = 0; i < count; i++) {
11625 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11626
11627 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11628 break;
11629
11630 *bp->cnic_kwq_prod = *spe;
11631
11632 bp->cnic_kwq_pending++;
11633
11634 DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11635 spe->hdr.conn_and_cmd_data, spe->hdr.type,
11636 spe->data.update_data_addr.hi,
11637 spe->data.update_data_addr.lo,
11638 bp->cnic_kwq_pending);
11639
11640 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11641 bp->cnic_kwq_prod = bp->cnic_kwq;
11642 else
11643 bp->cnic_kwq_prod++;
11644 }
11645
11646 spin_unlock_bh(&bp->spq_lock);
11647
11648 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11649 bnx2x_cnic_sp_post(bp, 0);
11650
11651 return i;
11652 }
11653
11654 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11655 {
11656 struct cnic_ops *c_ops;
11657 int rc = 0;
11658
11659 mutex_lock(&bp->cnic_mutex);
11660 c_ops = rcu_dereference_protected(bp->cnic_ops,
11661 lockdep_is_held(&bp->cnic_mutex));
11662 if (c_ops)
11663 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11664 mutex_unlock(&bp->cnic_mutex);
11665
11666 return rc;
11667 }
11668
11669 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11670 {
11671 struct cnic_ops *c_ops;
11672 int rc = 0;
11673
11674 rcu_read_lock();
11675 c_ops = rcu_dereference(bp->cnic_ops);
11676 if (c_ops)
11677 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11678 rcu_read_unlock();
11679
11680 return rc;
11681 }
11682
11683 /*
11684 * for commands that have no data
11685 */
11686 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11687 {
11688 struct cnic_ctl_info ctl = {0};
11689
11690 ctl.cmd = cmd;
11691
11692 return bnx2x_cnic_ctl_send(bp, &ctl);
11693 }
11694
11695 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11696 {
11697 struct cnic_ctl_info ctl = {0};
11698
11699 /* first we tell CNIC and only then we count this as a completion */
11700 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11701 ctl.data.comp.cid = cid;
11702 ctl.data.comp.error = err;
11703
11704 bnx2x_cnic_ctl_send_bh(bp, &ctl);
11705 bnx2x_cnic_sp_post(bp, 0);
11706 }
11707
11708
11709 /* Called with netif_addr_lock_bh() taken.
11710 * Sets an rx_mode config for an iSCSI ETH client.
11711 * Doesn't block.
11712 * Completion should be checked outside.
11713 */
11714 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11715 {
11716 unsigned long accept_flags = 0, ramrod_flags = 0;
11717 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11718 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11719
11720 if (start) {
11721 /* Start accepting on iSCSI L2 ring. Accept all multicasts
11722 * because it's the only way for UIO Queue to accept
11723 * multicasts (in non-promiscuous mode only one Queue per
11724 * function will receive multicast packets (leading in our
11725 * case).
11726 */
11727 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11728 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11729 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11730 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11731
11732 /* Clear STOP_PENDING bit if START is requested */
11733 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11734
11735 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11736 } else
11737 /* Clear START_PENDING bit if STOP is requested */
11738 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11739
11740 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11741 set_bit(sched_state, &bp->sp_state);
11742 else {
11743 __set_bit(RAMROD_RX, &ramrod_flags);
11744 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11745 ramrod_flags);
11746 }
11747 }
11748
11749
11750 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11751 {
11752 struct bnx2x *bp = netdev_priv(dev);
11753 int rc = 0;
11754
11755 switch (ctl->cmd) {
11756 case DRV_CTL_CTXTBL_WR_CMD: {
11757 u32 index = ctl->data.io.offset;
11758 dma_addr_t addr = ctl->data.io.dma_addr;
11759
11760 bnx2x_ilt_wr(bp, index, addr);
11761 break;
11762 }
11763
11764 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11765 int count = ctl->data.credit.credit_count;
11766
11767 bnx2x_cnic_sp_post(bp, count);
11768 break;
11769 }
11770
11771 /* rtnl_lock is held. */
11772 case DRV_CTL_START_L2_CMD: {
11773 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11774 unsigned long sp_bits = 0;
11775
11776 /* Configure the iSCSI classification object */
11777 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11778 cp->iscsi_l2_client_id,
11779 cp->iscsi_l2_cid, BP_FUNC(bp),
11780 bnx2x_sp(bp, mac_rdata),
11781 bnx2x_sp_mapping(bp, mac_rdata),
11782 BNX2X_FILTER_MAC_PENDING,
11783 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11784 &bp->macs_pool);
11785
11786 /* Set iSCSI MAC address */
11787 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11788 if (rc)
11789 break;
11790
11791 mmiowb();
11792 barrier();
11793
11794 /* Start accepting on iSCSI L2 ring */
11795
11796 netif_addr_lock_bh(dev);
11797 bnx2x_set_iscsi_eth_rx_mode(bp, true);
11798 netif_addr_unlock_bh(dev);
11799
11800 /* bits to wait on */
11801 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11802 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11803
11804 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11805 BNX2X_ERR("rx_mode completion timed out!\n");
11806
11807 break;
11808 }
11809
11810 /* rtnl_lock is held. */
11811 case DRV_CTL_STOP_L2_CMD: {
11812 unsigned long sp_bits = 0;
11813
11814 /* Stop accepting on iSCSI L2 ring */
11815 netif_addr_lock_bh(dev);
11816 bnx2x_set_iscsi_eth_rx_mode(bp, false);
11817 netif_addr_unlock_bh(dev);
11818
11819 /* bits to wait on */
11820 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11821 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11822
