bnx2x: fix compilation error with SOE in fw_dump
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION \
69 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
70 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
71 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
72 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT (5*HZ)
79
80 static char version[] __devinitdata =
81 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 "BCM57710/57711/57711E/"
87 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2);
94
95 static int multi_mode = 1;
96 module_param(multi_mode, int, 0);
97 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98 "(0 Disable; 1 Enable (default))");
99
100 int num_queues;
101 module_param(num_queues, int, 0);
102 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103 " (default is as a number of CPUs)");
104
105 static int disable_tpa;
106 module_param(disable_tpa, int, 0);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109 #define INT_MODE_INTx 1
110 #define INT_MODE_MSI 2
111 static int int_mode;
112 module_param(int_mode, int, 0);
113 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114 "(1 INT#x; 2 MSI)");
115
116 static int dropless_fc;
117 module_param(dropless_fc, int, 0);
118 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119
120 static int poll;
121 module_param(poll, int, 0);
122 MODULE_PARM_DESC(poll, " Use polling (for debug)");
123
124 static int mrrs = -1;
125 module_param(mrrs, int, 0);
126 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127
128 static int debug;
129 module_param(debug, int, 0);
130 MODULE_PARM_DESC(debug, " Default debug msglevel");
131
132
133
134 struct workqueue_struct *bnx2x_wq;
135
136 enum bnx2x_board_type {
137 BCM57710 = 0,
138 BCM57711,
139 BCM57711E,
140 BCM57712,
141 BCM57712_MF,
142 BCM57800,
143 BCM57800_MF,
144 BCM57810,
145 BCM57810_MF,
146 BCM57840,
147 BCM57840_MF
148 };
149
150 /* indexed by board_type, above */
151 static struct {
152 char *name;
153 } board_info[] __devinitdata = {
154 { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
155 { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
156 { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
157 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
158 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
159 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
160 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
161 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
162 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
163 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
164 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
165 "Ethernet Multi Function"}
166 };
167
168 #ifndef PCI_DEVICE_ID_NX2_57710
169 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
170 #endif
171 #ifndef PCI_DEVICE_ID_NX2_57711
172 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57711E
175 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57712
178 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57712_MF
181 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57800
184 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57800_MF
187 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57810
190 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57810_MF
193 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57840
196 #define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57840_MF
199 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
200 #endif
201 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
202 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
203 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
204 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
205 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
206 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
207 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
208 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
209 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
210 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
211 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
212 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
213 { 0 }
214 };
215
216 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
217
218 /****************************************************************************
219 * General service functions
220 ****************************************************************************/
221
222 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
223 u32 addr, dma_addr_t mapping)
224 {
225 REG_WR(bp, addr, U64_LO(mapping));
226 REG_WR(bp, addr + 4, U64_HI(mapping));
227 }
228
229 static inline void storm_memset_spq_addr(struct bnx2x *bp,
230 dma_addr_t mapping, u16 abs_fid)
231 {
232 u32 addr = XSEM_REG_FAST_MEMORY +
233 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
234
235 __storm_memset_dma_mapping(bp, addr, mapping);
236 }
237
238 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
239 u16 pf_id)
240 {
241 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
242 pf_id);
243 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
244 pf_id);
245 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
246 pf_id);
247 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
248 pf_id);
249 }
250
251 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
252 u8 enable)
253 {
254 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
255 enable);
256 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
257 enable);
258 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
259 enable);
260 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
261 enable);
262 }
263
264 static inline void storm_memset_eq_data(struct bnx2x *bp,
265 struct event_ring_data *eq_data,
266 u16 pfid)
267 {
268 size_t size = sizeof(struct event_ring_data);
269
270 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
271
272 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
273 }
274
275 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
276 u16 pfid)
277 {
278 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
279 REG_WR16(bp, addr, eq_prod);
280 }
281
282 /* used only at init
283 * locking is done by mcp
284 */
285 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
286 {
287 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
288 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
289 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
290 PCICFG_VENDOR_ID_OFFSET);
291 }
292
293 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
294 {
295 u32 val;
296
297 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
298 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
299 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
300 PCICFG_VENDOR_ID_OFFSET);
301
302 return val;
303 }
304
305 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
306 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
307 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
308 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
309 #define DMAE_DP_DST_NONE "dst_addr [none]"
310
311 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
312 int msglvl)
313 {
314 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
315
316 switch (dmae->opcode & DMAE_COMMAND_DST) {
317 case DMAE_CMD_DST_PCI:
318 if (src_type == DMAE_CMD_SRC_PCI)
319 DP(msglvl, "DMAE: opcode 0x%08x\n"
320 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
321 "comp_addr [%x:%08x], comp_val 0x%08x\n",
322 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
323 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
324 dmae->comp_addr_hi, dmae->comp_addr_lo,
325 dmae->comp_val);
326 else
327 DP(msglvl, "DMAE: opcode 0x%08x\n"
328 "src [%08x], len [%d*4], dst [%x:%08x]\n"
329 "comp_addr [%x:%08x], comp_val 0x%08x\n",
330 dmae->opcode, dmae->src_addr_lo >> 2,
331 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
332 dmae->comp_addr_hi, dmae->comp_addr_lo,
333 dmae->comp_val);
334 break;
335 case DMAE_CMD_DST_GRC:
336 if (src_type == DMAE_CMD_SRC_PCI)
337 DP(msglvl, "DMAE: opcode 0x%08x\n"
338 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
339 "comp_addr [%x:%08x], comp_val 0x%08x\n",
340 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
341 dmae->len, dmae->dst_addr_lo >> 2,
342 dmae->comp_addr_hi, dmae->comp_addr_lo,
343 dmae->comp_val);
344 else
345 DP(msglvl, "DMAE: opcode 0x%08x\n"
346 "src [%08x], len [%d*4], dst [%08x]\n"
347 "comp_addr [%x:%08x], comp_val 0x%08x\n",
348 dmae->opcode, dmae->src_addr_lo >> 2,
349 dmae->len, dmae->dst_addr_lo >> 2,
350 dmae->comp_addr_hi, dmae->comp_addr_lo,
351 dmae->comp_val);
352 break;
353 default:
354 if (src_type == DMAE_CMD_SRC_PCI)
355 DP(msglvl, "DMAE: opcode 0x%08x\n"
356 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
357 "comp_addr [%x:%08x] comp_val 0x%08x\n",
358 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
359 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
360 dmae->comp_val);
361 else
362 DP(msglvl, "DMAE: opcode 0x%08x\n"
363 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
364 "comp_addr [%x:%08x] comp_val 0x%08x\n",
365 dmae->opcode, dmae->src_addr_lo >> 2,
366 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
367 dmae->comp_val);
368 break;
369 }
370
371 }
372
373 /* copy command into DMAE command memory and set DMAE command go */
374 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
375 {
376 u32 cmd_offset;
377 int i;
378
379 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
380 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
381 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
382
383 DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
384 idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
385 }
386 REG_WR(bp, dmae_reg_go_c[idx], 1);
387 }
388
389 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
390 {
391 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
392 DMAE_CMD_C_ENABLE);
393 }
394
395 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
396 {
397 return opcode & ~DMAE_CMD_SRC_RESET;
398 }
399
400 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
401 bool with_comp, u8 comp_type)
402 {
403 u32 opcode = 0;
404
405 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
406 (dst_type << DMAE_COMMAND_DST_SHIFT));
407
408 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
409
410 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
411 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
412 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
413 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
414
415 #ifdef __BIG_ENDIAN
416 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
417 #else
418 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
419 #endif
420 if (with_comp)
421 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
422 return opcode;
423 }
424
425 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
426 struct dmae_command *dmae,
427 u8 src_type, u8 dst_type)
428 {
429 memset(dmae, 0, sizeof(struct dmae_command));
430
431 /* set the opcode */
432 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
433 true, DMAE_COMP_PCI);
434
435 /* fill in the completion parameters */
436 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
437 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
438 dmae->comp_val = DMAE_COMP_VAL;
439 }
440
441 /* issue a dmae command over the init-channel and wailt for completion */
442 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
443 struct dmae_command *dmae)
444 {
445 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
446 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
447 int rc = 0;
448
449 DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
450 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
451 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
452
453 /*
454 * Lock the dmae channel. Disable BHs to prevent a dead-lock
455 * as long as this code is called both from syscall context and
456 * from ndo_set_rx_mode() flow that may be called from BH.
457 */
458 spin_lock_bh(&bp->dmae_lock);
459
460 /* reset completion */
461 *wb_comp = 0;
462
463 /* post the command on the channel used for initializations */
464 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
465
466 /* wait for completion */
467 udelay(5);
468 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
469 DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
470
471 if (!cnt) {
472 BNX2X_ERR("DMAE timeout!\n");
473 rc = DMAE_TIMEOUT;
474 goto unlock;
475 }
476 cnt--;
477 udelay(50);
478 }
479 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
480 BNX2X_ERR("DMAE PCI error!\n");
481 rc = DMAE_PCI_ERROR;
482 }
483
484 DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
485 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
486 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
487
488 unlock:
489 spin_unlock_bh(&bp->dmae_lock);
490 return rc;
491 }
492
493 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
494 u32 len32)
495 {
496 struct dmae_command dmae;
497
498 if (!bp->dmae_ready) {
499 u32 *data = bnx2x_sp(bp, wb_data[0]);
500
501 DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x len32 %d)"
502 " using indirect\n", dst_addr, len32);
503 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
504 return;
505 }
506
507 /* set opcode and fixed command fields */
508 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
509
510 /* fill in addresses and len */
511 dmae.src_addr_lo = U64_LO(dma_addr);
512 dmae.src_addr_hi = U64_HI(dma_addr);
513 dmae.dst_addr_lo = dst_addr >> 2;
514 dmae.dst_addr_hi = 0;
515 dmae.len = len32;
516
517 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
518
519 /* issue the command and wait for completion */
520 bnx2x_issue_dmae_with_comp(bp, &dmae);
521 }
522
523 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
524 {
525 struct dmae_command dmae;
526
527 if (!bp->dmae_ready) {
528 u32 *data = bnx2x_sp(bp, wb_data[0]);
529 int i;
530
531 DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x len32 %d)"
532 " using indirect\n", src_addr, len32);
533 for (i = 0; i < len32; i++)
534 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
535 return;
536 }
537
538 /* set opcode and fixed command fields */
539 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
540
541 /* fill in addresses and len */
542 dmae.src_addr_lo = src_addr >> 2;
543 dmae.src_addr_hi = 0;
544 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
545 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
546 dmae.len = len32;
547
548 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
549
550 /* issue the command and wait for completion */
551 bnx2x_issue_dmae_with_comp(bp, &dmae);
552 }
553
554 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
555 u32 addr, u32 len)
556 {
557 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
558 int offset = 0;
559
560 while (len > dmae_wr_max) {
561 bnx2x_write_dmae(bp, phys_addr + offset,
562 addr + offset, dmae_wr_max);
563 offset += dmae_wr_max * 4;
564 len -= dmae_wr_max;
565 }
566
567 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
568 }
569
570 /* used only for slowpath so not inlined */
571 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
572 {
573 u32 wb_write[2];
574
575 wb_write[0] = val_hi;
576 wb_write[1] = val_lo;
577 REG_WR_DMAE(bp, reg, wb_write, 2);
578 }
579
580 #ifdef USE_WB_RD
581 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
582 {
583 u32 wb_data[2];
584
585 REG_RD_DMAE(bp, reg, wb_data, 2);
586
587 return HILO_U64(wb_data[0], wb_data[1]);
588 }
589 #endif
590
591 static int bnx2x_mc_assert(struct bnx2x *bp)
592 {
593 char last_idx;
594 int i, rc = 0;
595 u32 row0, row1, row2, row3;
596
597 /* XSTORM */
598 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
599 XSTORM_ASSERT_LIST_INDEX_OFFSET);
600 if (last_idx)
601 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
602
603 /* print the asserts */
604 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
605
606 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
607 XSTORM_ASSERT_LIST_OFFSET(i));
608 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
609 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
610 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
611 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
612 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
613 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
614
615 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
616 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
617 " 0x%08x 0x%08x 0x%08x\n",
618 i, row3, row2, row1, row0);
619 rc++;
620 } else {
621 break;
622 }
623 }
624
625 /* TSTORM */
626 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
627 TSTORM_ASSERT_LIST_INDEX_OFFSET);
628 if (last_idx)
629 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
630
631 /* print the asserts */
632 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
633
634 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
635 TSTORM_ASSERT_LIST_OFFSET(i));
636 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
637 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
638 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
639 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
640 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
641 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
642
643 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
644 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
645 " 0x%08x 0x%08x 0x%08x\n",
646 i, row3, row2, row1, row0);
647 rc++;
648 } else {
649 break;
650 }
651 }
652
653 /* CSTORM */
654 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
655 CSTORM_ASSERT_LIST_INDEX_OFFSET);
656 if (last_idx)
657 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
658
659 /* print the asserts */
660 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
661
662 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
663 CSTORM_ASSERT_LIST_OFFSET(i));
664 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
665 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
666 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
667 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
668 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
669 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
670
671 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
672 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
673 " 0x%08x 0x%08x 0x%08x\n",
674 i, row3, row2, row1, row0);
675 rc++;
676 } else {
677 break;
678 }
679 }
680
681 /* USTORM */
682 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
683 USTORM_ASSERT_LIST_INDEX_OFFSET);
684 if (last_idx)
685 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
686
687 /* print the asserts */
688 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
689
690 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
691 USTORM_ASSERT_LIST_OFFSET(i));
692 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
693 USTORM_ASSERT_LIST_OFFSET(i) + 4);
694 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
695 USTORM_ASSERT_LIST_OFFSET(i) + 8);
696 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
697 USTORM_ASSERT_LIST_OFFSET(i) + 12);
698
699 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
700 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
701 " 0x%08x 0x%08x 0x%08x\n",
702 i, row3, row2, row1, row0);
703 rc++;
704 } else {
705 break;
706 }
707 }
708
709 return rc;
710 }
711
712 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
713 {
714 u32 addr, val;
715 u32 mark, offset;
716 __be32 data[9];
717 int word;
718 u32 trace_shmem_base;
719 if (BP_NOMCP(bp)) {
720 BNX2X_ERR("NO MCP - can not dump\n");
721 return;
722 }
723 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
724 (bp->common.bc_ver & 0xff0000) >> 16,
725 (bp->common.bc_ver & 0xff00) >> 8,
726 (bp->common.bc_ver & 0xff));
727
728 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
729 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
730 printk("%s" "MCP PC at 0x%x\n", lvl, val);
731
732 if (BP_PATH(bp) == 0)
733 trace_shmem_base = bp->common.shmem_base;
734 else
735 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
736 addr = trace_shmem_base - 0x0800 + 4;
737 mark = REG_RD(bp, addr);
738 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
739 + ((mark + 0x3) & ~0x3) - 0x08000000;
740 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
741
742 printk("%s", lvl);
743 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
744 for (word = 0; word < 8; word++)
745 data[word] = htonl(REG_RD(bp, offset + 4*word));
746 data[8] = 0x0;
747 pr_cont("%s", (char *)data);
748 }
749 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
750 for (word = 0; word < 8; word++)
751 data[word] = htonl(REG_RD(bp, offset + 4*word));
752 data[8] = 0x0;
753 pr_cont("%s", (char *)data);
754 }
755 printk("%s" "end of fw dump\n", lvl);
756 }
757
758 static inline void bnx2x_fw_dump(struct bnx2x *bp)
759 {
760 bnx2x_fw_dump_lvl(bp, KERN_ERR);
761 }
762
763 void bnx2x_panic_dump(struct bnx2x *bp)
764 {
765 int i;
766 u16 j;
767 struct hc_sp_status_block_data sp_sb_data;
768 int func = BP_FUNC(bp);
769 #ifdef BNX2X_STOP_ON_ERROR
770 u16 start = 0, end = 0;
771 u8 cos;
772 #endif
773
774 bp->stats_state = STATS_STATE_DISABLED;
775 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
776
777 BNX2X_ERR("begin crash dump -----------------\n");
778
779 /* Indices */
780 /* Common */
781 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
782 " spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
783 bp->def_idx, bp->def_att_idx, bp->attn_state,
784 bp->spq_prod_idx, bp->stats_counter);
785 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
786 bp->def_status_blk->atten_status_block.attn_bits,
787 bp->def_status_blk->atten_status_block.attn_bits_ack,
788 bp->def_status_blk->atten_status_block.status_block_id,
789 bp->def_status_blk->atten_status_block.attn_bits_index);
790 BNX2X_ERR(" def (");
791 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
792 pr_cont("0x%x%s",
793 bp->def_status_blk->sp_sb.index_values[i],
794 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
795
796 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
797 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
798 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
799 i*sizeof(u32));
800
801 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
802 sp_sb_data.igu_sb_id,
803 sp_sb_data.igu_seg_id,
804 sp_sb_data.p_func.pf_id,
805 sp_sb_data.p_func.vnic_id,
806 sp_sb_data.p_func.vf_id,
807 sp_sb_data.p_func.vf_valid,
808 sp_sb_data.state);
809
810
811 for_each_eth_queue(bp, i) {
812 struct bnx2x_fastpath *fp = &bp->fp[i];
813 int loop;
814 struct hc_status_block_data_e2 sb_data_e2;
815 struct hc_status_block_data_e1x sb_data_e1x;
816 struct hc_status_block_sm *hc_sm_p =
817 CHIP_IS_E1x(bp) ?
818 sb_data_e1x.common.state_machine :
819 sb_data_e2.common.state_machine;
820 struct hc_index_data *hc_index_p =
821 CHIP_IS_E1x(bp) ?
822 sb_data_e1x.index_data :
823 sb_data_e2.index_data;
824 u8 data_size, cos;
825 u32 *sb_data_p;
826 struct bnx2x_fp_txdata txdata;
827
828 /* Rx */
829 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
830 " rx_comp_prod(0x%x)"
831 " rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
832 i, fp->rx_bd_prod, fp->rx_bd_cons,
833 fp->rx_comp_prod,
834 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
835 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
836 " fp_hc_idx(0x%x)\n",
837 fp->rx_sge_prod, fp->last_max_sge,
838 le16_to_cpu(fp->fp_hc_idx));
839
840 /* Tx */
841 for_each_cos_in_tx_queue(fp, cos)
842 {
843 txdata = fp->txdata[cos];
844 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
845 " tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
846 " *tx_cons_sb(0x%x)\n",
847 i, txdata.tx_pkt_prod,
848 txdata.tx_pkt_cons, txdata.tx_bd_prod,
849 txdata.tx_bd_cons,
850 le16_to_cpu(*txdata.tx_cons_sb));
851 }
852
853 loop = CHIP_IS_E1x(bp) ?
854 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
855
856 /* host sb data */
857
858 #ifdef BCM_CNIC
859 if (IS_FCOE_FP(fp))
860 continue;
861 #endif
862 BNX2X_ERR(" run indexes (");
863 for (j = 0; j < HC_SB_MAX_SM; j++)
864 pr_cont("0x%x%s",
865 fp->sb_running_index[j],
866 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
867
868 BNX2X_ERR(" indexes (");
869 for (j = 0; j < loop; j++)
870 pr_cont("0x%x%s",
871 fp->sb_index_values[j],
872 (j == loop - 1) ? ")" : " ");
873 /* fw sb data */
874 data_size = CHIP_IS_E1x(bp) ?
875 sizeof(struct hc_status_block_data_e1x) :
876 sizeof(struct hc_status_block_data_e2);
877 data_size /= sizeof(u32);
878 sb_data_p = CHIP_IS_E1x(bp) ?
879 (u32 *)&sb_data_e1x :
880 (u32 *)&sb_data_e2;
881 /* copy sb data in here */
882 for (j = 0; j < data_size; j++)
883 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
884 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
885 j * sizeof(u32));
886
887 if (!CHIP_IS_E1x(bp)) {
888 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
889 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
890 "state(0x%x)\n",
891 sb_data_e2.common.p_func.pf_id,
892 sb_data_e2.common.p_func.vf_id,
893 sb_data_e2.common.p_func.vf_valid,
894 sb_data_e2.common.p_func.vnic_id,
895 sb_data_e2.common.same_igu_sb_1b,
896 sb_data_e2.common.state);
897 } else {
898 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
899 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
900 "state(0x%x)\n",
901 sb_data_e1x.common.p_func.pf_id,
902 sb_data_e1x.common.p_func.vf_id,
903 sb_data_e1x.common.p_func.vf_valid,
904 sb_data_e1x.common.p_func.vnic_id,
905 sb_data_e1x.common.same_igu_sb_1b,
906 sb_data_e1x.common.state);
907 }
908
909 /* SB_SMs data */
910 for (j = 0; j < HC_SB_MAX_SM; j++) {
911 pr_cont("SM[%d] __flags (0x%x) "
912 "igu_sb_id (0x%x) igu_seg_id(0x%x) "
913 "time_to_expire (0x%x) "
914 "timer_value(0x%x)\n", j,
915 hc_sm_p[j].__flags,
916 hc_sm_p[j].igu_sb_id,
917 hc_sm_p[j].igu_seg_id,
918 hc_sm_p[j].time_to_expire,
919 hc_sm_p[j].timer_value);
920 }
921
922 /* Indecies data */
923 for (j = 0; j < loop; j++) {
924 pr_cont("INDEX[%d] flags (0x%x) "
925 "timeout (0x%x)\n", j,
926 hc_index_p[j].flags,
927 hc_index_p[j].timeout);
928 }
929 }
930
931 #ifdef BNX2X_STOP_ON_ERROR
932 /* Rings */
933 /* Rx */
934 for_each_rx_queue(bp, i) {
935 struct bnx2x_fastpath *fp = &bp->fp[i];
936
937 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
938 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
939 for (j = start; j != end; j = RX_BD(j + 1)) {
940 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
941 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
942
943 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
944 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
945 }
946
947 start = RX_SGE(fp->rx_sge_prod);
948 end = RX_SGE(fp->last_max_sge);
949 for (j = start; j != end; j = RX_SGE(j + 1)) {
950 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
951 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
952
953 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
954 i, j, rx_sge[1], rx_sge[0], sw_page->page);
955 }
956
957 start = RCQ_BD(fp->rx_comp_cons - 10);
958 end = RCQ_BD(fp->rx_comp_cons + 503);
959 for (j = start; j != end; j = RCQ_BD(j + 1)) {
960 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
961
962 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
963 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
964 }
965 }
966
967 /* Tx */
968 for_each_tx_queue(bp, i) {
969 struct bnx2x_fastpath *fp = &bp->fp[i];
970 for_each_cos_in_tx_queue(fp, cos) {
971 struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
972
973 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
974 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
975 for (j = start; j != end; j = TX_BD(j + 1)) {
976 struct sw_tx_bd *sw_bd =
977 &txdata->tx_buf_ring[j];
978
979 BNX2X_ERR("fp%d: txdata %d, "
980 "packet[%x]=[%p,%x]\n",
981 i, cos, j, sw_bd->skb,
982 sw_bd->first_bd);
983 }
984
985 start = TX_BD(txdata->tx_bd_cons - 10);
986 end = TX_BD(txdata->tx_bd_cons + 254);
987 for (j = start; j != end; j = TX_BD(j + 1)) {
988 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
989
990 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
991 "[%x:%x:%x:%x]\n",
992 i, cos, j, tx_bd[0], tx_bd[1],
993 tx_bd[2], tx_bd[3]);
994 }
995 }
996 }
997 #endif
998 bnx2x_fw_dump(bp);
999 bnx2x_mc_assert(bp);
1000 BNX2X_ERR("end crash dump -----------------\n");
1001 }
1002
1003 /*
1004 * FLR Support for E2
1005 *
1006 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1007 * initialization.
1008 */
1009 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
1010 #define FLR_WAIT_INTERAVAL 50 /* usec */
1011 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1012
1013 struct pbf_pN_buf_regs {
1014 int pN;
1015 u32 init_crd;
1016 u32 crd;
1017 u32 crd_freed;
1018 };
1019
1020 struct pbf_pN_cmd_regs {
1021 int pN;
1022 u32 lines_occup;
1023 u32 lines_freed;
1024 };
1025
1026 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1027 struct pbf_pN_buf_regs *regs,
1028 u32 poll_count)
1029 {
1030 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1031 u32 cur_cnt = poll_count;
1032
1033 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1034 crd = crd_start = REG_RD(bp, regs->crd);
1035 init_crd = REG_RD(bp, regs->init_crd);
1036
1037 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1038 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1039 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1040
1041 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1042 (init_crd - crd_start))) {
1043 if (cur_cnt--) {
1044 udelay(FLR_WAIT_INTERAVAL);
1045 crd = REG_RD(bp, regs->crd);
1046 crd_freed = REG_RD(bp, regs->crd_freed);
1047 } else {
1048 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1049 regs->pN);
1050 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1051 regs->pN, crd);
1052 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1053 regs->pN, crd_freed);
1054 break;
1055 }
1056 }
1057 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1058 poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1059 }
1060
1061 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1062 struct pbf_pN_cmd_regs *regs,
1063 u32 poll_count)
1064 {
1065 u32 occup, to_free, freed, freed_start;
1066 u32 cur_cnt = poll_count;
1067
1068 occup = to_free = REG_RD(bp, regs->lines_occup);
1069 freed = freed_start = REG_RD(bp, regs->lines_freed);
1070
1071 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1072 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1073
1074 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1075 if (cur_cnt--) {
1076 udelay(FLR_WAIT_INTERAVAL);
1077 occup = REG_RD(bp, regs->lines_occup);
1078 freed = REG_RD(bp, regs->lines_freed);
1079 } else {
1080 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1081 regs->pN);
1082 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1083 regs->pN, occup);
1084 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1085 regs->pN, freed);
1086 break;
1087 }
1088 }
1089 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1090 poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1091 }
1092
1093 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1094 u32 expected, u32 poll_count)
1095 {
1096 u32 cur_cnt = poll_count;
1097 u32 val;
1098
1099 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1100 udelay(FLR_WAIT_INTERAVAL);
1101
1102 return val;
1103 }
1104
1105 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1106 char *msg, u32 poll_cnt)
1107 {
1108 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1109 if (val != 0) {
1110 BNX2X_ERR("%s usage count=%d\n", msg, val);
1111 return 1;
1112 }
1113 return 0;
1114 }
1115
1116 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1117 {
1118 /* adjust polling timeout */
1119 if (CHIP_REV_IS_EMUL(bp))
1120 return FLR_POLL_CNT * 2000;
1121
1122 if (CHIP_REV_IS_FPGA(bp))
1123 return FLR_POLL_CNT * 120;
1124
1125 return FLR_POLL_CNT;
1126 }
1127
1128 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1129 {
1130 struct pbf_pN_cmd_regs cmd_regs[] = {
1131 {0, (CHIP_IS_E3B0(bp)) ?
1132 PBF_REG_TQ_OCCUPANCY_Q0 :
1133 PBF_REG_P0_TQ_OCCUPANCY,
1134 (CHIP_IS_E3B0(bp)) ?
1135 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1136 PBF_REG_P0_TQ_LINES_FREED_CNT},
1137 {1, (CHIP_IS_E3B0(bp)) ?
1138 PBF_REG_TQ_OCCUPANCY_Q1 :
1139 PBF_REG_P1_TQ_OCCUPANCY,
1140 (CHIP_IS_E3B0(bp)) ?
1141 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1142 PBF_REG_P1_TQ_LINES_FREED_CNT},
1143 {4, (CHIP_IS_E3B0(bp)) ?
1144 PBF_REG_TQ_OCCUPANCY_LB_Q :
1145 PBF_REG_P4_TQ_OCCUPANCY,
1146 (CHIP_IS_E3B0(bp)) ?
1147 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1148 PBF_REG_P4_TQ_LINES_FREED_CNT}
1149 };
1150
1151 struct pbf_pN_buf_regs buf_regs[] = {
1152 {0, (CHIP_IS_E3B0(bp)) ?
1153 PBF_REG_INIT_CRD_Q0 :
1154 PBF_REG_P0_INIT_CRD ,
1155 (CHIP_IS_E3B0(bp)) ?
1156 PBF_REG_CREDIT_Q0 :
1157 PBF_REG_P0_CREDIT,
1158 (CHIP_IS_E3B0(bp)) ?
1159 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1160 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1161 {1, (CHIP_IS_E3B0(bp)) ?
1162 PBF_REG_INIT_CRD_Q1 :
1163 PBF_REG_P1_INIT_CRD,
1164 (CHIP_IS_E3B0(bp)) ?
1165 PBF_REG_CREDIT_Q1 :
1166 PBF_REG_P1_CREDIT,
1167 (CHIP_IS_E3B0(bp)) ?
1168 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1169 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1170 {4, (CHIP_IS_E3B0(bp)) ?
1171 PBF_REG_INIT_CRD_LB_Q :
1172 PBF_REG_P4_INIT_CRD,
1173 (CHIP_IS_E3B0(bp)) ?
1174 PBF_REG_CREDIT_LB_Q :
1175 PBF_REG_P4_CREDIT,
1176 (CHIP_IS_E3B0(bp)) ?
1177 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1178 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1179 };
1180
1181 int i;
1182
1183 /* Verify the command queues are flushed P0, P1, P4 */
1184 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1185 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1186
1187
1188 /* Verify the transmission buffers are flushed P0, P1, P4 */
1189 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1190 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1191 }
1192
1193 #define OP_GEN_PARAM(param) \
1194 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1195
1196 #define OP_GEN_TYPE(type) \
1197 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1198
1199 #define OP_GEN_AGG_VECT(index) \
1200 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1201
1202
1203 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1204 u32 poll_cnt)
1205 {
1206 struct sdm_op_gen op_gen = {0};
1207
1208 u32 comp_addr = BAR_CSTRORM_INTMEM +
1209 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1210 int ret = 0;
1211
1212 if (REG_RD(bp, comp_addr)) {
1213 BNX2X_ERR("Cleanup complete is not 0\n");
1214 return 1;
1215 }
1216
1217 op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1218 op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1219 op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1220 op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1221
1222 DP(BNX2X_MSG_SP, "FW Final cleanup\n");
1223 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1224
1225 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1226 BNX2X_ERR("FW final cleanup did not succeed\n");
1227 ret = 1;
1228 }
1229 /* Zero completion for nxt FLR */
1230 REG_WR(bp, comp_addr, 0);
1231
1232 return ret;
1233 }
1234
1235 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1236 {
1237 int pos;
1238 u16 status;
1239
1240 pos = pci_pcie_cap(dev);
1241 if (!pos)
1242 return false;
1243
1244 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1245 return status & PCI_EXP_DEVSTA_TRPND;
1246 }
1247
1248 /* PF FLR specific routines
1249 */
1250 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1251 {
1252
1253 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1254 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1255 CFC_REG_NUM_LCIDS_INSIDE_PF,
1256 "CFC PF usage counter timed out",
1257 poll_cnt))
1258 return 1;
1259
1260
1261 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1262 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1263 DORQ_REG_PF_USAGE_CNT,
1264 "DQ PF usage counter timed out",
1265 poll_cnt))
1266 return 1;
1267
1268 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1269 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1270 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1271 "QM PF usage counter timed out",
1272 poll_cnt))
1273 return 1;
1274
1275 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1276 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1277 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1278 "Timers VNIC usage counter timed out",
1279 poll_cnt))
1280 return 1;
1281 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1282 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1283 "Timers NUM_SCANS usage counter timed out",
1284 poll_cnt))
1285 return 1;
1286
1287 /* Wait DMAE PF usage counter to zero */
1288 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1289 dmae_reg_go_c[INIT_DMAE_C(bp)],
1290 "DMAE dommand register timed out",
1291 poll_cnt))
1292 return 1;
1293
1294 return 0;
1295 }
1296
1297 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1298 {
1299 u32 val;
1300
1301 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1302 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1303
1304 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1305 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1306
1307 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1308 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1309
1310 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1311 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1312
1313 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1314 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1315
1316 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1317 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1318
1319 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1320 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1321
1322 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1323 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1324 val);
1325 }
1326
1327 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1328 {
1329 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1330
1331 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1332
1333 /* Re-enable PF target read access */
1334 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1335
1336 /* Poll HW usage counters */
1337 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1338 return -EBUSY;
1339
1340 /* Zero the igu 'trailing edge' and 'leading edge' */
1341
1342 /* Send the FW cleanup command */
1343 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1344 return -EBUSY;
1345
1346 /* ATC cleanup */
1347
1348 /* Verify TX hw is flushed */
1349 bnx2x_tx_hw_flushed(bp, poll_cnt);
1350
1351 /* Wait 100ms (not adjusted according to platform) */
1352 msleep(100);
1353
1354 /* Verify no pending pci transactions */
1355 if (bnx2x_is_pcie_pending(bp->pdev))
1356 BNX2X_ERR("PCIE Transactions still pending\n");
1357
1358 /* Debug */
1359 bnx2x_hw_enable_status(bp);
1360
1361 /*
1362 * Master enable - Due to WB DMAE writes performed before this
1363 * register is re-initialized as part of the regular function init
1364 */
1365 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1366
1367 return 0;
1368 }
1369
1370 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1371 {
1372 int port = BP_PORT(bp);
1373 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1374 u32 val = REG_RD(bp, addr);
1375 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1376 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1377
1378 if (msix) {
1379 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1380 HC_CONFIG_0_REG_INT_LINE_EN_0);
1381 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1382 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1383 } else if (msi) {
1384 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1385 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1386 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1387 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1388 } else {
1389 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1390 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1391 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1392 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1393
1394 if (!CHIP_IS_E1(bp)) {
1395 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1396 val, port, addr);
1397
1398 REG_WR(bp, addr, val);
1399
1400 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1401 }
1402 }
1403
1404 if (CHIP_IS_E1(bp))
1405 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1406
1407 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
1408 val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1409
1410 REG_WR(bp, addr, val);
1411 /*
1412 * Ensure that HC_CONFIG is written before leading/trailing edge config
1413 */
1414 mmiowb();
1415 barrier();
1416
1417 if (!CHIP_IS_E1(bp)) {
1418 /* init leading/trailing edge */
1419 if (IS_MF(bp)) {
1420 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1421 if (bp->port.pmf)
1422 /* enable nig and gpio3 attention */
1423 val |= 0x1100;
1424 } else
1425 val = 0xffff;
1426
1427 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1428 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1429 }
1430
1431 /* Make sure that interrupts are indeed enabled from here on */
1432 mmiowb();
1433 }
1434
1435 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1436 {
1437 u32 val;
1438 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1439 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1440
1441 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1442
1443 if (msix) {
1444 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1445 IGU_PF_CONF_SINGLE_ISR_EN);
1446 val |= (IGU_PF_CONF_FUNC_EN |
1447 IGU_PF_CONF_MSI_MSIX_EN |
1448 IGU_PF_CONF_ATTN_BIT_EN);
1449 } else if (msi) {
1450 val &= ~IGU_PF_CONF_INT_LINE_EN;
1451 val |= (IGU_PF_CONF_FUNC_EN |
1452 IGU_PF_CONF_MSI_MSIX_EN |
1453 IGU_PF_CONF_ATTN_BIT_EN |
1454 IGU_PF_CONF_SINGLE_ISR_EN);
1455 } else {
1456 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1457 val |= (IGU_PF_CONF_FUNC_EN |
1458 IGU_PF_CONF_INT_LINE_EN |
1459 IGU_PF_CONF_ATTN_BIT_EN |
1460 IGU_PF_CONF_SINGLE_ISR_EN);
1461 }
1462
1463 DP(NETIF_MSG_INTR, "write 0x%x to IGU mode %s\n",
1464 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1465
1466 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1467
1468 barrier();
1469
1470 /* init leading/trailing edge */
1471 if (IS_MF(bp)) {
1472 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1473 if (bp->port.pmf)
1474 /* enable nig and gpio3 attention */
1475 val |= 0x1100;
1476 } else
1477 val = 0xffff;
1478
1479 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1480 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1481
1482 /* Make sure that interrupts are indeed enabled from here on */
1483 mmiowb();
1484 }
1485
1486 void bnx2x_int_enable(struct bnx2x *bp)
1487 {
1488 if (bp->common.int_block == INT_BLOCK_HC)
1489 bnx2x_hc_int_enable(bp);
1490 else
1491 bnx2x_igu_int_enable(bp);
1492 }
1493
1494 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1495 {
1496 int port = BP_PORT(bp);
1497 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1498 u32 val = REG_RD(bp, addr);
1499
1500 /*
1501 * in E1 we must use only PCI configuration space to disable
1502 * MSI/MSIX capablility
1503 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1504 */
1505 if (CHIP_IS_E1(bp)) {
1506 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
1507 * Use mask register to prevent from HC sending interrupts
1508 * after we exit the function
1509 */
1510 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1511
1512 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1513 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1514 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1515 } else
1516 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1517 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1518 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1519 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1520
1521 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1522 val, port, addr);
1523
1524 /* flush all outstanding writes */
1525 mmiowb();
1526
1527 REG_WR(bp, addr, val);
1528 if (REG_RD(bp, addr) != val)
1529 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1530 }
1531
1532 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1533 {
1534 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1535
1536 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1537 IGU_PF_CONF_INT_LINE_EN |
1538 IGU_PF_CONF_ATTN_BIT_EN);
1539
1540 DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1541
1542 /* flush all outstanding writes */
1543 mmiowb();
1544
1545 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1546 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1547 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1548 }
1549
1550 void bnx2x_int_disable(struct bnx2x *bp)
1551 {
1552 if (bp->common.int_block == INT_BLOCK_HC)
1553 bnx2x_hc_int_disable(bp);
1554 else
1555 bnx2x_igu_int_disable(bp);
1556 }
1557
1558 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1559 {
1560 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1561 int i, offset;
1562
1563 if (disable_hw)
1564 /* prevent the HW from sending interrupts */
1565 bnx2x_int_disable(bp);
1566
1567 /* make sure all ISRs are done */
1568 if (msix) {
1569 synchronize_irq(bp->msix_table[0].vector);
1570 offset = 1;
1571 #ifdef BCM_CNIC
1572 offset++;
1573 #endif
1574 for_each_eth_queue(bp, i)
1575 synchronize_irq(bp->msix_table[offset++].vector);
1576 } else
1577 synchronize_irq(bp->pdev->irq);
1578
1579 /* make sure sp_task is not running */
1580 cancel_delayed_work(&bp->sp_task);
1581 cancel_delayed_work(&bp->period_task);
1582 flush_workqueue(bnx2x_wq);
1583 }
1584
1585 /* fast path */
1586
1587 /*
1588 * General service functions
1589 */
1590
1591 /* Return true if succeeded to acquire the lock */
1592 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1593 {
1594 u32 lock_status;
1595 u32 resource_bit = (1 << resource);
1596 int func = BP_FUNC(bp);
1597 u32 hw_lock_control_reg;
1598
1599 DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1600
1601 /* Validating that the resource is within range */
1602 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1603 DP(NETIF_MSG_HW,
1604 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1605 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1606 return false;
1607 }
1608
1609 if (func <= 5)
1610 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1611 else
1612 hw_lock_control_reg =
1613 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1614
1615 /* Try to acquire the lock */
1616 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1617 lock_status = REG_RD(bp, hw_lock_control_reg);
1618 if (lock_status & resource_bit)
1619 return true;
1620
1621 DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1622 return false;
1623 }
1624
1625 /**
1626 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1627 *
1628 * @bp: driver handle
1629 *
1630 * Returns the recovery leader resource id according to the engine this function
1631 * belongs to. Currently only only 2 engines is supported.
