Merge branch 'bind_unbind' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h> /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION \
73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
76 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT (5*HZ)
83
84 static char version[] =
85 "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
86 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("QLogic "
90 "BCM57710/57711/57711E/"
91 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92 "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98
99 int bnx2x_num_queues;
100 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
101 MODULE_PARM_DESC(num_queues,
102 " Set number of queues (default is as a number of CPUs)");
103
104 static int disable_tpa;
105 module_param(disable_tpa, int, S_IRUGO);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107
108 static int int_mode;
109 module_param(int_mode, int, S_IRUGO);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111 "(1 INT#x; 2 MSI)");
112
113 static int dropless_fc;
114 module_param(dropless_fc, int, S_IRUGO);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116
117 static int mrrs = -1;
118 module_param(mrrs, int, S_IRUGO);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120
121 static int debug;
122 module_param(debug, int, S_IRUGO);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124
125 static struct workqueue_struct *bnx2x_wq;
126 struct workqueue_struct *bnx2x_iov_wq;
127
128 struct bnx2x_mac_vals {
129 u32 xmac_addr;
130 u32 xmac_val;
131 u32 emac_addr;
132 u32 emac_val;
133 u32 umac_addr[2];
134 u32 umac_val[2];
135 u32 bmac_addr;
136 u32 bmac_val[2];
137 };
138
139 enum bnx2x_board_type {
140 BCM57710 = 0,
141 BCM57711,
142 BCM57711E,
143 BCM57712,
144 BCM57712_MF,
145 BCM57712_VF,
146 BCM57800,
147 BCM57800_MF,
148 BCM57800_VF,
149 BCM57810,
150 BCM57810_MF,
151 BCM57810_VF,
152 BCM57840_4_10,
153 BCM57840_2_20,
154 BCM57840_MF,
155 BCM57840_VF,
156 BCM57811,
157 BCM57811_MF,
158 BCM57840_O,
159 BCM57840_MFO,
160 BCM57811_VF
161 };
162
163 /* indexed by board_type, above */
164 static struct {
165 char *name;
166 } board_info[] = {
167 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
168 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" },
169 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" },
170 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" },
171 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
172 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
173 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" },
174 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
175 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
176 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" },
177 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
178 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
179 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
180 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
181 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
183 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" },
184 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
185 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
186 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
188 };
189
190 #ifndef PCI_DEVICE_ID_NX2_57710
191 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711
194 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711E
197 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712
200 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_MF
203 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_VF
206 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800
209 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_MF
212 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_VF
215 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810
218 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810_MF
221 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57840_O
224 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57810_VF
227 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
230 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
233 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
236 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MF
239 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_VF
242 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811
245 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_MF
248 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_VF
251 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
252 #endif
253
254 static const struct pci_device_id bnx2x_pci_tbl[] = {
255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
268 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
275 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279 { 0 }
280 };
281
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288
289 /* Forward declaration */
290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
293
294 /****************************************************************************
295 * General service functions
296 ****************************************************************************/
297
298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
299
300 static void __storm_memset_dma_mapping(struct bnx2x *bp,
301 u32 addr, dma_addr_t mapping)
302 {
303 REG_WR(bp, addr, U64_LO(mapping));
304 REG_WR(bp, addr + 4, U64_HI(mapping));
305 }
306
307 static void storm_memset_spq_addr(struct bnx2x *bp,
308 dma_addr_t mapping, u16 abs_fid)
309 {
310 u32 addr = XSEM_REG_FAST_MEMORY +
311 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
312
313 __storm_memset_dma_mapping(bp, addr, mapping);
314 }
315
316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
317 u16 pf_id)
318 {
319 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
320 pf_id);
321 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
322 pf_id);
323 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
324 pf_id);
325 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
326 pf_id);
327 }
328
329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
330 u8 enable)
331 {
332 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
333 enable);
334 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
335 enable);
336 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
337 enable);
338 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
339 enable);
340 }
341
342 static void storm_memset_eq_data(struct bnx2x *bp,
343 struct event_ring_data *eq_data,
344 u16 pfid)
345 {
346 size_t size = sizeof(struct event_ring_data);
347
348 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
349
350 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
351 }
352
353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
354 u16 pfid)
355 {
356 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
357 REG_WR16(bp, addr, eq_prod);
358 }
359
360 /* used only at init
361 * locking is done by mcp
362 */
363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
364 {
365 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
367 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368 PCICFG_VENDOR_ID_OFFSET);
369 }
370
371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
372 {
373 u32 val;
374
375 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
376 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
377 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
378 PCICFG_VENDOR_ID_OFFSET);
379
380 return val;
381 }
382
383 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
384 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
385 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
386 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
387 #define DMAE_DP_DST_NONE "dst_addr [none]"
388
389 static void bnx2x_dp_dmae(struct bnx2x *bp,
390 struct dmae_command *dmae, int msglvl)
391 {
392 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
393 int i;
394
395 switch (dmae->opcode & DMAE_COMMAND_DST) {
396 case DMAE_CMD_DST_PCI:
397 if (src_type == DMAE_CMD_SRC_PCI)
398 DP(msglvl, "DMAE: opcode 0x%08x\n"
399 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
400 "comp_addr [%x:%08x], comp_val 0x%08x\n",
401 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
402 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403 dmae->comp_addr_hi, dmae->comp_addr_lo,
404 dmae->comp_val);
405 else
406 DP(msglvl, "DMAE: opcode 0x%08x\n"
407 "src [%08x], len [%d*4], dst [%x:%08x]\n"
408 "comp_addr [%x:%08x], comp_val 0x%08x\n",
409 dmae->opcode, dmae->src_addr_lo >> 2,
410 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
411 dmae->comp_addr_hi, dmae->comp_addr_lo,
412 dmae->comp_val);
413 break;
414 case DMAE_CMD_DST_GRC:
415 if (src_type == DMAE_CMD_SRC_PCI)
416 DP(msglvl, "DMAE: opcode 0x%08x\n"
417 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
418 "comp_addr [%x:%08x], comp_val 0x%08x\n",
419 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
420 dmae->len, dmae->dst_addr_lo >> 2,
421 dmae->comp_addr_hi, dmae->comp_addr_lo,
422 dmae->comp_val);
423 else
424 DP(msglvl, "DMAE: opcode 0x%08x\n"
425 "src [%08x], len [%d*4], dst [%08x]\n"
426 "comp_addr [%x:%08x], comp_val 0x%08x\n",
427 dmae->opcode, dmae->src_addr_lo >> 2,
428 dmae->len, dmae->dst_addr_lo >> 2,
429 dmae->comp_addr_hi, dmae->comp_addr_lo,
430 dmae->comp_val);
431 break;
432 default:
433 if (src_type == DMAE_CMD_SRC_PCI)
434 DP(msglvl, "DMAE: opcode 0x%08x\n"
435 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
436 "comp_addr [%x:%08x] comp_val 0x%08x\n",
437 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
438 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439 dmae->comp_val);
440 else
441 DP(msglvl, "DMAE: opcode 0x%08x\n"
442 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
443 "comp_addr [%x:%08x] comp_val 0x%08x\n",
444 dmae->opcode, dmae->src_addr_lo >> 2,
445 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
446 dmae->comp_val);
447 break;
448 }
449
450 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
451 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
452 i, *(((u32 *)dmae) + i));
453 }
454
455 /* copy command into DMAE command memory and set DMAE command go */
456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
457 {
458 u32 cmd_offset;
459 int i;
460
461 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
462 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
463 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
464 }
465 REG_WR(bp, dmae_reg_go_c[idx], 1);
466 }
467
468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
469 {
470 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
471 DMAE_CMD_C_ENABLE);
472 }
473
474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
475 {
476 return opcode & ~DMAE_CMD_SRC_RESET;
477 }
478
479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
480 bool with_comp, u8 comp_type)
481 {
482 u32 opcode = 0;
483
484 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
485 (dst_type << DMAE_COMMAND_DST_SHIFT));
486
487 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
488
489 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
490 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
491 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
492 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
493
494 #ifdef __BIG_ENDIAN
495 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
496 #else
497 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
498 #endif
499 if (with_comp)
500 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
501 return opcode;
502 }
503
504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
505 struct dmae_command *dmae,
506 u8 src_type, u8 dst_type)
507 {
508 memset(dmae, 0, sizeof(struct dmae_command));
509
510 /* set the opcode */
511 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
512 true, DMAE_COMP_PCI);
513
514 /* fill in the completion parameters */
515 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
516 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
517 dmae->comp_val = DMAE_COMP_VAL;
518 }
519
520 /* issue a dmae command over the init-channel and wait for completion */
521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
522 u32 *comp)
523 {
524 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
525 int rc = 0;
526
527 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
528
529 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
530 * as long as this code is called both from syscall context and
531 * from ndo_set_rx_mode() flow that may be called from BH.
532 */
533
534 spin_lock_bh(&bp->dmae_lock);
535
536 /* reset completion */
537 *comp = 0;
538
539 /* post the command on the channel used for initializations */
540 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
541
542 /* wait for completion */
543 udelay(5);
544 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
545
546 if (!cnt ||
547 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
548 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
549 BNX2X_ERR("DMAE timeout!\n");
550 rc = DMAE_TIMEOUT;
551 goto unlock;
552 }
553 cnt--;
554 udelay(50);
555 }
556 if (*comp & DMAE_PCI_ERR_FLAG) {
557 BNX2X_ERR("DMAE PCI error!\n");
558 rc = DMAE_PCI_ERROR;
559 }
560
561 unlock:
562
563 spin_unlock_bh(&bp->dmae_lock);
564
565 return rc;
566 }
567
568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
569 u32 len32)
570 {
571 int rc;
572 struct dmae_command dmae;
573
574 if (!bp->dmae_ready) {
575 u32 *data = bnx2x_sp(bp, wb_data[0]);
576
577 if (CHIP_IS_E1(bp))
578 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
579 else
580 bnx2x_init_str_wr(bp, dst_addr, data, len32);
581 return;
582 }
583
584 /* set opcode and fixed command fields */
585 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
586
587 /* fill in addresses and len */
588 dmae.src_addr_lo = U64_LO(dma_addr);
589 dmae.src_addr_hi = U64_HI(dma_addr);
590 dmae.dst_addr_lo = dst_addr >> 2;
591 dmae.dst_addr_hi = 0;
592 dmae.len = len32;
593
594 /* issue the command and wait for completion */
595 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
596 if (rc) {
597 BNX2X_ERR("DMAE returned failure %d\n", rc);
598 #ifdef BNX2X_STOP_ON_ERROR
599 bnx2x_panic();
600 #endif
601 }
602 }
603
604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
605 {
606 int rc;
607 struct dmae_command dmae;
608
609 if (!bp->dmae_ready) {
610 u32 *data = bnx2x_sp(bp, wb_data[0]);
611 int i;
612
613 if (CHIP_IS_E1(bp))
614 for (i = 0; i < len32; i++)
615 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
616 else
617 for (i = 0; i < len32; i++)
618 data[i] = REG_RD(bp, src_addr + i*4);
619
620 return;
621 }
622
623 /* set opcode and fixed command fields */
624 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
625
626 /* fill in addresses and len */
627 dmae.src_addr_lo = src_addr >> 2;
628 dmae.src_addr_hi = 0;
629 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
630 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
631 dmae.len = len32;
632
633 /* issue the command and wait for completion */
634 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
635 if (rc) {
636 BNX2X_ERR("DMAE returned failure %d\n", rc);
637 #ifdef BNX2X_STOP_ON_ERROR
638 bnx2x_panic();
639 #endif
640 }
641 }
642
643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
644 u32 addr, u32 len)
645 {
646 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
647 int offset = 0;
648
649 while (len > dmae_wr_max) {
650 bnx2x_write_dmae(bp, phys_addr + offset,
651 addr + offset, dmae_wr_max);
652 offset += dmae_wr_max * 4;
653 len -= dmae_wr_max;
654 }
655
656 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
657 }
658
659 enum storms {
660 XSTORM,
661 TSTORM,
662 CSTORM,
663 USTORM,
664 MAX_STORMS
665 };
666
667 #define STORMS_NUM 4
668 #define REGS_IN_ENTRY 4
669
670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
671 enum storms storm,
672 int entry)
673 {
674 switch (storm) {
675 case XSTORM:
676 return XSTORM_ASSERT_LIST_OFFSET(entry);
677 case TSTORM:
678 return TSTORM_ASSERT_LIST_OFFSET(entry);
679 case CSTORM:
680 return CSTORM_ASSERT_LIST_OFFSET(entry);
681 case USTORM:
682 return USTORM_ASSERT_LIST_OFFSET(entry);
683 case MAX_STORMS:
684 default:
685 BNX2X_ERR("unknown storm\n");
686 }
687 return -EINVAL;
688 }
689
690 static int bnx2x_mc_assert(struct bnx2x *bp)
691 {
692 char last_idx;
693 int i, j, rc = 0;
694 enum storms storm;
695 u32 regs[REGS_IN_ENTRY];
696 u32 bar_storm_intmem[STORMS_NUM] = {
697 BAR_XSTRORM_INTMEM,
698 BAR_TSTRORM_INTMEM,
699 BAR_CSTRORM_INTMEM,
700 BAR_USTRORM_INTMEM
701 };
702 u32 storm_assert_list_index[STORMS_NUM] = {
703 XSTORM_ASSERT_LIST_INDEX_OFFSET,
704 TSTORM_ASSERT_LIST_INDEX_OFFSET,
705 CSTORM_ASSERT_LIST_INDEX_OFFSET,
706 USTORM_ASSERT_LIST_INDEX_OFFSET
707 };
708 char *storms_string[STORMS_NUM] = {
709 "XSTORM",
710 "TSTORM",
711 "CSTORM",
712 "USTORM"
713 };
714
715 for (storm = XSTORM; storm < MAX_STORMS; storm++) {
716 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
717 storm_assert_list_index[storm]);
718 if (last_idx)
719 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
720 storms_string[storm], last_idx);
721
722 /* print the asserts */
723 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
724 /* read a single assert entry */
725 for (j = 0; j < REGS_IN_ENTRY; j++)
726 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
727 bnx2x_get_assert_list_entry(bp,
728 storm,
729 i) +
730 sizeof(u32) * j);
731
732 /* log entry if it contains a valid assert */
733 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
734 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
735 storms_string[storm], i, regs[3],
736 regs[2], regs[1], regs[0]);
737 rc++;
738 } else {
739 break;
740 }
741 }
742 }
743
744 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
745 CHIP_IS_E1(bp) ? "everest1" :
746 CHIP_IS_E1H(bp) ? "everest1h" :
747 CHIP_IS_E2(bp) ? "everest2" : "everest3",
748 BCM_5710_FW_MAJOR_VERSION,
749 BCM_5710_FW_MINOR_VERSION,
750 BCM_5710_FW_REVISION_VERSION);
751
752 return rc;
753 }
754
755 #define MCPR_TRACE_BUFFER_SIZE (0x800)
756 #define SCRATCH_BUFFER_SIZE(bp) \
757 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
758
759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
760 {
761 u32 addr, val;
762 u32 mark, offset;
763 __be32 data[9];
764 int word;
765 u32 trace_shmem_base;
766 if (BP_NOMCP(bp)) {
767 BNX2X_ERR("NO MCP - can not dump\n");
768 return;
769 }
770 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
771 (bp->common.bc_ver & 0xff0000) >> 16,
772 (bp->common.bc_ver & 0xff00) >> 8,
773 (bp->common.bc_ver & 0xff));
774
775 if (pci_channel_offline(bp->pdev)) {
776 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
777 return;
778 }
779
780 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
781 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
782 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
783
784 if (BP_PATH(bp) == 0)
785 trace_shmem_base = bp->common.shmem_base;
786 else
787 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
788
789 /* sanity */
790 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
791 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
792 SCRATCH_BUFFER_SIZE(bp)) {
793 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
794 trace_shmem_base);
795 return;
796 }
797
798 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
799
800 /* validate TRCB signature */
801 mark = REG_RD(bp, addr);
802 if (mark != MFW_TRACE_SIGNATURE) {
803 BNX2X_ERR("Trace buffer signature is missing.");
804 return ;
805 }
806
807 /* read cyclic buffer pointer */
808 addr += 4;
809 mark = REG_RD(bp, addr);
810 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
811 if (mark >= trace_shmem_base || mark < addr + 4) {
812 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
813 return;
814 }
815 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
816
817 printk("%s", lvl);
818
819 /* dump buffer after the mark */
820 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
821 for (word = 0; word < 8; word++)
822 data[word] = htonl(REG_RD(bp, offset + 4*word));
823 data[8] = 0x0;
824 pr_cont("%s", (char *)data);
825 }
826
827 /* dump buffer before the mark */
828 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
829 for (word = 0; word < 8; word++)
830 data[word] = htonl(REG_RD(bp, offset + 4*word));
831 data[8] = 0x0;
832 pr_cont("%s", (char *)data);
833 }
834 printk("%s" "end of fw dump\n", lvl);
835 }
836
837 static void bnx2x_fw_dump(struct bnx2x *bp)
838 {
839 bnx2x_fw_dump_lvl(bp, KERN_ERR);
840 }
841
842 static void bnx2x_hc_int_disable(struct bnx2x *bp)
843 {
844 int port = BP_PORT(bp);
845 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
846 u32 val = REG_RD(bp, addr);
847
848 /* in E1 we must use only PCI configuration space to disable
849 * MSI/MSIX capability
850 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
851 */
852 if (CHIP_IS_E1(bp)) {
853 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
854 * Use mask register to prevent from HC sending interrupts
855 * after we exit the function
856 */
857 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
858
859 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860 HC_CONFIG_0_REG_INT_LINE_EN_0 |
861 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
862 } else
863 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
864 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
865 HC_CONFIG_0_REG_INT_LINE_EN_0 |
866 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867
868 DP(NETIF_MSG_IFDOWN,
869 "write %x to HC %d (addr 0x%x)\n",
870 val, port, addr);
871
872 /* flush all outstanding writes */
873 mmiowb();
874
875 REG_WR(bp, addr, val);
876 if (REG_RD(bp, addr) != val)
877 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
878 }
879
880 static void bnx2x_igu_int_disable(struct bnx2x *bp)
881 {
882 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
883
884 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
885 IGU_PF_CONF_INT_LINE_EN |
886 IGU_PF_CONF_ATTN_BIT_EN);
887
888 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
889
890 /* flush all outstanding writes */
891 mmiowb();
892
893 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
894 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
895 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
896 }
897
898 static void bnx2x_int_disable(struct bnx2x *bp)
899 {
900 if (bp->common.int_block == INT_BLOCK_HC)
901 bnx2x_hc_int_disable(bp);
902 else
903 bnx2x_igu_int_disable(bp);
904 }
905
906 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
907 {
908 int i;
909 u16 j;
910 struct hc_sp_status_block_data sp_sb_data;
911 int func = BP_FUNC(bp);
912 #ifdef BNX2X_STOP_ON_ERROR
913 u16 start = 0, end = 0;
914 u8 cos;
915 #endif
916 if (IS_PF(bp) && disable_int)
917 bnx2x_int_disable(bp);
918
919 bp->stats_state = STATS_STATE_DISABLED;
920 bp->eth_stats.unrecoverable_error++;
921 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
922
923 BNX2X_ERR("begin crash dump -----------------\n");
924
925 /* Indices */
926 /* Common */
927 if (IS_PF(bp)) {
928 struct host_sp_status_block *def_sb = bp->def_status_blk;
929 int data_size, cstorm_offset;
930
931 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
932 bp->def_idx, bp->def_att_idx, bp->attn_state,
933 bp->spq_prod_idx, bp->stats_counter);
934 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
935 def_sb->atten_status_block.attn_bits,
936 def_sb->atten_status_block.attn_bits_ack,
937 def_sb->atten_status_block.status_block_id,
938 def_sb->atten_status_block.attn_bits_index);
939 BNX2X_ERR(" def (");
940 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
941 pr_cont("0x%x%s",
942 def_sb->sp_sb.index_values[i],
943 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
944
945 data_size = sizeof(struct hc_sp_status_block_data) /
946 sizeof(u32);
947 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
948 for (i = 0; i < data_size; i++)
949 *((u32 *)&sp_sb_data + i) =
950 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
951 i * sizeof(u32));
952
953 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
954 sp_sb_data.igu_sb_id,
955 sp_sb_data.igu_seg_id,
956 sp_sb_data.p_func.pf_id,
957 sp_sb_data.p_func.vnic_id,
958 sp_sb_data.p_func.vf_id,
959 sp_sb_data.p_func.vf_valid,
960 sp_sb_data.state);
961 }
962
963 for_each_eth_queue(bp, i) {
964 struct bnx2x_fastpath *fp = &bp->fp[i];
965 int loop;
966 struct hc_status_block_data_e2 sb_data_e2;
967 struct hc_status_block_data_e1x sb_data_e1x;
968 struct hc_status_block_sm *hc_sm_p =
969 CHIP_IS_E1x(bp) ?
970 sb_data_e1x.common.state_machine :
971 sb_data_e2.common.state_machine;
972 struct hc_index_data *hc_index_p =
973 CHIP_IS_E1x(bp) ?
974 sb_data_e1x.index_data :
975 sb_data_e2.index_data;
976 u8 data_size, cos;
977 u32 *sb_data_p;
978 struct bnx2x_fp_txdata txdata;
979
980 if (!bp->fp)
981 break;
982
983 if (!fp->rx_cons_sb)
984 continue;
985
986 /* Rx */
987 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
988 i, fp->rx_bd_prod, fp->rx_bd_cons,
989 fp->rx_comp_prod,
990 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
992 fp->rx_sge_prod, fp->last_max_sge,
993 le16_to_cpu(fp->fp_hc_idx));
994
995 /* Tx */
996 for_each_cos_in_tx_queue(fp, cos)
997 {
998 if (!fp->txdata_ptr[cos])
999 break;
1000
1001 txdata = *fp->txdata_ptr[cos];
1002
1003 if (!txdata.tx_cons_sb)
1004 continue;
1005
1006 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
1007 i, txdata.tx_pkt_prod,
1008 txdata.tx_pkt_cons, txdata.tx_bd_prod,
1009 txdata.tx_bd_cons,
1010 le16_to_cpu(*txdata.tx_cons_sb));
1011 }
1012
1013 loop = CHIP_IS_E1x(bp) ?
1014 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1015
1016 /* host sb data */
1017
1018 if (IS_FCOE_FP(fp))
1019 continue;
1020
1021 BNX2X_ERR(" run indexes (");
1022 for (j = 0; j < HC_SB_MAX_SM; j++)
1023 pr_cont("0x%x%s",
1024 fp->sb_running_index[j],
1025 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1026
1027 BNX2X_ERR(" indexes (");
1028 for (j = 0; j < loop; j++)
1029 pr_cont("0x%x%s",
1030 fp->sb_index_values[j],
1031 (j == loop - 1) ? ")" : " ");
1032
1033 /* VF cannot access FW refelection for status block */
1034 if (IS_VF(bp))
1035 continue;
1036
1037 /* fw sb data */
1038 data_size = CHIP_IS_E1x(bp) ?
1039 sizeof(struct hc_status_block_data_e1x) :
1040 sizeof(struct hc_status_block_data_e2);
1041 data_size /= sizeof(u32);
1042 sb_data_p = CHIP_IS_E1x(bp) ?
1043 (u32 *)&sb_data_e1x :
1044 (u32 *)&sb_data_e2;
1045 /* copy sb data in here */
1046 for (j = 0; j < data_size; j++)
1047 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1048 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1049 j * sizeof(u32));
1050
1051 if (!CHIP_IS_E1x(bp)) {
1052 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1053 sb_data_e2.common.p_func.pf_id,
1054 sb_data_e2.common.p_func.vf_id,
1055 sb_data_e2.common.p_func.vf_valid,
1056 sb_data_e2.common.p_func.vnic_id,
1057 sb_data_e2.common.same_igu_sb_1b,
1058 sb_data_e2.common.state);
1059 } else {
1060 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1061 sb_data_e1x.common.p_func.pf_id,
1062 sb_data_e1x.common.p_func.vf_id,
1063 sb_data_e1x.common.p_func.vf_valid,
1064 sb_data_e1x.common.p_func.vnic_id,
1065 sb_data_e1x.common.same_igu_sb_1b,
1066 sb_data_e1x.common.state);
1067 }
1068
1069 /* SB_SMs data */
1070 for (j = 0; j < HC_SB_MAX_SM; j++) {
1071 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1072 j, hc_sm_p[j].__flags,
1073 hc_sm_p[j].igu_sb_id,
1074 hc_sm_p[j].igu_seg_id,
1075 hc_sm_p[j].time_to_expire,
1076 hc_sm_p[j].timer_value);
1077 }
1078
1079 /* Indices data */
1080 for (j = 0; j < loop; j++) {
1081 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1082 hc_index_p[j].flags,
1083 hc_index_p[j].timeout);
1084 }
1085 }
1086
1087 #ifdef BNX2X_STOP_ON_ERROR
1088 if (IS_PF(bp)) {
1089 /* event queue */
1090 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1091 for (i = 0; i < NUM_EQ_DESC; i++) {
1092 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1093
1094 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1095 i, bp->eq_ring[i].message.opcode,
1096 bp->eq_ring[i].message.error);
1097 BNX2X_ERR("data: %x %x %x\n",
1098 data[0], data[1], data[2]);
1099 }
1100 }
1101
1102 /* Rings */
1103 /* Rx */
1104 for_each_valid_rx_queue(bp, i) {
1105 struct bnx2x_fastpath *fp = &bp->fp[i];
1106
1107 if (!bp->fp)
1108 break;
1109
1110 if (!fp->rx_cons_sb)
1111 continue;
1112
1113 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1114 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1115 for (j = start; j != end; j = RX_BD(j + 1)) {
1116 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1117 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1118
1119 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1120 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1121 }
1122
1123 start = RX_SGE(fp->rx_sge_prod);
1124 end = RX_SGE(fp->last_max_sge);
1125 for (j = start; j != end; j = RX_SGE(j + 1)) {
1126 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1127 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1128
1129 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1130 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1131 }
1132
1133 start = RCQ_BD(fp->rx_comp_cons - 10);
1134 end = RCQ_BD(fp->rx_comp_cons + 503);
1135 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1136 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1137
1138 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1139 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1140 }
1141 }
1142
1143 /* Tx */
1144 for_each_valid_tx_queue(bp, i) {
1145 struct bnx2x_fastpath *fp = &bp->fp[i];
1146
1147 if (!bp->fp)
1148 break;
1149
1150 for_each_cos_in_tx_queue(fp, cos) {
1151 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1152
1153 if (!fp->txdata_ptr[cos])
1154 break;
1155
1156 if (!txdata->tx_cons_sb)
1157 continue;
1158
1159 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1160 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1161 for (j = start; j != end; j = TX_BD(j + 1)) {
1162 struct sw_tx_bd *sw_bd =
1163 &txdata->tx_buf_ring[j];
1164
1165 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1166 i, cos, j, sw_bd->skb,
1167 sw_bd->first_bd);
1168 }
1169
1170 start = TX_BD(txdata->tx_bd_cons - 10);
1171 end = TX_BD(txdata->tx_bd_cons + 254);
1172 for (j = start; j != end; j = TX_BD(j + 1)) {
1173 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1174
1175 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1176 i, cos, j, tx_bd[0], tx_bd[1],
1177 tx_bd[2], tx_bd[3]);
1178 }
1179 }
1180 }
1181 #endif
1182 if (IS_PF(bp)) {
1183 bnx2x_fw_dump(bp);
1184 bnx2x_mc_assert(bp);
1185 }
1186 BNX2X_ERR("end crash dump -----------------\n");
1187 }
1188
1189 /*
1190 * FLR Support for E2
1191 *
1192 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1193 * initialization.
1194 */
1195 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1196 #define FLR_WAIT_INTERVAL 50 /* usec */
1197 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1198
1199 struct pbf_pN_buf_regs {
1200 int pN;
1201 u32 init_crd;
1202 u32 crd;
1203 u32 crd_freed;
1204 };
1205
1206 struct pbf_pN_cmd_regs {
1207 int pN;
1208 u32 lines_occup;
1209 u32 lines_freed;
1210 };
1211
1212 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1213 struct pbf_pN_buf_regs *regs,
1214 u32 poll_count)
1215 {
1216 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1217 u32 cur_cnt = poll_count;
1218
1219 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1220 crd = crd_start = REG_RD(bp, regs->crd);
1221 init_crd = REG_RD(bp, regs->init_crd);
1222
1223 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1224 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1225 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1226
1227 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1228 (init_crd - crd_start))) {
1229 if (cur_cnt--) {
1230 udelay(FLR_WAIT_INTERVAL);
1231 crd = REG_RD(bp, regs->crd);
1232 crd_freed = REG_RD(bp, regs->crd_freed);
1233 } else {
1234 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1235 regs->pN);
1236 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1237 regs->pN, crd);
1238 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1239 regs->pN, crd_freed);
1240 break;
1241 }
1242 }
1243 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1244 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1245 }
1246
1247 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1248 struct pbf_pN_cmd_regs *regs,
1249 u32 poll_count)
1250 {
1251 u32 occup, to_free, freed, freed_start;
1252 u32 cur_cnt = poll_count;
1253
1254 occup = to_free = REG_RD(bp, regs->lines_occup);
1255 freed = freed_start = REG_RD(bp, regs->lines_freed);
1256
1257 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1258 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1259
1260 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1261 if (cur_cnt--) {
1262 udelay(FLR_WAIT_INTERVAL);
1263 occup = REG_RD(bp, regs->lines_occup);
1264 freed = REG_RD(bp, regs->lines_freed);
1265 } else {
1266 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1267 regs->pN);
1268 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1269 regs->pN, occup);
1270 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1271 regs->pN, freed);
1272 break;
1273 }
1274 }
1275 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1276 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1277 }
1278
1279 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1280 u32 expected, u32 poll_count)
1281 {
1282 u32 cur_cnt = poll_count;
1283 u32 val;
1284
1285 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1286 udelay(FLR_WAIT_INTERVAL);
1287
1288 return val;
1289 }
1290
1291 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1292 char *msg, u32 poll_cnt)
1293 {
1294 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1295 if (val != 0) {
1296 BNX2X_ERR("%s usage count=%d\n", msg, val);
1297 return 1;
1298 }
1299 return 0;
1300 }
1301
1302 /* Common routines with VF FLR cleanup */
1303 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1304 {
1305 /* adjust polling timeout */
1306 if (CHIP_REV_IS_EMUL(bp))
1307 return FLR_POLL_CNT * 2000;
1308
1309 if (CHIP_REV_IS_FPGA(bp))
1310 return FLR_POLL_CNT * 120;
1311
1312 return FLR_POLL_CNT;
1313 }
1314
1315 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1316 {
1317 struct pbf_pN_cmd_regs cmd_regs[] = {
1318 {0, (CHIP_IS_E3B0(bp)) ?
1319 PBF_REG_TQ_OCCUPANCY_Q0 :
1320 PBF_REG_P0_TQ_OCCUPANCY,
1321 (CHIP_IS_E3B0(bp)) ?
1322 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1323 PBF_REG_P0_TQ_LINES_FREED_CNT},
1324 {1, (CHIP_IS_E3B0(bp)) ?
1325 PBF_REG_TQ_OCCUPANCY_Q1 :
1326 PBF_REG_P1_TQ_OCCUPANCY,
1327 (CHIP_IS_E3B0(bp)) ?
1328 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1329 PBF_REG_P1_TQ_LINES_FREED_CNT},
1330 {4, (CHIP_IS_E3B0(bp)) ?
1331 PBF_REG_TQ_OCCUPANCY_LB_Q :
1332 PBF_REG_P4_TQ_OCCUPANCY,
1333 (CHIP_IS_E3B0(bp)) ?
1334 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1335 PBF_REG_P4_TQ_LINES_FREED_CNT}
1336 };
1337
1338 struct pbf_pN_buf_regs buf_regs[] = {
1339 {0, (CHIP_IS_E3B0(bp)) ?
1340 PBF_REG_INIT_CRD_Q0 :
1341 PBF_REG_P0_INIT_CRD ,
1342 (CHIP_IS_E3B0(bp)) ?
1343 PBF_REG_CREDIT_Q0 :
1344 PBF_REG_P0_CREDIT,
1345 (CHIP_IS_E3B0(bp)) ?
1346 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1347 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1348 {1, (CHIP_IS_E3B0(bp)) ?
1349 PBF_REG_INIT_CRD_Q1 :
1350 PBF_REG_P1_INIT_CRD,
1351 (CHIP_IS_E3B0(bp)) ?
1352 PBF_REG_CREDIT_Q1 :
1353 PBF_REG_P1_CREDIT,
1354 (CHIP_IS_E3B0(bp)) ?
1355 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1356 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1357 {4, (CHIP_IS_E3B0(bp)) ?
1358 PBF_REG_INIT_CRD_LB_Q :
1359 PBF_REG_P4_INIT_CRD,
1360 (CHIP_IS_E3B0(bp)) ?
1361 PBF_REG_CREDIT_LB_Q :
1362 PBF_REG_P4_CREDIT,
1363 (CHIP_IS_E3B0(bp)) ?
1364 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1365 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1366 };
1367
1368 int i;
1369
1370 /* Verify the command queues are flushed P0, P1, P4 */
1371 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1372 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1373
1374 /* Verify the transmission buffers are flushed P0, P1, P4 */
1375 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1376 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1377 }
1378
1379 #define OP_GEN_PARAM(param) \
1380 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1381
1382 #define OP_GEN_TYPE(type) \
1383 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1384
1385 #define OP_GEN_AGG_VECT(index) \
1386 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1387
1388 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1389 {
1390 u32 op_gen_command = 0;
1391 u32 comp_addr = BAR_CSTRORM_INTMEM +
1392 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1393 int ret = 0;
1394
1395 if (REG_RD(bp, comp_addr)) {
1396 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1397 return 1;
1398 }
1399
1400 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1401 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1402 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1403 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1404
1405 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1406 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1407
1408 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1409 BNX2X_ERR("FW final cleanup did not succeed\n");
1410 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1411 (REG_RD(bp, comp_addr)));
1412 bnx2x_panic();
1413 return 1;
1414 }
1415 /* Zero completion for next FLR */
1416 REG_WR(bp, comp_addr, 0);
1417
1418 return ret;
1419 }
1420
1421 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1422 {
1423 u16 status;
1424
1425 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1426 return status & PCI_EXP_DEVSTA_TRPND;
1427 }
1428
1429 /* PF FLR specific routines
1430 */
1431 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1432 {
1433 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1434 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1435 CFC_REG_NUM_LCIDS_INSIDE_PF,
1436 "CFC PF usage counter timed out",
1437 poll_cnt))
1438 return 1;
1439
1440 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1441 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1442 DORQ_REG_PF_USAGE_CNT,
1443 "DQ PF usage counter timed out",
1444 poll_cnt))
1445 return 1;
1446
1447 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1448 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1449 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1450 "QM PF usage counter timed out",
1451 poll_cnt))
1452 return 1;
1453
1454 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1455 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1457 "Timers VNIC usage counter timed out",
1458 poll_cnt))
1459 return 1;
1460 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1461 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1462 "Timers NUM_SCANS usage counter timed out",
1463 poll_cnt))
1464 return 1;
1465
1466 /* Wait DMAE PF usage counter to zero */
1467 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1468 dmae_reg_go_c[INIT_DMAE_C(bp)],
1469 "DMAE command register timed out",
1470 poll_cnt))
1471 return 1;
1472
1473 return 0;
1474 }
1475
1476 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1477 {
1478 u32 val;
1479
1480 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1481 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1482
1483 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1484 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1485
1486 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1487 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1488
1489 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1490 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1491
1492 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1493 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1494
1495 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1496 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1497
1498 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1499 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1500
1501 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1502 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1503 val);
1504 }
1505
1506 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1507 {
1508 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1509
1510 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1511
1512 /* Re-enable PF target read access */
1513 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1514
1515 /* Poll HW usage counters */
1516 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1517 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1518 return -EBUSY;
1519
1520 /* Zero the igu 'trailing edge' and 'leading edge' */
1521
1522 /* Send the FW cleanup command */
1523 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1524 return -EBUSY;
1525
1526 /* ATC cleanup */
1527
1528 /* Verify TX hw is flushed */
1529 bnx2x_tx_hw_flushed(bp, poll_cnt);
1530
1531 /* Wait 100ms (not adjusted according to platform) */
1532 msleep(100);
1533
1534 /* Verify no pending pci transactions */
1535 if (bnx2x_is_pcie_pending(bp->pdev))
1536 BNX2X_ERR("PCIE Transactions still pending\n");
1537
1538 /* Debug */
1539 bnx2x_hw_enable_status(bp);
1540
1541 /*
1542 * Master enable - Due to WB DMAE writes performed before this
1543 * register is re-initialized as part of the regular function init
1544 */
1545 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1546
1547 return 0;
1548 }
1549
1550 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1551 {
1552 int port = BP_PORT(bp);
1553 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1554 u32 val = REG_RD(bp, addr);
1555 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1556 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1557 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1558
1559 if (msix) {
1560 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1561 HC_CONFIG_0_REG_INT_LINE_EN_0);
1562 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1563 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1564 if (single_msix)
1565 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1566 } else if (msi) {
1567 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1568 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1569 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1570 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1571 } else {
1572 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1573 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1574 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1575 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1576
1577 if (!CHIP_IS_E1(bp)) {
1578 DP(NETIF_MSG_IFUP,
1579 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1580
1581 REG_WR(bp, addr, val);
1582
1583 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1584 }
1585 }
1586
1587 if (CHIP_IS_E1(bp))
1588 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1589
1590 DP(NETIF_MSG_IFUP,
1591 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1592 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1593
1594 REG_WR(bp, addr, val);
1595 /*
1596 * Ensure that HC_CONFIG is written before leading/trailing edge config
1597 */
1598 mmiowb();
1599 barrier();
1600
1601 if (!CHIP_IS_E1(bp)) {
1602 /* init leading/trailing edge */
1603 if (IS_MF(bp)) {
1604 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1605 if (bp->port.pmf)
1606 /* enable nig and gpio3 attention */
1607 val |= 0x1100;
1608 } else
1609 val = 0xffff;
1610
1611 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1612 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1613 }
1614
1615 /* Make sure that interrupts are indeed enabled from here on */
1616 mmiowb();
1617 }
1618
1619 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1620 {
1621 u32 val;
1622 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1623 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1624 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1625
1626 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1627
1628 if (msix) {
1629 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1630 IGU_PF_CONF_SINGLE_ISR_EN);
1631 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1632 IGU_PF_CONF_ATTN_BIT_EN);
1633
1634 if (single_msix)
1635 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1636 } else if (msi) {
1637 val &= ~IGU_PF_CONF_INT_LINE_EN;
1638 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1639 IGU_PF_CONF_ATTN_BIT_EN |
1640 IGU_PF_CONF_SINGLE_ISR_EN);
1641 } else {
1642 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1643 val |= (IGU_PF_CONF_INT_LINE_EN |
1644 IGU_PF_CONF_ATTN_BIT_EN |
1645 IGU_PF_CONF_SINGLE_ISR_EN);
1646 }
1647
1648 /* Clean previous status - need to configure igu prior to ack*/
1649 if ((!msix) || single_msix) {
1650 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651 bnx2x_ack_int(bp);
1652 }
1653
1654 val |= IGU_PF_CONF_FUNC_EN;
1655
1656 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1657 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1658
1659 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1660
1661 if (val & IGU_PF_CONF_INT_LINE_EN)
1662 pci_intx(bp->pdev, true);
1663
1664 barrier();
1665
1666 /* init leading/trailing edge */
1667 if (IS_MF(bp)) {
1668 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1669 if (bp->port.pmf)
1670 /* enable nig and gpio3 attention */
1671 val |= 0x1100;
1672 } else
1673 val = 0xffff;
1674
1675 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1676 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1677
1678 /* Make sure that interrupts are indeed enabled from here on */
1679 mmiowb();
1680 }
1681
1682 void bnx2x_int_enable(struct bnx2x *bp)
1683 {
1684 if (bp->common.int_block == INT_BLOCK_HC)
1685 bnx2x_hc_int_enable(bp);
1686 else
1687 bnx2x_igu_int_enable(bp);
1688 }
1689
1690 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1691 {
1692 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1693 int i, offset;
1694
1695 if (disable_hw)
1696 /* prevent the HW from sending interrupts */
1697 bnx2x_int_disable(bp);
1698
1699 /* make sure all ISRs are done */
1700 if (msix) {
1701 synchronize_irq(bp->msix_table[0].vector);
1702 offset = 1;
1703 if (CNIC_SUPPORT(bp))
1704 offset++;
1705 for_each_eth_queue(bp, i)
1706 synchronize_irq(bp->msix_table[offset++].vector);
1707 } else
1708 synchronize_irq(bp->pdev->irq);
1709
1710 /* make sure sp_task is not running */
1711 cancel_delayed_work(&bp->sp_task);
1712 cancel_delayed_work(&bp->period_task);
1713 flush_workqueue(bnx2x_wq);
1714 }
1715
1716 /* fast path */
1717
1718 /*
1719 * General service functions
1720 */
1721
1722 /* Return true if succeeded to acquire the lock */
1723 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1724 {
1725 u32 lock_status;
1726 u32 resource_bit = (1 << resource);
1727 int func = BP_FUNC(bp);
1728 u32 hw_lock_control_reg;
1729
1730 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731 "Trying to take a lock on resource %d\n", resource);
1732
1733 /* Validating that the resource is within range */
1734 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1735 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1736 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1737 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1738 return false;
1739 }
1740
1741 if (func <= 5)
1742 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1743 else
1744 hw_lock_control_reg =
1745 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1746
1747 /* Try to acquire the lock */
1748 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1749 lock_status = REG_RD(bp, hw_lock_control_reg);
1750 if (lock_status & resource_bit)
1751 return true;
1752
1753 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1754 "Failed to get a lock on resource %d\n", resource);
1755 return false;
1756 }
1757
1758 /**
1759 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1760 *
1761 * @bp: driver handle
1762 *
1763 * Returns the recovery leader resource id according to the engine this function
1764 * belongs to. Currently only only 2 engines is supported.
1765 */
1766 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1767 {
1768 if (BP_PATH(bp))
1769 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1770 else
1771 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1772 }
1773
1774 /**
1775 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1776 *
1777 * @bp: driver handle
1778 *
1779 * Tries to acquire a leader lock for current engine.
1780 */
1781 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1782 {
1783 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1784 }
1785
1786 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1787
1788 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1789 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1790 {
1791 /* Set the interrupt occurred bit for the sp-task to recognize it
1792 * must ack the interrupt and transition according to the IGU
1793 * state machine.
1794 */
1795 atomic_set(&bp->interrupt_occurred, 1);
1796
1797 /* The sp_task must execute only after this bit
1798 * is set, otherwise we will get out of sync and miss all
1799 * further interrupts. Hence, the barrier.
1800 */
1801 smp_wmb();
1802
1803 /* schedule sp_task to workqueue */
1804 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1805 }
1806
1807 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1808 {
1809 struct bnx2x *bp = fp->bp;
1810 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1811 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1812 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1813 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1814
1815 DP(BNX2X_MSG_SP,
1816 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1817 fp->index, cid, command, bp->state,
1818 rr_cqe->ramrod_cqe.ramrod_type);
1819
1820 /* If cid is within VF range, replace the slowpath object with the
1821 * one corresponding to this VF
1822 */
1823 if (cid >= BNX2X_FIRST_VF_CID &&
1824 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1825 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1826
1827 switch (command) {
1828 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1829 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1830 drv_cmd = BNX2X_Q_CMD_UPDATE;
1831 break;
1832
1833 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1834 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1835 drv_cmd = BNX2X_Q_CMD_SETUP;
1836 break;
1837
1838 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1839 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1840 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1841 break;
1842
1843 case (RAMROD_CMD_ID_ETH_HALT):
1844 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1845 drv_cmd = BNX2X_Q_CMD_HALT;
1846 break;
1847
1848 case (RAMROD_CMD_ID_ETH_TERMINATE):
1849 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1850 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1851 break;
1852
1853 case (RAMROD_CMD_ID_ETH_EMPTY):
1854 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1855 drv_cmd = BNX2X_Q_CMD_EMPTY;
1856 break;
1857
1858 case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1859 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1860 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1861 break;
1862
1863 default:
1864 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1865 command, fp->index);
1866 return;
1867 }
1868
1869 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1870 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1871 /* q_obj->complete_cmd() failure means that this was
1872 * an unexpected completion.
1873 *
1874 * In this case we don't want to increase the bp->spq_left
1875 * because apparently we haven't sent this command the first
1876 * place.
1877 */
1878 #ifdef BNX2X_STOP_ON_ERROR
1879 bnx2x_panic();
1880 #else
1881 return;
1882 #endif
1883
1884 smp_mb__before_atomic();
1885 atomic_inc(&bp->cq_spq_left);
1886 /* push the change in bp->spq_left and towards the memory */
1887 smp_mb__after_atomic();
1888
1889 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1890
1891 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1892 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1893 /* if Q update ramrod is completed for last Q in AFEX vif set
1894 * flow, then ACK MCP at the end
1895 *
1896 * mark pending ACK to MCP bit.
1897 * prevent case that both bits are cleared.
1898 * At the end of load/unload driver checks that
1899 * sp_state is cleared, and this order prevents
1900 * races
1901 */
1902 smp_mb__before_atomic();
1903 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1904 wmb();
1905 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1906 smp_mb__after_atomic();
1907
1908 /* schedule the sp task as mcp ack is required */
1909 bnx2x_schedule_sp_task(bp);
1910 }
1911
1912 return;
1913 }
1914
1915 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1916 {
1917 struct bnx2x *bp = netdev_priv(dev_instance);
1918 u16 status = bnx2x_ack_int(bp);
1919 u16 mask;
1920 int i;
1921 u8 cos;
1922
1923 /* Return here if interrupt is shared and it's not for us */
1924 if (unlikely(status == 0)) {
1925 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1926 return IRQ_NONE;
1927 }
1928 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1929
1930 #ifdef BNX2X_STOP_ON_ERROR
1931 if (unlikely(bp->panic))
1932 return IRQ_HANDLED;
1933 #endif
1934
1935 for_each_eth_queue(bp, i) {
1936 struct bnx2x_fastpath *fp = &bp->fp[i];
1937
1938 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1939 if (status & mask) {
1940 /* Handle Rx or Tx according to SB id */
1941 for_each_cos_in_tx_queue(fp, cos)
1942 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1943 prefetch(&fp->sb_running_index[SM_RX_ID]);
1944 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1945 status &= ~mask;
1946 }
1947 }
1948
1949 if (CNIC_SUPPORT(bp)) {
1950 mask = 0x2;
1951 if (status & (mask | 0x1)) {
1952 struct cnic_ops *c_ops = NULL;
1953
1954 rcu_read_lock();
1955 c_ops = rcu_dereference(bp->cnic_ops);
1956 if (c_ops && (bp->cnic_eth_dev.drv_state &
1957 CNIC_DRV_STATE_HANDLES_IRQ))
1958 c_ops->cnic_handler(bp->cnic_data, NULL);
1959 rcu_read_unlock();
1960
1961 status &= ~mask;
1962 }
1963 }
1964
1965 if (unlikely(status & 0x1)) {
1966
1967 /* schedule sp task to perform default status block work, ack
1968 * attentions and enable interrupts.