11823 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11824 BNX2X_ERR("rx_mode completion timed out!\n");
11825
11826 mmiowb();
11827 barrier();
11828
11829 /* Unset iSCSI L2 MAC */
11830 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11831 BNX2X_ISCSI_ETH_MAC, true);
11832 break;
11833 }
11834 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11835 int count = ctl->data.credit.credit_count;
11836
11837 smp_mb__before_atomic_inc();
11838 atomic_add(count, &bp->cq_spq_left);
11839 smp_mb__after_atomic_inc();
11840 break;
11841 }
11842 case DRV_CTL_ULP_REGISTER_CMD: {
11843 int ulp_type = ctl->data.ulp_type;
11844
11845 if (CHIP_IS_E3(bp)) {
11846 int idx = BP_FW_MB_IDX(bp);
11847 u32 cap;
11848
11849 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11850 if (ulp_type == CNIC_ULP_ISCSI)
11851 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11852 else if (ulp_type == CNIC_ULP_FCOE)
11853 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11854 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11855 }
11856 break;
11857 }
11858 case DRV_CTL_ULP_UNREGISTER_CMD: {
11859 int ulp_type = ctl->data.ulp_type;
11860
11861 if (CHIP_IS_E3(bp)) {
11862 int idx = BP_FW_MB_IDX(bp);
11863 u32 cap;
11864
11865 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11866 if (ulp_type == CNIC_ULP_ISCSI)
11867 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11868 else if (ulp_type == CNIC_ULP_FCOE)
11869 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11870 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11871 }
11872 break;
11873 }
11874
11875 default:
11876 BNX2X_ERR("unknown command %x\n", ctl->cmd);
11877 rc = -EINVAL;
11878 }
11879
11880 return rc;
11881 }
11882
11883 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11884 {
11885 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11886
11887 if (bp->flags & USING_MSIX_FLAG) {
11888 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11889 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11890 cp->irq_arr[0].vector = bp->msix_table[1].vector;
11891 } else {
11892 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11893 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11894 }
11895 if (!CHIP_IS_E1x(bp))
11896 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11897 else
11898 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11899
11900 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
11901 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11902 cp->irq_arr[1].status_blk = bp->def_status_blk;
11903 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11904 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11905
11906 cp->num_irq = 2;
11907 }
11908
11909 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11910 void *data)
11911 {
11912 struct bnx2x *bp = netdev_priv(dev);
11913 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11914
11915 if (ops == NULL)
11916 return -EINVAL;
11917
11918 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11919 if (!bp->cnic_kwq)
11920 return -ENOMEM;
11921
11922 bp->cnic_kwq_cons = bp->cnic_kwq;
11923 bp->cnic_kwq_prod = bp->cnic_kwq;
11924 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11925
11926 bp->cnic_spq_pending = 0;
11927 bp->cnic_kwq_pending = 0;
11928
11929 bp->cnic_data = data;
11930
11931 cp->num_irq = 0;
11932 cp->drv_state |= CNIC_DRV_STATE_REGD;
11933 cp->iro_arr = bp->iro_arr;
11934
11935 bnx2x_setup_cnic_irq_info(bp);
11936
11937 rcu_assign_pointer(bp->cnic_ops, ops);
11938
11939 return 0;
11940 }
11941
11942 static int bnx2x_unregister_cnic(struct net_device *dev)
11943 {
11944 struct bnx2x *bp = netdev_priv(dev);
11945 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11946
11947 mutex_lock(&bp->cnic_mutex);
11948 cp->drv_state = 0;
11949 RCU_INIT_POINTER(bp->cnic_ops, NULL);
11950 mutex_unlock(&bp->cnic_mutex);
11951 synchronize_rcu();
11952 kfree(bp->cnic_kwq);
11953 bp->cnic_kwq = NULL;
11954
11955 return 0;
11956 }
11957
11958 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11959 {
11960 struct bnx2x *bp = netdev_priv(dev);
11961 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11962
11963 /* If both iSCSI and FCoE are disabled - return NULL in
11964 * order to indicate CNIC that it should not try to work
11965 * with this device.
11966 */
11967 if (NO_ISCSI(bp) && NO_FCOE(bp))
11968 return NULL;
11969
11970 cp->drv_owner = THIS_MODULE;
11971 cp->chip_id = CHIP_ID(bp);
11972 cp->pdev = bp->pdev;
11973 cp->io_base = bp->regview;
11974 cp->io_base2 = bp->doorbells;
11975 cp->max_kwqe_pending = 8;
11976 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11977 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11978 bnx2x_cid_ilt_lines(bp);
11979 cp->ctx_tbl_len = CNIC_ILT_LINES;
11980 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11981 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11982 cp->drv_ctl = bnx2x_drv_ctl;
11983 cp->drv_register_cnic = bnx2x_register_cnic;
11984 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11985 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11986 cp->iscsi_l2_client_id =
11987 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11988 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11989
11990 if (NO_ISCSI_OOO(bp))
11991 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11992
11993 if (NO_ISCSI(bp))
11994 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11995
11996 if (NO_FCOE(bp))
11997 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11998
11999 DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
12000 "starting cid %d\n",
12001 cp->ctx_blk_size,
12002 cp->ctx_tbl_offset,
12003 cp->ctx_tbl_len,
12004 cp->starting_cid);
12005 return cp;
12006 }
12007 EXPORT_SYMBOL(bnx2x_cnic_probe);
12008
12009 #endif /* BCM_CNIC */
12010