1632 */
1633 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1634 {
1635 if (BP_PATH(bp))
1636 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1637 else
1638 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1639 }
1640
1641 /**
1642 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1643 *
1644 * @bp: driver handle
1645 *
1646 * Tries to aquire a leader lock for cuurent engine.
1647 */
1648 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1649 {
1650 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1651 }
1652
1653 #ifdef BCM_CNIC
1654 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1655 #endif
1656
1657 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1658 {
1659 struct bnx2x *bp = fp->bp;
1660 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1661 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1662 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1663 struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1664
1665 DP(BNX2X_MSG_SP,
1666 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1667 fp->index, cid, command, bp->state,
1668 rr_cqe->ramrod_cqe.ramrod_type);
1669
1670 switch (command) {
1671 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1672 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1673 drv_cmd = BNX2X_Q_CMD_UPDATE;
1674 break;
1675
1676 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1677 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1678 drv_cmd = BNX2X_Q_CMD_SETUP;
1679 break;
1680
1681 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1682 DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1683 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1684 break;
1685
1686 case (RAMROD_CMD_ID_ETH_HALT):
1687 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1688 drv_cmd = BNX2X_Q_CMD_HALT;
1689 break;
1690
1691 case (RAMROD_CMD_ID_ETH_TERMINATE):
1692 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1693 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1694 break;
1695
1696 case (RAMROD_CMD_ID_ETH_EMPTY):
1697 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1698 drv_cmd = BNX2X_Q_CMD_EMPTY;
1699 break;
1700
1701 default:
1702 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1703 command, fp->index);
1704 return;
1705 }
1706
1707 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1708 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1709 /* q_obj->complete_cmd() failure means that this was
1710 * an unexpected completion.
1711 *
1712 * In this case we don't want to increase the bp->spq_left
1713 * because apparently we haven't sent this command the first
1714 * place.
1715 */
1716 #ifdef BNX2X_STOP_ON_ERROR
1717 bnx2x_panic();
1718 #else
1719 return;
1720 #endif
1721
1722 smp_mb__before_atomic_inc();
1723 atomic_inc(&bp->cq_spq_left);
1724 /* push the change in bp->spq_left and towards the memory */
1725 smp_mb__after_atomic_inc();
1726
1727 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1728
1729 return;
1730 }
1731
1732 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1733 u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1734 {
1735 u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1736
1737 bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1738 start);
1739 }
1740
1741 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1742 {
1743 struct bnx2x *bp = netdev_priv(dev_instance);
1744 u16 status = bnx2x_ack_int(bp);
1745 u16 mask;
1746 int i;
1747 u8 cos;
1748
1749 /* Return here if interrupt is shared and it's not for us */
1750 if (unlikely(status == 0)) {
1751 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1752 return IRQ_NONE;
1753 }
1754 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1755
1756 #ifdef BNX2X_STOP_ON_ERROR
1757 if (unlikely(bp->panic))
1758 return IRQ_HANDLED;
1759 #endif
1760
1761 for_each_eth_queue(bp, i) {
1762 struct bnx2x_fastpath *fp = &bp->fp[i];
1763
1764 mask = 0x2 << (fp->index + CNIC_PRESENT);
1765 if (status & mask) {
1766 /* Handle Rx or Tx according to SB id */
1767 prefetch(fp->rx_cons_sb);
1768 for_each_cos_in_tx_queue(fp, cos)
1769 prefetch(fp->txdata[cos].tx_cons_sb);
1770 prefetch(&fp->sb_running_index[SM_RX_ID]);
1771 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1772 status &= ~mask;
1773 }
1774 }
1775
1776 #ifdef BCM_CNIC
1777 mask = 0x2;
1778 if (status & (mask | 0x1)) {
1779 struct cnic_ops *c_ops = NULL;
1780
1781 if (likely(bp->state == BNX2X_STATE_OPEN)) {
1782 rcu_read_lock();
1783 c_ops = rcu_dereference(bp->cnic_ops);
1784 if (c_ops)
1785 c_ops->cnic_handler(bp->cnic_data, NULL);
1786 rcu_read_unlock();
1787 }
1788
1789 status &= ~mask;
1790 }
1791 #endif
1792
1793 if (unlikely(status & 0x1)) {
1794 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1795
1796 status &= ~0x1;
1797 if (!status)
1798 return IRQ_HANDLED;
1799 }
1800
1801 if (unlikely(status))
1802 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1803 status);
1804
1805 return IRQ_HANDLED;
1806 }
1807
1808 /* Link */
1809
1810 /*
1811 * General service functions
1812 */
1813
1814 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1815 {
1816 u32 lock_status;
1817 u32 resource_bit = (1 << resource);
1818 int func = BP_FUNC(bp);
1819 u32 hw_lock_control_reg;
1820 int cnt;
1821
1822 /* Validating that the resource is within range */
1823 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1824 DP(NETIF_MSG_HW,
1825 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1826 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1827 return -EINVAL;
1828 }
1829
1830 if (func <= 5) {
1831 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1832 } else {
1833 hw_lock_control_reg =
1834 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1835 }
1836
1837 /* Validating that the resource is not already taken */
1838 lock_status = REG_RD(bp, hw_lock_control_reg);
1839 if (lock_status & resource_bit) {
1840 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1841 lock_status, resource_bit);
1842 return -EEXIST;
1843 }
1844
1845 /* Try for 5 second every 5ms */
1846 for (cnt = 0; cnt < 1000; cnt++) {
1847 /* Try to acquire the lock */
1848 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1849 lock_status = REG_RD(bp, hw_lock_control_reg);
1850 if (lock_status & resource_bit)
1851 return 0;
1852
1853 msleep(5);
1854 }
1855 DP(NETIF_MSG_HW, "Timeout\n");
1856 return -EAGAIN;
1857 }
1858
1859 int bnx2x_release_leader_lock(struct bnx2x *bp)
1860 {
1861 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1862 }
1863
1864 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1865 {
1866 u32 lock_status;
1867 u32 resource_bit = (1 << resource);
1868 int func = BP_FUNC(bp);
1869 u32 hw_lock_control_reg;
1870
1871 DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1872
1873 /* Validating that the resource is within range */
1874 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1875 DP(NETIF_MSG_HW,
1876 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1877 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1878 return -EINVAL;
1879 }
1880
1881 if (func <= 5) {
1882 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1883 } else {
1884 hw_lock_control_reg =
1885 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1886 }
1887
1888 /* Validating that the resource is currently taken */
1889 lock_status = REG_RD(bp, hw_lock_control_reg);
1890 if (!(lock_status & resource_bit)) {
1891 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1892 lock_status, resource_bit);
1893 return -EFAULT;
1894 }
1895
1896 REG_WR(bp, hw_lock_control_reg, resource_bit);
1897 return 0;
1898 }
1899
1900
1901 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1902 {
1903 /* The GPIO should be swapped if swap register is set and active */
1904 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1905 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1906 int gpio_shift = gpio_num +
1907 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1908 u32 gpio_mask = (1 << gpio_shift);
1909 u32 gpio_reg;
1910 int value;
1911
1912 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1913 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1914 return -EINVAL;
1915 }
1916
1917 /* read GPIO value */
1918 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1919
1920 /* get the requested pin value */
1921 if ((gpio_reg & gpio_mask) == gpio_mask)
1922 value = 1;
1923 else
1924 value = 0;
1925
1926 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
1927
1928 return value;
1929 }
1930
1931 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1932 {
1933 /* The GPIO should be swapped if swap register is set and active */
1934 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1935 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1936 int gpio_shift = gpio_num +
1937 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1938 u32 gpio_mask = (1 << gpio_shift);
1939 u32 gpio_reg;
1940
1941 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1942 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1943 return -EINVAL;
1944 }
1945
1946 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1947 /* read GPIO and mask except the float bits */
1948 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1949
1950 switch (mode) {
1951 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1952 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1953 gpio_num, gpio_shift);
1954 /* clear FLOAT and set CLR */
1955 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1956 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1957 break;
1958
1959 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1960 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1961 gpio_num, gpio_shift);
1962 /* clear FLOAT and set SET */
1963 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1964 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1965 break;
1966
1967 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1968 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1969 gpio_num, gpio_shift);
1970 /* set FLOAT */
1971 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1972 break;
1973
1974 default:
1975 break;
1976 }
1977
1978 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1979 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1980
1981 return 0;
1982 }
1983
1984 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1985 {
1986 u32 gpio_reg = 0;
1987 int rc = 0;
1988
1989 /* Any port swapping should be handled by caller. */
1990
1991 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1992 /* read GPIO and mask except the float bits */
1993 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1994 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1995 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1996 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1997
1998 switch (mode) {
1999 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2000 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2001 /* set CLR */
2002 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2003 break;
2004
2005 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2006 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2007 /* set SET */
2008 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2009 break;
2010
2011 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2012 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2013 /* set FLOAT */
2014 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2015 break;
2016
2017 default:
2018 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2019 rc = -EINVAL;
2020 break;
2021 }
2022
2023 if (rc == 0)
2024 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2025
2026 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2027
2028 return rc;
2029 }
2030
2031 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2032 {
2033 /* The GPIO should be swapped if swap register is set and active */
2034 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2035 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2036 int gpio_shift = gpio_num +
2037 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2038 u32 gpio_mask = (1 << gpio_shift);
2039 u32 gpio_reg;
2040
2041 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2042 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2043 return -EINVAL;
2044 }
2045
2046 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2047 /* read GPIO int */
2048 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2049
2050 switch (mode) {
2051 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2052 DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2053 "output low\n", gpio_num, gpio_shift);
2054 /* clear SET and set CLR */
2055 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2056 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2057 break;
2058
2059 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2060 DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2061 "output high\n", gpio_num, gpio_shift);
2062 /* clear CLR and set SET */
2063 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2064 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2065 break;
2066
2067 default:
2068 break;
2069 }
2070
2071 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2072 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2073
2074 return 0;
2075 }
2076
2077 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2078 {
2079 u32 spio_mask = (1 << spio_num);
2080 u32 spio_reg;
2081
2082 if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2083 (spio_num > MISC_REGISTERS_SPIO_7)) {
2084 BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2085 return -EINVAL;
2086 }
2087
2088 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2089 /* read SPIO and mask except the float bits */
2090 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2091
2092 switch (mode) {
2093 case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2094 DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2095 /* clear FLOAT and set CLR */
2096 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2097 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2098 break;
2099
2100 case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2101 DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2102 /* clear FLOAT and set SET */
2103 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2104 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2105 break;
2106
2107 case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2108 DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2109 /* set FLOAT */
2110 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2111 break;
2112
2113 default:
2114 break;
2115 }
2116
2117 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2118 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2119
2120 return 0;
2121 }
2122
2123 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2124 {
2125 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2126 switch (bp->link_vars.ieee_fc &
2127 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2128 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2129 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2130 ADVERTISED_Pause);
2131 break;
2132
2133 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2134 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2135 ADVERTISED_Pause);
2136 break;
2137
2138 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2139 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2140 break;
2141
2142 default:
2143 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2144 ADVERTISED_Pause);
2145 break;
2146 }
2147 }
2148
2149 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2150 {
2151 if (!BP_NOMCP(bp)) {
2152 u8 rc;
2153 int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2154 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2155 /*
2156 * Initialize link parameters structure variables
2157 * It is recommended to turn off RX FC for jumbo frames
2158 * for better performance
2159 */
2160 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2161 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2162 else
2163 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2164
2165 bnx2x_acquire_phy_lock(bp);
2166
2167 if (load_mode == LOAD_DIAG) {
2168 struct link_params *lp = &bp->link_params;
2169 lp->loopback_mode = LOOPBACK_XGXS;
2170 /* do PHY loopback at 10G speed, if possible */
2171 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2172 if (lp->speed_cap_mask[cfx_idx] &
2173 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2174 lp->req_line_speed[cfx_idx] =
2175 SPEED_10000;
2176 else
2177 lp->req_line_speed[cfx_idx] =
2178 SPEED_1000;
2179 }
2180 }
2181
2182 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2183
2184 bnx2x_release_phy_lock(bp);
2185
2186 bnx2x_calc_fc_adv(bp);
2187
2188 if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2189 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2190 bnx2x_link_report(bp);
2191 } else
2192 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2193 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2194 return rc;
2195 }
2196 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2197 return -EINVAL;
2198 }
2199
2200 void bnx2x_link_set(struct bnx2x *bp)
2201 {
2202 if (!BP_NOMCP(bp)) {
2203 bnx2x_acquire_phy_lock(bp);
2204 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2205 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2206 bnx2x_release_phy_lock(bp);
2207
2208 bnx2x_calc_fc_adv(bp);
2209 } else
2210 BNX2X_ERR("Bootcode is missing - can not set link\n");
2211 }
2212
2213 static void bnx2x__link_reset(struct bnx2x *bp)
2214 {
2215 if (!BP_NOMCP(bp)) {
2216 bnx2x_acquire_phy_lock(bp);
2217 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2218 bnx2x_release_phy_lock(bp);
2219 } else
2220 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2221 }
2222
2223 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2224 {
2225 u8 rc = 0;
2226
2227 if (!BP_NOMCP(bp)) {
2228 bnx2x_acquire_phy_lock(bp);
2229 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2230 is_serdes);
2231 bnx2x_release_phy_lock(bp);
2232 } else
2233 BNX2X_ERR("Bootcode is missing - can not test link\n");
2234
2235 return rc;
2236 }
2237
2238 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2239 {
2240 u32 r_param = bp->link_vars.line_speed / 8;
2241 u32 fair_periodic_timeout_usec;
2242 u32 t_fair;
2243
2244 memset(&(bp->cmng.rs_vars), 0,
2245 sizeof(struct rate_shaping_vars_per_port));
2246 memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2247
2248 /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2249 bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2250
2251 /* this is the threshold below which no timer arming will occur
2252 1.25 coefficient is for the threshold to be a little bigger
2253 than the real time, to compensate for timer in-accuracy */
2254 bp->cmng.rs_vars.rs_threshold =
2255 (RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2256
2257 /* resolution of fairness timer */
2258 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2259 /* for 10G it is 1000usec. for 1G it is 10000usec. */
2260 t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2261
2262 /* this is the threshold below which we won't arm the timer anymore */
2263 bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2264
2265 /* we multiply by 1e3/8 to get bytes/msec.
2266 We don't want the credits to pass a credit
2267 of the t_fair*FAIR_MEM (algorithm resolution) */
2268 bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2269 /* since each tick is 4 usec */
2270 bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2271 }
2272
2273 /* Calculates the sum of vn_min_rates.
2274 It's needed for further normalizing of the min_rates.
2275 Returns:
2276 sum of vn_min_rates.
2277 or
2278 0 - if all the min_rates are 0.
2279 In the later case fainess algorithm should be deactivated.
2280 If not all min_rates are zero then those that are zeroes will be set to 1.
2281 */
2282 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2283 {
2284 int all_zero = 1;
2285 int vn;
2286
2287 bp->vn_weight_sum = 0;
2288 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2289 u32 vn_cfg = bp->mf_config[vn];
2290 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2291 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2292
2293 /* Skip hidden vns */
2294 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2295 continue;
2296
2297 /* If min rate is zero - set it to 1 */
2298 if (!vn_min_rate)
2299 vn_min_rate = DEF_MIN_RATE;
2300 else
2301 all_zero = 0;
2302
2303 bp->vn_weight_sum += vn_min_rate;
2304 }
2305
2306 /* if ETS or all min rates are zeros - disable fairness */
2307 if (BNX2X_IS_ETS_ENABLED(bp)) {
2308 bp->cmng.flags.cmng_enables &=
2309 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2310 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2311 } else if (all_zero) {
2312 bp->cmng.flags.cmng_enables &=
2313 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2314 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2315 " fairness will be disabled\n");
2316 } else
2317 bp->cmng.flags.cmng_enables |=
2318 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2319 }
2320
2321 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2322 {
2323 struct rate_shaping_vars_per_vn m_rs_vn;
2324 struct fairness_vars_per_vn m_fair_vn;
2325 u32 vn_cfg = bp->mf_config[vn];
2326 int func = func_by_vn(bp, vn);
2327 u16 vn_min_rate, vn_max_rate;
2328 int i;
2329
2330 /* If function is hidden - set min and max to zeroes */
2331 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2332 vn_min_rate = 0;
2333 vn_max_rate = 0;
2334
2335 } else {
2336 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2337
2338 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2339 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2340 /* If fairness is enabled (not all min rates are zeroes) and
2341 if current min rate is zero - set it to 1.
2342 This is a requirement of the algorithm. */
2343 if (bp->vn_weight_sum && (vn_min_rate == 0))
2344 vn_min_rate = DEF_MIN_RATE;
2345
2346 if (IS_MF_SI(bp))
2347 /* maxCfg in percents of linkspeed */
2348 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2349 else
2350 /* maxCfg is absolute in 100Mb units */
2351 vn_max_rate = maxCfg * 100;
2352 }
2353
2354 DP(NETIF_MSG_IFUP,
2355 "func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
2356 func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2357
2358 memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2359 memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2360
2361 /* global vn counter - maximal Mbps for this vn */
2362 m_rs_vn.vn_counter.rate = vn_max_rate;
2363
2364 /* quota - number of bytes transmitted in this period */
2365 m_rs_vn.vn_counter.quota =
2366 (vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2367
2368 if (bp->vn_weight_sum) {
2369 /* credit for each period of the fairness algorithm:
2370 number of bytes in T_FAIR (the vn share the port rate).
2371 vn_weight_sum should not be larger than 10000, thus
2372 T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2373 than zero */
2374 m_fair_vn.vn_credit_delta =
2375 max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2376 (8 * bp->vn_weight_sum))),
2377 (bp->cmng.fair_vars.fair_threshold +
2378 MIN_ABOVE_THRESH));
2379 DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2380 m_fair_vn.vn_credit_delta);
2381 }
2382
2383 /* Store it to internal memory */
2384 for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2385 REG_WR(bp, BAR_XSTRORM_INTMEM +
2386 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2387 ((u32 *)(&m_rs_vn))[i]);
2388
2389 for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2390 REG_WR(bp, BAR_XSTRORM_INTMEM +
2391 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2392 ((u32 *)(&m_fair_vn))[i]);
2393 }
2394
2395 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2396 {
2397 if (CHIP_REV_IS_SLOW(bp))
2398 return CMNG_FNS_NONE;
2399 if (IS_MF(bp))
2400 return CMNG_FNS_MINMAX;
2401
2402 return CMNG_FNS_NONE;
2403 }
2404
2405 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2406 {
2407 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2408
2409 if (BP_NOMCP(bp))
2410 return; /* what should be the default bvalue in this case */
2411
2412 /* For 2 port configuration the absolute function number formula
2413 * is:
2414 * abs_func = 2 * vn + BP_PORT + BP_PATH
2415 *
2416 * and there are 4 functions per port
2417 *
2418 * For 4 port configuration it is
2419 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2420 *
2421 * and there are 2 functions per port
2422 */
2423 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2424 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2425
2426 if (func >= E1H_FUNC_MAX)
2427 break;
2428
2429 bp->mf_config[vn] =
2430 MF_CFG_RD(bp, func_mf_config[func].config);
2431 }
2432 }
2433
2434 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2435 {
2436
2437 if (cmng_type == CMNG_FNS_MINMAX) {
2438 int vn;
2439
2440 /* clear cmng_enables */
2441 bp->cmng.flags.cmng_enables = 0;
2442
2443 /* read mf conf from shmem */
2444 if (read_cfg)
2445 bnx2x_read_mf_cfg(bp);
2446
2447 /* Init rate shaping and fairness contexts */
2448 bnx2x_init_port_minmax(bp);
2449
2450 /* vn_weight_sum and enable fairness if not 0 */
2451 bnx2x_calc_vn_weight_sum(bp);
2452
2453 /* calculate and set min-max rate for each vn */
2454 if (bp->port.pmf)
2455 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2456 bnx2x_init_vn_minmax(bp, vn);
2457
2458 /* always enable rate shaping and fairness */
2459 bp->cmng.flags.cmng_enables |=
2460 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2461 if (!bp->vn_weight_sum)
2462 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2463 " fairness will be disabled\n");
2464 return;
2465 }
2466
2467 /* rate shaping and fairness are disabled */
2468 DP(NETIF_MSG_IFUP,
2469 "rate shaping and fairness are disabled\n");
2470 }
2471
2472 /* This function is called upon link interrupt */
2473 static void bnx2x_link_attn(struct bnx2x *bp)
2474 {
2475 /* Make sure that we are synced with the current statistics */
2476 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2477
2478 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2479
2480 if (bp->link_vars.link_up) {
2481
2482 /* dropless flow control */
2483 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2484 int port = BP_PORT(bp);
2485 u32 pause_enabled = 0;
2486
2487 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2488 pause_enabled = 1;
2489
2490 REG_WR(bp, BAR_USTRORM_INTMEM +
2491 USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2492 pause_enabled);
2493 }
2494
2495 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2496 struct host_port_stats *pstats;
2497
2498 pstats = bnx2x_sp(bp, port_stats);
2499 /* reset old mac stats */
2500 memset(&(pstats->mac_stx[0]), 0,
2501 sizeof(struct mac_stx));
2502 }
2503 if (bp->state == BNX2X_STATE_OPEN)
2504 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2505 }
2506
2507 if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2508 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2509
2510 if (cmng_fns != CMNG_FNS_NONE) {
2511 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2512 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2513 } else
2514 /* rate shaping and fairness are disabled */
2515 DP(NETIF_MSG_IFUP,
2516 "single function mode without fairness\n");
2517 }
2518
2519 __bnx2x_link_report(bp);
2520
2521 if (IS_MF(bp))
2522 bnx2x_link_sync_notify(bp);
2523 }
2524
2525 void bnx2x__link_status_update(struct bnx2x *bp)
2526 {
2527 if (bp->state != BNX2X_STATE_OPEN)
2528 return;
2529
2530 /* read updated dcb configuration */
2531 bnx2x_dcbx_pmf_update(bp);
2532
2533 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2534
2535 if (bp->link_vars.link_up)
2536 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2537 else
2538 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2539
2540 /* indicate link status */
2541 bnx2x_link_report(bp);
2542 }
2543
2544 static void bnx2x_pmf_update(struct bnx2x *bp)
2545 {
2546 int port = BP_PORT(bp);
2547 u32 val;
2548
2549 bp->port.pmf = 1;
2550 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2551
2552 /*
2553 * We need the mb() to ensure the ordering between the writing to
2554 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2555 */
2556 smp_mb();
2557
2558 /* queue a periodic task */
2559 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2560
2561 bnx2x_dcbx_pmf_update(bp);
2562
2563 /* enable nig attention */
2564 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2565 if (bp->common.int_block == INT_BLOCK_HC) {
2566 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2567 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2568 } else if (!CHIP_IS_E1x(bp)) {
2569 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2570 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2571 }
2572
2573 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2574 }
2575
2576 /* end of Link */
2577
2578 /* slow path */
2579
2580 /*
2581 * General service functions
2582 */
2583
2584 /* send the MCP a request, block until there is a reply */
2585 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2586 {
2587 int mb_idx = BP_FW_MB_IDX(bp);
2588 u32 seq;
2589 u32 rc = 0;
2590 u32 cnt = 1;
2591 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2592
2593 mutex_lock(&bp->fw_mb_mutex);
2594 seq = ++bp->fw_seq;
2595 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2596 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2597
2598 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2599 (command | seq), param);
2600
2601 do {
2602 /* let the FW do it's magic ... */
2603 msleep(delay);
2604
2605 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2606
2607 /* Give the FW up to 5 second (500*10ms) */
2608 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2609
2610 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2611 cnt*delay, rc, seq);
2612
2613 /* is this a reply to our command? */
2614 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2615 rc &= FW_MSG_CODE_MASK;
2616 else {
2617 /* FW BUG! */
2618 BNX2X_ERR("FW failed to respond!\n");
2619 bnx2x_fw_dump(bp);
2620 rc = 0;
2621 }
2622 mutex_unlock(&bp->fw_mb_mutex);
2623
2624 return rc;
2625 }
2626
2627
2628 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2629 {
2630 if (CHIP_IS_E1x(bp)) {
2631 struct tstorm_eth_function_common_config tcfg = {0};
2632
2633 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2634 }
2635
2636 /* Enable the function in the FW */
2637 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2638 storm_memset_func_en(bp, p->func_id, 1);
2639
2640 /* spq */
2641 if (p->func_flgs & FUNC_FLG_SPQ) {
2642 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2643 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2644 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2645 }
2646 }
2647
2648 /**
2649 * bnx2x_get_tx_only_flags - Return common flags
2650 *
2651 * @bp device handle
2652 * @fp queue handle
2653 * @zero_stats TRUE if statistics zeroing is needed
2654 *
2655 * Return the flags that are common for the Tx-only and not normal connections.
2656 */
2657 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2658 struct bnx2x_fastpath *fp,
2659 bool zero_stats)
2660 {
2661 unsigned long flags = 0;
2662
2663 /* PF driver will always initialize the Queue to an ACTIVE state */
2664 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2665
2666 /* tx only connections collect statistics (on the same index as the
2667 * parent connection). The statistics are zeroed when the parent
2668 * connection is initialized.
2669 */
2670
2671 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2672 if (zero_stats)
2673 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2674
2675
2676 return flags;
2677 }
2678
2679 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2680 struct bnx2x_fastpath *fp,
2681 bool leading)
2682 {
2683 unsigned long flags = 0;
2684
2685 /* calculate other queue flags */
2686 if (IS_MF_SD(bp))
2687 __set_bit(BNX2X_Q_FLG_OV, &flags);
2688
2689 if (IS_FCOE_FP(fp))
2690 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2691
2692 if (!fp->disable_tpa) {
2693 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2694 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2695 }
2696
2697 if (leading) {
2698 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2699 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2700 }
2701
2702 /* Always set HW VLAN stripping */
2703 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2704
2705
2706 return flags | bnx2x_get_common_flags(bp, fp, true);
2707 }
2708
2709 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2710 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2711 u8 cos)
2712 {
2713 gen_init->stat_id = bnx2x_stats_id(fp);
2714 gen_init->spcl_id = fp->cl_id;
2715
2716 /* Always use mini-jumbo MTU for FCoE L2 ring */
2717 if (IS_FCOE_FP(fp))
2718 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2719 else
2720 gen_init->mtu = bp->dev->mtu;
2721
2722 gen_init->cos = cos;
2723 }
2724
2725 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2726 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2727 struct bnx2x_rxq_setup_params *rxq_init)
2728 {
2729 u8 max_sge = 0;
2730 u16 sge_sz = 0;
2731 u16 tpa_agg_size = 0;
2732
2733 if (!fp->disable_tpa) {
2734 pause->sge_th_lo = SGE_TH_LO(bp);
2735 pause->sge_th_hi = SGE_TH_HI(bp);
2736
2737 /* validate SGE ring has enough to cross high threshold */
2738 WARN_ON(bp->dropless_fc &&
2739 pause->sge_th_hi + FW_PREFETCH_CNT >
2740 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2741
2742 tpa_agg_size = min_t(u32,
2743 (min_t(u32, 8, MAX_SKB_FRAGS) *
2744 SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2745 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2746 SGE_PAGE_SHIFT;
2747 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2748 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2749 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2750 0xffff);
2751 }
2752
2753 /* pause - not for e1 */
2754 if (!CHIP_IS_E1(bp)) {
2755 pause->bd_th_lo = BD_TH_LO(bp);
2756 pause->bd_th_hi = BD_TH_HI(bp);
2757
2758 pause->rcq_th_lo = RCQ_TH_LO(bp);
2759 pause->rcq_th_hi = RCQ_TH_HI(bp);
2760 /*
2761 * validate that rings have enough entries to cross
2762 * high thresholds
2763 */
2764 WARN_ON(bp->dropless_fc &&
2765 pause->bd_th_hi + FW_PREFETCH_CNT >
2766 bp->rx_ring_size);
2767 WARN_ON(bp->dropless_fc &&
2768 pause->rcq_th_hi + FW_PREFETCH_CNT >
2769 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2770
2771 pause->pri_map = 1;
2772 }
2773
2774 /* rxq setup */
2775 rxq_init->dscr_map = fp->rx_desc_mapping;
2776 rxq_init->sge_map = fp->rx_sge_mapping;
2777 rxq_init->rcq_map = fp->rx_comp_mapping;
2778 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2779
2780 /* This should be a maximum number of data bytes that may be
2781 * placed on the BD (not including paddings).
2782 */
2783 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2784 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
2785
2786 rxq_init->cl_qzone_id = fp->cl_qzone_id;
2787 rxq_init->tpa_agg_sz = tpa_agg_size;
2788 rxq_init->sge_buf_sz = sge_sz;
2789 rxq_init->max_sges_pkt = max_sge;
2790 rxq_init->rss_engine_id = BP_FUNC(bp);
2791
2792 /* Maximum number or simultaneous TPA aggregation for this Queue.
2793 *
2794 * For PF Clients it should be the maximum avaliable number.
2795 * VF driver(s) may want to define it to a smaller value.
2796 */
2797 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2798
2799 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2800 rxq_init->fw_sb_id = fp->fw_sb_id;
2801
2802 if (IS_FCOE_FP(fp))
2803 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2804 else
2805 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2806 }
2807
2808 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2809 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2810 u8 cos)
2811 {
2812 txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2813 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2814 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2815 txq_init->fw_sb_id = fp->fw_sb_id;
2816
2817 /*
2818 * set the tss leading client id for TX classfication ==
2819 * leading RSS client id
2820 */
2821 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2822
2823 if (IS_FCOE_FP(fp)) {
2824 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2825 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2826 }
2827 }
2828
2829 static void bnx2x_pf_init(struct bnx2x *bp)
2830 {
2831 struct bnx2x_func_init_params func_init = {0};
2832 struct event_ring_data eq_data = { {0} };
2833 u16 flags;
2834
2835 if (!CHIP_IS_E1x(bp)) {
2836 /* reset IGU PF statistics: MSIX + ATTN */
2837 /* PF */
2838 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2839 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2840 (CHIP_MODE_IS_4_PORT(bp) ?
2841 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2842 /* ATTN */
2843 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2844 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2845 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2846 (CHIP_MODE_IS_4_PORT(bp) ?
2847 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2848 }
2849
2850 /* function setup flags */
2851 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2852
2853 /* This flag is relevant for E1x only.
2854 * E2 doesn't have a TPA configuration in a function level.
2855 */
2856 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2857
2858 func_init.func_flgs = flags;
2859 func_init.pf_id = BP_FUNC(bp);
2860 func_init.func_id = BP_FUNC(bp);
2861 func_init.spq_map = bp->spq_mapping;
2862 func_init.spq_prod = bp->spq_prod_idx;
2863
2864 bnx2x_func_init(bp, &func_init);
2865
2866 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2867
2868 /*
2869 * Congestion management values depend on the link rate
2870 * There is no active link so initial link rate is set to 10 Gbps.
2871 * When the link comes up The congestion management values are
2872 * re-calculated according to the actual link rate.
2873 */
2874 bp->link_vars.line_speed = SPEED_10000;
2875 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2876
2877 /* Only the PMF sets the HW */
2878 if (bp->port.pmf)
2879 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2880
2881 /* init Event Queue */
2882 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2883 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2884 eq_data.producer = bp->eq_prod;
2885 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2886 eq_data.sb_id = DEF_SB_ID;
2887 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2888 }
2889
2890
2891 static void bnx2x_e1h_disable(struct bnx2x *bp)
2892 {
2893 int port = BP_PORT(bp);
2894
2895 bnx2x_tx_disable(bp);
2896
2897 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2898 }
2899
2900 static void bnx2x_e1h_enable(struct bnx2x *bp)
2901 {
2902 int port = BP_PORT(bp);
2903
2904 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2905
2906 /* Tx queue should be only reenabled */
2907 netif_tx_wake_all_queues(bp->dev);
2908
2909 /*
2910 * Should not call netif_carrier_on since it will be called if the link
2911 * is up when checking for link state
2912 */
2913 }
2914
2915 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2916
2917 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2918 {
2919 struct eth_stats_info *ether_stat =
2920 &bp->slowpath->drv_info_to_mcp.ether_stat;
2921
2922 /* leave last char as NULL */
2923 memcpy(ether_stat->version, DRV_MODULE_VERSION,
2924 ETH_STAT_INFO_VERSION_LEN - 1);
2925
2926 bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2927 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2928 ether_stat->mac_local);
2929
2930 ether_stat->mtu_size = bp->dev->mtu;
2931
2932 if (bp->dev->features & NETIF_F_RXCSUM)
2933 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2934 if (bp->dev->features & NETIF_F_TSO)
2935 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2936 ether_stat->feature_flags |= bp->common.boot_mode;
2937
2938 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2939
2940 ether_stat->txq_size = bp->tx_ring_size;
2941 ether_stat->rxq_size = bp->rx_ring_size;
2942 }
2943
2944 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2945 {
2946 #ifdef BCM_CNIC
2947 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2948 struct fcoe_stats_info *fcoe_stat =
2949 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
2950
2951 memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2952
2953 fcoe_stat->qos_priority =
2954 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2955
2956 /* insert FCoE stats from ramrod response */
2957 if (!NO_FCOE(bp)) {
2958 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2959 &bp->fw_stats_data->queue_stats[FCOE_IDX].