1969 */
1970 bnx2x_schedule_sp_task(bp);
1971
1972 status &= ~0x1;
1973 if (!status)
1974 return IRQ_HANDLED;
1975 }
1976
1977 if (unlikely(status))
1978 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1979 status);
1980
1981 return IRQ_HANDLED;
1982 }
1983
1984 /* Link */
1985
1986 /*
1987 * General service functions
1988 */
1989
1990 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1991 {
1992 u32 lock_status;
1993 u32 resource_bit = (1 << resource);
1994 int func = BP_FUNC(bp);
1995 u32 hw_lock_control_reg;
1996 int cnt;
1997
1998 /* Validating that the resource is within range */
1999 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2000 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2001 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2002 return -EINVAL;
2003 }
2004
2005 if (func <= 5) {
2006 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2007 } else {
2008 hw_lock_control_reg =
2009 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2010 }
2011
2012 /* Validating that the resource is not already taken */
2013 lock_status = REG_RD(bp, hw_lock_control_reg);
2014 if (lock_status & resource_bit) {
2015 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
2016 lock_status, resource_bit);
2017 return -EEXIST;
2018 }
2019
2020 /* Try for 5 second every 5ms */
2021 for (cnt = 0; cnt < 1000; cnt++) {
2022 /* Try to acquire the lock */
2023 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2024 lock_status = REG_RD(bp, hw_lock_control_reg);
2025 if (lock_status & resource_bit)
2026 return 0;
2027
2028 usleep_range(5000, 10000);
2029 }
2030 BNX2X_ERR("Timeout\n");
2031 return -EAGAIN;
2032 }
2033
2034 int bnx2x_release_leader_lock(struct bnx2x *bp)
2035 {
2036 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2037 }
2038
2039 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2040 {
2041 u32 lock_status;
2042 u32 resource_bit = (1 << resource);
2043 int func = BP_FUNC(bp);
2044 u32 hw_lock_control_reg;
2045
2046 /* Validating that the resource is within range */
2047 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2048 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2049 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2050 return -EINVAL;
2051 }
2052
2053 if (func <= 5) {
2054 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2055 } else {
2056 hw_lock_control_reg =
2057 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2058 }
2059
2060 /* Validating that the resource is currently taken */
2061 lock_status = REG_RD(bp, hw_lock_control_reg);
2062 if (!(lock_status & resource_bit)) {
2063 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2064 lock_status, resource_bit);
2065 return -EFAULT;
2066 }
2067
2068 REG_WR(bp, hw_lock_control_reg, resource_bit);
2069 return 0;
2070 }
2071
2072 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2073 {
2074 /* The GPIO should be swapped if swap register is set and active */
2075 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2076 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2077 int gpio_shift = gpio_num +
2078 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2079 u32 gpio_mask = (1 << gpio_shift);
2080 u32 gpio_reg;
2081 int value;
2082
2083 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2084 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2085 return -EINVAL;
2086 }
2087
2088 /* read GPIO value */
2089 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2090
2091 /* get the requested pin value */
2092 if ((gpio_reg & gpio_mask) == gpio_mask)
2093 value = 1;
2094 else
2095 value = 0;
2096
2097 return value;
2098 }
2099
2100 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2101 {
2102 /* The GPIO should be swapped if swap register is set and active */
2103 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2104 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2105 int gpio_shift = gpio_num +
2106 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2107 u32 gpio_mask = (1 << gpio_shift);
2108 u32 gpio_reg;
2109
2110 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2111 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2112 return -EINVAL;
2113 }
2114
2115 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2116 /* read GPIO and mask except the float bits */
2117 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2118
2119 switch (mode) {
2120 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2121 DP(NETIF_MSG_LINK,
2122 "Set GPIO %d (shift %d) -> output low\n",
2123 gpio_num, gpio_shift);
2124 /* clear FLOAT and set CLR */
2125 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2127 break;
2128
2129 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2130 DP(NETIF_MSG_LINK,
2131 "Set GPIO %d (shift %d) -> output high\n",
2132 gpio_num, gpio_shift);
2133 /* clear FLOAT and set SET */
2134 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2136 break;
2137
2138 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2139 DP(NETIF_MSG_LINK,
2140 "Set GPIO %d (shift %d) -> input\n",
2141 gpio_num, gpio_shift);
2142 /* set FLOAT */
2143 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2144 break;
2145
2146 default:
2147 break;
2148 }
2149
2150 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2151 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2152
2153 return 0;
2154 }
2155
2156 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2157 {
2158 u32 gpio_reg = 0;
2159 int rc = 0;
2160
2161 /* Any port swapping should be handled by caller. */
2162
2163 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2164 /* read GPIO and mask except the float bits */
2165 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2166 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2167 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2168 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2169
2170 switch (mode) {
2171 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2172 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2173 /* set CLR */
2174 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2175 break;
2176
2177 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2178 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2179 /* set SET */
2180 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2181 break;
2182
2183 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2184 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2185 /* set FLOAT */
2186 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2187 break;
2188
2189 default:
2190 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2191 rc = -EINVAL;
2192 break;
2193 }
2194
2195 if (rc == 0)
2196 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2197
2198 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2199
2200 return rc;
2201 }
2202
2203 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2204 {
2205 /* The GPIO should be swapped if swap register is set and active */
2206 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2207 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2208 int gpio_shift = gpio_num +
2209 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2210 u32 gpio_mask = (1 << gpio_shift);
2211 u32 gpio_reg;
2212
2213 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2214 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2215 return -EINVAL;
2216 }
2217
2218 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2219 /* read GPIO int */
2220 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2221
2222 switch (mode) {
2223 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2224 DP(NETIF_MSG_LINK,
2225 "Clear GPIO INT %d (shift %d) -> output low\n",
2226 gpio_num, gpio_shift);
2227 /* clear SET and set CLR */
2228 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2229 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2230 break;
2231
2232 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2233 DP(NETIF_MSG_LINK,
2234 "Set GPIO INT %d (shift %d) -> output high\n",
2235 gpio_num, gpio_shift);
2236 /* clear CLR and set SET */
2237 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2238 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2239 break;
2240
2241 default:
2242 break;
2243 }
2244
2245 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2246 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2247
2248 return 0;
2249 }
2250
2251 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2252 {
2253 u32 spio_reg;
2254
2255 /* Only 2 SPIOs are configurable */
2256 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2257 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2258 return -EINVAL;
2259 }
2260
2261 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2262 /* read SPIO and mask except the float bits */
2263 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2264
2265 switch (mode) {
2266 case MISC_SPIO_OUTPUT_LOW:
2267 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2268 /* clear FLOAT and set CLR */
2269 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2270 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2271 break;
2272
2273 case MISC_SPIO_OUTPUT_HIGH:
2274 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2275 /* clear FLOAT and set SET */
2276 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2277 spio_reg |= (spio << MISC_SPIO_SET_POS);
2278 break;
2279
2280 case MISC_SPIO_INPUT_HI_Z:
2281 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2282 /* set FLOAT */
2283 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2284 break;
2285
2286 default:
2287 break;
2288 }
2289
2290 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2291 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2292
2293 return 0;
2294 }
2295
2296 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2297 {
2298 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2299
2300 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2301 ADVERTISED_Pause);
2302 switch (bp->link_vars.ieee_fc &
2303 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2304 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2305 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2306 ADVERTISED_Pause);
2307 break;
2308
2309 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2310 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2311 break;
2312
2313 default:
2314 break;
2315 }
2316 }
2317
2318 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2319 {
2320 /* Initialize link parameters structure variables
2321 * It is recommended to turn off RX FC for jumbo frames
2322 * for better performance
2323 */
2324 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2325 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2326 else
2327 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2328 }
2329
2330 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2331 {
2332 u32 pause_enabled = 0;
2333
2334 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2335 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2336 pause_enabled = 1;
2337
2338 REG_WR(bp, BAR_USTRORM_INTMEM +
2339 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2340 pause_enabled);
2341 }
2342
2343 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2344 pause_enabled ? "enabled" : "disabled");
2345 }
2346
2347 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2348 {
2349 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2350 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2351
2352 if (!BP_NOMCP(bp)) {
2353 bnx2x_set_requested_fc(bp);
2354 bnx2x_acquire_phy_lock(bp);
2355
2356 if (load_mode == LOAD_DIAG) {
2357 struct link_params *lp = &bp->link_params;
2358 lp->loopback_mode = LOOPBACK_XGXS;
2359 /* Prefer doing PHY loopback at highest speed */
2360 if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2361 if (lp->speed_cap_mask[cfx_idx] &
2362 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2363 lp->req_line_speed[cfx_idx] =
2364 SPEED_20000;
2365 else if (lp->speed_cap_mask[cfx_idx] &
2366 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2367 lp->req_line_speed[cfx_idx] =
2368 SPEED_10000;
2369 else
2370 lp->req_line_speed[cfx_idx] =
2371 SPEED_1000;
2372 }
2373 }
2374
2375 if (load_mode == LOAD_LOOPBACK_EXT) {
2376 struct link_params *lp = &bp->link_params;
2377 lp->loopback_mode = LOOPBACK_EXT;
2378 }
2379
2380 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2381
2382 bnx2x_release_phy_lock(bp);
2383
2384 bnx2x_init_dropless_fc(bp);
2385
2386 bnx2x_calc_fc_adv(bp);
2387
2388 if (bp->link_vars.link_up) {
2389 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2390 bnx2x_link_report(bp);
2391 }
2392 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2393 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2394 return rc;
2395 }
2396 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2397 return -EINVAL;
2398 }
2399
2400 void bnx2x_link_set(struct bnx2x *bp)
2401 {
2402 if (!BP_NOMCP(bp)) {
2403 bnx2x_acquire_phy_lock(bp);
2404 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2405 bnx2x_release_phy_lock(bp);
2406
2407 bnx2x_init_dropless_fc(bp);
2408
2409 bnx2x_calc_fc_adv(bp);
2410 } else
2411 BNX2X_ERR("Bootcode is missing - can not set link\n");
2412 }
2413
2414 static void bnx2x__link_reset(struct bnx2x *bp)
2415 {
2416 if (!BP_NOMCP(bp)) {
2417 bnx2x_acquire_phy_lock(bp);
2418 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2419 bnx2x_release_phy_lock(bp);
2420 } else
2421 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2422 }
2423
2424 void bnx2x_force_link_reset(struct bnx2x *bp)
2425 {
2426 bnx2x_acquire_phy_lock(bp);
2427 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2428 bnx2x_release_phy_lock(bp);
2429 }
2430
2431 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2432 {
2433 u8 rc = 0;
2434
2435 if (!BP_NOMCP(bp)) {
2436 bnx2x_acquire_phy_lock(bp);
2437 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2438 is_serdes);
2439 bnx2x_release_phy_lock(bp);
2440 } else
2441 BNX2X_ERR("Bootcode is missing - can not test link\n");
2442
2443 return rc;
2444 }
2445
2446 /* Calculates the sum of vn_min_rates.
2447 It's needed for further normalizing of the min_rates.
2448 Returns:
2449 sum of vn_min_rates.
2450 or
2451 0 - if all the min_rates are 0.
2452 In the later case fairness algorithm should be deactivated.
2453 If not all min_rates are zero then those that are zeroes will be set to 1.
2454 */
2455 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2456 struct cmng_init_input *input)
2457 {
2458 int all_zero = 1;
2459 int vn;
2460
2461 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2462 u32 vn_cfg = bp->mf_config[vn];
2463 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2464 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2465
2466 /* Skip hidden vns */
2467 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2468 vn_min_rate = 0;
2469 /* If min rate is zero - set it to 1 */
2470 else if (!vn_min_rate)
2471 vn_min_rate = DEF_MIN_RATE;
2472 else
2473 all_zero = 0;
2474
2475 input->vnic_min_rate[vn] = vn_min_rate;
2476 }
2477
2478 /* if ETS or all min rates are zeros - disable fairness */
2479 if (BNX2X_IS_ETS_ENABLED(bp)) {
2480 input->flags.cmng_enables &=
2481 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2483 } else if (all_zero) {
2484 input->flags.cmng_enables &=
2485 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2486 DP(NETIF_MSG_IFUP,
2487 "All MIN values are zeroes fairness will be disabled\n");
2488 } else
2489 input->flags.cmng_enables |=
2490 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2491 }
2492
2493 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2494 struct cmng_init_input *input)
2495 {
2496 u16 vn_max_rate;
2497 u32 vn_cfg = bp->mf_config[vn];
2498
2499 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2500 vn_max_rate = 0;
2501 else {
2502 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2503
2504 if (IS_MF_PERCENT_BW(bp)) {
2505 /* maxCfg in percents of linkspeed */
2506 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2507 } else /* SD modes */
2508 /* maxCfg is absolute in 100Mb units */
2509 vn_max_rate = maxCfg * 100;
2510 }
2511
2512 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2513
2514 input->vnic_max_rate[vn] = vn_max_rate;
2515 }
2516
2517 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2518 {
2519 if (CHIP_REV_IS_SLOW(bp))
2520 return CMNG_FNS_NONE;
2521 if (IS_MF(bp))
2522 return CMNG_FNS_MINMAX;
2523
2524 return CMNG_FNS_NONE;
2525 }
2526
2527 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2528 {
2529 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2530
2531 if (BP_NOMCP(bp))
2532 return; /* what should be the default value in this case */
2533
2534 /* For 2 port configuration the absolute function number formula
2535 * is:
2536 * abs_func = 2 * vn + BP_PORT + BP_PATH
2537 *
2538 * and there are 4 functions per port
2539 *
2540 * For 4 port configuration it is
2541 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2542 *
2543 * and there are 2 functions per port
2544 */
2545 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2546 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2547
2548 if (func >= E1H_FUNC_MAX)
2549 break;
2550
2551 bp->mf_config[vn] =
2552 MF_CFG_RD(bp, func_mf_config[func].config);
2553 }
2554 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2555 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2556 bp->flags |= MF_FUNC_DIS;
2557 } else {
2558 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2559 bp->flags &= ~MF_FUNC_DIS;
2560 }
2561 }
2562
2563 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2564 {
2565 struct cmng_init_input input;
2566 memset(&input, 0, sizeof(struct cmng_init_input));
2567
2568 input.port_rate = bp->link_vars.line_speed;
2569
2570 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2571 int vn;
2572
2573 /* read mf conf from shmem */
2574 if (read_cfg)
2575 bnx2x_read_mf_cfg(bp);
2576
2577 /* vn_weight_sum and enable fairness if not 0 */
2578 bnx2x_calc_vn_min(bp, &input);
2579
2580 /* calculate and set min-max rate for each vn */
2581 if (bp->port.pmf)
2582 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2583 bnx2x_calc_vn_max(bp, vn, &input);
2584
2585 /* always enable rate shaping and fairness */
2586 input.flags.cmng_enables |=
2587 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2588
2589 bnx2x_init_cmng(&input, &bp->cmng);
2590 return;
2591 }
2592
2593 /* rate shaping and fairness are disabled */
2594 DP(NETIF_MSG_IFUP,
2595 "rate shaping and fairness are disabled\n");
2596 }
2597
2598 static void storm_memset_cmng(struct bnx2x *bp,
2599 struct cmng_init *cmng,
2600 u8 port)
2601 {
2602 int vn;
2603 size_t size = sizeof(struct cmng_struct_per_port);
2604
2605 u32 addr = BAR_XSTRORM_INTMEM +
2606 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2607
2608 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2609
2610 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2611 int func = func_by_vn(bp, vn);
2612
2613 addr = BAR_XSTRORM_INTMEM +
2614 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2615 size = sizeof(struct rate_shaping_vars_per_vn);
2616 __storm_memset_struct(bp, addr, size,
2617 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2618
2619 addr = BAR_XSTRORM_INTMEM +
2620 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2621 size = sizeof(struct fairness_vars_per_vn);
2622 __storm_memset_struct(bp, addr, size,
2623 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2624 }
2625 }
2626
2627 /* init cmng mode in HW according to local configuration */
2628 void bnx2x_set_local_cmng(struct bnx2x *bp)
2629 {
2630 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2631
2632 if (cmng_fns != CMNG_FNS_NONE) {
2633 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2634 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2635 } else {
2636 /* rate shaping and fairness are disabled */
2637 DP(NETIF_MSG_IFUP,
2638 "single function mode without fairness\n");
2639 }
2640 }
2641
2642 /* This function is called upon link interrupt */
2643 static void bnx2x_link_attn(struct bnx2x *bp)
2644 {
2645 /* Make sure that we are synced with the current statistics */
2646 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2647
2648 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2649
2650 bnx2x_init_dropless_fc(bp);
2651
2652 if (bp->link_vars.link_up) {
2653
2654 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2655 struct host_port_stats *pstats;
2656
2657 pstats = bnx2x_sp(bp, port_stats);
2658 /* reset old mac stats */
2659 memset(&(pstats->mac_stx[0]), 0,
2660 sizeof(struct mac_stx));
2661 }
2662 if (bp->state == BNX2X_STATE_OPEN)
2663 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2664 }
2665
2666 if (bp->link_vars.link_up && bp->link_vars.line_speed)
2667 bnx2x_set_local_cmng(bp);
2668
2669 __bnx2x_link_report(bp);
2670
2671 if (IS_MF(bp))
2672 bnx2x_link_sync_notify(bp);
2673 }
2674
2675 void bnx2x__link_status_update(struct bnx2x *bp)
2676 {
2677 if (bp->state != BNX2X_STATE_OPEN)
2678 return;
2679
2680 /* read updated dcb configuration */
2681 if (IS_PF(bp)) {
2682 bnx2x_dcbx_pmf_update(bp);
2683 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2684 if (bp->link_vars.link_up)
2685 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2686 else
2687 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2688 /* indicate link status */
2689 bnx2x_link_report(bp);
2690
2691 } else { /* VF */
2692 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2693 SUPPORTED_10baseT_Full |
2694 SUPPORTED_100baseT_Half |
2695 SUPPORTED_100baseT_Full |
2696 SUPPORTED_1000baseT_Full |
2697 SUPPORTED_2500baseX_Full |
2698 SUPPORTED_10000baseT_Full |
2699 SUPPORTED_TP |
2700 SUPPORTED_FIBRE |
2701 SUPPORTED_Autoneg |
2702 SUPPORTED_Pause |
2703 SUPPORTED_Asym_Pause);
2704 bp->port.advertising[0] = bp->port.supported[0];
2705
2706 bp->link_params.bp = bp;
2707 bp->link_params.port = BP_PORT(bp);
2708 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2709 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2710 bp->link_params.req_line_speed[0] = SPEED_10000;
2711 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2712 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2713 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2714 bp->link_vars.line_speed = SPEED_10000;
2715 bp->link_vars.link_status =
2716 (LINK_STATUS_LINK_UP |
2717 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2718 bp->link_vars.link_up = 1;
2719 bp->link_vars.duplex = DUPLEX_FULL;
2720 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2721 __bnx2x_link_report(bp);
2722
2723 bnx2x_sample_bulletin(bp);
2724
2725 /* if bulletin board did not have an update for link status
2726 * __bnx2x_link_report will report current status
2727 * but it will NOT duplicate report in case of already reported
2728 * during sampling bulletin board.
2729 */
2730 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2731 }
2732 }
2733
2734 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2735 u16 vlan_val, u8 allowed_prio)
2736 {
2737 struct bnx2x_func_state_params func_params = {NULL};
2738 struct bnx2x_func_afex_update_params *f_update_params =
2739 &func_params.params.afex_update;
2740
2741 func_params.f_obj = &bp->func_obj;
2742 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2743
2744 /* no need to wait for RAMROD completion, so don't
2745 * set RAMROD_COMP_WAIT flag
2746 */
2747
2748 f_update_params->vif_id = vifid;
2749 f_update_params->afex_default_vlan = vlan_val;
2750 f_update_params->allowed_priorities = allowed_prio;
2751
2752 /* if ramrod can not be sent, response to MCP immediately */
2753 if (bnx2x_func_state_change(bp, &func_params) < 0)
2754 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2755
2756 return 0;
2757 }
2758
2759 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2760 u16 vif_index, u8 func_bit_map)
2761 {
2762 struct bnx2x_func_state_params func_params = {NULL};
2763 struct bnx2x_func_afex_viflists_params *update_params =
2764 &func_params.params.afex_viflists;
2765 int rc;
2766 u32 drv_msg_code;
2767
2768 /* validate only LIST_SET and LIST_GET are received from switch */
2769 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2770 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2771 cmd_type);
2772
2773 func_params.f_obj = &bp->func_obj;
2774 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2775
2776 /* set parameters according to cmd_type */
2777 update_params->afex_vif_list_command = cmd_type;
2778 update_params->vif_list_index = vif_index;
2779 update_params->func_bit_map =
2780 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2781 update_params->func_to_clear = 0;
2782 drv_msg_code =
2783 (cmd_type == VIF_LIST_RULE_GET) ?
2784 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2785 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2786
2787 /* if ramrod can not be sent, respond to MCP immediately for
2788 * SET and GET requests (other are not triggered from MCP)
2789 */
2790 rc = bnx2x_func_state_change(bp, &func_params);
2791 if (rc < 0)
2792 bnx2x_fw_command(bp, drv_msg_code, 0);
2793
2794 return 0;
2795 }
2796
2797 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2798 {
2799 struct afex_stats afex_stats;
2800 u32 func = BP_ABS_FUNC(bp);
2801 u32 mf_config;
2802 u16 vlan_val;
2803 u32 vlan_prio;
2804 u16 vif_id;
2805 u8 allowed_prio;
2806 u8 vlan_mode;
2807 u32 addr_to_write, vifid, addrs, stats_type, i;
2808
2809 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2810 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2811 DP(BNX2X_MSG_MCP,
2812 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2813 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2814 }
2815
2816 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2817 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2819 DP(BNX2X_MSG_MCP,
2820 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2821 vifid, addrs);
2822 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2823 addrs);
2824 }
2825
2826 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2827 addr_to_write = SHMEM2_RD(bp,
2828 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2829 stats_type = SHMEM2_RD(bp,
2830 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2831
2832 DP(BNX2X_MSG_MCP,
2833 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2834 addr_to_write);
2835
2836 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2837
2838 /* write response to scratchpad, for MCP */
2839 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2840 REG_WR(bp, addr_to_write + i*sizeof(u32),
2841 *(((u32 *)(&afex_stats))+i));
2842
2843 /* send ack message to MCP */
2844 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2845 }
2846
2847 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2848 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2849 bp->mf_config[BP_VN(bp)] = mf_config;
2850 DP(BNX2X_MSG_MCP,
2851 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2852 mf_config);
2853
2854 /* if VIF_SET is "enabled" */
2855 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2856 /* set rate limit directly to internal RAM */
2857 struct cmng_init_input cmng_input;
2858 struct rate_shaping_vars_per_vn m_rs_vn;
2859 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2860 u32 addr = BAR_XSTRORM_INTMEM +
2861 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2862
2863 bp->mf_config[BP_VN(bp)] = mf_config;
2864
2865 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2866 m_rs_vn.vn_counter.rate =
2867 cmng_input.vnic_max_rate[BP_VN(bp)];
2868 m_rs_vn.vn_counter.quota =
2869 (m_rs_vn.vn_counter.rate *
2870 RS_PERIODIC_TIMEOUT_USEC) / 8;
2871
2872 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2873
2874 /* read relevant values from mf_cfg struct in shmem */
2875 vif_id =
2876 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2877 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2878 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2879 vlan_val =
2880 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2881 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2882 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2883 vlan_prio = (mf_config &
2884 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2885 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2886 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2887 vlan_mode =
2888 (MF_CFG_RD(bp,
2889 func_mf_config[func].afex_config) &
2890 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2891 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2892 allowed_prio =
2893 (MF_CFG_RD(bp,
2894 func_mf_config[func].afex_config) &
2895 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2896 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2897
2898 /* send ramrod to FW, return in case of failure */
2899 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2900 allowed_prio))
2901 return;
2902
2903 bp->afex_def_vlan_tag = vlan_val;
2904 bp->afex_vlan_mode = vlan_mode;
2905 } else {
2906 /* notify link down because BP->flags is disabled */
2907 bnx2x_link_report(bp);
2908
2909 /* send INVALID VIF ramrod to FW */
2910 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2911
2912 /* Reset the default afex VLAN */
2913 bp->afex_def_vlan_tag = -1;
2914 }
2915 }
2916 }
2917
2918 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2919 {
2920 struct bnx2x_func_switch_update_params *switch_update_params;
2921 struct bnx2x_func_state_params func_params;
2922
2923 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2924 switch_update_params = &func_params.params.switch_update;
2925 func_params.f_obj = &bp->func_obj;
2926 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2927
2928 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2929 int func = BP_ABS_FUNC(bp);
2930 u32 val;
2931
2932 /* Re-learn the S-tag from shmem */
2933 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2934 FUNC_MF_CFG_E1HOV_TAG_MASK;
2935 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2936 bp->mf_ov = val;
2937 } else {
2938 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2939 goto fail;
2940 }
2941
2942 /* Configure new S-tag in LLH */
2943 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2944 bp->mf_ov);
2945
2946 /* Send Ramrod to update FW of change */
2947 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2948 &switch_update_params->changes);
2949 switch_update_params->vlan = bp->mf_ov;
2950
2951 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2952 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2953 bp->mf_ov);
2954 goto fail;
2955 } else {
2956 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2957 bp->mf_ov);
2958 }
2959 } else {
2960 goto fail;
2961 }
2962
2963 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2964 return;
2965 fail:
2966 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2967 }
2968
2969 static void bnx2x_pmf_update(struct bnx2x *bp)
2970 {
2971 int port = BP_PORT(bp);
2972 u32 val;
2973
2974 bp->port.pmf = 1;
2975 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2976
2977 /*
2978 * We need the mb() to ensure the ordering between the writing to
2979 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2980 */
2981 smp_mb();
2982
2983 /* queue a periodic task */
2984 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2985
2986 bnx2x_dcbx_pmf_update(bp);
2987
2988 /* enable nig attention */
2989 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2990 if (bp->common.int_block == INT_BLOCK_HC) {
2991 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2992 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2993 } else if (!CHIP_IS_E1x(bp)) {
2994 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2995 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2996 }
2997
2998 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2999 }
3000
3001 /* end of Link */
3002
3003 /* slow path */
3004
3005 /*
3006 * General service functions
3007 */
3008
3009 /* send the MCP a request, block until there is a reply */
3010 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3011 {
3012 int mb_idx = BP_FW_MB_IDX(bp);
3013 u32 seq;
3014 u32 rc = 0;
3015 u32 cnt = 1;
3016 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3017
3018 mutex_lock(&bp->fw_mb_mutex);
3019 seq = ++bp->fw_seq;
3020 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3021 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3022
3023 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3024 (command | seq), param);
3025
3026 do {
3027 /* let the FW do it's magic ... */
3028 msleep(delay);
3029
3030 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3031
3032 /* Give the FW up to 5 second (500*10ms) */
3033 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3034
3035 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3036 cnt*delay, rc, seq);
3037
3038 /* is this a reply to our command? */
3039 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3040 rc &= FW_MSG_CODE_MASK;
3041 else {
3042 /* FW BUG! */
3043 BNX2X_ERR("FW failed to respond!\n");
3044 bnx2x_fw_dump(bp);
3045 rc = 0;
3046 }
3047 mutex_unlock(&bp->fw_mb_mutex);
3048
3049 return rc;
3050 }
3051
3052 static void storm_memset_func_cfg(struct bnx2x *bp,
3053 struct tstorm_eth_function_common_config *tcfg,
3054 u16 abs_fid)
3055 {
3056 size_t size = sizeof(struct tstorm_eth_function_common_config);
3057
3058 u32 addr = BAR_TSTRORM_INTMEM +
3059 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3060
3061 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3062 }
3063
3064 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3065 {
3066 if (CHIP_IS_E1x(bp)) {
3067 struct tstorm_eth_function_common_config tcfg = {0};
3068
3069 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3070 }
3071
3072 /* Enable the function in the FW */
3073 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3074 storm_memset_func_en(bp, p->func_id, 1);
3075
3076 /* spq */
3077 if (p->spq_active) {
3078 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3079 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3080 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3081 }
3082 }
3083
3084 /**
3085 * bnx2x_get_common_flags - Return common flags
3086 *
3087 * @bp device handle
3088 * @fp queue handle
3089 * @zero_stats TRUE if statistics zeroing is needed
3090 *
3091 * Return the flags that are common for the Tx-only and not normal connections.
3092 */
3093 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3094 struct bnx2x_fastpath *fp,
3095 bool zero_stats)
3096 {
3097 unsigned long flags = 0;
3098
3099 /* PF driver will always initialize the Queue to an ACTIVE state */
3100 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3101
3102 /* tx only connections collect statistics (on the same index as the
3103 * parent connection). The statistics are zeroed when the parent
3104 * connection is initialized.
3105 */
3106
3107 __set_bit(BNX2X_Q_FLG_STATS, &flags);
3108 if (zero_stats)
3109 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3110
3111 if (bp->flags & TX_SWITCHING)
3112 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3113
3114 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3115 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3116
3117 #ifdef BNX2X_STOP_ON_ERROR
3118 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3119 #endif
3120
3121 return flags;
3122 }
3123
3124 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3125 struct bnx2x_fastpath *fp,
3126 bool leading)
3127 {
3128 unsigned long flags = 0;
3129
3130 /* calculate other queue flags */
3131 if (IS_MF_SD(bp))
3132 __set_bit(BNX2X_Q_FLG_OV, &flags);
3133
3134 if (IS_FCOE_FP(fp)) {
3135 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3136 /* For FCoE - force usage of default priority (for afex) */
3137 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3138 }
3139
3140 if (fp->mode != TPA_MODE_DISABLED) {
3141 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3142 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3143 if (fp->mode == TPA_MODE_GRO)
3144 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3145 }
3146
3147 if (leading) {
3148 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3149 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3150 }
3151
3152 /* Always set HW VLAN stripping */
3153 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3154
3155 /* configure silent vlan removal */
3156 if (IS_MF_AFEX(bp))
3157 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3158
3159 return flags | bnx2x_get_common_flags(bp, fp, true);
3160 }
3161
3162 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3163 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3164 u8 cos)
3165 {
3166 gen_init->stat_id = bnx2x_stats_id(fp);
3167 gen_init->spcl_id = fp->cl_id;
3168
3169 /* Always use mini-jumbo MTU for FCoE L2 ring */
3170 if (IS_FCOE_FP(fp))
3171 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3172 else
3173 gen_init->mtu = bp->dev->mtu;
3174
3175 gen_init->cos = cos;
3176
3177 gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3178 }
3179
3180 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3181 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3182 struct bnx2x_rxq_setup_params *rxq_init)
3183 {
3184 u8 max_sge = 0;
3185 u16 sge_sz = 0;
3186 u16 tpa_agg_size = 0;
3187
3188 if (fp->mode != TPA_MODE_DISABLED) {
3189 pause->sge_th_lo = SGE_TH_LO(bp);
3190 pause->sge_th_hi = SGE_TH_HI(bp);
3191
3192 /* validate SGE ring has enough to cross high threshold */
3193 WARN_ON(bp->dropless_fc &&
3194 pause->sge_th_hi + FW_PREFETCH_CNT >
3195 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3196
3197 tpa_agg_size = TPA_AGG_SIZE;
3198 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3199 SGE_PAGE_SHIFT;
3200 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3201 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3202 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3203 }
3204
3205 /* pause - not for e1 */
3206 if (!CHIP_IS_E1(bp)) {
3207 pause->bd_th_lo = BD_TH_LO(bp);
3208 pause->bd_th_hi = BD_TH_HI(bp);
3209
3210 pause->rcq_th_lo = RCQ_TH_LO(bp);
3211 pause->rcq_th_hi = RCQ_TH_HI(bp);
3212 /*
3213 * validate that rings have enough entries to cross
3214 * high thresholds
3215 */
3216 WARN_ON(bp->dropless_fc &&
3217 pause->bd_th_hi + FW_PREFETCH_CNT >
3218 bp->rx_ring_size);
3219 WARN_ON(bp->dropless_fc &&
3220 pause->rcq_th_hi + FW_PREFETCH_CNT >
3221 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3222
3223 pause->pri_map = 1;
3224 }
3225
3226 /* rxq setup */
3227 rxq_init->dscr_map = fp->rx_desc_mapping;
3228 rxq_init->sge_map = fp->rx_sge_mapping;
3229 rxq_init->rcq_map = fp->rx_comp_mapping;
3230 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3231
3232 /* This should be a maximum number of data bytes that may be
3233 * placed on the BD (not including paddings).
3234 */
3235 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3236 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3237
3238 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3239 rxq_init->tpa_agg_sz = tpa_agg_size;
3240 rxq_init->sge_buf_sz = sge_sz;
3241 rxq_init->max_sges_pkt = max_sge;
3242 rxq_init->rss_engine_id = BP_FUNC(bp);
3243 rxq_init->mcast_engine_id = BP_FUNC(bp);
3244
3245 /* Maximum number or simultaneous TPA aggregation for this Queue.
3246 *
3247 * For PF Clients it should be the maximum available number.
3248 * VF driver(s) may want to define it to a smaller value.
3249 */
3250 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3251
3252 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3253 rxq_init->fw_sb_id = fp->fw_sb_id;
3254
3255 if (IS_FCOE_FP(fp))
3256 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3257 else
3258 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3259 /* configure silent vlan removal
3260 * if multi function mode is afex, then mask default vlan
3261 */
3262 if (IS_MF_AFEX(bp)) {
3263 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3264 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3265 }
3266 }
3267
3268 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3269 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3270 u8 cos)
3271 {
3272 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3273 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3274 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3275 txq_init->fw_sb_id = fp->fw_sb_id;
3276
3277 /*
3278 * set the tss leading client id for TX classification ==
3279 * leading RSS client id
3280 */
3281 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3282
3283 if (IS_FCOE_FP(fp)) {
3284 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3285 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3286 }
3287 }
3288
3289 static void bnx2x_pf_init(struct bnx2x *bp)
3290 {
3291 struct bnx2x_func_init_params func_init = {0};
3292 struct event_ring_data eq_data = { {0} };
3293
3294 if (!CHIP_IS_E1x(bp)) {
3295 /* reset IGU PF statistics: MSIX + ATTN */
3296 /* PF */
3297 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3298 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3299 (CHIP_MODE_IS_4_PORT(bp) ?
3300 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3301 /* ATTN */
3302 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3303 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3304 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3305 (CHIP_MODE_IS_4_PORT(bp) ?
3306 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3307 }
3308
3309 func_init.spq_active = true;
3310 func_init.pf_id = BP_FUNC(bp);
3311 func_init.func_id = BP_FUNC(bp);
3312 func_init.spq_map = bp->spq_mapping;
3313 func_init.spq_prod = bp->spq_prod_idx;
3314
3315 bnx2x_func_init(bp, &func_init);
3316
3317 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3318
3319 /*
3320 * Congestion management values depend on the link rate
3321 * There is no active link so initial link rate is set to 10 Gbps.
3322 * When the link comes up The congestion management values are
3323 * re-calculated according to the actual link rate.
3324 */
3325 bp->link_vars.line_speed = SPEED_10000;
3326 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3327
3328 /* Only the PMF sets the HW */
3329 if (bp->port.pmf)
3330 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3331
3332 /* init Event Queue - PCI bus guarantees correct endianity*/
3333 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3334 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3335 eq_data.producer = bp->eq_prod;
3336 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3337 eq_data.sb_id = DEF_SB_ID;
3338 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3339 }
3340
3341 static void bnx2x_e1h_disable(struct bnx2x *bp)
3342 {
3343 int port = BP_PORT(bp);
3344
3345 bnx2x_tx_disable(bp);
3346
3347 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3348 }
3349
3350 static void bnx2x_e1h_enable(struct bnx2x *bp)
3351 {
3352 int port = BP_PORT(bp);
3353
3354 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3355 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3356
3357 /* Tx queue should be only re-enabled */
3358 netif_tx_wake_all_queues(bp->dev);
3359
3360 /*
3361 * Should not call netif_carrier_on since it will be called if the link
3362 * is up when checking for link state
3363 */
3364 }
3365
3366 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3367
3368 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3369 {
3370 struct eth_stats_info *ether_stat =
3371 &bp->slowpath->drv_info_to_mcp.ether_stat;
3372 struct bnx2x_vlan_mac_obj *mac_obj =
3373 &bp->sp_objs->mac_obj;
3374 int i;
3375
3376 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3377 ETH_STAT_INFO_VERSION_LEN);
3378
3379 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3380 * mac_local field in ether_stat struct. The base address is offset by 2
3381 * bytes to account for the field being 8 bytes but a mac address is
3382 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3383 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3384 * allocated by the ether_stat struct, so the macs will land in their
3385 * proper positions.
3386 */
3387 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3388 memset(ether_stat->mac_local + i, 0,
3389 sizeof(ether_stat->mac_local[0]));
3390 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3391 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3392 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3393 ETH_ALEN);
3394 ether_stat->mtu_size = bp->dev->mtu;
3395 if (bp->dev->features & NETIF_F_RXCSUM)
3396 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3397 if (bp->dev->features & NETIF_F_TSO)
3398 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3399 ether_stat->feature_flags |= bp->common.boot_mode;
3400
3401 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3402
3403 ether_stat->txq_size = bp->tx_ring_size;
3404 ether_stat->rxq_size = bp->rx_ring_size;
3405
3406 #ifdef CONFIG_BNX2X_SRIOV
3407 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3408 #endif
3409 }
3410
3411 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3412 {
3413 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3414 struct fcoe_stats_info *fcoe_stat =
3415 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3416
3417 if (!CNIC_LOADED(bp))
3418 return;
3419
3420 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3421
3422 fcoe_stat->qos_priority =
3423 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3424
3425 /* insert FCoE stats from ramrod response */
3426 if (!NO_FCOE(bp)) {
3427 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3428 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429 tstorm_queue_statistics;
3430
3431 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3432 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433 xstorm_queue_statistics;
3434
3435 struct fcoe_statistics_params *fw_fcoe_stat =
3436 &bp->fw_stats_data->fcoe;
3437
3438 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3439 fcoe_stat->rx_bytes_lo,
3440 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3441
3442 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3444 fcoe_stat->rx_bytes_lo,
3445 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3446
3447 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3449 fcoe_stat->rx_bytes_lo,
3450 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3451
3452 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3453 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3454 fcoe_stat->rx_bytes_lo,
3455 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3456
3457 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458 fcoe_stat->rx_frames_lo,
3459 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3460
3461 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462 fcoe_stat->rx_frames_lo,
3463 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3464
3465 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466 fcoe_stat->rx_frames_lo,
3467 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3468
3469 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470 fcoe_stat->rx_frames_lo,
3471 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3472
3473 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3474 fcoe_stat->tx_bytes_lo,
3475 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3476
3477 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3479 fcoe_stat->tx_bytes_lo,
3480 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3481
3482 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3484 fcoe_stat->tx_bytes_lo,
3485 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3486
3487 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3488 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3489 fcoe_stat->tx_bytes_lo,
3490 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3491
3492 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493 fcoe_stat->tx_frames_lo,
3494 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3495
3496 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497 fcoe_stat->tx_frames_lo,
3498 fcoe_q_xstorm_stats->ucast_pkts_sent);
3499
3500 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501 fcoe_stat->tx_frames_lo,
3502 fcoe_q_xstorm_stats->bcast_pkts_sent);
3503
3504 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505 fcoe_stat->tx_frames_lo,
3506 fcoe_q_xstorm_stats->mcast_pkts_sent);
3507 }
3508
3509 /* ask L5 driver to add data to the struct */
3510 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3511 }
3512
3513 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3514 {
3515 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3516 struct iscsi_stats_info *iscsi_stat =
3517 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3518
3519 if (!CNIC_LOADED(bp))
3520 return;
3521
3522 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3523 ETH_ALEN);
3524
3525 iscsi_stat->qos_priority =
3526 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3527
3528 /* ask L5 driver to add data to the struct */
3529 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3530 }
3531
3532 /* called due to MCP event (on pmf):
3533 * reread new bandwidth configuration
3534 * configure FW
3535 * notify others function about the change
3536 */
3537 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3538 {
3539 if (bp->link_vars.link_up) {
3540 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3541 bnx2x_link_sync_notify(bp);
3542 }
3543 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3544 }
3545
3546 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3547 {
3548 bnx2x_config_mf_bw(bp);
3549 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3550 }
3551
3552 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3553 {
3554 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3555 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3556 }
3557
3558 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
3559 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
3560
3561 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3562 {
3563 enum drv_info_opcode op_code;
3564 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3565 bool release = false;
3566 int wait;
3567
3568 /* if drv_info version supported by MFW doesn't match - send NACK */
3569 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3570 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3571 return;
3572 }
3573
3574 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3575 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3576
3577 /* Must prevent other flows from accessing drv_info_to_mcp */
3578 mutex_lock(&bp->drv_info_mutex);
3579
3580 memset(&bp->slowpath->drv_info_to_mcp, 0,
3581 sizeof(union drv_info_to_mcp));
3582
3583 switch (op_code) {
3584 case ETH_STATS_OPCODE:
3585 bnx2x_drv_info_ether_stat(bp);
3586 break;
3587 case FCOE_STATS_OPCODE:
3588 bnx2x_drv_info_fcoe_stat(bp);
3589 break;
3590 case ISCSI_STATS_OPCODE:
3591 bnx2x_drv_info_iscsi_stat(bp);
3592 break;
3593 default:
3594 /* if op code isn't supported - send NACK */
3595 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3596 goto out;
3597 }
3598
3599 /* if we got drv_info attn from MFW then these fields are defined in
3600 * shmem2 for sure
3601 */
3602 SHMEM2_WR(bp, drv_info_host_addr_lo,
3603 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3604 SHMEM2_WR(bp, drv_info_host_addr_hi,
3605 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3606
3607 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3608
3609 /* Since possible management wants both this and get_driver_version
3610 * need to wait until management notifies us it finished utilizing
3611 * the buffer.
3612 */
3613 if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3614 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3615 } else if (!bp->drv_info_mng_owner) {
3616 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3617
3618 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3619 u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3620
3621 /* Management is done; need to clear indication */
3622 if (indication & bit) {
3623 SHMEM2_WR(bp, mfw_drv_indication,
3624 indication & ~bit);
3625 release = true;
3626 break;
3627 }
3628
3629 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3630 }
3631 }
3632 if (!release) {
3633 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3634 bp->drv_info_mng_owner = true;
3635 }
3636
3637 out:
3638 mutex_unlock(&bp->drv_info_mutex);
3639 }
3640
3641 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3642 {
3643 u8 vals[4];
3644 int i = 0;
3645
3646 if (bnx2x_format) {
3647 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3648 &vals[0], &vals[1], &vals[2], &vals[3]);
3649 if (i > 0)
3650 vals[0] -= '0';
3651 } else {
3652 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3653 &vals[0], &vals[1], &vals[2], &vals[3]);
3654 }
3655
3656 while (i < 4)
3657 vals[i++] = 0;
3658
3659 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3660 }
3661
3662 void bnx2x_update_mng_version(struct bnx2x *bp)
3663 {
3664 u32 iscsiver = DRV_VER_NOT_LOADED;
3665 u32 fcoever = DRV_VER_NOT_LOADED;
3666 u32 ethver = DRV_VER_NOT_LOADED;
3667 int idx = BP_FW_MB_IDX(bp);
3668 u8 *version;
3669
3670 if (!SHMEM2_HAS(bp, func_os_drv_ver))
3671 return;
3672
3673 mutex_lock(&bp->drv_info_mutex);
3674 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3675 if (bp->drv_info_mng_owner)
3676 goto out;
3677
3678 if (bp->state != BNX2X_STATE_OPEN)
3679 goto out;
3680
3681 /* Parse ethernet driver version */
3682 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3683 if (!CNIC_LOADED(bp))
3684 goto out;
3685
3686 /* Try getting storage driver version via cnic */
3687 memset(&bp->slowpath->drv_info_to_mcp, 0,
3688 sizeof(union drv_info_to_mcp));
3689 bnx2x_drv_info_iscsi_stat(bp);
3690 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3691 iscsiver = bnx2x_update_mng_version_utility(version, false);
3692
3693 memset(&bp->slowpath->drv_info_to_mcp, 0,
3694 sizeof(union drv_info_to_mcp));
3695 bnx2x_drv_info_fcoe_stat(bp);
3696 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3697 fcoever = bnx2x_update_mng_version_utility(version, false);
3698
3699 out:
3700 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3701 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3702 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3703
3704 mutex_unlock(&bp->drv_info_mutex);
3705
3706 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3707 ethver, iscsiver, fcoever);
3708 }
3709
3710 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3711 {
3712 u32 drv_ver;
3713 u32 valid_dump;
3714
3715 if (!SHMEM2_HAS(bp, drv_info))
3716 return;
3717
3718 /* Update Driver load time, possibly broken in y2038 */
3719 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3720
3721 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3722 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3723
3724 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3725
3726 /* Check & notify On-Chip dump. */
3727 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3728
3729 if (valid_dump & FIRST_DUMP_VALID)
3730 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3731
3732 if (valid_dump & SECOND_DUMP_VALID)
3733 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3734 }
3735
3736 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3737 {
3738 u32 cmd_ok, cmd_fail;
3739
3740 /* sanity */
3741 if (event & DRV_STATUS_DCC_EVENT_MASK &&
3742 event & DRV_STATUS_OEM_EVENT_MASK) {
3743 BNX2X_ERR("Received simultaneous events %08x\n", event);
3744 return;
3745 }
3746
3747 if (event & DRV_STATUS_DCC_EVENT_MASK) {
3748 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3749 cmd_ok = DRV_MSG_CODE_DCC_OK;
3750 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3751 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3752 cmd_ok = DRV_MSG_CODE_OEM_OK;
3753 }
3754
3755 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3756
3757 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3758 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3759 /* This is the only place besides the function initialization
3760 * where the bp->flags can change so it is done without any
3761 * locks
3762 */
3763 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3764 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3765 bp->flags |= MF_FUNC_DIS;
3766
3767 bnx2x_e1h_disable(bp);
3768 } else {
3769 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3770 bp->flags &= ~MF_FUNC_DIS;
3771
3772 bnx2x_e1h_enable(bp);
3773 }
3774 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3775 DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3776 }
3777
3778 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3779 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3780 bnx2x_config_mf_bw(bp);
3781 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3782 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3783 }
3784
3785 /* Report results to MCP */
3786 if (event)
3787 bnx2x_fw_command(bp, cmd_fail, 0);
3788 else
3789 bnx2x_fw_command(bp, cmd_ok, 0);
3790 }
3791
3792 /* must be called under the spq lock */
3793 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3794 {
3795 struct eth_spe *next_spe = bp->spq_prod_bd;
3796
3797 if (bp->spq_prod_bd == bp->spq_last_bd) {
3798 bp->spq_prod_bd = bp->spq;
3799 bp->spq_prod_idx = 0;
3800 DP(BNX2X_MSG_SP, "end of spq\n");
3801 } else {
3802 bp->spq_prod_bd++;
3803 bp->spq_prod_idx++;
3804 }
3805 return next_spe;
3806 }
3807
3808 /* must be called under the spq lock */
3809 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3810 {
3811 int func = BP_FUNC(bp);
3812
3813 /*
3814 * Make sure that BD data is updated before writing the producer:
3815 * BD data is written to the memory, the producer is read from the
3816 * memory, thus we need a full memory barrier to ensure the ordering.
3817 */
3818 mb();
3819
3820 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3821 bp->spq_prod_idx);
3822 mmiowb();
3823 }
3824
3825 /**
3826 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3827 *
3828 * @cmd: command to check
3829 * @cmd_type: command type
3830 */
3831 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3832 {
3833 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3834 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3835 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3836 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3837 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3838 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3839 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3840 return true;
3841 else
3842 return false;
3843 }
3844
3845 /**
3846 * bnx2x_sp_post - place a single command on an SP ring
3847 *
3848 * @bp: driver handle
3849 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3850 * @cid: SW CID the command is related to
3851 * @data_hi: command private data address (high 32 bits)
3852 * @data_lo: command private data address (low 32 bits)
3853 * @cmd_type: command type (e.g. NONE, ETH)
3854 *
3855 * SP data is handled as if it's always an address pair, thus data fields are
3856 * not swapped to little endian in upper functions. Instead this function swaps
3857 * data as if it's two u32 fields.
3858 */
3859 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3860 u32 data_hi, u32 data_lo, int cmd_type)
3861 {
3862 struct eth_spe *spe;
3863 u16 type;
3864 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3865
3866 #ifdef BNX2X_STOP_ON_ERROR
3867 if (unlikely(bp->panic)) {
3868 BNX2X_ERR("Can't post SP when there is panic\n");
3869 return -EIO;
3870 }
3871 #endif
3872
3873 spin_lock_bh(&bp->spq_lock);
3874
3875 if (common) {
3876 if (!atomic_read(&bp->eq_spq_left)) {
3877 BNX2X_ERR("BUG! EQ ring full!\n");
3878 spin_unlock_bh(&bp->spq_lock);
3879 bnx2x_panic();
3880 return -EBUSY;
3881 }
3882 } else if (!atomic_read(&bp->cq_spq_left)) {
3883 BNX2X_ERR("BUG! SPQ ring full!\n");
3884 spin_unlock_bh(&bp->spq_lock);
3885 bnx2x_panic();
3886 return -EBUSY;
3887 }
3888
3889 spe = bnx2x_sp_get_next(bp);
3890
3891 /* CID needs port number to be encoded int it */
3892 spe->hdr.conn_and_cmd_data =
3893 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3894 HW_CID(bp, cid));
3895
3896 /* In some cases, type may already contain the func-id
3897 * mainly in SRIOV related use cases, so we add it here only
3898 * if it's not already set.
3899 */
3900 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3901 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3902 SPE_HDR_CONN_TYPE;
3903 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3904 SPE_HDR_FUNCTION_ID);
3905 } else {
3906 type = cmd_type;
3907 }
3908
3909 spe->hdr.type = cpu_to_le16(type);
3910
3911 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3912 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3913
3914 /*
3915 * It's ok if the actual decrement is issued towards the memory
3916 * somewhere between the spin_lock and spin_unlock. Thus no
3917 * more explicit memory barrier is needed.
3918 */
3919 if (common)
3920 atomic_dec(&bp->eq_spq_left);
3921 else
3922 atomic_dec(&bp->cq_spq_left);
3923
3924 DP(BNX2X_MSG_SP,
3925 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3926 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3927 (u32)(U64_LO(bp->spq_mapping) +
3928 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3929 HW_CID(bp, cid), data_hi, data_lo, type,
3930 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3931
3932 bnx2x_sp_prod_update(bp);
3933 spin_unlock_bh(&bp->spq_lock);
3934 return 0;
3935 }
3936
3937 /* acquire split MCP access lock register */
3938 static int bnx2x_acquire_alr(struct bnx2x *bp)
3939 {
3940 u32 j, val;
3941 int rc = 0;
3942
3943 might_sleep();
3944 for (j = 0; j < 1000; j++) {
3945 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3946 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3947 if (val & MCPR_ACCESS_LOCK_LOCK)
3948 break;
3949
3950 usleep_range(5000, 10000);
3951 }
3952 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3953 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3954 rc = -EBUSY;
3955 }
3956
3957 return rc;
3958 }
3959
3960 /* release split MCP access lock register */
3961 static void bnx2x_release_alr(struct bnx2x *bp)
3962 {
3963 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3964 }
3965
3966 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3967 #define BNX2X_DEF_SB_IDX 0x0002
3968
3969 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3970 {
3971 struct host_sp_status_block *def_sb = bp->def_status_blk;
3972 u16 rc = 0;
3973
3974 barrier(); /* status block is written to by the chip */
3975 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3976 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3977 rc |= BNX2X_DEF_SB_ATT_IDX;
3978 }
3979
3980 if (bp->def_idx != def_sb->sp_sb.running_index) {
3981 bp->def_idx = def_sb->sp_sb.running_index;
3982 rc |= BNX2X_DEF_SB_IDX;
3983 }
3984
3985 /* Do not reorder: indices reading should complete before handling */
3986 barrier();
3987 return rc;
3988 }
3989
3990 /*
3991 * slow path service functions
3992 */
3993
3994 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3995 {
3996 int port = BP_PORT(bp);
3997 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3998 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3999 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4000 NIG_REG_MASK_INTERRUPT_PORT0;
4001 u32 aeu_mask;
4002 u32 nig_mask = 0;
4003 u32 reg_addr;
4004
4005 if (bp->attn_state & asserted)
4006 BNX2X_ERR("IGU ERROR\n");
4007
4008 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4009 aeu_mask = REG_RD(bp, aeu_addr);
4010
4011 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
4012 aeu_mask, asserted);
4013 aeu_mask &= ~(asserted & 0x3ff);
4014 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4015
4016 REG_WR(bp, aeu_addr, aeu_mask);
4017 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4018
4019 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4020 bp->attn_state |= asserted;
4021 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4022
4023 if (asserted & ATTN_HARD_WIRED_MASK) {
4024 if (asserted & ATTN_NIG_FOR_FUNC) {
4025
4026 bnx2x_acquire_phy_lock(bp);
4027
4028 /* save nig interrupt mask */
4029 nig_mask = REG_RD(bp, nig_int_mask_addr);
4030
4031 /* If nig_mask is not set, no need to call the update
4032 * function.
4033 */
4034 if (nig_mask) {
4035 REG_WR(bp, nig_int_mask_addr, 0);
4036
4037 bnx2x_link_attn(bp);
4038 }
4039
4040 /* handle unicore attn? */
4041 }
4042 if (asserted & ATTN_SW_TIMER_4_FUNC)
4043 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4044
4045 if (asserted & GPIO_2_FUNC)
4046 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4047
4048 if (asserted & GPIO_3_FUNC)
4049 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4050
4051 if (asserted & GPIO_4_FUNC)
4052 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4053
4054 if (port == 0) {
4055 if (asserted & ATTN_GENERAL_ATTN_1) {
4056 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4057 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4058 }
4059 if (asserted & ATTN_GENERAL_ATTN_2) {
4060 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4061 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4062 }
4063 if (asserted & ATTN_GENERAL_ATTN_3) {
4064 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4065 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4066 }
4067 } else {
4068 if (asserted & ATTN_GENERAL_ATTN_4) {
4069 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4070 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4071 }
4072 if (asserted & ATTN_GENERAL_ATTN_5) {
4073 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4074 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4075 }
4076 if (asserted & ATTN_GENERAL_ATTN_6) {
4077 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4078 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4079 }
4080 }
4081
4082 } /* if hardwired */
4083
4084 if (bp->common.int_block == INT_BLOCK_HC)
4085 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4086 COMMAND_REG_ATTN_BITS_SET);
4087 else
4088 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4089
4090 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4091 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4092 REG_WR(bp, reg_addr, asserted);
4093
4094 /* now set back the mask */
4095 if (asserted & ATTN_NIG_FOR_FUNC) {
4096 /* Verify that IGU ack through BAR was written before restoring
4097 * NIG mask. This loop should exit after 2-3 iterations max.
4098 */
4099 if (bp->common.int_block != INT_BLOCK_HC) {
4100 u32 cnt = 0, igu_acked;
4101 do {
4102 igu_acked = REG_RD(bp,
4103 IGU_REG_ATTENTION_ACK_BITS);
4104 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4105 (++cnt < MAX_IGU_ATTN_ACK_TO));
4106 if (!igu_acked)
4107 DP(NETIF_MSG_HW,
4108 "Failed to verify IGU ack on time\n");
4109 barrier();
4110 }
4111 REG_WR(bp, nig_int_mask_addr, nig_mask);
4112 bnx2x_release_phy_lock(bp);
4113 }
4114 }
4115
4116 static void bnx2x_fan_failure(struct bnx2x *bp)
4117 {
4118 int port = BP_PORT(bp);
4119 u32 ext_phy_config;
4120 /* mark the failure */
4121 ext_phy_config =
4122 SHMEM_RD(bp,
4123 dev_info.port_hw_config[port].external_phy_config);
4124
4125 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4126 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4127 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4128 ext_phy_config);
4129
4130 /* log the failure */
4131 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4132 "Please contact OEM Support for assistance\n");
4133
4134 /* Schedule device reset (unload)
4135 * This is due to some boards consuming sufficient power when driver is
4136 * up to overheat if fan fails.