2960 tstorm_queue_statistics;
2961
2962 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2963 &bp->fw_stats_data->queue_stats[FCOE_IDX].
2964 xstorm_queue_statistics;
2965
2966 struct fcoe_statistics_params *fw_fcoe_stat =
2967 &bp->fw_stats_data->fcoe;
2968
2969 ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2970 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2971
2972 ADD_64(fcoe_stat->rx_bytes_hi,
2973 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2974 fcoe_stat->rx_bytes_lo,
2975 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2976
2977 ADD_64(fcoe_stat->rx_bytes_hi,
2978 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2979 fcoe_stat->rx_bytes_lo,
2980 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2981
2982 ADD_64(fcoe_stat->rx_bytes_hi,
2983 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2984 fcoe_stat->rx_bytes_lo,
2985 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
2986
2987 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2988 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
2989
2990 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2991 fcoe_q_tstorm_stats->rcv_ucast_pkts);
2992
2993 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2994 fcoe_q_tstorm_stats->rcv_bcast_pkts);
2995
2996 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2997 fcoe_q_tstorm_stats->rcv_mcast_pkts);
2998
2999 ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3000 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3001
3002 ADD_64(fcoe_stat->tx_bytes_hi,
3003 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3004 fcoe_stat->tx_bytes_lo,
3005 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3006
3007 ADD_64(fcoe_stat->tx_bytes_hi,
3008 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3009 fcoe_stat->tx_bytes_lo,
3010 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3011
3012 ADD_64(fcoe_stat->tx_bytes_hi,
3013 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3014 fcoe_stat->tx_bytes_lo,
3015 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3016
3017 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3018 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3019
3020 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3021 fcoe_q_xstorm_stats->ucast_pkts_sent);
3022
3023 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3024 fcoe_q_xstorm_stats->bcast_pkts_sent);
3025
3026 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3027 fcoe_q_xstorm_stats->mcast_pkts_sent);
3028 }
3029
3030 /* ask L5 driver to add data to the struct */
3031 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3032 #endif
3033 }
3034
3035 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3036 {
3037 #ifdef BCM_CNIC
3038 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3039 struct iscsi_stats_info *iscsi_stat =
3040 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3041
3042 memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3043
3044 iscsi_stat->qos_priority =
3045 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3046
3047 /* ask L5 driver to add data to the struct */
3048 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3049 #endif
3050 }
3051
3052 /* called due to MCP event (on pmf):
3053 * reread new bandwidth configuration
3054 * configure FW
3055 * notify others function about the change
3056 */
3057 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3058 {
3059 if (bp->link_vars.link_up) {
3060 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3061 bnx2x_link_sync_notify(bp);
3062 }
3063 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3064 }
3065
3066 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3067 {
3068 bnx2x_config_mf_bw(bp);
3069 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3070 }
3071
3072 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3073 {
3074 enum drv_info_opcode op_code;
3075 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3076
3077 /* if drv_info version supported by MFW doesn't match - send NACK */
3078 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3079 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3080 return;
3081 }
3082
3083 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3084 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3085
3086 memset(&bp->slowpath->drv_info_to_mcp, 0,
3087 sizeof(union drv_info_to_mcp));
3088
3089 switch (op_code) {
3090 case ETH_STATS_OPCODE:
3091 bnx2x_drv_info_ether_stat(bp);
3092 break;
3093 case FCOE_STATS_OPCODE:
3094 bnx2x_drv_info_fcoe_stat(bp);
3095 break;
3096 case ISCSI_STATS_OPCODE:
3097 bnx2x_drv_info_iscsi_stat(bp);
3098 break;
3099 default:
3100 /* if op code isn't supported - send NACK */
3101 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3102 return;
3103 }
3104
3105 /* if we got drv_info attn from MFW then these fields are defined in
3106 * shmem2 for sure
3107 */
3108 SHMEM2_WR(bp, drv_info_host_addr_lo,
3109 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3110 SHMEM2_WR(bp, drv_info_host_addr_hi,
3111 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3112
3113 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3114 }
3115
3116 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3117 {
3118 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3119
3120 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3121
3122 /*
3123 * This is the only place besides the function initialization
3124 * where the bp->flags can change so it is done without any
3125 * locks
3126 */
3127 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3128 DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
3129 bp->flags |= MF_FUNC_DIS;
3130
3131 bnx2x_e1h_disable(bp);
3132 } else {
3133 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
3134 bp->flags &= ~MF_FUNC_DIS;
3135
3136 bnx2x_e1h_enable(bp);
3137 }
3138 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3139 }
3140 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3141 bnx2x_config_mf_bw(bp);
3142 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3143 }
3144
3145 /* Report results to MCP */
3146 if (dcc_event)
3147 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3148 else
3149 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3150 }
3151
3152 /* must be called under the spq lock */
3153 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3154 {
3155 struct eth_spe *next_spe = bp->spq_prod_bd;
3156
3157 if (bp->spq_prod_bd == bp->spq_last_bd) {
3158 bp->spq_prod_bd = bp->spq;
3159 bp->spq_prod_idx = 0;
3160 DP(NETIF_MSG_TIMER, "end of spq\n");
3161 } else {
3162 bp->spq_prod_bd++;
3163 bp->spq_prod_idx++;
3164 }
3165 return next_spe;
3166 }
3167
3168 /* must be called under the spq lock */
3169 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3170 {
3171 int func = BP_FUNC(bp);
3172
3173 /*
3174 * Make sure that BD data is updated before writing the producer:
3175 * BD data is written to the memory, the producer is read from the
3176 * memory, thus we need a full memory barrier to ensure the ordering.
3177 */
3178 mb();
3179
3180 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3181 bp->spq_prod_idx);
3182 mmiowb();
3183 }
3184
3185 /**
3186 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3187 *
3188 * @cmd: command to check
3189 * @cmd_type: command type
3190 */
3191 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3192 {
3193 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3194 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3195 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3196 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3197 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3198 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3199 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3200 return true;
3201 else
3202 return false;
3203
3204 }
3205
3206
3207 /**
3208 * bnx2x_sp_post - place a single command on an SP ring
3209 *
3210 * @bp: driver handle
3211 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3212 * @cid: SW CID the command is related to
3213 * @data_hi: command private data address (high 32 bits)
3214 * @data_lo: command private data address (low 32 bits)
3215 * @cmd_type: command type (e.g. NONE, ETH)
3216 *
3217 * SP data is handled as if it's always an address pair, thus data fields are
3218 * not swapped to little endian in upper functions. Instead this function swaps
3219 * data as if it's two u32 fields.
3220 */
3221 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3222 u32 data_hi, u32 data_lo, int cmd_type)
3223 {
3224 struct eth_spe *spe;
3225 u16 type;
3226 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3227
3228 #ifdef BNX2X_STOP_ON_ERROR
3229 if (unlikely(bp->panic))
3230 return -EIO;
3231 #endif
3232
3233 spin_lock_bh(&bp->spq_lock);
3234
3235 if (common) {
3236 if (!atomic_read(&bp->eq_spq_left)) {
3237 BNX2X_ERR("BUG! EQ ring full!\n");
3238 spin_unlock_bh(&bp->spq_lock);
3239 bnx2x_panic();
3240 return -EBUSY;
3241 }
3242 } else if (!atomic_read(&bp->cq_spq_left)) {
3243 BNX2X_ERR("BUG! SPQ ring full!\n");
3244 spin_unlock_bh(&bp->spq_lock);
3245 bnx2x_panic();
3246 return -EBUSY;
3247 }
3248
3249 spe = bnx2x_sp_get_next(bp);
3250
3251 /* CID needs port number to be encoded int it */
3252 spe->hdr.conn_and_cmd_data =
3253 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3254 HW_CID(bp, cid));
3255
3256 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3257
3258 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3259 SPE_HDR_FUNCTION_ID);
3260
3261 spe->hdr.type = cpu_to_le16(type);
3262
3263 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3264 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3265
3266 /*
3267 * It's ok if the actual decrement is issued towards the memory
3268 * somewhere between the spin_lock and spin_unlock. Thus no
3269 * more explict memory barrier is needed.
3270 */
3271 if (common)
3272 atomic_dec(&bp->eq_spq_left);
3273 else
3274 atomic_dec(&bp->cq_spq_left);
3275
3276
3277 DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3278 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) "
3279 "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3280 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3281 (u32)(U64_LO(bp->spq_mapping) +
3282 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3283 HW_CID(bp, cid), data_hi, data_lo, type,
3284 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3285
3286 bnx2x_sp_prod_update(bp);
3287 spin_unlock_bh(&bp->spq_lock);
3288 return 0;
3289 }
3290
3291 /* acquire split MCP access lock register */
3292 static int bnx2x_acquire_alr(struct bnx2x *bp)
3293 {
3294 u32 j, val;
3295 int rc = 0;
3296
3297 might_sleep();
3298 for (j = 0; j < 1000; j++) {
3299 val = (1UL << 31);
3300 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3301 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3302 if (val & (1L << 31))
3303 break;
3304
3305 msleep(5);
3306 }
3307 if (!(val & (1L << 31))) {
3308 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3309 rc = -EBUSY;
3310 }
3311
3312 return rc;
3313 }
3314
3315 /* release split MCP access lock register */
3316 static void bnx2x_release_alr(struct bnx2x *bp)
3317 {
3318 REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3319 }
3320
3321 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3322 #define BNX2X_DEF_SB_IDX 0x0002
3323
3324 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3325 {
3326 struct host_sp_status_block *def_sb = bp->def_status_blk;
3327 u16 rc = 0;
3328
3329 barrier(); /* status block is written to by the chip */
3330 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3331 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3332 rc |= BNX2X_DEF_SB_ATT_IDX;
3333 }
3334
3335 if (bp->def_idx != def_sb->sp_sb.running_index) {
3336 bp->def_idx = def_sb->sp_sb.running_index;
3337 rc |= BNX2X_DEF_SB_IDX;
3338 }
3339
3340 /* Do not reorder: indecies reading should complete before handling */
3341 barrier();
3342 return rc;
3343 }
3344
3345 /*
3346 * slow path service functions
3347 */
3348
3349 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3350 {
3351 int port = BP_PORT(bp);
3352 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3353 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3354 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3355 NIG_REG_MASK_INTERRUPT_PORT0;
3356 u32 aeu_mask;
3357 u32 nig_mask = 0;
3358 u32 reg_addr;
3359
3360 if (bp->attn_state & asserted)
3361 BNX2X_ERR("IGU ERROR\n");
3362
3363 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3364 aeu_mask = REG_RD(bp, aeu_addr);
3365
3366 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3367 aeu_mask, asserted);
3368 aeu_mask &= ~(asserted & 0x3ff);
3369 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3370
3371 REG_WR(bp, aeu_addr, aeu_mask);
3372 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3373
3374 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3375 bp->attn_state |= asserted;
3376 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3377
3378 if (asserted & ATTN_HARD_WIRED_MASK) {
3379 if (asserted & ATTN_NIG_FOR_FUNC) {
3380
3381 bnx2x_acquire_phy_lock(bp);
3382
3383 /* save nig interrupt mask */
3384 nig_mask = REG_RD(bp, nig_int_mask_addr);
3385
3386 /* If nig_mask is not set, no need to call the update
3387 * function.
3388 */
3389 if (nig_mask) {
3390 REG_WR(bp, nig_int_mask_addr, 0);
3391
3392 bnx2x_link_attn(bp);
3393 }
3394
3395 /* handle unicore attn? */
3396 }
3397 if (asserted & ATTN_SW_TIMER_4_FUNC)
3398 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3399
3400 if (asserted & GPIO_2_FUNC)
3401 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3402
3403 if (asserted & GPIO_3_FUNC)
3404 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3405
3406 if (asserted & GPIO_4_FUNC)
3407 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3408
3409 if (port == 0) {
3410 if (asserted & ATTN_GENERAL_ATTN_1) {
3411 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3412 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3413 }
3414 if (asserted & ATTN_GENERAL_ATTN_2) {
3415 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3416 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3417 }
3418 if (asserted & ATTN_GENERAL_ATTN_3) {
3419 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3420 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3421 }
3422 } else {
3423 if (asserted & ATTN_GENERAL_ATTN_4) {
3424 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3425 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3426 }
3427 if (asserted & ATTN_GENERAL_ATTN_5) {
3428 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3429 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3430 }
3431 if (asserted & ATTN_GENERAL_ATTN_6) {
3432 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3433 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3434 }
3435 }
3436
3437 } /* if hardwired */
3438
3439 if (bp->common.int_block == INT_BLOCK_HC)
3440 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3441 COMMAND_REG_ATTN_BITS_SET);
3442 else
3443 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3444
3445 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3446 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3447 REG_WR(bp, reg_addr, asserted);
3448
3449 /* now set back the mask */
3450 if (asserted & ATTN_NIG_FOR_FUNC) {
3451 REG_WR(bp, nig_int_mask_addr, nig_mask);
3452 bnx2x_release_phy_lock(bp);
3453 }
3454 }
3455
3456 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3457 {
3458 int port = BP_PORT(bp);
3459 u32 ext_phy_config;
3460 /* mark the failure */
3461 ext_phy_config =
3462 SHMEM_RD(bp,
3463 dev_info.port_hw_config[port].external_phy_config);
3464
3465 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3466 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3467 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3468 ext_phy_config);
3469
3470 /* log the failure */
3471 netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3472 " the driver to shutdown the card to prevent permanent"
3473 " damage. Please contact OEM Support for assistance\n");
3474
3475 /*
3476 * Scheudle device reset (unload)
3477 * This is due to some boards consuming sufficient power when driver is
3478 * up to overheat if fan fails.
3479 */
3480 smp_mb__before_clear_bit();
3481 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3482 smp_mb__after_clear_bit();
3483 schedule_delayed_work(&bp->sp_rtnl_task, 0);
3484
3485 }
3486
3487 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3488 {
3489 int port = BP_PORT(bp);
3490 int reg_offset;
3491 u32 val;
3492
3493 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3494 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3495
3496 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3497
3498 val = REG_RD(bp, reg_offset);
3499 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3500 REG_WR(bp, reg_offset, val);
3501
3502 BNX2X_ERR("SPIO5 hw attention\n");
3503
3504 /* Fan failure attention */
3505 bnx2x_hw_reset_phy(&bp->link_params);
3506 bnx2x_fan_failure(bp);
3507 }
3508
3509 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3510 bnx2x_acquire_phy_lock(bp);
3511 bnx2x_handle_module_detect_int(&bp->link_params);
3512 bnx2x_release_phy_lock(bp);
3513 }
3514
3515 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3516
3517 val = REG_RD(bp, reg_offset);
3518 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3519 REG_WR(bp, reg_offset, val);
3520
3521 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3522 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3523 bnx2x_panic();
3524 }
3525 }
3526
3527 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3528 {
3529 u32 val;
3530
3531 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3532
3533 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3534 BNX2X_ERR("DB hw attention 0x%x\n", val);
3535 /* DORQ discard attention */
3536 if (val & 0x2)
3537 BNX2X_ERR("FATAL error from DORQ\n");
3538 }
3539
3540 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3541
3542 int port = BP_PORT(bp);
3543 int reg_offset;
3544
3545 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3546 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3547
3548 val = REG_RD(bp, reg_offset);
3549 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3550 REG_WR(bp, reg_offset, val);
3551
3552 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3553 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3554 bnx2x_panic();
3555 }
3556 }
3557
3558 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3559 {
3560 u32 val;
3561
3562 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3563
3564 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3565 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3566 /* CFC error attention */
3567 if (val & 0x2)
3568 BNX2X_ERR("FATAL error from CFC\n");
3569 }
3570
3571 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3572 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3573 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3574 /* RQ_USDMDP_FIFO_OVERFLOW */
3575 if (val & 0x18000)
3576 BNX2X_ERR("FATAL error from PXP\n");
3577
3578 if (!CHIP_IS_E1x(bp)) {
3579 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3580 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3581 }
3582 }
3583
3584 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3585
3586 int port = BP_PORT(bp);
3587 int reg_offset;
3588
3589 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3590 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3591
3592 val = REG_RD(bp, reg_offset);
3593 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3594 REG_WR(bp, reg_offset, val);
3595
3596 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3597 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3598 bnx2x_panic();
3599 }
3600 }
3601
3602 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3603 {
3604 u32 val;
3605
3606 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3607
3608 if (attn & BNX2X_PMF_LINK_ASSERT) {
3609 int func = BP_FUNC(bp);
3610
3611 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3612 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3613 func_mf_config[BP_ABS_FUNC(bp)].config);
3614 val = SHMEM_RD(bp,
3615 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3616 if (val & DRV_STATUS_DCC_EVENT_MASK)
3617 bnx2x_dcc_event(bp,
3618 (val & DRV_STATUS_DCC_EVENT_MASK));
3619
3620 if (val & DRV_STATUS_SET_MF_BW)
3621 bnx2x_set_mf_bw(bp);
3622
3623 if (val & DRV_STATUS_DRV_INFO_REQ)
3624 bnx2x_handle_drv_info_req(bp);
3625 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3626 bnx2x_pmf_update(bp);
3627
3628 if (bp->port.pmf &&
3629 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3630 bp->dcbx_enabled > 0)
3631 /* start dcbx state machine */
3632 bnx2x_dcbx_set_params(bp,
3633 BNX2X_DCBX_STATE_NEG_RECEIVED);
3634 if (bp->link_vars.periodic_flags &
3635 PERIODIC_FLAGS_LINK_EVENT) {
3636 /* sync with link */
3637 bnx2x_acquire_phy_lock(bp);
3638 bp->link_vars.periodic_flags &=
3639 ~PERIODIC_FLAGS_LINK_EVENT;
3640 bnx2x_release_phy_lock(bp);
3641 if (IS_MF(bp))
3642 bnx2x_link_sync_notify(bp);
3643 bnx2x_link_report(bp);
3644 }
3645 /* Always call it here: bnx2x_link_report() will
3646 * prevent the link indication duplication.
3647 */
3648 bnx2x__link_status_update(bp);
3649 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3650
3651 BNX2X_ERR("MC assert!\n");
3652 bnx2x_mc_assert(bp);
3653 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3654 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3655 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3656 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3657 bnx2x_panic();
3658
3659 } else if (attn & BNX2X_MCP_ASSERT) {
3660
3661 BNX2X_ERR("MCP assert!\n");
3662 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3663 bnx2x_fw_dump(bp);
3664
3665 } else
3666 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3667 }
3668
3669 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3670 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3671 if (attn & BNX2X_GRC_TIMEOUT) {
3672 val = CHIP_IS_E1(bp) ? 0 :
3673 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3674 BNX2X_ERR("GRC time-out 0x%08x\n", val);
3675 }
3676 if (attn & BNX2X_GRC_RSV) {
3677 val = CHIP_IS_E1(bp) ? 0 :
3678 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3679 BNX2X_ERR("GRC reserved 0x%08x\n", val);
3680 }
3681 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3682 }
3683 }
3684
3685 /*
3686 * Bits map:
3687 * 0-7 - Engine0 load counter.
3688 * 8-15 - Engine1 load counter.
3689 * 16 - Engine0 RESET_IN_PROGRESS bit.
3690 * 17 - Engine1 RESET_IN_PROGRESS bit.
3691 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3692 * on the engine
3693 * 19 - Engine1 ONE_IS_LOADED.
3694 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
3695 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
3696 * just the one belonging to its engine).
3697 *
3698 */
3699 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
3700
3701 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
3702 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
3703 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
3704 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
3705 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
3706 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
3707 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
3708
3709 /*
3710 * Set the GLOBAL_RESET bit.
3711 *
3712 * Should be run under rtnl lock
3713 */
3714 void bnx2x_set_reset_global(struct bnx2x *bp)
3715 {
3716 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3717
3718 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3719 barrier();
3720 mmiowb();
3721 }
3722
3723 /*
3724 * Clear the GLOBAL_RESET bit.
3725 *
3726 * Should be run under rtnl lock
3727 */
3728 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3729 {
3730 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3731
3732 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3733 barrier();
3734 mmiowb();
3735 }
3736
3737 /*
3738 * Checks the GLOBAL_RESET bit.
3739 *
3740 * should be run under rtnl lock
3741 */
3742 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3743 {
3744 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3745
3746 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3747 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3748 }
3749
3750 /*
3751 * Clear RESET_IN_PROGRESS bit for the current engine.
3752 *
3753 * Should be run under rtnl lock
3754 */
3755 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3756 {
3757 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3758 u32 bit = BP_PATH(bp) ?
3759 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3760
3761 /* Clear the bit */
3762 val &= ~bit;
3763 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3764 barrier();
3765 mmiowb();
3766 }
3767
3768 /*
3769 * Set RESET_IN_PROGRESS for the current engine.
3770 *
3771 * should be run under rtnl lock
3772 */
3773 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3774 {
3775 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3776 u32 bit = BP_PATH(bp) ?
3777 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3778
3779 /* Set the bit */
3780 val |= bit;
3781 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3782 barrier();
3783 mmiowb();
3784 }
3785
3786 /*
3787 * Checks the RESET_IN_PROGRESS bit for the given engine.
3788 * should be run under rtnl lock
3789 */
3790 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3791 {
3792 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3793 u32 bit = engine ?
3794 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3795
3796 /* return false if bit is set */
3797 return (val & bit) ? false : true;
3798 }
3799
3800 /*
3801 * Increment the load counter for the current engine.
3802 *
3803 * should be run under rtnl lock
3804 */
3805 void bnx2x_inc_load_cnt(struct bnx2x *bp)
3806 {
3807 u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3808 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3809 BNX2X_PATH0_LOAD_CNT_MASK;
3810 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3811 BNX2X_PATH0_LOAD_CNT_SHIFT;
3812
3813 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3814
3815 /* get the current counter value */
3816 val1 = (val & mask) >> shift;
3817
3818 /* increment... */
3819 val1++;
3820
3821 /* clear the old value */
3822 val &= ~mask;
3823
3824 /* set the new one */
3825 val |= ((val1 << shift) & mask);
3826
3827 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3828 barrier();
3829 mmiowb();
3830 }
3831
3832 /**
3833 * bnx2x_dec_load_cnt - decrement the load counter
3834 *
3835 * @bp: driver handle
3836 *
3837 * Should be run under rtnl lock.
3838 * Decrements the load counter for the current engine. Returns
3839 * the new counter value.
3840 */
3841 u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3842 {
3843 u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3844 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3845 BNX2X_PATH0_LOAD_CNT_MASK;
3846 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3847 BNX2X_PATH0_LOAD_CNT_SHIFT;
3848
3849 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3850
3851 /* get the current counter value */
3852 val1 = (val & mask) >> shift;
3853
3854 /* decrement... */
3855 val1--;
3856
3857 /* clear the old value */
3858 val &= ~mask;
3859
3860 /* set the new one */
3861 val |= ((val1 << shift) & mask);
3862
3863 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3864 barrier();
3865 mmiowb();
3866
3867 return val1;
3868 }
3869
3870 /*
3871 * Read the load counter for the current engine.
3872 *
3873 * should be run under rtnl lock
3874 */
3875 static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3876 {
3877 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3878 BNX2X_PATH0_LOAD_CNT_MASK);
3879 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3880 BNX2X_PATH0_LOAD_CNT_SHIFT);
3881 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3882
3883 DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3884
3885 val = (val & mask) >> shift;
3886
3887 DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3888
3889 return val;
3890 }
3891
3892 /*
3893 * Reset the load counter for the current engine.
3894 *
3895 * should be run under rtnl lock
3896 */
3897 static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3898 {
3899 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3900 u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3901 BNX2X_PATH0_LOAD_CNT_MASK);
3902
3903 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3904 }
3905
3906 static inline void _print_next_block(int idx, const char *blk)
3907 {
3908 pr_cont("%s%s", idx ? ", " : "", blk);
3909 }
3910
3911 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3912 bool print)
3913 {
3914 int i = 0;
3915 u32 cur_bit = 0;
3916 for (i = 0; sig; i++) {
3917 cur_bit = ((u32)0x1 << i);
3918 if (sig & cur_bit) {
3919 switch (cur_bit) {
3920 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3921 if (print)
3922 _print_next_block(par_num++, "BRB");
3923 break;
3924 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3925 if (print)
3926 _print_next_block(par_num++, "PARSER");
3927 break;
3928 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3929 if (print)
3930 _print_next_block(par_num++, "TSDM");
3931 break;
3932 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3933 if (print)
3934 _print_next_block(par_num++,
3935 "SEARCHER");
3936 break;
3937 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3938 if (print)
3939 _print_next_block(par_num++, "TCM");
3940 break;
3941 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3942 if (print)
3943 _print_next_block(par_num++, "TSEMI");
3944 break;
3945 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3946 if (print)
3947 _print_next_block(par_num++, "XPB");
3948 break;
3949 }
3950
3951 /* Clear the bit */
3952 sig &= ~cur_bit;
3953 }
3954 }
3955
3956 return par_num;
3957 }
3958
3959 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3960 bool *global, bool print)
3961 {
3962 int i = 0;
3963 u32 cur_bit = 0;
3964 for (i = 0; sig; i++) {
3965 cur_bit = ((u32)0x1 << i);
3966 if (sig & cur_bit) {
3967 switch (cur_bit) {
3968 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3969 if (print)
3970 _print_next_block(par_num++, "PBF");
3971 break;
3972 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3973 if (print)
3974 _print_next_block(par_num++, "QM");
3975 break;
3976 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3977 if (print)
3978 _print_next_block(par_num++, "TM");
3979 break;
3980 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3981 if (print)
3982 _print_next_block(par_num++, "XSDM");
3983 break;
3984 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3985 if (print)
3986 _print_next_block(par_num++, "XCM");
3987 break;
3988 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3989 if (print)
3990 _print_next_block(par_num++, "XSEMI");
3991 break;
3992 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3993 if (print)
3994 _print_next_block(par_num++,
3995 "DOORBELLQ");
3996 break;
3997 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3998 if (print)
3999 _print_next_block(par_num++, "NIG");
4000 break;
4001 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4002 if (print)
4003 _print_next_block(par_num++,
4004 "VAUX PCI CORE");
4005 *global = true;
4006 break;
4007 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4008 if (print)
4009 _print_next_block(par_num++, "DEBUG");
4010 break;
4011 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4012 if (print)
4013 _print_next_block(par_num++, "USDM");
4014 break;
4015 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4016 if (print)
4017 _print_next_block(par_num++, "UCM");
4018 break;
4019 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4020 if (print)
4021 _print_next_block(par_num++, "USEMI");
4022 break;
4023 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4024 if (print)
4025 _print_next_block(par_num++, "UPB");
4026 break;
4027 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4028 if (print)
4029 _print_next_block(par_num++, "CSDM");
4030 break;
4031 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4032 if (print)
4033 _print_next_block(par_num++, "CCM");
4034 break;
4035 }
4036
4037 /* Clear the bit */
4038 sig &= ~cur_bit;
4039 }
4040 }
4041
4042 return par_num;
4043 }
4044
4045 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4046 bool print)
4047 {
4048 int i = 0;
4049 u32 cur_bit = 0;
4050 for (i = 0; sig; i++) {
4051 cur_bit = ((u32)0x1 << i);
4052 if (sig & cur_bit) {
4053 switch (cur_bit) {
4054 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4055 if (print)
4056 _print_next_block(par_num++, "CSEMI");
4057 break;
4058 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4059 if (print)
4060 _print_next_block(par_num++, "PXP");
4061 break;
4062 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4063 if (print)
4064 _print_next_block(par_num++,
4065 "PXPPCICLOCKCLIENT");
4066 break;
4067 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4068 if (print)
4069 _print_next_block(par_num++, "CFC");
4070 break;
4071 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4072 if (print)
4073 _print_next_block(par_num++, "CDU");
4074 break;
4075 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4076 if (print)
4077 _print_next_block(par_num++, "DMAE");
4078 break;
4079 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4080 if (print)
4081 _print_next_block(par_num++, "IGU");
4082 break;
4083 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4084 if (print)
4085 _print_next_block(par_num++, "MISC");
4086 break;
4087 }
4088
4089 /* Clear the bit */
4090 sig &= ~cur_bit;
4091 }
4092 }
4093
4094 return par_num;
4095 }
4096
4097 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4098 bool *global, bool print)
4099 {
4100 int i = 0;
4101 u32 cur_bit = 0;
4102 for (i = 0; sig; i++) {
4103 cur_bit = ((u32)0x1 << i);
4104 if (sig & cur_bit) {
4105 switch (cur_bit) {
4106 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4107 if (print)
4108 _print_next_block(par_num++, "MCP ROM");
4109 *global = true;
4110 break;
4111 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4112 if (print)
4113 _print_next_block(par_num++,
4114 "MCP UMP RX");
4115 *global = true;
4116 break;
4117 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4118 if (print)
4119 _print_next_block(par_num++,
4120 "MCP UMP TX");
4121 *global = true;
4122 break;
4123 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4124 if (print)
4125 _print_next_block(par_num++,
4126 "MCP SCPAD");
4127 *global = true;
4128 break;
4129 }
4130
4131 /* Clear the bit */
4132 sig &= ~cur_bit;
4133 }
4134 }
4135
4136 return par_num;
4137 }
4138
4139 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4140 bool print)
4141 {
4142 int i = 0;
4143 u32 cur_bit = 0;
4144 for (i = 0; sig; i++) {
4145 cur_bit = ((u32)0x1 << i);
4146 if (sig & cur_bit) {
4147 switch (cur_bit) {
4148 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4149 if (print)
4150 _print_next_block(par_num++, "PGLUE_B");
4151 break;
4152 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4153 if (print)
4154 _print_next_block(par_num++, "ATC");
4155 break;
4156 }
4157
4158 /* Clear the bit */
4159 sig &= ~cur_bit;
4160 }
4161 }
4162
4163 return par_num;
4164 }
4165
4166 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4167 u32 *sig)
4168 {
4169 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4170 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4171 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4172 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4173 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4174 int par_num = 0;
4175 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
4176 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4177 "[4]:0x%08x\n",
4178 sig[0] & HW_PRTY_ASSERT_SET_0,
4179 sig[1] & HW_PRTY_ASSERT_SET_1,
4180 sig[2] & HW_PRTY_ASSERT_SET_2,
4181 sig[3] & HW_PRTY_ASSERT_SET_3,
4182 sig[4] & HW_PRTY_ASSERT_SET_4);
4183 if (print)
4184 netdev_err(bp->dev,
4185 "Parity errors detected in blocks: ");
4186 par_num = bnx2x_check_blocks_with_parity0(
4187 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4188 par_num = bnx2x_check_blocks_with_parity1(
4189 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4190 par_num = bnx2x_check_blocks_with_parity2(
4191 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4192 par_num = bnx2x_check_blocks_with_parity3(
4193 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4194 par_num = bnx2x_check_blocks_with_parity4(
4195 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4196
4197 if (print)
4198 pr_cont("\n");
4199
4200 return true;
4201 } else
4202 return false;
4203 }
4204
4205 /**
4206 * bnx2x_chk_parity_attn - checks for parity attentions.
4207 *
4208 * @bp: driver handle
4209 * @global: true if there was a global attention
4210 * @print: show parity attention in syslog
4211 */
4212 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4213 {
4214 struct attn_route attn = { {0} };
4215 int port = BP_PORT(bp);
4216
4217 attn.sig[0] = REG_RD(bp,
4218 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4219 port*4);
4220 attn.sig[1] = REG_RD(bp,
4221 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4222 port*4);
4223 attn.sig[2] = REG_RD(bp,
4224 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4225 port*4);
4226 attn.sig[3] = REG_RD(bp,
4227 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4228 port*4);
4229
4230 if (!CHIP_IS_E1x(bp))
4231 attn.sig[4] = REG_RD(bp,
4232 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4233 port*4);
4234
4235 return bnx2x_parity_attn(bp, global, print, attn.sig);
4236 }
4237
4238
4239 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4240 {
4241 u32 val;
4242 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4243
4244 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4245 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4246 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4247 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4248 "ADDRESS_ERROR\n");
4249 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4250 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4251 "INCORRECT_RCV_BEHAVIOR\n");
4252 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4253 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4254 "WAS_ERROR_ATTN\n");
4255 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4256 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4257 "VF_LENGTH_VIOLATION_ATTN\n");
4258 if (val &
4259 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4260 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4261 "VF_GRC_SPACE_VIOLATION_ATTN\n");
4262 if (val &
4263 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4264 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4265 "VF_MSIX_BAR_VIOLATION_ATTN\n");
4266 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4267 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4268 "TCPL_ERROR_ATTN\n");
4269 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4270 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4271 "TCPL_IN_TWO_RCBS_ATTN\n");
4272 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4273 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4274 "CSSNOOP_FIFO_OVERFLOW\n");
4275 }
4276 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4277 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4278 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4279 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4280 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4281 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4282 BNX2X_ERR("ATC_ATC_INT_STS_REG"
4283 "_ATC_TCPL_TO_NOT_PEND\n");
4284 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4285 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4286 "ATC_GPA_MULTIPLE_HITS\n");
4287 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4288 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4289 "ATC_RCPL_TO_EMPTY_CNT\n");
4290 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4291 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4292 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4293 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4294 "ATC_IREQ_LESS_THAN_STU\n");
4295 }
4296
4297 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4298 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4299 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4300 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4301 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4302 }
4303
4304 }
4305
4306 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4307 {
4308 struct attn_route attn, *group_mask;
4309 int port = BP_PORT(bp);
4310 int index;
4311 u32 reg_addr;
4312 u32 val;
4313 u32 aeu_mask;
4314 bool global = false;
4315
4316 /* need to take HW lock because MCP or other port might also
4317 try to handle this event */
4318 bnx2x_acquire_alr(bp);
4319
4320 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4321 #ifndef BNX2X_STOP_ON_ERROR
4322 bp->recovery_state = BNX2X_RECOVERY_INIT;
4323 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4324 /* Disable HW interrupts */
4325 bnx2x_int_disable(bp);
4326 /* In case of parity errors don't handle attentions so that
4327 * other function would "see" parity errors.