4137 */
4138 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4139 }
4140
4141 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4142 {
4143 int port = BP_PORT(bp);
4144 int reg_offset;
4145 u32 val;
4146
4147 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4148 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4149
4150 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4151
4152 val = REG_RD(bp, reg_offset);
4153 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4154 REG_WR(bp, reg_offset, val);
4155
4156 BNX2X_ERR("SPIO5 hw attention\n");
4157
4158 /* Fan failure attention */
4159 bnx2x_hw_reset_phy(&bp->link_params);
4160 bnx2x_fan_failure(bp);
4161 }
4162
4163 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4164 bnx2x_acquire_phy_lock(bp);
4165 bnx2x_handle_module_detect_int(&bp->link_params);
4166 bnx2x_release_phy_lock(bp);
4167 }
4168
4169 if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4170
4171 val = REG_RD(bp, reg_offset);
4172 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4173 REG_WR(bp, reg_offset, val);
4174
4175 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4176 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4177 bnx2x_panic();
4178 }
4179 }
4180
4181 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4182 {
4183 u32 val;
4184
4185 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4186
4187 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4188 BNX2X_ERR("DB hw attention 0x%x\n", val);
4189 /* DORQ discard attention */
4190 if (val & 0x2)
4191 BNX2X_ERR("FATAL error from DORQ\n");
4192 }
4193
4194 if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4195
4196 int port = BP_PORT(bp);
4197 int reg_offset;
4198
4199 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4200 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4201
4202 val = REG_RD(bp, reg_offset);
4203 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4204 REG_WR(bp, reg_offset, val);
4205
4206 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4207 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4208 bnx2x_panic();
4209 }
4210 }
4211
4212 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4213 {
4214 u32 val;
4215
4216 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4217
4218 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4219 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4220 /* CFC error attention */
4221 if (val & 0x2)
4222 BNX2X_ERR("FATAL error from CFC\n");
4223 }
4224
4225 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4226 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4227 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4228 /* RQ_USDMDP_FIFO_OVERFLOW */
4229 if (val & 0x18000)
4230 BNX2X_ERR("FATAL error from PXP\n");
4231
4232 if (!CHIP_IS_E1x(bp)) {
4233 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4234 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4235 }
4236 }
4237
4238 if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4239
4240 int port = BP_PORT(bp);
4241 int reg_offset;
4242
4243 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4244 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4245
4246 val = REG_RD(bp, reg_offset);
4247 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4248 REG_WR(bp, reg_offset, val);
4249
4250 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4251 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4252 bnx2x_panic();
4253 }
4254 }
4255
4256 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4257 {
4258 u32 val;
4259
4260 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4261
4262 if (attn & BNX2X_PMF_LINK_ASSERT) {
4263 int func = BP_FUNC(bp);
4264
4265 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4266 bnx2x_read_mf_cfg(bp);
4267 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4268 func_mf_config[BP_ABS_FUNC(bp)].config);
4269 val = SHMEM_RD(bp,
4270 func_mb[BP_FW_MB_IDX(bp)].drv_status);
4271
4272 if (val & (DRV_STATUS_DCC_EVENT_MASK |
4273 DRV_STATUS_OEM_EVENT_MASK))
4274 bnx2x_oem_event(bp,
4275 (val & (DRV_STATUS_DCC_EVENT_MASK |
4276 DRV_STATUS_OEM_EVENT_MASK)));
4277
4278 if (val & DRV_STATUS_SET_MF_BW)
4279 bnx2x_set_mf_bw(bp);
4280
4281 if (val & DRV_STATUS_DRV_INFO_REQ)
4282 bnx2x_handle_drv_info_req(bp);
4283
4284 if (val & DRV_STATUS_VF_DISABLED)
4285 bnx2x_schedule_iov_task(bp,
4286 BNX2X_IOV_HANDLE_FLR);
4287
4288 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4289 bnx2x_pmf_update(bp);
4290
4291 if (bp->port.pmf &&
4292 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4293 bp->dcbx_enabled > 0)
4294 /* start dcbx state machine */
4295 bnx2x_dcbx_set_params(bp,
4296 BNX2X_DCBX_STATE_NEG_RECEIVED);
4297 if (val & DRV_STATUS_AFEX_EVENT_MASK)
4298 bnx2x_handle_afex_cmd(bp,
4299 val & DRV_STATUS_AFEX_EVENT_MASK);
4300 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4301 bnx2x_handle_eee_event(bp);
4302
4303 if (val & DRV_STATUS_OEM_UPDATE_SVID)
4304 bnx2x_handle_update_svid_cmd(bp);
4305
4306 if (bp->link_vars.periodic_flags &
4307 PERIODIC_FLAGS_LINK_EVENT) {
4308 /* sync with link */
4309 bnx2x_acquire_phy_lock(bp);
4310 bp->link_vars.periodic_flags &=
4311 ~PERIODIC_FLAGS_LINK_EVENT;
4312 bnx2x_release_phy_lock(bp);
4313 if (IS_MF(bp))
4314 bnx2x_link_sync_notify(bp);
4315 bnx2x_link_report(bp);
4316 }
4317 /* Always call it here: bnx2x_link_report() will
4318 * prevent the link indication duplication.
4319 */
4320 bnx2x__link_status_update(bp);
4321 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4322
4323 BNX2X_ERR("MC assert!\n");
4324 bnx2x_mc_assert(bp);
4325 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4326 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4327 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4328 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4329 bnx2x_panic();
4330
4331 } else if (attn & BNX2X_MCP_ASSERT) {
4332
4333 BNX2X_ERR("MCP assert!\n");
4334 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4335 bnx2x_fw_dump(bp);
4336
4337 } else
4338 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4339 }
4340
4341 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4342 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4343 if (attn & BNX2X_GRC_TIMEOUT) {
4344 val = CHIP_IS_E1(bp) ? 0 :
4345 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4346 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4347 }
4348 if (attn & BNX2X_GRC_RSV) {
4349 val = CHIP_IS_E1(bp) ? 0 :
4350 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4351 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4352 }
4353 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4354 }
4355 }
4356
4357 /*
4358 * Bits map:
4359 * 0-7 - Engine0 load counter.
4360 * 8-15 - Engine1 load counter.
4361 * 16 - Engine0 RESET_IN_PROGRESS bit.
4362 * 17 - Engine1 RESET_IN_PROGRESS bit.
4363 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4364 * on the engine
4365 * 19 - Engine1 ONE_IS_LOADED.
4366 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4367 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4368 * just the one belonging to its engine).
4369 *
4370 */
4371 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4372
4373 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4374 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4375 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4376 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4377 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4378 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4379 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4380
4381 /*
4382 * Set the GLOBAL_RESET bit.
4383 *
4384 * Should be run under rtnl lock
4385 */
4386 void bnx2x_set_reset_global(struct bnx2x *bp)
4387 {
4388 u32 val;
4389 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4390 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4391 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4392 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4393 }
4394
4395 /*
4396 * Clear the GLOBAL_RESET bit.
4397 *
4398 * Should be run under rtnl lock
4399 */
4400 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4401 {
4402 u32 val;
4403 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4404 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4405 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4406 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4407 }
4408
4409 /*
4410 * Checks the GLOBAL_RESET bit.
4411 *
4412 * should be run under rtnl lock
4413 */
4414 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4415 {
4416 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4417
4418 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4419 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4420 }
4421
4422 /*
4423 * Clear RESET_IN_PROGRESS bit for the current engine.
4424 *
4425 * Should be run under rtnl lock
4426 */
4427 static void bnx2x_set_reset_done(struct bnx2x *bp)
4428 {
4429 u32 val;
4430 u32 bit = BP_PATH(bp) ?
4431 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4432 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4433 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4434
4435 /* Clear the bit */
4436 val &= ~bit;
4437 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4438
4439 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4440 }
4441
4442 /*
4443 * Set RESET_IN_PROGRESS for the current engine.
4444 *
4445 * should be run under rtnl lock
4446 */
4447 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4448 {
4449 u32 val;
4450 u32 bit = BP_PATH(bp) ?
4451 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4452 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4453 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4454
4455 /* Set the bit */
4456 val |= bit;
4457 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4458 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4459 }
4460
4461 /*
4462 * Checks the RESET_IN_PROGRESS bit for the given engine.
4463 * should be run under rtnl lock
4464 */
4465 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4466 {
4467 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4468 u32 bit = engine ?
4469 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4470
4471 /* return false if bit is set */
4472 return (val & bit) ? false : true;
4473 }
4474
4475 /*
4476 * set pf load for the current pf.
4477 *
4478 * should be run under rtnl lock
4479 */
4480 void bnx2x_set_pf_load(struct bnx2x *bp)
4481 {
4482 u32 val1, val;
4483 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4484 BNX2X_PATH0_LOAD_CNT_MASK;
4485 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4486 BNX2X_PATH0_LOAD_CNT_SHIFT;
4487
4488 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4489 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4490
4491 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4492
4493 /* get the current counter value */
4494 val1 = (val & mask) >> shift;
4495
4496 /* set bit of that PF */
4497 val1 |= (1 << bp->pf_num);
4498
4499 /* clear the old value */
4500 val &= ~mask;
4501
4502 /* set the new one */
4503 val |= ((val1 << shift) & mask);
4504
4505 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4506 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4507 }
4508
4509 /**
4510 * bnx2x_clear_pf_load - clear pf load mark
4511 *
4512 * @bp: driver handle
4513 *
4514 * Should be run under rtnl lock.
4515 * Decrements the load counter for the current engine. Returns
4516 * whether other functions are still loaded
4517 */
4518 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4519 {
4520 u32 val1, val;
4521 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4522 BNX2X_PATH0_LOAD_CNT_MASK;
4523 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4524 BNX2X_PATH0_LOAD_CNT_SHIFT;
4525
4526 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4527 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4528 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4529
4530 /* get the current counter value */
4531 val1 = (val & mask) >> shift;
4532
4533 /* clear bit of that PF */
4534 val1 &= ~(1 << bp->pf_num);
4535
4536 /* clear the old value */
4537 val &= ~mask;
4538
4539 /* set the new one */
4540 val |= ((val1 << shift) & mask);
4541
4542 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4543 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4544 return val1 != 0;
4545 }
4546
4547 /*
4548 * Read the load status for the current engine.
4549 *
4550 * should be run under rtnl lock
4551 */
4552 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4553 {
4554 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4555 BNX2X_PATH0_LOAD_CNT_MASK);
4556 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4557 BNX2X_PATH0_LOAD_CNT_SHIFT);
4558 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4559
4560 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4561
4562 val = (val & mask) >> shift;
4563
4564 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4565 engine, val);
4566
4567 return val != 0;
4568 }
4569
4570 static void _print_parity(struct bnx2x *bp, u32 reg)
4571 {
4572 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4573 }
4574
4575 static void _print_next_block(int idx, const char *blk)
4576 {
4577 pr_cont("%s%s", idx ? ", " : "", blk);
4578 }
4579
4580 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4581 int *par_num, bool print)
4582 {
4583 u32 cur_bit;
4584 bool res;
4585 int i;
4586
4587 res = false;
4588
4589 for (i = 0; sig; i++) {
4590 cur_bit = (0x1UL << i);
4591 if (sig & cur_bit) {
4592 res |= true; /* Each bit is real error! */
4593
4594 if (print) {
4595 switch (cur_bit) {
4596 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4597 _print_next_block((*par_num)++, "BRB");
4598 _print_parity(bp,
4599 BRB1_REG_BRB1_PRTY_STS);
4600 break;
4601 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4602 _print_next_block((*par_num)++,
4603 "PARSER");
4604 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4605 break;
4606 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4607 _print_next_block((*par_num)++, "TSDM");
4608 _print_parity(bp,
4609 TSDM_REG_TSDM_PRTY_STS);
4610 break;
4611 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4612 _print_next_block((*par_num)++,
4613 "SEARCHER");
4614 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4615 break;
4616 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4617 _print_next_block((*par_num)++, "TCM");
4618 _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4619 break;
4620 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4621 _print_next_block((*par_num)++,
4622 "TSEMI");
4623 _print_parity(bp,
4624 TSEM_REG_TSEM_PRTY_STS_0);
4625 _print_parity(bp,
4626 TSEM_REG_TSEM_PRTY_STS_1);
4627 break;
4628 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4629 _print_next_block((*par_num)++, "XPB");
4630 _print_parity(bp, GRCBASE_XPB +
4631 PB_REG_PB_PRTY_STS);
4632 break;
4633 }
4634 }
4635
4636 /* Clear the bit */
4637 sig &= ~cur_bit;
4638 }
4639 }
4640
4641 return res;
4642 }
4643
4644 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4645 int *par_num, bool *global,
4646 bool print)
4647 {
4648 u32 cur_bit;
4649 bool res;
4650 int i;
4651
4652 res = false;
4653
4654 for (i = 0; sig; i++) {
4655 cur_bit = (0x1UL << i);
4656 if (sig & cur_bit) {
4657 res |= true; /* Each bit is real error! */
4658 switch (cur_bit) {
4659 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4660 if (print) {
4661 _print_next_block((*par_num)++, "PBF");
4662 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4663 }
4664 break;
4665 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4666 if (print) {
4667 _print_next_block((*par_num)++, "QM");
4668 _print_parity(bp, QM_REG_QM_PRTY_STS);
4669 }
4670 break;
4671 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4672 if (print) {
4673 _print_next_block((*par_num)++, "TM");
4674 _print_parity(bp, TM_REG_TM_PRTY_STS);
4675 }
4676 break;
4677 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4678 if (print) {
4679 _print_next_block((*par_num)++, "XSDM");
4680 _print_parity(bp,
4681 XSDM_REG_XSDM_PRTY_STS);
4682 }
4683 break;
4684 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4685 if (print) {
4686 _print_next_block((*par_num)++, "XCM");
4687 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4688 }
4689 break;
4690 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4691 if (print) {
4692 _print_next_block((*par_num)++,
4693 "XSEMI");
4694 _print_parity(bp,
4695 XSEM_REG_XSEM_PRTY_STS_0);
4696 _print_parity(bp,
4697 XSEM_REG_XSEM_PRTY_STS_1);
4698 }
4699 break;
4700 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4701 if (print) {
4702 _print_next_block((*par_num)++,
4703 "DOORBELLQ");
4704 _print_parity(bp,
4705 DORQ_REG_DORQ_PRTY_STS);
4706 }
4707 break;
4708 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4709 if (print) {
4710 _print_next_block((*par_num)++, "NIG");
4711 if (CHIP_IS_E1x(bp)) {
4712 _print_parity(bp,
4713 NIG_REG_NIG_PRTY_STS);
4714 } else {
4715 _print_parity(bp,
4716 NIG_REG_NIG_PRTY_STS_0);
4717 _print_parity(bp,
4718 NIG_REG_NIG_PRTY_STS_1);
4719 }
4720 }
4721 break;
4722 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4723 if (print)
4724 _print_next_block((*par_num)++,
4725 "VAUX PCI CORE");
4726 *global = true;
4727 break;
4728 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4729 if (print) {
4730 _print_next_block((*par_num)++,
4731 "DEBUG");
4732 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4733 }
4734 break;
4735 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4736 if (print) {
4737 _print_next_block((*par_num)++, "USDM");
4738 _print_parity(bp,
4739 USDM_REG_USDM_PRTY_STS);
4740 }
4741 break;
4742 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4743 if (print) {
4744 _print_next_block((*par_num)++, "UCM");
4745 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4746 }
4747 break;
4748 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4749 if (print) {
4750 _print_next_block((*par_num)++,
4751 "USEMI");
4752 _print_parity(bp,
4753 USEM_REG_USEM_PRTY_STS_0);
4754 _print_parity(bp,
4755 USEM_REG_USEM_PRTY_STS_1);
4756 }
4757 break;
4758 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4759 if (print) {
4760 _print_next_block((*par_num)++, "UPB");
4761 _print_parity(bp, GRCBASE_UPB +
4762 PB_REG_PB_PRTY_STS);
4763 }
4764 break;
4765 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4766 if (print) {
4767 _print_next_block((*par_num)++, "CSDM");
4768 _print_parity(bp,
4769 CSDM_REG_CSDM_PRTY_STS);
4770 }
4771 break;
4772 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4773 if (print) {
4774 _print_next_block((*par_num)++, "CCM");
4775 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4776 }
4777 break;
4778 }
4779
4780 /* Clear the bit */
4781 sig &= ~cur_bit;
4782 }
4783 }
4784
4785 return res;
4786 }
4787
4788 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4789 int *par_num, bool print)
4790 {
4791 u32 cur_bit;
4792 bool res;
4793 int i;
4794
4795 res = false;
4796
4797 for (i = 0; sig; i++) {
4798 cur_bit = (0x1UL << i);
4799 if (sig & cur_bit) {
4800 res = true; /* Each bit is real error! */
4801 if (print) {
4802 switch (cur_bit) {
4803 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4804 _print_next_block((*par_num)++,
4805 "CSEMI");
4806 _print_parity(bp,
4807 CSEM_REG_CSEM_PRTY_STS_0);
4808 _print_parity(bp,
4809 CSEM_REG_CSEM_PRTY_STS_1);
4810 break;
4811 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4812 _print_next_block((*par_num)++, "PXP");
4813 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4814 _print_parity(bp,
4815 PXP2_REG_PXP2_PRTY_STS_0);
4816 _print_parity(bp,
4817 PXP2_REG_PXP2_PRTY_STS_1);
4818 break;
4819 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4820 _print_next_block((*par_num)++,
4821 "PXPPCICLOCKCLIENT");
4822 break;
4823 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4824 _print_next_block((*par_num)++, "CFC");
4825 _print_parity(bp,
4826 CFC_REG_CFC_PRTY_STS);
4827 break;
4828 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4829 _print_next_block((*par_num)++, "CDU");
4830 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4831 break;
4832 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4833 _print_next_block((*par_num)++, "DMAE");
4834 _print_parity(bp,
4835 DMAE_REG_DMAE_PRTY_STS);
4836 break;
4837 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4838 _print_next_block((*par_num)++, "IGU");
4839 if (CHIP_IS_E1x(bp))
4840 _print_parity(bp,
4841 HC_REG_HC_PRTY_STS);
4842 else
4843 _print_parity(bp,
4844 IGU_REG_IGU_PRTY_STS);
4845 break;
4846 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4847 _print_next_block((*par_num)++, "MISC");
4848 _print_parity(bp,
4849 MISC_REG_MISC_PRTY_STS);
4850 break;
4851 }
4852 }
4853
4854 /* Clear the bit */
4855 sig &= ~cur_bit;
4856 }
4857 }
4858
4859 return res;
4860 }
4861
4862 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4863 int *par_num, bool *global,
4864 bool print)
4865 {
4866 bool res = false;
4867 u32 cur_bit;
4868 int i;
4869
4870 for (i = 0; sig; i++) {
4871 cur_bit = (0x1UL << i);
4872 if (sig & cur_bit) {
4873 switch (cur_bit) {
4874 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4875 if (print)
4876 _print_next_block((*par_num)++,
4877 "MCP ROM");
4878 *global = true;
4879 res = true;
4880 break;
4881 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4882 if (print)
4883 _print_next_block((*par_num)++,
4884 "MCP UMP RX");
4885 *global = true;
4886 res = true;
4887 break;
4888 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4889 if (print)
4890 _print_next_block((*par_num)++,
4891 "MCP UMP TX");
4892 *global = true;
4893 res = true;
4894 break;
4895 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4896 (*par_num)++;
4897 /* clear latched SCPAD PATIRY from MCP */
4898 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4899 1UL << 10);
4900 break;
4901 }
4902
4903 /* Clear the bit */
4904 sig &= ~cur_bit;
4905 }
4906 }
4907
4908 return res;
4909 }
4910
4911 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4912 int *par_num, bool print)
4913 {
4914 u32 cur_bit;
4915 bool res;
4916 int i;
4917
4918 res = false;
4919
4920 for (i = 0; sig; i++) {
4921 cur_bit = (0x1UL << i);
4922 if (sig & cur_bit) {
4923 res = true; /* Each bit is real error! */
4924 if (print) {
4925 switch (cur_bit) {
4926 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4927 _print_next_block((*par_num)++,
4928 "PGLUE_B");
4929 _print_parity(bp,
4930 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4931 break;
4932 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4933 _print_next_block((*par_num)++, "ATC");
4934 _print_parity(bp,
4935 ATC_REG_ATC_PRTY_STS);
4936 break;
4937 }
4938 }
4939 /* Clear the bit */
4940 sig &= ~cur_bit;
4941 }
4942 }
4943
4944 return res;
4945 }
4946
4947 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4948 u32 *sig)
4949 {
4950 bool res = false;
4951
4952 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4953 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4954 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4955 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4956 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4957 int par_num = 0;
4958
4959 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4960 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4961 sig[0] & HW_PRTY_ASSERT_SET_0,
4962 sig[1] & HW_PRTY_ASSERT_SET_1,
4963 sig[2] & HW_PRTY_ASSERT_SET_2,
4964 sig[3] & HW_PRTY_ASSERT_SET_3,
4965 sig[4] & HW_PRTY_ASSERT_SET_4);
4966 if (print) {
4967 if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4968 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4969 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4970 (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4971 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4972 netdev_err(bp->dev,
4973 "Parity errors detected in blocks: ");
4974 } else {
4975 print = false;
4976 }
4977 }
4978 res |= bnx2x_check_blocks_with_parity0(bp,
4979 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4980 res |= bnx2x_check_blocks_with_parity1(bp,
4981 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4982 res |= bnx2x_check_blocks_with_parity2(bp,
4983 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4984 res |= bnx2x_check_blocks_with_parity3(bp,
4985 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4986 res |= bnx2x_check_blocks_with_parity4(bp,
4987 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4988
4989 if (print)
4990 pr_cont("\n");
4991 }
4992
4993 return res;
4994 }
4995
4996 /**
4997 * bnx2x_chk_parity_attn - checks for parity attentions.
4998 *
4999 * @bp: driver handle
5000 * @global: true if there was a global attention
5001 * @print: show parity attention in syslog
5002 */
5003 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5004 {
5005 struct attn_route attn = { {0} };
5006 int port = BP_PORT(bp);
5007
5008 attn.sig[0] = REG_RD(bp,
5009 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5010 port*4);
5011 attn.sig[1] = REG_RD(bp,
5012 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5013 port*4);
5014 attn.sig[2] = REG_RD(bp,
5015 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5016 port*4);
5017 attn.sig[3] = REG_RD(bp,
5018 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5019 port*4);
5020 /* Since MCP attentions can't be disabled inside the block, we need to
5021 * read AEU registers to see whether they're currently disabled
5022 */
5023 attn.sig[3] &= ((REG_RD(bp,
5024 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5025 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5026 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5027 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5028
5029 if (!CHIP_IS_E1x(bp))
5030 attn.sig[4] = REG_RD(bp,
5031 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5032 port*4);
5033
5034 return bnx2x_parity_attn(bp, global, print, attn.sig);
5035 }
5036
5037 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5038 {
5039 u32 val;
5040 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5041
5042 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5043 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5044 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5045 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5046 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5047 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5048 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5049 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5050 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5051 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5052 if (val &
5053 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5054 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5055 if (val &
5056 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5057 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5058 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5059 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5060 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5061 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5062 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5063 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5064 }
5065 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5066 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5067 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5068 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5069 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5070 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5071 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5072 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5073 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5074 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5075 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5076 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5077 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5078 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5079 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5080 }
5081
5082 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5083 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5084 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5085 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5086 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5087 }
5088 }
5089
5090 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5091 {
5092 struct attn_route attn, *group_mask;
5093 int port = BP_PORT(bp);
5094 int index;
5095 u32 reg_addr;
5096 u32 val;
5097 u32 aeu_mask;
5098 bool global = false;
5099
5100 /* need to take HW lock because MCP or other port might also
5101 try to handle this event */
5102 bnx2x_acquire_alr(bp);
5103
5104 if (bnx2x_chk_parity_attn(bp, &global, true)) {
5105 #ifndef BNX2X_STOP_ON_ERROR
5106 bp->recovery_state = BNX2X_RECOVERY_INIT;
5107 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5108 /* Disable HW interrupts */
5109 bnx2x_int_disable(bp);
5110 /* In case of parity errors don't handle attentions so that
5111 * other function would "see" parity errors.
5112 */
5113 #else
5114 bnx2x_panic();
5115 #endif
5116 bnx2x_release_alr(bp);
5117 return;
5118 }
5119
5120 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5121 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5122 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5123 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5124 if (!CHIP_IS_E1x(bp))
5125 attn.sig[4] =
5126 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5127 else
5128 attn.sig[4] = 0;
5129
5130 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5131 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5132
5133 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5134 if (deasserted & (1 << index)) {
5135 group_mask = &bp->attn_group[index];
5136
5137 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5138 index,
5139 group_mask->sig[0], group_mask->sig[1],
5140 group_mask->sig[2], group_mask->sig[3],
5141 group_mask->sig[4]);
5142
5143 bnx2x_attn_int_deasserted4(bp,
5144 attn.sig[4] & group_mask->sig[4]);
5145 bnx2x_attn_int_deasserted3(bp,
5146 attn.sig[3] & group_mask->sig[3]);
5147 bnx2x_attn_int_deasserted1(bp,
5148 attn.sig[1] & group_mask->sig[1]);
5149 bnx2x_attn_int_deasserted2(bp,
5150 attn.sig[2] & group_mask->sig[2]);
5151 bnx2x_attn_int_deasserted0(bp,
5152 attn.sig[0] & group_mask->sig[0]);
5153 }
5154 }
5155
5156 bnx2x_release_alr(bp);
5157
5158 if (bp->common.int_block == INT_BLOCK_HC)
5159 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5160 COMMAND_REG_ATTN_BITS_CLR);
5161 else
5162 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5163
5164 val = ~deasserted;
5165 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5166 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5167 REG_WR(bp, reg_addr, val);
5168
5169 if (~bp->attn_state & deasserted)
5170 BNX2X_ERR("IGU ERROR\n");
5171
5172 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5173 MISC_REG_AEU_MASK_ATTN_FUNC_0;
5174
5175 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5176 aeu_mask = REG_RD(bp, reg_addr);
5177
5178 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
5179 aeu_mask, deasserted);
5180 aeu_mask |= (deasserted & 0x3ff);
5181 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5182
5183 REG_WR(bp, reg_addr, aeu_mask);
5184 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5185
5186 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5187 bp->attn_state &= ~deasserted;
5188 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5189 }
5190
5191 static void bnx2x_attn_int(struct bnx2x *bp)
5192 {
5193 /* read local copy of bits */
5194 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5195 attn_bits);
5196 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5197 attn_bits_ack);
5198 u32 attn_state = bp->attn_state;
5199
5200 /* look for changed bits */
5201 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
5202 u32 deasserted = ~attn_bits & attn_ack & attn_state;
5203
5204 DP(NETIF_MSG_HW,
5205 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
5206 attn_bits, attn_ack, asserted, deasserted);
5207
5208 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5209 BNX2X_ERR("BAD attention state\n");
5210
5211 /* handle bits that were raised */
5212 if (asserted)
5213 bnx2x_attn_int_asserted(bp, asserted);
5214
5215 if (deasserted)
5216 bnx2x_attn_int_deasserted(bp, deasserted);
5217 }
5218
5219 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5220 u16 index, u8 op, u8 update)
5221 {
5222 u32 igu_addr = bp->igu_base_addr;
5223 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5224 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5225 igu_addr);
5226 }
5227
5228 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5229 {
5230 /* No memory barriers */
5231 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5232 mmiowb(); /* keep prod updates ordered */
5233 }
5234
5235 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5236 union event_ring_elem *elem)
5237 {
5238 u8 err = elem->message.error;
5239
5240 if (!bp->cnic_eth_dev.starting_cid ||
5241 (cid < bp->cnic_eth_dev.starting_cid &&
5242 cid != bp->cnic_eth_dev.iscsi_l2_cid))
5243 return 1;
5244
5245 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5246
5247 if (unlikely(err)) {
5248
5249 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5250 cid);
5251 bnx2x_panic_dump(bp, false);
5252 }
5253 bnx2x_cnic_cfc_comp(bp, cid, err);
5254 return 0;
5255 }
5256
5257 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5258 {
5259 struct bnx2x_mcast_ramrod_params rparam;
5260 int rc;
5261
5262 memset(&rparam, 0, sizeof(rparam));
5263
5264 rparam.mcast_obj = &bp->mcast_obj;
5265
5266 netif_addr_lock_bh(bp->dev);
5267
5268 /* Clear pending state for the last command */
5269 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5270
5271 /* If there are pending mcast commands - send them */
5272 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5273 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5274 if (rc < 0)
5275 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5276 rc);
5277 }
5278
5279 netif_addr_unlock_bh(bp->dev);
5280 }
5281
5282 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5283 union event_ring_elem *elem)
5284 {
5285 unsigned long ramrod_flags = 0;
5286 int rc = 0;
5287 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5288 u32 cid = echo & BNX2X_SWCID_MASK;
5289 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5290
5291 /* Always push next commands out, don't wait here */
5292 __set_bit(RAMROD_CONT, &ramrod_flags);
5293
5294 switch (echo >> BNX2X_SWCID_SHIFT) {
5295 case BNX2X_FILTER_MAC_PENDING:
5296 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5297 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5298 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5299 else
5300 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5301
5302 break;
5303 case BNX2X_FILTER_VLAN_PENDING:
5304 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5305 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5306 break;
5307 case BNX2X_FILTER_MCAST_PENDING:
5308 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5309 /* This is only relevant for 57710 where multicast MACs are
5310 * configured as unicast MACs using the same ramrod.
5311 */
5312 bnx2x_handle_mcast_eqe(bp);
5313 return;
5314 default:
5315 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5316 return;
5317 }
5318
5319 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5320
5321 if (rc < 0)
5322 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5323 else if (rc > 0)
5324 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5325 }
5326
5327 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5328
5329 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5330 {
5331 netif_addr_lock_bh(bp->dev);
5332
5333 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5334
5335 /* Send rx_mode command again if was requested */
5336 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5337 bnx2x_set_storm_rx_mode(bp);
5338 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5339 &bp->sp_state))
5340 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5341 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5342 &bp->sp_state))
5343 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5344
5345 netif_addr_unlock_bh(bp->dev);
5346 }
5347
5348 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5349 union event_ring_elem *elem)
5350 {
5351 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5352 DP(BNX2X_MSG_SP,
5353 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5354 elem->message.data.vif_list_event.func_bit_map);
5355 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5356 elem->message.data.vif_list_event.func_bit_map);
5357 } else if (elem->message.data.vif_list_event.echo ==
5358 VIF_LIST_RULE_SET) {
5359 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5360 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5361 }
5362 }
5363
5364 /* called with rtnl_lock */
5365 static void bnx2x_after_function_update(struct bnx2x *bp)
5366 {
5367 int q, rc;
5368 struct bnx2x_fastpath *fp;
5369 struct bnx2x_queue_state_params queue_params = {NULL};
5370 struct bnx2x_queue_update_params *q_update_params =
5371 &queue_params.params.update;
5372
5373 /* Send Q update command with afex vlan removal values for all Qs */
5374 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5375
5376 /* set silent vlan removal values according to vlan mode */
5377 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5378 &q_update_params->update_flags);
5379 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5380 &q_update_params->update_flags);
5381 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5382
5383 /* in access mode mark mask and value are 0 to strip all vlans */
5384 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5385 q_update_params->silent_removal_value = 0;
5386 q_update_params->silent_removal_mask = 0;
5387 } else {
5388 q_update_params->silent_removal_value =
5389 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5390 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5391 }
5392
5393 for_each_eth_queue(bp, q) {
5394 /* Set the appropriate Queue object */
5395 fp = &bp->fp[q];
5396 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5397
5398 /* send the ramrod */
5399 rc = bnx2x_queue_state_change(bp, &queue_params);
5400 if (rc < 0)
5401 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5402 q);
5403 }
5404
5405 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5406 fp = &bp->fp[FCOE_IDX(bp)];
5407 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5408
5409 /* clear pending completion bit */
5410 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5411
5412 /* mark latest Q bit */
5413 smp_mb__before_atomic();
5414 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5415 smp_mb__after_atomic();
5416
5417 /* send Q update ramrod for FCoE Q */
5418 rc = bnx2x_queue_state_change(bp, &queue_params);
5419 if (rc < 0)
5420 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5421 q);
5422 } else {
5423 /* If no FCoE ring - ACK MCP now */
5424 bnx2x_link_report(bp);
5425 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5426 }
5427 }
5428
5429 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5430 struct bnx2x *bp, u32 cid)
5431 {
5432 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5433
5434 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5435 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5436 else
5437 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5438 }
5439
5440 static void bnx2x_eq_int(struct bnx2x *bp)
5441 {
5442 u16 hw_cons, sw_cons, sw_prod;
5443 union event_ring_elem *elem;
5444 u8 echo;
5445 u32 cid;
5446 u8 opcode;
5447 int rc, spqe_cnt = 0;
5448 struct bnx2x_queue_sp_obj *q_obj;
5449 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5450 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5451
5452 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5453
5454 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5455 * when we get the next-page we need to adjust so the loop
5456 * condition below will be met. The next element is the size of a
5457 * regular element and hence incrementing by 1
5458 */
5459 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5460 hw_cons++;
5461
5462 /* This function may never run in parallel with itself for a
5463 * specific bp, thus there is no need in "paired" read memory
5464 * barrier here.
5465 */
5466 sw_cons = bp->eq_cons;
5467 sw_prod = bp->eq_prod;
5468
5469 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5470 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5471
5472 for (; sw_cons != hw_cons;
5473 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5474
5475 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5476
5477 rc = bnx2x_iov_eq_sp_event(bp, elem);
5478 if (!rc) {
5479 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5480 rc);
5481 goto next_spqe;
5482 }
5483
5484 opcode = elem->message.opcode;
5485
5486 /* handle eq element */
5487 switch (opcode) {
5488 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5489 bnx2x_vf_mbx_schedule(bp,
5490 &elem->message.data.vf_pf_event);
5491 continue;
5492
5493 case EVENT_RING_OPCODE_STAT_QUERY:
5494 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5495 "got statistics comp event %d\n",
5496 bp->stats_comp++);
5497 /* nothing to do with stats comp */
5498 goto next_spqe;
5499
5500 case EVENT_RING_OPCODE_CFC_DEL:
5501 /* handle according to cid range */
5502 /*
5503 * we may want to verify here that the bp state is
5504 * HALTING
5505 */
5506
5507 /* elem CID originates from FW; actually LE */
5508 cid = SW_CID(elem->message.data.cfc_del_event.cid);
5509
5510 DP(BNX2X_MSG_SP,
5511 "got delete ramrod for MULTI[%d]\n", cid);
5512
5513 if (CNIC_LOADED(bp) &&
5514 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5515 goto next_spqe;
5516
5517 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5518
5519 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5520 break;
5521
5522 goto next_spqe;
5523
5524 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5525 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5526 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5527 if (f_obj->complete_cmd(bp, f_obj,
5528 BNX2X_F_CMD_TX_STOP))
5529 break;
5530 goto next_spqe;
5531
5532 case EVENT_RING_OPCODE_START_TRAFFIC:
5533 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5534 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5535 if (f_obj->complete_cmd(bp, f_obj,
5536 BNX2X_F_CMD_TX_START))
5537 break;
5538 goto next_spqe;
5539
5540 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5541 echo = elem->message.data.function_update_event.echo;
5542 if (echo == SWITCH_UPDATE) {
5543 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5544 "got FUNC_SWITCH_UPDATE ramrod\n");
5545 if (f_obj->complete_cmd(
5546 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5547 break;
5548
5549 } else {
5550 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5551
5552 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5553 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5554 f_obj->complete_cmd(bp, f_obj,
5555 BNX2X_F_CMD_AFEX_UPDATE);
5556
5557 /* We will perform the Queues update from
5558 * sp_rtnl task as all Queue SP operations
5559 * should run under rtnl_lock.
5560 */
5561 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5562 }
5563
5564 goto next_spqe;
5565
5566 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5567 f_obj->complete_cmd(bp, f_obj,
5568 BNX2X_F_CMD_AFEX_VIFLISTS);
5569 bnx2x_after_afex_vif_lists(bp, elem);
5570 goto next_spqe;
5571 case EVENT_RING_OPCODE_FUNCTION_START:
5572 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5573 "got FUNC_START ramrod\n");
5574 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5575 break;
5576
5577 goto next_spqe;
5578
5579 case EVENT_RING_OPCODE_FUNCTION_STOP:
5580 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5581 "got FUNC_STOP ramrod\n");
5582 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5583 break;
5584
5585 goto next_spqe;
5586
5587 case EVENT_RING_OPCODE_SET_TIMESYNC:
5588 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5589 "got set_timesync ramrod completion\n");
5590 if (f_obj->complete_cmd(bp, f_obj,
5591 BNX2X_F_CMD_SET_TIMESYNC))
5592 break;
5593 goto next_spqe;
5594 }
5595
5596 switch (opcode | bp->state) {
5597 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5598 BNX2X_STATE_OPEN):
5599 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5600 BNX2X_STATE_OPENING_WAIT4_PORT):
5601 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5602 BNX2X_STATE_CLOSING_WAIT4_HALT):
5603 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5604 SW_CID(elem->message.data.eth_event.echo));
5605 rss_raw->clear_pending(rss_raw);
5606 break;
5607
5608 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5609 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5610 case (EVENT_RING_OPCODE_SET_MAC |
5611 BNX2X_STATE_CLOSING_WAIT4_HALT):
5612 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5613 BNX2X_STATE_OPEN):
5614 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5615 BNX2X_STATE_DIAG):
5616 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5617 BNX2X_STATE_CLOSING_WAIT4_HALT):
5618 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5619 bnx2x_handle_classification_eqe(bp, elem);
5620 break;
5621
5622 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5623 BNX2X_STATE_OPEN):
5624 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5625 BNX2X_STATE_DIAG):
5626 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5627 BNX2X_STATE_CLOSING_WAIT4_HALT):
5628 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5629 bnx2x_handle_mcast_eqe(bp);
5630 break;
5631
5632 case (EVENT_RING_OPCODE_FILTERS_RULES |
5633 BNX2X_STATE_OPEN):
5634 case (EVENT_RING_OPCODE_FILTERS_RULES |
5635 BNX2X_STATE_DIAG):
5636 case (EVENT_RING_OPCODE_FILTERS_RULES |
5637 BNX2X_STATE_CLOSING_WAIT4_HALT):
5638 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5639 bnx2x_handle_rx_mode_eqe(bp);
5640 break;
5641 default:
5642 /* unknown event log error and continue */
5643 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5644 elem->message.opcode, bp->state);
5645 }
5646 next_spqe:
5647 spqe_cnt++;
5648 } /* for */
5649
5650 smp_mb__before_atomic();
5651 atomic_add(spqe_cnt, &bp->eq_spq_left);
5652
5653 bp->eq_cons = sw_cons;
5654 bp->eq_prod = sw_prod;
5655 /* Make sure that above mem writes were issued towards the memory */
5656 smp_wmb();
5657
5658 /* update producer */
5659 bnx2x_update_eq_prod(bp, bp->eq_prod);
5660 }
5661
5662 static void bnx2x_sp_task(struct work_struct *work)
5663 {
5664 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5665
5666 DP(BNX2X_MSG_SP, "sp task invoked\n");
5667
5668 /* make sure the atomic interrupt_occurred has been written */
5669 smp_rmb();
5670 if (atomic_read(&bp->interrupt_occurred)) {
5671
5672 /* what work needs to be performed? */
5673 u16 status = bnx2x_update_dsb_idx(bp);
5674
5675 DP(BNX2X_MSG_SP, "status %x\n", status);
5676 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5677 atomic_set(&bp->interrupt_occurred, 0);
5678
5679 /* HW attentions */
5680 if (status & BNX2X_DEF_SB_ATT_IDX) {
5681 bnx2x_attn_int(bp);
5682 status &= ~BNX2X_DEF_SB_ATT_IDX;
5683 }
5684
5685 /* SP events: STAT_QUERY and others */
5686 if (status & BNX2X_DEF_SB_IDX) {
5687 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5688
5689 if (FCOE_INIT(bp) &&
5690 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5691 /* Prevent local bottom-halves from running as
5692 * we are going to change the local NAPI list.
5693 */
5694 local_bh_disable();
5695 napi_schedule(&bnx2x_fcoe(bp, napi));
5696 local_bh_enable();
5697 }
5698
5699 /* Handle EQ completions */
5700 bnx2x_eq_int(bp);
5701 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5702 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5703
5704 status &= ~BNX2X_DEF_SB_IDX;
5705 }
5706
5707 /* if status is non zero then perhaps something went wrong */
5708 if (unlikely(status))
5709 DP(BNX2X_MSG_SP,
5710 "got an unknown interrupt! (status 0x%x)\n", status);
5711
5712 /* ack status block only if something was actually handled */
5713 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5714 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5715 }
5716
5717 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5718 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5719 &bp->sp_state)) {
5720 bnx2x_link_report(bp);
5721 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5722 }
5723 }
5724
5725 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5726 {
5727 struct net_device *dev = dev_instance;
5728 struct bnx2x *bp = netdev_priv(dev);
5729
5730 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5731 IGU_INT_DISABLE, 0);
5732
5733 #ifdef BNX2X_STOP_ON_ERROR
5734 if (unlikely(bp->panic))
5735 return IRQ_HANDLED;
5736 #endif
5737
5738 if (CNIC_LOADED(bp)) {
5739 struct cnic_ops *c_ops;
5740
5741 rcu_read_lock();
5742 c_ops = rcu_dereference(bp->cnic_ops);
5743 if (c_ops)
5744 c_ops->cnic_handler(bp->cnic_data, NULL);
5745 rcu_read_unlock();
5746 }
5747
5748 /* schedule sp task to perform default status block work, ack
5749 * attentions and enable interrupts.
5750 */
5751 bnx2x_schedule_sp_task(bp);
5752
5753 return IRQ_HANDLED;
5754 }
5755
5756 /* end of slow path */
5757
5758 void bnx2x_drv_pulse(struct bnx2x *bp)
5759 {
5760 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5761 bp->fw_drv_pulse_wr_seq);
5762 }
5763
5764 static void bnx2x_timer(unsigned long data)
5765 {
5766 struct bnx2x *bp = (struct bnx2x *) data;
5767
5768 if (!netif_running(bp->dev))
5769 return;
5770
5771 if (IS_PF(bp) &&
5772 !BP_NOMCP(bp)) {
5773 int mb_idx = BP_FW_MB_IDX(bp);
5774 u16 drv_pulse;
5775 u16 mcp_pulse;
5776
5777 ++bp->fw_drv_pulse_wr_seq;
5778 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5779 drv_pulse = bp->fw_drv_pulse_wr_seq;
5780 bnx2x_drv_pulse(bp);
5781
5782 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5783 MCP_PULSE_SEQ_MASK);
5784 /* The delta between driver pulse and mcp response
5785 * should not get too big. If the MFW is more than 5 pulses
5786 * behind, we should worry about it enough to generate an error
5787 * log.
5788 */
5789 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5790 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5791 drv_pulse, mcp_pulse);
5792 }
5793
5794 if (bp->state == BNX2X_STATE_OPEN)
5795 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5796
5797 /* sample pf vf bulletin board for new posts from pf */
5798 if (IS_VF(bp))
5799 bnx2x_timer_sriov(bp);
5800
5801 mod_timer(&bp->timer, jiffies + bp->current_interval);
5802 }
5803
5804 /* end of Statistics */
5805
5806 /* nic init */
5807
5808 /*
5809 * nic init service functions
5810 */
5811
5812 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5813 {
5814 u32 i;
5815 if (!(len%4) && !(addr%4))
5816 for (i = 0; i < len; i += 4)
5817 REG_WR(bp, addr + i, fill);
5818 else
5819 for (i = 0; i < len; i++)
5820 REG_WR8(bp, addr + i, fill);
5821 }
5822
5823 /* helper: writes FP SP data to FW - data_size in dwords */
5824 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5825 int fw_sb_id,
5826 u32 *sb_data_p,
5827 u32 data_size)
5828 {
5829 int index;
5830 for (index = 0; index < data_size; index++)
5831 REG_WR(bp, BAR_CSTRORM_INTMEM +
5832 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5833 sizeof(u32)*index,
5834 *(sb_data_p + index));
5835 }
5836
5837 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5838 {
5839 u32 *sb_data_p;
5840 u32 data_size = 0;
5841 struct hc_status_block_data_e2 sb_data_e2;
5842 struct hc_status_block_data_e1x sb_data_e1x;
5843
5844 /* disable the function first */
5845 if (!CHIP_IS_E1x(bp)) {
5846 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5847 sb_data_e2.common.state = SB_DISABLED;
5848 sb_data_e2.common.p_func.vf_valid = false;
5849 sb_data_p = (u32 *)&sb_data_e2;
5850 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5851 } else {
5852 memset(&sb_data_e1x, 0,
5853 sizeof(struct hc_status_block_data_e1x));
5854 sb_data_e1x.common.state = SB_DISABLED;
5855 sb_data_e1x.common.p_func.vf_valid = false;
5856 sb_data_p = (u32 *)&sb_data_e1x;
5857 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5858 }
5859 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5860
5861 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5862 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5863 CSTORM_STATUS_BLOCK_SIZE);
5864 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5865 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5866 CSTORM_SYNC_BLOCK_SIZE);
5867 }
5868
5869 /* helper: writes SP SB data to FW */
5870 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5871 struct hc_sp_status_block_data *sp_sb_data)
5872 {
5873 int func = BP_FUNC(bp);
5874 int i;
5875 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5876 REG_WR(bp, BAR_CSTRORM_INTMEM +
5877 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5878 i*sizeof(u32),
5879 *((u32 *)sp_sb_data + i));
5880 }
5881
5882 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5883 {
5884 int func = BP_FUNC(bp);
5885 struct hc_sp_status_block_data sp_sb_data;
5886 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5887
5888 sp_sb_data.state = SB_DISABLED;
5889 sp_sb_data.p_func.vf_valid = false;
5890
5891 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5892
5893 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5894 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5895 CSTORM_SP_STATUS_BLOCK_SIZE);
5896 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5897 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5898 CSTORM_SP_SYNC_BLOCK_SIZE);
5899 }
5900
5901 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5902 int igu_sb_id, int igu_seg_id)
5903 {
5904 hc_sm->igu_sb_id = igu_sb_id;
5905 hc_sm->igu_seg_id = igu_seg_id;
5906 hc_sm->timer_value = 0xFF;
5907 hc_sm->time_to_expire = 0xFFFFFFFF;
5908 }
5909
5910 /* allocates state machine ids. */
5911 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5912 {
5913 /* zero out state machine indices */
5914 /* rx indices */
5915 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5916
5917 /* tx indices */
5918 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5919 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5920 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5921 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5922
5923 /* map indices */
5924 /* rx indices */
5925 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5926 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5927
5928 /* tx indices */
5929 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5930 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5931 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5932 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5933 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5934 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5935 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5936 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5937 }
5938
5939 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5940 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5941 {
5942 int igu_seg_id;
5943
5944 struct hc_status_block_data_e2 sb_data_e2;
5945 struct hc_status_block_data_e1x sb_data_e1x;
5946 struct hc_status_block_sm *hc_sm_p;
5947 int data_size;
5948 u32 *sb_data_p;
5949
5950 if (CHIP_INT_MODE_IS_BC(bp))
5951 igu_seg_id = HC_SEG_ACCESS_NORM;
5952 else
5953 igu_seg_id = IGU_SEG_ACCESS_NORM;
5954
5955 bnx2x_zero_fp_sb(bp, fw_sb_id);
5956
5957 if (!CHIP_IS_E1x(bp)) {
5958 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5959 sb_data_e2.common.state = SB_ENABLED;
5960 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5961 sb_data_e2.common.p_func.vf_id = vfid;
5962 sb_data_e2.common.p_func.vf_valid = vf_valid;
5963 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5964 sb_data_e2.common.same_igu_sb_1b = true;
5965 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5966 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5967 hc_sm_p = sb_data_e2.common.state_machine;
5968 sb_data_p = (u32 *)&sb_data_e2;
5969 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5970 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5971 } else {
5972 memset(&sb_data_e1x, 0,
5973 sizeof(struct hc_status_block_data_e1x));
5974 sb_data_e1x.common.state = SB_ENABLED;
5975 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5976 sb_data_e1x.common.p_func.vf_id = 0xff;
5977 sb_data_e1x.common.p_func.vf_valid = false;
5978 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5979 sb_data_e1x.common.same_igu_sb_1b = true;
5980 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5981 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5982 hc_sm_p = sb_data_e1x.common.state_machine;
5983 sb_data_p = (u32 *)&sb_data_e1x;
5984 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5985 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5986 }
5987
5988 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5989 igu_sb_id, igu_seg_id);
5990 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5991 igu_sb_id, igu_seg_id);
5992
5993 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5994
5995 /* write indices to HW - PCI guarantees endianity of regpairs */
5996 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5997 }
5998
5999 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6000 u16 tx_usec, u16 rx_usec)
6001 {
6002 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6003 false, rx_usec);
6004 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6005 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6006 tx_usec);
6007 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6008 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6009 tx_usec);
6010 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6011 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6012 tx_usec);
6013 }
6014
6015 static void bnx2x_init_def_sb(struct bnx2x *bp)
6016 {
6017 struct host_sp_status_block *def_sb = bp->def_status_blk;
6018 dma_addr_t mapping = bp->def_status_blk_mapping;
6019 int igu_sp_sb_index;
6020 int igu_seg_id;
6021 int port = BP_PORT(bp);
6022 int func = BP_FUNC(bp);
6023 int reg_offset, reg_offset_en5;
6024 u64 section;
6025 int index;
6026 struct hc_sp_status_block_data sp_sb_data;
6027 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6028
6029 if (CHIP_INT_MODE_IS_BC(bp)) {
6030 igu_sp_sb_index = DEF_SB_IGU_ID;
6031 igu_seg_id = HC_SEG_ACCESS_DEF;
6032 } else {
6033 igu_sp_sb_index = bp->igu_dsb_id;
6034 igu_seg_id = IGU_SEG_ACCESS_DEF;
6035 }
6036
6037 /* ATTN */
6038 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6039 atten_status_block);
6040 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6041
6042 bp->attn_state = 0;
6043
6044 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6045 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6046 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6047 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6048 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6049 int sindex;
6050 /* take care of sig[0]..sig[4] */
6051 for (sindex = 0; sindex < 4; sindex++)
6052 bp->attn_group[index].sig[sindex] =
6053 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6054
6055 if (!CHIP_IS_E1x(bp))
6056 /*
6057 * enable5 is separate from the rest of the registers,
6058 * and therefore the address skip is 4
6059 * and not 16 between the different groups
6060 */
6061 bp->attn_group[index].sig[4] = REG_RD(bp,
6062 reg_offset_en5 + 0x4*index);
6063 else
6064 bp->attn_group[index].sig[4] = 0;
6065 }
6066
6067 if (bp->common.int_block == INT_BLOCK_HC) {
6068 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6069 HC_REG_ATTN_MSG0_ADDR_L);
6070
6071 REG_WR(bp, reg_offset, U64_LO(section));
6072 REG_WR(bp, reg_offset + 4, U64_HI(section));
6073 } else if (!CHIP_IS_E1x(bp)) {
6074 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6075 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6076 }
6077
6078 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6079 sp_sb);
6080
6081 bnx2x_zero_sp_sb(bp);
6082
6083 /* PCI guarantees endianity of regpairs */
6084 sp_sb_data.state = SB_ENABLED;
6085 sp_sb_data.host_sb_addr.lo = U64_LO(section);
6086 sp_sb_data.host_sb_addr.hi = U64_HI(section);
6087 sp_sb_data.igu_sb_id = igu_sp_sb_index;
6088 sp_sb_data.igu_seg_id = igu_seg_id;
6089 sp_sb_data.p_func.pf_id = func;
6090 sp_sb_data.p_func.vnic_id = BP_VN(bp);
6091 sp_sb_data.p_func.vf_id = 0xff;
6092
6093 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6094
6095 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6096 }
6097
6098 void bnx2x_update_coalesce(struct bnx2x *bp)
6099 {
6100 int i;
6101
6102 for_each_eth_queue(bp, i)
6103 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6104 bp->tx_ticks, bp->rx_ticks);
6105 }
6106
6107 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6108 {
6109 spin_lock_init(&bp->spq_lock);
6110 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6111
6112 bp->spq_prod_idx = 0;
6113 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6114 bp->spq_prod_bd = bp->spq;
6115 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6116 }
6117
6118 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6119 {
6120 int i;
6121 for (i = 1; i <= NUM_EQ_PAGES; i++) {
6122 union event_ring_elem *elem =
6123 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6124
6125 elem->next_page.addr.hi =
6126 cpu_to_le32(U64_HI(bp->eq_mapping +
6127 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6128 elem->next_page.addr.lo =
6129 cpu_to_le32(U64_LO(bp->eq_mapping +
6130 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6131 }
6132 bp->eq_cons = 0;
6133 bp->eq_prod = NUM_EQ_DESC;
6134 bp->eq_cons_sb = BNX2X_EQ_INDEX;
6135 /* we want a warning message before it gets wrought... */
6136 atomic_set(&bp->eq_spq_left,
6137 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6138 }
6139
6140 /* called with netif_addr_lock_bh() */
6141 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6142 unsigned long rx_mode_flags,
6143 unsigned long rx_accept_flags,
6144 unsigned long tx_accept_flags,
6145 unsigned long ramrod_flags)
6146 {
6147 struct bnx2x_rx_mode_ramrod_params ramrod_param;
6148 int rc;
6149
6150 memset(&ramrod_param, 0, sizeof(ramrod_param));
6151
6152 /* Prepare ramrod parameters */
6153 ramrod_param.cid = 0;
6154 ramrod_param.cl_id = cl_id;
6155 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6156 ramrod_param.func_id = BP_FUNC(bp);
6157
6158 ramrod_param.pstate = &bp->sp_state;
6159 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6160
6161 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6162 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6163
6164 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6165
6166 ramrod_param.ramrod_flags = ramrod_flags;
6167 ramrod_param.rx_mode_flags = rx_mode_flags;
6168
6169 ramrod_param.rx_accept_flags = rx_accept_flags;
6170 ramrod_param.tx_accept_flags = tx_accept_flags;
6171
6172 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6173 if (rc < 0) {
6174 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6175 return rc;
6176 }
6177
6178 return 0;
6179 }
6180
6181 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6182 unsigned long *rx_accept_flags,
6183 unsigned long *tx_accept_flags)
6184 {
6185 /* Clear the flags first */
6186 *rx_accept_flags = 0;
6187 *tx_accept_flags = 0;
6188
6189 switch (rx_mode) {
6190 case BNX2X_RX_MODE_NONE:
6191 /*
6192 * 'drop all' supersedes any accept flags that may have been
6193 * passed to the function.