4328 */
4329 #else
4330 bnx2x_panic();
4331 #endif
4332 bnx2x_release_alr(bp);
4333 return;
4334 }
4335
4336 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4337 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4338 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4339 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4340 if (!CHIP_IS_E1x(bp))
4341 attn.sig[4] =
4342 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4343 else
4344 attn.sig[4] = 0;
4345
4346 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4347 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4348
4349 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4350 if (deasserted & (1 << index)) {
4351 group_mask = &bp->attn_group[index];
4352
4353 DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4354 "%08x %08x %08x\n",
4355 index,
4356 group_mask->sig[0], group_mask->sig[1],
4357 group_mask->sig[2], group_mask->sig[3],
4358 group_mask->sig[4]);
4359
4360 bnx2x_attn_int_deasserted4(bp,
4361 attn.sig[4] & group_mask->sig[4]);
4362 bnx2x_attn_int_deasserted3(bp,
4363 attn.sig[3] & group_mask->sig[3]);
4364 bnx2x_attn_int_deasserted1(bp,
4365 attn.sig[1] & group_mask->sig[1]);
4366 bnx2x_attn_int_deasserted2(bp,
4367 attn.sig[2] & group_mask->sig[2]);
4368 bnx2x_attn_int_deasserted0(bp,
4369 attn.sig[0] & group_mask->sig[0]);
4370 }
4371 }
4372
4373 bnx2x_release_alr(bp);
4374
4375 if (bp->common.int_block == INT_BLOCK_HC)
4376 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4377 COMMAND_REG_ATTN_BITS_CLR);
4378 else
4379 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4380
4381 val = ~deasserted;
4382 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4383 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4384 REG_WR(bp, reg_addr, val);
4385
4386 if (~bp->attn_state & deasserted)
4387 BNX2X_ERR("IGU ERROR\n");
4388
4389 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4390 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4391
4392 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4393 aeu_mask = REG_RD(bp, reg_addr);
4394
4395 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4396 aeu_mask, deasserted);
4397 aeu_mask |= (deasserted & 0x3ff);
4398 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4399
4400 REG_WR(bp, reg_addr, aeu_mask);
4401 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4402
4403 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4404 bp->attn_state &= ~deasserted;
4405 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4406 }
4407
4408 static void bnx2x_attn_int(struct bnx2x *bp)
4409 {
4410 /* read local copy of bits */
4411 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4412 attn_bits);
4413 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4414 attn_bits_ack);
4415 u32 attn_state = bp->attn_state;
4416
4417 /* look for changed bits */
4418 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4419 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4420
4421 DP(NETIF_MSG_HW,
4422 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4423 attn_bits, attn_ack, asserted, deasserted);
4424
4425 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4426 BNX2X_ERR("BAD attention state\n");
4427
4428 /* handle bits that were raised */
4429 if (asserted)
4430 bnx2x_attn_int_asserted(bp, asserted);
4431
4432 if (deasserted)
4433 bnx2x_attn_int_deasserted(bp, deasserted);
4434 }
4435
4436 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4437 u16 index, u8 op, u8 update)
4438 {
4439 u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4440
4441 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4442 igu_addr);
4443 }
4444
4445 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4446 {
4447 /* No memory barriers */
4448 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4449 mmiowb(); /* keep prod updates ordered */
4450 }
4451
4452 #ifdef BCM_CNIC
4453 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4454 union event_ring_elem *elem)
4455 {
4456 u8 err = elem->message.error;
4457
4458 if (!bp->cnic_eth_dev.starting_cid ||
4459 (cid < bp->cnic_eth_dev.starting_cid &&
4460 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4461 return 1;
4462
4463 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4464
4465 if (unlikely(err)) {
4466
4467 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4468 cid);
4469 bnx2x_panic_dump(bp);
4470 }
4471 bnx2x_cnic_cfc_comp(bp, cid, err);
4472 return 0;
4473 }
4474 #endif
4475
4476 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4477 {
4478 struct bnx2x_mcast_ramrod_params rparam;
4479 int rc;
4480
4481 memset(&rparam, 0, sizeof(rparam));
4482
4483 rparam.mcast_obj = &bp->mcast_obj;
4484
4485 netif_addr_lock_bh(bp->dev);
4486
4487 /* Clear pending state for the last command */
4488 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4489
4490 /* If there are pending mcast commands - send them */
4491 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4492 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4493 if (rc < 0)
4494 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4495 rc);
4496 }
4497
4498 netif_addr_unlock_bh(bp->dev);
4499 }
4500
4501 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4502 union event_ring_elem *elem)
4503 {
4504 unsigned long ramrod_flags = 0;
4505 int rc = 0;
4506 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4507 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4508
4509 /* Always push next commands out, don't wait here */
4510 __set_bit(RAMROD_CONT, &ramrod_flags);
4511
4512 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4513 case BNX2X_FILTER_MAC_PENDING:
4514 #ifdef BCM_CNIC
4515 if (cid == BNX2X_ISCSI_ETH_CID)
4516 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4517 else
4518 #endif
4519 vlan_mac_obj = &bp->fp[cid].mac_obj;
4520
4521 break;
4522 case BNX2X_FILTER_MCAST_PENDING:
4523 /* This is only relevant for 57710 where multicast MACs are
4524 * configured as unicast MACs using the same ramrod.
4525 */
4526 bnx2x_handle_mcast_eqe(bp);
4527 return;
4528 default:
4529 BNX2X_ERR("Unsupported classification command: %d\n",
4530 elem->message.data.eth_event.echo);
4531 return;
4532 }
4533
4534 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4535
4536 if (rc < 0)
4537 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4538 else if (rc > 0)
4539 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4540
4541 }
4542
4543 #ifdef BCM_CNIC
4544 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4545 #endif
4546
4547 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4548 {
4549 netif_addr_lock_bh(bp->dev);
4550
4551 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4552
4553 /* Send rx_mode command again if was requested */
4554 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4555 bnx2x_set_storm_rx_mode(bp);
4556 #ifdef BCM_CNIC
4557 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4558 &bp->sp_state))
4559 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4560 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4561 &bp->sp_state))
4562 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4563 #endif
4564
4565 netif_addr_unlock_bh(bp->dev);
4566 }
4567
4568 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4569 struct bnx2x *bp, u32 cid)
4570 {
4571 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4572 #ifdef BCM_CNIC
4573 if (cid == BNX2X_FCOE_ETH_CID)
4574 return &bnx2x_fcoe(bp, q_obj);
4575 else
4576 #endif
4577 return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4578 }
4579
4580 static void bnx2x_eq_int(struct bnx2x *bp)
4581 {
4582 u16 hw_cons, sw_cons, sw_prod;
4583 union event_ring_elem *elem;
4584 u32 cid;
4585 u8 opcode;
4586 int spqe_cnt = 0;
4587 struct bnx2x_queue_sp_obj *q_obj;
4588 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4589 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4590
4591 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4592
4593 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4594 * when we get the the next-page we nned to adjust so the loop
4595 * condition below will be met. The next element is the size of a
4596 * regular element and hence incrementing by 1
4597 */
4598 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4599 hw_cons++;
4600
4601 /* This function may never run in parallel with itself for a
4602 * specific bp, thus there is no need in "paired" read memory
4603 * barrier here.
4604 */
4605 sw_cons = bp->eq_cons;
4606 sw_prod = bp->eq_prod;
4607
4608 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
4609 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4610
4611 for (; sw_cons != hw_cons;
4612 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4613
4614
4615 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4616
4617 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4618 opcode = elem->message.opcode;
4619
4620
4621 /* handle eq element */
4622 switch (opcode) {
4623 case EVENT_RING_OPCODE_STAT_QUERY:
4624 DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4625 bp->stats_comp++);
4626 /* nothing to do with stats comp */
4627 goto next_spqe;
4628
4629 case EVENT_RING_OPCODE_CFC_DEL:
4630 /* handle according to cid range */
4631 /*
4632 * we may want to verify here that the bp state is
4633 * HALTING
4634 */
4635 DP(BNX2X_MSG_SP,
4636 "got delete ramrod for MULTI[%d]\n", cid);
4637 #ifdef BCM_CNIC
4638 if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4639 goto next_spqe;
4640 #endif
4641 q_obj = bnx2x_cid_to_q_obj(bp, cid);
4642
4643 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4644 break;
4645
4646
4647
4648 goto next_spqe;
4649
4650 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4651 DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4652 if (f_obj->complete_cmd(bp, f_obj,
4653 BNX2X_F_CMD_TX_STOP))
4654 break;
4655 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4656 goto next_spqe;
4657
4658 case EVENT_RING_OPCODE_START_TRAFFIC:
4659 DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4660 if (f_obj->complete_cmd(bp, f_obj,
4661 BNX2X_F_CMD_TX_START))
4662 break;
4663 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4664 goto next_spqe;
4665 case EVENT_RING_OPCODE_FUNCTION_START:
4666 DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4667 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4668 break;
4669
4670 goto next_spqe;
4671
4672 case EVENT_RING_OPCODE_FUNCTION_STOP:
4673 DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4674 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4675 break;
4676
4677 goto next_spqe;
4678 }
4679
4680 switch (opcode | bp->state) {
4681 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4682 BNX2X_STATE_OPEN):
4683 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4684 BNX2X_STATE_OPENING_WAIT4_PORT):
4685 cid = elem->message.data.eth_event.echo &
4686 BNX2X_SWCID_MASK;
4687 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4688 cid);
4689 rss_raw->clear_pending(rss_raw);
4690 break;
4691
4692 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4693 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4694 case (EVENT_RING_OPCODE_SET_MAC |
4695 BNX2X_STATE_CLOSING_WAIT4_HALT):
4696 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4697 BNX2X_STATE_OPEN):
4698 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4699 BNX2X_STATE_DIAG):
4700 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4701 BNX2X_STATE_CLOSING_WAIT4_HALT):
4702 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4703 bnx2x_handle_classification_eqe(bp, elem);
4704 break;
4705
4706 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4707 BNX2X_STATE_OPEN):
4708 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4709 BNX2X_STATE_DIAG):
4710 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4711 BNX2X_STATE_CLOSING_WAIT4_HALT):
4712 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4713 bnx2x_handle_mcast_eqe(bp);
4714 break;
4715
4716 case (EVENT_RING_OPCODE_FILTERS_RULES |
4717 BNX2X_STATE_OPEN):
4718 case (EVENT_RING_OPCODE_FILTERS_RULES |
4719 BNX2X_STATE_DIAG):
4720 case (EVENT_RING_OPCODE_FILTERS_RULES |
4721 BNX2X_STATE_CLOSING_WAIT4_HALT):
4722 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4723 bnx2x_handle_rx_mode_eqe(bp);
4724 break;
4725 default:
4726 /* unknown event log error and continue */
4727 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4728 elem->message.opcode, bp->state);
4729 }
4730 next_spqe:
4731 spqe_cnt++;
4732 } /* for */
4733
4734 smp_mb__before_atomic_inc();
4735 atomic_add(spqe_cnt, &bp->eq_spq_left);
4736
4737 bp->eq_cons = sw_cons;
4738 bp->eq_prod = sw_prod;
4739 /* Make sure that above mem writes were issued towards the memory */
4740 smp_wmb();
4741
4742 /* update producer */
4743 bnx2x_update_eq_prod(bp, bp->eq_prod);
4744 }
4745
4746 static void bnx2x_sp_task(struct work_struct *work)
4747 {
4748 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4749 u16 status;
4750
4751 status = bnx2x_update_dsb_idx(bp);
4752 /* if (status == 0) */
4753 /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
4754
4755 DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4756
4757 /* HW attentions */
4758 if (status & BNX2X_DEF_SB_ATT_IDX) {
4759 bnx2x_attn_int(bp);
4760 status &= ~BNX2X_DEF_SB_ATT_IDX;
4761 }
4762
4763 /* SP events: STAT_QUERY and others */
4764 if (status & BNX2X_DEF_SB_IDX) {
4765 #ifdef BCM_CNIC
4766 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4767
4768 if ((!NO_FCOE(bp)) &&
4769 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4770 /*
4771 * Prevent local bottom-halves from running as
4772 * we are going to change the local NAPI list.
4773 */
4774 local_bh_disable();
4775 napi_schedule(&bnx2x_fcoe(bp, napi));
4776 local_bh_enable();
4777 }
4778 #endif
4779 /* Handle EQ completions */
4780 bnx2x_eq_int(bp);
4781
4782 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4783 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4784
4785 status &= ~BNX2X_DEF_SB_IDX;
4786 }
4787
4788 if (unlikely(status))
4789 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4790 status);
4791
4792 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4793 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4794 }
4795
4796 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4797 {
4798 struct net_device *dev = dev_instance;
4799 struct bnx2x *bp = netdev_priv(dev);
4800
4801 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4802 IGU_INT_DISABLE, 0);
4803
4804 #ifdef BNX2X_STOP_ON_ERROR
4805 if (unlikely(bp->panic))
4806 return IRQ_HANDLED;
4807 #endif
4808
4809 #ifdef BCM_CNIC
4810 {
4811 struct cnic_ops *c_ops;
4812
4813 rcu_read_lock();
4814 c_ops = rcu_dereference(bp->cnic_ops);
4815 if (c_ops)
4816 c_ops->cnic_handler(bp->cnic_data, NULL);
4817 rcu_read_unlock();
4818 }
4819 #endif
4820 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4821
4822 return IRQ_HANDLED;
4823 }
4824
4825 /* end of slow path */
4826
4827
4828 void bnx2x_drv_pulse(struct bnx2x *bp)
4829 {
4830 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4831 bp->fw_drv_pulse_wr_seq);
4832 }
4833
4834
4835 static void bnx2x_timer(unsigned long data)
4836 {
4837 u8 cos;
4838 struct bnx2x *bp = (struct bnx2x *) data;
4839
4840 if (!netif_running(bp->dev))
4841 return;
4842
4843 if (poll) {
4844 struct bnx2x_fastpath *fp = &bp->fp[0];
4845
4846 for_each_cos_in_tx_queue(fp, cos)
4847 bnx2x_tx_int(bp, &fp->txdata[cos]);
4848 bnx2x_rx_int(fp, 1000);
4849 }
4850
4851 if (!BP_NOMCP(bp)) {
4852 int mb_idx = BP_FW_MB_IDX(bp);
4853 u32 drv_pulse;
4854 u32 mcp_pulse;
4855
4856 ++bp->fw_drv_pulse_wr_seq;
4857 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4858 /* TBD - add SYSTEM_TIME */
4859 drv_pulse = bp->fw_drv_pulse_wr_seq;
4860 bnx2x_drv_pulse(bp);
4861
4862 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4863 MCP_PULSE_SEQ_MASK);
4864 /* The delta between driver pulse and mcp response
4865 * should be 1 (before mcp response) or 0 (after mcp response)
4866 */
4867 if ((drv_pulse != mcp_pulse) &&
4868 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4869 /* someone lost a heartbeat... */
4870 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4871 drv_pulse, mcp_pulse);
4872 }
4873 }
4874
4875 if (bp->state == BNX2X_STATE_OPEN)
4876 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4877
4878 mod_timer(&bp->timer, jiffies + bp->current_interval);
4879 }
4880
4881 /* end of Statistics */
4882
4883 /* nic init */
4884
4885 /*
4886 * nic init service functions
4887 */
4888
4889 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4890 {
4891 u32 i;
4892 if (!(len%4) && !(addr%4))
4893 for (i = 0; i < len; i += 4)
4894 REG_WR(bp, addr + i, fill);
4895 else
4896 for (i = 0; i < len; i++)
4897 REG_WR8(bp, addr + i, fill);
4898
4899 }
4900
4901 /* helper: writes FP SP data to FW - data_size in dwords */
4902 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4903 int fw_sb_id,
4904 u32 *sb_data_p,
4905 u32 data_size)
4906 {
4907 int index;
4908 for (index = 0; index < data_size; index++)
4909 REG_WR(bp, BAR_CSTRORM_INTMEM +
4910 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4911 sizeof(u32)*index,
4912 *(sb_data_p + index));
4913 }
4914
4915 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4916 {
4917 u32 *sb_data_p;
4918 u32 data_size = 0;
4919 struct hc_status_block_data_e2 sb_data_e2;
4920 struct hc_status_block_data_e1x sb_data_e1x;
4921
4922 /* disable the function first */
4923 if (!CHIP_IS_E1x(bp)) {
4924 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4925 sb_data_e2.common.state = SB_DISABLED;
4926 sb_data_e2.common.p_func.vf_valid = false;
4927 sb_data_p = (u32 *)&sb_data_e2;
4928 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4929 } else {
4930 memset(&sb_data_e1x, 0,
4931 sizeof(struct hc_status_block_data_e1x));
4932 sb_data_e1x.common.state = SB_DISABLED;
4933 sb_data_e1x.common.p_func.vf_valid = false;
4934 sb_data_p = (u32 *)&sb_data_e1x;
4935 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4936 }
4937 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4938
4939 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4940 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4941 CSTORM_STATUS_BLOCK_SIZE);
4942 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4943 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4944 CSTORM_SYNC_BLOCK_SIZE);
4945 }
4946
4947 /* helper: writes SP SB data to FW */
4948 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4949 struct hc_sp_status_block_data *sp_sb_data)
4950 {
4951 int func = BP_FUNC(bp);
4952 int i;
4953 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4954 REG_WR(bp, BAR_CSTRORM_INTMEM +
4955 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4956 i*sizeof(u32),
4957 *((u32 *)sp_sb_data + i));
4958 }
4959
4960 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4961 {
4962 int func = BP_FUNC(bp);
4963 struct hc_sp_status_block_data sp_sb_data;
4964 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4965
4966 sp_sb_data.state = SB_DISABLED;
4967 sp_sb_data.p_func.vf_valid = false;
4968
4969 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4970
4971 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4972 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4973 CSTORM_SP_STATUS_BLOCK_SIZE);
4974 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4975 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4976 CSTORM_SP_SYNC_BLOCK_SIZE);
4977
4978 }
4979
4980
4981 static inline
4982 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4983 int igu_sb_id, int igu_seg_id)
4984 {
4985 hc_sm->igu_sb_id = igu_sb_id;
4986 hc_sm->igu_seg_id = igu_seg_id;
4987 hc_sm->timer_value = 0xFF;
4988 hc_sm->time_to_expire = 0xFFFFFFFF;
4989 }
4990
4991
4992 /* allocates state machine ids. */
4993 static inline
4994 void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4995 {
4996 /* zero out state machine indices */
4997 /* rx indices */
4998 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4999
5000 /* tx indices */
5001 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5002 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5003 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5004 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5005
5006 /* map indices */
5007 /* rx indices */
5008 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5009 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5010
5011 /* tx indices */
5012 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5013 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5014 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5015 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5016 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5017 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5018 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5019 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5020 }
5021
5022 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5023 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5024 {
5025 int igu_seg_id;
5026
5027 struct hc_status_block_data_e2 sb_data_e2;
5028 struct hc_status_block_data_e1x sb_data_e1x;
5029 struct hc_status_block_sm *hc_sm_p;
5030 int data_size;
5031 u32 *sb_data_p;
5032
5033 if (CHIP_INT_MODE_IS_BC(bp))
5034 igu_seg_id = HC_SEG_ACCESS_NORM;
5035 else
5036 igu_seg_id = IGU_SEG_ACCESS_NORM;
5037
5038 bnx2x_zero_fp_sb(bp, fw_sb_id);
5039
5040 if (!CHIP_IS_E1x(bp)) {
5041 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5042 sb_data_e2.common.state = SB_ENABLED;
5043 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5044 sb_data_e2.common.p_func.vf_id = vfid;
5045 sb_data_e2.common.p_func.vf_valid = vf_valid;
5046 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5047 sb_data_e2.common.same_igu_sb_1b = true;
5048 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5049 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5050 hc_sm_p = sb_data_e2.common.state_machine;
5051 sb_data_p = (u32 *)&sb_data_e2;
5052 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5053 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5054 } else {
5055 memset(&sb_data_e1x, 0,
5056 sizeof(struct hc_status_block_data_e1x));
5057 sb_data_e1x.common.state = SB_ENABLED;
5058 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5059 sb_data_e1x.common.p_func.vf_id = 0xff;
5060 sb_data_e1x.common.p_func.vf_valid = false;
5061 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5062 sb_data_e1x.common.same_igu_sb_1b = true;
5063 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5064 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5065 hc_sm_p = sb_data_e1x.common.state_machine;
5066 sb_data_p = (u32 *)&sb_data_e1x;
5067 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5068 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5069 }
5070
5071 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5072 igu_sb_id, igu_seg_id);
5073 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5074 igu_sb_id, igu_seg_id);
5075
5076 DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
5077
5078 /* write indecies to HW */
5079 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5080 }
5081
5082 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5083 u16 tx_usec, u16 rx_usec)
5084 {
5085 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5086 false, rx_usec);
5087 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5088 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5089 tx_usec);
5090 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5091 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5092 tx_usec);
5093 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5094 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5095 tx_usec);
5096 }
5097
5098 static void bnx2x_init_def_sb(struct bnx2x *bp)
5099 {
5100 struct host_sp_status_block *def_sb = bp->def_status_blk;
5101 dma_addr_t mapping = bp->def_status_blk_mapping;
5102 int igu_sp_sb_index;
5103 int igu_seg_id;
5104 int port = BP_PORT(bp);
5105 int func = BP_FUNC(bp);
5106 int reg_offset, reg_offset_en5;
5107 u64 section;
5108 int index;
5109 struct hc_sp_status_block_data sp_sb_data;
5110 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5111
5112 if (CHIP_INT_MODE_IS_BC(bp)) {
5113 igu_sp_sb_index = DEF_SB_IGU_ID;
5114 igu_seg_id = HC_SEG_ACCESS_DEF;
5115 } else {
5116 igu_sp_sb_index = bp->igu_dsb_id;
5117 igu_seg_id = IGU_SEG_ACCESS_DEF;
5118 }
5119
5120 /* ATTN */
5121 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5122 atten_status_block);
5123 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5124
5125 bp->attn_state = 0;
5126
5127 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5128 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5129 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5130 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5131 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5132 int sindex;
5133 /* take care of sig[0]..sig[4] */
5134 for (sindex = 0; sindex < 4; sindex++)
5135 bp->attn_group[index].sig[sindex] =
5136 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5137
5138 if (!CHIP_IS_E1x(bp))
5139 /*
5140 * enable5 is separate from the rest of the registers,
5141 * and therefore the address skip is 4
5142 * and not 16 between the different groups
5143 */
5144 bp->attn_group[index].sig[4] = REG_RD(bp,
5145 reg_offset_en5 + 0x4*index);
5146 else
5147 bp->attn_group[index].sig[4] = 0;
5148 }
5149
5150 if (bp->common.int_block == INT_BLOCK_HC) {
5151 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5152 HC_REG_ATTN_MSG0_ADDR_L);
5153
5154 REG_WR(bp, reg_offset, U64_LO(section));
5155 REG_WR(bp, reg_offset + 4, U64_HI(section));
5156 } else if (!CHIP_IS_E1x(bp)) {
5157 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5158 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5159 }
5160
5161 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5162 sp_sb);
5163
5164 bnx2x_zero_sp_sb(bp);
5165
5166 sp_sb_data.state = SB_ENABLED;
5167 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5168 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5169 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5170 sp_sb_data.igu_seg_id = igu_seg_id;
5171 sp_sb_data.p_func.pf_id = func;
5172 sp_sb_data.p_func.vnic_id = BP_VN(bp);
5173 sp_sb_data.p_func.vf_id = 0xff;
5174
5175 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5176
5177 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5178 }
5179
5180 void bnx2x_update_coalesce(struct bnx2x *bp)
5181 {
5182 int i;
5183
5184 for_each_eth_queue(bp, i)
5185 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5186 bp->tx_ticks, bp->rx_ticks);
5187 }
5188
5189 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5190 {
5191 spin_lock_init(&bp->spq_lock);
5192 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5193
5194 bp->spq_prod_idx = 0;
5195 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5196 bp->spq_prod_bd = bp->spq;
5197 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5198 }
5199
5200 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5201 {
5202 int i;
5203 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5204 union event_ring_elem *elem =
5205 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5206
5207 elem->next_page.addr.hi =
5208 cpu_to_le32(U64_HI(bp->eq_mapping +
5209 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5210 elem->next_page.addr.lo =
5211 cpu_to_le32(U64_LO(bp->eq_mapping +
5212 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5213 }
5214 bp->eq_cons = 0;
5215 bp->eq_prod = NUM_EQ_DESC;
5216 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5217 /* we want a warning message before it gets rought... */
5218 atomic_set(&bp->eq_spq_left,
5219 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5220 }
5221
5222
5223 /* called with netif_addr_lock_bh() */
5224 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5225 unsigned long rx_mode_flags,
5226 unsigned long rx_accept_flags,
5227 unsigned long tx_accept_flags,
5228 unsigned long ramrod_flags)
5229 {
5230 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5231 int rc;
5232
5233 memset(&ramrod_param, 0, sizeof(ramrod_param));
5234
5235 /* Prepare ramrod parameters */
5236 ramrod_param.cid = 0;
5237 ramrod_param.cl_id = cl_id;
5238 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5239 ramrod_param.func_id = BP_FUNC(bp);
5240
5241 ramrod_param.pstate = &bp->sp_state;
5242 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5243
5244 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5245 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5246
5247 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5248
5249 ramrod_param.ramrod_flags = ramrod_flags;
5250 ramrod_param.rx_mode_flags = rx_mode_flags;
5251
5252 ramrod_param.rx_accept_flags = rx_accept_flags;
5253 ramrod_param.tx_accept_flags = tx_accept_flags;
5254
5255 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5256 if (rc < 0) {
5257 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5258 return;
5259 }
5260 }
5261
5262 /* called with netif_addr_lock_bh() */
5263 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5264 {
5265 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5266 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5267
5268 #ifdef BCM_CNIC
5269 if (!NO_FCOE(bp))
5270
5271 /* Configure rx_mode of FCoE Queue */
5272 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5273 #endif
5274
5275 switch (bp->rx_mode) {
5276 case BNX2X_RX_MODE_NONE:
5277 /*
5278 * 'drop all' supersedes any accept flags that may have been
5279 * passed to the function.
5280 */
5281 break;
5282 case BNX2X_RX_MODE_NORMAL:
5283 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5284 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5285 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5286
5287 /* internal switching mode */
5288 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5289 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5290 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5291
5292 break;
5293 case BNX2X_RX_MODE_ALLMULTI:
5294 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5295 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5296 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5297
5298 /* internal switching mode */
5299 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5300 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5301 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5302
5303 break;
5304 case BNX2X_RX_MODE_PROMISC:
5305 /* According to deffinition of SI mode, iface in promisc mode
5306 * should receive matched and unmatched (in resolution of port)
5307 * unicast packets.
5308 */
5309 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5310 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5311 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5312 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5313
5314 /* internal switching mode */
5315 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5316 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5317
5318 if (IS_MF_SI(bp))
5319 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5320 else
5321 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5322
5323 break;
5324 default:
5325 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5326 return;
5327 }
5328
5329 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5330 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5331 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5332 }
5333
5334 __set_bit(RAMROD_RX, &ramrod_flags);
5335 __set_bit(RAMROD_TX, &ramrod_flags);
5336
5337 bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5338 tx_accept_flags, ramrod_flags);
5339 }
5340
5341 static void bnx2x_init_internal_common(struct bnx2x *bp)
5342 {
5343 int i;
5344
5345 if (IS_MF_SI(bp))
5346 /*
5347 * In switch independent mode, the TSTORM needs to accept
5348 * packets that failed classification, since approximate match
5349 * mac addresses aren't written to NIG LLH
5350 */
5351 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5352 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5353 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5354 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5355 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5356
5357 /* Zero this manually as its initialization is
5358 currently missing in the initTool */
5359 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5360 REG_WR(bp, BAR_USTRORM_INTMEM +
5361 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5362 if (!CHIP_IS_E1x(bp)) {
5363 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5364 CHIP_INT_MODE_IS_BC(bp) ?
5365 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5366 }
5367 }
5368
5369 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5370 {
5371 switch (load_code) {
5372 case FW_MSG_CODE_DRV_LOAD_COMMON:
5373 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5374 bnx2x_init_internal_common(bp);
5375 /* no break */
5376
5377 case FW_MSG_CODE_DRV_LOAD_PORT:
5378 /* nothing to do */
5379 /* no break */
5380
5381 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5382 /* internal memory per function is
5383 initialized inside bnx2x_pf_init */
5384 break;
5385
5386 default:
5387 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5388 break;
5389 }
5390 }
5391
5392 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5393 {
5394 return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5395 }
5396
5397 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5398 {
5399 return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5400 }
5401
5402 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5403 {
5404 if (CHIP_IS_E1x(fp->bp))
5405 return BP_L_ID(fp->bp) + fp->index;
5406 else /* We want Client ID to be the same as IGU SB ID for 57712 */
5407 return bnx2x_fp_igu_sb_id(fp);
5408 }
5409
5410 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5411 {
5412 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5413 u8 cos;
5414 unsigned long q_type = 0;
5415 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5416 fp->rx_queue = fp_idx;
5417 fp->cid = fp_idx;
5418 fp->cl_id = bnx2x_fp_cl_id(fp);
5419 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5420 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5421 /* qZone id equals to FW (per path) client id */
5422 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
5423
5424 /* init shortcut */
5425 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5426 /* Setup SB indicies */
5427 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5428
5429 /* Configure Queue State object */
5430 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5431 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5432
5433 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5434
5435 /* init tx data */
5436 for_each_cos_in_tx_queue(fp, cos) {
5437 bnx2x_init_txdata(bp, &fp->txdata[cos],
5438 CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5439 FP_COS_TO_TXQ(fp, cos),
5440 BNX2X_TX_SB_INDEX_BASE + cos);
5441 cids[cos] = fp->txdata[cos].cid;
5442 }
5443
5444 bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5445 BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5446 bnx2x_sp_mapping(bp, q_rdata), q_type);
5447
5448 /**
5449 * Configure classification DBs: Always enable Tx switching
5450 */
5451 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5452
5453 DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) "
5454 "cl_id %d fw_sb %d igu_sb %d\n",
5455 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5456 fp->igu_sb_id);
5457 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5458 fp->fw_sb_id, fp->igu_sb_id);
5459
5460 bnx2x_update_fpsb_idx(fp);
5461 }
5462
5463 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5464 {
5465 int i;
5466
5467 for_each_eth_queue(bp, i)
5468 bnx2x_init_eth_fp(bp, i);
5469 #ifdef BCM_CNIC
5470 if (!NO_FCOE(bp))
5471 bnx2x_init_fcoe_fp(bp);
5472
5473 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5474 BNX2X_VF_ID_INVALID, false,
5475 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5476
5477 #endif
5478
5479 /* Initialize MOD_ABS interrupts */
5480 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5481 bp->common.shmem_base, bp->common.shmem2_base,
5482 BP_PORT(bp));
5483 /* ensure status block indices were read */
5484 rmb();
5485
5486 bnx2x_init_def_sb(bp);
5487 bnx2x_update_dsb_idx(bp);
5488 bnx2x_init_rx_rings(bp);
5489 bnx2x_init_tx_rings(bp);
5490 bnx2x_init_sp_ring(bp);
5491 bnx2x_init_eq_ring(bp);
5492 bnx2x_init_internal(bp, load_code);
5493 bnx2x_pf_init(bp);
5494 bnx2x_stats_init(bp);
5495
5496 /* flush all before enabling interrupts */
5497 mb();
5498 mmiowb();
5499
5500 bnx2x_int_enable(bp);
5501
5502 /* Check for SPIO5 */
5503 bnx2x_attn_int_deasserted0(bp,
5504 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5505 AEU_INPUTS_ATTN_BITS_SPIO5);
5506 }
5507
5508 /* end of nic init */
5509
5510 /*
5511 * gzip service functions
5512 */
5513
5514 static int bnx2x_gunzip_init(struct bnx2x *bp)
5515 {
5516 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5517 &bp->gunzip_mapping, GFP_KERNEL);
5518 if (bp->gunzip_buf == NULL)
5519 goto gunzip_nomem1;
5520
5521 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5522 if (bp->strm == NULL)
5523 goto gunzip_nomem2;
5524
5525 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5526 if (bp->strm->workspace == NULL)
5527 goto gunzip_nomem3;
5528
5529 return 0;
5530
5531 gunzip_nomem3:
5532 kfree(bp->strm);
5533 bp->strm = NULL;
5534
5535 gunzip_nomem2:
5536 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5537 bp->gunzip_mapping);
5538 bp->gunzip_buf = NULL;
5539
5540 gunzip_nomem1:
5541 netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5542 " un-compression\n");
5543 return -ENOMEM;
5544 }
5545
5546 static void bnx2x_gunzip_end(struct bnx2x *bp)
5547 {
5548 if (bp->strm) {
5549 vfree(bp->strm->workspace);
5550 kfree(bp->strm);
5551 bp->strm = NULL;
5552 }
5553
5554 if (bp->gunzip_buf) {
5555 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5556 bp->gunzip_mapping);
5557 bp->gunzip_buf = NULL;
5558 }
5559 }
5560
5561 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5562 {
5563 int n, rc;
5564
5565 /* check gzip header */
5566 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5567 BNX2X_ERR("Bad gzip header\n");
5568 return -EINVAL;
5569 }
5570
5571 n = 10;
5572
5573 #define FNAME 0x8
5574
5575 if (zbuf[3] & FNAME)
5576 while ((zbuf[n++] != 0) && (n < len));
5577
5578 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5579 bp->strm->avail_in = len - n;
5580 bp->strm->next_out = bp->gunzip_buf;
5581 bp->strm->avail_out = FW_BUF_SIZE;
5582
5583 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5584 if (rc != Z_OK)
5585 return rc;
5586
5587 rc = zlib_inflate(bp->strm, Z_FINISH);
5588 if ((rc != Z_OK) && (rc != Z_STREAM_END))
5589 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5590 bp->strm->msg);
5591
5592 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5593 if (bp->gunzip_outlen & 0x3)
5594 netdev_err(bp->dev, "Firmware decompression error:"
5595 " gunzip_outlen (%d) not aligned\n",
5596 bp->gunzip_outlen);
5597 bp->gunzip_outlen >>= 2;
5598
5599 zlib_inflateEnd(bp->strm);
5600
5601 if (rc == Z_STREAM_END)
5602 return 0;
5603
5604 return rc;
5605 }
5606
5607 /* nic load/unload */
5608
5609 /*
5610 * General service functions
5611 */
5612
5613 /* send a NIG loopback debug packet */
5614 static void bnx2x_lb_pckt(struct bnx2x *bp)
5615 {
5616 u32 wb_write[3];
5617
5618 /* Ethernet source and destination addresses */
5619 wb_write[0] = 0x55555555;
5620 wb_write[1] = 0x55555555;
5621 wb_write[2] = 0x20; /* SOP */
5622 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5623
5624 /* NON-IP protocol */
5625 wb_write[0] = 0x09000000;
5626 wb_write[1] = 0x55555555;
5627 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
5628 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5629 }
5630
5631 /* some of the internal memories
5632 * are not directly readable from the driver
5633 * to test them we send debug packets
5634 */
5635 static int bnx2x_int_mem_test(struct bnx2x *bp)
5636 {
5637 int factor;
5638 int count, i;
5639 u32 val = 0;
5640
5641 if (CHIP_REV_IS_FPGA(bp))
5642 factor = 120;
5643 else if (CHIP_REV_IS_EMUL(bp))
5644 factor = 200;
5645 else
5646 factor = 1;
5647
5648 /* Disable inputs of parser neighbor blocks */
5649 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5650 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5651 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5652 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5653
5654 /* Write 0 to parser credits for CFC search request */
5655 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5656
5657 /* send Ethernet packet */
5658 bnx2x_lb_pckt(bp);
5659
5660 /* TODO do i reset NIG statistic? */
5661 /* Wait until NIG register shows 1 packet of size 0x10 */
5662 count = 1000 * factor;
5663 while (count) {
5664
5665 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5666 val = *bnx2x_sp(bp, wb_data[0]);
5667 if (val == 0x10)
5668 break;
5669
5670 msleep(10);
5671 count--;
5672 }
5673 if (val != 0x10) {
5674 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5675 return -1;
5676 }
5677
5678 /* Wait until PRS register shows 1 packet */
5679 count = 1000 * factor;
5680 while (count) {
5681 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5682 if (val == 1)
5683 break;
5684
5685 msleep(10);
5686 count--;
5687 }
5688 if (val != 0x1) {
5689 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5690 return -2;
5691 }
5692
5693 /* Reset and init BRB, PRS */
5694 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5695 msleep(50);
5696 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5697 msleep(50);
5698 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5699 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5700
5701 DP(NETIF_MSG_HW, "part2\n");
5702
5703 /* Disable inputs of parser neighbor blocks */
5704 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5705 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5706 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5707 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5708
5709 /* Write 0 to parser credits for CFC search request */
5710 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5711
5712 /* send 10 Ethernet packets */
5713 for (i = 0; i < 10; i++)
5714 bnx2x_lb_pckt(bp);
5715
5716 /* Wait until NIG register shows 10 + 1
5717 packets of size 11*0x10 = 0xb0 */
5718 count = 1000 * factor;
5719 while (count) {
5720
5721 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5722 val = *bnx2x_sp(bp, wb_data[0]);
5723 if (val == 0xb0)
5724 break;
5725
5726 msleep(10);
5727 count--;
5728 }
5729 if (val != 0xb0) {
5730 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5731 return -3;
5732 }
5733
5734 /* Wait until PRS register shows 2 packets */
5735 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5736 if (val != 2)
5737 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5738
5739 /* Write 1 to parser credits for CFC search request */
5740 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5741
5742 /* Wait until PRS register shows 3 packets */
5743 msleep(10 * factor);
5744 /* Wait until NIG register shows 1 packet of size 0x10 */
5745 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5746 if (val != 3)
5747 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5748
5749 /* clear NIG EOP FIFO */
5750 for (i = 0; i < 11; i++)
5751 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5752 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5753 if (val != 1) {
5754 BNX2X_ERR("clear of NIG failed\n");
5755 return -4;
5756 }
5757
5758 /* Reset and init BRB, PRS, NIG */
5759 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5760 msleep(50);
5761 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5762 msleep(50);
5763 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5764 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5765 #ifndef BCM_CNIC
5766 /* set NIC mode */
5767 REG_WR(bp, PRS_REG_NIC_MODE, 1);
5768 #endif
5769
5770 /* Enable inputs of parser neighbor blocks */
5771 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5772 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5773 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5774 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5775
5776 DP(NETIF_MSG_HW, "done\n");
5777
5778 return 0; /* OK */
5779 }
5780
5781 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5782 {
5783 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5784 if (!CHIP_IS_E1x(bp))
5785 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5786 else
5787 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5788 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5789 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5790 /*
5791 * mask read length error interrupts in brb for parser
5792 * (parsing unit and 'checksum and crc' unit)
5793 * these errors are legal (PU reads fixed length and CAC can cause
5794 * read length error on truncated packets)
5795 */
5796 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5797 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5798 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5799 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5800 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5801 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5802 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5803 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5804 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5805 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5806 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5807 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5808 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5809 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5810 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5811 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5812 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5813 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5814 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5815
5816 if (CHIP_REV_IS_FPGA(bp))
5817 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5818 else if (!CHIP_IS_E1x(bp))
5819 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5820 (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5821 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5822 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5823 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5824 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5825 else
5826 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5827 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5828 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5829 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5830 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5831
5832 if (!CHIP_IS_E1x(bp))
5833 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5834 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5835
5836 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5837 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5838 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5839 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
5840 }
5841
5842 static void bnx2x_reset_common(struct bnx2x *bp)
5843 {
5844 u32 val = 0x1400;
5845
5846 /* reset_common */
5847 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5848 0xd3ffff7f);
5849
5850 if (CHIP_IS_E3(bp)) {
5851 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5852 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5853 }
5854
5855 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5856 }
5857
5858 static void bnx2x_setup_dmae(struct bnx2x *bp)
5859 {
5860 bp->dmae_ready = 0;
5861 spin_lock_init(&bp->dmae_lock);
5862 }
5863
5864 static void bnx2x_init_pxp(struct bnx2x *bp)
5865 {
5866 u16 devctl;
5867 int r_order, w_order;
5868
5869 pci_read_config_word(bp->pdev,
5870 pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5871 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5872 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5873 if (bp->mrrs == -1)
5874 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5875 else {
5876 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5877 r_order = bp->mrrs;
5878 }
5879
5880 bnx2x_init_pxp_arb(bp, r_order, w_order);
5881 }
5882
5883 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5884 {
5885 int is_required;
5886 u32 val;
5887 int port;
5888
5889 if (BP_NOMCP(bp))
5890 return;
5891
5892 is_required = 0;
5893 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5894 SHARED_HW_CFG_FAN_FAILURE_MASK;
5895
5896 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5897 is_required = 1;
5898
5899 /*
5900 * The fan failure mechanism is usually related to the PHY type since
5901 * the power consumption of the board is affected by the PHY. Currently,
5902 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5903 */
5904 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5905 for (port = PORT_0; port < PORT_MAX; port++) {
5906 is_required |=
5907 bnx2x_fan_failure_det_req(
5908 bp,
5909 bp->common.shmem_base,
5910 bp->common.shmem2_base,
5911 port);
5912 }
5913
5914 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5915
5916 if (is_required == 0)
5917 return;
5918
5919 /* Fan failure is indicated by SPIO 5 */
5920 bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5921 MISC_REGISTERS_SPIO_INPUT_HI_Z);
5922
5923 /* set to active low mode */
5924 val = REG_RD(bp, MISC_REG_SPIO_INT);
5925 val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5926 MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5927 REG_WR(bp, MISC_REG_SPIO_INT, val);
5928
5929 /* enable interrupt to signal the IGU */
5930 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5931 val |= (1 << MISC_REGISTERS_SPIO_5);
5932 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5933 }
5934
5935 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5936 {
5937 u32 offset = 0;
5938
5939 if (CHIP_IS_E1(bp))
5940 return;
5941 if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5942 return;
5943
5944 switch (BP_ABS_FUNC(bp)) {
5945 case 0:
5946 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5947 break;
5948 case 1:
5949 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5950 break;
5951 case 2:
5952 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5953 break;
5954 case 3:
5955 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5956 break;
5957 case 4:
5958 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5959 break;
5960 case 5:
5961 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5962 break;
5963 case 6:
5964 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5965 break;
5966 case 7:
5967 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5968 break;
5969 default:
5970 return;
5971 }
5972
5973 REG_WR(bp, offset, pretend_func_num);
5974 REG_RD(bp, offset);
5975 DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5976 }
5977
5978 void bnx2x_pf_disable(struct bnx2x *bp)
5979 {
5980 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5981 val &= ~IGU_PF_CONF_FUNC_EN;
5982
5983 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5984 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5985 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5986 }
5987
5988 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5989 {
5990 u32 shmem_base[2], shmem2_base[2];
5991 shmem_base[0] = bp->common.shmem_base;
5992 shmem2_base[0] = bp->common.shmem2_base;
5993 if (!CHIP_IS_E1x(bp)) {
5994 shmem_base[1] =
5995 SHMEM2_RD(bp, other_shmem_base_addr);
5996 shmem2_base[1] =
5997 SHMEM2_RD(bp, other_shmem2_base_addr);
5998 }
5999 bnx2x_acquire_phy_lock(bp);
6000 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6001 bp->common.chip_id);
6002 bnx2x_release_phy_lock(bp);
6003 }
6004
6005 /**
6006 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6007 *
6008 * @bp: driver handle
6009 */
6010 static int bnx2x_init_hw_common(struct bnx2x *bp)
6011 {
6012 u32 val;
6013
6014 DP(BNX2X_MSG_MCP, "starting common init func %d\n", BP_ABS_FUNC(bp));
6015
6016 /*
6017 * take the UNDI lock to protect undi_unload flow from accessing
6018 * registers while we're resetting the chip
6019 */
6020 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6021
6022 bnx2x_reset_common(bp);
6023 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6024
6025 val = 0xfffc;
6026 if (CHIP_IS_E3(bp)) {
6027 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6028 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6029 }
6030 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6031
6032 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6033
6034 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6035
6036 if (!CHIP_IS_E1x(bp)) {
6037 u8 abs_func_id;
6038
6039 /**
6040 * 4-port mode or 2-port mode we need to turn of master-enable
6041 * for everyone, after that, turn it back on for self.