6194 */
6195 break;
6196 case BNX2X_RX_MODE_NORMAL:
6197 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6198 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6199 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6200
6201 /* internal switching mode */
6202 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6203 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6204 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6205
6206 if (bp->accept_any_vlan) {
6207 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6208 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6209 }
6210
6211 break;
6212 case BNX2X_RX_MODE_ALLMULTI:
6213 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6214 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6215 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6216
6217 /* internal switching mode */
6218 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6219 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6220 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6221
6222 if (bp->accept_any_vlan) {
6223 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6224 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6225 }
6226
6227 break;
6228 case BNX2X_RX_MODE_PROMISC:
6229 /* According to definition of SI mode, iface in promisc mode
6230 * should receive matched and unmatched (in resolution of port)
6231 * unicast packets.
6232 */
6233 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6234 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6235 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6236 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6237
6238 /* internal switching mode */
6239 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6240 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6241
6242 if (IS_MF_SI(bp))
6243 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6244 else
6245 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6246
6247 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6248 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6249
6250 break;
6251 default:
6252 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6253 return -EINVAL;
6254 }
6255
6256 return 0;
6257 }
6258
6259 /* called with netif_addr_lock_bh() */
6260 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6261 {
6262 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6263 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6264 int rc;
6265
6266 if (!NO_FCOE(bp))
6267 /* Configure rx_mode of FCoE Queue */
6268 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6269
6270 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6271 &tx_accept_flags);
6272 if (rc)
6273 return rc;
6274
6275 __set_bit(RAMROD_RX, &ramrod_flags);
6276 __set_bit(RAMROD_TX, &ramrod_flags);
6277
6278 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6279 rx_accept_flags, tx_accept_flags,
6280 ramrod_flags);
6281 }
6282
6283 static void bnx2x_init_internal_common(struct bnx2x *bp)
6284 {
6285 int i;
6286
6287 /* Zero this manually as its initialization is
6288 currently missing in the initTool */
6289 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6290 REG_WR(bp, BAR_USTRORM_INTMEM +
6291 USTORM_AGG_DATA_OFFSET + i * 4, 0);
6292 if (!CHIP_IS_E1x(bp)) {
6293 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6294 CHIP_INT_MODE_IS_BC(bp) ?
6295 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6296 }
6297 }
6298
6299 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6300 {
6301 switch (load_code) {
6302 case FW_MSG_CODE_DRV_LOAD_COMMON:
6303 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6304 bnx2x_init_internal_common(bp);
6305 /* no break */
6306
6307 case FW_MSG_CODE_DRV_LOAD_PORT:
6308 /* nothing to do */
6309 /* no break */
6310
6311 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6312 /* internal memory per function is
6313 initialized inside bnx2x_pf_init */
6314 break;
6315
6316 default:
6317 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6318 break;
6319 }
6320 }
6321
6322 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6323 {
6324 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6325 }
6326
6327 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6328 {
6329 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6330 }
6331
6332 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6333 {
6334 if (CHIP_IS_E1x(fp->bp))
6335 return BP_L_ID(fp->bp) + fp->index;
6336 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6337 return bnx2x_fp_igu_sb_id(fp);
6338 }
6339
6340 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6341 {
6342 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6343 u8 cos;
6344 unsigned long q_type = 0;
6345 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6346 fp->rx_queue = fp_idx;
6347 fp->cid = fp_idx;
6348 fp->cl_id = bnx2x_fp_cl_id(fp);
6349 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6350 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6351 /* qZone id equals to FW (per path) client id */
6352 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6353
6354 /* init shortcut */
6355 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6356
6357 /* Setup SB indices */
6358 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6359
6360 /* Configure Queue State object */
6361 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6362 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6363
6364 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6365
6366 /* init tx data */
6367 for_each_cos_in_tx_queue(fp, cos) {
6368 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6369 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6370 FP_COS_TO_TXQ(fp, cos, bp),
6371 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6372 cids[cos] = fp->txdata_ptr[cos]->cid;
6373 }
6374
6375 /* nothing more for vf to do here */
6376 if (IS_VF(bp))
6377 return;
6378
6379 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6380 fp->fw_sb_id, fp->igu_sb_id);
6381 bnx2x_update_fpsb_idx(fp);
6382 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6383 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6384 bnx2x_sp_mapping(bp, q_rdata), q_type);
6385
6386 /**
6387 * Configure classification DBs: Always enable Tx switching
6388 */
6389 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6390
6391 DP(NETIF_MSG_IFUP,
6392 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6393 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6394 fp->igu_sb_id);
6395 }
6396
6397 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6398 {
6399 int i;
6400
6401 for (i = 1; i <= NUM_TX_RINGS; i++) {
6402 struct eth_tx_next_bd *tx_next_bd =
6403 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6404
6405 tx_next_bd->addr_hi =
6406 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6407 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6408 tx_next_bd->addr_lo =
6409 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6410 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6411 }
6412
6413 *txdata->tx_cons_sb = cpu_to_le16(0);
6414
6415 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6416 txdata->tx_db.data.zero_fill1 = 0;
6417 txdata->tx_db.data.prod = 0;
6418
6419 txdata->tx_pkt_prod = 0;
6420 txdata->tx_pkt_cons = 0;
6421 txdata->tx_bd_prod = 0;
6422 txdata->tx_bd_cons = 0;
6423 txdata->tx_pkt = 0;
6424 }
6425
6426 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6427 {
6428 int i;
6429
6430 for_each_tx_queue_cnic(bp, i)
6431 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6432 }
6433
6434 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6435 {
6436 int i;
6437 u8 cos;
6438
6439 for_each_eth_queue(bp, i)
6440 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6441 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6442 }
6443
6444 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6445 {
6446 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6447 unsigned long q_type = 0;
6448
6449 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6450 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6451 BNX2X_FCOE_ETH_CL_ID_IDX);
6452 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6453 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6454 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6455 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6456 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6457 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6458 fp);
6459
6460 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6461
6462 /* qZone id equals to FW (per path) client id */
6463 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6464 /* init shortcut */
6465 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6466 bnx2x_rx_ustorm_prods_offset(fp);
6467
6468 /* Configure Queue State object */
6469 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6470 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6471
6472 /* No multi-CoS for FCoE L2 client */
6473 BUG_ON(fp->max_cos != 1);
6474
6475 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6476 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6477 bnx2x_sp_mapping(bp, q_rdata), q_type);
6478
6479 DP(NETIF_MSG_IFUP,
6480 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6481 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6482 fp->igu_sb_id);
6483 }
6484
6485 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6486 {
6487 if (!NO_FCOE(bp))
6488 bnx2x_init_fcoe_fp(bp);
6489
6490 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6491 BNX2X_VF_ID_INVALID, false,
6492 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6493
6494 /* ensure status block indices were read */
6495 rmb();
6496 bnx2x_init_rx_rings_cnic(bp);
6497 bnx2x_init_tx_rings_cnic(bp);
6498
6499 /* flush all */
6500 mb();
6501 mmiowb();
6502 }
6503
6504 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6505 {
6506 int i;
6507
6508 /* Setup NIC internals and enable interrupts */
6509 for_each_eth_queue(bp, i)
6510 bnx2x_init_eth_fp(bp, i);
6511
6512 /* ensure status block indices were read */
6513 rmb();
6514 bnx2x_init_rx_rings(bp);
6515 bnx2x_init_tx_rings(bp);
6516
6517 if (IS_PF(bp)) {
6518 /* Initialize MOD_ABS interrupts */
6519 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6520 bp->common.shmem_base,
6521 bp->common.shmem2_base, BP_PORT(bp));
6522
6523 /* initialize the default status block and sp ring */
6524 bnx2x_init_def_sb(bp);
6525 bnx2x_update_dsb_idx(bp);
6526 bnx2x_init_sp_ring(bp);
6527 } else {
6528 bnx2x_memset_stats(bp);
6529 }
6530 }
6531
6532 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6533 {
6534 bnx2x_init_eq_ring(bp);
6535 bnx2x_init_internal(bp, load_code);
6536 bnx2x_pf_init(bp);
6537 bnx2x_stats_init(bp);
6538
6539 /* flush all before enabling interrupts */
6540 mb();
6541 mmiowb();
6542
6543 bnx2x_int_enable(bp);
6544
6545 /* Check for SPIO5 */
6546 bnx2x_attn_int_deasserted0(bp,
6547 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6548 AEU_INPUTS_ATTN_BITS_SPIO5);
6549 }
6550
6551 /* gzip service functions */
6552 static int bnx2x_gunzip_init(struct bnx2x *bp)
6553 {
6554 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6555 &bp->gunzip_mapping, GFP_KERNEL);
6556 if (bp->gunzip_buf == NULL)
6557 goto gunzip_nomem1;
6558
6559 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6560 if (bp->strm == NULL)
6561 goto gunzip_nomem2;
6562
6563 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6564 if (bp->strm->workspace == NULL)
6565 goto gunzip_nomem3;
6566
6567 return 0;
6568
6569 gunzip_nomem3:
6570 kfree(bp->strm);
6571 bp->strm = NULL;
6572
6573 gunzip_nomem2:
6574 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6575 bp->gunzip_mapping);
6576 bp->gunzip_buf = NULL;
6577
6578 gunzip_nomem1:
6579 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6580 return -ENOMEM;
6581 }
6582
6583 static void bnx2x_gunzip_end(struct bnx2x *bp)
6584 {
6585 if (bp->strm) {
6586 vfree(bp->strm->workspace);
6587 kfree(bp->strm);
6588 bp->strm = NULL;
6589 }
6590
6591 if (bp->gunzip_buf) {
6592 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6593 bp->gunzip_mapping);
6594 bp->gunzip_buf = NULL;
6595 }
6596 }
6597
6598 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6599 {
6600 int n, rc;
6601
6602 /* check gzip header */
6603 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6604 BNX2X_ERR("Bad gzip header\n");
6605 return -EINVAL;
6606 }
6607
6608 n = 10;
6609
6610 #define FNAME 0x8
6611
6612 if (zbuf[3] & FNAME)
6613 while ((zbuf[n++] != 0) && (n < len));
6614
6615 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6616 bp->strm->avail_in = len - n;
6617 bp->strm->next_out = bp->gunzip_buf;
6618 bp->strm->avail_out = FW_BUF_SIZE;
6619
6620 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6621 if (rc != Z_OK)
6622 return rc;
6623
6624 rc = zlib_inflate(bp->strm, Z_FINISH);
6625 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6626 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6627 bp->strm->msg);
6628
6629 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6630 if (bp->gunzip_outlen & 0x3)
6631 netdev_err(bp->dev,
6632 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6633 bp->gunzip_outlen);
6634 bp->gunzip_outlen >>= 2;
6635
6636 zlib_inflateEnd(bp->strm);
6637
6638 if (rc == Z_STREAM_END)
6639 return 0;
6640
6641 return rc;
6642 }
6643
6644 /* nic load/unload */
6645
6646 /*
6647 * General service functions
6648 */
6649
6650 /* send a NIG loopback debug packet */
6651 static void bnx2x_lb_pckt(struct bnx2x *bp)
6652 {
6653 u32 wb_write[3];
6654
6655 /* Ethernet source and destination addresses */
6656 wb_write[0] = 0x55555555;
6657 wb_write[1] = 0x55555555;
6658 wb_write[2] = 0x20; /* SOP */
6659 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6660
6661 /* NON-IP protocol */
6662 wb_write[0] = 0x09000000;
6663 wb_write[1] = 0x55555555;
6664 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6665 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6666 }
6667
6668 /* some of the internal memories
6669 * are not directly readable from the driver
6670 * to test them we send debug packets
6671 */
6672 static int bnx2x_int_mem_test(struct bnx2x *bp)
6673 {
6674 int factor;
6675 int count, i;
6676 u32 val = 0;
6677
6678 if (CHIP_REV_IS_FPGA(bp))
6679 factor = 120;
6680 else if (CHIP_REV_IS_EMUL(bp))
6681 factor = 200;
6682 else
6683 factor = 1;
6684
6685 /* Disable inputs of parser neighbor blocks */
6686 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6687 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6688 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6689 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6690
6691 /* Write 0 to parser credits for CFC search request */
6692 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6693
6694 /* send Ethernet packet */
6695 bnx2x_lb_pckt(bp);
6696
6697 /* TODO do i reset NIG statistic? */
6698 /* Wait until NIG register shows 1 packet of size 0x10 */
6699 count = 1000 * factor;
6700 while (count) {
6701
6702 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6703 val = *bnx2x_sp(bp, wb_data[0]);
6704 if (val == 0x10)
6705 break;
6706
6707 usleep_range(10000, 20000);
6708 count--;
6709 }
6710 if (val != 0x10) {
6711 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6712 return -1;
6713 }
6714
6715 /* Wait until PRS register shows 1 packet */
6716 count = 1000 * factor;
6717 while (count) {
6718 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6719 if (val == 1)
6720 break;
6721
6722 usleep_range(10000, 20000);
6723 count--;
6724 }
6725 if (val != 0x1) {
6726 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6727 return -2;
6728 }
6729
6730 /* Reset and init BRB, PRS */
6731 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6732 msleep(50);
6733 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6734 msleep(50);
6735 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6736 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6737
6738 DP(NETIF_MSG_HW, "part2\n");
6739
6740 /* Disable inputs of parser neighbor blocks */
6741 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6742 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6743 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6744 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6745
6746 /* Write 0 to parser credits for CFC search request */
6747 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6748
6749 /* send 10 Ethernet packets */
6750 for (i = 0; i < 10; i++)
6751 bnx2x_lb_pckt(bp);
6752
6753 /* Wait until NIG register shows 10 + 1
6754 packets of size 11*0x10 = 0xb0 */
6755 count = 1000 * factor;
6756 while (count) {
6757
6758 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6759 val = *bnx2x_sp(bp, wb_data[0]);
6760 if (val == 0xb0)
6761 break;
6762
6763 usleep_range(10000, 20000);
6764 count--;
6765 }
6766 if (val != 0xb0) {
6767 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6768 return -3;
6769 }
6770
6771 /* Wait until PRS register shows 2 packets */
6772 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6773 if (val != 2)
6774 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6775
6776 /* Write 1 to parser credits for CFC search request */
6777 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6778
6779 /* Wait until PRS register shows 3 packets */
6780 msleep(10 * factor);
6781 /* Wait until NIG register shows 1 packet of size 0x10 */
6782 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6783 if (val != 3)
6784 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6785
6786 /* clear NIG EOP FIFO */
6787 for (i = 0; i < 11; i++)
6788 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6789 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6790 if (val != 1) {
6791 BNX2X_ERR("clear of NIG failed\n");
6792 return -4;
6793 }
6794
6795 /* Reset and init BRB, PRS, NIG */
6796 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6797 msleep(50);
6798 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6799 msleep(50);
6800 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6801 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6802 if (!CNIC_SUPPORT(bp))
6803 /* set NIC mode */
6804 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6805
6806 /* Enable inputs of parser neighbor blocks */
6807 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6808 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6809 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6810 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6811
6812 DP(NETIF_MSG_HW, "done\n");
6813
6814 return 0; /* OK */
6815 }
6816
6817 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6818 {
6819 u32 val;
6820
6821 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6822 if (!CHIP_IS_E1x(bp))
6823 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6824 else
6825 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6826 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6827 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6828 /*
6829 * mask read length error interrupts in brb for parser
6830 * (parsing unit and 'checksum and crc' unit)
6831 * these errors are legal (PU reads fixed length and CAC can cause
6832 * read length error on truncated packets)
6833 */
6834 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6835 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6836 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6837 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6838 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6839 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6840 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6841 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6842 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6843 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6844 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6845 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6846 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6847 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6848 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6849 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6850 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6851 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6852 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6853
6854 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6855 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6856 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6857 if (!CHIP_IS_E1x(bp))
6858 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6859 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6860 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6861
6862 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6863 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6864 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6865 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6866
6867 if (!CHIP_IS_E1x(bp))
6868 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6869 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6870
6871 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6872 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6873 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6874 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6875 }
6876
6877 static void bnx2x_reset_common(struct bnx2x *bp)
6878 {
6879 u32 val = 0x1400;
6880
6881 /* reset_common */
6882 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6883 0xd3ffff7f);
6884
6885 if (CHIP_IS_E3(bp)) {
6886 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6887 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6888 }
6889
6890 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6891 }
6892
6893 static void bnx2x_setup_dmae(struct bnx2x *bp)
6894 {
6895 bp->dmae_ready = 0;
6896 spin_lock_init(&bp->dmae_lock);
6897 }
6898
6899 static void bnx2x_init_pxp(struct bnx2x *bp)
6900 {
6901 u16 devctl;
6902 int r_order, w_order;
6903
6904 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6905 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6906 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6907 if (bp->mrrs == -1)
6908 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6909 else {
6910 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6911 r_order = bp->mrrs;
6912 }
6913
6914 bnx2x_init_pxp_arb(bp, r_order, w_order);
6915 }
6916
6917 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6918 {
6919 int is_required;
6920 u32 val;
6921 int port;
6922
6923 if (BP_NOMCP(bp))
6924 return;
6925
6926 is_required = 0;
6927 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6928 SHARED_HW_CFG_FAN_FAILURE_MASK;
6929
6930 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6931 is_required = 1;
6932
6933 /*
6934 * The fan failure mechanism is usually related to the PHY type since
6935 * the power consumption of the board is affected by the PHY. Currently,
6936 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6937 */
6938 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6939 for (port = PORT_0; port < PORT_MAX; port++) {
6940 is_required |=
6941 bnx2x_fan_failure_det_req(
6942 bp,
6943 bp->common.shmem_base,
6944 bp->common.shmem2_base,
6945 port);
6946 }
6947
6948 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6949
6950 if (is_required == 0)
6951 return;
6952
6953 /* Fan failure is indicated by SPIO 5 */
6954 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6955
6956 /* set to active low mode */
6957 val = REG_RD(bp, MISC_REG_SPIO_INT);
6958 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6959 REG_WR(bp, MISC_REG_SPIO_INT, val);
6960
6961 /* enable interrupt to signal the IGU */
6962 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6963 val |= MISC_SPIO_SPIO5;
6964 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6965 }
6966
6967 void bnx2x_pf_disable(struct bnx2x *bp)
6968 {
6969 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6970 val &= ~IGU_PF_CONF_FUNC_EN;
6971
6972 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6973 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6974 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6975 }
6976
6977 static void bnx2x__common_init_phy(struct bnx2x *bp)
6978 {
6979 u32 shmem_base[2], shmem2_base[2];
6980 /* Avoid common init in case MFW supports LFA */
6981 if (SHMEM2_RD(bp, size) >
6982 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6983 return;
6984 shmem_base[0] = bp->common.shmem_base;
6985 shmem2_base[0] = bp->common.shmem2_base;
6986 if (!CHIP_IS_E1x(bp)) {
6987 shmem_base[1] =
6988 SHMEM2_RD(bp, other_shmem_base_addr);
6989 shmem2_base[1] =
6990 SHMEM2_RD(bp, other_shmem2_base_addr);
6991 }
6992 bnx2x_acquire_phy_lock(bp);
6993 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6994 bp->common.chip_id);
6995 bnx2x_release_phy_lock(bp);
6996 }
6997
6998 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6999 {
7000 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7001 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7002 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7003 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7004 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7005
7006 /* make sure this value is 0 */
7007 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7008
7009 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7010 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7011 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7012 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7013 }
7014
7015 static void bnx2x_set_endianity(struct bnx2x *bp)
7016 {
7017 #ifdef __BIG_ENDIAN
7018 bnx2x_config_endianity(bp, 1);
7019 #else
7020 bnx2x_config_endianity(bp, 0);
7021 #endif
7022 }
7023
7024 static void bnx2x_reset_endianity(struct bnx2x *bp)
7025 {
7026 bnx2x_config_endianity(bp, 0);
7027 }
7028
7029 /**
7030 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7031 *
7032 * @bp: driver handle
7033 */
7034 static int bnx2x_init_hw_common(struct bnx2x *bp)
7035 {
7036 u32 val;
7037
7038 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
7039
7040 /*
7041 * take the RESET lock to protect undi_unload flow from accessing
7042 * registers while we're resetting the chip
7043 */
7044 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7045
7046 bnx2x_reset_common(bp);
7047 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7048
7049 val = 0xfffc;
7050 if (CHIP_IS_E3(bp)) {
7051 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7052 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7053 }
7054 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7055
7056 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7057
7058 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7059
7060 if (!CHIP_IS_E1x(bp)) {
7061 u8 abs_func_id;
7062
7063 /**
7064 * 4-port mode or 2-port mode we need to turn of master-enable
7065 * for everyone, after that, turn it back on for self.
7066 * so, we disregard multi-function or not, and always disable
7067 * for all functions on the given path, this means 0,2,4,6 for
7068 * path 0 and 1,3,5,7 for path 1
7069 */
7070 for (abs_func_id = BP_PATH(bp);
7071 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7072 if (abs_func_id == BP_ABS_FUNC(bp)) {
7073 REG_WR(bp,
7074 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7075 1);
7076 continue;
7077 }
7078
7079 bnx2x_pretend_func(bp, abs_func_id);
7080 /* clear pf enable */
7081 bnx2x_pf_disable(bp);
7082 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7083 }
7084 }
7085
7086 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7087 if (CHIP_IS_E1(bp)) {
7088 /* enable HW interrupt from PXP on USDM overflow
7089 bit 16 on INT_MASK_0 */
7090 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7091 }
7092
7093 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7094 bnx2x_init_pxp(bp);
7095 bnx2x_set_endianity(bp);
7096 bnx2x_ilt_init_page_size(bp, INITOP_SET);
7097
7098 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7099 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7100
7101 /* let the HW do it's magic ... */
7102 msleep(100);
7103 /* finish PXP init */
7104 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7105 if (val != 1) {
7106 BNX2X_ERR("PXP2 CFG failed\n");
7107 return -EBUSY;
7108 }
7109 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7110 if (val != 1) {
7111 BNX2X_ERR("PXP2 RD_INIT failed\n");
7112 return -EBUSY;
7113 }
7114
7115 /* Timers bug workaround E2 only. We need to set the entire ILT to
7116 * have entries with value "0" and valid bit on.
7117 * This needs to be done by the first PF that is loaded in a path
7118 * (i.e. common phase)
7119 */
7120 if (!CHIP_IS_E1x(bp)) {
7121 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7122 * (i.e. vnic3) to start even if it is marked as "scan-off".
7123 * This occurs when a different function (func2,3) is being marked
7124 * as "scan-off". Real-life scenario for example: if a driver is being
7125 * load-unloaded while func6,7 are down. This will cause the timer to access
7126 * the ilt, translate to a logical address and send a request to read/write.
7127 * Since the ilt for the function that is down is not valid, this will cause
7128 * a translation error which is unrecoverable.
7129 * The Workaround is intended to make sure that when this happens nothing fatal
7130 * will occur. The workaround:
7131 * 1. First PF driver which loads on a path will:
7132 * a. After taking the chip out of reset, by using pretend,
7133 * it will write "0" to the following registers of
7134 * the other vnics.
7135 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7136 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7137 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7138 * And for itself it will write '1' to
7139 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7140 * dmae-operations (writing to pram for example.)
7141 * note: can be done for only function 6,7 but cleaner this
7142 * way.
7143 * b. Write zero+valid to the entire ILT.
7144 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
7145 * VNIC3 (of that port). The range allocated will be the
7146 * entire ILT. This is needed to prevent ILT range error.
7147 * 2. Any PF driver load flow:
7148 * a. ILT update with the physical addresses of the allocated
7149 * logical pages.
7150 * b. Wait 20msec. - note that this timeout is needed to make
7151 * sure there are no requests in one of the PXP internal
7152 * queues with "old" ILT addresses.
7153 * c. PF enable in the PGLC.
7154 * d. Clear the was_error of the PF in the PGLC. (could have
7155 * occurred while driver was down)
7156 * e. PF enable in the CFC (WEAK + STRONG)
7157 * f. Timers scan enable
7158 * 3. PF driver unload flow:
7159 * a. Clear the Timers scan_en.
7160 * b. Polling for scan_on=0 for that PF.
7161 * c. Clear the PF enable bit in the PXP.
7162 * d. Clear the PF enable in the CFC (WEAK + STRONG)
7163 * e. Write zero+valid to all ILT entries (The valid bit must
7164 * stay set)
7165 * f. If this is VNIC 3 of a port then also init
7166 * first_timers_ilt_entry to zero and last_timers_ilt_entry
7167 * to the last entry in the ILT.
7168 *
7169 * Notes:
7170 * Currently the PF error in the PGLC is non recoverable.
7171 * In the future the there will be a recovery routine for this error.
7172 * Currently attention is masked.
7173 * Having an MCP lock on the load/unload process does not guarantee that
7174 * there is no Timer disable during Func6/7 enable. This is because the
7175 * Timers scan is currently being cleared by the MCP on FLR.
7176 * Step 2.d can be done only for PF6/7 and the driver can also check if
7177 * there is error before clearing it. But the flow above is simpler and
7178 * more general.
7179 * All ILT entries are written by zero+valid and not just PF6/7
7180 * ILT entries since in the future the ILT entries allocation for
7181 * PF-s might be dynamic.
7182 */
7183 struct ilt_client_info ilt_cli;
7184 struct bnx2x_ilt ilt;
7185 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7186 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7187
7188 /* initialize dummy TM client */
7189 ilt_cli.start = 0;
7190 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7191 ilt_cli.client_num = ILT_CLIENT_TM;
7192
7193 /* Step 1: set zeroes to all ilt page entries with valid bit on
7194 * Step 2: set the timers first/last ilt entry to point
7195 * to the entire range to prevent ILT range error for 3rd/4th
7196 * vnic (this code assumes existence of the vnic)
7197 *
7198 * both steps performed by call to bnx2x_ilt_client_init_op()
7199 * with dummy TM client
7200 *
7201 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7202 * and his brother are split registers
7203 */
7204 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7205 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7206 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7207
7208 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7209 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7210 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7211 }
7212
7213 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7214 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7215
7216 if (!CHIP_IS_E1x(bp)) {
7217 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7218 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7219 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7220
7221 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7222
7223 /* let the HW do it's magic ... */
7224 do {
7225 msleep(200);
7226 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7227 } while (factor-- && (val != 1));
7228
7229 if (val != 1) {
7230 BNX2X_ERR("ATC_INIT failed\n");
7231 return -EBUSY;
7232 }
7233 }
7234
7235 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7236
7237 bnx2x_iov_init_dmae(bp);
7238
7239 /* clean the DMAE memory */
7240 bp->dmae_ready = 1;
7241 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7242
7243 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7244
7245 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7246
7247 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7248
7249 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7250
7251 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7252 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7253 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7254 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7255
7256 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7257
7258 /* QM queues pointers table */
7259 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7260
7261 /* soft reset pulse */
7262 REG_WR(bp, QM_REG_SOFT_RESET, 1);
7263 REG_WR(bp, QM_REG_SOFT_RESET, 0);
7264
7265 if (CNIC_SUPPORT(bp))
7266 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7267
7268 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7269
7270 if (!CHIP_REV_IS_SLOW(bp))
7271 /* enable hw interrupt from doorbell Q */
7272 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7273
7274 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7275
7276 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7277 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7278
7279 if (!CHIP_IS_E1(bp))
7280 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7281
7282 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7283 if (IS_MF_AFEX(bp)) {
7284 /* configure that VNTag and VLAN headers must be
7285 * received in afex mode
7286 */
7287 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7288 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7289 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7290 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7291 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7292 } else {
7293 /* Bit-map indicating which L2 hdrs may appear
7294 * after the basic Ethernet header
7295 */
7296 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7297 bp->path_has_ovlan ? 7 : 6);
7298 }
7299 }
7300
7301 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7302 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7303 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7304 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7305
7306 if (!CHIP_IS_E1x(bp)) {
7307 /* reset VFC memories */
7308 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7309 VFC_MEMORIES_RST_REG_CAM_RST |
7310 VFC_MEMORIES_RST_REG_RAM_RST);
7311 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7312 VFC_MEMORIES_RST_REG_CAM_RST |
7313 VFC_MEMORIES_RST_REG_RAM_RST);
7314
7315 msleep(20);
7316 }
7317
7318 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7319 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7320 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7321 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7322
7323 /* sync semi rtc */
7324 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7325 0x80000000);
7326 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7327 0x80000000);
7328
7329 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7330 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7331 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7332
7333 if (!CHIP_IS_E1x(bp)) {
7334 if (IS_MF_AFEX(bp)) {
7335 /* configure that VNTag and VLAN headers must be
7336 * sent in afex mode
7337 */
7338 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7339 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7340 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7341 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7342 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7343 } else {
7344 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7345 bp->path_has_ovlan ? 7 : 6);
7346 }
7347 }
7348
7349 REG_WR(bp, SRC_REG_SOFT_RST, 1);
7350
7351 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7352
7353 if (CNIC_SUPPORT(bp)) {
7354 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7355 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7356 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7357 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7358 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7359 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7360 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7361 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7362 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7363 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7364 }
7365 REG_WR(bp, SRC_REG_SOFT_RST, 0);
7366
7367 if (sizeof(union cdu_context) != 1024)
7368 /* we currently assume that a context is 1024 bytes */
7369 dev_alert(&bp->pdev->dev,
7370 "please adjust the size of cdu_context(%ld)\n",
7371 (long)sizeof(union cdu_context));
7372
7373 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7374 val = (4 << 24) + (0 << 12) + 1024;
7375 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7376
7377 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7378 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7379 /* enable context validation interrupt from CFC */
7380 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7381
7382 /* set the thresholds to prevent CFC/CDU race */
7383 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7384
7385 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7386
7387 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7388 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7389
7390 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7391 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7392
7393 /* Reset PCIE errors for debug */
7394 REG_WR(bp, 0x2814, 0xffffffff);
7395 REG_WR(bp, 0x3820, 0xffffffff);
7396
7397 if (!CHIP_IS_E1x(bp)) {
7398 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7399 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7400 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7401 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7402 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7403 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7404 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7405 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7406 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7407 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7408 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7409 }
7410
7411 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7412 if (!CHIP_IS_E1(bp)) {
7413 /* in E3 this done in per-port section */
7414 if (!CHIP_IS_E3(bp))
7415 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7416 }
7417 if (CHIP_IS_E1H(bp))
7418 /* not applicable for E2 (and above ...) */
7419 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7420
7421 if (CHIP_REV_IS_SLOW(bp))
7422 msleep(200);
7423
7424 /* finish CFC init */
7425 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7426 if (val != 1) {
7427 BNX2X_ERR("CFC LL_INIT failed\n");
7428 return -EBUSY;
7429 }
7430 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7431 if (val != 1) {
7432 BNX2X_ERR("CFC AC_INIT failed\n");
7433 return -EBUSY;
7434 }
7435 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7436 if (val != 1) {
7437 BNX2X_ERR("CFC CAM_INIT failed\n");
7438 return -EBUSY;
7439 }
7440 REG_WR(bp, CFC_REG_DEBUG0, 0);
7441
7442 if (CHIP_IS_E1(bp)) {
7443 /* read NIG statistic
7444 to see if this is our first up since powerup */
7445 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7446 val = *bnx2x_sp(bp, wb_data[0]);
7447
7448 /* do internal memory self test */
7449 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7450 BNX2X_ERR("internal mem self test failed\n");
7451 return -EBUSY;
7452 }
7453 }
7454
7455 bnx2x_setup_fan_failure_detection(bp);
7456
7457 /* clear PXP2 attentions */
7458 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7459
7460 bnx2x_enable_blocks_attention(bp);
7461 bnx2x_enable_blocks_parity(bp);
7462
7463 if (!BP_NOMCP(bp)) {
7464 if (CHIP_IS_E1x(bp))
7465 bnx2x__common_init_phy(bp);
7466 } else
7467 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7468
7469 if (SHMEM2_HAS(bp, netproc_fw_ver))
7470 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7471
7472 return 0;
7473 }
7474
7475 /**
7476 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7477 *
7478 * @bp: driver handle
7479 */
7480 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7481 {
7482 int rc = bnx2x_init_hw_common(bp);
7483
7484 if (rc)
7485 return rc;
7486
7487 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7488 if (!BP_NOMCP(bp))
7489 bnx2x__common_init_phy(bp);
7490
7491 return 0;
7492 }
7493
7494 static int bnx2x_init_hw_port(struct bnx2x *bp)
7495 {
7496 int port = BP_PORT(bp);
7497 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7498 u32 low, high;
7499 u32 val, reg;
7500
7501 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7502
7503 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7504
7505 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7506 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7507 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7508
7509 /* Timers bug workaround: disables the pf_master bit in pglue at
7510 * common phase, we need to enable it here before any dmae access are
7511 * attempted. Therefore we manually added the enable-master to the
7512 * port phase (it also happens in the function phase)
7513 */
7514 if (!CHIP_IS_E1x(bp))
7515 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7516
7517 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7518 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7519 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7520 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7521
7522 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7523 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7524 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7525 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7526
7527 /* QM cid (connection) count */
7528 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7529
7530 if (CNIC_SUPPORT(bp)) {
7531 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7532 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7533 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7534 }
7535
7536 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7537
7538 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7539
7540 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7541
7542 if (IS_MF(bp))
7543 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7544 else if (bp->dev->mtu > 4096) {
7545 if (bp->flags & ONE_PORT_FLAG)
7546 low = 160;
7547 else {
7548 val = bp->dev->mtu;
7549 /* (24*1024 + val*4)/256 */
7550 low = 96 + (val/64) +
7551 ((val % 64) ? 1 : 0);
7552 }
7553 } else
7554 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7555 high = low + 56; /* 14*1024/256 */
7556 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7557 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7558 }
7559
7560 if (CHIP_MODE_IS_4_PORT(bp))
7561 REG_WR(bp, (BP_PORT(bp) ?
7562 BRB1_REG_MAC_GUARANTIED_1 :
7563 BRB1_REG_MAC_GUARANTIED_0), 40);
7564
7565 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7566 if (CHIP_IS_E3B0(bp)) {
7567 if (IS_MF_AFEX(bp)) {
7568 /* configure headers for AFEX mode */
7569 REG_WR(bp, BP_PORT(bp) ?
7570 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7571 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7572 REG_WR(bp, BP_PORT(bp) ?
7573 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7574 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7575 REG_WR(bp, BP_PORT(bp) ?
7576 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7577 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7578 } else {
7579 /* Ovlan exists only if we are in multi-function +
7580 * switch-dependent mode, in switch-independent there
7581 * is no ovlan headers
7582 */
7583 REG_WR(bp, BP_PORT(bp) ?
7584 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7585 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7586 (bp->path_has_ovlan ? 7 : 6));
7587 }
7588 }
7589
7590 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7591 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7592 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7593 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7594
7595 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7596 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7597 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7598 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7599
7600 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7601 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7602
7603 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7604
7605 if (CHIP_IS_E1x(bp)) {
7606 /* configure PBF to work without PAUSE mtu 9000 */
7607 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7608
7609 /* update threshold */
7610 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7611 /* update init credit */
7612 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7613
7614 /* probe changes */
7615 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7616 udelay(50);
7617 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7618 }
7619
7620 if (CNIC_SUPPORT(bp))
7621 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7622
7623 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7624 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7625
7626 if (CHIP_IS_E1(bp)) {
7627 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7628 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7629 }
7630 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7631
7632 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7633
7634 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7635 /* init aeu_mask_attn_func_0/1:
7636 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7637 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7638 * bits 4-7 are used for "per vn group attention" */
7639 val = IS_MF(bp) ? 0xF7 : 0x7;
7640 /* Enable DCBX attention for all but E1 */
7641 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7642 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7643
7644 /* SCPAD_PARITY should NOT trigger close the gates */
7645 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7646 REG_WR(bp, reg,
7647 REG_RD(bp, reg) &
7648 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7649
7650 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7651 REG_WR(bp, reg,
7652 REG_RD(bp, reg) &
7653 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7654
7655 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7656
7657 if (!CHIP_IS_E1x(bp)) {
7658 /* Bit-map indicating which L2 hdrs may appear after the
7659 * basic Ethernet header
7660 */
7661 if (IS_MF_AFEX(bp))
7662 REG_WR(bp, BP_PORT(bp) ?
7663 NIG_REG_P1_HDRS_AFTER_BASIC :
7664 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7665 else
7666 REG_WR(bp, BP_PORT(bp) ?
7667 NIG_REG_P1_HDRS_AFTER_BASIC :
7668 NIG_REG_P0_HDRS_AFTER_BASIC,
7669 IS_MF_SD(bp) ? 7 : 6);
7670
7671 if (CHIP_IS_E3(bp))
7672 REG_WR(bp, BP_PORT(bp) ?
7673 NIG_REG_LLH1_MF_MODE :
7674 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7675 }
7676 if (!CHIP_IS_E3(bp))
7677 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7678
7679 if (!CHIP_IS_E1(bp)) {
7680 /* 0x2 disable mf_ov, 0x1 enable */
7681 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7682 (IS_MF_SD(bp) ? 0x1 : 0x2));
7683
7684 if (!CHIP_IS_E1x(bp)) {
7685 val = 0;
7686 switch (bp->mf_mode) {
7687 case MULTI_FUNCTION_SD:
7688 val = 1;
7689 break;
7690 case MULTI_FUNCTION_SI:
7691 case MULTI_FUNCTION_AFEX:
7692 val = 2;
7693 break;
7694 }
7695
7696 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7697 NIG_REG_LLH0_CLS_TYPE), val);
7698 }
7699 {
7700 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7701 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7702 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7703 }
7704 }
7705
7706 /* If SPIO5 is set to generate interrupts, enable it for this port */
7707 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7708 if (val & MISC_SPIO_SPIO5) {
7709 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7710 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7711 val = REG_RD(bp, reg_addr);
7712 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7713 REG_WR(bp, reg_addr, val);
7714 }
7715
7716 return 0;
7717 }
7718
7719 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7720 {
7721 int reg;
7722 u32 wb_write[2];
7723
7724 if (CHIP_IS_E1(bp))
7725 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7726 else
7727 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7728
7729 wb_write[0] = ONCHIP_ADDR1(addr);
7730 wb_write[1] = ONCHIP_ADDR2(addr);
7731 REG_WR_DMAE(bp, reg, wb_write, 2);
7732 }
7733
7734 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7735 {
7736 u32 data, ctl, cnt = 100;
7737 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7738 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7739 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7740 u32 sb_bit = 1 << (idu_sb_id%32);
7741 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7742 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7743
7744 /* Not supported in BC mode */
7745 if (CHIP_INT_MODE_IS_BC(bp))
7746 return;
7747
7748 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7749 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7750 IGU_REGULAR_CLEANUP_SET |
7751 IGU_REGULAR_BCLEANUP;
7752
7753 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7754 func_encode << IGU_CTRL_REG_FID_SHIFT |
7755 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7756
7757 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7758 data, igu_addr_data);
7759 REG_WR(bp, igu_addr_data, data);
7760 mmiowb();
7761 barrier();
7762 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7763 ctl, igu_addr_ctl);
7764 REG_WR(bp, igu_addr_ctl, ctl);
7765 mmiowb();
7766 barrier();
7767
7768 /* wait for clean up to finish */
7769 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7770 msleep(20);
7771
7772 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7773 DP(NETIF_MSG_HW,
7774 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7775 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7776 }
7777 }
7778
7779 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7780 {
7781 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7782 }
7783
7784 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7785 {
7786 u32 i, base = FUNC_ILT_BASE(func);
7787 for (i = base; i < base + ILT_PER_FUNC; i++)
7788 bnx2x_ilt_wr(bp, i, 0);
7789 }
7790
7791 static void bnx2x_init_searcher(struct bnx2x *bp)
7792 {
7793 int port = BP_PORT(bp);
7794 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7795 /* T1 hash bits value determines the T1 number of entries */
7796 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7797 }
7798
7799 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7800 {
7801 int rc;
7802 struct bnx2x_func_state_params func_params = {NULL};
7803 struct bnx2x_func_switch_update_params *switch_update_params =
7804 &func_params.params.switch_update;
7805
7806 /* Prepare parameters for function state transitions */
7807 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7808 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7809
7810 func_params.f_obj = &bp->func_obj;
7811 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7812
7813 /* Function parameters */
7814 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7815 &switch_update_params->changes);
7816 if (suspend)
7817 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7818 &switch_update_params->changes);
7819
7820 rc = bnx2x_func_state_change(bp, &func_params);
7821
7822 return rc;
7823 }
7824
7825 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7826 {
7827 int rc, i, port = BP_PORT(bp);
7828 int vlan_en = 0, mac_en[NUM_MACS];
7829
7830 /* Close input from network */
7831 if (bp->mf_mode == SINGLE_FUNCTION) {
7832 bnx2x_set_rx_filter(&bp->link_params, 0);
7833 } else {
7834 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7835 NIG_REG_LLH0_FUNC_EN);
7836 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7837 NIG_REG_LLH0_FUNC_EN, 0);
7838 for (i = 0; i < NUM_MACS; i++) {
7839 mac_en[i] = REG_RD(bp, port ?
7840 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7841 4 * i) :
7842 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7843 4 * i));
7844 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7845 4 * i) :
7846 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7847 }
7848 }
7849
7850 /* Close BMC to host */
7851 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7852 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7853
7854 /* Suspend Tx switching to the PF. Completion of this ramrod
7855 * further guarantees that all the packets of that PF / child
7856 * VFs in BRB were processed by the Parser, so it is safe to
7857 * change the NIC_MODE register.
7858 */
7859 rc = bnx2x_func_switch_update(bp, 1);
7860 if (rc) {
7861 BNX2X_ERR("Can't suspend tx-switching!\n");
7862 return rc;
7863 }
7864
7865 /* Change NIC_MODE register */
7866 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7867
7868 /* Open input from network */
7869 if (bp->mf_mode == SINGLE_FUNCTION) {
7870 bnx2x_set_rx_filter(&bp->link_params, 1);
7871 } else {
7872 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7873 NIG_REG_LLH0_FUNC_EN, vlan_en);
7874 for (i = 0; i < NUM_MACS; i++) {
7875 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7876 4 * i) :
7877 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7878 mac_en[i]);
7879 }
7880 }
7881
7882 /* Enable BMC to host */
7883 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7884 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7885
7886 /* Resume Tx switching to the PF */
7887 rc = bnx2x_func_switch_update(bp, 0);
7888 if (rc) {
7889 BNX2X_ERR("Can't resume tx-switching!\n");
7890 return rc;
7891 }
7892
7893 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7894 return 0;
7895 }
7896
7897 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7898 {
7899 int rc;
7900
7901 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7902
7903 if (CONFIGURE_NIC_MODE(bp)) {
7904 /* Configure searcher as part of function hw init */
7905 bnx2x_init_searcher(bp);
7906
7907 /* Reset NIC mode */
7908 rc = bnx2x_reset_nic_mode(bp);
7909 if (rc)
7910 BNX2X_ERR("Can't change NIC mode!\n");
7911 return rc;
7912 }
7913
7914 return 0;
7915 }
7916
7917 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7918 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7919 * the addresses of the transaction, resulting in was-error bit set in the pci
7920 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7921 * to clear the interrupt which detected this from the pglueb and the was done
7922 * bit
7923 */
7924 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7925 {
7926 if (!CHIP_IS_E1x(bp))
7927 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7928 1 << BP_ABS_FUNC(bp));
7929 }
7930
7931 static int bnx2x_init_hw_func(struct bnx2x *bp)
7932 {
7933 int port = BP_PORT(bp);
7934 int func = BP_FUNC(bp);
7935 int init_phase = PHASE_PF0 + func;
7936 struct bnx2x_ilt *ilt = BP_ILT(bp);
7937 u16 cdu_ilt_start;
7938 u32 addr, val;
7939 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7940 int i, main_mem_width, rc;
7941
7942 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7943
7944 /* FLR cleanup - hmmm */
7945 if (!CHIP_IS_E1x(bp)) {
7946 rc = bnx2x_pf_flr_clnup(bp);
7947 if (rc) {
7948 bnx2x_fw_dump(bp);
7949 return rc;
7950 }
7951 }
7952
7953 /* set MSI reconfigure capability */
7954 if (bp->common.int_block == INT_BLOCK_HC) {
7955 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7956 val = REG_RD(bp, addr);
7957 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7958 REG_WR(bp, addr, val);
7959 }
7960
7961 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7962 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7963
7964 ilt = BP_ILT(bp);
7965 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7966
7967 if (IS_SRIOV(bp))
7968 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7969 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7970
7971 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7972 * those of the VFs, so start line should be reset
7973 */
7974 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7975 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7976 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7977 ilt->lines[cdu_ilt_start + i].page_mapping =
7978 bp->context[i].cxt_mapping;
7979 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7980 }
7981
7982 bnx2x_ilt_init_op(bp, INITOP_SET);
7983
7984 if (!CONFIGURE_NIC_MODE(bp)) {
7985 bnx2x_init_searcher(bp);
7986 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7987 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7988 } else {
7989 /* Set NIC mode */
7990 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7991 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7992 }
7993
7994 if (!CHIP_IS_E1x(bp)) {
7995 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7996
7997 /* Turn on a single ISR mode in IGU if driver is going to use
7998 * INT#x or MSI
7999 */
8000 if (!(bp->flags & USING_MSIX_FLAG))
8001 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8002 /*
8003 * Timers workaround bug: function init part.
8004 * Need to wait 20msec after initializing ILT,
8005 * needed to make sure there are no requests in
8006 * one of the PXP internal queues with "old" ILT addresses
8007 */
8008 msleep(20);
8009 /*
8010 * Master enable - Due to WB DMAE writes performed before this
8011 * register is re-initialized as part of the regular function
8012 * init
8013 */
8014 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8015 /* Enable the function in IGU */
8016 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8017 }
8018
8019 bp->dmae_ready = 1;
8020
8021 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8022
8023 bnx2x_clean_pglue_errors(bp);
8024
8025 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8026 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8027 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8028 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8029 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8030 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8031 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8032 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8033 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8034 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8035 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8036 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8037 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8038
8039 if (!CHIP_IS_E1x(bp))
8040 REG_WR(bp, QM_REG_PF_EN, 1);
8041
8042 if (!CHIP_IS_E1x(bp)) {
8043 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8044 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8045 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8046 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8047 }
8048 bnx2x_init_block(bp, BLOCK_QM, init_phase);
8049
8050 bnx2x_init_block(bp, BLOCK_TM, init_phase);
8051 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8052 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8053
8054 bnx2x_iov_init_dq(bp);
8055
8056 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8057 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8058 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8059 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8060 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8061 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8062 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8063 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8064 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8065 if (!CHIP_IS_E1x(bp))
8066 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8067
8068 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8069
8070 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8071
8072 if (!CHIP_IS_E1x(bp))
8073 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8074
8075 if (IS_MF(bp)) {
8076 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8077 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8078 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8079 bp->mf_ov);
8080 }
8081 }
8082
8083 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8084
8085 /* HC init per function */
8086 if (bp->common.int_block == INT_BLOCK_HC) {
8087 if (CHIP_IS_E1H(bp)) {
8088 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8089
8090 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8091 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8092 }
8093 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8094
8095 } else {
8096 int num_segs, sb_idx, prod_offset;
8097
8098 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8099
8100 if (!CHIP_IS_E1x(bp)) {
8101 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8102 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8103 }
8104
8105 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8106
8107 if (!CHIP_IS_E1x(bp)) {
8108 int dsb_idx = 0;
8109 /**
8110 * Producer memory:
8111 * E2 mode: address 0-135 match to the mapping memory;
8112 * 136 - PF0 default prod; 137 - PF1 default prod;
8113 * 138 - PF2 default prod; 139 - PF3 default prod;
8114 * 140 - PF0 attn prod; 141 - PF1 attn prod;
8115 * 142 - PF2 attn prod; 143 - PF3 attn prod;
8116 * 144-147 reserved.
8117 *
8118 * E1.5 mode - In backward compatible mode;
8119 * for non default SB; each even line in the memory
8120 * holds the U producer and each odd line hold
8121 * the C producer. The first 128 producers are for
8122 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8123 * producers are for the DSB for each PF.