6042 * so, we disregard multi-function or not, and always disable
6043 * for all functions on the given path, this means 0,2,4,6 for
6044 * path 0 and 1,3,5,7 for path 1
6045 */
6046 for (abs_func_id = BP_PATH(bp);
6047 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6048 if (abs_func_id == BP_ABS_FUNC(bp)) {
6049 REG_WR(bp,
6050 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6051 1);
6052 continue;
6053 }
6054
6055 bnx2x_pretend_func(bp, abs_func_id);
6056 /* clear pf enable */
6057 bnx2x_pf_disable(bp);
6058 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6059 }
6060 }
6061
6062 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6063 if (CHIP_IS_E1(bp)) {
6064 /* enable HW interrupt from PXP on USDM overflow
6065 bit 16 on INT_MASK_0 */
6066 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6067 }
6068
6069 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6070 bnx2x_init_pxp(bp);
6071
6072 #ifdef __BIG_ENDIAN
6073 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6074 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6075 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6076 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6077 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6078 /* make sure this value is 0 */
6079 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6080
6081 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6082 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6083 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6084 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6085 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6086 #endif
6087
6088 bnx2x_ilt_init_page_size(bp, INITOP_SET);
6089
6090 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6091 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6092
6093 /* let the HW do it's magic ... */
6094 msleep(100);
6095 /* finish PXP init */
6096 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6097 if (val != 1) {
6098 BNX2X_ERR("PXP2 CFG failed\n");
6099 return -EBUSY;
6100 }
6101 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6102 if (val != 1) {
6103 BNX2X_ERR("PXP2 RD_INIT failed\n");
6104 return -EBUSY;
6105 }
6106
6107 /* Timers bug workaround E2 only. We need to set the entire ILT to
6108 * have entries with value "0" and valid bit on.
6109 * This needs to be done by the first PF that is loaded in a path
6110 * (i.e. common phase)
6111 */
6112 if (!CHIP_IS_E1x(bp)) {
6113 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6114 * (i.e. vnic3) to start even if it is marked as "scan-off".
6115 * This occurs when a different function (func2,3) is being marked
6116 * as "scan-off". Real-life scenario for example: if a driver is being
6117 * load-unloaded while func6,7 are down. This will cause the timer to access
6118 * the ilt, translate to a logical address and send a request to read/write.
6119 * Since the ilt for the function that is down is not valid, this will cause
6120 * a translation error which is unrecoverable.
6121 * The Workaround is intended to make sure that when this happens nothing fatal
6122 * will occur. The workaround:
6123 * 1. First PF driver which loads on a path will:
6124 * a. After taking the chip out of reset, by using pretend,
6125 * it will write "0" to the following registers of
6126 * the other vnics.
6127 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6128 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6129 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6130 * And for itself it will write '1' to
6131 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6132 * dmae-operations (writing to pram for example.)
6133 * note: can be done for only function 6,7 but cleaner this
6134 * way.
6135 * b. Write zero+valid to the entire ILT.
6136 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6137 * VNIC3 (of that port). The range allocated will be the
6138 * entire ILT. This is needed to prevent ILT range error.
6139 * 2. Any PF driver load flow:
6140 * a. ILT update with the physical addresses of the allocated
6141 * logical pages.
6142 * b. Wait 20msec. - note that this timeout is needed to make
6143 * sure there are no requests in one of the PXP internal
6144 * queues with "old" ILT addresses.
6145 * c. PF enable in the PGLC.
6146 * d. Clear the was_error of the PF in the PGLC. (could have
6147 * occured while driver was down)
6148 * e. PF enable in the CFC (WEAK + STRONG)
6149 * f. Timers scan enable
6150 * 3. PF driver unload flow:
6151 * a. Clear the Timers scan_en.
6152 * b. Polling for scan_on=0 for that PF.
6153 * c. Clear the PF enable bit in the PXP.
6154 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6155 * e. Write zero+valid to all ILT entries (The valid bit must
6156 * stay set)
6157 * f. If this is VNIC 3 of a port then also init
6158 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6159 * to the last enrty in the ILT.
6160 *
6161 * Notes:
6162 * Currently the PF error in the PGLC is non recoverable.
6163 * In the future the there will be a recovery routine for this error.
6164 * Currently attention is masked.
6165 * Having an MCP lock on the load/unload process does not guarantee that
6166 * there is no Timer disable during Func6/7 enable. This is because the
6167 * Timers scan is currently being cleared by the MCP on FLR.
6168 * Step 2.d can be done only for PF6/7 and the driver can also check if
6169 * there is error before clearing it. But the flow above is simpler and
6170 * more general.
6171 * All ILT entries are written by zero+valid and not just PF6/7
6172 * ILT entries since in the future the ILT entries allocation for
6173 * PF-s might be dynamic.
6174 */
6175 struct ilt_client_info ilt_cli;
6176 struct bnx2x_ilt ilt;
6177 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6178 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6179
6180 /* initialize dummy TM client */
6181 ilt_cli.start = 0;
6182 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6183 ilt_cli.client_num = ILT_CLIENT_TM;
6184
6185 /* Step 1: set zeroes to all ilt page entries with valid bit on
6186 * Step 2: set the timers first/last ilt entry to point
6187 * to the entire range to prevent ILT range error for 3rd/4th
6188 * vnic (this code assumes existance of the vnic)
6189 *
6190 * both steps performed by call to bnx2x_ilt_client_init_op()
6191 * with dummy TM client
6192 *
6193 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6194 * and his brother are split registers
6195 */
6196 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6197 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6198 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6199
6200 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6201 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6202 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6203 }
6204
6205
6206 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6207 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6208
6209 if (!CHIP_IS_E1x(bp)) {
6210 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6211 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6212 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6213
6214 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6215
6216 /* let the HW do it's magic ... */
6217 do {
6218 msleep(200);
6219 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6220 } while (factor-- && (val != 1));
6221
6222 if (val != 1) {
6223 BNX2X_ERR("ATC_INIT failed\n");
6224 return -EBUSY;
6225 }
6226 }
6227
6228 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6229
6230 /* clean the DMAE memory */
6231 bp->dmae_ready = 1;
6232 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6233
6234 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6235
6236 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6237
6238 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6239
6240 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6241
6242 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6243 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6244 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6245 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6246
6247 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6248
6249
6250 /* QM queues pointers table */
6251 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6252
6253 /* soft reset pulse */
6254 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6255 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6256
6257 #ifdef BCM_CNIC
6258 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6259 #endif
6260
6261 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6262 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6263 if (!CHIP_REV_IS_SLOW(bp))
6264 /* enable hw interrupt from doorbell Q */
6265 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6266
6267 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6268
6269 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6270 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6271
6272 if (!CHIP_IS_E1(bp))
6273 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6274
6275 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6276 /* Bit-map indicating which L2 hdrs may appear
6277 * after the basic Ethernet header
6278 */
6279 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6280 bp->path_has_ovlan ? 7 : 6);
6281
6282 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6283 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6284 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6285 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6286
6287 if (!CHIP_IS_E1x(bp)) {
6288 /* reset VFC memories */
6289 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6290 VFC_MEMORIES_RST_REG_CAM_RST |
6291 VFC_MEMORIES_RST_REG_RAM_RST);
6292 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6293 VFC_MEMORIES_RST_REG_CAM_RST |
6294 VFC_MEMORIES_RST_REG_RAM_RST);
6295
6296 msleep(20);
6297 }
6298
6299 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6300 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6301 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6302 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6303
6304 /* sync semi rtc */
6305 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6306 0x80000000);
6307 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6308 0x80000000);
6309
6310 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6311 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6312 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6313
6314 if (!CHIP_IS_E1x(bp))
6315 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6316 bp->path_has_ovlan ? 7 : 6);
6317
6318 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6319
6320 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6321
6322 #ifdef BCM_CNIC
6323 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6324 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6325 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6326 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6327 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6328 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6329 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6330 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6331 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6332 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6333 #endif
6334 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6335
6336 if (sizeof(union cdu_context) != 1024)
6337 /* we currently assume that a context is 1024 bytes */
6338 dev_alert(&bp->pdev->dev, "please adjust the size "
6339 "of cdu_context(%ld)\n",
6340 (long)sizeof(union cdu_context));
6341
6342 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6343 val = (4 << 24) + (0 << 12) + 1024;
6344 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6345
6346 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6347 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6348 /* enable context validation interrupt from CFC */
6349 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6350
6351 /* set the thresholds to prevent CFC/CDU race */
6352 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6353
6354 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6355
6356 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6357 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6358
6359 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6360 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6361
6362 /* Reset PCIE errors for debug */
6363 REG_WR(bp, 0x2814, 0xffffffff);
6364 REG_WR(bp, 0x3820, 0xffffffff);
6365
6366 if (!CHIP_IS_E1x(bp)) {
6367 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6368 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6369 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6370 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6371 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6372 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6373 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6374 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6375 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6376 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6377 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6378 }
6379
6380 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6381 if (!CHIP_IS_E1(bp)) {
6382 /* in E3 this done in per-port section */
6383 if (!CHIP_IS_E3(bp))
6384 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6385 }
6386 if (CHIP_IS_E1H(bp))
6387 /* not applicable for E2 (and above ...) */
6388 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6389
6390 if (CHIP_REV_IS_SLOW(bp))
6391 msleep(200);
6392
6393 /* finish CFC init */
6394 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6395 if (val != 1) {
6396 BNX2X_ERR("CFC LL_INIT failed\n");
6397 return -EBUSY;
6398 }
6399 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6400 if (val != 1) {
6401 BNX2X_ERR("CFC AC_INIT failed\n");
6402 return -EBUSY;
6403 }
6404 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6405 if (val != 1) {
6406 BNX2X_ERR("CFC CAM_INIT failed\n");
6407 return -EBUSY;
6408 }
6409 REG_WR(bp, CFC_REG_DEBUG0, 0);
6410
6411 if (CHIP_IS_E1(bp)) {
6412 /* read NIG statistic
6413 to see if this is our first up since powerup */
6414 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6415 val = *bnx2x_sp(bp, wb_data[0]);
6416
6417 /* do internal memory self test */
6418 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6419 BNX2X_ERR("internal mem self test failed\n");
6420 return -EBUSY;
6421 }
6422 }
6423
6424 bnx2x_setup_fan_failure_detection(bp);
6425
6426 /* clear PXP2 attentions */
6427 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6428
6429 bnx2x_enable_blocks_attention(bp);
6430 bnx2x_enable_blocks_parity(bp);
6431
6432 if (!BP_NOMCP(bp)) {
6433 if (CHIP_IS_E1x(bp))
6434 bnx2x__common_init_phy(bp);
6435 } else
6436 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6437
6438 return 0;
6439 }
6440
6441 /**
6442 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6443 *
6444 * @bp: driver handle
6445 */
6446 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6447 {
6448 int rc = bnx2x_init_hw_common(bp);
6449
6450 if (rc)
6451 return rc;
6452
6453 /* In E2 2-PORT mode, same ext phy is used for the two paths */
6454 if (!BP_NOMCP(bp))
6455 bnx2x__common_init_phy(bp);
6456
6457 return 0;
6458 }
6459
6460 static int bnx2x_init_hw_port(struct bnx2x *bp)
6461 {
6462 int port = BP_PORT(bp);
6463 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6464 u32 low, high;
6465 u32 val;
6466
6467 bnx2x__link_reset(bp);
6468
6469 DP(BNX2X_MSG_MCP, "starting port init port %d\n", port);
6470
6471 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6472
6473 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6474 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6475 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6476
6477 /* Timers bug workaround: disables the pf_master bit in pglue at
6478 * common phase, we need to enable it here before any dmae access are
6479 * attempted. Therefore we manually added the enable-master to the
6480 * port phase (it also happens in the function phase)
6481 */
6482 if (!CHIP_IS_E1x(bp))
6483 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6484
6485 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6486 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6487 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6488 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6489
6490 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6491 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6492 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6493 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6494
6495 /* QM cid (connection) count */
6496 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6497
6498 #ifdef BCM_CNIC
6499 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6500 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6501 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6502 #endif
6503
6504 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6505
6506 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6507 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6508
6509 if (IS_MF(bp))
6510 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6511 else if (bp->dev->mtu > 4096) {
6512 if (bp->flags & ONE_PORT_FLAG)
6513 low = 160;
6514 else {
6515 val = bp->dev->mtu;
6516 /* (24*1024 + val*4)/256 */
6517 low = 96 + (val/64) +
6518 ((val % 64) ? 1 : 0);
6519 }
6520 } else
6521 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6522 high = low + 56; /* 14*1024/256 */
6523 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6524 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6525 }
6526
6527 if (CHIP_MODE_IS_4_PORT(bp))
6528 REG_WR(bp, (BP_PORT(bp) ?
6529 BRB1_REG_MAC_GUARANTIED_1 :
6530 BRB1_REG_MAC_GUARANTIED_0), 40);
6531
6532
6533 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6534 if (CHIP_IS_E3B0(bp))
6535 /* Ovlan exists only if we are in multi-function +
6536 * switch-dependent mode, in switch-independent there
6537 * is no ovlan headers
6538 */
6539 REG_WR(bp, BP_PORT(bp) ?
6540 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6541 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6542 (bp->path_has_ovlan ? 7 : 6));
6543
6544 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6545 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6546 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6547 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6548
6549 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6550 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6551 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6552 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6553
6554 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6555 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6556
6557 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6558
6559 if (CHIP_IS_E1x(bp)) {
6560 /* configure PBF to work without PAUSE mtu 9000 */
6561 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6562
6563 /* update threshold */
6564 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6565 /* update init credit */
6566 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6567
6568 /* probe changes */
6569 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6570 udelay(50);
6571 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6572 }
6573
6574 #ifdef BCM_CNIC
6575 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6576 #endif
6577 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6578 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6579
6580 if (CHIP_IS_E1(bp)) {
6581 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6582 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6583 }
6584 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6585
6586 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6587
6588 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6589 /* init aeu_mask_attn_func_0/1:
6590 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6591 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6592 * bits 4-7 are used for "per vn group attention" */
6593 val = IS_MF(bp) ? 0xF7 : 0x7;
6594 /* Enable DCBX attention for all but E1 */
6595 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6596 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6597
6598 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6599
6600 if (!CHIP_IS_E1x(bp)) {
6601 /* Bit-map indicating which L2 hdrs may appear after the
6602 * basic Ethernet header
6603 */
6604 REG_WR(bp, BP_PORT(bp) ?
6605 NIG_REG_P1_HDRS_AFTER_BASIC :
6606 NIG_REG_P0_HDRS_AFTER_BASIC,
6607 IS_MF_SD(bp) ? 7 : 6);
6608
6609 if (CHIP_IS_E3(bp))
6610 REG_WR(bp, BP_PORT(bp) ?
6611 NIG_REG_LLH1_MF_MODE :
6612 NIG_REG_LLH_MF_MODE, IS_MF(bp));
6613 }
6614 if (!CHIP_IS_E3(bp))
6615 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6616
6617 if (!CHIP_IS_E1(bp)) {
6618 /* 0x2 disable mf_ov, 0x1 enable */
6619 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6620 (IS_MF_SD(bp) ? 0x1 : 0x2));
6621
6622 if (!CHIP_IS_E1x(bp)) {
6623 val = 0;
6624 switch (bp->mf_mode) {
6625 case MULTI_FUNCTION_SD:
6626 val = 1;
6627 break;
6628 case MULTI_FUNCTION_SI:
6629 val = 2;
6630 break;
6631 }
6632
6633 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6634 NIG_REG_LLH0_CLS_TYPE), val);
6635 }
6636 {
6637 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6638 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6639 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6640 }
6641 }
6642
6643
6644 /* If SPIO5 is set to generate interrupts, enable it for this port */
6645 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6646 if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6647 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6648 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6649 val = REG_RD(bp, reg_addr);
6650 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6651 REG_WR(bp, reg_addr, val);
6652 }
6653
6654 return 0;
6655 }
6656
6657 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6658 {
6659 int reg;
6660
6661 if (CHIP_IS_E1(bp))
6662 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6663 else
6664 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6665
6666 bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6667 }
6668
6669 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6670 {
6671 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6672 }
6673
6674 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6675 {
6676 u32 i, base = FUNC_ILT_BASE(func);
6677 for (i = base; i < base + ILT_PER_FUNC; i++)
6678 bnx2x_ilt_wr(bp, i, 0);
6679 }
6680
6681 static int bnx2x_init_hw_func(struct bnx2x *bp)
6682 {
6683 int port = BP_PORT(bp);
6684 int func = BP_FUNC(bp);
6685 int init_phase = PHASE_PF0 + func;
6686 struct bnx2x_ilt *ilt = BP_ILT(bp);
6687 u16 cdu_ilt_start;
6688 u32 addr, val;
6689 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6690 int i, main_mem_width;
6691
6692 DP(BNX2X_MSG_MCP, "starting func init func %d\n", func);
6693
6694 /* FLR cleanup - hmmm */
6695 if (!CHIP_IS_E1x(bp))
6696 bnx2x_pf_flr_clnup(bp);
6697
6698 /* set MSI reconfigure capability */
6699 if (bp->common.int_block == INT_BLOCK_HC) {
6700 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6701 val = REG_RD(bp, addr);
6702 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6703 REG_WR(bp, addr, val);
6704 }
6705
6706 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6707 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6708
6709 ilt = BP_ILT(bp);
6710 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6711
6712 for (i = 0; i < L2_ILT_LINES(bp); i++) {
6713 ilt->lines[cdu_ilt_start + i].page =
6714 bp->context.vcxt + (ILT_PAGE_CIDS * i);
6715 ilt->lines[cdu_ilt_start + i].page_mapping =
6716 bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6717 /* cdu ilt pages are allocated manually so there's no need to
6718 set the size */
6719 }
6720 bnx2x_ilt_init_op(bp, INITOP_SET);
6721
6722 #ifdef BCM_CNIC
6723 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6724
6725 /* T1 hash bits value determines the T1 number of entries */
6726 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6727 #endif
6728
6729 #ifndef BCM_CNIC
6730 /* set NIC mode */
6731 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6732 #endif /* BCM_CNIC */
6733
6734 if (!CHIP_IS_E1x(bp)) {
6735 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6736
6737 /* Turn on a single ISR mode in IGU if driver is going to use
6738 * INT#x or MSI
6739 */
6740 if (!(bp->flags & USING_MSIX_FLAG))
6741 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6742 /*
6743 * Timers workaround bug: function init part.
6744 * Need to wait 20msec after initializing ILT,
6745 * needed to make sure there are no requests in
6746 * one of the PXP internal queues with "old" ILT addresses
6747 */
6748 msleep(20);
6749 /*
6750 * Master enable - Due to WB DMAE writes performed before this
6751 * register is re-initialized as part of the regular function
6752 * init
6753 */
6754 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6755 /* Enable the function in IGU */
6756 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6757 }
6758
6759 bp->dmae_ready = 1;
6760
6761 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6762
6763 if (!CHIP_IS_E1x(bp))
6764 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6765
6766 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6767 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6768 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6769 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6770 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6771 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6772 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6773 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6774 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6775 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6776 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6777 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6778 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6779
6780 if (!CHIP_IS_E1x(bp))
6781 REG_WR(bp, QM_REG_PF_EN, 1);
6782
6783 if (!CHIP_IS_E1x(bp)) {
6784 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6785 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6786 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6787 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6788 }
6789 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6790
6791 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6792 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6793 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6794 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6795 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6796 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6797 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6798 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6799 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6800 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6801 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6802 if (!CHIP_IS_E1x(bp))
6803 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6804
6805 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6806
6807 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6808
6809 if (!CHIP_IS_E1x(bp))
6810 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6811
6812 if (IS_MF(bp)) {
6813 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6814 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6815 }
6816
6817 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6818
6819 /* HC init per function */
6820 if (bp->common.int_block == INT_BLOCK_HC) {
6821 if (CHIP_IS_E1H(bp)) {
6822 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6823
6824 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6825 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6826 }
6827 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6828
6829 } else {
6830 int num_segs, sb_idx, prod_offset;
6831
6832 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6833
6834 if (!CHIP_IS_E1x(bp)) {
6835 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6836 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6837 }
6838
6839 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6840
6841 if (!CHIP_IS_E1x(bp)) {
6842 int dsb_idx = 0;
6843 /**
6844 * Producer memory:
6845 * E2 mode: address 0-135 match to the mapping memory;
6846 * 136 - PF0 default prod; 137 - PF1 default prod;
6847 * 138 - PF2 default prod; 139 - PF3 default prod;
6848 * 140 - PF0 attn prod; 141 - PF1 attn prod;
6849 * 142 - PF2 attn prod; 143 - PF3 attn prod;
6850 * 144-147 reserved.
6851 *
6852 * E1.5 mode - In backward compatible mode;
6853 * for non default SB; each even line in the memory
6854 * holds the U producer and each odd line hold
6855 * the C producer. The first 128 producers are for
6856 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6857 * producers are for the DSB for each PF.
6858 * Each PF has five segments: (the order inside each
6859 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6860 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6861 * 144-147 attn prods;
6862 */
6863 /* non-default-status-blocks */
6864 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6865 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6866 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6867 prod_offset = (bp->igu_base_sb + sb_idx) *
6868 num_segs;
6869
6870 for (i = 0; i < num_segs; i++) {
6871 addr = IGU_REG_PROD_CONS_MEMORY +
6872 (prod_offset + i) * 4;
6873 REG_WR(bp, addr, 0);
6874 }
6875 /* send consumer update with value 0 */
6876 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6877 USTORM_ID, 0, IGU_INT_NOP, 1);
6878 bnx2x_igu_clear_sb(bp,
6879 bp->igu_base_sb + sb_idx);
6880 }
6881
6882 /* default-status-blocks */
6883 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6884 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6885
6886 if (CHIP_MODE_IS_4_PORT(bp))
6887 dsb_idx = BP_FUNC(bp);
6888 else
6889 dsb_idx = BP_VN(bp);
6890
6891 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6892 IGU_BC_BASE_DSB_PROD + dsb_idx :
6893 IGU_NORM_BASE_DSB_PROD + dsb_idx);
6894
6895 /*
6896 * igu prods come in chunks of E1HVN_MAX (4) -
6897 * does not matters what is the current chip mode
6898 */
6899 for (i = 0; i < (num_segs * E1HVN_MAX);
6900 i += E1HVN_MAX) {
6901 addr = IGU_REG_PROD_CONS_MEMORY +
6902 (prod_offset + i)*4;
6903 REG_WR(bp, addr, 0);
6904 }
6905 /* send consumer update with 0 */
6906 if (CHIP_INT_MODE_IS_BC(bp)) {
6907 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6908 USTORM_ID, 0, IGU_INT_NOP, 1);
6909 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6910 CSTORM_ID, 0, IGU_INT_NOP, 1);
6911 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6912 XSTORM_ID, 0, IGU_INT_NOP, 1);
6913 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6914 TSTORM_ID, 0, IGU_INT_NOP, 1);
6915 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6916 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6917 } else {
6918 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6919 USTORM_ID, 0, IGU_INT_NOP, 1);
6920 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6921 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6922 }
6923 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6924
6925 /* !!! these should become driver const once
6926 rf-tool supports split-68 const */
6927 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6928 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6929 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6930 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6931 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6932 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6933 }
6934 }
6935
6936 /* Reset PCIE errors for debug */
6937 REG_WR(bp, 0x2114, 0xffffffff);
6938 REG_WR(bp, 0x2120, 0xffffffff);
6939
6940 if (CHIP_IS_E1x(bp)) {
6941 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6942 main_mem_base = HC_REG_MAIN_MEMORY +
6943 BP_PORT(bp) * (main_mem_size * 4);
6944 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6945 main_mem_width = 8;
6946
6947 val = REG_RD(bp, main_mem_prty_clr);
6948 if (val)
6949 DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6950 "block during "
6951 "function init (0x%x)!\n", val);
6952
6953 /* Clear "false" parity errors in MSI-X table */
6954 for (i = main_mem_base;
6955 i < main_mem_base + main_mem_size * 4;
6956 i += main_mem_width) {
6957 bnx2x_read_dmae(bp, i, main_mem_width / 4);
6958 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6959 i, main_mem_width / 4);
6960 }
6961 /* Clear HC parity attention */
6962 REG_RD(bp, main_mem_prty_clr);
6963 }
6964
6965 #ifdef BNX2X_STOP_ON_ERROR
6966 /* Enable STORMs SP logging */
6967 REG_WR8(bp, BAR_USTRORM_INTMEM +
6968 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6969 REG_WR8(bp, BAR_TSTRORM_INTMEM +
6970 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6971 REG_WR8(bp, BAR_CSTRORM_INTMEM +
6972 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6973 REG_WR8(bp, BAR_XSTRORM_INTMEM +
6974 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6975 #endif
6976
6977 bnx2x_phy_probe(&bp->link_params);
6978
6979 return 0;
6980 }
6981
6982
6983 void bnx2x_free_mem(struct bnx2x *bp)
6984 {
6985 /* fastpath */
6986 bnx2x_free_fp_mem(bp);
6987 /* end of fastpath */
6988
6989 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6990 sizeof(struct host_sp_status_block));
6991
6992 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6993 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6994
6995 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6996 sizeof(struct bnx2x_slowpath));
6997
6998 BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6999 bp->context.size);
7000
7001 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7002
7003 BNX2X_FREE(bp->ilt->lines);
7004
7005 #ifdef BCM_CNIC
7006 if (!CHIP_IS_E1x(bp))
7007 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7008 sizeof(struct host_hc_status_block_e2));
7009 else
7010 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7011 sizeof(struct host_hc_status_block_e1x));
7012
7013 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7014 #endif
7015
7016 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7017
7018 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7019 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7020 }
7021
7022 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7023 {
7024 int num_groups;
7025 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7026
7027 /* number of queues for statistics is number of eth queues + FCoE */
7028 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7029
7030 /* Total number of FW statistics requests =
7031 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7032 * num of queues
7033 */
7034 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7035
7036
7037 /* Request is built from stats_query_header and an array of
7038 * stats_query_cmd_group each of which contains
7039 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7040 * configured in the stats_query_header.
7041 */
7042 num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7043 (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7044
7045 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7046 num_groups * sizeof(struct stats_query_cmd_group);
7047
7048 /* Data for statistics requests + stats_conter
7049 *
7050 * stats_counter holds per-STORM counters that are incremented
7051 * when STORM has finished with the current request.
7052 *
7053 * memory for FCoE offloaded statistics are counted anyway,
7054 * even if they will not be sent.
7055 */
7056 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7057 sizeof(struct per_pf_stats) +
7058 sizeof(struct fcoe_statistics_params) +
7059 sizeof(struct per_queue_stats) * num_queue_stats +
7060 sizeof(struct stats_counter);
7061
7062 BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7063 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7064
7065 /* Set shortcuts */
7066 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7067 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7068
7069 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7070 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7071
7072 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7073 bp->fw_stats_req_sz;
7074 return 0;
7075
7076 alloc_mem_err:
7077 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7078 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7079 return -ENOMEM;
7080 }
7081
7082
7083 int bnx2x_alloc_mem(struct bnx2x *bp)
7084 {
7085 #ifdef BCM_CNIC
7086 if (!CHIP_IS_E1x(bp))
7087 /* size = the status block + ramrod buffers */
7088 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7089 sizeof(struct host_hc_status_block_e2));
7090 else
7091 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7092 sizeof(struct host_hc_status_block_e1x));
7093
7094 /* allocate searcher T2 table */
7095 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7096 #endif
7097
7098
7099 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7100 sizeof(struct host_sp_status_block));
7101
7102 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7103 sizeof(struct bnx2x_slowpath));
7104
7105 /* Allocated memory for FW statistics */
7106 if (bnx2x_alloc_fw_stats_mem(bp))
7107 goto alloc_mem_err;
7108
7109 bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7110
7111 BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7112 bp->context.size);
7113
7114 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7115
7116 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7117 goto alloc_mem_err;
7118
7119 /* Slow path ring */
7120 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7121
7122 /* EQ */
7123 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7124 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7125
7126
7127 /* fastpath */
7128 /* need to be done at the end, since it's self adjusting to amount
7129 * of memory available for RSS queues
7130 */
7131 if (bnx2x_alloc_fp_mem(bp))
7132 goto alloc_mem_err;
7133 return 0;
7134
7135 alloc_mem_err:
7136 bnx2x_free_mem(bp);
7137 return -ENOMEM;
7138 }
7139
7140 /*
7141 * Init service functions
7142 */
7143
7144 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7145 struct bnx2x_vlan_mac_obj *obj, bool set,
7146 int mac_type, unsigned long *ramrod_flags)
7147 {
7148 int rc;
7149 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7150
7151 memset(&ramrod_param, 0, sizeof(ramrod_param));
7152
7153 /* Fill general parameters */
7154 ramrod_param.vlan_mac_obj = obj;
7155 ramrod_param.ramrod_flags = *ramrod_flags;
7156
7157 /* Fill a user request section if needed */
7158 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7159 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7160
7161 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7162
7163 /* Set the command: ADD or DEL */
7164 if (set)
7165 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7166 else
7167 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7168 }
7169
7170 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7171 if (rc < 0)
7172 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7173 return rc;
7174 }
7175
7176 int bnx2x_del_all_macs(struct bnx2x *bp,
7177 struct bnx2x_vlan_mac_obj *mac_obj,
7178 int mac_type, bool wait_for_comp)
7179 {
7180 int rc;
7181 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7182
7183 /* Wait for completion of requested */
7184 if (wait_for_comp)
7185 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7186
7187 /* Set the mac type of addresses we want to clear */
7188 __set_bit(mac_type, &vlan_mac_flags);
7189
7190 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7191 if (rc < 0)
7192 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7193
7194 return rc;
7195 }
7196
7197 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7198 {
7199 unsigned long ramrod_flags = 0;
7200
7201 #ifdef BCM_CNIC
7202 if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
7203 DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
7204 return 0;
7205 }
7206 #endif
7207
7208 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7209
7210 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7211 /* Eth MAC is set on RSS leading client (fp[0]) */
7212 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7213 BNX2X_ETH_MAC, &ramrod_flags);
7214 }
7215
7216 int bnx2x_setup_leading(struct bnx2x *bp)
7217 {
7218 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7219 }
7220
7221 /**
7222 * bnx2x_set_int_mode - configure interrupt mode
7223 *
7224 * @bp: driver handle
7225 *
7226 * In case of MSI-X it will also try to enable MSI-X.