8124 * Each PF has five segments: (the order inside each
8125 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8126 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8127 * 144-147 attn prods;
8128 */
8129 /* non-default-status-blocks */
8130 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8131 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8132 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8133 prod_offset = (bp->igu_base_sb + sb_idx) *
8134 num_segs;
8135
8136 for (i = 0; i < num_segs; i++) {
8137 addr = IGU_REG_PROD_CONS_MEMORY +
8138 (prod_offset + i) * 4;
8139 REG_WR(bp, addr, 0);
8140 }
8141 /* send consumer update with value 0 */
8142 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8143 USTORM_ID, 0, IGU_INT_NOP, 1);
8144 bnx2x_igu_clear_sb(bp,
8145 bp->igu_base_sb + sb_idx);
8146 }
8147
8148 /* default-status-blocks */
8149 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8150 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8151
8152 if (CHIP_MODE_IS_4_PORT(bp))
8153 dsb_idx = BP_FUNC(bp);
8154 else
8155 dsb_idx = BP_VN(bp);
8156
8157 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8158 IGU_BC_BASE_DSB_PROD + dsb_idx :
8159 IGU_NORM_BASE_DSB_PROD + dsb_idx);
8160
8161 /*
8162 * igu prods come in chunks of E1HVN_MAX (4) -
8163 * does not matters what is the current chip mode
8164 */
8165 for (i = 0; i < (num_segs * E1HVN_MAX);
8166 i += E1HVN_MAX) {
8167 addr = IGU_REG_PROD_CONS_MEMORY +
8168 (prod_offset + i)*4;
8169 REG_WR(bp, addr, 0);
8170 }
8171 /* send consumer update with 0 */
8172 if (CHIP_INT_MODE_IS_BC(bp)) {
8173 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8174 USTORM_ID, 0, IGU_INT_NOP, 1);
8175 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8176 CSTORM_ID, 0, IGU_INT_NOP, 1);
8177 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8178 XSTORM_ID, 0, IGU_INT_NOP, 1);
8179 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8180 TSTORM_ID, 0, IGU_INT_NOP, 1);
8181 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8182 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8183 } else {
8184 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8185 USTORM_ID, 0, IGU_INT_NOP, 1);
8186 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8187 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8188 }
8189 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8190
8191 /* !!! These should become driver const once
8192 rf-tool supports split-68 const */
8193 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8194 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8195 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8196 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8197 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8198 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8199 }
8200 }
8201
8202 /* Reset PCIE errors for debug */
8203 REG_WR(bp, 0x2114, 0xffffffff);
8204 REG_WR(bp, 0x2120, 0xffffffff);
8205
8206 if (CHIP_IS_E1x(bp)) {
8207 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8208 main_mem_base = HC_REG_MAIN_MEMORY +
8209 BP_PORT(bp) * (main_mem_size * 4);
8210 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8211 main_mem_width = 8;
8212
8213 val = REG_RD(bp, main_mem_prty_clr);
8214 if (val)
8215 DP(NETIF_MSG_HW,
8216 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8217 val);
8218
8219 /* Clear "false" parity errors in MSI-X table */
8220 for (i = main_mem_base;
8221 i < main_mem_base + main_mem_size * 4;
8222 i += main_mem_width) {
8223 bnx2x_read_dmae(bp, i, main_mem_width / 4);
8224 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8225 i, main_mem_width / 4);
8226 }
8227 /* Clear HC parity attention */
8228 REG_RD(bp, main_mem_prty_clr);
8229 }
8230
8231 #ifdef BNX2X_STOP_ON_ERROR
8232 /* Enable STORMs SP logging */
8233 REG_WR8(bp, BAR_USTRORM_INTMEM +
8234 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8235 REG_WR8(bp, BAR_TSTRORM_INTMEM +
8236 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8237 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8238 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8239 REG_WR8(bp, BAR_XSTRORM_INTMEM +
8240 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8241 #endif
8242
8243 bnx2x_phy_probe(&bp->link_params);
8244
8245 return 0;
8246 }
8247
8248 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8249 {
8250 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8251
8252 if (!CHIP_IS_E1x(bp))
8253 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8254 sizeof(struct host_hc_status_block_e2));
8255 else
8256 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8257 sizeof(struct host_hc_status_block_e1x));
8258
8259 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8260 }
8261
8262 void bnx2x_free_mem(struct bnx2x *bp)
8263 {
8264 int i;
8265
8266 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8267 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8268
8269 if (IS_VF(bp))
8270 return;
8271
8272 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8273 sizeof(struct host_sp_status_block));
8274
8275 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8276 sizeof(struct bnx2x_slowpath));
8277
8278 for (i = 0; i < L2_ILT_LINES(bp); i++)
8279 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8280 bp->context[i].size);
8281 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8282
8283 BNX2X_FREE(bp->ilt->lines);
8284
8285 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8286
8287 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8288 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8289
8290 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8291
8292 bnx2x_iov_free_mem(bp);
8293 }
8294
8295 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8296 {
8297 if (!CHIP_IS_E1x(bp)) {
8298 /* size = the status block + ramrod buffers */
8299 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8300 sizeof(struct host_hc_status_block_e2));
8301 if (!bp->cnic_sb.e2_sb)
8302 goto alloc_mem_err;
8303 } else {
8304 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8305 sizeof(struct host_hc_status_block_e1x));
8306 if (!bp->cnic_sb.e1x_sb)
8307 goto alloc_mem_err;
8308 }
8309
8310 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8311 /* allocate searcher T2 table, as it wasn't allocated before */
8312 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8313 if (!bp->t2)
8314 goto alloc_mem_err;
8315 }
8316
8317 /* write address to which L5 should insert its values */
8318 bp->cnic_eth_dev.addr_drv_info_to_mcp =
8319 &bp->slowpath->drv_info_to_mcp;
8320
8321 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8322 goto alloc_mem_err;
8323
8324 return 0;
8325
8326 alloc_mem_err:
8327 bnx2x_free_mem_cnic(bp);
8328 BNX2X_ERR("Can't allocate memory\n");
8329 return -ENOMEM;
8330 }
8331
8332 int bnx2x_alloc_mem(struct bnx2x *bp)
8333 {
8334 int i, allocated, context_size;
8335
8336 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8337 /* allocate searcher T2 table */
8338 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8339 if (!bp->t2)
8340 goto alloc_mem_err;
8341 }
8342
8343 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8344 sizeof(struct host_sp_status_block));
8345 if (!bp->def_status_blk)
8346 goto alloc_mem_err;
8347
8348 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8349 sizeof(struct bnx2x_slowpath));
8350 if (!bp->slowpath)
8351 goto alloc_mem_err;
8352
8353 /* Allocate memory for CDU context:
8354 * This memory is allocated separately and not in the generic ILT
8355 * functions because CDU differs in few aspects:
8356 * 1. There are multiple entities allocating memory for context -
8357 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8358 * its own ILT lines.
8359 * 2. Since CDU page-size is not a single 4KB page (which is the case
8360 * for the other ILT clients), to be efficient we want to support
8361 * allocation of sub-page-size in the last entry.
8362 * 3. Context pointers are used by the driver to pass to FW / update
8363 * the context (for the other ILT clients the pointers are used just to
8364 * free the memory during unload).
8365 */
8366 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8367
8368 for (i = 0, allocated = 0; allocated < context_size; i++) {
8369 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8370 (context_size - allocated));
8371 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8372 bp->context[i].size);
8373 if (!bp->context[i].vcxt)
8374 goto alloc_mem_err;
8375 allocated += bp->context[i].size;
8376 }
8377 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8378 GFP_KERNEL);
8379 if (!bp->ilt->lines)
8380 goto alloc_mem_err;
8381
8382 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8383 goto alloc_mem_err;
8384
8385 if (bnx2x_iov_alloc_mem(bp))
8386 goto alloc_mem_err;
8387
8388 /* Slow path ring */
8389 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8390 if (!bp->spq)
8391 goto alloc_mem_err;
8392
8393 /* EQ */
8394 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8395 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8396 if (!bp->eq_ring)
8397 goto alloc_mem_err;
8398
8399 return 0;
8400
8401 alloc_mem_err:
8402 bnx2x_free_mem(bp);
8403 BNX2X_ERR("Can't allocate memory\n");
8404 return -ENOMEM;
8405 }
8406
8407 /*
8408 * Init service functions
8409 */
8410
8411 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8412 struct bnx2x_vlan_mac_obj *obj, bool set,
8413 int mac_type, unsigned long *ramrod_flags)
8414 {
8415 int rc;
8416 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8417
8418 memset(&ramrod_param, 0, sizeof(ramrod_param));
8419
8420 /* Fill general parameters */
8421 ramrod_param.vlan_mac_obj = obj;
8422 ramrod_param.ramrod_flags = *ramrod_flags;
8423
8424 /* Fill a user request section if needed */
8425 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8426 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8427
8428 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8429
8430 /* Set the command: ADD or DEL */
8431 if (set)
8432 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8433 else
8434 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8435 }
8436
8437 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8438
8439 if (rc == -EEXIST) {
8440 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8441 /* do not treat adding same MAC as error */
8442 rc = 0;
8443 } else if (rc < 0)
8444 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8445
8446 return rc;
8447 }
8448
8449 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8450 struct bnx2x_vlan_mac_obj *obj, bool set,
8451 unsigned long *ramrod_flags)
8452 {
8453 int rc;
8454 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8455
8456 memset(&ramrod_param, 0, sizeof(ramrod_param));
8457
8458 /* Fill general parameters */
8459 ramrod_param.vlan_mac_obj = obj;
8460 ramrod_param.ramrod_flags = *ramrod_flags;
8461
8462 /* Fill a user request section if needed */
8463 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8464 ramrod_param.user_req.u.vlan.vlan = vlan;
8465 /* Set the command: ADD or DEL */
8466 if (set)
8467 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8468 else
8469 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8470 }
8471
8472 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8473
8474 if (rc == -EEXIST) {
8475 /* Do not treat adding same vlan as error. */
8476 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8477 rc = 0;
8478 } else if (rc < 0) {
8479 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8480 }
8481
8482 return rc;
8483 }
8484
8485 int bnx2x_del_all_macs(struct bnx2x *bp,
8486 struct bnx2x_vlan_mac_obj *mac_obj,
8487 int mac_type, bool wait_for_comp)
8488 {
8489 int rc;
8490 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8491
8492 /* Wait for completion of requested */
8493 if (wait_for_comp)
8494 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8495
8496 /* Set the mac type of addresses we want to clear */
8497 __set_bit(mac_type, &vlan_mac_flags);
8498
8499 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8500 if (rc < 0)
8501 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8502
8503 return rc;
8504 }
8505
8506 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8507 {
8508 if (IS_PF(bp)) {
8509 unsigned long ramrod_flags = 0;
8510
8511 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8512 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8513 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8514 &bp->sp_objs->mac_obj, set,
8515 BNX2X_ETH_MAC, &ramrod_flags);
8516 } else { /* vf */
8517 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8518 bp->fp->index, set);
8519 }
8520 }
8521
8522 int bnx2x_setup_leading(struct bnx2x *bp)
8523 {
8524 if (IS_PF(bp))
8525 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8526 else /* VF */
8527 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8528 }
8529
8530 /**
8531 * bnx2x_set_int_mode - configure interrupt mode
8532 *
8533 * @bp: driver handle
8534 *
8535 * In case of MSI-X it will also try to enable MSI-X.
8536 */
8537 int bnx2x_set_int_mode(struct bnx2x *bp)
8538 {
8539 int rc = 0;
8540
8541 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8542 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8543 return -EINVAL;
8544 }
8545
8546 switch (int_mode) {
8547 case BNX2X_INT_MODE_MSIX:
8548 /* attempt to enable msix */
8549 rc = bnx2x_enable_msix(bp);
8550
8551 /* msix attained */
8552 if (!rc)
8553 return 0;
8554
8555 /* vfs use only msix */
8556 if (rc && IS_VF(bp))
8557 return rc;
8558
8559 /* failed to enable multiple MSI-X */
8560 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8561 bp->num_queues,
8562 1 + bp->num_cnic_queues);
8563
8564 /* falling through... */
8565 case BNX2X_INT_MODE_MSI:
8566 bnx2x_enable_msi(bp);
8567
8568 /* falling through... */
8569 case BNX2X_INT_MODE_INTX:
8570 bp->num_ethernet_queues = 1;
8571 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8572 BNX2X_DEV_INFO("set number of queues to 1\n");
8573 break;
8574 default:
8575 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8576 return -EINVAL;
8577 }
8578 return 0;
8579 }
8580
8581 /* must be called prior to any HW initializations */
8582 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8583 {
8584 if (IS_SRIOV(bp))
8585 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8586 return L2_ILT_LINES(bp);
8587 }
8588
8589 void bnx2x_ilt_set_info(struct bnx2x *bp)
8590 {
8591 struct ilt_client_info *ilt_client;
8592 struct bnx2x_ilt *ilt = BP_ILT(bp);
8593 u16 line = 0;
8594
8595 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8596 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8597
8598 /* CDU */
8599 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8600 ilt_client->client_num = ILT_CLIENT_CDU;
8601 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8602 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8603 ilt_client->start = line;
8604 line += bnx2x_cid_ilt_lines(bp);
8605
8606 if (CNIC_SUPPORT(bp))
8607 line += CNIC_ILT_LINES;
8608 ilt_client->end = line - 1;
8609
8610 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8611 ilt_client->start,
8612 ilt_client->end,
8613 ilt_client->page_size,
8614 ilt_client->flags,
8615 ilog2(ilt_client->page_size >> 12));
8616
8617 /* QM */
8618 if (QM_INIT(bp->qm_cid_count)) {
8619 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8620 ilt_client->client_num = ILT_CLIENT_QM;
8621 ilt_client->page_size = QM_ILT_PAGE_SZ;
8622 ilt_client->flags = 0;
8623 ilt_client->start = line;
8624
8625 /* 4 bytes for each cid */
8626 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8627 QM_ILT_PAGE_SZ);
8628
8629 ilt_client->end = line - 1;
8630
8631 DP(NETIF_MSG_IFUP,
8632 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8633 ilt_client->start,
8634 ilt_client->end,
8635 ilt_client->page_size,
8636 ilt_client->flags,
8637 ilog2(ilt_client->page_size >> 12));
8638 }
8639
8640 if (CNIC_SUPPORT(bp)) {
8641 /* SRC */
8642 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8643 ilt_client->client_num = ILT_CLIENT_SRC;
8644 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8645 ilt_client->flags = 0;
8646 ilt_client->start = line;
8647 line += SRC_ILT_LINES;
8648 ilt_client->end = line - 1;
8649
8650 DP(NETIF_MSG_IFUP,
8651 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8652 ilt_client->start,
8653 ilt_client->end,
8654 ilt_client->page_size,
8655 ilt_client->flags,
8656 ilog2(ilt_client->page_size >> 12));
8657
8658 /* TM */
8659 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8660 ilt_client->client_num = ILT_CLIENT_TM;
8661 ilt_client->page_size = TM_ILT_PAGE_SZ;
8662 ilt_client->flags = 0;
8663 ilt_client->start = line;
8664 line += TM_ILT_LINES;
8665 ilt_client->end = line - 1;
8666
8667 DP(NETIF_MSG_IFUP,
8668 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8669 ilt_client->start,
8670 ilt_client->end,
8671 ilt_client->page_size,
8672 ilt_client->flags,
8673 ilog2(ilt_client->page_size >> 12));
8674 }
8675
8676 BUG_ON(line > ILT_MAX_LINES);
8677 }
8678
8679 /**
8680 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8681 *
8682 * @bp: driver handle
8683 * @fp: pointer to fastpath
8684 * @init_params: pointer to parameters structure
8685 *
8686 * parameters configured:
8687 * - HC configuration
8688 * - Queue's CDU context
8689 */
8690 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8691 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8692 {
8693 u8 cos;
8694 int cxt_index, cxt_offset;
8695
8696 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8697 if (!IS_FCOE_FP(fp)) {
8698 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8699 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8700
8701 /* If HC is supported, enable host coalescing in the transition
8702 * to INIT state.
8703 */
8704 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8705 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8706
8707 /* HC rate */
8708 init_params->rx.hc_rate = bp->rx_ticks ?
8709 (1000000 / bp->rx_ticks) : 0;
8710 init_params->tx.hc_rate = bp->tx_ticks ?
8711 (1000000 / bp->tx_ticks) : 0;
8712
8713 /* FW SB ID */
8714 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8715 fp->fw_sb_id;
8716
8717 /*
8718 * CQ index among the SB indices: FCoE clients uses the default
8719 * SB, therefore it's different.
8720 */
8721 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8722 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8723 }
8724
8725 /* set maximum number of COSs supported by this queue */
8726 init_params->max_cos = fp->max_cos;
8727
8728 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8729 fp->index, init_params->max_cos);
8730
8731 /* set the context pointers queue object */
8732 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8733 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8734 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8735 ILT_PAGE_CIDS);
8736 init_params->cxts[cos] =
8737 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8738 }
8739 }
8740
8741 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8742 struct bnx2x_queue_state_params *q_params,
8743 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8744 int tx_index, bool leading)
8745 {
8746 memset(tx_only_params, 0, sizeof(*tx_only_params));
8747
8748 /* Set the command */
8749 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8750
8751 /* Set tx-only QUEUE flags: don't zero statistics */
8752 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8753
8754 /* choose the index of the cid to send the slow path on */
8755 tx_only_params->cid_index = tx_index;
8756
8757 /* Set general TX_ONLY_SETUP parameters */
8758 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8759
8760 /* Set Tx TX_ONLY_SETUP parameters */
8761 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8762
8763 DP(NETIF_MSG_IFUP,
8764 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8765 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8766 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8767 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8768
8769 /* send the ramrod */
8770 return bnx2x_queue_state_change(bp, q_params);
8771 }
8772
8773 /**
8774 * bnx2x_setup_queue - setup queue
8775 *
8776 * @bp: driver handle
8777 * @fp: pointer to fastpath
8778 * @leading: is leading
8779 *
8780 * This function performs 2 steps in a Queue state machine
8781 * actually: 1) RESET->INIT 2) INIT->SETUP
8782 */
8783
8784 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8785 bool leading)
8786 {
8787 struct bnx2x_queue_state_params q_params = {NULL};
8788 struct bnx2x_queue_setup_params *setup_params =
8789 &q_params.params.setup;
8790 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8791 &q_params.params.tx_only;
8792 int rc;
8793 u8 tx_index;
8794
8795 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8796
8797 /* reset IGU state skip FCoE L2 queue */
8798 if (!IS_FCOE_FP(fp))
8799 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8800 IGU_INT_ENABLE, 0);
8801
8802 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8803 /* We want to wait for completion in this context */
8804 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8805
8806 /* Prepare the INIT parameters */
8807 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8808
8809 /* Set the command */
8810 q_params.cmd = BNX2X_Q_CMD_INIT;
8811
8812 /* Change the state to INIT */
8813 rc = bnx2x_queue_state_change(bp, &q_params);
8814 if (rc) {
8815 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8816 return rc;
8817 }
8818
8819 DP(NETIF_MSG_IFUP, "init complete\n");
8820
8821 /* Now move the Queue to the SETUP state... */
8822 memset(setup_params, 0, sizeof(*setup_params));
8823
8824 /* Set QUEUE flags */
8825 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8826
8827 /* Set general SETUP parameters */
8828 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8829 FIRST_TX_COS_INDEX);
8830
8831 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8832 &setup_params->rxq_params);
8833
8834 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8835 FIRST_TX_COS_INDEX);
8836
8837 /* Set the command */
8838 q_params.cmd = BNX2X_Q_CMD_SETUP;
8839
8840 if (IS_FCOE_FP(fp))
8841 bp->fcoe_init = true;
8842
8843 /* Change the state to SETUP */
8844 rc = bnx2x_queue_state_change(bp, &q_params);
8845 if (rc) {
8846 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8847 return rc;
8848 }
8849
8850 /* loop through the relevant tx-only indices */
8851 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8852 tx_index < fp->max_cos;
8853 tx_index++) {
8854
8855 /* prepare and send tx-only ramrod*/
8856 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8857 tx_only_params, tx_index, leading);
8858 if (rc) {
8859 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8860 fp->index, tx_index);
8861 return rc;
8862 }
8863 }
8864
8865 return rc;
8866 }
8867
8868 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8869 {
8870 struct bnx2x_fastpath *fp = &bp->fp[index];
8871 struct bnx2x_fp_txdata *txdata;
8872 struct bnx2x_queue_state_params q_params = {NULL};
8873 int rc, tx_index;
8874
8875 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8876
8877 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8878 /* We want to wait for completion in this context */
8879 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8880
8881 /* close tx-only connections */
8882 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8883 tx_index < fp->max_cos;
8884 tx_index++){
8885
8886 /* ascertain this is a normal queue*/
8887 txdata = fp->txdata_ptr[tx_index];
8888
8889 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8890 txdata->txq_index);
8891
8892 /* send halt terminate on tx-only connection */
8893 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8894 memset(&q_params.params.terminate, 0,
8895 sizeof(q_params.params.terminate));
8896 q_params.params.terminate.cid_index = tx_index;
8897
8898 rc = bnx2x_queue_state_change(bp, &q_params);
8899 if (rc)
8900 return rc;
8901
8902 /* send halt terminate on tx-only connection */
8903 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8904 memset(&q_params.params.cfc_del, 0,
8905 sizeof(q_params.params.cfc_del));
8906 q_params.params.cfc_del.cid_index = tx_index;
8907 rc = bnx2x_queue_state_change(bp, &q_params);
8908 if (rc)
8909 return rc;
8910 }
8911 /* Stop the primary connection: */
8912 /* ...halt the connection */
8913 q_params.cmd = BNX2X_Q_CMD_HALT;
8914 rc = bnx2x_queue_state_change(bp, &q_params);
8915 if (rc)
8916 return rc;
8917
8918 /* ...terminate the connection */
8919 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8920 memset(&q_params.params.terminate, 0,
8921 sizeof(q_params.params.terminate));
8922 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8923 rc = bnx2x_queue_state_change(bp, &q_params);
8924 if (rc)
8925 return rc;
8926 /* ...delete cfc entry */
8927 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8928 memset(&q_params.params.cfc_del, 0,
8929 sizeof(q_params.params.cfc_del));
8930 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8931 return bnx2x_queue_state_change(bp, &q_params);
8932 }
8933
8934 static void bnx2x_reset_func(struct bnx2x *bp)
8935 {
8936 int port = BP_PORT(bp);
8937 int func = BP_FUNC(bp);
8938 int i;
8939
8940 /* Disable the function in the FW */
8941 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8942 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8943 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8944 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8945
8946 /* FP SBs */
8947 for_each_eth_queue(bp, i) {
8948 struct bnx2x_fastpath *fp = &bp->fp[i];
8949 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8950 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8951 SB_DISABLED);
8952 }
8953
8954 if (CNIC_LOADED(bp))
8955 /* CNIC SB */
8956 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8957 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8958 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8959
8960 /* SP SB */
8961 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8962 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8963 SB_DISABLED);
8964
8965 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8966 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8967 0);
8968
8969 /* Configure IGU */
8970 if (bp->common.int_block == INT_BLOCK_HC) {
8971 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8972 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8973 } else {
8974 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8975 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8976 }
8977
8978 if (CNIC_LOADED(bp)) {
8979 /* Disable Timer scan */
8980 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8981 /*
8982 * Wait for at least 10ms and up to 2 second for the timers
8983 * scan to complete
8984 */
8985 for (i = 0; i < 200; i++) {
8986 usleep_range(10000, 20000);
8987 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8988 break;
8989 }
8990 }
8991 /* Clear ILT */
8992 bnx2x_clear_func_ilt(bp, func);
8993
8994 /* Timers workaround bug for E2: if this is vnic-3,
8995 * we need to set the entire ilt range for this timers.
8996 */
8997 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8998 struct ilt_client_info ilt_cli;
8999 /* use dummy TM client */
9000 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9001 ilt_cli.start = 0;
9002 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9003 ilt_cli.client_num = ILT_CLIENT_TM;
9004
9005 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9006 }
9007
9008 /* this assumes that reset_port() called before reset_func()*/
9009 if (!CHIP_IS_E1x(bp))
9010 bnx2x_pf_disable(bp);
9011
9012 bp->dmae_ready = 0;
9013 }
9014
9015 static void bnx2x_reset_port(struct bnx2x *bp)
9016 {
9017 int port = BP_PORT(bp);
9018 u32 val;
9019
9020 /* Reset physical Link */
9021 bnx2x__link_reset(bp);
9022
9023 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9024
9025 /* Do not rcv packets to BRB */
9026 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9027 /* Do not direct rcv packets that are not for MCP to the BRB */
9028 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9029 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9030
9031 /* Configure AEU */
9032 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9033
9034 msleep(100);
9035 /* Check for BRB port occupancy */
9036 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9037 if (val)
9038 DP(NETIF_MSG_IFDOWN,
9039 "BRB1 is not empty %d blocks are occupied\n", val);
9040
9041 /* TODO: Close Doorbell port? */
9042 }
9043
9044 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9045 {
9046 struct bnx2x_func_state_params func_params = {NULL};
9047
9048 /* Prepare parameters for function state transitions */
9049 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9050
9051 func_params.f_obj = &bp->func_obj;
9052 func_params.cmd = BNX2X_F_CMD_HW_RESET;
9053
9054 func_params.params.hw_init.load_phase = load_code;
9055
9056 return bnx2x_func_state_change(bp, &func_params);
9057 }
9058
9059 static int bnx2x_func_stop(struct bnx2x *bp)
9060 {
9061 struct bnx2x_func_state_params func_params = {NULL};
9062 int rc;
9063
9064 /* Prepare parameters for function state transitions */
9065 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9066 func_params.f_obj = &bp->func_obj;
9067 func_params.cmd = BNX2X_F_CMD_STOP;
9068
9069 /*
9070 * Try to stop the function the 'good way'. If fails (in case
9071 * of a parity error during bnx2x_chip_cleanup()) and we are
9072 * not in a debug mode, perform a state transaction in order to
9073 * enable further HW_RESET transaction.
9074 */
9075 rc = bnx2x_func_state_change(bp, &func_params);
9076 if (rc) {
9077 #ifdef BNX2X_STOP_ON_ERROR
9078 return rc;
9079 #else
9080 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9081 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9082 return bnx2x_func_state_change(bp, &func_params);
9083 #endif
9084 }
9085
9086 return 0;
9087 }
9088
9089 /**
9090 * bnx2x_send_unload_req - request unload mode from the MCP.
9091 *
9092 * @bp: driver handle
9093 * @unload_mode: requested function's unload mode
9094 *
9095 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9096 */
9097 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9098 {
9099 u32 reset_code = 0;
9100 int port = BP_PORT(bp);
9101
9102 /* Select the UNLOAD request mode */
9103 if (unload_mode == UNLOAD_NORMAL)
9104 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9105
9106 else if (bp->flags & NO_WOL_FLAG)
9107 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9108
9109 else if (bp->wol) {
9110 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9111 u8 *mac_addr = bp->dev->dev_addr;
9112 struct pci_dev *pdev = bp->pdev;
9113 u32 val;
9114 u16 pmc;
9115
9116 /* The mac address is written to entries 1-4 to
9117 * preserve entry 0 which is used by the PMF
9118 */
9119 u8 entry = (BP_VN(bp) + 1)*8;
9120
9121 val = (mac_addr[0] << 8) | mac_addr[1];
9122 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9123
9124 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9125 (mac_addr[4] << 8) | mac_addr[5];
9126 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9127
9128 /* Enable the PME and clear the status */
9129 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9130 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9131 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9132
9133 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9134
9135 } else
9136 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9137
9138 /* Send the request to the MCP */
9139 if (!BP_NOMCP(bp))
9140 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9141 else {
9142 int path = BP_PATH(bp);
9143
9144 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
9145 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9146 bnx2x_load_count[path][2]);
9147 bnx2x_load_count[path][0]--;
9148 bnx2x_load_count[path][1 + port]--;
9149 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
9150 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9151 bnx2x_load_count[path][2]);
9152 if (bnx2x_load_count[path][0] == 0)
9153 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9154 else if (bnx2x_load_count[path][1 + port] == 0)
9155 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9156 else
9157 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9158 }
9159
9160 return reset_code;
9161 }
9162
9163 /**
9164 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9165 *
9166 * @bp: driver handle
9167 * @keep_link: true iff link should be kept up
9168 */
9169 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9170 {
9171 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9172
9173 /* Report UNLOAD_DONE to MCP */
9174 if (!BP_NOMCP(bp))
9175 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9176 }
9177
9178 static int bnx2x_func_wait_started(struct bnx2x *bp)
9179 {
9180 int tout = 50;
9181 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9182
9183 if (!bp->port.pmf)
9184 return 0;
9185
9186 /*
9187 * (assumption: No Attention from MCP at this stage)
9188 * PMF probably in the middle of TX disable/enable transaction
9189 * 1. Sync IRS for default SB
9190 * 2. Sync SP queue - this guarantees us that attention handling started
9191 * 3. Wait, that TX disable/enable transaction completes
9192 *
9193 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9194 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9195 * received completion for the transaction the state is TX_STOPPED.
9196 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9197 * transaction.
9198 */
9199
9200 /* make sure default SB ISR is done */
9201 if (msix)
9202 synchronize_irq(bp->msix_table[0].vector);
9203 else
9204 synchronize_irq(bp->pdev->irq);
9205
9206 flush_workqueue(bnx2x_wq);
9207 flush_workqueue(bnx2x_iov_wq);
9208
9209 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9210 BNX2X_F_STATE_STARTED && tout--)
9211 msleep(20);
9212
9213 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9214 BNX2X_F_STATE_STARTED) {
9215 #ifdef BNX2X_STOP_ON_ERROR
9216 BNX2X_ERR("Wrong function state\n");
9217 return -EBUSY;
9218 #else
9219 /*
9220 * Failed to complete the transaction in a "good way"
9221 * Force both transactions with CLR bit
9222 */
9223 struct bnx2x_func_state_params func_params = {NULL};
9224
9225 DP(NETIF_MSG_IFDOWN,
9226 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9227
9228 func_params.f_obj = &bp->func_obj;
9229 __set_bit(RAMROD_DRV_CLR_ONLY,
9230 &func_params.ramrod_flags);
9231
9232 /* STARTED-->TX_ST0PPED */
9233 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9234 bnx2x_func_state_change(bp, &func_params);
9235
9236 /* TX_ST0PPED-->STARTED */
9237 func_params.cmd = BNX2X_F_CMD_TX_START;
9238 return bnx2x_func_state_change(bp, &func_params);
9239 #endif
9240 }
9241
9242 return 0;
9243 }
9244
9245 static void bnx2x_disable_ptp(struct bnx2x *bp)
9246 {
9247 int port = BP_PORT(bp);
9248
9249 /* Disable sending PTP packets to host */
9250 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9251 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9252
9253 /* Reset PTP event detection rules */
9254 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9255 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9256 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9257 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9258 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9259 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9260 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9261 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9262
9263 /* Disable the PTP feature */
9264 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9265 NIG_REG_P0_PTP_EN, 0x0);
9266 }
9267
9268 /* Called during unload, to stop PTP-related stuff */
9269 static void bnx2x_stop_ptp(struct bnx2x *bp)
9270 {
9271 /* Cancel PTP work queue. Should be done after the Tx queues are
9272 * drained to prevent additional scheduling.
9273 */
9274 cancel_work_sync(&bp->ptp_task);
9275
9276 if (bp->ptp_tx_skb) {
9277 dev_kfree_skb_any(bp->ptp_tx_skb);
9278 bp->ptp_tx_skb = NULL;
9279 }
9280
9281 /* Disable PTP in HW */
9282 bnx2x_disable_ptp(bp);
9283
9284 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9285 }
9286
9287 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9288 {
9289 int port = BP_PORT(bp);
9290 int i, rc = 0;
9291 u8 cos;
9292 struct bnx2x_mcast_ramrod_params rparam = {NULL};
9293 u32 reset_code;
9294
9295 /* Wait until tx fastpath tasks complete */
9296 for_each_tx_queue(bp, i) {
9297 struct bnx2x_fastpath *fp = &bp->fp[i];
9298
9299 for_each_cos_in_tx_queue(fp, cos)
9300 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9301 #ifdef BNX2X_STOP_ON_ERROR
9302 if (rc)
9303 return;
9304 #endif
9305 }
9306
9307 /* Give HW time to discard old tx messages */
9308 usleep_range(1000, 2000);
9309
9310 /* Clean all ETH MACs */
9311 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9312 false);
9313 if (rc < 0)
9314 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9315
9316 /* Clean up UC list */
9317 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9318 true);
9319 if (rc < 0)
9320 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9321 rc);
9322
9323 /* Disable LLH */
9324 if (!CHIP_IS_E1(bp))
9325 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9326
9327 /* Set "drop all" (stop Rx).
9328 * We need to take a netif_addr_lock() here in order to prevent
9329 * a race between the completion code and this code.
9330 */
9331 netif_addr_lock_bh(bp->dev);
9332 /* Schedule the rx_mode command */
9333 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9334 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9335 else
9336 bnx2x_set_storm_rx_mode(bp);
9337
9338 /* Cleanup multicast configuration */
9339 rparam.mcast_obj = &bp->mcast_obj;
9340 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9341 if (rc < 0)
9342 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9343
9344 netif_addr_unlock_bh(bp->dev);
9345
9346 bnx2x_iov_chip_cleanup(bp);
9347
9348 /*
9349 * Send the UNLOAD_REQUEST to the MCP. This will return if
9350 * this function should perform FUNC, PORT or COMMON HW
9351 * reset.
9352 */
9353 reset_code = bnx2x_send_unload_req(bp, unload_mode);
9354
9355 /*
9356 * (assumption: No Attention from MCP at this stage)
9357 * PMF probably in the middle of TX disable/enable transaction
9358 */
9359 rc = bnx2x_func_wait_started(bp);
9360 if (rc) {
9361 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9362 #ifdef BNX2X_STOP_ON_ERROR
9363 return;
9364 #endif
9365 }
9366
9367 /* Close multi and leading connections
9368 * Completions for ramrods are collected in a synchronous way
9369 */
9370 for_each_eth_queue(bp, i)
9371 if (bnx2x_stop_queue(bp, i))
9372 #ifdef BNX2X_STOP_ON_ERROR
9373 return;
9374 #else
9375 goto unload_error;
9376 #endif
9377
9378 if (CNIC_LOADED(bp)) {
9379 for_each_cnic_queue(bp, i)
9380 if (bnx2x_stop_queue(bp, i))
9381 #ifdef BNX2X_STOP_ON_ERROR
9382 return;
9383 #else
9384 goto unload_error;
9385 #endif
9386 }
9387
9388 /* If SP settings didn't get completed so far - something
9389 * very wrong has happen.
9390 */
9391 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9392 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9393
9394 #ifndef BNX2X_STOP_ON_ERROR
9395 unload_error:
9396 #endif
9397 rc = bnx2x_func_stop(bp);
9398 if (rc) {
9399 BNX2X_ERR("Function stop failed!\n");
9400 #ifdef BNX2X_STOP_ON_ERROR
9401 return;
9402 #endif
9403 }
9404
9405 /* stop_ptp should be after the Tx queues are drained to prevent
9406 * scheduling to the cancelled PTP work queue. It should also be after
9407 * function stop ramrod is sent, since as part of this ramrod FW access
9408 * PTP registers.
9409 */
9410 if (bp->flags & PTP_SUPPORTED)
9411 bnx2x_stop_ptp(bp);
9412
9413 /* Disable HW interrupts, NAPI */
9414 bnx2x_netif_stop(bp, 1);
9415 /* Delete all NAPI objects */
9416 bnx2x_del_all_napi(bp);
9417 if (CNIC_LOADED(bp))
9418 bnx2x_del_all_napi_cnic(bp);
9419
9420 /* Release IRQs */
9421 bnx2x_free_irq(bp);
9422
9423 /* Reset the chip, unless PCI function is offline. If we reach this
9424 * point following a PCI error handling, it means device is really
9425 * in a bad state and we're about to remove it, so reset the chip
9426 * is not a good idea.
9427 */
9428 if (!pci_channel_offline(bp->pdev)) {
9429 rc = bnx2x_reset_hw(bp, reset_code);
9430 if (rc)
9431 BNX2X_ERR("HW_RESET failed\n");
9432 }
9433
9434 /* Report UNLOAD_DONE to MCP */
9435 bnx2x_send_unload_done(bp, keep_link);
9436 }
9437
9438 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9439 {
9440 u32 val;
9441
9442 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9443
9444 if (CHIP_IS_E1(bp)) {
9445 int port = BP_PORT(bp);
9446 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9447 MISC_REG_AEU_MASK_ATTN_FUNC_0;
9448
9449 val = REG_RD(bp, addr);
9450 val &= ~(0x300);
9451 REG_WR(bp, addr, val);
9452 } else {
9453 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9454 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9455 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9456 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9457 }
9458 }
9459
9460 /* Close gates #2, #3 and #4: */
9461 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9462 {
9463 u32 val;
9464
9465 /* Gates #2 and #4a are closed/opened for "not E1" only */
9466 if (!CHIP_IS_E1(bp)) {
9467 /* #4 */
9468 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9469 /* #2 */
9470 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9471 }
9472
9473 /* #3 */
9474 if (CHIP_IS_E1x(bp)) {
9475 /* Prevent interrupts from HC on both ports */
9476 val = REG_RD(bp, HC_REG_CONFIG_1);
9477 REG_WR(bp, HC_REG_CONFIG_1,
9478 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9479 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9480
9481 val = REG_RD(bp, HC_REG_CONFIG_0);
9482 REG_WR(bp, HC_REG_CONFIG_0,
9483 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9484 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9485 } else {
9486 /* Prevent incoming interrupts in IGU */
9487 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9488
9489 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9490 (!close) ?
9491 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9492 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9493 }
9494
9495 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9496 close ? "closing" : "opening");
9497 mmiowb();
9498 }
9499
9500 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9501
9502 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9503 {
9504 /* Do some magic... */
9505 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9506 *magic_val = val & SHARED_MF_CLP_MAGIC;
9507 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9508 }
9509
9510 /**
9511 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9512 *
9513 * @bp: driver handle
9514 * @magic_val: old value of the `magic' bit.
9515 */
9516 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9517 {
9518 /* Restore the `magic' bit value... */
9519 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9520 MF_CFG_WR(bp, shared_mf_config.clp_mb,
9521 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9522 }
9523
9524 /**
9525 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9526 *
9527 * @bp: driver handle
9528 * @magic_val: old value of 'magic' bit.
9529 *
9530 * Takes care of CLP configurations.
9531 */
9532 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9533 {
9534 u32 shmem;
9535 u32 validity_offset;
9536
9537 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9538
9539 /* Set `magic' bit in order to save MF config */
9540 if (!CHIP_IS_E1(bp))
9541 bnx2x_clp_reset_prep(bp, magic_val);
9542
9543 /* Get shmem offset */
9544 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9545 validity_offset =
9546 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9547
9548 /* Clear validity map flags */
9549 if (shmem > 0)
9550 REG_WR(bp, shmem + validity_offset, 0);
9551 }
9552
9553 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9554 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9555
9556 /**
9557 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9558 *
9559 * @bp: driver handle
9560 */
9561 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9562 {
9563 /* special handling for emulation and FPGA,
9564 wait 10 times longer */
9565 if (CHIP_REV_IS_SLOW(bp))
9566 msleep(MCP_ONE_TIMEOUT*10);
9567 else
9568 msleep(MCP_ONE_TIMEOUT);
9569 }
9570
9571 /*
9572 * initializes bp->common.shmem_base and waits for validity signature to appear
9573 */
9574 static int bnx2x_init_shmem(struct bnx2x *bp)
9575 {
9576 int cnt = 0;
9577 u32 val = 0;
9578
9579 do {
9580 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9581 if (bp->common.shmem_base) {
9582 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9583 if (val & SHR_MEM_VALIDITY_MB)
9584 return 0;
9585 }
9586
9587 bnx2x_mcp_wait_one(bp);
9588
9589 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9590
9591 BNX2X_ERR("BAD MCP validity signature\n");
9592
9593 return -ENODEV;
9594 }
9595
9596 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9597 {
9598 int rc = bnx2x_init_shmem(bp);
9599
9600 /* Restore the `magic' bit value */
9601 if (!CHIP_IS_E1(bp))
9602 bnx2x_clp_reset_done(bp, magic_val);
9603
9604 return rc;
9605 }
9606
9607 static void bnx2x_pxp_prep(struct bnx2x *bp)
9608 {
9609 if (!CHIP_IS_E1(bp)) {
9610 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9611 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9612 mmiowb();
9613 }
9614 }
9615
9616 /*
9617 * Reset the whole chip except for:
9618 * - PCIE core
9619 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9620 * one reset bit)
9621 * - IGU
9622 * - MISC (including AEU)
9623 * - GRC
9624 * - RBCN, RBCP
9625 */
9626 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9627 {
9628 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9629 u32 global_bits2, stay_reset2;
9630
9631 /*
9632 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9633 * (per chip) blocks.
9634 */
9635 global_bits2 =
9636 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9637 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9638
9639 /* Don't reset the following blocks.
9640 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9641 * reset, as in 4 port device they might still be owned
9642 * by the MCP (there is only one leader per path).
9643 */
9644 not_reset_mask1 =
9645 MISC_REGISTERS_RESET_REG_1_RST_HC |
9646 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9647 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9648
9649 not_reset_mask2 =
9650 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9651 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9652 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9653 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9654 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9655 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9656 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9657 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9658 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9659 MISC_REGISTERS_RESET_REG_2_PGLC |
9660 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9661 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9662 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9663 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9664 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9665 MISC_REGISTERS_RESET_REG_2_UMAC1;
9666
9667 /*
9668 * Keep the following blocks in reset:
9669 * - all xxMACs are handled by the bnx2x_link code.
9670 */
9671 stay_reset2 =
9672 MISC_REGISTERS_RESET_REG_2_XMAC |
9673 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9674
9675 /* Full reset masks according to the chip */
9676 reset_mask1 = 0xffffffff;
9677
9678 if (CHIP_IS_E1(bp))
9679 reset_mask2 = 0xffff;
9680 else if (CHIP_IS_E1H(bp))
9681 reset_mask2 = 0x1ffff;
9682 else if (CHIP_IS_E2(bp))
9683 reset_mask2 = 0xfffff;
9684 else /* CHIP_IS_E3 */
9685 reset_mask2 = 0x3ffffff;
9686
9687 /* Don't reset global blocks unless we need to */
9688 if (!global)
9689 reset_mask2 &= ~global_bits2;
9690
9691 /*
9692 * In case of attention in the QM, we need to reset PXP
9693 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9694 * because otherwise QM reset would release 'close the gates' shortly
9695 * before resetting the PXP, then the PSWRQ would send a write
9696 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9697 * read the payload data from PSWWR, but PSWWR would not
9698 * respond. The write queue in PGLUE would stuck, dmae commands
9699 * would not return. Therefore it's important to reset the second
9700 * reset register (containing the
9701 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9702 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9703 * bit).
9704 */
9705 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9706 reset_mask2 & (~not_reset_mask2));
9707
9708 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9709 reset_mask1 & (~not_reset_mask1));
9710
9711 barrier();
9712 mmiowb();
9713
9714 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9715 reset_mask2 & (~stay_reset2));
9716
9717 barrier();
9718 mmiowb();
9719
9720 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9721 mmiowb();
9722 }
9723
9724 /**
9725 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9726 * It should get cleared in no more than 1s.
9727 *
9728 * @bp: driver handle
9729 *
9730 * It should get cleared in no more than 1s. Returns 0 if
9731 * pending writes bit gets cleared.
9732 */
9733 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9734 {
9735 u32 cnt = 1000;
9736 u32 pend_bits = 0;
9737
9738 do {
9739 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9740
9741 if (pend_bits == 0)
9742 break;
9743
9744 usleep_range(1000, 2000);
9745 } while (cnt-- > 0);
9746
9747 if (cnt <= 0) {
9748 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9749 pend_bits);
9750 return -EBUSY;
9751 }
9752
9753 return 0;
9754 }
9755
9756 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9757 {
9758 int cnt = 1000;
9759 u32 val = 0;
9760 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9761 u32 tags_63_32 = 0;
9762
9763 /* Empty the Tetris buffer, wait for 1s */
9764 do {
9765 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9766 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9767 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9768 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9769 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9770 if (CHIP_IS_E3(bp))
9771 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9772
9773 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9774 ((port_is_idle_0 & 0x1) == 0x1) &&
9775 ((port_is_idle_1 & 0x1) == 0x1) &&
9776 (pgl_exp_rom2 == 0xffffffff) &&
9777 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9778 break;
9779 usleep_range(1000, 2000);
9780 } while (cnt-- > 0);
9781
9782 if (cnt <= 0) {
9783 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9784 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9785 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9786 pgl_exp_rom2);
9787 return -EAGAIN;
9788 }
9789
9790 barrier();
9791
9792 /* Close gates #2, #3 and #4 */
9793 bnx2x_set_234_gates(bp, true);
9794
9795 /* Poll for IGU VQs for 57712 and newer chips */
9796 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9797 return -EAGAIN;
9798
9799 /* TBD: Indicate that "process kill" is in progress to MCP */
9800
9801 /* Clear "unprepared" bit */
9802 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9803 barrier();
9804
9805 /* Make sure all is written to the chip before the reset */
9806 mmiowb();
9807
9808 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9809 * PSWHST, GRC and PSWRD Tetris buffer.
9810 */
9811 usleep_range(1000, 2000);
9812
9813 /* Prepare to chip reset: */
9814 /* MCP */
9815 if (global)
9816 bnx2x_reset_mcp_prep(bp, &val);
9817
9818 /* PXP */
9819 bnx2x_pxp_prep(bp);
9820 barrier();
9821
9822 /* reset the chip */
9823 bnx2x_process_kill_chip_reset(bp, global);
9824 barrier();
9825
9826 /* clear errors in PGB */
9827 if (!CHIP_IS_E1x(bp))
9828 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9829
9830 /* Recover after reset: */
9831 /* MCP */
9832 if (global && bnx2x_reset_mcp_comp(bp, val))
9833 return -EAGAIN;
9834
9835 /* TBD: Add resetting the NO_MCP mode DB here */
9836
9837 /* Open the gates #2, #3 and #4 */
9838 bnx2x_set_234_gates(bp, false);
9839
9840 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9841 * reset state, re-enable attentions. */
9842
9843 return 0;
9844 }
9845
9846 static int bnx2x_leader_reset(struct bnx2x *bp)
9847 {
9848 int rc = 0;
9849 bool global = bnx2x_reset_is_global(bp);
9850 u32 load_code;
9851
9852 /* if not going to reset MCP - load "fake" driver to reset HW while
9853 * driver is owner of the HW
9854 */
9855 if (!global && !BP_NOMCP(bp)) {
9856 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9857 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9858 if (!load_code) {
9859 BNX2X_ERR("MCP response failure, aborting\n");
9860 rc = -EAGAIN;
9861 goto exit_leader_reset;
9862 }
9863 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9864 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9865 BNX2X_ERR("MCP unexpected resp, aborting\n");
9866 rc = -EAGAIN;
9867 goto exit_leader_reset2;
9868 }
9869 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9870 if (!load_code) {
9871 BNX2X_ERR("MCP response failure, aborting\n");
9872 rc = -EAGAIN;
9873 goto exit_leader_reset2;
9874 }
9875 }
9876
9877 /* Try to recover after the failure */
9878 if (bnx2x_process_kill(bp, global)) {
9879 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9880 BP_PATH(bp));
9881 rc = -EAGAIN;
9882 goto exit_leader_reset2;
9883 }
9884
9885 /*
9886 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9887 * state.
9888 */
9889 bnx2x_set_reset_done(bp);
9890 if (global)
9891 bnx2x_clear_reset_global(bp);
9892
9893 exit_leader_reset2:
9894 /* unload "fake driver" if it was loaded */
9895 if (!global && !BP_NOMCP(bp)) {
9896 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9897 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9898 }
9899 exit_leader_reset:
9900 bp->is_leader = 0;
9901 bnx2x_release_leader_lock(bp);
9902 smp_mb();
9903 return rc;
9904 }
9905
9906 static void bnx2x_recovery_failed(struct bnx2x *bp)
9907 {
9908 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9909
9910 /* Disconnect this device */
9911 netif_device_detach(bp->dev);
9912
9913 /*
9914 * Block ifup for all function on this engine until "process kill"
9915 * or power cycle.
9916 */
9917 bnx2x_set_reset_in_progress(bp);
9918
9919 /* Shut down the power */
9920 bnx2x_set_power_state(bp, PCI_D3hot);
9921
9922 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9923
9924 smp_mb();
9925 }
9926
9927 /*
9928 * Assumption: runs under rtnl lock. This together with the fact
9929 * that it's called only from bnx2x_sp_rtnl() ensure that it
9930 * will never be called when netif_running(bp->dev) is false.
9931 */
9932 static void bnx2x_parity_recover(struct bnx2x *bp)
9933 {
9934 bool global = false;
9935 u32 error_recovered, error_unrecovered;
9936 bool is_parity;
9937
9938 DP(NETIF_MSG_HW, "Handling parity\n");
9939 while (1) {
9940 switch (bp->recovery_state) {
9941 case BNX2X_RECOVERY_INIT:
9942 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9943 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9944 WARN_ON(!is_parity);
9945
9946 /* Try to get a LEADER_LOCK HW lock */
9947 if (bnx2x_trylock_leader_lock(bp)) {
9948 bnx2x_set_reset_in_progress(bp);
9949 /*
9950 * Check if there is a global attention and if
9951 * there was a global attention, set the global
9952 * reset bit.
9953 */
9954
9955 if (global)
9956 bnx2x_set_reset_global(bp);
9957
9958 bp->is_leader = 1;
9959 }
9960
9961 /* Stop the driver */
9962 /* If interface has been removed - break */
9963 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9964 return;
9965
9966 bp->recovery_state = BNX2X_RECOVERY_WAIT;
9967
9968 /* Ensure "is_leader", MCP command sequence and
9969 * "recovery_state" update values are seen on other
9970 * CPUs.
9971 */
9972 smp_mb();
9973 break;
9974
9975 case BNX2X_RECOVERY_WAIT:
9976 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9977 if (bp->is_leader) {
9978 int other_engine = BP_PATH(bp) ? 0 : 1;
9979 bool other_load_status =
9980 bnx2x_get_load_status(bp, other_engine);
9981 bool load_status =
9982 bnx2x_get_load_status(bp, BP_PATH(bp));
9983 global = bnx2x_reset_is_global(bp);
9984
9985 /*
9986 * In case of a parity in a global block, let
9987 * the first leader that performs a
9988 * leader_reset() reset the global blocks in
9989 * order to clear global attentions. Otherwise
9990 * the gates will remain closed for that
9991 * engine.
9992 */
9993 if (load_status ||
9994 (global && other_load_status)) {
9995 /* Wait until all other functions get
9996 * down.
9997 */
9998 schedule_delayed_work(&bp->sp_rtnl_task,
9999 HZ/10);
10000 return;
10001 } else {
10002 /* If all other functions got down -
10003 * try to bring the chip back to
10004 * normal. In any case it's an exit
10005 * point for a leader.
10006 */
10007 if (bnx2x_leader_reset(bp)) {
10008 bnx2x_recovery_failed(bp);
10009 return;
10010 }
10011
10012 /* If we are here, means that the
10013 * leader has succeeded and doesn't
10014 * want to be a leader any more. Try
10015 * to continue as a none-leader.
10016 */
10017 break;
10018 }
10019 } else { /* non-leader */
10020 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10021 /* Try to get a LEADER_LOCK HW lock as
10022 * long as a former leader may have
10023 * been unloaded by the user or
10024 * released a leadership by another
10025 * reason.
10026 */
10027 if (bnx2x_trylock_leader_lock(bp)) {
10028 /* I'm a leader now! Restart a
10029 * switch case.
10030 */
10031 bp->is_leader = 1;
10032 break;
10033 }
10034
10035 schedule_delayed_work(&bp->sp_rtnl_task,
10036 HZ/10);
10037 return;
10038
10039 } else {
10040 /*
10041 * If there was a global attention, wait
10042 * for it to be cleared.