7227 */
7228 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7229 {
7230 switch (int_mode) {
7231 case INT_MODE_MSI:
7232 bnx2x_enable_msi(bp);
7233 /* falling through... */
7234 case INT_MODE_INTx:
7235 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7236 DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7237 break;
7238 default:
7239 /* Set number of queues according to bp->multi_mode value */
7240 bnx2x_set_num_queues(bp);
7241
7242 DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7243 bp->num_queues);
7244
7245 /* if we can't use MSI-X we only need one fp,
7246 * so try to enable MSI-X with the requested number of fp's
7247 * and fallback to MSI or legacy INTx with one fp
7248 */
7249 if (bnx2x_enable_msix(bp)) {
7250 /* failed to enable MSI-X */
7251 if (bp->multi_mode)
7252 DP(NETIF_MSG_IFUP,
7253 "Multi requested but failed to "
7254 "enable MSI-X (%d), "
7255 "set number of queues to %d\n",
7256 bp->num_queues,
7257 1 + NON_ETH_CONTEXT_USE);
7258 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7259
7260 /* Try to enable MSI */
7261 if (!(bp->flags & DISABLE_MSI_FLAG))
7262 bnx2x_enable_msi(bp);
7263 }
7264 break;
7265 }
7266 }
7267
7268 /* must be called prioir to any HW initializations */
7269 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7270 {
7271 return L2_ILT_LINES(bp);
7272 }
7273
7274 void bnx2x_ilt_set_info(struct bnx2x *bp)
7275 {
7276 struct ilt_client_info *ilt_client;
7277 struct bnx2x_ilt *ilt = BP_ILT(bp);
7278 u16 line = 0;
7279
7280 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7281 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7282
7283 /* CDU */
7284 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7285 ilt_client->client_num = ILT_CLIENT_CDU;
7286 ilt_client->page_size = CDU_ILT_PAGE_SZ;
7287 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7288 ilt_client->start = line;
7289 line += bnx2x_cid_ilt_lines(bp);
7290 #ifdef BCM_CNIC
7291 line += CNIC_ILT_LINES;
7292 #endif
7293 ilt_client->end = line - 1;
7294
7295 DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7296 "flags 0x%x, hw psz %d\n",
7297 ilt_client->start,
7298 ilt_client->end,
7299 ilt_client->page_size,
7300 ilt_client->flags,
7301 ilog2(ilt_client->page_size >> 12));
7302
7303 /* QM */
7304 if (QM_INIT(bp->qm_cid_count)) {
7305 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7306 ilt_client->client_num = ILT_CLIENT_QM;
7307 ilt_client->page_size = QM_ILT_PAGE_SZ;
7308 ilt_client->flags = 0;
7309 ilt_client->start = line;
7310
7311 /* 4 bytes for each cid */
7312 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7313 QM_ILT_PAGE_SZ);
7314
7315 ilt_client->end = line - 1;
7316
7317 DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7318 "flags 0x%x, hw psz %d\n",
7319 ilt_client->start,
7320 ilt_client->end,
7321 ilt_client->page_size,
7322 ilt_client->flags,
7323 ilog2(ilt_client->page_size >> 12));
7324
7325 }
7326 /* SRC */
7327 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7328 #ifdef BCM_CNIC
7329 ilt_client->client_num = ILT_CLIENT_SRC;
7330 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7331 ilt_client->flags = 0;
7332 ilt_client->start = line;
7333 line += SRC_ILT_LINES;
7334 ilt_client->end = line - 1;
7335
7336 DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7337 "flags 0x%x, hw psz %d\n",
7338 ilt_client->start,
7339 ilt_client->end,
7340 ilt_client->page_size,
7341 ilt_client->flags,
7342 ilog2(ilt_client->page_size >> 12));
7343
7344 #else
7345 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7346 #endif
7347
7348 /* TM */
7349 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7350 #ifdef BCM_CNIC
7351 ilt_client->client_num = ILT_CLIENT_TM;
7352 ilt_client->page_size = TM_ILT_PAGE_SZ;
7353 ilt_client->flags = 0;
7354 ilt_client->start = line;
7355 line += TM_ILT_LINES;
7356 ilt_client->end = line - 1;
7357
7358 DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7359 "flags 0x%x, hw psz %d\n",
7360 ilt_client->start,
7361 ilt_client->end,
7362 ilt_client->page_size,
7363 ilt_client->flags,
7364 ilog2(ilt_client->page_size >> 12));
7365
7366 #else
7367 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7368 #endif
7369 BUG_ON(line > ILT_MAX_LINES);
7370 }
7371
7372 /**
7373 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7374 *
7375 * @bp: driver handle
7376 * @fp: pointer to fastpath
7377 * @init_params: pointer to parameters structure
7378 *
7379 * parameters configured:
7380 * - HC configuration
7381 * - Queue's CDU context
7382 */
7383 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7384 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7385 {
7386
7387 u8 cos;
7388 /* FCoE Queue uses Default SB, thus has no HC capabilities */
7389 if (!IS_FCOE_FP(fp)) {
7390 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7391 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7392
7393 /* If HC is supporterd, enable host coalescing in the transition
7394 * to INIT state.
7395 */
7396 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7397 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7398
7399 /* HC rate */
7400 init_params->rx.hc_rate = bp->rx_ticks ?
7401 (1000000 / bp->rx_ticks) : 0;
7402 init_params->tx.hc_rate = bp->tx_ticks ?
7403 (1000000 / bp->tx_ticks) : 0;
7404
7405 /* FW SB ID */
7406 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7407 fp->fw_sb_id;
7408
7409 /*
7410 * CQ index among the SB indices: FCoE clients uses the default
7411 * SB, therefore it's different.
7412 */
7413 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7414 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7415 }
7416
7417 /* set maximum number of COSs supported by this queue */
7418 init_params->max_cos = fp->max_cos;
7419
7420 DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7421 fp->index, init_params->max_cos);
7422
7423 /* set the context pointers queue object */
7424 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7425 init_params->cxts[cos] =
7426 &bp->context.vcxt[fp->txdata[cos].cid].eth;
7427 }
7428
7429 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7430 struct bnx2x_queue_state_params *q_params,
7431 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7432 int tx_index, bool leading)
7433 {
7434 memset(tx_only_params, 0, sizeof(*tx_only_params));
7435
7436 /* Set the command */
7437 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7438
7439 /* Set tx-only QUEUE flags: don't zero statistics */
7440 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7441
7442 /* choose the index of the cid to send the slow path on */
7443 tx_only_params->cid_index = tx_index;
7444
7445 /* Set general TX_ONLY_SETUP parameters */
7446 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7447
7448 /* Set Tx TX_ONLY_SETUP parameters */
7449 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7450
7451 DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7452 "cos %d, primary cid %d, cid %d, "
7453 "client id %d, sp-client id %d, flags %lx\n",
7454 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7455 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7456 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7457
7458 /* send the ramrod */
7459 return bnx2x_queue_state_change(bp, q_params);
7460 }
7461
7462
7463 /**
7464 * bnx2x_setup_queue - setup queue
7465 *
7466 * @bp: driver handle
7467 * @fp: pointer to fastpath
7468 * @leading: is leading
7469 *
7470 * This function performs 2 steps in a Queue state machine
7471 * actually: 1) RESET->INIT 2) INIT->SETUP
7472 */
7473
7474 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7475 bool leading)
7476 {
7477 struct bnx2x_queue_state_params q_params = {0};
7478 struct bnx2x_queue_setup_params *setup_params =
7479 &q_params.params.setup;
7480 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7481 &q_params.params.tx_only;
7482 int rc;
7483 u8 tx_index;
7484
7485 DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7486
7487 /* reset IGU state skip FCoE L2 queue */
7488 if (!IS_FCOE_FP(fp))
7489 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7490 IGU_INT_ENABLE, 0);
7491
7492 q_params.q_obj = &fp->q_obj;
7493 /* We want to wait for completion in this context */
7494 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7495
7496 /* Prepare the INIT parameters */
7497 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7498
7499 /* Set the command */
7500 q_params.cmd = BNX2X_Q_CMD_INIT;
7501
7502 /* Change the state to INIT */
7503 rc = bnx2x_queue_state_change(bp, &q_params);
7504 if (rc) {
7505 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7506 return rc;
7507 }
7508
7509 DP(BNX2X_MSG_SP, "init complete\n");
7510
7511
7512 /* Now move the Queue to the SETUP state... */
7513 memset(setup_params, 0, sizeof(*setup_params));
7514
7515 /* Set QUEUE flags */
7516 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7517
7518 /* Set general SETUP parameters */
7519 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7520 FIRST_TX_COS_INDEX);
7521
7522 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7523 &setup_params->rxq_params);
7524
7525 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7526 FIRST_TX_COS_INDEX);
7527
7528 /* Set the command */
7529 q_params.cmd = BNX2X_Q_CMD_SETUP;
7530
7531 /* Change the state to SETUP */
7532 rc = bnx2x_queue_state_change(bp, &q_params);
7533 if (rc) {
7534 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7535 return rc;
7536 }
7537
7538 /* loop through the relevant tx-only indices */
7539 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7540 tx_index < fp->max_cos;
7541 tx_index++) {
7542
7543 /* prepare and send tx-only ramrod*/
7544 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7545 tx_only_params, tx_index, leading);
7546 if (rc) {
7547 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7548 fp->index, tx_index);
7549 return rc;
7550 }
7551 }
7552
7553 return rc;
7554 }
7555
7556 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7557 {
7558 struct bnx2x_fastpath *fp = &bp->fp[index];
7559 struct bnx2x_fp_txdata *txdata;
7560 struct bnx2x_queue_state_params q_params = {0};
7561 int rc, tx_index;
7562
7563 DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7564
7565 q_params.q_obj = &fp->q_obj;
7566 /* We want to wait for completion in this context */
7567 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7568
7569
7570 /* close tx-only connections */
7571 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7572 tx_index < fp->max_cos;
7573 tx_index++){
7574
7575 /* ascertain this is a normal queue*/
7576 txdata = &fp->txdata[tx_index];
7577
7578 DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7579 txdata->txq_index);
7580
7581 /* send halt terminate on tx-only connection */
7582 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7583 memset(&q_params.params.terminate, 0,
7584 sizeof(q_params.params.terminate));
7585 q_params.params.terminate.cid_index = tx_index;
7586
7587 rc = bnx2x_queue_state_change(bp, &q_params);
7588 if (rc)
7589 return rc;
7590
7591 /* send halt terminate on tx-only connection */
7592 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7593 memset(&q_params.params.cfc_del, 0,
7594 sizeof(q_params.params.cfc_del));
7595 q_params.params.cfc_del.cid_index = tx_index;
7596 rc = bnx2x_queue_state_change(bp, &q_params);
7597 if (rc)
7598 return rc;
7599 }
7600 /* Stop the primary connection: */
7601 /* ...halt the connection */
7602 q_params.cmd = BNX2X_Q_CMD_HALT;
7603 rc = bnx2x_queue_state_change(bp, &q_params);
7604 if (rc)
7605 return rc;
7606
7607 /* ...terminate the connection */
7608 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7609 memset(&q_params.params.terminate, 0,
7610 sizeof(q_params.params.terminate));
7611 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7612 rc = bnx2x_queue_state_change(bp, &q_params);
7613 if (rc)
7614 return rc;
7615 /* ...delete cfc entry */
7616 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7617 memset(&q_params.params.cfc_del, 0,
7618 sizeof(q_params.params.cfc_del));
7619 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7620 return bnx2x_queue_state_change(bp, &q_params);
7621 }
7622
7623
7624 static void bnx2x_reset_func(struct bnx2x *bp)
7625 {
7626 int port = BP_PORT(bp);
7627 int func = BP_FUNC(bp);
7628 int i;
7629
7630 /* Disable the function in the FW */
7631 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7632 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7633 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7634 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7635
7636 /* FP SBs */
7637 for_each_eth_queue(bp, i) {
7638 struct bnx2x_fastpath *fp = &bp->fp[i];
7639 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7640 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7641 SB_DISABLED);
7642 }
7643
7644 #ifdef BCM_CNIC
7645 /* CNIC SB */
7646 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7647 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7648 SB_DISABLED);
7649 #endif
7650 /* SP SB */
7651 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7652 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7653 SB_DISABLED);
7654
7655 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7656 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7657 0);
7658
7659 /* Configure IGU */
7660 if (bp->common.int_block == INT_BLOCK_HC) {
7661 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7662 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7663 } else {
7664 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7665 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7666 }
7667
7668 #ifdef BCM_CNIC
7669 /* Disable Timer scan */
7670 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7671 /*
7672 * Wait for at least 10ms and up to 2 second for the timers scan to
7673 * complete
7674 */
7675 for (i = 0; i < 200; i++) {
7676 msleep(10);
7677 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7678 break;
7679 }
7680 #endif
7681 /* Clear ILT */
7682 bnx2x_clear_func_ilt(bp, func);
7683
7684 /* Timers workaround bug for E2: if this is vnic-3,
7685 * we need to set the entire ilt range for this timers.
7686 */
7687 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7688 struct ilt_client_info ilt_cli;
7689 /* use dummy TM client */
7690 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7691 ilt_cli.start = 0;
7692 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7693 ilt_cli.client_num = ILT_CLIENT_TM;
7694
7695 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7696 }
7697
7698 /* this assumes that reset_port() called before reset_func()*/
7699 if (!CHIP_IS_E1x(bp))
7700 bnx2x_pf_disable(bp);
7701
7702 bp->dmae_ready = 0;
7703 }
7704
7705 static void bnx2x_reset_port(struct bnx2x *bp)
7706 {
7707 int port = BP_PORT(bp);
7708 u32 val;
7709
7710 /* Reset physical Link */
7711 bnx2x__link_reset(bp);
7712
7713 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7714
7715 /* Do not rcv packets to BRB */
7716 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7717 /* Do not direct rcv packets that are not for MCP to the BRB */
7718 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7719 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7720
7721 /* Configure AEU */
7722 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7723
7724 msleep(100);
7725 /* Check for BRB port occupancy */
7726 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7727 if (val)
7728 DP(NETIF_MSG_IFDOWN,
7729 "BRB1 is not empty %d blocks are occupied\n", val);
7730
7731 /* TODO: Close Doorbell port? */
7732 }
7733
7734 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7735 {
7736 struct bnx2x_func_state_params func_params = {0};
7737
7738 /* Prepare parameters for function state transitions */
7739 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7740
7741 func_params.f_obj = &bp->func_obj;
7742 func_params.cmd = BNX2X_F_CMD_HW_RESET;
7743
7744 func_params.params.hw_init.load_phase = load_code;
7745
7746 return bnx2x_func_state_change(bp, &func_params);
7747 }
7748
7749 static inline int bnx2x_func_stop(struct bnx2x *bp)
7750 {
7751 struct bnx2x_func_state_params func_params = {0};
7752 int rc;
7753
7754 /* Prepare parameters for function state transitions */
7755 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7756 func_params.f_obj = &bp->func_obj;
7757 func_params.cmd = BNX2X_F_CMD_STOP;
7758
7759 /*
7760 * Try to stop the function the 'good way'. If fails (in case
7761 * of a parity error during bnx2x_chip_cleanup()) and we are
7762 * not in a debug mode, perform a state transaction in order to
7763 * enable further HW_RESET transaction.
7764 */
7765 rc = bnx2x_func_state_change(bp, &func_params);
7766 if (rc) {
7767 #ifdef BNX2X_STOP_ON_ERROR
7768 return rc;
7769 #else
7770 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7771 "transaction\n");
7772 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7773 return bnx2x_func_state_change(bp, &func_params);
7774 #endif
7775 }
7776
7777 return 0;
7778 }
7779
7780 /**
7781 * bnx2x_send_unload_req - request unload mode from the MCP.
7782 *
7783 * @bp: driver handle
7784 * @unload_mode: requested function's unload mode
7785 *
7786 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7787 */
7788 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7789 {
7790 u32 reset_code = 0;
7791 int port = BP_PORT(bp);
7792
7793 /* Select the UNLOAD request mode */
7794 if (unload_mode == UNLOAD_NORMAL)
7795 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7796
7797 else if (bp->flags & NO_WOL_FLAG)
7798 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7799
7800 else if (bp->wol) {
7801 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7802 u8 *mac_addr = bp->dev->dev_addr;
7803 u32 val;
7804 u16 pmc;
7805
7806 /* The mac address is written to entries 1-4 to
7807 * preserve entry 0 which is used by the PMF
7808 */
7809 u8 entry = (BP_VN(bp) + 1)*8;
7810
7811 val = (mac_addr[0] << 8) | mac_addr[1];
7812 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7813
7814 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7815 (mac_addr[4] << 8) | mac_addr[5];
7816 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7817
7818 /* Enable the PME and clear the status */
7819 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7820 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7821 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7822
7823 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7824
7825 } else
7826 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7827
7828 /* Send the request to the MCP */
7829 if (!BP_NOMCP(bp))
7830 reset_code = bnx2x_fw_command(bp, reset_code, 0);
7831 else {
7832 int path = BP_PATH(bp);
7833
7834 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] "
7835 "%d, %d, %d\n",
7836 path, load_count[path][0], load_count[path][1],
7837 load_count[path][2]);
7838 load_count[path][0]--;
7839 load_count[path][1 + port]--;
7840 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] "
7841 "%d, %d, %d\n",
7842 path, load_count[path][0], load_count[path][1],
7843 load_count[path][2]);
7844 if (load_count[path][0] == 0)
7845 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7846 else if (load_count[path][1 + port] == 0)
7847 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7848 else
7849 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7850 }
7851
7852 return reset_code;
7853 }
7854
7855 /**
7856 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7857 *
7858 * @bp: driver handle
7859 */
7860 void bnx2x_send_unload_done(struct bnx2x *bp)
7861 {
7862 /* Report UNLOAD_DONE to MCP */
7863 if (!BP_NOMCP(bp))
7864 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7865 }
7866
7867 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7868 {
7869 int tout = 50;
7870 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7871
7872 if (!bp->port.pmf)
7873 return 0;
7874
7875 /*
7876 * (assumption: No Attention from MCP at this stage)
7877 * PMF probably in the middle of TXdisable/enable transaction
7878 * 1. Sync IRS for default SB
7879 * 2. Sync SP queue - this guarantes us that attention handling started
7880 * 3. Wait, that TXdisable/enable transaction completes
7881 *
7882 * 1+2 guranty that if DCBx attention was scheduled it already changed
7883 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7884 * received complettion for the transaction the state is TX_STOPPED.
7885 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7886 * transaction.
7887 */
7888
7889 /* make sure default SB ISR is done */
7890 if (msix)
7891 synchronize_irq(bp->msix_table[0].vector);
7892 else
7893 synchronize_irq(bp->pdev->irq);
7894
7895 flush_workqueue(bnx2x_wq);
7896
7897 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7898 BNX2X_F_STATE_STARTED && tout--)
7899 msleep(20);
7900
7901 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7902 BNX2X_F_STATE_STARTED) {
7903 #ifdef BNX2X_STOP_ON_ERROR
7904 return -EBUSY;
7905 #else
7906 /*
7907 * Failed to complete the transaction in a "good way"
7908 * Force both transactions with CLR bit
7909 */
7910 struct bnx2x_func_state_params func_params = {0};
7911
7912 DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7913 "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7914
7915 func_params.f_obj = &bp->func_obj;
7916 __set_bit(RAMROD_DRV_CLR_ONLY,
7917 &func_params.ramrod_flags);
7918
7919 /* STARTED-->TX_ST0PPED */
7920 func_params.cmd = BNX2X_F_CMD_TX_STOP;
7921 bnx2x_func_state_change(bp, &func_params);
7922
7923 /* TX_ST0PPED-->STARTED */
7924 func_params.cmd = BNX2X_F_CMD_TX_START;
7925 return bnx2x_func_state_change(bp, &func_params);
7926 #endif
7927 }
7928
7929 return 0;
7930 }
7931
7932 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7933 {
7934 int port = BP_PORT(bp);
7935 int i, rc = 0;
7936 u8 cos;
7937 struct bnx2x_mcast_ramrod_params rparam = {0};
7938 u32 reset_code;
7939
7940 /* Wait until tx fastpath tasks complete */
7941 for_each_tx_queue(bp, i) {
7942 struct bnx2x_fastpath *fp = &bp->fp[i];
7943
7944 for_each_cos_in_tx_queue(fp, cos)
7945 rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7946 #ifdef BNX2X_STOP_ON_ERROR
7947 if (rc)
7948 return;
7949 #endif
7950 }
7951
7952 /* Give HW time to discard old tx messages */
7953 usleep_range(1000, 1000);
7954
7955 /* Clean all ETH MACs */
7956 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7957 if (rc < 0)
7958 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7959
7960 /* Clean up UC list */
7961 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7962 true);
7963 if (rc < 0)
7964 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7965 "%d\n", rc);
7966
7967 /* Disable LLH */
7968 if (!CHIP_IS_E1(bp))
7969 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7970
7971 /* Set "drop all" (stop Rx).
7972 * We need to take a netif_addr_lock() here in order to prevent
7973 * a race between the completion code and this code.
7974 */
7975 netif_addr_lock_bh(bp->dev);
7976 /* Schedule the rx_mode command */
7977 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7978 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7979 else
7980 bnx2x_set_storm_rx_mode(bp);
7981
7982 /* Cleanup multicast configuration */
7983 rparam.mcast_obj = &bp->mcast_obj;
7984 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7985 if (rc < 0)
7986 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7987
7988 netif_addr_unlock_bh(bp->dev);
7989
7990
7991
7992 /*
7993 * Send the UNLOAD_REQUEST to the MCP. This will return if
7994 * this function should perform FUNC, PORT or COMMON HW
7995 * reset.
7996 */
7997 reset_code = bnx2x_send_unload_req(bp, unload_mode);
7998
7999 /*
8000 * (assumption: No Attention from MCP at this stage)
8001 * PMF probably in the middle of TXdisable/enable transaction
8002 */
8003 rc = bnx2x_func_wait_started(bp);
8004 if (rc) {
8005 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8006 #ifdef BNX2X_STOP_ON_ERROR
8007 return;
8008 #endif
8009 }
8010
8011 /* Close multi and leading connections
8012 * Completions for ramrods are collected in a synchronous way
8013 */
8014 for_each_queue(bp, i)
8015 if (bnx2x_stop_queue(bp, i))
8016 #ifdef BNX2X_STOP_ON_ERROR
8017 return;
8018 #else
8019 goto unload_error;
8020 #endif
8021 /* If SP settings didn't get completed so far - something
8022 * very wrong has happen.
8023 */
8024 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8025 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8026
8027 #ifndef BNX2X_STOP_ON_ERROR
8028 unload_error:
8029 #endif
8030 rc = bnx2x_func_stop(bp);
8031 if (rc) {
8032 BNX2X_ERR("Function stop failed!\n");
8033 #ifdef BNX2X_STOP_ON_ERROR
8034 return;
8035 #endif
8036 }
8037
8038 /* Disable HW interrupts, NAPI */
8039 bnx2x_netif_stop(bp, 1);
8040
8041 /* Release IRQs */
8042 bnx2x_free_irq(bp);
8043
8044 /* Reset the chip */
8045 rc = bnx2x_reset_hw(bp, reset_code);
8046 if (rc)
8047 BNX2X_ERR("HW_RESET failed\n");
8048
8049
8050 /* Report UNLOAD_DONE to MCP */
8051 bnx2x_send_unload_done(bp);
8052 }
8053
8054 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8055 {
8056 u32 val;
8057
8058 DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
8059
8060 if (CHIP_IS_E1(bp)) {
8061 int port = BP_PORT(bp);
8062 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8063 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8064
8065 val = REG_RD(bp, addr);
8066 val &= ~(0x300);
8067 REG_WR(bp, addr, val);
8068 } else {
8069 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8070 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8071 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8072 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8073 }
8074 }
8075
8076 /* Close gates #2, #3 and #4: */
8077 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8078 {
8079 u32 val;
8080
8081 /* Gates #2 and #4a are closed/opened for "not E1" only */
8082 if (!CHIP_IS_E1(bp)) {
8083 /* #4 */
8084 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8085 /* #2 */
8086 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8087 }
8088
8089 /* #3 */
8090 if (CHIP_IS_E1x(bp)) {
8091 /* Prevent interrupts from HC on both ports */
8092 val = REG_RD(bp, HC_REG_CONFIG_1);
8093 REG_WR(bp, HC_REG_CONFIG_1,
8094 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8095 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8096
8097 val = REG_RD(bp, HC_REG_CONFIG_0);
8098 REG_WR(bp, HC_REG_CONFIG_0,
8099 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8100 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8101 } else {
8102 /* Prevent incomming interrupts in IGU */
8103 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8104
8105 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8106 (!close) ?
8107 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8108 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8109 }
8110
8111 DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
8112 close ? "closing" : "opening");
8113 mmiowb();
8114 }
8115
8116 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
8117
8118 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8119 {
8120 /* Do some magic... */
8121 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8122 *magic_val = val & SHARED_MF_CLP_MAGIC;
8123 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8124 }
8125
8126 /**
8127 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8128 *
8129 * @bp: driver handle
8130 * @magic_val: old value of the `magic' bit.
8131 */
8132 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8133 {
8134 /* Restore the `magic' bit value... */
8135 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8136 MF_CFG_WR(bp, shared_mf_config.clp_mb,
8137 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8138 }
8139
8140 /**
8141 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8142 *
8143 * @bp: driver handle
8144 * @magic_val: old value of 'magic' bit.
8145 *
8146 * Takes care of CLP configurations.
8147 */
8148 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8149 {
8150 u32 shmem;
8151 u32 validity_offset;
8152
8153 DP(NETIF_MSG_HW, "Starting\n");
8154
8155 /* Set `magic' bit in order to save MF config */
8156 if (!CHIP_IS_E1(bp))
8157 bnx2x_clp_reset_prep(bp, magic_val);
8158
8159 /* Get shmem offset */
8160 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8161 validity_offset = offsetof(struct shmem_region, validity_map[0]);
8162
8163 /* Clear validity map flags */
8164 if (shmem > 0)
8165 REG_WR(bp, shmem + validity_offset, 0);
8166 }
8167
8168 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
8169 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
8170
8171 /**
8172 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8173 *
8174 * @bp: driver handle
8175 */
8176 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8177 {
8178 /* special handling for emulation and FPGA,
8179 wait 10 times longer */
8180 if (CHIP_REV_IS_SLOW(bp))
8181 msleep(MCP_ONE_TIMEOUT*10);
8182 else
8183 msleep(MCP_ONE_TIMEOUT);
8184 }
8185
8186 /*
8187 * initializes bp->common.shmem_base and waits for validity signature to appear
8188 */
8189 static int bnx2x_init_shmem(struct bnx2x *bp)
8190 {
8191 int cnt = 0;
8192 u32 val = 0;
8193
8194 do {
8195 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8196 if (bp->common.shmem_base) {
8197 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8198 if (val & SHR_MEM_VALIDITY_MB)
8199 return 0;
8200 }
8201
8202 bnx2x_mcp_wait_one(bp);
8203
8204 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8205
8206 BNX2X_ERR("BAD MCP validity signature\n");
8207
8208 return -ENODEV;
8209 }
8210
8211 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8212 {
8213 int rc = bnx2x_init_shmem(bp);
8214
8215 /* Restore the `magic' bit value */
8216 if (!CHIP_IS_E1(bp))
8217 bnx2x_clp_reset_done(bp, magic_val);
8218
8219 return rc;
8220 }
8221
8222 static void bnx2x_pxp_prep(struct bnx2x *bp)
8223 {
8224 if (!CHIP_IS_E1(bp)) {
8225 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8226 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8227 mmiowb();
8228 }
8229 }
8230
8231 /*
8232 * Reset the whole chip except for:
8233 * - PCIE core
8234 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8235 * one reset bit)
8236 * - IGU
8237 * - MISC (including AEU)
8238 * - GRC
8239 * - RBCN, RBCP
8240 */
8241 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8242 {
8243 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8244 u32 global_bits2, stay_reset2;
8245
8246 /*
8247 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8248 * (per chip) blocks.
8249 */
8250 global_bits2 =
8251 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8252 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8253
8254 /* Don't reset the following blocks */
8255 not_reset_mask1 =
8256 MISC_REGISTERS_RESET_REG_1_RST_HC |
8257 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8258 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8259
8260 not_reset_mask2 =
8261 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8262 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8263 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8264 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8265 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8266 MISC_REGISTERS_RESET_REG_2_RST_GRC |
8267 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8268 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8269 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8270 MISC_REGISTERS_RESET_REG_2_PGLC;
8271
8272 /*
8273 * Keep the following blocks in reset:
8274 * - all xxMACs are handled by the bnx2x_link code.
8275 */
8276 stay_reset2 =
8277 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8278 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8279 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8280 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8281 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8282 MISC_REGISTERS_RESET_REG_2_UMAC1 |
8283 MISC_REGISTERS_RESET_REG_2_XMAC |
8284 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8285
8286 /* Full reset masks according to the chip */
8287 reset_mask1 = 0xffffffff;
8288
8289 if (CHIP_IS_E1(bp))
8290 reset_mask2 = 0xffff;
8291 else if (CHIP_IS_E1H(bp))
8292 reset_mask2 = 0x1ffff;
8293 else if (CHIP_IS_E2(bp))
8294 reset_mask2 = 0xfffff;
8295 else /* CHIP_IS_E3 */
8296 reset_mask2 = 0x3ffffff;
8297
8298 /* Don't reset global blocks unless we need to */
8299 if (!global)
8300 reset_mask2 &= ~global_bits2;
8301
8302 /*
8303 * In case of attention in the QM, we need to reset PXP
8304 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8305 * because otherwise QM reset would release 'close the gates' shortly
8306 * before resetting the PXP, then the PSWRQ would send a write
8307 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8308 * read the payload data from PSWWR, but PSWWR would not
8309 * respond. The write queue in PGLUE would stuck, dmae commands
8310 * would not return. Therefore it's important to reset the second
8311 * reset register (containing the
8312 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8313 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8314 * bit).
8315 */
8316 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8317 reset_mask2 & (~not_reset_mask2));
8318
8319 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8320 reset_mask1 & (~not_reset_mask1));
8321
8322 barrier();
8323 mmiowb();
8324
8325 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8326 reset_mask2 & (~stay_reset2));
8327
8328 barrier();
8329 mmiowb();
8330
8331 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8332 mmiowb();
8333 }
8334
8335 /**
8336 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8337 * It should get cleared in no more than 1s.
8338 *
8339 * @bp: driver handle
8340 *
8341 * It should get cleared in no more than 1s. Returns 0 if
8342 * pending writes bit gets cleared.
8343 */
8344 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8345 {
8346 u32 cnt = 1000;
8347 u32 pend_bits = 0;
8348
8349 do {
8350 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8351
8352 if (pend_bits == 0)
8353 break;
8354
8355 usleep_range(1000, 1000);
8356 } while (cnt-- > 0);
8357
8358 if (cnt <= 0) {
8359 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8360 pend_bits);
8361 return -EBUSY;
8362 }
8363
8364 return 0;
8365 }
8366
8367 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8368 {
8369 int cnt = 1000;
8370 u32 val = 0;
8371 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8372
8373
8374 /* Empty the Tetris buffer, wait for 1s */
8375 do {
8376 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8377 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8378 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8379 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8380 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8381 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8382 ((port_is_idle_0 & 0x1) == 0x1) &&
8383 ((port_is_idle_1 & 0x1) == 0x1) &&
8384 (pgl_exp_rom2 == 0xffffffff))
8385 break;
8386 usleep_range(1000, 1000);
8387 } while (cnt-- > 0);
8388
8389 if (cnt <= 0) {
8390 DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8391 " are still"
8392 " outstanding read requests after 1s!\n");
8393 DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8394 " port_is_idle_0=0x%08x,"
8395 " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8396 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8397 pgl_exp_rom2);
8398 return -EAGAIN;
8399 }
8400
8401 barrier();
8402
8403 /* Close gates #2, #3 and #4 */
8404 bnx2x_set_234_gates(bp, true);
8405
8406 /* Poll for IGU VQs for 57712 and newer chips */
8407 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8408 return -EAGAIN;
8409
8410
8411 /* TBD: Indicate that "process kill" is in progress to MCP */
8412
8413 /* Clear "unprepared" bit */
8414 REG_WR(bp, MISC_REG_UNPREPARED, 0);
8415 barrier();
8416
8417 /* Make sure all is written to the chip before the reset */
8418 mmiowb();
8419
8420 /* Wait for 1ms to empty GLUE and PCI-E core queues,
8421 * PSWHST, GRC and PSWRD Tetris buffer.
8422 */
8423 usleep_range(1000, 1000);
8424
8425 /* Prepare to chip reset: */
8426 /* MCP */
8427 if (global)
8428 bnx2x_reset_mcp_prep(bp, &val);
8429
8430 /* PXP */
8431 bnx2x_pxp_prep(bp);
8432 barrier();
8433
8434 /* reset the chip */
8435 bnx2x_process_kill_chip_reset(bp, global);
8436 barrier();
8437
8438 /* Recover after reset: */
8439 /* MCP */
8440 if (global && bnx2x_reset_mcp_comp(bp, val))
8441 return -EAGAIN;
8442
8443 /* TBD: Add resetting the NO_MCP mode DB here */
8444
8445 /* PXP */
8446 bnx2x_pxp_prep(bp);
8447
8448 /* Open the gates #2, #3 and #4 */
8449 bnx2x_set_234_gates(bp, false);
8450
8451 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8452 * reset state, re-enable attentions. */
8453
8454 return 0;
8455 }
8456
8457 int bnx2x_leader_reset(struct bnx2x *bp)
8458 {
8459 int rc = 0;
8460 bool global = bnx2x_reset_is_global(bp);
8461
8462 /* Try to recover after the failure */
8463 if (bnx2x_process_kill(bp, global)) {
8464 netdev_err(bp->dev, "Something bad had happen on engine %d! "
8465 "Aii!\n", BP_PATH(bp));
8466 rc = -EAGAIN;
8467 goto exit_leader_reset;
8468 }
8469
8470 /*
8471 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8472 * state.
8473 */
8474 bnx2x_set_reset_done(bp);
8475 if (global)
8476 bnx2x_clear_reset_global(bp);
8477
8478 exit_leader_reset:
8479 bp->is_leader = 0;
8480 bnx2x_release_leader_lock(bp);
8481 smp_mb();
8482 return rc;
8483 }
8484
8485 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8486 {
8487 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8488
8489 /* Disconnect this device */
8490 netif_device_detach(bp->dev);
8491
8492 /*
8493 * Block ifup for all function on this engine until "process kill"
8494 * or power cycle.
8495 */
8496 bnx2x_set_reset_in_progress(bp);
8497
8498 /* Shut down the power */
8499 bnx2x_set_power_state(bp, PCI_D3hot);
8500
8501 bp->recovery_state = BNX2X_RECOVERY_FAILED;
8502
8503 smp_mb();
8504 }
8505
8506 /*
8507 * Assumption: runs under rtnl lock. This together with the fact
8508 * that it's called only from bnx2x_sp_rtnl() ensure that it
8509 * will never be called when netif_running(bp->dev) is false.
8510 */
8511 static void bnx2x_parity_recover(struct bnx2x *bp)
8512 {
8513 bool global = false;
8514
8515 DP(NETIF_MSG_HW, "Handling parity\n");
8516 while (1) {
8517 switch (bp->recovery_state) {
8518 case BNX2X_RECOVERY_INIT:
8519 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8520 bnx2x_chk_parity_attn(bp, &global, false);
8521
8522 /* Try to get a LEADER_LOCK HW lock */
8523 if (bnx2x_trylock_leader_lock(bp)) {
8524 bnx2x_set_reset_in_progress(bp);
8525 /*
8526 * Check if there is a global attention and if
8527 * there was a global attention, set the global
8528 * reset bit.
8529 */
8530
8531 if (global)
8532 bnx2x_set_reset_global(bp);
8533
8534 bp->is_leader = 1;
8535 }
8536
8537 /* Stop the driver */
8538 /* If interface has been removed - break */
8539 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8540 return;
8541
8542 bp->recovery_state = BNX2X_RECOVERY_WAIT;
8543
8544 /*
8545 * Reset MCP command sequence number and MCP mail box
8546 * sequence as we are going to reset the MCP.
8547 */
8548 if (global) {
8549 bp->fw_seq = 0;
8550 bp->fw_drv_pulse_wr_seq = 0;
8551 }
8552
8553 /* Ensure "is_leader", MCP command sequence and
8554 * "recovery_state" update values are seen on other
8555 * CPUs.
8556 */
8557 smp_mb();
8558 break;
8559
8560 case BNX2X_RECOVERY_WAIT:
8561 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8562 if (bp->is_leader) {
8563 int other_engine = BP_PATH(bp) ? 0 : 1;
8564 u32 other_load_counter =
8565 bnx2x_get_load_cnt(bp, other_engine);
8566 u32 load_counter =
8567 bnx2x_get_load_cnt(bp, BP_PATH(bp));
8568 global = bnx2x_reset_is_global(bp);
8569
8570 /*
8571 * In case of a parity in a global block, let
8572 * the first leader that performs a
8573 * leader_reset() reset the global blocks in
8574 * order to clear global attentions. Otherwise
8575 * the the gates will remain closed for that
8576 * engine.
8577 */
8578 if (load_counter ||
8579 (global && other_load_counter)) {
8580 /* Wait until all other functions get
8581 * down.
8582 */
8583 schedule_delayed_work(&bp->sp_rtnl_task,
8584 HZ/10);
8585 return;
8586 } else {
8587 /* If all other functions got down -
8588 * try to bring the chip back to
8589 * normal. In any case it's an exit
8590 * point for a leader.
8591 */
8592 if (bnx2x_leader_reset(bp)) {
8593 bnx2x_recovery_failed(bp);
8594 return;
8595 }
8596
8597 /* If we are here, means that the
8598 * leader has succeeded and doesn't
8599 * want to be a leader any more. Try
8600 * to continue as a none-leader.
8601 */
8602 break;
8603 }
8604 } else { /* non-leader */
8605 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8606 /* Try to get a LEADER_LOCK HW lock as
8607 * long as a former leader may have
8608 * been unloaded by the user or
8609 * released a leadership by another
8610 * reason.
8611 */
8612 if (bnx2x_trylock_leader_lock(bp)) {
8613 /* I'm a leader now! Restart a
8614 * switch case.
8615 */
8616 bp->is_leader = 1;
8617 break;
8618 }
8619
8620 schedule_delayed_work(&bp->sp_rtnl_task,
8621 HZ/10);
8622 return;
8623
8624 } else {
8625 /*
8626 * If there was a global attention, wait
8627 * for it to be cleared.
8628 */
8629 if (bnx2x_reset_is_global(bp)) {
8630 schedule_delayed_work(
8631 &bp->sp_rtnl_task,
8632 HZ/10);
8633 return;
8634 }
8635
8636 if (bnx2x_nic_load(bp, LOAD_NORMAL))
8637 bnx2x_recovery_failed(bp);
8638 else {
8639 bp->recovery_state =
8640 BNX2X_RECOVERY_DONE;
8641 smp_mb();
8642 }
8643
8644 return;
8645 }
8646 }
8647 default:
8648 return;
8649 }
8650 }
8651 }
8652
8653 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8654 * scheduled on a general queue in order to prevent a dead lock.
8655 */
8656 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8657 {
8658 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8659
8660 rtnl_lock();
8661
8662 if (!netif_running(bp->dev))
8663 goto sp_rtnl_exit;
8664
8665 /* if stop on error is defined no recovery flows should be executed */
8666 #ifdef BNX2X_STOP_ON_ERROR
8667 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8668 "so reset not done to allow debug dump,\n"
8669 "you will need to reboot when done\n");
8670 goto sp_rtnl_not_reset;
8671 #endif
8672
8673 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8674 /*
8675 * Clear all pending SP commands as we are going to reset the
8676 * function anyway.
8677 */
8678 bp->sp_rtnl_state = 0;
8679 smp_mb();
8680
8681 bnx2x_parity_recover(bp);
8682
8683 goto sp_rtnl_exit;
8684 }
8685
8686 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8687 /*
8688 * Clear all pending SP commands as we are going to reset the
8689 * function anyway.
8690 */
8691 bp->sp_rtnl_state = 0;
8692 smp_mb();
8693
8694 bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8695 bnx2x_nic_load(bp, LOAD_NORMAL);
8696
8697 goto sp_rtnl_exit;
8698 }
8699 #ifdef BNX2X_STOP_ON_ERROR
8700 sp_rtnl_not_reset:
8701 #endif
8702 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8703 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8704
8705 /*
8706 * in case of fan failure we need to reset id if the "stop on error"
8707 * debug flag is set, since we trying to prevent permanent overheating
8708 * damage
8709 */
8710 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8711 DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
8712 netif_device_detach(bp->dev);
8713 bnx2x_close(bp->dev);
8714 }
8715
8716 sp_rtnl_exit:
8717 rtnl_unlock();
8718 }
8719
8720 /* end of nic load/unload */
8721
8722 static void bnx2x_period_task(struct work_struct *work)
8723 {
8724 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8725
8726 if (!netif_running(bp->dev))
8727 goto period_task_exit;
8728
8729 if (CHIP_REV_IS_SLOW(bp)) {
8730 BNX2X_ERR("period task called on emulation, ignoring\n");
8731 goto period_task_exit;
8732 }
8733
8734 bnx2x_acquire_phy_lock(bp);
8735 /*
8736 * The barrier is needed to ensure the ordering between the writing to
8737 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8738 * the reading here.
8739 */
8740 smp_mb();
8741 if (bp->port.pmf) {
8742 bnx2x_period_func(&bp->link_params, &bp->link_vars);
8743
8744 /* Re-queue task in 1 sec */
8745 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8746 }
8747
8748 bnx2x_release_phy_lock(bp);
8749 period_task_exit:
8750 return;
8751 }
8752
8753 /*
8754 * Init service functions
8755 */
8756
8757 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8758 {
8759 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8760 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8761 return base + (BP_ABS_FUNC(bp)) * stride;
8762 }
8763
8764 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8765 {
8766 u32 reg = bnx2x_get_pretend_reg(bp);
8767
8768 /* Flush all outstanding writes */
8769 mmiowb();
8770
8771 /* Pretend to be function 0 */
8772 REG_WR(bp, reg, 0);
8773 REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
8774
8775 /* From now we are in the "like-E1" mode */
8776 bnx2x_int_disable(bp);
8777
8778 /* Flush all outstanding writes */
8779 mmiowb();
8780
8781 /* Restore the original function */
8782 REG_WR(bp, reg, BP_ABS_FUNC(bp));
8783 REG_RD(bp, reg);
8784 }
8785
8786 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8787 {
8788 if (CHIP_IS_E1(bp))
8789 bnx2x_int_disable(bp);
8790 else
8791 bnx2x_undi_int_disable_e1h(bp);
8792 }
8793
8794 static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8795 {
8796 u32 val;
8797
8798 /* Check if there is any driver already loaded */
8799 val = REG_RD(bp, MISC_REG_UNPREPARED);
8800 if (val == 0x1) {
8801
8802 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8803 /*
8804 * Check if it is the UNDI driver
8805 * UNDI driver initializes CID offset for normal bell to 0x7
8806 */
8807 val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8808 if (val == 0x7) {
8809 u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8810 /* save our pf_num */
8811 int orig_pf_num = bp->pf_num;
8812 int port;
8813 u32 swap_en, swap_val, value;
8814
8815 /* clear the UNDI indication */
8816 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8817
8818 BNX2X_DEV_INFO("UNDI is active! reset device\n");
8819
8820 /* try unload UNDI on port 0 */
8821 bp->pf_num = 0;
8822 bp->fw_seq =
8823 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8824 DRV_MSG_SEQ_NUMBER_MASK);
8825 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8826
8827 /* if UNDI is loaded on the other port */
8828 if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8829
8830 /* send "DONE" for previous unload */
8831 bnx2x_fw_command(bp,
8832 DRV_MSG_CODE_UNLOAD_DONE, 0);
8833
8834 /* unload UNDI on port 1 */
8835 bp->pf_num = 1;
8836 bp->fw_seq =
8837 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8838 DRV_MSG_SEQ_NUMBER_MASK);
8839 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8840
8841 bnx2x_fw_command(bp, reset_code, 0);
8842 }
8843
8844 bnx2x_undi_int_disable(bp);
8845 port = BP_PORT(bp);
8846
8847 /* close input traffic and wait for it */
8848 /* Do not rcv packets to BRB */
8849 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8850 NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8851 /* Do not direct rcv packets that are not for MCP to
8852 * the BRB */
8853 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8854 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8855 /* clear AEU */
8856 REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8857 MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8858 msleep(10);
8859
8860 /* save NIG port swap info */
8861 swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8862 swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8863 /* reset device */
8864 REG_WR(bp,
8865 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8866 0xd3ffffff);
8867
8868 value = 0x1400;
8869 if (CHIP_IS_E3(bp)) {
8870 value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8871 value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8872 }
8873
8874 REG_WR(bp,
8875 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8876 value);
8877
8878 /* take the NIG out of reset and restore swap values */
8879 REG_WR(bp,
8880 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8881 MISC_REGISTERS_RESET_REG_1_RST_NIG);
8882 REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8883 REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8884
8885 /* send unload done to the MCP */
8886 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8887
8888 /* restore our func and fw_seq */
8889 bp->pf_num = orig_pf_num;
8890 bp->fw_seq =
8891 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8892 DRV_MSG_SEQ_NUMBER_MASK);
8893 }
8894
8895 /* now it's safe to release the lock */
8896 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8897 }
8898 }
8899
8900 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8901 {
8902 u32 val, val2, val3, val4, id, boot_mode;
8903 u16 pmc;
8904
8905 /* Get the chip revision id and number. */
8906 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8907 val = REG_RD(bp, MISC_REG_CHIP_NUM);
8908 id = ((val & 0xffff) << 16);
8909 val = REG_RD(bp, MISC_REG_CHIP_REV);
8910 id |= ((val & 0xf) << 12);
8911 val = REG_RD(bp, MISC_REG_CHIP_METAL);
8912 id |= ((val & 0xff) << 4);
8913 val = REG_RD(bp, MISC_REG_BOND_ID);
8914 id |= (val & 0xf);
8915 bp->common.chip_id = id;
8916
8917 /* Set doorbell size */
8918 bp->db_size = (1 << BNX2X_DB_SHIFT);
8919
8920 if (!CHIP_IS_E1x(bp)) {
8921 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8922 if ((val & 1) == 0)
8923 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8924 else
8925 val = (val >> 1) & 1;
8926 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8927 "2_PORT_MODE");
8928 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8929 CHIP_2_PORT_MODE;
8930
8931 if (CHIP_MODE_IS_4_PORT(bp))
8932 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
8933 else
8934 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
8935 } else {
8936 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8937 bp->pfid = bp->pf_num; /* 0..7 */
8938 }
8939
8940 bp->link_params.chip_id = bp->common.chip_id;
8941 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8942
8943 val = (REG_RD(bp, 0x2874) & 0x55);
8944 if ((bp->common.chip_id & 0x1) ||
8945 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8946 bp->flags |= ONE_PORT_FLAG;
8947 BNX2X_DEV_INFO("single port device\n");
8948 }
8949
8950 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8951 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8952 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8953 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8954 bp->common.flash_size, bp->common.flash_size);
8955
8956 bnx2x_init_shmem(bp);
8957
8958
8959
8960 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8961 MISC_REG_GENERIC_CR_1 :
8962 MISC_REG_GENERIC_CR_0));
8963
8964 bp->link_params.shmem_base = bp->common.shmem_base;
8965 bp->link_params.shmem2_base = bp->common.shmem2_base;
8966 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
8967 bp->common.shmem_base, bp->common.shmem2_base);
8968
8969 if (!bp->common.shmem_base) {
8970 BNX2X_DEV_INFO("MCP not active\n");
8971 bp->flags |= NO_MCP_FLAG;
8972 return;
8973 }
8974
8975 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8976 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8977
8978 bp->link_params.hw_led_mode = ((bp->common.hw_config &
8979 SHARED_HW_CFG_LED_MODE_MASK) >>
8980 SHARED_HW_CFG_LED_MODE_SHIFT);
8981
8982 bp->link_params.feature_config_flags = 0;
8983 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8984 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8985 bp->link_params.feature_config_flags |=
8986 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8987 else
8988 bp->link_params.feature_config_flags &=
8989 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8990
8991 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
8992 bp->common.bc_ver = val;
8993 BNX2X_DEV_INFO("bc_ver %X\n", val);
8994 if (val < BNX2X_BC_VER) {
8995 /* for now only warn
8996 * later we might need to enforce this */
8997 BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8998 "please upgrade BC\n", BNX2X_BC_VER, val);
8999 }
9000 bp->link_params.feature_config_flags |=
9001 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9002 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9003
9004 bp->link_params.feature_config_flags |=
9005 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9006 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9007
9008 bp->link_params.feature_config_flags |=
9009 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9010 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9011 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9012 BC_SUPPORTS_PFC_STATS : 0;
9013
9014 boot_mode = SHMEM_RD(bp,
9015 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9016 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9017 switch (boot_mode) {
9018 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9019 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9020 break;
9021 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9022 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9023 break;
9024 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9025 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9026 break;
9027 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9028 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9029 break;
9030 }
9031
9032 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9033 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9034
9035 BNX2X_DEV_INFO("%sWoL capable\n",
9036 (bp->flags & NO_WOL_FLAG) ? "not " : "");
9037
9038 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9039 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9040 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9041 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9042
9043 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9044 val, val2, val3, val4);
9045 }
9046
9047 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9048 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9049
9050 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9051 {
9052 int pfid = BP_FUNC(bp);
9053 int igu_sb_id;
9054 u32 val;
9055 u8 fid, igu_sb_cnt = 0;
9056
9057 bp->igu_base_sb = 0xff;
9058 if (CHIP_INT_MODE_IS_BC(bp)) {
9059 int vn = BP_VN(bp);
9060 igu_sb_cnt = bp->igu_sb_cnt;
9061 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9062 FP_SB_MAX_E1x;
9063
9064 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
9065 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9066
9067 return;
9068 }
9069
9070 /* IGU in normal mode - read CAM */
9071 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9072 igu_sb_id++) {
9073 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9074 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9075 continue;
9076 fid = IGU_FID(val);
9077 if ((fid & IGU_FID_ENCODE_IS_PF)) {
9078 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9079 continue;
9080 if (IGU_VEC(val) == 0)
9081 /* default status block */
9082 bp->igu_dsb_id = igu_sb_id;
9083 else {
9084 if (bp->igu_base_sb == 0xff)
9085 bp->igu_base_sb = igu_sb_id;
9086 igu_sb_cnt++;
9087 }
9088 }
9089 }
9090
9091 #ifdef CONFIG_PCI_MSI
9092 /*
9093 * It's expected that number of CAM entries for this functions is equal
9094 * to the number evaluated based on the MSI-X table size. We want a
9095 * harsh warning if these values are different!
9096 */
9097 WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9098 #endif
9099
9100 if (igu_sb_cnt == 0)
9101 BNX2X_ERR("CAM configuration error\n");
9102 }
9103
9104 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9105 u32 switch_cfg)
9106 {
9107 int cfg_size = 0, idx, port = BP_PORT(bp);
9108
9109 /* Aggregation of supported attributes of all external phys */
9110 bp->port.supported[0] = 0;
9111 bp->port.supported[1] = 0;
9112 switch (bp->link_params.num_phys) {
9113 case 1:
9114 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9115 cfg_size = 1;
9116 break;
9117 case 2:
9118 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9119 cfg_size = 1;
9120 break;
9121 case 3:
9122 if (bp->link_params.multi_phy_config &
9123 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9124 bp->port.supported[1] =
9125 bp->link_params.phy[EXT_PHY1].supported;
9126 bp->port.supported[0] =
9127 bp->link_params.phy[EXT_PHY2].supported;
9128 } else {
9129 bp->port.supported[0] =
9130 bp->link_params.phy[EXT_PHY1].supported;
9131 bp->port.supported[1] =
9132 bp->link_params.phy[EXT_PHY2].supported;
9133 }
9134 cfg_size = 2;
9135 break;
9136 }
9137
9138 if (!(bp->port.supported[0] || bp->port.supported[1])) {
9139 BNX2X_ERR("NVRAM config error. BAD phy config."
9140 "PHY1 config 0x%x, PHY2 config 0x%x\n",
9141 SHMEM_RD(bp,
9142 dev_info.port_hw_config[port].external_phy_config),
9143 SHMEM_RD(bp,
9144 dev_info.port_hw_config[port].external_phy_config2));
9145 return;
9146 }
9147
9148 if (CHIP_IS_E3(bp))
9149 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9150 else {
9151 switch (switch_cfg) {
9152 case SWITCH_CFG_1G:
9153 bp->port.phy_addr = REG_RD(
9154 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9155 break;
9156 case SWITCH_CFG_10G:
9157 bp->port.phy_addr = REG_RD(
9158 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9159 break;
9160 default:
9161 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9162 bp->port.link_config[0]);
9163 return;
9164 }
9165 }
9166 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9167 /* mask what we support according to speed_cap_mask per configuration */
9168 for (idx = 0; idx < cfg_size; idx++) {
9169 if (!(bp->link_params.speed_cap_mask[idx] &
9170 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9171 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9172
9173 if (!(bp->link_params.speed_cap_mask[idx] &
9174 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9175 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9176
9177 if (!(bp->link_params.speed_cap_mask[idx] &
9178 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9179 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9180
9181 if (!(bp->link_params.speed_cap_mask[idx] &
9182 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9183 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9184
9185 if (!(bp->link_params.speed_cap_mask[idx] &
9186 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9187 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9188 SUPPORTED_1000baseT_Full);
9189
9190 if (!(bp->link_params.speed_cap_mask[idx] &
9191 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9192 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9193
9194 if (!(bp->link_params.speed_cap_mask[idx] &
9195 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9196 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9197
9198 }
9199
9200 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9201 bp->port.supported[1]);
9202 }
9203
9204 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9205 {
9206 u32 link_config, idx, cfg_size = 0;
9207 bp->port.advertising[0] = 0;
9208 bp->port.advertising[1] = 0;
9209 switch (bp->link_params.num_phys) {
9210 case 1:
9211 case 2:
9212 cfg_size = 1;
9213 break;
9214 case 3:
9215 cfg_size = 2;
9216 break;
9217 }
9218 for (idx = 0; idx < cfg_size; idx++) {
9219 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9220 link_config = bp->port.link_config[idx];
9221 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9222 case PORT_FEATURE_LINK_SPEED_AUTO:
9223 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9224 bp->link_params.req_line_speed[idx] =
9225 SPEED_AUTO_NEG;
9226 bp->port.advertising[idx] |=
9227 bp->port.supported[idx];
9228 } else {
9229 /* force 10G, no AN */
9230 bp->link_params.req_line_speed[idx] =
9231 SPEED_10000;
9232 bp->port.advertising[idx] |=
9233 (ADVERTISED_10000baseT_Full |
9234 ADVERTISED_FIBRE);
9235 continue;
9236 }
9237 break;
9238
9239 case PORT_FEATURE_LINK_SPEED_10M_FULL:
9240 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9241 bp->link_params.req_line_speed[idx] =
9242 SPEED_10;
9243 bp->port.advertising[idx] |=
9244 (ADVERTISED_10baseT_Full |
9245 ADVERTISED_TP);
9246 } else {
9247 BNX2X_ERR("NVRAM config error. "
9248 "Invalid link_config 0x%x"
9249 " speed_cap_mask 0x%x\n",
9250 link_config,
9251 bp->link_params.speed_cap_mask[idx]);
9252 return;
9253 }
9254 break;
9255
9256 case PORT_FEATURE_LINK_SPEED_10M_HALF:
9257 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9258 bp->link_params.req_line_speed[idx] =
9259 SPEED_10;
9260 bp->link_params.req_duplex[idx] =
9261 DUPLEX_HALF;
9262 bp->port.advertising[idx] |=
9263 (ADVERTISED_10baseT_Half |
9264 ADVERTISED_TP);
9265 } else {
9266 BNX2X_ERR("NVRAM config error. "
9267 "Invalid link_config 0x%x"
9268 " speed_cap_mask 0x%x\n",
9269 link_config,
9270 bp->link_params.speed_cap_mask[idx]);
9271 return;
9272 }
9273 break;
9274
9275 case PORT_FEATURE_LINK_SPEED_100M_FULL:
9276 if (bp->port.supported[idx] &
9277 SUPPORTED_100baseT_Full) {
9278 bp->link_params.req_line_speed[idx] =
9279 SPEED_100;
9280 bp->port.advertising[idx] |=
9281 (ADVERTISED_100baseT_Full |
9282 ADVERTISED_TP);
9283 } else {
9284 BNX2X_ERR("NVRAM config error. "
9285 "Invalid link_config 0x%x"
9286 " speed_cap_mask 0x%x\n",
9287 link_config,
9288 bp->link_params.speed_cap_mask[idx]);
9289 return;
9290 }
9291 break;
9292
9293 case PORT_FEATURE_LINK_SPEED_100M_HALF:
9294 if (bp->port.supported[idx] &
9295 SUPPORTED_100baseT_Half) {
9296 bp->link_params.req_line_speed[idx] =
9297 SPEED_100;
9298 bp->link_params.req_duplex[idx] =
9299 DUPLEX_HALF;
9300 bp->port.advertising[idx] |=
9301 (ADVERTISED_100baseT_Half |
9302 ADVERTISED_TP);
9303 } else {
9304 BNX2X_ERR("NVRAM config error. "
9305 "Invalid link_config 0x%x"
9306 " speed_cap_mask 0x%x\n",
9307 link_config,
9308 bp->link_params.speed_cap_mask[idx]);
9309 return;
9310 }
9311 break;
9312
9313 case PORT_FEATURE_LINK_SPEED_1G:
9314 if (bp->port.supported[idx] &
9315 SUPPORTED_1000baseT_Full) {
9316 bp->link_params.req_line_speed[idx] =
9317 SPEED_1000;
9318 bp->port.advertising[idx] |=
9319 (ADVERTISED_1000baseT_Full |
9320 ADVERTISED_TP);
9321 } else {
9322 BNX2X_ERR("NVRAM config error. "
9323 "Invalid link_config 0x%x"
9324 " speed_cap_mask 0x%x\n",
9325 link_config,
9326 bp->link_params.speed_cap_mask[idx]);
9327 return;
9328 }
9329 break;
9330
9331 case PORT_FEATURE_LINK_SPEED_2_5G:
9332 if (bp->port.supported[idx] &
9333 SUPPORTED_2500baseX_Full) {
9334 bp->link_params.req_line_speed[idx] =
9335 SPEED_2500;
9336 bp->port.advertising[idx] |=
9337 (ADVERTISED_2500baseX_Full |
9338 ADVERTISED_TP);
9339 } else {
9340 BNX2X_ERR("NVRAM config error. "
9341 "Invalid link_config 0x%x"
9342 " speed_cap_mask 0x%x\n",
9343 link_config,
9344 bp->link_params.speed_cap_mask[idx]);
9345 return;
9346 }
9347 break;
9348
9349 case PORT_FEATURE_LINK_SPEED_10G_CX4:
9350 if (bp->port.supported[idx] &
9351 SUPPORTED_10000baseT_Full) {
9352 bp->link_params.req_line_speed[idx] =
9353 SPEED_10000;
9354 bp->port.advertising[idx] |=
9355 (ADVERTISED_10000baseT_Full |
9356 ADVERTISED_FIBRE);
9357 } else {
9358 BNX2X_ERR("NVRAM config error. "
9359 "Invalid link_config 0x%x"
9360 " speed_cap_mask 0x%x\n",
9361 link_config,
9362 bp->link_params.speed_cap_mask[idx]);
9363 return;
9364 }
9365 break;
9366 case PORT_FEATURE_LINK_SPEED_20G:
9367 bp->link_params.req_line_speed[idx] = SPEED_20000;
9368
9369 break;
9370 default:
9371 BNX2X_ERR("NVRAM config error. "
9372 "BAD link speed link_config 0x%x\n",
9373 link_config);
9374 bp->link_params.req_line_speed[idx] =
9375 SPEED_AUTO_NEG;
9376 bp->port.advertising[idx] =
9377 bp->port.supported[idx];
9378 break;
9379 }
9380
9381 bp->link_params.req_flow_ctrl[idx] = (link_config &
9382 PORT_FEATURE_FLOW_CONTROL_MASK);
9383 if ((bp->link_params.req_flow_ctrl[idx] ==
9384 BNX2X_FLOW_CTRL_AUTO) &&
9385 !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9386 bp->link_params.req_flow_ctrl[idx] =
9387 BNX2X_FLOW_CTRL_NONE;
9388 }
9389
9390 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
9391 " 0x%x advertising 0x%x\n",
9392 bp->link_params.req_line_speed[idx],
9393 bp->link_params.req_duplex[idx],
9394 bp->link_params.req_flow_ctrl[idx],
9395 bp->port.advertising[idx]);
9396 }
9397 }
9398
9399 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9400 {
9401 mac_hi = cpu_to_be16(mac_hi);
9402 mac_lo = cpu_to_be32(mac_lo);
9403 memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9404 memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9405 }
9406
9407 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9408 {
9409 int port = BP_PORT(bp);
9410 u32 config;
9411 u32 ext_phy_type, ext_phy_config;
9412
9413 bp->link_params.bp = bp;
9414 bp->link_params.port = port;
9415
9416 bp->link_params.lane_config =
9417 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9418
9419 bp->link_params.speed_cap_mask[0] =
9420 SHMEM_RD(bp,
9421 dev_info.port_hw_config[port].speed_capability_mask);
9422 bp->link_params.speed_cap_mask[1] =
9423 SHMEM_RD(bp,
9424 dev_info.port_hw_config[port].speed_capability_mask2);
9425 bp->port.link_config[0] =
9426 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9427
9428 bp->port.link_config[1] =
9429 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9430
9431 bp->link_params.multi_phy_config =
9432 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9433 /* If the device is capable of WoL, set the default state according
9434 * to the HW
9435 */
9436 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9437 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9438 (config & PORT_FEATURE_WOL_ENABLED));
9439
9440 BNX2X_DEV_INFO("lane_config 0x%08x "
9441 "speed_cap_mask0 0x%08x link_config0 0x%08x\n",
9442 bp->link_params.lane_config,
9443 bp->link_params.speed_cap_mask[0],
9444 bp->port.link_config[0]);
9445
9446 bp->link_params.switch_cfg = (bp->port.link_config[0] &
9447 PORT_FEATURE_CONNECTED_SWITCH_MASK);
9448 bnx2x_phy_probe(&bp->link_params);
9449 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9450
9451 bnx2x_link_settings_requested(bp);
9452
9453 /*
9454 * If connected directly, work with the internal PHY, otherwise, work
9455 * with the external PHY
9456 */
9457 ext_phy_config =
9458 SHMEM_RD(bp,
9459 dev_info.port_hw_config[port].external_phy_config);
9460 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9461 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9462 bp->mdio.prtad = bp->port.phy_addr;
9463
9464 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9465 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9466 bp->mdio.prtad =
9467 XGXS_EXT_PHY_ADDR(ext_phy_config);
9468
9469 /*
9470 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9471 * In MF mode, it is set to cover self test cases
9472 */
9473 if (IS_MF(bp))
9474 bp->port.need_hw_lock = 1;
9475 else
9476 bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9477 bp->common.shmem_base,
9478 bp->common.shmem2_base);
9479 }
9480
9481 void bnx2x_get_iscsi_info(struct bnx2x *bp)
9482 {
9483 #ifdef BCM_CNIC
9484 int port = BP_PORT(bp);
9485
9486 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9487 drv_lic_key[port].max_iscsi_conn);
9488
9489 /* Get the number of maximum allowed iSCSI connections */
9490 bp->cnic_eth_dev.max_iscsi_conn =
9491 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9492 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9493
9494 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9495 bp->cnic_eth_dev.max_iscsi_conn);
9496
9497 /*
9498 * If maximum allowed number of connections is zero -
9499 * disable the feature.
9500 */
9501 if (!bp->cnic_eth_dev.max_iscsi_conn)
9502 bp->flags |= NO_ISCSI_FLAG;
9503 #else
9504 bp->flags |= NO_ISCSI_FLAG;
9505 #endif
9506 }
9507
9508 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9509 {
9510 #ifdef BCM_CNIC
9511 int port = BP_PORT(bp);
9512 int func = BP_ABS_FUNC(bp);
9513
9514 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9515 drv_lic_key[port].max_fcoe_conn);
9516
9517 /* Get the number of maximum allowed FCoE connections */
9518 bp->cnic_eth_dev.max_fcoe_conn =
9519 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9520 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9521
9522 /* Read the WWN: */
9523 if (!IS_MF(bp)) {
9524 /* Port info */
9525 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9526 SHMEM_RD(bp,
9527 dev_info.port_hw_config[port].
9528 fcoe_wwn_port_name_upper);
9529 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9530 SHMEM_RD(bp,
9531 dev_info.port_hw_config[port].
9532 fcoe_wwn_port_name_lower);
9533
9534 /* Node info */
9535 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9536 SHMEM_RD(bp,
9537 dev_info.port_hw_config[port].
9538 fcoe_wwn_node_name_upper);
9539 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9540 SHMEM_RD(bp,
9541 dev_info.port_hw_config[port].
9542 fcoe_wwn_node_name_lower);
9543 } else if (!IS_MF_SD(bp)) {
9544 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9545
9546 /*
9547 * Read the WWN info only if the FCoE feature is enabled for
9548 * this function.
9549 */
9550 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9551 /* Port info */
9552 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9553 MF_CFG_RD(bp, func_ext_config[func].
9554 fcoe_wwn_port_name_upper);
9555 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9556 MF_CFG_RD(bp, func_ext_config[func].
9557 fcoe_wwn_port_name_lower);
9558
9559 /* Node info */
9560 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9561 MF_CFG_RD(bp, func_ext_config[func].
9562 fcoe_wwn_node_name_upper);
9563 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9564 MF_CFG_RD(bp, func_ext_config[func].
9565 fcoe_wwn_node_name_lower);
9566 }
9567 }
9568
9569 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9570
9571 /*
9572 * If maximum allowed number of connections is zero -
9573 * disable the feature.
9574 */
9575 if (!bp->cnic_eth_dev.max_fcoe_conn)
9576 bp->flags |= NO_FCOE_FLAG;
9577 #else
9578 bp->flags |= NO_FCOE_FLAG;
9579 #endif
9580 }
9581
9582 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9583 {
9584 /*
9585 * iSCSI may be dynamically disabled but reading
9586 * info here we will decrease memory usage by driver
9587 * if the feature is disabled for good
9588 */
9589 bnx2x_get_iscsi_info(bp);
9590 bnx2x_get_fcoe_info(bp);
9591 }
9592
9593 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9594 {
9595 u32 val, val2;
9596 int func = BP_ABS_FUNC(bp);
9597 int port = BP_PORT(bp);
9598 #ifdef BCM_CNIC
9599 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9600 u8 *fip_mac = bp->fip_mac;
9601 #endif
9602
9603 /* Zero primary MAC configuration */
9604 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9605
9606 if (BP_NOMCP(bp)) {
9607 BNX2X_ERROR("warning: random MAC workaround active\n");
9608 random_ether_addr(bp->dev->dev_addr);
9609 } else if (IS_MF(bp)) {
9610 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9611 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9612 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9613 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9614 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9615
9616 #ifdef BCM_CNIC
9617 /*
9618 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9619 * FCoE MAC then the appropriate feature should be disabled.
9620 */
9621 if (IS_MF_SI(bp)) {
9622 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9623 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9624 val2 = MF_CFG_RD(bp, func_ext_config[func].
9625 iscsi_mac_addr_upper);
9626 val = MF_CFG_RD(bp, func_ext_config[func].
9627 iscsi_mac_addr_lower);
9628 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9629 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9630 iscsi_mac);
9631 } else
9632 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9633
9634 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9635 val2 = MF_CFG_RD(bp, func_ext_config[func].
9636 fcoe_mac_addr_upper);
9637 val = MF_CFG_RD(bp, func_ext_config[func].
9638 fcoe_mac_addr_lower);
9639 bnx2x_set_mac_buf(fip_mac, val, val2);
9640 BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9641 fip_mac);
9642
9643 } else
9644 bp->flags |= NO_FCOE_FLAG;
9645 } else { /* SD mode */
9646 if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
9647 /* use primary mac as iscsi mac */
9648 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
9649 /* Zero primary MAC configuration */
9650 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9651
9652 BNX2X_DEV_INFO("SD ISCSI MODE\n");
9653 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9654 iscsi_mac);
9655 }
9656 }
9657 #endif
9658 } else {
9659 /* in SF read MACs from port configuration */
9660 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9661 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9662 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9663
9664 #ifdef BCM_CNIC
9665 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9666 iscsi_mac_upper);
9667 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9668 iscsi_mac_lower);
9669 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9670
9671 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9672 fcoe_fip_mac_upper);
9673 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9674 fcoe_fip_mac_lower);
9675 bnx2x_set_mac_buf(fip_mac, val, val2);
9676 #endif
9677 }
9678
9679 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9680 memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9681
9682 #ifdef BCM_CNIC
9683 /* Set the FCoE MAC in MF_SD mode */
9684 if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9685 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9686
9687 /* Disable iSCSI if MAC configuration is
9688 * invalid.
9689 */
9690 if (!is_valid_ether_addr(iscsi_mac)) {
9691 bp->flags |= NO_ISCSI_FLAG;
9692 memset(iscsi_mac, 0, ETH_ALEN);
9693 }
9694
9695 /* Disable FCoE if MAC configuration is
9696 * invalid.
9697 */
9698 if (!is_valid_ether_addr(fip_mac)) {
9699 bp->flags |= NO_FCOE_FLAG;
9700 memset(bp->fip_mac, 0, ETH_ALEN);
9701 }
9702 #endif
9703
9704 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9705 dev_err(&bp->pdev->dev,
9706 "bad Ethernet MAC address configuration: "
9707 "%pM, change it manually before bringing up "
9708 "the appropriate network interface\n",
9709 bp->dev->dev_addr);
9710 }
9711
9712 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9713 {
9714 int /*abs*/func = BP_ABS_FUNC(bp);
9715 int vn;
9716 u32 val = 0;
9717 int rc = 0;
9718
9719 bnx2x_get_common_hwinfo(bp);
9720
9721 /*
9722 * initialize IGU parameters
9723 */
9724 if (CHIP_IS_E1x(bp)) {
9725 bp->common.int_block = INT_BLOCK_HC;
9726
9727 bp->igu_dsb_id = DEF_SB_IGU_ID;
9728 bp->igu_base_sb = 0;
9729 } else {
9730 bp->common.int_block = INT_BLOCK_IGU;
9731
9732 /* do not allow device reset during IGU info preocessing */
9733 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9734
9735 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9736
9737 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9738 int tout = 5000;
9739
9740 BNX2X_DEV_INFO("FORCING Normal Mode\n");
9741
9742 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9743 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9744 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9745
9746 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9747 tout--;
9748 usleep_range(1000, 1000);
9749 }
9750
9751 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9752 dev_err(&bp->pdev->dev,
9753 "FORCING Normal Mode failed!!!\n");
9754 return -EPERM;
9755 }
9756 }
9757
9758 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9759 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9760 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9761 } else
9762 BNX2X_DEV_INFO("IGU Normal Mode\n");
9763
9764 bnx2x_get_igu_cam_info(bp);
9765
9766 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9767 }
9768
9769 /*
9770 * set base FW non-default (fast path) status block id, this value is
9771 * used to initialize the fw_sb_id saved on the fp/queue structure to
9772 * determine the id used by the FW.
9773 */
9774 if (CHIP_IS_E1x(bp))
9775 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9776 else /*
9777 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9778 * the same queue are indicated on the same IGU SB). So we prefer
9779 * FW and IGU SBs to be the same value.