10043 */
10044 if (bnx2x_reset_is_global(bp)) {
10045 schedule_delayed_work(
10046 &bp->sp_rtnl_task,
10047 HZ/10);
10048 return;
10049 }
10050
10051 error_recovered =
10052 bp->eth_stats.recoverable_error;
10053 error_unrecovered =
10054 bp->eth_stats.unrecoverable_error;
10055 bp->recovery_state =
10056 BNX2X_RECOVERY_NIC_LOADING;
10057 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10058 error_unrecovered++;
10059 netdev_err(bp->dev,
10060 "Recovery failed. Power cycle needed\n");
10061 /* Disconnect this device */
10062 netif_device_detach(bp->dev);
10063 /* Shut down the power */
10064 bnx2x_set_power_state(
10065 bp, PCI_D3hot);
10066 smp_mb();
10067 } else {
10068 bp->recovery_state =
10069 BNX2X_RECOVERY_DONE;
10070 error_recovered++;
10071 smp_mb();
10072 }
10073 bp->eth_stats.recoverable_error =
10074 error_recovered;
10075 bp->eth_stats.unrecoverable_error =
10076 error_unrecovered;
10077
10078 return;
10079 }
10080 }
10081 default:
10082 return;
10083 }
10084 }
10085 }
10086
10087 static int bnx2x_udp_port_update(struct bnx2x *bp)
10088 {
10089 struct bnx2x_func_switch_update_params *switch_update_params;
10090 struct bnx2x_func_state_params func_params = {NULL};
10091 struct bnx2x_udp_tunnel *udp_tunnel;
10092 u16 vxlan_port = 0, geneve_port = 0;
10093 int rc;
10094
10095 switch_update_params = &func_params.params.switch_update;
10096
10097 /* Prepare parameters for function state transitions */
10098 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10099 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10100
10101 func_params.f_obj = &bp->func_obj;
10102 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10103
10104 /* Function parameters */
10105 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10106 &switch_update_params->changes);
10107
10108 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10109 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10110 geneve_port = udp_tunnel->dst_port;
10111 switch_update_params->geneve_dst_port = geneve_port;
10112 }
10113
10114 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10115 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10116 vxlan_port = udp_tunnel->dst_port;
10117 switch_update_params->vxlan_dst_port = vxlan_port;
10118 }
10119
10120 /* Re-enable inner-rss for the offloaded UDP tunnels */
10121 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10122 &switch_update_params->changes);
10123
10124 rc = bnx2x_func_state_change(bp, &func_params);
10125 if (rc)
10126 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10127 vxlan_port, geneve_port, rc);
10128 else
10129 DP(BNX2X_MSG_SP,
10130 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10131 vxlan_port, geneve_port);
10132
10133 return rc;
10134 }
10135
10136 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10137 enum bnx2x_udp_port_type type)
10138 {
10139 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10140
10141 if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp))
10142 return;
10143
10144 if (udp_port->count && udp_port->dst_port == port) {
10145 udp_port->count++;
10146 return;
10147 }
10148
10149 if (udp_port->count) {
10150 DP(BNX2X_MSG_SP,
10151 "UDP tunnel [%d] - destination port limit reached\n",
10152 type);
10153 return;
10154 }
10155
10156 udp_port->dst_port = port;
10157 udp_port->count = 1;
10158 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10159 }
10160
10161 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10162 enum bnx2x_udp_port_type type)
10163 {
10164 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10165
10166 if (!IS_PF(bp) || CHIP_IS_E1x(bp))
10167 return;
10168
10169 if (!udp_port->count || udp_port->dst_port != port) {
10170 DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10171 type);
10172 return;
10173 }
10174
10175 /* Remove reference, and make certain it's no longer in use */
10176 udp_port->count--;
10177 if (udp_port->count)
10178 return;
10179 udp_port->dst_port = 0;
10180
10181 if (netif_running(bp->dev))
10182 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10183 else
10184 DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10185 type, port);
10186 }
10187
10188 static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10189 struct udp_tunnel_info *ti)
10190 {
10191 struct bnx2x *bp = netdev_priv(netdev);
10192 u16 t_port = ntohs(ti->port);
10193
10194 switch (ti->type) {
10195 case UDP_TUNNEL_TYPE_VXLAN:
10196 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10197 break;
10198 case UDP_TUNNEL_TYPE_GENEVE:
10199 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10200 break;
10201 default:
10202 break;
10203 }
10204 }
10205
10206 static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10207 struct udp_tunnel_info *ti)
10208 {
10209 struct bnx2x *bp = netdev_priv(netdev);
10210 u16 t_port = ntohs(ti->port);
10211
10212 switch (ti->type) {
10213 case UDP_TUNNEL_TYPE_VXLAN:
10214 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10215 break;
10216 case UDP_TUNNEL_TYPE_GENEVE:
10217 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10218 break;
10219 default:
10220 break;
10221 }
10222 }
10223
10224 static int bnx2x_close(struct net_device *dev);
10225
10226 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10227 * scheduled on a general queue in order to prevent a dead lock.
10228 */
10229 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10230 {
10231 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10232
10233 rtnl_lock();
10234
10235 if (!netif_running(bp->dev)) {
10236 rtnl_unlock();
10237 return;
10238 }
10239
10240 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10241 #ifdef BNX2X_STOP_ON_ERROR
10242 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10243 "you will need to reboot when done\n");
10244 goto sp_rtnl_not_reset;
10245 #endif
10246 /*
10247 * Clear all pending SP commands as we are going to reset the
10248 * function anyway.
10249 */
10250 bp->sp_rtnl_state = 0;
10251 smp_mb();
10252
10253 bnx2x_parity_recover(bp);
10254
10255 rtnl_unlock();
10256 return;
10257 }
10258
10259 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10260 #ifdef BNX2X_STOP_ON_ERROR
10261 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10262 "you will need to reboot when done\n");
10263 goto sp_rtnl_not_reset;
10264 #endif
10265
10266 /*
10267 * Clear all pending SP commands as we are going to reset the
10268 * function anyway.
10269 */
10270 bp->sp_rtnl_state = 0;
10271 smp_mb();
10272
10273 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10274 bnx2x_nic_load(bp, LOAD_NORMAL);
10275
10276 rtnl_unlock();
10277 return;
10278 }
10279 #ifdef BNX2X_STOP_ON_ERROR
10280 sp_rtnl_not_reset:
10281 #endif
10282 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10283 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10284 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10285 bnx2x_after_function_update(bp);
10286 /*
10287 * in case of fan failure we need to reset id if the "stop on error"
10288 * debug flag is set, since we trying to prevent permanent overheating
10289 * damage
10290 */
10291 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10292 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10293 netif_device_detach(bp->dev);
10294 bnx2x_close(bp->dev);
10295 rtnl_unlock();
10296 return;
10297 }
10298
10299 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10300 DP(BNX2X_MSG_SP,
10301 "sending set mcast vf pf channel message from rtnl sp-task\n");
10302 bnx2x_vfpf_set_mcast(bp->dev);
10303 }
10304 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10305 &bp->sp_rtnl_state)){
10306 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10307 bnx2x_tx_disable(bp);
10308 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10309 }
10310 }
10311
10312 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10313 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10314 bnx2x_set_rx_mode_inner(bp);
10315 }
10316
10317 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10318 &bp->sp_rtnl_state))
10319 bnx2x_pf_set_vfs_vlan(bp);
10320
10321 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10322 bnx2x_dcbx_stop_hw_tx(bp);
10323 bnx2x_dcbx_resume_hw_tx(bp);
10324 }
10325
10326 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10327 &bp->sp_rtnl_state))
10328 bnx2x_update_mng_version(bp);
10329
10330 if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10331 &bp->sp_rtnl_state)) {
10332 if (bnx2x_udp_port_update(bp)) {
10333 /* On error, forget configuration */
10334 memset(bp->udp_tunnel_ports, 0,
10335 sizeof(struct bnx2x_udp_tunnel) *
10336 BNX2X_UDP_PORT_MAX);
10337 } else {
10338 /* Since we don't store additional port information,
10339 * if no ports are configured for any feature ask for
10340 * information about currently configured ports.
10341 */
10342 if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10343 !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10344 udp_tunnel_get_rx_info(bp->dev);
10345 }
10346 }
10347
10348 /* work which needs rtnl lock not-taken (as it takes the lock itself and
10349 * can be called from other contexts as well)
10350 */
10351 rtnl_unlock();
10352
10353 /* enable SR-IOV if applicable */
10354 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10355 &bp->sp_rtnl_state)) {
10356 bnx2x_disable_sriov(bp);
10357 bnx2x_enable_sriov(bp);
10358 }
10359 }
10360
10361 static void bnx2x_period_task(struct work_struct *work)
10362 {
10363 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10364
10365 if (!netif_running(bp->dev))
10366 goto period_task_exit;
10367
10368 if (CHIP_REV_IS_SLOW(bp)) {
10369 BNX2X_ERR("period task called on emulation, ignoring\n");
10370 goto period_task_exit;
10371 }
10372
10373 bnx2x_acquire_phy_lock(bp);
10374 /*
10375 * The barrier is needed to ensure the ordering between the writing to
10376 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10377 * the reading here.
10378 */
10379 smp_mb();
10380 if (bp->port.pmf) {
10381 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10382
10383 /* Re-queue task in 1 sec */
10384 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10385 }
10386
10387 bnx2x_release_phy_lock(bp);
10388 period_task_exit:
10389 return;
10390 }
10391
10392 /*
10393 * Init service functions
10394 */
10395
10396 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10397 {
10398 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10399 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10400 return base + (BP_ABS_FUNC(bp)) * stride;
10401 }
10402
10403 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10404 u8 port, u32 reset_reg,
10405 struct bnx2x_mac_vals *vals)
10406 {
10407 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10408 u32 base_addr;
10409
10410 if (!(mask & reset_reg))
10411 return false;
10412
10413 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10414 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10415 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10416 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10417 REG_WR(bp, vals->umac_addr[port], 0);
10418
10419 return true;
10420 }
10421
10422 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10423 struct bnx2x_mac_vals *vals)
10424 {
10425 u32 val, base_addr, offset, mask, reset_reg;
10426 bool mac_stopped = false;
10427 u8 port = BP_PORT(bp);
10428
10429 /* reset addresses as they also mark which values were changed */
10430 memset(vals, 0, sizeof(*vals));
10431
10432 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10433
10434 if (!CHIP_IS_E3(bp)) {
10435 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10436 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10437 if ((mask & reset_reg) && val) {
10438 u32 wb_data[2];
10439 BNX2X_DEV_INFO("Disable bmac Rx\n");
10440 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10441 : NIG_REG_INGRESS_BMAC0_MEM;
10442 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10443 : BIGMAC_REGISTER_BMAC_CONTROL;
10444
10445 /*
10446 * use rd/wr since we cannot use dmae. This is safe
10447 * since MCP won't access the bus due to the request
10448 * to unload, and no function on the path can be
10449 * loaded at this time.
10450 */
10451 wb_data[0] = REG_RD(bp, base_addr + offset);
10452 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10453 vals->bmac_addr = base_addr + offset;
10454 vals->bmac_val[0] = wb_data[0];
10455 vals->bmac_val[1] = wb_data[1];
10456 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10457 REG_WR(bp, vals->bmac_addr, wb_data[0]);
10458 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10459 }
10460 BNX2X_DEV_INFO("Disable emac Rx\n");
10461 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10462 vals->emac_val = REG_RD(bp, vals->emac_addr);
10463 REG_WR(bp, vals->emac_addr, 0);
10464 mac_stopped = true;
10465 } else {
10466 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10467 BNX2X_DEV_INFO("Disable xmac Rx\n");
10468 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10469 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10470 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10471 val & ~(1 << 1));
10472 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10473 val | (1 << 1));
10474 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10475 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10476 REG_WR(bp, vals->xmac_addr, 0);
10477 mac_stopped = true;
10478 }
10479
10480 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10481 reset_reg, vals);
10482 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10483 reset_reg, vals);
10484 }
10485
10486 if (mac_stopped)
10487 msleep(20);
10488 }
10489
10490 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10491 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10492 0x1848 + ((f) << 4))
10493 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
10494 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
10495 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
10496
10497 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
10498 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
10499 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
10500
10501 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10502 {
10503 /* UNDI marks its presence in DORQ -
10504 * it initializes CID offset for normal bell to 0x7
10505 */
10506 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10507 MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10508 return false;
10509
10510 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10511 BNX2X_DEV_INFO("UNDI previously loaded\n");
10512 return true;
10513 }
10514
10515 return false;
10516 }
10517
10518 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10519 {
10520 u16 rcq, bd;
10521 u32 addr, tmp_reg;
10522
10523 if (BP_FUNC(bp) < 2)
10524 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10525 else
10526 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10527
10528 tmp_reg = REG_RD(bp, addr);
10529 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10530 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10531
10532 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10533 REG_WR(bp, addr, tmp_reg);
10534
10535 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10536 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10537 }
10538
10539 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10540 {
10541 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10542 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10543 if (!rc) {
10544 BNX2X_ERR("MCP response failure, aborting\n");
10545 return -EBUSY;
10546 }
10547
10548 return 0;
10549 }
10550
10551 static struct bnx2x_prev_path_list *
10552 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10553 {
10554 struct bnx2x_prev_path_list *tmp_list;
10555
10556 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10557 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10558 bp->pdev->bus->number == tmp_list->bus &&
10559 BP_PATH(bp) == tmp_list->path)
10560 return tmp_list;
10561
10562 return NULL;
10563 }
10564
10565 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10566 {
10567 struct bnx2x_prev_path_list *tmp_list;
10568 int rc;
10569
10570 rc = down_interruptible(&bnx2x_prev_sem);
10571 if (rc) {
10572 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10573 return rc;
10574 }
10575
10576 tmp_list = bnx2x_prev_path_get_entry(bp);
10577 if (tmp_list) {
10578 tmp_list->aer = 1;
10579 rc = 0;
10580 } else {
10581 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10582 BP_PATH(bp));
10583 }
10584
10585 up(&bnx2x_prev_sem);
10586
10587 return rc;
10588 }
10589
10590 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10591 {
10592 struct bnx2x_prev_path_list *tmp_list;
10593 bool rc = false;
10594
10595 if (down_trylock(&bnx2x_prev_sem))
10596 return false;
10597
10598 tmp_list = bnx2x_prev_path_get_entry(bp);
10599 if (tmp_list) {
10600 if (tmp_list->aer) {
10601 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10602 BP_PATH(bp));
10603 } else {
10604 rc = true;
10605 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10606 BP_PATH(bp));
10607 }
10608 }
10609
10610 up(&bnx2x_prev_sem);
10611
10612 return rc;
10613 }
10614
10615 bool bnx2x_port_after_undi(struct bnx2x *bp)
10616 {
10617 struct bnx2x_prev_path_list *entry;
10618 bool val;
10619
10620 down(&bnx2x_prev_sem);
10621
10622 entry = bnx2x_prev_path_get_entry(bp);
10623 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10624
10625 up(&bnx2x_prev_sem);
10626
10627 return val;
10628 }
10629
10630 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10631 {
10632 struct bnx2x_prev_path_list *tmp_list;
10633 int rc;
10634
10635 rc = down_interruptible(&bnx2x_prev_sem);
10636 if (rc) {
10637 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10638 return rc;
10639 }
10640
10641 /* Check whether the entry for this path already exists */
10642 tmp_list = bnx2x_prev_path_get_entry(bp);
10643 if (tmp_list) {
10644 if (!tmp_list->aer) {
10645 BNX2X_ERR("Re-Marking the path.\n");
10646 } else {
10647 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10648 BP_PATH(bp));
10649 tmp_list->aer = 0;
10650 }
10651 up(&bnx2x_prev_sem);
10652 return 0;
10653 }
10654 up(&bnx2x_prev_sem);
10655
10656 /* Create an entry for this path and add it */
10657 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10658 if (!tmp_list) {
10659 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10660 return -ENOMEM;
10661 }
10662
10663 tmp_list->bus = bp->pdev->bus->number;
10664 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10665 tmp_list->path = BP_PATH(bp);
10666 tmp_list->aer = 0;
10667 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10668
10669 rc = down_interruptible(&bnx2x_prev_sem);
10670 if (rc) {
10671 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10672 kfree(tmp_list);
10673 } else {
10674 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10675 BP_PATH(bp));
10676 list_add(&tmp_list->list, &bnx2x_prev_list);
10677 up(&bnx2x_prev_sem);
10678 }
10679
10680 return rc;
10681 }
10682
10683 static int bnx2x_do_flr(struct bnx2x *bp)
10684 {
10685 struct pci_dev *dev = bp->pdev;
10686
10687 if (CHIP_IS_E1x(bp)) {
10688 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10689 return -EINVAL;
10690 }
10691
10692 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10693 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10694 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10695 bp->common.bc_ver);
10696 return -EINVAL;
10697 }
10698
10699 if (!pci_wait_for_pending_transaction(dev))
10700 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10701
10702 BNX2X_DEV_INFO("Initiating FLR\n");
10703 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10704
10705 return 0;
10706 }
10707
10708 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10709 {
10710 int rc;
10711
10712 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10713
10714 /* Test if previous unload process was already finished for this path */
10715 if (bnx2x_prev_is_path_marked(bp))
10716 return bnx2x_prev_mcp_done(bp);
10717
10718 BNX2X_DEV_INFO("Path is unmarked\n");
10719
10720 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10721 if (bnx2x_prev_is_after_undi(bp))
10722 goto out;
10723
10724 /* If function has FLR capabilities, and existing FW version matches
10725 * the one required, then FLR will be sufficient to clean any residue
10726 * left by previous driver
10727 */
10728 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10729
10730 if (!rc) {
10731 /* fw version is good */
10732 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10733 rc = bnx2x_do_flr(bp);
10734 }
10735
10736 if (!rc) {
10737 /* FLR was performed */
10738 BNX2X_DEV_INFO("FLR successful\n");
10739 return 0;
10740 }
10741
10742 BNX2X_DEV_INFO("Could not FLR\n");
10743
10744 out:
10745 /* Close the MCP request, return failure*/
10746 rc = bnx2x_prev_mcp_done(bp);
10747 if (!rc)
10748 rc = BNX2X_PREV_WAIT_NEEDED;
10749
10750 return rc;
10751 }
10752
10753 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10754 {
10755 u32 reset_reg, tmp_reg = 0, rc;
10756 bool prev_undi = false;
10757 struct bnx2x_mac_vals mac_vals;
10758
10759 /* It is possible a previous function received 'common' answer,
10760 * but hasn't loaded yet, therefore creating a scenario of
10761 * multiple functions receiving 'common' on the same path.
10762 */
10763 BNX2X_DEV_INFO("Common unload Flow\n");
10764
10765 memset(&mac_vals, 0, sizeof(mac_vals));
10766
10767 if (bnx2x_prev_is_path_marked(bp))
10768 return bnx2x_prev_mcp_done(bp);
10769
10770 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10771
10772 /* Reset should be performed after BRB is emptied */
10773 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10774 u32 timer_count = 1000;
10775
10776 /* Close the MAC Rx to prevent BRB from filling up */
10777 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10778
10779 /* close LLH filters for both ports towards the BRB */
10780 bnx2x_set_rx_filter(&bp->link_params, 0);
10781 bp->link_params.port ^= 1;
10782 bnx2x_set_rx_filter(&bp->link_params, 0);
10783 bp->link_params.port ^= 1;
10784
10785 /* Check if the UNDI driver was previously loaded */
10786 if (bnx2x_prev_is_after_undi(bp)) {
10787 prev_undi = true;
10788 /* clear the UNDI indication */
10789 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10790 /* clear possible idle check errors */
10791 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10792 }
10793 if (!CHIP_IS_E1x(bp))
10794 /* block FW from writing to host */
10795 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10796
10797 /* wait until BRB is empty */
10798 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10799 while (timer_count) {
10800 u32 prev_brb = tmp_reg;
10801
10802 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10803 if (!tmp_reg)
10804 break;
10805
10806 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10807
10808 /* reset timer as long as BRB actually gets emptied */
10809 if (prev_brb > tmp_reg)
10810 timer_count = 1000;
10811 else
10812 timer_count--;
10813
10814 /* If UNDI resides in memory, manually increment it */
10815 if (prev_undi)
10816 bnx2x_prev_unload_undi_inc(bp, 1);
10817
10818 udelay(10);
10819 }
10820
10821 if (!timer_count)
10822 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10823 }
10824
10825 /* No packets are in the pipeline, path is ready for reset */
10826 bnx2x_reset_common(bp);
10827
10828 if (mac_vals.xmac_addr)
10829 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10830 if (mac_vals.umac_addr[0])
10831 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10832 if (mac_vals.umac_addr[1])
10833 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10834 if (mac_vals.emac_addr)
10835 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10836 if (mac_vals.bmac_addr) {
10837 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10838 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10839 }
10840
10841 rc = bnx2x_prev_mark_path(bp, prev_undi);
10842 if (rc) {
10843 bnx2x_prev_mcp_done(bp);
10844 return rc;
10845 }
10846
10847 return bnx2x_prev_mcp_done(bp);
10848 }
10849
10850 static int bnx2x_prev_unload(struct bnx2x *bp)
10851 {
10852 int time_counter = 10;
10853 u32 rc, fw, hw_lock_reg, hw_lock_val;
10854 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10855
10856 /* clear hw from errors which may have resulted from an interrupted
10857 * dmae transaction.
10858 */
10859 bnx2x_clean_pglue_errors(bp);
10860
10861 /* Release previously held locks */
10862 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10863 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10864 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10865
10866 hw_lock_val = REG_RD(bp, hw_lock_reg);
10867 if (hw_lock_val) {
10868 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10869 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10870 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10871 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10872 }
10873
10874 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10875 REG_WR(bp, hw_lock_reg, 0xffffffff);
10876 } else
10877 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10878
10879 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10880 BNX2X_DEV_INFO("Release previously held alr\n");
10881 bnx2x_release_alr(bp);
10882 }
10883
10884 do {
10885 int aer = 0;
10886 /* Lock MCP using an unload request */
10887 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10888 if (!fw) {
10889 BNX2X_ERR("MCP response failure, aborting\n");
10890 rc = -EBUSY;
10891 break;
10892 }
10893
10894 rc = down_interruptible(&bnx2x_prev_sem);
10895 if (rc) {
10896 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10897 rc);
10898 } else {
10899 /* If Path is marked by EEH, ignore unload status */
10900 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10901 bnx2x_prev_path_get_entry(bp)->aer);
10902 up(&bnx2x_prev_sem);
10903 }
10904
10905 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10906 rc = bnx2x_prev_unload_common(bp);
10907 break;
10908 }
10909
10910 /* non-common reply from MCP might require looping */
10911 rc = bnx2x_prev_unload_uncommon(bp);
10912 if (rc != BNX2X_PREV_WAIT_NEEDED)
10913 break;
10914
10915 msleep(20);
10916 } while (--time_counter);
10917
10918 if (!time_counter || rc) {
10919 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10920 rc = -EPROBE_DEFER;
10921 }
10922
10923 /* Mark function if its port was used to boot from SAN */
10924 if (bnx2x_port_after_undi(bp))
10925 bp->link_params.feature_config_flags |=
10926 FEATURE_CONFIG_BOOT_FROM_SAN;
10927
10928 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10929
10930 return rc;
10931 }
10932
10933 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10934 {
10935 u32 val, val2, val3, val4, id, boot_mode;
10936 u16 pmc;
10937
10938 /* Get the chip revision id and number. */
10939 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10940 val = REG_RD(bp, MISC_REG_CHIP_NUM);
10941 id = ((val & 0xffff) << 16);
10942 val = REG_RD(bp, MISC_REG_CHIP_REV);
10943 id |= ((val & 0xf) << 12);
10944
10945 /* Metal is read from PCI regs, but we can't access >=0x400 from
10946 * the configuration space (so we need to reg_rd)
10947 */
10948 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10949 id |= (((val >> 24) & 0xf) << 4);
10950 val = REG_RD(bp, MISC_REG_BOND_ID);
10951 id |= (val & 0xf);
10952 bp->common.chip_id = id;
10953
10954 /* force 57811 according to MISC register */
10955 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10956 if (CHIP_IS_57810(bp))
10957 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10958 (bp->common.chip_id & 0x0000FFFF);
10959 else if (CHIP_IS_57810_MF(bp))
10960 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10961 (bp->common.chip_id & 0x0000FFFF);
10962 bp->common.chip_id |= 0x1;
10963 }
10964
10965 /* Set doorbell size */
10966 bp->db_size = (1 << BNX2X_DB_SHIFT);
10967
10968 if (!CHIP_IS_E1x(bp)) {
10969 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10970 if ((val & 1) == 0)
10971 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10972 else
10973 val = (val >> 1) & 1;
10974 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10975 "2_PORT_MODE");
10976 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10977 CHIP_2_PORT_MODE;
10978
10979 if (CHIP_MODE_IS_4_PORT(bp))
10980 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
10981 else
10982 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
10983 } else {
10984 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10985 bp->pfid = bp->pf_num; /* 0..7 */
10986 }
10987
10988 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10989
10990 bp->link_params.chip_id = bp->common.chip_id;
10991 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10992
10993 val = (REG_RD(bp, 0x2874) & 0x55);
10994 if ((bp->common.chip_id & 0x1) ||
10995 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10996 bp->flags |= ONE_PORT_FLAG;
10997 BNX2X_DEV_INFO("single port device\n");
10998 }
10999
11000 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11001 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11002 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11003 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11004 bp->common.flash_size, bp->common.flash_size);
11005
11006 bnx2x_init_shmem(bp);
11007
11008 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11009 MISC_REG_GENERIC_CR_1 :
11010 MISC_REG_GENERIC_CR_0));
11011
11012 bp->link_params.shmem_base = bp->common.shmem_base;
11013 bp->link_params.shmem2_base = bp->common.shmem2_base;
11014 if (SHMEM2_RD(bp, size) >
11015 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11016 bp->link_params.lfa_base =
11017 REG_RD(bp, bp->common.shmem2_base +
11018 (u32)offsetof(struct shmem2_region,
11019 lfa_host_addr[BP_PORT(bp)]));
11020 else
11021 bp->link_params.lfa_base = 0;
11022 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
11023 bp->common.shmem_base, bp->common.shmem2_base);
11024
11025 if (!bp->common.shmem_base) {
11026 BNX2X_DEV_INFO("MCP not active\n");
11027 bp->flags |= NO_MCP_FLAG;
11028 return;
11029 }
11030
11031 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11032 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11033
11034 bp->link_params.hw_led_mode = ((bp->common.hw_config &
11035 SHARED_HW_CFG_LED_MODE_MASK) >>
11036 SHARED_HW_CFG_LED_MODE_SHIFT);
11037
11038 bp->link_params.feature_config_flags = 0;
11039 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11040 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11041 bp->link_params.feature_config_flags |=
11042 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11043 else
11044 bp->link_params.feature_config_flags &=
11045 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11046
11047 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11048 bp->common.bc_ver = val;
11049 BNX2X_DEV_INFO("bc_ver %X\n", val);
11050 if (val < BNX2X_BC_VER) {
11051 /* for now only warn
11052 * later we might need to enforce this */
11053 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11054 BNX2X_BC_VER, val);
11055 }
11056 bp->link_params.feature_config_flags |=
11057 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11058 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11059
11060 bp->link_params.feature_config_flags |=
11061 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11062 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11063 bp->link_params.feature_config_flags |=
11064 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11065 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11066 bp->link_params.feature_config_flags |=
11067 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11068 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11069
11070 bp->link_params.feature_config_flags |=
11071 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11072 FEATURE_CONFIG_MT_SUPPORT : 0;
11073
11074 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11075 BC_SUPPORTS_PFC_STATS : 0;
11076
11077 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11078 BC_SUPPORTS_FCOE_FEATURES : 0;
11079
11080 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11081 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11082
11083 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11084 BC_SUPPORTS_RMMOD_CMD : 0;
11085
11086 boot_mode = SHMEM_RD(bp,
11087 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11088 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11089 switch (boot_mode) {
11090 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11091 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11092 break;
11093 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11094 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11095 break;
11096 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11097 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11098 break;
11099 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11100 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11101 break;
11102 }
11103
11104 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11105 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11106
11107 BNX2X_DEV_INFO("%sWoL capable\n",
11108 (bp->flags & NO_WOL_FLAG) ? "not " : "");
11109
11110 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11111 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11112 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11113 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11114
11115 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11116 val, val2, val3, val4);
11117 }
11118
11119 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11120 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11121
11122 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11123 {
11124 int pfid = BP_FUNC(bp);
11125 int igu_sb_id;
11126 u32 val;
11127 u8 fid, igu_sb_cnt = 0;
11128
11129 bp->igu_base_sb = 0xff;
11130 if (CHIP_INT_MODE_IS_BC(bp)) {
11131 int vn = BP_VN(bp);
11132 igu_sb_cnt = bp->igu_sb_cnt;
11133 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11134 FP_SB_MAX_E1x;
11135
11136 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
11137 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11138
11139 return 0;
11140 }
11141
11142 /* IGU in normal mode - read CAM */
11143 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11144 igu_sb_id++) {
11145 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11146 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11147 continue;
11148 fid = IGU_FID(val);
11149 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11150 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11151 continue;
11152 if (IGU_VEC(val) == 0)
11153 /* default status block */
11154 bp->igu_dsb_id = igu_sb_id;
11155 else {
11156 if (bp->igu_base_sb == 0xff)
11157 bp->igu_base_sb = igu_sb_id;
11158 igu_sb_cnt++;
11159 }
11160 }
11161 }
11162
11163 #ifdef CONFIG_PCI_MSI
11164 /* Due to new PF resource allocation by MFW T7.4 and above, it's
11165 * optional that number of CAM entries will not be equal to the value
11166 * advertised in PCI.
11167 * Driver should use the minimal value of both as the actual status
11168 * block count
11169 */
11170 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11171 #endif
11172
11173 if (igu_sb_cnt == 0) {
11174 BNX2X_ERR("CAM configuration error\n");
11175 return -EINVAL;
11176 }
11177
11178 return 0;
11179 }
11180
11181 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11182 {
11183 int cfg_size = 0, idx, port = BP_PORT(bp);
11184
11185 /* Aggregation of supported attributes of all external phys */
11186 bp->port.supported[0] = 0;
11187 bp->port.supported[1] = 0;
11188 switch (bp->link_params.num_phys) {
11189 case 1:
11190 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11191 cfg_size = 1;
11192 break;
11193 case 2:
11194 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11195 cfg_size = 1;
11196 break;
11197 case 3:
11198 if (bp->link_params.multi_phy_config &
11199 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11200 bp->port.supported[1] =
11201 bp->link_params.phy[EXT_PHY1].supported;
11202 bp->port.supported[0] =
11203 bp->link_params.phy[EXT_PHY2].supported;
11204 } else {
11205 bp->port.supported[0] =
11206 bp->link_params.phy[EXT_PHY1].supported;
11207 bp->port.supported[1] =
11208 bp->link_params.phy[EXT_PHY2].supported;
11209 }
11210 cfg_size = 2;
11211 break;
11212 }
11213
11214 if (!(bp->port.supported[0] || bp->port.supported[1])) {
11215 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11216 SHMEM_RD(bp,
11217 dev_info.port_hw_config[port].external_phy_config),
11218 SHMEM_RD(bp,
11219 dev_info.port_hw_config[port].external_phy_config2));
11220 return;
11221 }
11222
11223 if (CHIP_IS_E3(bp))
11224 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11225 else {
11226 switch (switch_cfg) {
11227 case SWITCH_CFG_1G:
11228 bp->port.phy_addr = REG_RD(
11229 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11230 break;
11231 case SWITCH_CFG_10G:
11232 bp->port.phy_addr = REG_RD(
11233 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11234 break;
11235 default:
11236 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11237 bp->port.link_config[0]);
11238 return;
11239 }
11240 }
11241 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11242 /* mask what we support according to speed_cap_mask per configuration */
11243 for (idx = 0; idx < cfg_size; idx++) {
11244 if (!(bp->link_params.speed_cap_mask[idx] &
11245 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11246 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11247
11248 if (!(bp->link_params.speed_cap_mask[idx] &
11249 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11250 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11251
11252 if (!(bp->link_params.speed_cap_mask[idx] &
11253 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11254 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11255
11256 if (!(bp->link_params.speed_cap_mask[idx] &
11257 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11258 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11259
11260 if (!(bp->link_params.speed_cap_mask[idx] &
11261 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11262 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11263 SUPPORTED_1000baseT_Full);
11264
11265 if (!(bp->link_params.speed_cap_mask[idx] &
11266 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11267 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11268
11269 if (!(bp->link_params.speed_cap_mask[idx] &
11270 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11271 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11272
11273 if (!(bp->link_params.speed_cap_mask[idx] &
11274 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11275 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11276 }
11277
11278 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11279 bp->port.supported[1]);
11280 }
11281
11282 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11283 {
11284 u32 link_config, idx, cfg_size = 0;
11285 bp->port.advertising[0] = 0;
11286 bp->port.advertising[1] = 0;
11287 switch (bp->link_params.num_phys) {
11288 case 1:
11289 case 2:
11290 cfg_size = 1;
11291 break;
11292 case 3:
11293 cfg_size = 2;
11294 break;
11295 }
11296 for (idx = 0; idx < cfg_size; idx++) {
11297 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11298 link_config = bp->port.link_config[idx];
11299 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11300 case PORT_FEATURE_LINK_SPEED_AUTO:
11301 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11302 bp->link_params.req_line_speed[idx] =
11303 SPEED_AUTO_NEG;
11304 bp->port.advertising[idx] |=
11305 bp->port.supported[idx];
11306 if (bp->link_params.phy[EXT_PHY1].type ==
11307 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11308 bp->port.advertising[idx] |=
11309 (SUPPORTED_100baseT_Half |
11310 SUPPORTED_100baseT_Full);
11311 } else {
11312 /* force 10G, no AN */
11313 bp->link_params.req_line_speed[idx] =
11314 SPEED_10000;
11315 bp->port.advertising[idx] |=
11316 (ADVERTISED_10000baseT_Full |
11317 ADVERTISED_FIBRE);
11318 continue;
11319 }
11320 break;
11321
11322 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11323 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11324 bp->link_params.req_line_speed[idx] =
11325 SPEED_10;
11326 bp->port.advertising[idx] |=
11327 (ADVERTISED_10baseT_Full |
11328 ADVERTISED_TP);
11329 } else {
11330 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11331 link_config,
11332 bp->link_params.speed_cap_mask[idx]);
11333 return;
11334 }
11335 break;
11336
11337 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11338 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11339 bp->link_params.req_line_speed[idx] =
11340 SPEED_10;
11341 bp->link_params.req_duplex[idx] =
11342 DUPLEX_HALF;
11343 bp->port.advertising[idx] |=
11344 (ADVERTISED_10baseT_Half |
11345 ADVERTISED_TP);
11346 } else {
11347 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11348 link_config,
11349 bp->link_params.speed_cap_mask[idx]);
11350 return;
11351 }
11352 break;
11353
11354 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11355 if (bp->port.supported[idx] &
11356 SUPPORTED_100baseT_Full) {
11357 bp->link_params.req_line_speed[idx] =
11358 SPEED_100;
11359 bp->port.advertising[idx] |=
11360 (ADVERTISED_100baseT_Full |
11361 ADVERTISED_TP);
11362 } else {
11363 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11364 link_config,
11365 bp->link_params.speed_cap_mask[idx]);
11366 return;
11367 }
11368 break;
11369
11370 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11371 if (bp->port.supported[idx] &
11372 SUPPORTED_100baseT_Half) {
11373 bp->link_params.req_line_speed[idx] =
11374 SPEED_100;
11375 bp->link_params.req_duplex[idx] =
11376 DUPLEX_HALF;
11377 bp->port.advertising[idx] |=
11378 (ADVERTISED_100baseT_Half |
11379 ADVERTISED_TP);
11380 } else {
11381 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11382 link_config,
11383 bp->link_params.speed_cap_mask[idx]);
11384 return;
11385 }
11386 break;
11387
11388 case PORT_FEATURE_LINK_SPEED_1G:
11389 if (bp->port.supported[idx] &
11390 SUPPORTED_1000baseT_Full) {
11391 bp->link_params.req_line_speed[idx] =
11392 SPEED_1000;
11393 bp->port.advertising[idx] |=
11394 (ADVERTISED_1000baseT_Full |
11395 ADVERTISED_TP);
11396 } else if (bp->port.supported[idx] &
11397 SUPPORTED_1000baseKX_Full) {
11398 bp->link_params.req_line_speed[idx] =
11399 SPEED_1000;
11400 bp->port.advertising[idx] |=
11401 ADVERTISED_1000baseKX_Full;
11402 } else {
11403 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11404 link_config,
11405 bp->link_params.speed_cap_mask[idx]);
11406 return;
11407 }
11408 break;
11409
11410 case PORT_FEATURE_LINK_SPEED_2_5G:
11411 if (bp->port.supported[idx] &
11412 SUPPORTED_2500baseX_Full) {
11413 bp->link_params.req_line_speed[idx] =
11414 SPEED_2500;
11415 bp->port.advertising[idx] |=
11416 (ADVERTISED_2500baseX_Full |
11417 ADVERTISED_TP);
11418 } else {
11419 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11420 link_config,
11421 bp->link_params.speed_cap_mask[idx]);
11422 return;
11423 }
11424 break;
11425
11426 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11427 if (bp->port.supported[idx] &
11428 SUPPORTED_10000baseT_Full) {
11429 bp->link_params.req_line_speed[idx] =
11430 SPEED_10000;
11431 bp->port.advertising[idx] |=
11432 (ADVERTISED_10000baseT_Full |
11433 ADVERTISED_FIBRE);
11434 } else if (bp->port.supported[idx] &
11435 SUPPORTED_10000baseKR_Full) {
11436 bp->link_params.req_line_speed[idx] =
11437 SPEED_10000;
11438 bp->port.advertising[idx] |=
11439 (ADVERTISED_10000baseKR_Full |
11440 ADVERTISED_FIBRE);
11441 } else {
11442 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11443 link_config,
11444 bp->link_params.speed_cap_mask[idx]);
11445 return;
11446 }
11447 break;
11448 case PORT_FEATURE_LINK_SPEED_20G:
11449 bp->link_params.req_line_speed[idx] = SPEED_20000;
11450
11451 break;
11452 default:
11453 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11454 link_config);
11455 bp->link_params.req_line_speed[idx] =
11456 SPEED_AUTO_NEG;
11457 bp->port.advertising[idx] =
11458 bp->port.supported[idx];
11459 break;
11460 }
11461
11462 bp->link_params.req_flow_ctrl[idx] = (link_config &
11463 PORT_FEATURE_FLOW_CONTROL_MASK);
11464 if (bp->link_params.req_flow_ctrl[idx] ==
11465 BNX2X_FLOW_CTRL_AUTO) {
11466 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11467 bp->link_params.req_flow_ctrl[idx] =
11468 BNX2X_FLOW_CTRL_NONE;
11469 else
11470 bnx2x_set_requested_fc(bp);
11471 }
11472
11473 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11474 bp->link_params.req_line_speed[idx],
11475 bp->link_params.req_duplex[idx],
11476 bp->link_params.req_flow_ctrl[idx],
11477 bp->port.advertising[idx]);
11478 }
11479 }
11480
11481 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11482 {
11483 __be16 mac_hi_be = cpu_to_be16(mac_hi);
11484 __be32 mac_lo_be = cpu_to_be32(mac_lo);
11485 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11486 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11487 }
11488
11489 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11490 {
11491 int port = BP_PORT(bp);
11492 u32 config;
11493 u32 ext_phy_type, ext_phy_config, eee_mode;
11494
11495 bp->link_params.bp = bp;
11496 bp->link_params.port = port;
11497
11498 bp->link_params.lane_config =
11499 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11500
11501 bp->link_params.speed_cap_mask[0] =
11502 SHMEM_RD(bp,
11503 dev_info.port_hw_config[port].speed_capability_mask) &
11504 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11505 bp->link_params.speed_cap_mask[1] =
11506 SHMEM_RD(bp,
11507 dev_info.port_hw_config[port].speed_capability_mask2) &
11508 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11509 bp->port.link_config[0] =
11510 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11511
11512 bp->port.link_config[1] =
11513 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11514
11515 bp->link_params.multi_phy_config =
11516 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11517 /* If the device is capable of WoL, set the default state according
11518 * to the HW
11519 */
11520 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11521 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11522 (config & PORT_FEATURE_WOL_ENABLED));
11523
11524 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11525 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11526 bp->flags |= NO_ISCSI_FLAG;
11527 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11528 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11529 bp->flags |= NO_FCOE_FLAG;
11530
11531 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
11532 bp->link_params.lane_config,
11533 bp->link_params.speed_cap_mask[0],
11534 bp->port.link_config[0]);
11535
11536 bp->link_params.switch_cfg = (bp->port.link_config[0] &
11537 PORT_FEATURE_CONNECTED_SWITCH_MASK);
11538 bnx2x_phy_probe(&bp->link_params);
11539 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11540
11541 bnx2x_link_settings_requested(bp);
11542
11543 /*
11544 * If connected directly, work with the internal PHY, otherwise, work
11545 * with the external PHY
11546 */
11547 ext_phy_config =
11548 SHMEM_RD(bp,
11549 dev_info.port_hw_config[port].external_phy_config);
11550 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11551 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11552 bp->mdio.prtad = bp->port.phy_addr;
11553
11554 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11555 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11556 bp->mdio.prtad =
11557 XGXS_EXT_PHY_ADDR(ext_phy_config);
11558
11559 /* Configure link feature according to nvram value */
11560 eee_mode = (((SHMEM_RD(bp, dev_info.
11561 port_feature_config[port].eee_power_mode)) &
11562 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11563 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11564 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11565 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11566 EEE_MODE_ENABLE_LPI |
11567 EEE_MODE_OUTPUT_TIME;
11568 } else {
11569 bp->link_params.eee_mode = 0;
11570 }
11571 }
11572
11573 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11574 {
11575 u32 no_flags = NO_ISCSI_FLAG;
11576 int port = BP_PORT(bp);
11577 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11578 drv_lic_key[port].max_iscsi_conn);
11579
11580 if (!CNIC_SUPPORT(bp)) {
11581 bp->flags |= no_flags;
11582 return;
11583 }
11584
11585 /* Get the number of maximum allowed iSCSI connections */
11586 bp->cnic_eth_dev.max_iscsi_conn =
11587 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11588 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11589
11590 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11591 bp->cnic_eth_dev.max_iscsi_conn);
11592
11593 /*
11594 * If maximum allowed number of connections is zero -
11595 * disable the feature.
11596 */
11597 if (!bp->cnic_eth_dev.max_iscsi_conn)
11598 bp->flags |= no_flags;
11599 }
11600
11601 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11602 {
11603 /* Port info */
11604 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11605 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11606 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11607 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11608
11609 /* Node info */
11610 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11611 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11612 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11613 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11614 }
11615
11616 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11617 {
11618 u8 count = 0;
11619
11620 if (IS_MF(bp)) {
11621 u8 fid;
11622
11623 /* iterate over absolute function ids for this path: */
11624 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11625 if (IS_MF_SD(bp)) {
11626 u32 cfg = MF_CFG_RD(bp,
11627 func_mf_config[fid].config);
11628
11629 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11630 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11631 FUNC_MF_CFG_PROTOCOL_FCOE))
11632 count++;
11633 } else {
11634 u32 cfg = MF_CFG_RD(bp,
11635 func_ext_config[fid].
11636 func_cfg);
11637
11638 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11639 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11640 count++;
11641 }
11642 }
11643 } else { /* SF */
11644 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11645
11646 for (port = 0; port < port_cnt; port++) {
11647 u32 lic = SHMEM_RD(bp,
11648 drv_lic_key[port].max_fcoe_conn) ^
11649 FW_ENCODE_32BIT_PATTERN;
11650 if (lic)
11651 count++;
11652 }
11653 }
11654
11655 return count;
11656 }
11657
11658 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11659 {
11660 int port = BP_PORT(bp);
11661 int func = BP_ABS_FUNC(bp);
11662 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11663 drv_lic_key[port].max_fcoe_conn);
11664 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11665
11666 if (!CNIC_SUPPORT(bp)) {
11667 bp->flags |= NO_FCOE_FLAG;
11668 return;
11669 }
11670
11671 /* Get the number of maximum allowed FCoE connections */
11672 bp->cnic_eth_dev.max_fcoe_conn =
11673 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11674 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11675
11676 /* Calculate the number of maximum allowed FCoE tasks */
11677 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11678
11679 /* check if FCoE resources must be shared between different functions */
11680 if (num_fcoe_func)
11681 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11682
11683 /* Read the WWN: */
11684 if (!IS_MF(bp)) {
11685 /* Port info */
11686 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11687 SHMEM_RD(bp,
11688 dev_info.port_hw_config[port].
11689 fcoe_wwn_port_name_upper);
11690 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11691 SHMEM_RD(bp,
11692 dev_info.port_hw_config[port].
11693 fcoe_wwn_port_name_lower);
11694
11695 /* Node info */
11696 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11697 SHMEM_RD(bp,
11698 dev_info.port_hw_config[port].
11699 fcoe_wwn_node_name_upper);
11700 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11701 SHMEM_RD(bp,
11702 dev_info.port_hw_config[port].
11703 fcoe_wwn_node_name_lower);
11704 } else if (!IS_MF_SD(bp)) {
11705 /* Read the WWN info only if the FCoE feature is enabled for
11706 * this function.
11707 */
11708 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11709 bnx2x_get_ext_wwn_info(bp, func);
11710 } else {
11711 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11712 bnx2x_get_ext_wwn_info(bp, func);
11713 }
11714
11715 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11716
11717 /*
11718 * If maximum allowed number of connections is zero -
11719 * disable the feature.
11720 */
11721 if (!bp->cnic_eth_dev.max_fcoe_conn)
11722 bp->flags |= NO_FCOE_FLAG;
11723 }
11724
11725 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11726 {
11727 /*
11728 * iSCSI may be dynamically disabled but reading
11729 * info here we will decrease memory usage by driver
11730 * if the feature is disabled for good
11731 */
11732 bnx2x_get_iscsi_info(bp);
11733 bnx2x_get_fcoe_info(bp);
11734 }
11735
11736 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11737 {
11738 u32 val, val2;
11739 int func = BP_ABS_FUNC(bp);
11740 int port = BP_PORT(bp);
11741 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11742 u8 *fip_mac = bp->fip_mac;
11743
11744 if (IS_MF(bp)) {
11745 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11746 * FCoE MAC then the appropriate feature should be disabled.
11747 * In non SD mode features configuration comes from struct
11748 * func_ext_config.
11749 */
11750 if (!IS_MF_SD(bp)) {
11751 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11752 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11753 val2 = MF_CFG_RD(bp, func_ext_config[func].
11754 iscsi_mac_addr_upper);
11755 val = MF_CFG_RD(bp, func_ext_config[func].
11756 iscsi_mac_addr_lower);
11757 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11758 BNX2X_DEV_INFO
11759 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11760 } else {
11761 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11762 }
11763
11764 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11765 val2 = MF_CFG_RD(bp, func_ext_config[func].
11766 fcoe_mac_addr_upper);
11767 val = MF_CFG_RD(bp, func_ext_config[func].
11768 fcoe_mac_addr_lower);
11769 bnx2x_set_mac_buf(fip_mac, val, val2);
11770 BNX2X_DEV_INFO
11771 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11772 } else {
11773 bp->flags |= NO_FCOE_FLAG;
11774 }
11775
11776 bp->mf_ext_config = cfg;
11777
11778 } else { /* SD MODE */
11779 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11780 /* use primary mac as iscsi mac */
11781 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11782
11783 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11784 BNX2X_DEV_INFO
11785 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11786 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11787 /* use primary mac as fip mac */
11788 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11789 BNX2X_DEV_INFO("SD FCoE MODE\n");
11790 BNX2X_DEV_INFO
11791 ("Read FIP MAC: %pM\n", fip_mac);
11792 }
11793 }
11794
11795 /* If this is a storage-only interface, use SAN mac as
11796 * primary MAC. Notice that for SD this is already the case,
11797 * as the SAN mac was copied from the primary MAC.
11798 */
11799 if (IS_MF_FCOE_AFEX(bp))
11800 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11801 } else {
11802 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11803 iscsi_mac_upper);
11804 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11805 iscsi_mac_lower);
11806 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11807
11808 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11809 fcoe_fip_mac_upper);
11810 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11811 fcoe_fip_mac_lower);
11812 bnx2x_set_mac_buf(fip_mac, val, val2);
11813 }
11814
11815 /* Disable iSCSI OOO if MAC configuration is invalid. */
11816 if (!is_valid_ether_addr(iscsi_mac)) {
11817 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11818 eth_zero_addr(iscsi_mac);
11819 }
11820
11821 /* Disable FCoE if MAC configuration is invalid. */
11822 if (!is_valid_ether_addr(fip_mac)) {
11823 bp->flags |= NO_FCOE_FLAG;
11824 eth_zero_addr(bp->fip_mac);
11825 }
11826 }
11827
11828 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11829 {
11830 u32 val, val2;
11831 int func = BP_ABS_FUNC(bp);
11832 int port = BP_PORT(bp);
11833
11834 /* Zero primary MAC configuration */
11835 eth_zero_addr(bp->dev->dev_addr);
11836
11837 if (BP_NOMCP(bp)) {
11838 BNX2X_ERROR("warning: random MAC workaround active\n");
11839 eth_hw_addr_random(bp->dev);
11840 } else if (IS_MF(bp)) {
11841 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11842 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11843 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11844 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11845 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11846
11847 if (CNIC_SUPPORT(bp))
11848 bnx2x_get_cnic_mac_hwinfo(bp);
11849 } else {
11850 /* in SF read MACs from port configuration */
11851 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11852 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11853 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11854
11855 if (CNIC_SUPPORT(bp))
11856 bnx2x_get_cnic_mac_hwinfo(bp);
11857 }
11858
11859 if (!BP_NOMCP(bp)) {
11860 /* Read physical port identifier from shmem */
11861 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11862 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11863 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11864 bp->flags |= HAS_PHYS_PORT_ID;
11865 }
11866
11867 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11868
11869 if (!is_valid_ether_addr(bp->dev->dev_addr))
11870 dev_err(&bp->pdev->dev,
11871 "bad Ethernet MAC address configuration: %pM\n"
11872 "change it manually before bringing up the appropriate network interface\n",
11873 bp->dev->dev_addr);
11874 }
11875
11876 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11877 {
11878 int tmp;
11879 u32 cfg;
11880
11881 if (IS_VF(bp))
11882 return false;
11883
11884 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11885 /* Take function: tmp = func */
11886 tmp = BP_ABS_FUNC(bp);
11887 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11888 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11889 } else {
11890 /* Take port: tmp = port */
11891 tmp = BP_PORT(bp);
11892 cfg = SHMEM_RD(bp,
11893 dev_info.port_hw_config[tmp].generic_features);
11894 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11895 }
11896 return cfg;
11897 }
11898
11899 static void validate_set_si_mode(struct bnx2x *bp)
11900 {
11901 u8 func = BP_ABS_FUNC(bp);
11902 u32 val;
11903
11904 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11905
11906 /* check for legal mac (upper bytes) */
11907 if (val != 0xffff) {
11908 bp->mf_mode = MULTI_FUNCTION_SI;
11909 bp->mf_config[BP_VN(bp)] =
11910 MF_CFG_RD(bp, func_mf_config[func].config);
11911 } else
11912 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11913 }
11914
11915 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11916 {
11917 int /*abs*/func = BP_ABS_FUNC(bp);
11918 int vn, mfw_vn;
11919 u32 val = 0, val2 = 0;
11920 int rc = 0;
11921
11922 /* Validate that chip access is feasible */
11923 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11924 dev_err(&bp->pdev->dev,
11925 "Chip read returns all Fs. Preventing probe from continuing\n");
11926 return -EINVAL;
11927 }
11928
11929 bnx2x_get_common_hwinfo(bp);
11930
11931 /*
11932 * initialize IGU parameters
11933 */
11934 if (CHIP_IS_E1x(bp)) {
11935 bp->common.int_block = INT_BLOCK_HC;
11936
11937 bp->igu_dsb_id = DEF_SB_IGU_ID;
11938 bp->igu_base_sb = 0;
11939 } else {
11940 bp->common.int_block = INT_BLOCK_IGU;
11941
11942 /* do not allow device reset during IGU info processing */
11943 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11944
11945 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11946
11947 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11948 int tout = 5000;
11949
11950 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11951
11952 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11953 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11954 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11955
11956 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11957 tout--;
11958 usleep_range(1000, 2000);
11959 }
11960
11961 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11962 dev_err(&bp->pdev->dev,
11963 "FORCING Normal Mode failed!!!\n");
11964 bnx2x_release_hw_lock(bp,
11965 HW_LOCK_RESOURCE_RESET);
11966 return -EPERM;
11967 }
11968 }
11969
11970 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11971 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11972 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11973 } else
11974 BNX2X_DEV_INFO("IGU Normal Mode\n");
11975
11976 rc = bnx2x_get_igu_cam_info(bp);
11977 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11978 if (rc)
11979 return rc;
11980 }
11981
11982 /*
11983 * set base FW non-default (fast path) status block id, this value is
11984 * used to initialize the fw_sb_id saved on the fp/queue structure to
11985 * determine the id used by the FW.
11986 */
11987 if (CHIP_IS_E1x(bp))
11988 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11989 else /*
11990 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11991 * the same queue are indicated on the same IGU SB). So we prefer
11992 * FW and IGU SBs to be the same value.
11993 */
11994 bp->base_fw_ndsb = bp->igu_base_sb;
11995
11996 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
11997 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11998 bp->igu_sb_cnt, bp->base_fw_ndsb);
11999
12000 /*
12001 * Initialize MF configuration
12002 */
12003
12004 bp->mf_ov = 0;
12005 bp->mf_mode = 0;
12006 bp->mf_sub_mode = 0;
12007 vn = BP_VN(bp);
12008 mfw_vn = BP_FW_MB_IDX(bp);
12009
12010 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12011 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12012 bp->common.shmem2_base, SHMEM2_RD(bp, size),
12013 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12014
12015 if (SHMEM2_HAS(bp, mf_cfg_addr))
12016 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12017 else
12018 bp->common.mf_cfg_base = bp->common.shmem_base +
12019 offsetof(struct shmem_region, func_mb) +
12020 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12021 /*
12022 * get mf configuration:
12023 * 1. Existence of MF configuration
12024 * 2. MAC address must be legal (check only upper bytes)
12025 * for Switch-Independent mode;
12026 * OVLAN must be legal for Switch-Dependent mode
12027 * 3. SF_MODE configures specific MF mode
12028 */
12029 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12030 /* get mf configuration */
12031 val = SHMEM_RD(bp,
12032 dev_info.shared_feature_config.config);
12033 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12034
12035 switch (val) {
12036 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12037 validate_set_si_mode(bp);
12038 break;
12039 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12040 if ((!CHIP_IS_E1x(bp)) &&
12041 (MF_CFG_RD(bp, func_mf_config[func].
12042 mac_upper) != 0xffff) &&
12043 (SHMEM2_HAS(bp,
12044 afex_driver_support))) {
12045 bp->mf_mode = MULTI_FUNCTION_AFEX;
12046 bp->mf_config[vn] = MF_CFG_RD(bp,
12047 func_mf_config[func].config);
12048 } else {
12049 BNX2X_DEV_INFO("can not configure afex mode\n");
12050 }
12051 break;
12052 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12053 /* get OV configuration */
12054 val = MF_CFG_RD(bp,
12055 func_mf_config[FUNC_0].e1hov_tag);
12056 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12057
12058 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12059 bp->mf_mode = MULTI_FUNCTION_SD;
12060 bp->mf_config[vn] = MF_CFG_RD(bp,
12061 func_mf_config[func].config);
12062 } else
12063 BNX2X_DEV_INFO("illegal OV for SD\n");
12064 break;
12065 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12066 bp->mf_mode = MULTI_FUNCTION_SD;
12067 bp->mf_sub_mode = SUB_MF_MODE_BD;
12068 bp->mf_config[vn] =
12069 MF_CFG_RD(bp,
12070 func_mf_config[func].config);
12071
12072 if (SHMEM2_HAS(bp, mtu_size)) {
12073 int mtu_idx = BP_FW_MB_IDX(bp);
12074 u16 mtu_size;
12075 u32 mtu;
12076
12077 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12078 mtu_size = (u16)mtu;
12079 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12080 mtu_size, mtu);
12081
12082 /* if valid: update device mtu */
12083 if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12084 (mtu_size <=
12085 ETH_MAX_JUMBO_PACKET_SIZE))
12086 bp->dev->mtu = mtu_size;
12087 }
12088 break;
12089 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12090 bp->mf_mode = MULTI_FUNCTION_SD;
12091 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12092 bp->mf_config[vn] =
12093 MF_CFG_RD(bp,
12094 func_mf_config[func].config);
12095 break;
12096 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12097 bp->mf_config[vn] = 0;
12098 break;
12099 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12100 val2 = SHMEM_RD(bp,
12101 dev_info.shared_hw_config.config_3);
12102 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12103 switch (val2) {
12104 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12105 validate_set_si_mode(bp);
12106 bp->mf_sub_mode =
12107 SUB_MF_MODE_NPAR1_DOT_5;
12108 break;
12109 default:
12110 /* Unknown configuration */
12111 bp->mf_config[vn] = 0;
12112 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12113 val);
12114 }
12115 break;
12116 default:
12117 /* Unknown configuration: reset mf_config */
12118 bp->mf_config[vn] = 0;
12119 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12120 }
12121 }
12122
12123 BNX2X_DEV_INFO("%s function mode\n",
12124 IS_MF(bp) ? "multi" : "single");
12125
12126 switch (bp->mf_mode) {
12127 case MULTI_FUNCTION_SD:
12128 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12129 FUNC_MF_CFG_E1HOV_TAG_MASK;
12130 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12131 bp->mf_ov = val;
12132 bp->path_has_ovlan = true;
12133
12134 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12135 func, bp->mf_ov, bp->mf_ov);
12136 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12137 (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12138 dev_err(&bp->pdev->dev,
12139 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12140 func);
12141 bp->path_has_ovlan = true;
12142 } else {
12143 dev_err(&bp->pdev->dev,
12144 "No valid MF OV for func %d, aborting\n",
12145 func);
12146 return -EPERM;
12147 }
12148 break;
12149 case MULTI_FUNCTION_AFEX:
12150 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12151 break;
12152 case MULTI_FUNCTION_SI:
12153 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12154 func);
12155 break;
12156 default:
12157 if (vn) {
12158 dev_err(&bp->pdev->dev,
12159 "VN %d is in a single function mode, aborting\n",
12160 vn);
12161 return -EPERM;
12162 }
12163 break;
12164 }
12165
12166 /* check if other port on the path needs ovlan:
12167 * Since MF configuration is shared between ports
12168 * Possible mixed modes are only
12169 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12170 */
12171 if (CHIP_MODE_IS_4_PORT(bp) &&
12172 !bp->path_has_ovlan &&
12173 !IS_MF(bp) &&
12174 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12175 u8 other_port = !BP_PORT(bp);
12176 u8 other_func = BP_PATH(bp) + 2*other_port;
12177 val = MF_CFG_RD(bp,
12178 func_mf_config[other_func].e1hov_tag);
12179 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12180 bp->path_has_ovlan = true;
12181 }
12182 }
12183
12184 /* adjust igu_sb_cnt to MF for E1H */
12185 if (CHIP_IS_E1H(bp) && IS_MF(bp))
12186 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12187
12188 /* port info */
12189 bnx2x_get_port_hwinfo(bp);
12190
12191 /* Get MAC addresses */
12192 bnx2x_get_mac_hwinfo(bp);
12193
12194 bnx2x_get_cnic_info(bp);
12195
12196 return rc;
12197 }
12198
12199 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12200 {
12201 int cnt, i, block_end, rodi;
12202 char vpd_start[BNX2X_VPD_LEN+1];
12203 char str_id_reg[VENDOR_ID_LEN+1];
12204 char str_id_cap[VENDOR_ID_LEN+1];
12205 char *vpd_data;
12206 char *vpd_extended_data = NULL;
12207 u8 len;
12208
12209 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12210 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12211
12212 if (cnt < BNX2X_VPD_LEN)
12213 goto out_not_found;
12214
12215 /* VPD RO tag should be first tag after identifier string, hence
12216 * we should be able to find it in first BNX2X_VPD_LEN chars
12217 */
12218 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12219 PCI_VPD_LRDT_RO_DATA);
12220 if (i < 0)
12221 goto out_not_found;
12222
12223 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12224 pci_vpd_lrdt_size(&vpd_start[i]);
12225
12226 i += PCI_VPD_LRDT_TAG_SIZE;
12227
12228 if (block_end > BNX2X_VPD_LEN) {
12229 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12230 if (vpd_extended_data == NULL)
12231 goto out_not_found;
12232
12233 /* read rest of vpd image into vpd_extended_data */
12234 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12235 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12236 block_end - BNX2X_VPD_LEN,
12237 vpd_extended_data + BNX2X_VPD_LEN);
12238 if (cnt < (block_end - BNX2X_VPD_LEN))
12239 goto out_not_found;
12240 vpd_data = vpd_extended_data;
12241 } else
12242 vpd_data = vpd_start;
12243
12244 /* now vpd_data holds full vpd content in both cases */
12245
12246 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12247 PCI_VPD_RO_KEYWORD_MFR_ID);
12248 if (rodi < 0)
12249 goto out_not_found;
12250
12251 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12252
12253 if (len != VENDOR_ID_LEN)
12254 goto out_not_found;
12255
12256 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12257
12258 /* vendor specific info */
12259 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12260 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12261 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12262 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12263
12264 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12265 PCI_VPD_RO_KEYWORD_VENDOR0);
12266 if (rodi >= 0) {
12267 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12268
12269 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12270
12271 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12272 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12273 bp->fw_ver[len] = ' ';
12274 }
12275 }
12276 kfree(vpd_extended_data);
12277 return;
12278 }
12279 out_not_found:
12280 kfree(vpd_extended_data);
12281 return;
12282 }
12283
12284 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12285 {
12286 u32 flags = 0;
12287
12288 if (CHIP_REV_IS_FPGA(bp))
12289 SET_FLAGS(flags, MODE_FPGA);
12290 else if (CHIP_REV_IS_EMUL(bp))
12291 SET_FLAGS(flags, MODE_EMUL);
12292 else
12293 SET_FLAGS(flags, MODE_ASIC);
12294
12295 if (CHIP_MODE_IS_4_PORT(bp))
12296 SET_FLAGS(flags, MODE_PORT4);
12297 else
12298 SET_FLAGS(flags, MODE_PORT2);
12299
12300 if (CHIP_IS_E2(bp))
12301 SET_FLAGS(flags, MODE_E2);
12302 else if (CHIP_IS_E3(bp)) {
12303 SET_FLAGS(flags, MODE_E3);
12304 if (CHIP_REV(bp) == CHIP_REV_Ax)
12305 SET_FLAGS(flags, MODE_E3_A0);
12306 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12307 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12308 }
12309
12310 if (IS_MF(bp)) {
12311 SET_FLAGS(flags, MODE_MF);
12312 switch (bp->mf_mode) {
12313 case MULTI_FUNCTION_SD:
12314 SET_FLAGS(flags, MODE_MF_SD);
12315 break;
12316 case MULTI_FUNCTION_SI:
12317 SET_FLAGS(flags, MODE_MF_SI);
12318 break;
12319 case MULTI_FUNCTION_AFEX:
12320 SET_FLAGS(flags, MODE_MF_AFEX);
12321 break;
12322 }
12323 } else
12324 SET_FLAGS(flags, MODE_SF);
12325
12326 #if defined(__LITTLE_ENDIAN)
12327 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12328 #else /*(__BIG_ENDIAN)*/
12329 SET_FLAGS(flags, MODE_BIG_ENDIAN);
12330 #endif
12331 INIT_MODE_FLAGS(bp) = flags;
12332 }
12333
12334 static int bnx2x_init_bp(struct bnx2x *bp)
12335 {
12336 int func;
12337 int rc;
12338
12339 mutex_init(&bp->port.phy_mutex);
12340 mutex_init(&bp->fw_mb_mutex);
12341 mutex_init(&bp->drv_info_mutex);
12342 sema_init(&bp->stats_lock, 1);
12343 bp->drv_info_mng_owner = false;
12344 INIT_LIST_HEAD(&bp->vlan_reg);
12345
12346 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12347 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12348 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12349 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12350 if (IS_PF(bp)) {
12351 rc = bnx2x_get_hwinfo(bp);
12352 if (rc)
12353 return rc;
12354 } else {
12355 eth_zero_addr(bp->dev->dev_addr);
12356 }
12357
12358 bnx2x_set_modes_bitmap(bp);
12359
12360 rc = bnx2x_alloc_mem_bp(bp);
12361 if (rc)
12362 return rc;
12363
12364 bnx2x_read_fwinfo(bp);
12365
12366 func = BP_FUNC(bp);
12367
12368 /* need to reset chip if undi was active */
12369 if (IS_PF(bp) && !BP_NOMCP(bp)) {
12370 /* init fw_seq */
12371 bp->fw_seq =
12372 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12373 DRV_MSG_SEQ_NUMBER_MASK;
12374 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12375
12376 rc = bnx2x_prev_unload(bp);
12377 if (rc) {
12378 bnx2x_free_mem_bp(bp);
12379 return rc;
12380 }
12381 }
12382
12383 if (CHIP_REV_IS_FPGA(bp))
12384 dev_err(&bp->pdev->dev, "FPGA detected\n");
12385
12386 if (BP_NOMCP(bp) && (func == 0))
12387 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12388
12389 bp->disable_tpa = disable_tpa;
12390 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12391 /* Reduce memory usage in kdump environment by disabling TPA */
12392 bp->disable_tpa |= is_kdump_kernel();
12393
12394 /* Set TPA flags */
12395 if (bp->disable_tpa) {
12396 bp->dev->hw_features &= ~NETIF_F_LRO;
12397 bp->dev->features &= ~NETIF_F_LRO;
12398 }
12399
12400 if (CHIP_IS_E1(bp))
12401 bp->dropless_fc = 0;
12402 else
12403 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12404
12405 bp->mrrs = mrrs;
12406
12407 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12408 if (IS_VF(bp))
12409 bp->rx_ring_size = MAX_RX_AVAIL;
12410
12411 /* make sure that the numbers are in the right granularity */
12412 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12413 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12414
12415 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12416
12417 init_timer(&bp->timer);
12418 bp->timer.expires = jiffies + bp->current_interval;
12419 bp->timer.data = (unsigned long) bp;
12420 bp->timer.function = bnx2x_timer;
12421
12422 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12423 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12424 SHMEM2_HAS(bp, dcbx_en) &&
12425 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12426 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12427 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12428 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12429 bnx2x_dcbx_init_params(bp);
12430 } else {
12431 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12432 }
12433
12434 if (CHIP_IS_E1x(bp))
12435 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12436 else
12437 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12438
12439 /* multiple tx priority */
12440 if (IS_VF(bp))
12441 bp->max_cos = 1;
12442 else if (CHIP_IS_E1x(bp))
12443 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12444 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12445 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12446 else if (CHIP_IS_E3B0(bp))
12447 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12448 else
12449 BNX2X_ERR("unknown chip %x revision %x\n",
12450 CHIP_NUM(bp), CHIP_REV(bp));
12451 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12452
12453 /* We need at least one default status block for slow-path events,
12454 * second status block for the L2 queue, and a third status block for
12455 * CNIC if supported.
12456 */
12457 if (IS_VF(bp))
12458 bp->min_msix_vec_cnt = 1;
12459 else if (CNIC_SUPPORT(bp))
12460 bp->min_msix_vec_cnt = 3;
12461 else /* PF w/o cnic */
12462 bp->min_msix_vec_cnt = 2;
12463 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12464
12465 bp->dump_preset_idx = 1;
12466
12467 if (CHIP_IS_E3B0(bp))
12468 bp->flags |= PTP_SUPPORTED;
12469
12470 return rc;
12471 }
12472
12473 /****************************************************************************
12474 * General service functions
12475 ****************************************************************************/
12476
12477 /*
12478 * net_device service functions
12479 */
12480
12481 /* called with rtnl_lock */
12482 static int bnx2x_open(struct net_device *dev)
12483 {
12484 struct bnx2x *bp = netdev_priv(dev);
12485 int rc;
12486
12487 bp->stats_init = true;
12488
12489 netif_carrier_off(dev);
12490
12491 bnx2x_set_power_state(bp, PCI_D0);
12492
12493 /* If parity had happen during the unload, then attentions
12494 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12495 * want the first function loaded on the current engine to
12496 * complete the recovery.
12497 * Parity recovery is only relevant for PF driver.
12498 */
12499 if (IS_PF(bp)) {
12500 int other_engine = BP_PATH(bp) ? 0 : 1;
12501 bool other_load_status, load_status;
12502 bool global = false;
12503
12504 other_load_status = bnx2x_get_load_status(bp, other_engine);
12505 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12506 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12507 bnx2x_chk_parity_attn(bp, &global, true)) {
12508 do {
12509 /* If there are attentions and they are in a
12510 * global blocks, set the GLOBAL_RESET bit
12511 * regardless whether it will be this function
12512 * that will complete the recovery or not.
12513 */
12514 if (global)
12515 bnx2x_set_reset_global(bp);
12516
12517 /* Only the first function on the current
12518 * engine should try to recover in open. In case
12519 * of attentions in global blocks only the first
12520 * in the chip should try to recover.
12521 */
12522 if ((!load_status &&
12523 (!global || !other_load_status)) &&
12524 bnx2x_trylock_leader_lock(bp) &&
12525 !bnx2x_leader_reset(bp)) {
12526 netdev_info(bp->dev,
12527 "Recovered in open\n");
12528 break;
12529 }
12530
12531 /* recovery has failed... */
12532 bnx2x_set_power_state(bp, PCI_D3hot);
12533 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12534
12535 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12536 "If you still see this message after a few retries then power cycle is required.\n");
12537
12538 return -EAGAIN;
12539 } while (0);
12540 }
12541 }
12542
12543 bp->recovery_state = BNX2X_RECOVERY_DONE;
12544 rc = bnx2x_nic_load(bp, LOAD_OPEN);
12545 if (rc)
12546 return rc;
12547
12548 if (IS_PF(bp))
12549 udp_tunnel_get_rx_info(dev);
12550
12551 return 0;
12552 }
12553
12554 /* called with rtnl_lock */
12555 static int bnx2x_close(struct net_device *dev)
12556 {
12557 struct bnx2x *bp = netdev_priv(dev);
12558
12559 /* Unload the driver, release IRQs */
12560 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12561
12562 return 0;
12563 }
12564
12565 struct bnx2x_mcast_list_elem_group
12566 {
12567 struct list_head mcast_group_link;
12568 struct bnx2x_mcast_list_elem mcast_elems[];
12569 };
12570
12571 #define MCAST_ELEMS_PER_PG \
12572 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12573 sizeof(struct bnx2x_mcast_list_elem))
12574
12575 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12576 {
12577 struct bnx2x_mcast_list_elem_group *current_mcast_group;
12578
12579 while (!list_empty(mcast_group_list)) {
12580 current_mcast_group = list_first_entry(mcast_group_list,
12581 struct bnx2x_mcast_list_elem_group,
12582 mcast_group_link);
12583 list_del(&current_mcast_group->mcast_group_link);
12584 free_page((unsigned long)current_mcast_group);
12585 }
12586 }
12587
12588 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12589 struct bnx2x_mcast_ramrod_params *p,
12590 struct list_head *mcast_group_list)
12591 {
12592 struct bnx2x_mcast_list_elem *mc_mac;
12593 struct netdev_hw_addr *ha;
12594 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12595 int mc_count = netdev_mc_count(bp->dev);
12596 int offset = 0;
12597
12598 INIT_LIST_HEAD(&p->mcast_list);
12599 netdev_for_each_mc_addr(ha, bp->dev) {
12600 if (!offset) {
12601 current_mcast_group =
12602 (struct bnx2x_mcast_list_elem_group *)
12603 __get_free_page(GFP_ATOMIC);
12604 if (!current_mcast_group) {
12605 bnx2x_free_mcast_macs_list(mcast_group_list);
12606 BNX2X_ERR("Failed to allocate mc MAC list\n");
12607 return -ENOMEM;
12608 }
12609 list_add(&current_mcast_group->mcast_group_link,
12610 mcast_group_list);
12611 }
12612 mc_mac = &current_mcast_group->mcast_elems[offset];
12613 mc_mac->mac = bnx2x_mc_addr(ha);
12614 list_add_tail(&mc_mac->link, &p->mcast_list);
12615 offset++;
12616 if (offset == MCAST_ELEMS_PER_PG)
12617 offset = 0;
12618 }
12619 p->mcast_list_len = mc_count;
12620 return 0;
12621 }
12622
12623 /**
12624 * bnx2x_set_uc_list - configure a new unicast MACs list.
12625 *
12626 * @bp: driver handle
12627 *
12628 * We will use zero (0) as a MAC type for these MACs.
12629 */
12630 static int bnx2x_set_uc_list(struct bnx2x *bp)
12631 {
12632 int rc;
12633 struct net_device *dev = bp->dev;
12634 struct netdev_hw_addr *ha;
12635 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12636 unsigned long ramrod_flags = 0;
12637
12638 /* First schedule a cleanup up of old configuration */
12639 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12640 if (rc < 0) {
12641 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12642 return rc;
12643 }
12644
12645 netdev_for_each_uc_addr(ha, dev) {
12646 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12647 BNX2X_UC_LIST_MAC, &ramrod_flags);
12648 if (rc == -EEXIST) {
12649 DP(BNX2X_MSG_SP,
12650 "Failed to schedule ADD operations: %d\n", rc);
12651 /* do not treat adding same MAC as error */
12652 rc = 0;
12653
12654 } else if (rc < 0) {
12655
12656 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12657 rc);
12658 return rc;
12659 }
12660 }
12661
12662 /* Execute the pending commands */
12663 __set_bit(RAMROD_CONT, &ramrod_flags);
12664 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12665 BNX2X_UC_LIST_MAC, &ramrod_flags);
12666 }
12667
12668 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12669 {
12670 LIST_HEAD(mcast_group_list);
12671 struct net_device *dev = bp->dev;
12672 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12673 int rc = 0;
12674
12675 rparam.mcast_obj = &bp->mcast_obj;
12676
12677 /* first, clear all configured multicast MACs */
12678 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12679 if (rc < 0) {
12680 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12681 return rc;
12682 }
12683
12684 /* then, configure a new MACs list */
12685 if (netdev_mc_count(dev)) {
12686 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12687 if (rc)
12688 return rc;
12689
12690 /* Now add the new MACs */
12691 rc = bnx2x_config_mcast(bp, &rparam,
12692 BNX2X_MCAST_CMD_ADD);
12693 if (rc < 0)
12694 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12695 rc);
12696
12697 bnx2x_free_mcast_macs_list(&mcast_group_list);
12698 }
12699
12700 return rc;
12701 }
12702
12703 static int bnx2x_set_mc_list(struct bnx2x *bp)
12704 {
12705 LIST_HEAD(mcast_group_list);
12706 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12707 struct net_device *dev = bp->dev;
12708 int rc = 0;
12709
12710 /* On older adapters, we need to flush and re-add filters */
12711 if (CHIP_IS_E1x(bp))
12712 return bnx2x_set_mc_list_e1x(bp);
12713
12714 rparam.mcast_obj = &bp->mcast_obj;
12715
12716 if (netdev_mc_count(dev)) {
12717 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12718 if (rc)
12719 return rc;
12720
12721 /* Override the curently configured set of mc filters */
12722 rc = bnx2x_config_mcast(bp, &rparam,
12723 BNX2X_MCAST_CMD_SET);
12724 if (rc < 0)
12725 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12726 rc);
12727
12728 bnx2x_free_mcast_macs_list(&mcast_group_list);
12729 } else {
12730 /* If no mc addresses are required, flush the configuration */
12731 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12732 if (rc < 0)
12733 BNX2X_ERR("Failed to clear multicast configuration %d\n",
12734 rc);
12735 }
12736
12737 return rc;
12738 }
12739
12740 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12741 static void bnx2x_set_rx_mode(struct net_device *dev)
12742 {
12743 struct bnx2x *bp = netdev_priv(dev);
12744
12745 if (bp->state != BNX2X_STATE_OPEN) {
12746 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12747 return;
12748 } else {
12749 /* Schedule an SP task to handle rest of change */
12750 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12751 NETIF_MSG_IFUP);
12752 }
12753 }
12754
12755 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12756 {
12757 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12758
12759 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12760
12761 netif_addr_lock_bh(bp->dev);
12762
12763 if (bp->dev->flags & IFF_PROMISC) {
12764 rx_mode = BNX2X_RX_MODE_PROMISC;
12765 } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12766 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12767 CHIP_IS_E1(bp))) {
12768 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12769 } else {
12770 if (IS_PF(bp)) {
12771 /* some multicasts */
12772 if (bnx2x_set_mc_list(bp) < 0)
12773 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12774
12775 /* release bh lock, as bnx2x_set_uc_list might sleep */
12776 netif_addr_unlock_bh(bp->dev);
12777 if (bnx2x_set_uc_list(bp) < 0)
12778 rx_mode = BNX2X_RX_MODE_PROMISC;
12779 netif_addr_lock_bh(bp->dev);
12780 } else {
12781 /* configuring mcast to a vf involves sleeping (when we
12782 * wait for the pf's response).
12783 */
12784 bnx2x_schedule_sp_rtnl(bp,
12785 BNX2X_SP_RTNL_VFPF_MCAST, 0);
12786 }
12787 }
12788
12789 bp->rx_mode = rx_mode;
12790 /* handle ISCSI SD mode */
12791 if (IS_MF_ISCSI_ONLY(bp))
12792 bp->rx_mode = BNX2X_RX_MODE_NONE;
12793
12794 /* Schedule the rx_mode command */
12795 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12796 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12797 netif_addr_unlock_bh(bp->dev);
12798 return;
12799 }
12800
12801 if (IS_PF(bp)) {
12802 bnx2x_set_storm_rx_mode(bp);
12803 netif_addr_unlock_bh(bp->dev);
12804 } else {
12805 /* VF will need to request the PF to make this change, and so
12806 * the VF needs to release the bottom-half lock prior to the
12807 * request (as it will likely require sleep on the VF side)
12808 */
12809 netif_addr_unlock_bh(bp->dev);
12810 bnx2x_vfpf_storm_rx_mode(bp);
12811 }
12812 }
12813
12814 /* called with rtnl_lock */
12815 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12816 int devad, u16 addr)
12817 {
12818 struct bnx2x *bp = netdev_priv(netdev);
12819 u16 value;
12820 int rc;
12821
12822 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12823 prtad, devad, addr);
12824
12825 /* The HW expects different devad if CL22 is used */
12826 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12827
12828 bnx2x_acquire_phy_lock(bp);
12829 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12830 bnx2x_release_phy_lock(bp);
12831 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12832
12833 if (!rc)
12834 rc = value;
12835 return rc;
12836 }
12837
12838 /* called with rtnl_lock */
12839 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12840 u16 addr, u16 value)
12841 {
12842 struct bnx2x *bp = netdev_priv(netdev);
12843 int rc;
12844
12845 DP(NETIF_MSG_LINK,
12846 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12847 prtad, devad, addr, value);
12848
12849 /* The HW expects different devad if CL22 is used */
12850 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12851
12852 bnx2x_acquire_phy_lock(bp);
12853 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12854 bnx2x_release_phy_lock(bp);
12855 return rc;
12856 }
12857
12858 /* called with rtnl_lock */
12859 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12860 {
12861 struct bnx2x *bp = netdev_priv(dev);
12862 struct mii_ioctl_data *mdio = if_mii(ifr);
12863
12864 if (!netif_running(dev))
12865 return -EAGAIN;
12866
12867 switch (cmd) {
12868 case SIOCSHWTSTAMP:
12869 return bnx2x_hwtstamp_ioctl(bp, ifr);
12870 default:
12871 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12872 mdio->phy_id, mdio->reg_num, mdio->val_in);
12873 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12874 }
12875 }
12876
12877 #ifdef CONFIG_NET_POLL_CONTROLLER
12878 static void poll_bnx2x(struct net_device *dev)
12879 {
12880 struct bnx2x *bp = netdev_priv(dev);
12881 int i;
12882
12883 for_each_eth_queue(bp, i) {
12884 struct bnx2x_fastpath *fp = &bp->fp[i];
12885 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12886 }
12887 }
12888 #endif
12889
12890 static int bnx2x_validate_addr(struct net_device *dev)
12891 {
12892 struct bnx2x *bp = netdev_priv(dev);
12893
12894 /* query the bulletin board for mac address configured by the PF */
12895 if (IS_VF(bp))
12896 bnx2x_sample_bulletin(bp);
12897
12898 if (!is_valid_ether_addr(dev->dev_addr)) {
12899 BNX2X_ERR("Non-valid Ethernet address\n");
12900 return -EADDRNOTAVAIL;
12901 }
12902 return 0;
12903 }
12904
12905 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12906 struct netdev_phys_item_id *ppid)
12907 {
12908 struct bnx2x *bp = netdev_priv(netdev);
12909
12910 if (!(bp->flags & HAS_PHYS_PORT_ID))
12911 return -EOPNOTSUPP;
12912
12913 ppid->id_len = sizeof(bp->phys_port_id);
12914 memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12915
12916 return 0;
12917 }
12918
12919 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12920 struct net_device *dev,
12921 netdev_features_t features)
12922 {
12923 features = vlan_features_check(skb, features);
12924 return vxlan_features_check(skb, features);
12925 }
12926
12927 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12928 {
12929 int rc;
12930
12931 if (IS_PF(bp)) {
12932 unsigned long ramrod_flags = 0;
12933
12934 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12935 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12936 add, &ramrod_flags);
12937 } else {
12938 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12939 }
12940
12941 return rc;
12942 }
12943
12944 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12945 {
12946 struct bnx2x_vlan_entry *vlan;
12947 int rc = 0;
12948
12949 /* Configure all non-configured entries */
12950 list_for_each_entry(vlan, &bp->vlan_reg, link) {
12951 if (vlan->hw)
12952 continue;
12953
12954 if (bp->vlan_cnt >= bp->vlan_credit)
12955 return -ENOBUFS;
12956
12957 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12958 if (rc) {
12959 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12960 return rc;
12961 }
12962
12963 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12964 vlan->hw = true;
12965 bp->vlan_cnt++;
12966 }
12967
12968 return 0;
12969 }
12970
12971 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12972 {
12973 bool need_accept_any_vlan;
12974
12975 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12976
12977 if (bp->accept_any_vlan != need_accept_any_vlan) {
12978 bp->accept_any_vlan = need_accept_any_vlan;
12979 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12980 bp->accept_any_vlan ? "raised" : "cleared");
12981 if (set_rx_mode) {
12982 if (IS_PF(bp))
12983 bnx2x_set_rx_mode_inner(bp);
12984 else
12985 bnx2x_vfpf_storm_rx_mode(bp);
12986 }
12987 }
12988 }
12989
12990 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12991 {
12992 struct bnx2x_vlan_entry *vlan;
12993
12994 /* The hw forgot all entries after reload */
12995 list_for_each_entry(vlan, &bp->vlan_reg, link)
12996 vlan->hw = false;
12997 bp->vlan_cnt = 0;
12998
12999 /* Don't set rx mode here. Our caller will do it. */
13000 bnx2x_vlan_configure(bp, false);
13001
13002 return 0;
13003 }
13004
13005 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
13006 {
13007 struct bnx2x *bp = netdev_priv(dev);
13008 struct bnx2x_vlan_entry *vlan;
13009
13010 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13011
13012 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13013 if (!vlan)
13014 return -ENOMEM;
13015
13016 vlan->vid = vid;
13017 vlan->hw = false;
13018 list_add_tail(&vlan->link, &bp->vlan_reg);
13019
13020 if (netif_running(dev))
13021 bnx2x_vlan_configure(bp, true);
13022
13023 return 0;
13024 }
13025
13026 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13027 {
13028 struct bnx2x *bp = netdev_priv(dev);
13029 struct bnx2x_vlan_entry *vlan;
13030 bool found = false;
13031 int rc = 0;
13032
13033 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13034
13035 list_for_each_entry(vlan, &bp->vlan_reg, link)
13036 if (vlan->vid == vid) {
13037 found = true;
13038 break;
13039 }
13040
13041 if (!found) {
13042 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13043 return -EINVAL;
13044 }
13045
13046 if (netif_running(dev) && vlan->hw) {
13047 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13048 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13049 bp->vlan_cnt--;
13050 }
13051
13052 list_del(&vlan->link);
13053 kfree(vlan);
13054
13055 if (netif_running(dev))
13056 bnx2x_vlan_configure(bp, true);
13057
13058 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13059
13060 return rc;
13061 }
13062
13063 static const struct net_device_ops bnx2x_netdev_ops = {
13064 .ndo_open = bnx2x_open,
13065 .ndo_stop = bnx2x_close,
13066 .ndo_start_xmit = bnx2x_start_xmit,
13067 .ndo_select_queue = bnx2x_select_queue,
13068 .ndo_set_rx_mode = bnx2x_set_rx_mode,
13069 .ndo_set_mac_address = bnx2x_change_mac_addr,
13070 .ndo_validate_addr = bnx2x_validate_addr,
13071 .ndo_do_ioctl = bnx2x_ioctl,
13072 .ndo_change_mtu = bnx2x_change_mtu,
13073 .ndo_fix_features = bnx2x_fix_features,
13074 .ndo_set_features = bnx2x_set_features,
13075 .ndo_tx_timeout = bnx2x_tx_timeout,
13076 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid,
13077 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid,
13078 #ifdef CONFIG_NET_POLL_CONTROLLER
13079 .ndo_poll_controller = poll_bnx2x,
13080 #endif
13081 .ndo_setup_tc = __bnx2x_setup_tc,
13082 #ifdef CONFIG_BNX2X_SRIOV
13083 .ndo_set_vf_mac = bnx2x_set_vf_mac,
13084 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
13085 .ndo_get_vf_config = bnx2x_get_vf_config,
13086 #endif
13087 #ifdef NETDEV_FCOE_WWNN
13088 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
13089 #endif
13090
13091 .ndo_get_phys_port_id = bnx2x_get_phys_port_id,
13092 .ndo_set_vf_link_state = bnx2x_set_vf_link_state,
13093 .ndo_features_check = bnx2x_features_check,
13094 .ndo_udp_tunnel_add = bnx2x_udp_tunnel_add,
13095 .ndo_udp_tunnel_del = bnx2x_udp_tunnel_del,
13096 };
13097
13098 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13099 {
13100 struct device *dev = &bp->pdev->dev;
13101
13102 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13103 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13104 dev_err(dev, "System does not support DMA, aborting\n");
13105 return -EIO;
13106 }
13107
13108 return 0;
13109 }
13110
13111 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13112 {
13113 if (bp->flags & AER_ENABLED) {
13114 pci_disable_pcie_error_reporting(bp->pdev);
13115 bp->flags &= ~AER_ENABLED;
13116 }
13117 }
13118
13119 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13120 struct net_device *dev, unsigned long board_type)
13121 {
13122 int rc;
13123 u32 pci_cfg_dword;
13124 bool chip_is_e1x = (board_type == BCM57710 ||
13125 board_type == BCM57711 ||
13126 board_type == BCM57711E);
13127
13128 SET_NETDEV_DEV(dev, &pdev->dev);
13129
13130 bp->dev = dev;
13131 bp->pdev = pdev;
13132
13133 rc = pci_enable_device(pdev);
13134 if (rc) {
13135 dev_err(&bp->pdev->dev,
13136 "Cannot enable PCI device, aborting\n");
13137 goto err_out;
13138 }
13139
13140 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13141 dev_err(&bp->pdev->dev,
13142 "Cannot find PCI device base address, aborting\n");
13143 rc = -ENODEV;
13144 goto err_out_disable;
13145 }
13146
13147 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13148 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13149 rc = -ENODEV;
13150 goto err_out_disable;
13151 }
13152
13153 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13154 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13155 PCICFG_REVESION_ID_ERROR_VAL) {
13156 pr_err("PCI device error, probably due to fan failure, aborting\n");
13157 rc = -ENODEV;
13158 goto err_out_disable;
13159 }
13160
13161 if (atomic_read(&pdev->enable_cnt) == 1) {
13162 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13163 if (rc) {
13164 dev_err(&bp->pdev->dev,
13165 "Cannot obtain PCI resources, aborting\n");
13166 goto err_out_disable;
13167 }
13168
13169 pci_set_master(pdev);
13170 pci_save_state(pdev);
13171 }
13172
13173 if (IS_PF(bp)) {
13174 if (!pdev->pm_cap) {
13175 dev_err(&bp->pdev->dev,
13176 "Cannot find power management capability, aborting\n");
13177 rc = -EIO;
13178 goto err_out_release;
13179 }
13180 }
13181
13182 if (!pci_is_pcie(pdev)) {
13183 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13184 rc = -EIO;
13185 goto err_out_release;
13186 }
13187
13188 rc = bnx2x_set_coherency_mask(bp);
13189 if (rc)
13190 goto err_out_release;
13191
13192 dev->mem_start = pci_resource_start(pdev, 0);
13193 dev->base_addr = dev->mem_start;
13194 dev->mem_end = pci_resource_end(pdev, 0);
13195
13196 dev->irq = pdev->irq;
13197
13198 bp->regview = pci_ioremap_bar(pdev, 0);
13199 if (!bp->regview) {
13200 dev_err(&bp->pdev->dev,
13201 "Cannot map register space, aborting\n");
13202 rc = -ENOMEM;
13203 goto err_out_release;
13204 }
13205
13206 /* In E1/E1H use pci device function given by kernel.
13207 * In E2/E3 read physical function from ME register since these chips
13208 * support Physical Device Assignment where kernel BDF maybe arbitrary
13209 * (depending on hypervisor).
13210 */
13211 if (chip_is_e1x) {
13212 bp->pf_num = PCI_FUNC(pdev->devfn);
13213 } else {
13214 /* chip is E2/3*/
13215 pci_read_config_dword(bp->pdev,
13216 PCICFG_ME_REGISTER, &pci_cfg_dword);
13217 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13218 ME_REG_ABS_PF_NUM_SHIFT);
13219 }
13220 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13221
13222 /* clean indirect addresses */
13223 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13224 PCICFG_VENDOR_ID_OFFSET);
13225
13226 /* Set PCIe reset type to fundamental for EEH recovery */
13227 pdev->needs_freset = 1;
13228
13229 /* AER (Advanced Error reporting) configuration */
13230 rc = pci_enable_pcie_error_reporting(pdev);
13231 if (!rc)
13232 bp->flags |= AER_ENABLED;
13233 else
13234 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13235
13236 /*
13237 * Clean the following indirect addresses for all functions since it
13238 * is not used by the driver.
13239 */
13240 if (IS_PF(bp)) {
13241 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13242 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13243 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13244 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13245
13246 if (chip_is_e1x) {
13247 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13248 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13249 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13250 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13251 }
13252
13253 /* Enable internal target-read (in case we are probed after PF
13254 * FLR). Must be done prior to any BAR read access. Only for
13255 * 57712 and up
13256 */
13257 if (!chip_is_e1x)
13258 REG_WR(bp,
13259 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13260 }
13261
13262 dev->watchdog_timeo = TX_TIMEOUT;
13263
13264 dev->netdev_ops = &bnx2x_netdev_ops;
13265 bnx2x_set_ethtool_ops(bp, dev);
13266
13267 dev->priv_flags |= IFF_UNICAST_FLT;
13268
13269 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13270 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13271 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13272 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13273 if (!chip_is_e1x) {
13274 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13275 NETIF_F_GSO_IPXIP4 |
13276 NETIF_F_GSO_UDP_TUNNEL |
13277 NETIF_F_GSO_UDP_TUNNEL_CSUM |
13278 NETIF_F_GSO_PARTIAL;
13279
13280 dev->hw_enc_features =
13281 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13282 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13283 NETIF_F_GSO_IPXIP4 |
13284 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13285 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13286 NETIF_F_GSO_PARTIAL;
13287
13288 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13289 NETIF_F_GSO_UDP_TUNNEL_CSUM;
13290 }
13291
13292 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13293 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13294
13295 if (IS_PF(bp)) {
13296 if (chip_is_e1x)
13297 bp->accept_any_vlan = true;
13298 else
13299 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13300 }
13301 /* For VF we'll know whether to enable VLAN filtering after
13302 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13303 */
13304
13305 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13306 dev->features |= NETIF_F_HIGHDMA;
13307
13308 /* Add Loopback capability to the device */
13309 dev->hw_features |= NETIF_F_LOOPBACK;
13310
13311 #ifdef BCM_DCBNL
13312 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13313 #endif
13314
13315 /* MTU range, 46 - 9600 */
13316 dev->min_mtu = ETH_MIN_PACKET_SIZE;
13317 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13318
13319 /* get_port_hwinfo() will set prtad and mmds properly */
13320 bp->mdio.prtad = MDIO_PRTAD_NONE;
13321 bp->mdio.mmds = 0;
13322 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13323 bp->mdio.dev = dev;
13324 bp->mdio.mdio_read = bnx2x_mdio_read;
13325 bp->mdio.mdio_write = bnx2x_mdio_write;
13326
13327 return 0;
13328
13329 err_out_release:
13330 if (atomic_read(&pdev->enable_cnt) == 1)
13331 pci_release_regions(pdev);
13332
13333 err_out_disable:
13334 pci_disable_device(pdev);
13335
13336 err_out:
13337 return rc;
13338 }
13339
13340 static int bnx2x_check_firmware(struct bnx2x *bp)
13341 {
13342 const struct firmware *firmware = bp->firmware;
13343 struct bnx2x_fw_file_hdr *fw_hdr;
13344 struct bnx2x_fw_file_section *sections;
13345 u32 offset, len, num_ops;
13346 __be16 *ops_offsets;
13347 int i;
13348 const u8 *fw_ver;
13349
13350 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13351 BNX2X_ERR("Wrong FW size\n");
13352 return -EINVAL;
13353 }
13354
13355 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13356 sections = (struct bnx2x_fw_file_section *)fw_hdr;
13357
13358 /* Make sure none of the offsets and sizes make us read beyond
13359 * the end of the firmware data */
13360 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13361 offset = be32_to_cpu(sections[i].offset);
13362 len = be32_to_cpu(sections[i].len);
13363 if (offset + len > firmware->size) {
13364 BNX2X_ERR("Section %d length is out of bounds\n", i);
13365 return -EINVAL;
13366 }
13367 }
13368
13369 /* Likewise for the init_ops offsets */
13370 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13371 ops_offsets = (__force __be16 *)(firmware->data + offset);
13372 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13373
13374 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13375 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13376 BNX2X_ERR("Section offset %d is out of bounds\n", i);
13377 return -EINVAL;
13378 }
13379 }
13380
13381 /* Check FW version */
13382 offset = be32_to_cpu(fw_hdr->fw_version.offset);
13383 fw_ver = firmware->data + offset;
13384 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13385 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13386 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13387 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13388 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13389 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13390 BCM_5710_FW_MAJOR_VERSION,
13391 BCM_5710_FW_MINOR_VERSION,
13392 BCM_5710_FW_REVISION_VERSION,
13393 BCM_5710_FW_ENGINEERING_VERSION);
13394 return -EINVAL;
13395 }
13396
13397 return 0;
13398 }
13399
13400 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13401 {
13402 const __be32 *source = (const __be32 *)_source;
13403 u32 *target = (u32 *)_target;
13404 u32 i;
13405
13406 for (i = 0; i < n/4; i++)
13407 target[i] = be32_to_cpu(source[i]);
13408 }
13409
13410 /*
13411 Ops array is stored in the following format:
13412 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13413 */
13414 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13415 {
13416 const __be32 *source = (const __be32 *)_source;
13417 struct raw_op *target = (struct raw_op *)_target;
13418 u32 i, j, tmp;
13419
13420 for (i = 0, j = 0; i < n/8; i++, j += 2) {
13421 tmp = be32_to_cpu(source[j]);
13422 target[i].op = (tmp >> 24) & 0xff;
13423 target[i].offset = tmp & 0xffffff;
13424 target[i].raw_data = be32_to_cpu(source[j + 1]);
13425 }
13426 }
13427
13428 /* IRO array is stored in the following format:
13429 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13430 */
13431 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13432 {
13433 const __be32 *source = (const __be32 *)_source;
13434 struct iro *target = (struct iro *)_target;
13435 u32 i, j, tmp;
13436
13437 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13438 target[i].base = be32_to_cpu(source[j]);
13439 j++;
13440 tmp = be32_to_cpu(source[j]);
13441 target[i].m1 = (tmp >> 16) & 0xffff;
13442 target[i].m2 = tmp & 0xffff;
13443 j++;
13444 tmp = be32_to_cpu(source[j]);
13445 target[i].m3 = (tmp >> 16) & 0xffff;
13446 target[i].size = tmp & 0xffff;
13447 j++;
13448 }
13449 }
13450
13451 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13452 {
13453 const __be16 *source = (const __be16 *)_source;
13454 u16 *target = (u16 *)_target;
13455 u32 i;
13456
13457 for (i = 0; i < n/2; i++)
13458 target[i] = be16_to_cpu(source[i]);
13459 }
13460
13461 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
13462 do { \
13463 u32 len = be32_to_cpu(fw_hdr->arr.len); \
13464 bp->arr = kmalloc(len, GFP_KERNEL); \
13465 if (!bp->arr) \
13466 goto lbl; \
13467 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
13468 (u8 *)bp->arr, len); \
13469 } while (0)
13470
13471 static int bnx2x_init_firmware(struct bnx2x *bp)
13472 {
13473 const char *fw_file_name;
13474 struct bnx2x_fw_file_hdr *fw_hdr;
13475 int rc;
13476
13477 if (bp->firmware)
13478 return 0;
13479
13480 if (CHIP_IS_E1(bp))
13481 fw_file_name = FW_FILE_NAME_E1;
13482 else if (CHIP_IS_E1H(bp))
13483 fw_file_name = FW_FILE_NAME_E1H;
13484 else if (!CHIP_IS_E1x(bp))
13485 fw_file_name = FW_FILE_NAME_E2;
13486 else {
13487 BNX2X_ERR("Unsupported chip revision\n");
13488 return -EINVAL;
13489 }
13490 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13491
13492 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13493 if (rc) {
13494 BNX2X_ERR("Can't load firmware file %s\n",
13495 fw_file_name);
13496 goto request_firmware_exit;
13497 }
13498
13499 rc = bnx2x_check_firmware(bp);
13500 if (rc) {
13501 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13502 goto request_firmware_exit;
13503 }
13504
13505 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13506
13507 /* Initialize the pointers to the init arrays */
13508 /* Blob */
13509 rc = -ENOMEM;
13510 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13511
13512 /* Opcodes */
13513 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13514
13515 /* Offsets */
13516 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13517 be16_to_cpu_n);
13518
13519 /* STORMs firmware */
13520 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13521 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13522 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
13523 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13524 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13525 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13526 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
13527 be32_to_cpu(fw_hdr->usem_pram_data.offset);
13528 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13529 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13530 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
13531 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13532 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13533 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13534 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
13535 be32_to_cpu(fw_hdr->csem_pram_data.offset);
13536 /* IRO */
13537 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13538
13539 return 0;
13540
13541 iro_alloc_err:
13542 kfree(bp->init_ops_offsets);
13543 init_offsets_alloc_err:
13544 kfree(bp->init_ops);
13545 init_ops_alloc_err:
13546 kfree(bp->init_data);
13547 request_firmware_exit:
13548 release_firmware(bp->firmware);
13549 bp->firmware = NULL;
13550
13551 return rc;
13552 }
13553
13554 static void bnx2x_release_firmware(struct bnx2x *bp)
13555 {
13556 kfree(bp->init_ops_offsets);
13557 kfree(bp->init_ops);
13558 kfree(bp->init_data);
13559 release_firmware(bp->firmware);
13560 bp->firmware = NULL;
13561 }
13562
13563 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13564 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13565 .init_hw_cmn = bnx2x_init_hw_common,
13566 .init_hw_port = bnx2x_init_hw_port,
13567 .init_hw_func = bnx2x_init_hw_func,
13568
13569 .reset_hw_cmn = bnx2x_reset_common,
13570 .reset_hw_port = bnx2x_reset_port,
13571 .reset_hw_func = bnx2x_reset_func,
13572
13573 .gunzip_init = bnx2x_gunzip_init,
13574 .gunzip_end = bnx2x_gunzip_end,
13575
13576 .init_fw = bnx2x_init_firmware,
13577 .release_fw = bnx2x_release_firmware,
13578 };
13579
13580 void bnx2x__init_func_obj(struct bnx2x *bp)
13581 {
13582 /* Prepare DMAE related driver resources */
13583 bnx2x_setup_dmae(bp);
13584
13585 bnx2x_init_func_obj(bp, &bp->func_obj,
13586 bnx2x_sp(bp, func_rdata),
13587 bnx2x_sp_mapping(bp, func_rdata),
13588 bnx2x_sp(bp, func_afex_rdata),
13589 bnx2x_sp_mapping(bp, func_afex_rdata),
13590 &bnx2x_func_sp_drv);
13591 }
13592
13593 /* must be called after sriov-enable */
13594 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13595 {
13596 int cid_count = BNX2X_L2_MAX_CID(bp);
13597
13598 if (IS_SRIOV(bp))
13599 cid_count += BNX2X_VF_CIDS;
13600
13601 if (CNIC_SUPPORT(bp))
13602 cid_count += CNIC_CID_MAX;
13603
13604 return roundup(cid_count, QM_CID_ROUND);
13605 }
13606
13607 /**
13608 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13609 *
13610 * @dev: pci device
13611 *
13612 */
13613 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13614 {
13615 int index;
13616 u16 control = 0;
13617
13618 /*
13619 * If MSI-X is not supported - return number of SBs needed to support
13620 * one fast path queue: one FP queue + SB for CNIC
13621 */
13622 if (!pdev->msix_cap) {
13623 dev_info(&pdev->dev, "no msix capability found\n");
13624 return 1 + cnic_cnt;
13625 }
13626 dev_info(&pdev->dev, "msix capability found\n");
13627
13628 /*
13629 * The value in the PCI configuration space is the index of the last
13630 * entry, namely one less than the actual size of the table, which is
13631 * exactly what we want to return from this function: number of all SBs
13632 * without the default SB.
13633 * For VFs there is no default SB, then we return (index+1).
13634 */
13635 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13636
13637 index = control & PCI_MSIX_FLAGS_QSIZE;
13638
13639 return index;
13640 }
13641
13642 static int set_max_cos_est(int chip_id)
13643 {
13644 switch (chip_id) {
13645 case BCM57710:
13646 case BCM57711:
13647 case BCM57711E:
13648 return BNX2X_MULTI_TX_COS_E1X;
13649 case BCM57712:
13650 case BCM57712_MF:
13651 return BNX2X_MULTI_TX_COS_E2_E3A0;
13652 case BCM57800:
13653 case BCM57800_MF:
13654 case BCM57810:
13655 case BCM57810_MF:
13656 case BCM57840_4_10:
13657 case BCM57840_2_20:
13658 case BCM57840_O:
13659 case BCM57840_MFO:
13660 case BCM57840_MF:
13661 case BCM57811:
13662 case BCM57811_MF:
13663 return BNX2X_MULTI_TX_COS_E3B0;
13664 case BCM57712_VF:
13665 case BCM57800_VF:
13666 case BCM57810_VF:
13667 case BCM57840_VF:
13668 case BCM57811_VF:
13669 return 1;
13670 default:
13671 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13672 return -ENODEV;
13673 }
13674 }
13675
13676 static int set_is_vf(int chip_id)
13677 {
13678 switch (chip_id) {
13679 case BCM57712_VF:
13680 case BCM57800_VF:
13681 case BCM57810_VF:
13682 case BCM57840_VF:
13683 case BCM57811_VF:
13684 return true;
13685 default:
13686 return false;
13687 }
13688 }
13689
13690 /* nig_tsgen registers relative address */
13691 #define tsgen_ctrl 0x0
13692 #define tsgen_freecount 0x10
13693 #define tsgen_synctime_t0 0x20
13694 #define tsgen_offset_t0 0x28
13695 #define tsgen_drift_t0 0x30
13696 #define tsgen_synctime_t1 0x58
13697 #define tsgen_offset_t1 0x60
13698 #define tsgen_drift_t1 0x68
13699
13700 /* FW workaround for setting drift */
13701 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13702 int best_val, int best_period)
13703 {
13704 struct bnx2x_func_state_params func_params = {NULL};
13705 struct bnx2x_func_set_timesync_params *set_timesync_params =
13706 &func_params.params.set_timesync;
13707
13708 /* Prepare parameters for function state transitions */
13709 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13710 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13711
13712 func_params.f_obj = &bp->func_obj;
13713 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13714
13715 /* Function parameters */
13716 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13717 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13718 set_timesync_params->add_sub_drift_adjust_value =
13719 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13720 set_timesync_params->drift_adjust_value = best_val;
13721 set_timesync_params->drift_adjust_period = best_period;
13722
13723 return bnx2x_func_state_change(bp, &func_params);
13724 }
13725
13726 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13727 {
13728 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13729 int rc;
13730 int drift_dir = 1;
13731 int val, period, period1, period2, dif, dif1, dif2;
13732 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13733
13734 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13735
13736 if (!netif_running(bp->dev)) {
13737 DP(BNX2X_MSG_PTP,
13738 "PTP adjfreq called while the interface is down\n");
13739 return -ENETDOWN;
13740 }
13741
13742 if (ppb < 0) {
13743 ppb = -ppb;
13744 drift_dir = 0;
13745 }
13746
13747 if (ppb == 0) {
13748 best_val = 1;
13749 best_period = 0x1FFFFFF;
13750 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13751 best_val = 31;
13752 best_period = 1;
13753 } else {
13754 /* Changed not to allow val = 8, 16, 24 as these values
13755 * are not supported in workaround.
13756 */
13757 for (val = 0; val <= 31; val++) {
13758 if ((val & 0x7) == 0)
13759 continue;
13760 period1 = val * 1000000 / ppb;
13761 period2 = period1 + 1;
13762 if (period1 != 0)
13763 dif1 = ppb - (val * 1000000 / period1);
13764 else
13765 dif1 = BNX2X_MAX_PHC_DRIFT;
13766 if (dif1 < 0)
13767 dif1 = -dif1;
13768 dif2 = ppb - (val * 1000000 / period2);
13769 if (dif2 < 0)
13770 dif2 = -dif2;
13771 dif = (dif1 < dif2) ? dif1 : dif2;
13772 period = (dif1 < dif2) ? period1 : period2;
13773 if (dif < best_dif) {
13774 best_dif = dif;
13775 best_val = val;
13776 best_period = period;
13777 }
13778 }
13779 }
13780
13781 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13782 best_period);
13783 if (rc) {
13784 BNX2X_ERR("Failed to set drift\n");
13785 return -EFAULT;
13786 }
13787
13788 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13789 best_period);
13790
13791 return 0;
13792 }
13793
13794 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13795 {
13796 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13797
13798 if (!netif_running(bp->dev)) {
13799 DP(BNX2X_MSG_PTP,
13800 "PTP adjtime called while the interface is down\n");
13801 return -ENETDOWN;
13802 }
13803
13804 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13805
13806 timecounter_adjtime(&bp->timecounter, delta);
13807
13808 return 0;
13809 }
13810
13811 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13812 {
13813 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13814 u64 ns;
13815
13816 if (!netif_running(bp->dev)) {
13817 DP(BNX2X_MSG_PTP,
13818 "PTP gettime called while the interface is down\n");
13819 return -ENETDOWN;
13820 }
13821
13822 ns = timecounter_read(&bp->timecounter);
13823
13824 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13825
13826 *ts = ns_to_timespec64(ns);
13827
13828 return 0;
13829 }
13830
13831 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13832 const struct timespec64 *ts)
13833 {
13834 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13835 u64 ns;
13836
13837 if (!netif_running(bp->dev)) {
13838 DP(BNX2X_MSG_PTP,
13839 "PTP settime called while the interface is down\n");
13840 return -ENETDOWN;
13841 }
13842
13843 ns = timespec64_to_ns(ts);
13844
13845 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13846
13847 /* Re-init the timecounter */
13848 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13849
13850 return 0;
13851 }
13852
13853 /* Enable (or disable) ancillary features of the phc subsystem */
13854 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13855 struct ptp_clock_request *rq, int on)
13856 {
13857 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13858
13859 BNX2X_ERR("PHC ancillary features are not supported\n");
13860 return -ENOTSUPP;
13861 }
13862
13863 static void bnx2x_register_phc(struct bnx2x *bp)
13864 {
13865 /* Fill the ptp_clock_info struct and register PTP clock*/
13866 bp->ptp_clock_info.owner = THIS_MODULE;
13867 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13868 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13869 bp->ptp_clock_info.n_alarm = 0;
13870 bp->ptp_clock_info.n_ext_ts = 0;
13871 bp->ptp_clock_info.n_per_out = 0;
13872 bp->ptp_clock_info.pps = 0;
13873 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13874 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13875 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13876 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13877 bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13878
13879 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13880 if (IS_ERR(bp->ptp_clock)) {
13881 bp->ptp_clock = NULL;
13882 BNX2X_ERR("PTP clock registeration failed\n");
13883 }
13884 }
13885
13886 static int bnx2x_init_one(struct pci_dev *pdev,
13887 const struct pci_device_id *ent)
13888 {
13889 struct net_device *dev = NULL;
13890 struct bnx2x *bp;
13891 enum pcie_link_width pcie_width;
13892 enum pci_bus_speed pcie_speed;
13893 int rc, max_non_def_sbs;
13894 int rx_count, tx_count, rss_count, doorbell_size;
13895 int max_cos_est;
13896 bool is_vf;
13897 int cnic_cnt;
13898
13899 /* Management FW 'remembers' living interfaces. Allow it some time
13900 * to forget previously living interfaces, allowing a proper re-load.
13901 */
13902 if (is_kdump_kernel()) {
13903 ktime_t now = ktime_get_boottime();
13904 ktime_t fw_ready_time = ktime_set(5, 0);
13905
13906 if (ktime_before(now, fw_ready_time))
13907 msleep(ktime_ms_delta(fw_ready_time, now));
13908 }
13909
13910 /* An estimated maximum supported CoS number according to the chip
13911 * version.
13912 * We will try to roughly estimate the maximum number of CoSes this chip
13913 * may support in order to minimize the memory allocated for Tx
13914 * netdev_queue's. This number will be accurately calculated during the
13915 * initialization of bp->max_cos based on the chip versions AND chip
13916 * revision in the bnx2x_init_bp().
13917 */
13918 max_cos_est = set_max_cos_est(ent->driver_data);
13919 if (max_cos_est < 0)
13920 return max_cos_est;
13921 is_vf = set_is_vf(ent->driver_data);
13922 cnic_cnt = is_vf ? 0 : 1;
13923
13924 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13925
13926 /* add another SB for VF as it has no default SB */
13927 max_non_def_sbs += is_vf ? 1 : 0;
13928
13929 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13930 rss_count = max_non_def_sbs - cnic_cnt;
13931
13932 if (rss_count < 1)
13933 return -EINVAL;
13934
13935 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13936 rx_count = rss_count + cnic_cnt;
13937
13938 /* Maximum number of netdev Tx queues:
13939 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
13940 */
13941 tx_count = rss_count * max_cos_est + cnic_cnt;
13942
13943 /* dev zeroed in init_etherdev */
13944 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13945 if (!dev)
13946 return -ENOMEM;
13947
13948 bp = netdev_priv(dev);
13949
13950 bp->flags = 0;
13951 if (is_vf)
13952 bp->flags |= IS_VF_FLAG;
13953
13954 bp->igu_sb_cnt = max_non_def_sbs;
13955 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13956 bp->msg_enable = debug;
13957 bp->cnic_support = cnic_cnt;
13958 bp->cnic_probe = bnx2x_cnic_probe;
13959
13960 pci_set_drvdata(pdev, dev);
13961
13962 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13963 if (rc < 0) {
13964 free_netdev(dev);
13965 return rc;
13966 }
13967
13968 BNX2X_DEV_INFO("This is a %s function\n",
13969 IS_PF(bp) ? "physical" : "virtual");
13970 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13971 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13972 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13973 tx_count, rx_count);
13974
13975 rc = bnx2x_init_bp(bp);
13976 if (rc)
13977 goto init_one_exit;
13978
13979 /* Map doorbells here as we need the real value of bp->max_cos which
13980 * is initialized in bnx2x_init_bp() to determine the number of
13981 * l2 connections.
13982 */
13983 if (IS_VF(bp)) {
13984 bp->doorbells = bnx2x_vf_doorbells(bp);
13985 rc = bnx2x_vf_pci_alloc(bp);
13986 if (rc)
13987 goto init_one_freemem;
13988 } else {
13989 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13990 if (doorbell_size > pci_resource_len(pdev, 2)) {
13991 dev_err(&bp->pdev->dev,
13992 "Cannot map doorbells, bar size too small, aborting\n");
13993 rc = -ENOMEM;
13994 goto init_one_freemem;
13995 }
13996 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13997 doorbell_size);
13998 }
13999 if (!bp->doorbells) {
14000 dev_err(&bp->pdev->dev,
14001 "Cannot map doorbell space, aborting\n");
14002 rc = -ENOMEM;
14003 goto init_one_freemem;
14004 }
14005
14006 if (IS_VF(bp)) {
14007 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14008 if (rc)
14009 goto init_one_freemem;
14010
14011 #ifdef CONFIG_BNX2X_SRIOV
14012 /* VF with OLD Hypervisor or old PF do not support filtering */
14013 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14014 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14015 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14016 }
14017 #endif
14018 }
14019
14020 /* Enable SRIOV if capability found in configuration space */
14021 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14022 if (rc)
14023 goto init_one_freemem;
14024
14025 /* calc qm_cid_count */
14026 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14027 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14028
14029 /* disable FCOE L2 queue for E1x*/
14030 if (CHIP_IS_E1x(bp))
14031 bp->flags |= NO_FCOE_FLAG;
14032
14033 /* Set bp->num_queues for MSI-X mode*/
14034 bnx2x_set_num_queues(bp);
14035
14036 /* Configure interrupt mode: try to enable MSI-X/MSI if
14037 * needed.
14038 */
14039 rc = bnx2x_set_int_mode(bp);
14040 if (rc) {
14041 dev_err(&pdev->dev, "Cannot set interrupts\n");
14042 goto init_one_freemem;
14043 }
14044 BNX2X_DEV_INFO("set interrupts successfully\n");
14045
14046 /* register the net device */
14047 rc = register_netdev(dev);
14048 if (rc) {
14049 dev_err(&pdev->dev, "Cannot register net device\n");
14050 goto init_one_freemem;
14051 }
14052 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14053
14054 if (!NO_FCOE(bp)) {
14055 /* Add storage MAC address */
14056 rtnl_lock();
14057 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14058 rtnl_unlock();
14059 }
14060 if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
14061 pcie_speed == PCI_SPEED_UNKNOWN ||
14062 pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
14063 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
14064 else
14065 BNX2X_DEV_INFO(
14066 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
14067 board_info[ent->driver_data].name,
14068 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14069 pcie_width,
14070 pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
14071 pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
14072 pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
14073 "Unknown",
14074 dev->base_addr, bp->pdev->irq, dev->dev_addr);
14075
14076 bnx2x_register_phc(bp);
14077
14078 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14079 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14080
14081 return 0;
14082
14083 init_one_freemem:
14084 bnx2x_free_mem_bp(bp);
14085
14086 init_one_exit:
14087 bnx2x_disable_pcie_error_reporting(bp);
14088
14089 if (bp->regview)
14090 iounmap(bp->regview);
14091
14092 if (IS_PF(bp) && bp->doorbells)
14093 iounmap(bp->doorbells);
14094
14095 free_netdev(dev);
14096
14097 if (atomic_read(&pdev->enable_cnt) == 1)
14098 pci_release_regions(pdev);
14099
14100 pci_disable_device(pdev);
14101
14102 return rc;
14103 }
14104
14105 static void __bnx2x_remove(struct pci_dev *pdev,
14106 struct net_device *dev,
14107 struct bnx2x *bp,
14108 bool remove_netdev)
14109 {
14110 if (bp->ptp_clock) {
14111 ptp_clock_unregister(bp->ptp_clock);
14112 bp->ptp_clock = NULL;
14113 }
14114
14115 /* Delete storage MAC address */
14116 if (!NO_FCOE(bp)) {
14117 rtnl_lock();
14118 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14119 rtnl_unlock();
14120 }
14121
14122 #ifdef BCM_DCBNL
14123 /* Delete app tlvs from dcbnl */
14124 bnx2x_dcbnl_update_applist(bp, true);
14125 #endif
14126
14127 if (IS_PF(bp) &&
14128 !BP_NOMCP(bp) &&
14129 (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14130 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14131
14132 /* Close the interface - either directly or implicitly */
14133 if (remove_netdev) {
14134 unregister_netdev(dev);
14135 } else {
14136 rtnl_lock();
14137 dev_close(dev);
14138 rtnl_unlock();
14139 }
14140
14141 bnx2x_iov_remove_one(bp);
14142
14143 /* Power on: we can't let PCI layer write to us while we are in D3 */
14144 if (IS_PF(bp)) {
14145 bnx2x_set_power_state(bp, PCI_D0);
14146 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14147
14148 /* Set endianity registers to reset values in case next driver
14149 * boots in different endianty environment.
14150 */
14151 bnx2x_reset_endianity(bp);
14152 }
14153
14154 /* Disable MSI/MSI-X */
14155 bnx2x_disable_msi(bp);
14156
14157 /* Power off */
14158 if (IS_PF(bp))
14159 bnx2x_set_power_state(bp, PCI_D3hot);
14160
14161 /* Make sure RESET task is not scheduled before continuing */
14162 cancel_delayed_work_sync(&bp->sp_rtnl_task);
14163
14164 /* send message via vfpf channel to release the resources of this vf */
14165 if (IS_VF(bp))
14166 bnx2x_vfpf_release(bp);
14167
14168 /* Assumes no further PCIe PM changes will occur */
14169 if (system_state == SYSTEM_POWER_OFF) {
14170 pci_wake_from_d3(pdev, bp->wol);
14171 pci_set_power_state(pdev, PCI_D3hot);
14172 }
14173
14174 bnx2x_disable_pcie_error_reporting(bp);
14175 if (remove_netdev) {
14176 if (bp->regview)
14177 iounmap(bp->regview);
14178
14179 /* For vfs, doorbells are part of the regview and were unmapped
14180 * along with it. FW is only loaded by PF.
14181 */
14182 if (IS_PF(bp)) {
14183 if (bp->doorbells)
14184 iounmap(bp->doorbells);
14185
14186 bnx2x_release_firmware(bp);
14187 } else {
14188 bnx2x_vf_pci_dealloc(bp);
14189 }
14190 bnx2x_free_mem_bp(bp);
14191
14192 free_netdev(dev);
14193
14194 if (atomic_read(&pdev->enable_cnt) == 1)
14195 pci_release_regions(pdev);
14196
14197 pci_disable_device(pdev);
14198 }
14199 }
14200
14201 static void bnx2x_remove_one(struct pci_dev *pdev)
14202 {
14203 struct net_device *dev = pci_get_drvdata(pdev);
14204 struct bnx2x *bp;
14205
14206 if (!dev) {
14207 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14208 return;
14209 }
14210 bp = netdev_priv(dev);
14211
14212 __bnx2x_remove(pdev, dev, bp, true);
14213 }
14214
14215 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14216 {
14217 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14218
14219 bp->rx_mode = BNX2X_RX_MODE_NONE;
14220
14221 if (CNIC_LOADED(bp))
14222 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14223
14224 /* Stop Tx */
14225 bnx2x_tx_disable(bp);
14226 /* Delete all NAPI objects */
14227 bnx2x_del_all_napi(bp);
14228 if (CNIC_LOADED(bp))
14229 bnx2x_del_all_napi_cnic(bp);
14230 netdev_reset_tc(bp->dev);
14231
14232 del_timer_sync(&bp->timer);
14233 cancel_delayed_work_sync(&bp->sp_task);
14234 cancel_delayed_work_sync(&bp->period_task);
14235
14236 if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14237 bp->stats_state = STATS_STATE_DISABLED;
14238 up(&bp->stats_lock);
14239 }
14240
14241 bnx2x_save_statistics(bp);
14242
14243 netif_carrier_off(bp->dev);
14244
14245 return 0;
14246 }
14247
14248 /**
14249 * bnx2x_io_error_detected - called when PCI error is detected
14250 * @pdev: Pointer to PCI device
14251 * @state: The current pci connection state
14252 *
14253 * This function is called after a PCI bus error affecting
14254 * this device has been detected.
14255 */
14256 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14257 pci_channel_state_t state)
14258 {
14259 struct net_device *dev = pci_get_drvdata(pdev);
14260 struct bnx2x *bp = netdev_priv(dev);
14261
14262 rtnl_lock();
14263
14264 BNX2X_ERR("IO error detected\n");
14265
14266 netif_device_detach(dev);
14267
14268 if (state == pci_channel_io_perm_failure) {
14269 rtnl_unlock();
14270 return PCI_ERS_RESULT_DISCONNECT;
14271 }
14272
14273 if (netif_running(dev))
14274 bnx2x_eeh_nic_unload(bp);
14275
14276 bnx2x_prev_path_mark_eeh(bp);
14277
14278 pci_disable_device(pdev);
14279
14280 rtnl_unlock();
14281
14282 /* Request a slot reset */
14283 return PCI_ERS_RESULT_NEED_RESET;
14284 }
14285
14286 /**
14287 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14288 * @pdev: Pointer to PCI device
14289 *
14290 * Restart the card from scratch, as if from a cold-boot.
14291 */
14292 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14293 {
14294 struct net_device *dev = pci_get_drvdata(pdev);
14295 struct bnx2x *bp = netdev_priv(dev);
14296 int i;
14297
14298 rtnl_lock();
14299 BNX2X_ERR("IO slot reset initializing...\n");
14300 if (pci_enable_device(pdev)) {
14301 dev_err(&pdev->dev,
14302 "Cannot re-enable PCI device after reset\n");
14303 rtnl_unlock();
14304 return PCI_ERS_RESULT_DISCONNECT;
14305 }
14306
14307 pci_set_master(pdev);
14308 pci_restore_state(pdev);
14309 pci_save_state(pdev);
14310
14311 if (netif_running(dev))
14312 bnx2x_set_power_state(bp, PCI_D0);
14313
14314 if (netif_running(dev)) {
14315 BNX2X_ERR("IO slot reset --> driver unload\n");
14316
14317 /* MCP should have been reset; Need to wait for validity */
14318 bnx2x_init_shmem(bp);
14319
14320 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14321 u32 v;
14322
14323 v = SHMEM2_RD(bp,
14324 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14325 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14326 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14327 }
14328 bnx2x_drain_tx_queues(bp);
14329 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14330 bnx2x_netif_stop(bp, 1);
14331 bnx2x_free_irq(bp);
14332
14333 /* Report UNLOAD_DONE to MCP */
14334 bnx2x_send_unload_done(bp, true);
14335
14336 bp->sp_state = 0;
14337 bp->port.pmf = 0;
14338
14339 bnx2x_prev_unload(bp);
14340
14341 /* We should have reseted the engine, so It's fair to
14342 * assume the FW will no longer write to the bnx2x driver.
14343 */
14344 bnx2x_squeeze_objects(bp);
14345 bnx2x_free_skbs(bp);
14346 for_each_rx_queue(bp, i)
14347 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14348 bnx2x_free_fp_mem(bp);
14349 bnx2x_free_mem(bp);
14350
14351 bp->state = BNX2X_STATE_CLOSED;
14352 }
14353
14354 rtnl_unlock();
14355
14356 /* If AER, perform cleanup of the PCIe registers */
14357 if (bp->flags & AER_ENABLED) {
14358 if (pci_cleanup_aer_uncorrect_error_status(pdev))
14359 BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14360 else
14361 DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14362 }
14363
14364 return PCI_ERS_RESULT_RECOVERED;
14365 }
14366
14367 /**
14368 * bnx2x_io_resume - called when traffic can start flowing again
14369 * @pdev: Pointer to PCI device
14370 *
14371 * This callback is called when the error recovery driver tells us that
14372 * its OK to resume normal operation.
14373 */
14374 static void bnx2x_io_resume(struct pci_dev *pdev)
14375 {
14376 struct net_device *dev = pci_get_drvdata(pdev);
14377 struct bnx2x *bp = netdev_priv(dev);
14378
14379 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14380 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14381 return;
14382 }
14383
14384 rtnl_lock();
14385
14386 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14387 DRV_MSG_SEQ_NUMBER_MASK;
14388
14389 if (netif_running(dev))
14390 bnx2x_nic_load(bp, LOAD_NORMAL);
14391
14392 netif_device_attach(dev);
14393
14394 rtnl_unlock();
14395 }
14396
14397 static const struct pci_error_handlers bnx2x_err_handler = {
14398 .error_detected = bnx2x_io_error_detected,
14399 .slot_reset = bnx2x_io_slot_reset,
14400 .resume = bnx2x_io_resume,
14401 };
14402
14403 static void bnx2x_shutdown(struct pci_dev *pdev)
14404 {
14405 struct net_device *dev = pci_get_drvdata(pdev);
14406 struct bnx2x *bp;
14407
14408 if (!dev)
14409 return;
14410
14411 bp = netdev_priv(dev);
14412 if (!bp)
14413 return;
14414
14415 rtnl_lock();
14416 netif_device_detach(dev);
14417 rtnl_unlock();
14418
14419 /* Don't remove the netdevice, as there are scenarios which will cause
14420 * the kernel to hang, e.g., when trying to remove bnx2i while the
14421 * rootfs is mounted from SAN.
14422 */
14423 __bnx2x_remove(pdev, dev, bp, false);
14424 }
14425
14426 static struct pci_driver bnx2x_pci_driver = {
14427 .name = DRV_MODULE_NAME,
14428 .id_table = bnx2x_pci_tbl,
14429 .probe = bnx2x_init_one,
14430 .remove = bnx2x_remove_one,
14431 .suspend = bnx2x_suspend,
14432 .resume = bnx2x_resume,
14433 .err_handler = &bnx2x_err_handler,
14434 #ifdef CONFIG_BNX2X_SRIOV
14435 .sriov_configure = bnx2x_sriov_configure,
14436 #endif
14437 .shutdown = bnx2x_shutdown,
14438 };
14439
14440 static int __init bnx2x_init(void)
14441 {
14442 int ret;
14443
14444 pr_info("%s", version);
14445
14446 bnx2x_wq = create_singlethread_workqueue("bnx2x");
14447 if (bnx2x_wq == NULL) {
14448 pr_err("Cannot create workqueue\n");
14449 return -ENOMEM;
14450 }
14451 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14452 if (!bnx2x_iov_wq) {
14453 pr_err("Cannot create iov workqueue\n");
14454 destroy_workqueue(bnx2x_wq);
14455 return -ENOMEM;
14456 }
14457
14458 ret = pci_register_driver(&bnx2x_pci_driver);
14459 if (ret) {
14460 pr_err("Cannot register driver\n");
14461 destroy_workqueue(bnx2x_wq);
14462 destroy_workqueue(bnx2x_iov_wq);
14463 }
14464 return ret;
14465 }
14466
14467 static void __exit bnx2x_cleanup(void)
14468 {
14469 struct list_head *pos, *q;
14470
14471 pci_unregister_driver(&bnx2x_pci_driver);
14472
14473 destroy_workqueue(bnx2x_wq);
14474 destroy_workqueue(bnx2x_iov_wq);
14475
14476 /* Free globally allocated resources */
14477 list_for_each_safe(pos, q, &bnx2x_prev_list) {
14478 struct bnx2x_prev_path_list *tmp =
14479 list_entry(pos, struct bnx2x_prev_path_list, list);
14480 list_del(pos);
14481 kfree(tmp);
14482 }
14483 }
14484
14485 void bnx2x_notify_link_changed(struct bnx2x *bp)
14486 {
14487 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14488 }
14489
14490 module_init(bnx2x_init);
14491 module_exit(bnx2x_cleanup);
14492
14493 /**
14494 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14495 *
14496 * @bp: driver handle
14497 * @set: set or clear the CAM entry
14498 *
14499 * This function will wait until the ramrod completion returns.
14500 * Return 0 if success, -ENODEV if ramrod doesn't return.
14501 */
14502 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14503 {
14504 unsigned long ramrod_flags = 0;
14505
14506 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14507 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14508 &bp->iscsi_l2_mac_obj, true,
14509 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14510 }
14511
14512 /* count denotes the number of new completions we have seen */
14513 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14514 {
14515 struct eth_spe *spe;
14516 int cxt_index, cxt_offset;
14517
14518 #ifdef BNX2X_STOP_ON_ERROR
14519 if (unlikely(bp->panic))
14520 return;
14521 #endif
14522
14523 spin_lock_bh(&bp->spq_lock);
14524 BUG_ON(bp->cnic_spq_pending < count);
14525 bp->cnic_spq_pending -= count;
14526
14527 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14528 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14529 & SPE_HDR_CONN_TYPE) >>
14530 SPE_HDR_CONN_TYPE_SHIFT;
14531 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14532 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14533
14534 /* Set validation for iSCSI L2 client before sending SETUP
14535 * ramrod
14536 */
14537 if (type == ETH_CONNECTION_TYPE) {
14538 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14539 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14540 ILT_PAGE_CIDS;
14541 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14542 (cxt_index * ILT_PAGE_CIDS);
14543 bnx2x_set_ctx_validation(bp,
14544 &bp->context[cxt_index].
14545 vcxt[cxt_offset].eth,
14546 BNX2X_ISCSI_ETH_CID(bp));
14547 }
14548 }
14549
14550 /*
14551 * There may be not more than 8 L2, not more than 8 L5 SPEs
14552 * and in the air. We also check that number of outstanding
14553 * COMMON ramrods is not more than the EQ and SPQ can
14554 * accommodate.
14555 */
14556 if (type == ETH_CONNECTION_TYPE) {
14557 if (!atomic_read(&bp->cq_spq_left))
14558 break;
14559 else
14560 atomic_dec(&bp->cq_spq_left);
14561 } else if (type == NONE_CONNECTION_TYPE) {
14562 if (!atomic_read(&bp->eq_spq_left))
14563 break;
14564 else
14565 atomic_dec(&bp->eq_spq_left);
14566 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14567 (type == FCOE_CONNECTION_TYPE)) {
14568 if (bp->cnic_spq_pending >=
14569 bp->cnic_eth_dev.max_kwqe_pending)
14570 break;
14571 else
14572 bp->cnic_spq_pending++;
14573 } else {
14574 BNX2X_ERR("Unknown SPE type: %d\n", type);
14575 bnx2x_panic();
14576 break;
14577 }
14578
14579 spe = bnx2x_sp_get_next(bp);
14580 *spe = *bp->cnic_kwq_cons;
14581
14582 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14583 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14584
14585 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14586 bp->cnic_kwq_cons = bp->cnic_kwq;
14587 else
14588 bp->cnic_kwq_cons++;
14589 }
14590 bnx2x_sp_prod_update(bp);
14591 spin_unlock_bh(&bp->spq_lock);
14592 }
14593
14594 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14595 struct kwqe_16 *kwqes[], u32 count)
14596 {
14597 struct bnx2x *bp = netdev_priv(dev);
14598 int i;
14599
14600 #ifdef BNX2X_STOP_ON_ERROR
14601 if (unlikely(bp->panic)) {
14602 BNX2X_ERR("Can't post to SP queue while panic\n");
14603 return -EIO;
14604 }
14605 #endif
14606
14607 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14608 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14609 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14610 return -EAGAIN;
14611 }
14612
14613 spin_lock_bh(&bp->spq_lock);
14614
14615 for (i = 0; i < count; i++) {
14616 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14617
14618 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14619 break;
14620
14621 *bp->cnic_kwq_prod = *spe;
14622
14623 bp->cnic_kwq_pending++;
14624
14625 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14626 spe->hdr.conn_and_cmd_data, spe->hdr.type,
14627 spe->data.update_data_addr.hi,
14628 spe->data.update_data_addr.lo,
14629 bp->cnic_kwq_pending);
14630
14631 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14632 bp->cnic_kwq_prod = bp->cnic_kwq;
14633 else
14634 bp->cnic_kwq_prod++;
14635 }
14636
14637 spin_unlock_bh(&bp->spq_lock);
14638
14639 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14640 bnx2x_cnic_sp_post(bp, 0);
14641
14642 return i;
14643 }
14644
14645 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14646 {
14647 struct cnic_ops *c_ops;
14648 int rc = 0;
14649
14650 mutex_lock(&bp->cnic_mutex);
14651 c_ops = rcu_dereference_protected(bp->cnic_ops,
14652 lockdep_is_held(&bp->cnic_mutex));
14653 if (c_ops)
14654 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14655 mutex_unlock(&bp->cnic_mutex);
14656
14657 return rc;
14658 }
14659
14660 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14661 {
14662 struct cnic_ops *c_ops;
14663 int rc = 0;
14664
14665 rcu_read_lock();
14666 c_ops = rcu_dereference(bp->cnic_ops);
14667 if (c_ops)
14668 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14669 rcu_read_unlock();
14670
14671 return rc;
14672 }
14673
14674 /*
14675 * for commands that have no data
14676 */
14677 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14678 {
14679 struct cnic_ctl_info ctl = {0};
14680
14681 ctl.cmd = cmd;
14682
14683 return bnx2x_cnic_ctl_send(bp, &ctl);
14684 }
14685
14686 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14687 {
14688 struct cnic_ctl_info ctl = {0};
14689
14690 /* first we tell CNIC and only then we count this as a completion */
14691 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14692 ctl.data.comp.cid = cid;
14693 ctl.data.comp.error = err;
14694
14695 bnx2x_cnic_ctl_send_bh(bp, &ctl);
14696 bnx2x_cnic_sp_post(bp, 0);
14697 }
14698
14699 /* Called with netif_addr_lock_bh() taken.
14700 * Sets an rx_mode config for an iSCSI ETH client.
14701 * Doesn't block.
14702 * Completion should be checked outside.
14703 */
14704 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14705 {
14706 unsigned long accept_flags = 0, ramrod_flags = 0;
14707 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14708 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14709
14710 if (start) {
14711 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14712 * because it's the only way for UIO Queue to accept
14713 * multicasts (in non-promiscuous mode only one Queue per
14714 * function will receive multicast packets (leading in our
14715 * case).
14716 */
14717 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14718 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14719 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14720 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14721
14722 /* Clear STOP_PENDING bit if START is requested */
14723 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14724
14725 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14726 } else
14727 /* Clear START_PENDING bit if STOP is requested */
14728 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14729
14730 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14731 set_bit(sched_state, &bp->sp_state);
14732 else {
14733 __set_bit(RAMROD_RX, &ramrod_flags);
14734 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14735 ramrod_flags);
14736 }
14737 }
14738
14739 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14740 {
14741 struct bnx2x *bp = netdev_priv(dev);
14742 int rc = 0;
14743
14744 switch (ctl->cmd) {
14745 case DRV_CTL_CTXTBL_WR_CMD: {
14746 u32 index = ctl->data.io.offset;
14747 dma_addr_t addr = ctl->data.io.dma_addr;
14748
14749 bnx2x_ilt_wr(bp, index, addr);
14750 break;
14751 }
14752
14753 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14754 int count = ctl->data.credit.credit_count;
14755
14756 bnx2x_cnic_sp_post(bp, count);
14757 break;
14758 }
14759
14760 /* rtnl_lock is held. */
14761 case DRV_CTL_START_L2_CMD: {
14762 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14763 unsigned long sp_bits = 0;
14764
14765 /* Configure the iSCSI classification object */
14766 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14767 cp->iscsi_l2_client_id,
14768 cp->iscsi_l2_cid, BP_FUNC(bp),
14769 bnx2x_sp(bp, mac_rdata),
14770 bnx2x_sp_mapping(bp, mac_rdata),
14771 BNX2X_FILTER_MAC_PENDING,
14772 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14773 &bp->macs_pool);
14774
14775 /* Set iSCSI MAC address */
14776 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14777 if (rc)
14778 break;
14779
14780 mmiowb();
14781 barrier();
14782
14783 /* Start accepting on iSCSI L2 ring */
14784
14785 netif_addr_lock_bh(dev);
14786 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14787 netif_addr_unlock_bh(dev);
14788
14789 /* bits to wait on */
14790 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14791 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14792
14793 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14794 BNX2X_ERR("rx_mode completion timed out!\n");
14795
14796 break;
14797 }
14798
14799 /* rtnl_lock is held. */
14800 case DRV_CTL_STOP_L2_CMD: {
14801 unsigned long sp_bits = 0;
14802
14803 /* Stop accepting on iSCSI L2 ring */
14804 netif_addr_lock_bh(dev);
14805 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14806 netif_addr_unlock_bh(dev);
14807
14808 /* bits to wait on */
14809 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14810 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14811
14812 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14813 BNX2X_ERR("rx_mode completion timed out!\n");
14814
14815 mmiowb();
14816 barrier();
14817
14818 /* Unset iSCSI L2 MAC */
14819 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14820 BNX2X_ISCSI_ETH_MAC, true);
14821 break;
14822 }
14823 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14824 int count = ctl->data.credit.credit_count;
14825
14826 smp_mb__before_atomic();
14827 atomic_add(count, &bp->cq_spq_left);
14828 smp_mb__after_atomic();
14829 break;
14830 }
14831 case DRV_CTL_ULP_REGISTER_CMD: {
14832 int ulp_type = ctl->data.register_data.ulp_type;
14833
14834 if (CHIP_IS_E3(bp)) {
14835 int idx = BP_FW_MB_IDX(bp);
14836 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14837 int path = BP_PATH(bp);
14838 int port = BP_PORT(bp);
14839 int i;
14840 u32 scratch_offset;
14841 u32 *host_addr;
14842
14843 /* first write capability to shmem2 */
14844 if (ulp_type == CNIC_ULP_ISCSI)
14845 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14846 else if (ulp_type == CNIC_ULP_FCOE)
14847 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14848 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14849
14850 if ((ulp_type != CNIC_ULP_FCOE) ||
14851 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14852 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
14853 break;
14854
14855 /* if reached here - should write fcoe capabilities */
14856 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14857 if (!scratch_offset)
14858 break;
14859 scratch_offset += offsetof(struct glob_ncsi_oem_data,
14860 fcoe_features[path][port]);
14861 host_addr = (u32 *) &(ctl->data.register_data.
14862 fcoe_features);
14863 for (i = 0; i < sizeof(struct fcoe_capabilities);
14864 i += 4)
14865 REG_WR(bp, scratch_offset + i,
14866 *(host_addr + i/4));
14867 }
14868 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14869 break;
14870 }
14871
14872 case DRV_CTL_ULP_UNREGISTER_CMD: {
14873 int ulp_type = ctl->data.ulp_type;
14874
14875 if (CHIP_IS_E3(bp)) {
14876 int idx = BP_FW_MB_IDX(bp);
14877 u32 cap;
14878
14879 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14880 if (ulp_type == CNIC_ULP_ISCSI)
14881 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14882 else if (ulp_type == CNIC_ULP_FCOE)
14883 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14884 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14885 }
14886 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14887 break;
14888 }
14889
14890 default:
14891 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14892 rc = -EINVAL;
14893 }
14894
14895 /* For storage-only interfaces, change driver state */
14896 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14897 switch (ctl->drv_state) {
14898 case DRV_NOP:
14899 break;
14900 case DRV_ACTIVE:
14901 bnx2x_set_os_driver_state(bp,
14902 OS_DRIVER_STATE_ACTIVE);
14903 break;
14904 case DRV_INACTIVE:
14905 bnx2x_set_os_driver_state(bp,
14906 OS_DRIVER_STATE_DISABLED);
14907 break;
14908 case DRV_UNLOADED:
14909 bnx2x_set_os_driver_state(bp,
14910 OS_DRIVER_STATE_NOT_LOADED);
14911 break;
14912 default:
14913 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14914 }
14915 }
14916
14917 return rc;
14918 }
14919
14920 static int bnx2x_get_fc_npiv(struct net_device *dev,
14921 struct cnic_fc_npiv_tbl *cnic_tbl)
14922 {
14923 struct bnx2x *bp = netdev_priv(dev);
14924 struct bdn_fc_npiv_tbl *tbl = NULL;
14925 u32 offset, entries;
14926 int rc = -EINVAL;
14927 int i;
14928
14929 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14930 goto out;
14931
14932 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14933
14934 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14935 if (!tbl) {
14936 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14937 goto out;
14938 }
14939
14940 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14941 if (!offset) {
14942 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14943 goto out;
14944 }
14945 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14946
14947 /* Read the table contents from nvram */
14948 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14949 BNX2X_ERR("Failed to read FC-NPIV table\n");
14950 goto out;
14951 }
14952
14953 /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14954 * the number of entries back to cpu endianness.
14955 */
14956 entries = tbl->fc_npiv_cfg.num_of_npiv;
14957 entries = (__force u32)be32_to_cpu((__force __be32)entries);
14958 tbl->fc_npiv_cfg.num_of_npiv = entries;
14959
14960 if (!tbl->fc_npiv_cfg.num_of_npiv) {
14961 DP(BNX2X_MSG_MCP,
14962 "No FC-NPIV table [valid, simply not present]\n");
14963 goto out;
14964 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14965 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14966 tbl->fc_npiv_cfg.num_of_npiv);
14967 goto out;
14968 } else {
14969 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14970 tbl->fc_npiv_cfg.num_of_npiv);
14971 }
14972
14973 /* Copy the data into cnic-provided struct */
14974 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14975 for (i = 0; i < cnic_tbl->count; i++) {
14976 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14977 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14978 }
14979
14980 rc = 0;
14981 out:
14982 kfree(tbl);
14983 return rc;
14984 }
14985
14986 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14987 {
14988 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14989
14990 if (bp->flags & USING_MSIX_FLAG) {
14991 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14992 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14993 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14994 } else {
14995 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14996 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14997 }
14998 if (!CHIP_IS_E1x(bp))
14999 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
15000 else
15001 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
15002
15003 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
15004 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
15005 cp->irq_arr[1].status_blk = bp->def_status_blk;
15006 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
15007 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
15008
15009 cp->num_irq = 2;
15010 }
15011
15012 void bnx2x_setup_cnic_info(struct bnx2x *bp)
15013 {
15014 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15015
15016 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15017 bnx2x_cid_ilt_lines(bp);
15018 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15019 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15020 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15021
15022 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15023 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15024 cp->iscsi_l2_cid);
15025
15026 if (NO_ISCSI_OOO(bp))
15027 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15028 }
15029
15030 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15031 void *data)
15032 {
15033 struct bnx2x *bp = netdev_priv(dev);
15034 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15035 int rc;
15036
15037 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15038
15039 if (ops == NULL) {
15040 BNX2X_ERR("NULL ops received\n");
15041 return -EINVAL;
15042 }
15043
15044 if (!CNIC_SUPPORT(bp)) {
15045 BNX2X_ERR("Can't register CNIC when not supported\n");
15046 return -EOPNOTSUPP;
15047 }
15048
15049 if (!CNIC_LOADED(bp)) {
15050 rc = bnx2x_load_cnic(bp);
15051 if (rc) {
15052 BNX2X_ERR("CNIC-related load failed\n");
15053 return rc;
15054 }
15055 }
15056
15057 bp->cnic_enabled = true;
15058
15059 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15060 if (!bp->cnic_kwq)
15061 return -ENOMEM;
15062
15063 bp->cnic_kwq_cons = bp->cnic_kwq;
15064 bp->cnic_kwq_prod = bp->cnic_kwq;
15065 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15066
15067 bp->cnic_spq_pending = 0;
15068 bp->cnic_kwq_pending = 0;
15069
15070 bp->cnic_data = data;
15071
15072 cp->num_irq = 0;
15073 cp->drv_state |= CNIC_DRV_STATE_REGD;
15074 cp->iro_arr = bp->iro_arr;
15075
15076 bnx2x_setup_cnic_irq_info(bp);
15077
15078 rcu_assign_pointer(bp->cnic_ops, ops);
15079
15080 /* Schedule driver to read CNIC driver versions */
15081 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15082
15083 return 0;
15084 }
15085
15086 static int bnx2x_unregister_cnic(struct net_device *dev)
15087 {
15088 struct bnx2x *bp = netdev_priv(dev);
15089 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15090
15091 mutex_lock(&bp->cnic_mutex);
15092 cp->drv_state = 0;
15093 RCU_INIT_POINTER(bp->cnic_ops, NULL);
15094 mutex_unlock(&bp->cnic_mutex);
15095 synchronize_rcu();
15096 bp->cnic_enabled = false;
15097 kfree(bp->cnic_kwq);
15098 bp->cnic_kwq = NULL;
15099
15100 return 0;
15101 }
15102
15103 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15104 {
15105 struct bnx2x *bp = netdev_priv(dev);
15106 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15107
15108 /* If both iSCSI and FCoE are disabled - return NULL in
15109 * order to indicate CNIC that it should not try to work
15110 * with this device.
15111 */
15112 if (NO_ISCSI(bp) && NO_FCOE(bp))
15113 return NULL;
15114
15115 cp->drv_owner = THIS_MODULE;
15116 cp->chip_id = CHIP_ID(bp);
15117 cp->pdev = bp->pdev;
15118 cp->io_base = bp->regview;
15119 cp->io_base2 = bp->doorbells;
15120 cp->max_kwqe_pending = 8;
15121 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15122 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15123 bnx2x_cid_ilt_lines(bp);
15124 cp->ctx_tbl_len = CNIC_ILT_LINES;
15125 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15126 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15127 cp->drv_ctl = bnx2x_drv_ctl;
15128 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15129 cp->drv_register_cnic = bnx2x_register_cnic;
15130 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15131 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15132 cp->iscsi_l2_client_id =
15133 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15134 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15135
15136 if (NO_ISCSI_OOO(bp))
15137 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15138
15139 if (NO_ISCSI(bp))
15140 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15141
15142 if (NO_FCOE(bp))
15143 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15144
15145 BNX2X_DEV_INFO(
15146 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15147 cp->ctx_blk_size,
15148 cp->ctx_tbl_offset,
15149 cp->ctx_tbl_len,
15150 cp->starting_cid);
15151 return cp;
15152 }
15153
15154 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15155 {
15156 struct bnx2x *bp = fp->bp;
15157 u32 offset = BAR_USTRORM_INTMEM;
15158
15159 if (IS_VF(bp))
15160 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15161 else if (!CHIP_IS_E1x(bp))
15162 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15163 else
15164 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15165
15166 return offset;
15167 }
15168
15169 /* called only on E1H or E2.
15170 * When pretending to be PF, the pretend value is the function number 0...7
15171 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15172 * combination
15173 */
15174 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15175 {
15176 u32 pretend_reg;
15177
15178 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15179 return -1;
15180
15181 /* get my own pretend register */
15182 pretend_reg = bnx2x_get_pretend_reg(bp);
15183 REG_WR(bp, pretend_reg, pretend_func_val);
15184 REG_RD(bp, pretend_reg);
15185 return 0;
15186 }
15187
15188 static void bnx2x_ptp_task(struct work_struct *work)
15189 {
15190 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15191 int port = BP_PORT(bp);
15192 u32 val_seq;
15193 u64 timestamp, ns;
15194 struct skb_shared_hwtstamps shhwtstamps;
15195
15196 /* Read Tx timestamp registers */
15197 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15198 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15199 if (val_seq & 0x10000) {
15200 /* There is a valid timestamp value */
15201 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15202 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15203 timestamp <<= 32;
15204 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15205 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15206 /* Reset timestamp register to allow new timestamp */
15207 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15208 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15209 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15210
15211 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15212 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15213 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15214 dev_kfree_skb_any(bp->ptp_tx_skb);
15215 bp->ptp_tx_skb = NULL;
15216
15217 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15218 timestamp, ns);
15219 } else {
15220 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15221 /* Reschedule to keep checking for a valid timestamp value */
15222 schedule_work(&bp->ptp_task);
15223 }
15224 }
15225
15226 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15227 {
15228 int port = BP_PORT(bp);
15229 u64 timestamp, ns;
15230
15231 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15232 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15233 timestamp <<= 32;
15234 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15235 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15236
15237 /* Reset timestamp register to allow new timestamp */
15238 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15239 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15240
15241 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15242
15243 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15244
15245 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15246 timestamp, ns);
15247 }
15248
15249 /* Read the PHC */
15250 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15251 {
15252 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15253 int port = BP_PORT(bp);
15254 u32 wb_data[2];
15255 u64 phc_cycles;
15256
15257 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15258 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15259 phc_cycles = wb_data[1];
15260 phc_cycles = (phc_cycles << 32) + wb_data[0];
15261
15262 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15263
15264 return phc_cycles;
15265 }
15266
15267 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15268 {
15269 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15270 bp->cyclecounter.read = bnx2x_cyclecounter_read;
15271 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15272 bp->cyclecounter.shift = 0;
15273 bp->cyclecounter.mult = 1;
15274 }
15275
15276 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15277 {
15278 struct bnx2x_func_state_params func_params = {NULL};
15279 struct bnx2x_func_set_timesync_params *set_timesync_params =
15280 &func_params.params.set_timesync;
15281
15282 /* Prepare parameters for function state transitions */
15283 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15284 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15285
15286 func_params.f_obj = &bp->func_obj;
15287 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15288
15289 /* Function parameters */
15290 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15291 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15292
15293 return bnx2x_func_state_change(bp, &func_params);
15294 }
15295
15296 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15297 {
15298 struct bnx2x_queue_state_params q_params;
15299 int rc, i;
15300
15301 /* send queue update ramrod to enable PTP packets */
15302 memset(&q_params, 0, sizeof(q_params));
15303 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15304 q_params.cmd = BNX2X_Q_CMD_UPDATE;
15305 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15306 &q_params.params.update.update_flags);
15307 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15308 &q_params.params.update.update_flags);
15309
15310 /* send the ramrod on all the queues of the PF */
15311 for_each_eth_queue(bp, i) {
15312 struct bnx2x_fastpath *fp = &bp->fp[i];
15313
15314 /* Set the appropriate Queue object */
15315 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15316
15317 /* Update the Queue state */
15318 rc = bnx2x_queue_state_change(bp, &q_params);
15319 if (rc) {
15320 BNX2X_ERR("Failed to enable PTP packets\n");
15321 return rc;
15322 }
15323 }
15324
15325 return 0;
15326 }
15327
15328 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15329 {
15330 int port = BP_PORT(bp);
15331 int rc;
15332
15333 if (!bp->hwtstamp_ioctl_called)
15334 return 0;
15335
15336 switch (bp->tx_type) {
15337 case HWTSTAMP_TX_ON:
15338 bp->flags |= TX_TIMESTAMPING_EN;
15339 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15340 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15341 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15342 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15343 break;
15344 case HWTSTAMP_TX_ONESTEP_SYNC:
15345 BNX2X_ERR("One-step timestamping is not supported\n");
15346 return -ERANGE;
15347 }
15348
15349 switch (bp->rx_filter) {
15350 case HWTSTAMP_FILTER_NONE:
15351 break;
15352 case HWTSTAMP_FILTER_ALL:
15353 case HWTSTAMP_FILTER_SOME:
15354 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15355 break;
15356 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15357 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15358 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15359 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15360 /* Initialize PTP detection for UDP/IPv4 events */
15361 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15362 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15363 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15364 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15365 break;
15366 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15367 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15368 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15369 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15370 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15371 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15372 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15373 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15374 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15375 break;
15376 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15377 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15378 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15379 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15380 /* Initialize PTP detection L2 events */
15381 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15382 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15383 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15384 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15385
15386 break;
15387 case HWTSTAMP_FILTER_PTP_V2_EVENT:
15388 case HWTSTAMP_FILTER_PTP_V2_SYNC:
15389 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15390 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15391 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15392 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15393 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15394 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15395 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15396 break;
15397 }
15398
15399 /* Indicate to FW that this PF expects recorded PTP packets */
15400 rc = bnx2x_enable_ptp_packets(bp);
15401 if (rc)
15402 return rc;
15403
15404 /* Enable sending PTP packets to host */
15405 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15406 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15407
15408 return 0;
15409 }
15410
15411 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15412 {
15413 struct hwtstamp_config config;
15414 int rc;
15415
15416 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15417
15418 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15419 return -EFAULT;
15420
15421 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15422 config.tx_type, config.rx_filter);
15423
15424 if (config.flags) {
15425 BNX2X_ERR("config.flags is reserved for future use\n");
15426 return -EINVAL;
15427 }
15428
15429 bp->hwtstamp_ioctl_called = 1;
15430 bp->tx_type = config.tx_type;
15431 bp->rx_filter = config.rx_filter;
15432
15433 rc = bnx2x_configure_ptp_filters(bp);
15434 if (rc)
15435 return rc;
15436
15437 config.rx_filter = bp->rx_filter;
15438
15439 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15440 -EFAULT : 0;
15441 }
15442
15443 /* Configures HW for PTP */
15444 static int bnx2x_configure_ptp(struct bnx2x *bp)
15445 {
15446 int rc, port = BP_PORT(bp);
15447 u32 wb_data[2];
15448
15449 /* Reset PTP event detection rules - will be configured in the IOCTL */
15450 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15451 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15452 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15453 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15454 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15455 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15456 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15457 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15458
15459 /* Disable PTP packets to host - will be configured in the IOCTL*/
15460 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15461 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15462
15463 /* Enable the PTP feature */
15464 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15465 NIG_REG_P0_PTP_EN, 0x3F);
15466
15467 /* Enable the free-running counter */
15468 wb_data[0] = 0;
15469 wb_data[1] = 0;
15470 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15471
15472 /* Reset drift register (offset register is not reset) */
15473 rc = bnx2x_send_reset_timesync_ramrod(bp);
15474 if (rc) {
15475 BNX2X_ERR("Failed to reset PHC drift register\n");
15476 return -EFAULT;
15477 }
15478
15479 /* Reset possibly old timestamps */
15480 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15481 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15482 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15483 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15484
15485 return 0;
15486 }
15487
15488 /* Called during load, to initialize PTP-related stuff */
15489 void bnx2x_init_ptp(struct bnx2x *bp)
15490 {
15491 int rc;
15492
15493 /* Configure PTP in HW */
15494 rc = bnx2x_configure_ptp(bp);
15495 if (rc) {
15496 BNX2X_ERR("Stopping PTP initialization\n");
15497 return;
15498 }
15499
15500 /* Init work queue for Tx timestamping */
15501 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15502
15503 /* Init cyclecounter and timecounter. This is done only in the first
15504 * load. If done in every load, PTP application will fail when doing
15505 * unload / load (e.g. MTU change) while it is running.
15506 */
15507 if (!bp->timecounter_init_done) {
15508 bnx2x_init_cyclecounter(bp);
15509 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15510 ktime_to_ns(ktime_get_real()));
15511 bp->timecounter_init_done = 1;
15512 }
15513
15514 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15515 }