9780 */
9781 bp->base_fw_ndsb = bp->igu_base_sb;
9782
9783 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
9784 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9785 bp->igu_sb_cnt, bp->base_fw_ndsb);
9786
9787 /*
9788 * Initialize MF configuration
9789 */
9790
9791 bp->mf_ov = 0;
9792 bp->mf_mode = 0;
9793 vn = BP_VN(bp);
9794
9795 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9796 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9797 bp->common.shmem2_base, SHMEM2_RD(bp, size),
9798 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9799
9800 if (SHMEM2_HAS(bp, mf_cfg_addr))
9801 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9802 else
9803 bp->common.mf_cfg_base = bp->common.shmem_base +
9804 offsetof(struct shmem_region, func_mb) +
9805 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9806 /*
9807 * get mf configuration:
9808 * 1. existence of MF configuration
9809 * 2. MAC address must be legal (check only upper bytes)
9810 * for Switch-Independent mode;
9811 * OVLAN must be legal for Switch-Dependent mode
9812 * 3. SF_MODE configures specific MF mode
9813 */
9814 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9815 /* get mf configuration */
9816 val = SHMEM_RD(bp,
9817 dev_info.shared_feature_config.config);
9818 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9819
9820 switch (val) {
9821 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9822 val = MF_CFG_RD(bp, func_mf_config[func].
9823 mac_upper);
9824 /* check for legal mac (upper bytes)*/
9825 if (val != 0xffff) {
9826 bp->mf_mode = MULTI_FUNCTION_SI;
9827 bp->mf_config[vn] = MF_CFG_RD(bp,
9828 func_mf_config[func].config);
9829 } else
9830 BNX2X_DEV_INFO("illegal MAC address "
9831 "for SI\n");
9832 break;
9833 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9834 /* get OV configuration */
9835 val = MF_CFG_RD(bp,
9836 func_mf_config[FUNC_0].e1hov_tag);
9837 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9838
9839 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9840 bp->mf_mode = MULTI_FUNCTION_SD;
9841 bp->mf_config[vn] = MF_CFG_RD(bp,
9842 func_mf_config[func].config);
9843 } else
9844 BNX2X_DEV_INFO("illegal OV for SD\n");
9845 break;
9846 default:
9847 /* Unknown configuration: reset mf_config */
9848 bp->mf_config[vn] = 0;
9849 BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9850 }
9851 }
9852
9853 BNX2X_DEV_INFO("%s function mode\n",
9854 IS_MF(bp) ? "multi" : "single");
9855
9856 switch (bp->mf_mode) {
9857 case MULTI_FUNCTION_SD:
9858 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9859 FUNC_MF_CFG_E1HOV_TAG_MASK;
9860 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9861 bp->mf_ov = val;
9862 bp->path_has_ovlan = true;
9863
9864 BNX2X_DEV_INFO("MF OV for func %d is %d "
9865 "(0x%04x)\n", func, bp->mf_ov,
9866 bp->mf_ov);
9867 } else {
9868 dev_err(&bp->pdev->dev,
9869 "No valid MF OV for func %d, "
9870 "aborting\n", func);
9871 return -EPERM;
9872 }
9873 break;
9874 case MULTI_FUNCTION_SI:
9875 BNX2X_DEV_INFO("func %d is in MF "
9876 "switch-independent mode\n", func);
9877 break;
9878 default:
9879 if (vn) {
9880 dev_err(&bp->pdev->dev,
9881 "VN %d is in a single function mode, "
9882 "aborting\n", vn);
9883 return -EPERM;
9884 }
9885 break;
9886 }
9887
9888 /* check if other port on the path needs ovlan:
9889 * Since MF configuration is shared between ports
9890 * Possible mixed modes are only
9891 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9892 */
9893 if (CHIP_MODE_IS_4_PORT(bp) &&
9894 !bp->path_has_ovlan &&
9895 !IS_MF(bp) &&
9896 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9897 u8 other_port = !BP_PORT(bp);
9898 u8 other_func = BP_PATH(bp) + 2*other_port;
9899 val = MF_CFG_RD(bp,
9900 func_mf_config[other_func].e1hov_tag);
9901 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9902 bp->path_has_ovlan = true;
9903 }
9904 }
9905
9906 /* adjust igu_sb_cnt to MF for E1x */
9907 if (CHIP_IS_E1x(bp) && IS_MF(bp))
9908 bp->igu_sb_cnt /= E1HVN_MAX;
9909
9910 /* port info */
9911 bnx2x_get_port_hwinfo(bp);
9912
9913 /* Get MAC addresses */
9914 bnx2x_get_mac_hwinfo(bp);
9915
9916 bnx2x_get_cnic_info(bp);
9917
9918 /* Get current FW pulse sequence */
9919 if (!BP_NOMCP(bp)) {
9920 int mb_idx = BP_FW_MB_IDX(bp);
9921
9922 bp->fw_drv_pulse_wr_seq =
9923 (SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9924 DRV_PULSE_SEQ_MASK);
9925 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9926 }
9927
9928 return rc;
9929 }
9930
9931 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9932 {
9933 int cnt, i, block_end, rodi;
9934 char vpd_start[BNX2X_VPD_LEN+1];
9935 char str_id_reg[VENDOR_ID_LEN+1];
9936 char str_id_cap[VENDOR_ID_LEN+1];
9937 char *vpd_data;
9938 char *vpd_extended_data = NULL;
9939 u8 len;
9940
9941 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
9942 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9943
9944 if (cnt < BNX2X_VPD_LEN)
9945 goto out_not_found;
9946
9947 /* VPD RO tag should be first tag after identifier string, hence
9948 * we should be able to find it in first BNX2X_VPD_LEN chars
9949 */
9950 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
9951 PCI_VPD_LRDT_RO_DATA);
9952 if (i < 0)
9953 goto out_not_found;
9954
9955 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9956 pci_vpd_lrdt_size(&vpd_start[i]);
9957
9958 i += PCI_VPD_LRDT_TAG_SIZE;
9959
9960 if (block_end > BNX2X_VPD_LEN) {
9961 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
9962 if (vpd_extended_data == NULL)
9963 goto out_not_found;
9964
9965 /* read rest of vpd image into vpd_extended_data */
9966 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
9967 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
9968 block_end - BNX2X_VPD_LEN,
9969 vpd_extended_data + BNX2X_VPD_LEN);
9970 if (cnt < (block_end - BNX2X_VPD_LEN))
9971 goto out_not_found;
9972 vpd_data = vpd_extended_data;
9973 } else
9974 vpd_data = vpd_start;
9975
9976 /* now vpd_data holds full vpd content in both cases */
9977
9978 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9979 PCI_VPD_RO_KEYWORD_MFR_ID);
9980 if (rodi < 0)
9981 goto out_not_found;
9982
9983 len = pci_vpd_info_field_size(&vpd_data[rodi]);
9984
9985 if (len != VENDOR_ID_LEN)
9986 goto out_not_found;
9987
9988 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9989
9990 /* vendor specific info */
9991 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
9992 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
9993 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
9994 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
9995
9996 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9997 PCI_VPD_RO_KEYWORD_VENDOR0);
9998 if (rodi >= 0) {
9999 len = pci_vpd_info_field_size(&vpd_data[rodi]);
10000
10001 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10002
10003 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10004 memcpy(bp->fw_ver, &vpd_data[rodi], len);
10005 bp->fw_ver[len] = ' ';
10006 }
10007 }
10008 kfree(vpd_extended_data);
10009 return;
10010 }
10011 out_not_found:
10012 kfree(vpd_extended_data);
10013 return;
10014 }
10015
10016 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10017 {
10018 u32 flags = 0;
10019
10020 if (CHIP_REV_IS_FPGA(bp))
10021 SET_FLAGS(flags, MODE_FPGA);
10022 else if (CHIP_REV_IS_EMUL(bp))
10023 SET_FLAGS(flags, MODE_EMUL);
10024 else
10025 SET_FLAGS(flags, MODE_ASIC);
10026
10027 if (CHIP_MODE_IS_4_PORT(bp))
10028 SET_FLAGS(flags, MODE_PORT4);
10029 else
10030 SET_FLAGS(flags, MODE_PORT2);
10031
10032 if (CHIP_IS_E2(bp))
10033 SET_FLAGS(flags, MODE_E2);
10034 else if (CHIP_IS_E3(bp)) {
10035 SET_FLAGS(flags, MODE_E3);
10036 if (CHIP_REV(bp) == CHIP_REV_Ax)
10037 SET_FLAGS(flags, MODE_E3_A0);
10038 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10039 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10040 }
10041
10042 if (IS_MF(bp)) {
10043 SET_FLAGS(flags, MODE_MF);
10044 switch (bp->mf_mode) {
10045 case MULTI_FUNCTION_SD:
10046 SET_FLAGS(flags, MODE_MF_SD);
10047 break;
10048 case MULTI_FUNCTION_SI:
10049 SET_FLAGS(flags, MODE_MF_SI);
10050 break;
10051 }
10052 } else
10053 SET_FLAGS(flags, MODE_SF);
10054
10055 #if defined(__LITTLE_ENDIAN)
10056 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10057 #else /*(__BIG_ENDIAN)*/
10058 SET_FLAGS(flags, MODE_BIG_ENDIAN);
10059 #endif
10060 INIT_MODE_FLAGS(bp) = flags;
10061 }
10062
10063 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10064 {
10065 int func;
10066 int timer_interval;
10067 int rc;
10068
10069 mutex_init(&bp->port.phy_mutex);
10070 mutex_init(&bp->fw_mb_mutex);
10071 spin_lock_init(&bp->stats_lock);
10072 #ifdef BCM_CNIC
10073 mutex_init(&bp->cnic_mutex);
10074 #endif
10075
10076 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10077 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10078 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10079 rc = bnx2x_get_hwinfo(bp);
10080 if (rc)
10081 return rc;
10082
10083 bnx2x_set_modes_bitmap(bp);
10084
10085 rc = bnx2x_alloc_mem_bp(bp);
10086 if (rc)
10087 return rc;
10088
10089 bnx2x_read_fwinfo(bp);
10090
10091 func = BP_FUNC(bp);
10092
10093 /* need to reset chip if undi was active */
10094 if (!BP_NOMCP(bp))
10095 bnx2x_undi_unload(bp);
10096
10097 /* init fw_seq after undi_unload! */
10098 if (!BP_NOMCP(bp)) {
10099 bp->fw_seq =
10100 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10101 DRV_MSG_SEQ_NUMBER_MASK);
10102 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10103 }
10104
10105 if (CHIP_REV_IS_FPGA(bp))
10106 dev_err(&bp->pdev->dev, "FPGA detected\n");
10107
10108 if (BP_NOMCP(bp) && (func == 0))
10109 dev_err(&bp->pdev->dev, "MCP disabled, "
10110 "must load devices in order!\n");
10111
10112 bp->multi_mode = multi_mode;
10113
10114 bp->disable_tpa = disable_tpa;
10115
10116 #ifdef BCM_CNIC
10117 bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
10118 #endif
10119
10120 /* Set TPA flags */
10121 if (bp->disable_tpa) {
10122 bp->flags &= ~TPA_ENABLE_FLAG;
10123 bp->dev->features &= ~NETIF_F_LRO;
10124 } else {
10125 bp->flags |= TPA_ENABLE_FLAG;
10126 bp->dev->features |= NETIF_F_LRO;
10127 }
10128
10129 if (CHIP_IS_E1(bp))
10130 bp->dropless_fc = 0;
10131 else
10132 bp->dropless_fc = dropless_fc;
10133
10134 bp->mrrs = mrrs;
10135
10136 bp->tx_ring_size = MAX_TX_AVAIL;
10137
10138 /* make sure that the numbers are in the right granularity */
10139 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10140 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10141
10142 timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
10143 bp->current_interval = (poll ? poll : timer_interval);
10144
10145 init_timer(&bp->timer);
10146 bp->timer.expires = jiffies + bp->current_interval;
10147 bp->timer.data = (unsigned long) bp;
10148 bp->timer.function = bnx2x_timer;
10149
10150 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10151 bnx2x_dcbx_init_params(bp);
10152
10153 #ifdef BCM_CNIC
10154 if (CHIP_IS_E1x(bp))
10155 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10156 else
10157 bp->cnic_base_cl_id = FP_SB_MAX_E2;
10158 #endif
10159
10160 /* multiple tx priority */
10161 if (CHIP_IS_E1x(bp))
10162 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10163 if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10164 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10165 if (CHIP_IS_E3B0(bp))
10166 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10167
10168 return rc;
10169 }
10170
10171
10172 /****************************************************************************
10173 * General service functions
10174 ****************************************************************************/
10175
10176 /*
10177 * net_device service functions
10178 */
10179
10180 /* called with rtnl_lock */
10181 static int bnx2x_open(struct net_device *dev)
10182 {
10183 struct bnx2x *bp = netdev_priv(dev);
10184 bool global = false;
10185 int other_engine = BP_PATH(bp) ? 0 : 1;
10186 u32 other_load_counter, load_counter;
10187
10188 netif_carrier_off(dev);
10189
10190 bnx2x_set_power_state(bp, PCI_D0);
10191
10192 other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
10193 load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
10194
10195 /*
10196 * If parity had happen during the unload, then attentions
10197 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10198 * want the first function loaded on the current engine to
10199 * complete the recovery.
10200 */
10201 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10202 bnx2x_chk_parity_attn(bp, &global, true))
10203 do {
10204 /*
10205 * If there are attentions and they are in a global
10206 * blocks, set the GLOBAL_RESET bit regardless whether
10207 * it will be this function that will complete the
10208 * recovery or not.
10209 */
10210 if (global)
10211 bnx2x_set_reset_global(bp);
10212
10213 /*
10214 * Only the first function on the current engine should
10215 * try to recover in open. In case of attentions in
10216 * global blocks only the first in the chip should try
10217 * to recover.
10218 */
10219 if ((!load_counter &&
10220 (!global || !other_load_counter)) &&
10221 bnx2x_trylock_leader_lock(bp) &&
10222 !bnx2x_leader_reset(bp)) {
10223 netdev_info(bp->dev, "Recovered in open\n");
10224 break;
10225 }
10226
10227 /* recovery has failed... */
10228 bnx2x_set_power_state(bp, PCI_D3hot);
10229 bp->recovery_state = BNX2X_RECOVERY_FAILED;
10230
10231 netdev_err(bp->dev, "Recovery flow hasn't been properly"
10232 " completed yet. Try again later. If u still see this"
10233 " message after a few retries then power cycle is"
10234 " required.\n");
10235
10236 return -EAGAIN;
10237 } while (0);
10238
10239 bp->recovery_state = BNX2X_RECOVERY_DONE;
10240 return bnx2x_nic_load(bp, LOAD_OPEN);
10241 }
10242
10243 /* called with rtnl_lock */
10244 int bnx2x_close(struct net_device *dev)
10245 {
10246 struct bnx2x *bp = netdev_priv(dev);
10247
10248 /* Unload the driver, release IRQs */
10249 bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10250
10251 /* Power off */
10252 bnx2x_set_power_state(bp, PCI_D3hot);
10253
10254 return 0;
10255 }
10256
10257 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10258 struct bnx2x_mcast_ramrod_params *p)
10259 {
10260 int mc_count = netdev_mc_count(bp->dev);
10261 struct bnx2x_mcast_list_elem *mc_mac =
10262 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10263 struct netdev_hw_addr *ha;
10264
10265 if (!mc_mac)
10266 return -ENOMEM;
10267
10268 INIT_LIST_HEAD(&p->mcast_list);
10269
10270 netdev_for_each_mc_addr(ha, bp->dev) {
10271 mc_mac->mac = bnx2x_mc_addr(ha);
10272 list_add_tail(&mc_mac->link, &p->mcast_list);
10273 mc_mac++;
10274 }
10275
10276 p->mcast_list_len = mc_count;
10277
10278 return 0;
10279 }
10280
10281 static inline void bnx2x_free_mcast_macs_list(
10282 struct bnx2x_mcast_ramrod_params *p)
10283 {
10284 struct bnx2x_mcast_list_elem *mc_mac =
10285 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10286 link);
10287
10288 WARN_ON(!mc_mac);
10289 kfree(mc_mac);
10290 }
10291
10292 /**
10293 * bnx2x_set_uc_list - configure a new unicast MACs list.
10294 *
10295 * @bp: driver handle
10296 *
10297 * We will use zero (0) as a MAC type for these MACs.
10298 */
10299 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10300 {
10301 int rc;
10302 struct net_device *dev = bp->dev;
10303 struct netdev_hw_addr *ha;
10304 struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10305 unsigned long ramrod_flags = 0;
10306
10307 /* First schedule a cleanup up of old configuration */
10308 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10309 if (rc < 0) {
10310 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10311 return rc;
10312 }
10313
10314 netdev_for_each_uc_addr(ha, dev) {
10315 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10316 BNX2X_UC_LIST_MAC, &ramrod_flags);
10317 if (rc < 0) {
10318 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10319 rc);
10320 return rc;
10321 }
10322 }
10323
10324 /* Execute the pending commands */
10325 __set_bit(RAMROD_CONT, &ramrod_flags);
10326 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10327 BNX2X_UC_LIST_MAC, &ramrod_flags);
10328 }
10329
10330 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10331 {
10332 struct net_device *dev = bp->dev;
10333 struct bnx2x_mcast_ramrod_params rparam = {0};
10334 int rc = 0;
10335
10336 rparam.mcast_obj = &bp->mcast_obj;
10337
10338 /* first, clear all configured multicast MACs */
10339 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10340 if (rc < 0) {
10341 BNX2X_ERR("Failed to clear multicast "
10342 "configuration: %d\n", rc);
10343 return rc;
10344 }
10345
10346 /* then, configure a new MACs list */
10347 if (netdev_mc_count(dev)) {
10348 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10349 if (rc) {
10350 BNX2X_ERR("Failed to create multicast MACs "
10351 "list: %d\n", rc);
10352 return rc;
10353 }
10354
10355 /* Now add the new MACs */
10356 rc = bnx2x_config_mcast(bp, &rparam,
10357 BNX2X_MCAST_CMD_ADD);
10358 if (rc < 0)
10359 BNX2X_ERR("Failed to set a new multicast "
10360 "configuration: %d\n", rc);
10361
10362 bnx2x_free_mcast_macs_list(&rparam);
10363 }
10364
10365 return rc;
10366 }
10367
10368
10369 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10370 void bnx2x_set_rx_mode(struct net_device *dev)
10371 {
10372 struct bnx2x *bp = netdev_priv(dev);
10373 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10374
10375 if (bp->state != BNX2X_STATE_OPEN) {
10376 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10377 return;
10378 }
10379
10380 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10381
10382 if (dev->flags & IFF_PROMISC)
10383 rx_mode = BNX2X_RX_MODE_PROMISC;
10384 else if ((dev->flags & IFF_ALLMULTI) ||
10385 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10386 CHIP_IS_E1(bp)))
10387 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10388 else {
10389 /* some multicasts */
10390 if (bnx2x_set_mc_list(bp) < 0)
10391 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10392
10393 if (bnx2x_set_uc_list(bp) < 0)
10394 rx_mode = BNX2X_RX_MODE_PROMISC;
10395 }
10396
10397 bp->rx_mode = rx_mode;
10398 #ifdef BCM_CNIC
10399 /* handle ISCSI SD mode */
10400 if (IS_MF_ISCSI_SD(bp))
10401 bp->rx_mode = BNX2X_RX_MODE_NONE;
10402 #endif
10403
10404 /* Schedule the rx_mode command */
10405 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10406 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10407 return;
10408 }
10409
10410 bnx2x_set_storm_rx_mode(bp);
10411 }
10412
10413 /* called with rtnl_lock */
10414 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10415 int devad, u16 addr)
10416 {
10417 struct bnx2x *bp = netdev_priv(netdev);
10418 u16 value;
10419 int rc;
10420
10421 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10422 prtad, devad, addr);
10423
10424 /* The HW expects different devad if CL22 is used */
10425 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10426
10427 bnx2x_acquire_phy_lock(bp);
10428 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10429 bnx2x_release_phy_lock(bp);
10430 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10431
10432 if (!rc)
10433 rc = value;
10434 return rc;
10435 }
10436
10437 /* called with rtnl_lock */
10438 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10439 u16 addr, u16 value)
10440 {
10441 struct bnx2x *bp = netdev_priv(netdev);
10442 int rc;
10443
10444 DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10445 " value 0x%x\n", prtad, devad, addr, value);
10446
10447 /* The HW expects different devad if CL22 is used */
10448 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10449
10450 bnx2x_acquire_phy_lock(bp);
10451 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10452 bnx2x_release_phy_lock(bp);
10453 return rc;
10454 }
10455
10456 /* called with rtnl_lock */
10457 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10458 {
10459 struct bnx2x *bp = netdev_priv(dev);
10460 struct mii_ioctl_data *mdio = if_mii(ifr);
10461
10462 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10463 mdio->phy_id, mdio->reg_num, mdio->val_in);
10464
10465 if (!netif_running(dev))
10466 return -EAGAIN;
10467
10468 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10469 }
10470
10471 #ifdef CONFIG_NET_POLL_CONTROLLER
10472 static void poll_bnx2x(struct net_device *dev)
10473 {
10474 struct bnx2x *bp = netdev_priv(dev);
10475
10476 disable_irq(bp->pdev->irq);
10477 bnx2x_interrupt(bp->pdev->irq, dev);
10478 enable_irq(bp->pdev->irq);
10479 }
10480 #endif
10481
10482 static int bnx2x_validate_addr(struct net_device *dev)
10483 {
10484 struct bnx2x *bp = netdev_priv(dev);
10485
10486 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
10487 return -EADDRNOTAVAIL;
10488 return 0;
10489 }
10490
10491 static const struct net_device_ops bnx2x_netdev_ops = {
10492 .ndo_open = bnx2x_open,
10493 .ndo_stop = bnx2x_close,
10494 .ndo_start_xmit = bnx2x_start_xmit,
10495 .ndo_select_queue = bnx2x_select_queue,
10496 .ndo_set_rx_mode = bnx2x_set_rx_mode,
10497 .ndo_set_mac_address = bnx2x_change_mac_addr,
10498 .ndo_validate_addr = bnx2x_validate_addr,
10499 .ndo_do_ioctl = bnx2x_ioctl,
10500 .ndo_change_mtu = bnx2x_change_mtu,
10501 .ndo_fix_features = bnx2x_fix_features,
10502 .ndo_set_features = bnx2x_set_features,
10503 .ndo_tx_timeout = bnx2x_tx_timeout,
10504 #ifdef CONFIG_NET_POLL_CONTROLLER
10505 .ndo_poll_controller = poll_bnx2x,
10506 #endif
10507 .ndo_setup_tc = bnx2x_setup_tc,
10508
10509 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10510 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
10511 #endif
10512 };
10513
10514 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10515 {
10516 struct device *dev = &bp->pdev->dev;
10517
10518 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10519 bp->flags |= USING_DAC_FLAG;
10520 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10521 dev_err(dev, "dma_set_coherent_mask failed, "
10522 "aborting\n");
10523 return -EIO;
10524 }
10525 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10526 dev_err(dev, "System does not support DMA, aborting\n");
10527 return -EIO;
10528 }
10529
10530 return 0;
10531 }
10532
10533 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10534 struct net_device *dev,
10535 unsigned long board_type)
10536 {
10537 struct bnx2x *bp;
10538 int rc;
10539 bool chip_is_e1x = (board_type == BCM57710 ||
10540 board_type == BCM57711 ||
10541 board_type == BCM57711E);
10542
10543 SET_NETDEV_DEV(dev, &pdev->dev);
10544 bp = netdev_priv(dev);
10545
10546 bp->dev = dev;
10547 bp->pdev = pdev;
10548 bp->flags = 0;
10549 bp->pf_num = PCI_FUNC(pdev->devfn);
10550
10551 rc = pci_enable_device(pdev);
10552 if (rc) {
10553 dev_err(&bp->pdev->dev,
10554 "Cannot enable PCI device, aborting\n");
10555 goto err_out;
10556 }
10557
10558 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10559 dev_err(&bp->pdev->dev,
10560 "Cannot find PCI device base address, aborting\n");
10561 rc = -ENODEV;
10562 goto err_out_disable;
10563 }
10564
10565 if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10566 dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10567 " base address, aborting\n");
10568 rc = -ENODEV;
10569 goto err_out_disable;
10570 }
10571
10572 if (atomic_read(&pdev->enable_cnt) == 1) {
10573 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10574 if (rc) {
10575 dev_err(&bp->pdev->dev,
10576 "Cannot obtain PCI resources, aborting\n");
10577 goto err_out_disable;
10578 }
10579
10580 pci_set_master(pdev);
10581 pci_save_state(pdev);
10582 }
10583
10584 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10585 if (bp->pm_cap == 0) {
10586 dev_err(&bp->pdev->dev,
10587 "Cannot find power management capability, aborting\n");
10588 rc = -EIO;
10589 goto err_out_release;
10590 }
10591
10592 if (!pci_is_pcie(pdev)) {
10593 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
10594 rc = -EIO;
10595 goto err_out_release;
10596 }
10597
10598 rc = bnx2x_set_coherency_mask(bp);
10599 if (rc)
10600 goto err_out_release;
10601
10602 dev->mem_start = pci_resource_start(pdev, 0);
10603 dev->base_addr = dev->mem_start;
10604 dev->mem_end = pci_resource_end(pdev, 0);
10605
10606 dev->irq = pdev->irq;
10607
10608 bp->regview = pci_ioremap_bar(pdev, 0);
10609 if (!bp->regview) {
10610 dev_err(&bp->pdev->dev,
10611 "Cannot map register space, aborting\n");
10612 rc = -ENOMEM;
10613 goto err_out_release;
10614 }
10615
10616 bnx2x_set_power_state(bp, PCI_D0);
10617
10618 /* clean indirect addresses */
10619 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10620 PCICFG_VENDOR_ID_OFFSET);
10621 /*
10622 * Clean the following indirect addresses for all functions since it
10623 * is not used by the driver.
10624 */
10625 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10626 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10627 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10628 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10629
10630 if (chip_is_e1x) {
10631 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10632 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10633 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10634 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10635 }
10636
10637 /*
10638 * Enable internal target-read (in case we are probed after PF FLR).
10639 * Must be done prior to any BAR read access. Only for 57712 and up
10640 */
10641 if (!chip_is_e1x)
10642 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10643
10644 /* Reset the load counter */
10645 bnx2x_clear_load_cnt(bp);
10646
10647 dev->watchdog_timeo = TX_TIMEOUT;
10648
10649 dev->netdev_ops = &bnx2x_netdev_ops;
10650 bnx2x_set_ethtool_ops(dev);
10651
10652 dev->priv_flags |= IFF_UNICAST_FLT;
10653
10654 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10655 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10656 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10657
10658 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10659 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10660
10661 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10662 if (bp->flags & USING_DAC_FLAG)
10663 dev->features |= NETIF_F_HIGHDMA;
10664
10665 /* Add Loopback capability to the device */
10666 dev->hw_features |= NETIF_F_LOOPBACK;
10667
10668 #ifdef BCM_DCBNL
10669 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10670 #endif
10671
10672 /* get_port_hwinfo() will set prtad and mmds properly */
10673 bp->mdio.prtad = MDIO_PRTAD_NONE;
10674 bp->mdio.mmds = 0;
10675 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10676 bp->mdio.dev = dev;
10677 bp->mdio.mdio_read = bnx2x_mdio_read;
10678 bp->mdio.mdio_write = bnx2x_mdio_write;
10679
10680 return 0;
10681
10682 err_out_release:
10683 if (atomic_read(&pdev->enable_cnt) == 1)
10684 pci_release_regions(pdev);
10685
10686 err_out_disable:
10687 pci_disable_device(pdev);
10688 pci_set_drvdata(pdev, NULL);
10689
10690 err_out:
10691 return rc;
10692 }
10693
10694 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10695 int *width, int *speed)
10696 {
10697 u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10698
10699 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10700
10701 /* return value of 1=2.5GHz 2=5GHz */
10702 *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10703 }
10704
10705 static int bnx2x_check_firmware(struct bnx2x *bp)
10706 {
10707 const struct firmware *firmware = bp->firmware;
10708 struct bnx2x_fw_file_hdr *fw_hdr;
10709 struct bnx2x_fw_file_section *sections;
10710 u32 offset, len, num_ops;
10711 u16 *ops_offsets;
10712 int i;
10713 const u8 *fw_ver;
10714
10715 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10716 return -EINVAL;
10717
10718 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10719 sections = (struct bnx2x_fw_file_section *)fw_hdr;
10720
10721 /* Make sure none of the offsets and sizes make us read beyond
10722 * the end of the firmware data */
10723 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10724 offset = be32_to_cpu(sections[i].offset);
10725 len = be32_to_cpu(sections[i].len);
10726 if (offset + len > firmware->size) {
10727 dev_err(&bp->pdev->dev,
10728 "Section %d length is out of bounds\n", i);
10729 return -EINVAL;
10730 }
10731 }
10732
10733 /* Likewise for the init_ops offsets */
10734 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10735 ops_offsets = (u16 *)(firmware->data + offset);
10736 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10737
10738 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10739 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10740 dev_err(&bp->pdev->dev,
10741 "Section offset %d is out of bounds\n", i);
10742 return -EINVAL;
10743 }
10744 }
10745
10746 /* Check FW version */
10747 offset = be32_to_cpu(fw_hdr->fw_version.offset);
10748 fw_ver = firmware->data + offset;
10749 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10750 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10751 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10752 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10753 dev_err(&bp->pdev->dev,
10754 "Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10755 fw_ver[0], fw_ver[1], fw_ver[2],
10756 fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10757 BCM_5710_FW_MINOR_VERSION,
10758 BCM_5710_FW_REVISION_VERSION,
10759 BCM_5710_FW_ENGINEERING_VERSION);
10760 return -EINVAL;
10761 }
10762
10763 return 0;
10764 }
10765
10766 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10767 {
10768 const __be32 *source = (const __be32 *)_source;
10769 u32 *target = (u32 *)_target;
10770 u32 i;
10771
10772 for (i = 0; i < n/4; i++)
10773 target[i] = be32_to_cpu(source[i]);
10774 }
10775
10776 /*
10777 Ops array is stored in the following format:
10778 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10779 */
10780 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10781 {
10782 const __be32 *source = (const __be32 *)_source;
10783 struct raw_op *target = (struct raw_op *)_target;
10784 u32 i, j, tmp;
10785
10786 for (i = 0, j = 0; i < n/8; i++, j += 2) {
10787 tmp = be32_to_cpu(source[j]);
10788 target[i].op = (tmp >> 24) & 0xff;
10789 target[i].offset = tmp & 0xffffff;
10790 target[i].raw_data = be32_to_cpu(source[j + 1]);
10791 }
10792 }
10793
10794 /**
10795 * IRO array is stored in the following format:
10796 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10797 */
10798 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10799 {
10800 const __be32 *source = (const __be32 *)_source;
10801 struct iro *target = (struct iro *)_target;
10802 u32 i, j, tmp;
10803
10804 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10805 target[i].base = be32_to_cpu(source[j]);
10806 j++;
10807 tmp = be32_to_cpu(source[j]);
10808 target[i].m1 = (tmp >> 16) & 0xffff;
10809 target[i].m2 = tmp & 0xffff;
10810 j++;
10811 tmp = be32_to_cpu(source[j]);
10812 target[i].m3 = (tmp >> 16) & 0xffff;
10813 target[i].size = tmp & 0xffff;
10814 j++;
10815 }
10816 }
10817
10818 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10819 {
10820 const __be16 *source = (const __be16 *)_source;
10821 u16 *target = (u16 *)_target;
10822 u32 i;
10823
10824 for (i = 0; i < n/2; i++)
10825 target[i] = be16_to_cpu(source[i]);
10826 }
10827
10828 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
10829 do { \
10830 u32 len = be32_to_cpu(fw_hdr->arr.len); \
10831 bp->arr = kmalloc(len, GFP_KERNEL); \
10832 if (!bp->arr) { \
10833 pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10834 goto lbl; \
10835 } \
10836 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
10837 (u8 *)bp->arr, len); \
10838 } while (0)
10839
10840 int bnx2x_init_firmware(struct bnx2x *bp)
10841 {
10842 struct bnx2x_fw_file_hdr *fw_hdr;
10843 int rc;
10844
10845
10846 if (!bp->firmware) {
10847 const char *fw_file_name;
10848
10849 if (CHIP_IS_E1(bp))
10850 fw_file_name = FW_FILE_NAME_E1;
10851 else if (CHIP_IS_E1H(bp))
10852 fw_file_name = FW_FILE_NAME_E1H;
10853 else if (!CHIP_IS_E1x(bp))
10854 fw_file_name = FW_FILE_NAME_E2;
10855 else {
10856 BNX2X_ERR("Unsupported chip revision\n");
10857 return -EINVAL;
10858 }
10859 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10860
10861 rc = request_firmware(&bp->firmware, fw_file_name,
10862 &bp->pdev->dev);
10863 if (rc) {
10864 BNX2X_ERR("Can't load firmware file %s\n",
10865 fw_file_name);
10866 goto request_firmware_exit;
10867 }
10868
10869 rc = bnx2x_check_firmware(bp);
10870 if (rc) {
10871 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10872 goto request_firmware_exit;
10873 }
10874 }
10875
10876 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10877
10878 /* Initialize the pointers to the init arrays */
10879 /* Blob */
10880 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10881
10882 /* Opcodes */
10883 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10884
10885 /* Offsets */
10886 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10887 be16_to_cpu_n);
10888
10889 /* STORMs firmware */
10890 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10891 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10892 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
10893 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10894 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10895 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10896 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
10897 be32_to_cpu(fw_hdr->usem_pram_data.offset);
10898 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10899 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10900 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
10901 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10902 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10903 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10904 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
10905 be32_to_cpu(fw_hdr->csem_pram_data.offset);
10906 /* IRO */
10907 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10908
10909 return 0;
10910
10911 iro_alloc_err:
10912 kfree(bp->init_ops_offsets);
10913 init_offsets_alloc_err:
10914 kfree(bp->init_ops);
10915 init_ops_alloc_err:
10916 kfree(bp->init_data);
10917 request_firmware_exit:
10918 release_firmware(bp->firmware);
10919
10920 return rc;
10921 }
10922
10923 static void bnx2x_release_firmware(struct bnx2x *bp)
10924 {
10925 kfree(bp->init_ops_offsets);
10926 kfree(bp->init_ops);
10927 kfree(bp->init_data);
10928 release_firmware(bp->firmware);
10929 bp->firmware = NULL;
10930 }
10931
10932
10933 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10934 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10935 .init_hw_cmn = bnx2x_init_hw_common,
10936 .init_hw_port = bnx2x_init_hw_port,
10937 .init_hw_func = bnx2x_init_hw_func,
10938
10939 .reset_hw_cmn = bnx2x_reset_common,
10940 .reset_hw_port = bnx2x_reset_port,
10941 .reset_hw_func = bnx2x_reset_func,
10942
10943 .gunzip_init = bnx2x_gunzip_init,
10944 .gunzip_end = bnx2x_gunzip_end,
10945
10946 .init_fw = bnx2x_init_firmware,
10947 .release_fw = bnx2x_release_firmware,
10948 };
10949
10950 void bnx2x__init_func_obj(struct bnx2x *bp)
10951 {
10952 /* Prepare DMAE related driver resources */
10953 bnx2x_setup_dmae(bp);
10954
10955 bnx2x_init_func_obj(bp, &bp->func_obj,
10956 bnx2x_sp(bp, func_rdata),
10957 bnx2x_sp_mapping(bp, func_rdata),
10958 &bnx2x_func_sp_drv);
10959 }
10960
10961 /* must be called after sriov-enable */
10962 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10963 {
10964 int cid_count = BNX2X_L2_CID_COUNT(bp);
10965
10966 #ifdef BCM_CNIC
10967 cid_count += CNIC_CID_MAX;
10968 #endif
10969 return roundup(cid_count, QM_CID_ROUND);
10970 }
10971
10972 /**
10973 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10974 *
10975 * @dev: pci device
10976 *
10977 */
10978 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10979 {
10980 int pos;
10981 u16 control;
10982
10983 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10984
10985 /*
10986 * If MSI-X is not supported - return number of SBs needed to support
10987 * one fast path queue: one FP queue + SB for CNIC
10988 */
10989 if (!pos)
10990 return 1 + CNIC_PRESENT;
10991
10992 /*
10993 * The value in the PCI configuration space is the index of the last
10994 * entry, namely one less than the actual size of the table, which is
10995 * exactly what we want to return from this function: number of all SBs
10996 * without the default SB.
10997 */
10998 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
10999 return control & PCI_MSIX_FLAGS_QSIZE;
11000 }
11001
11002 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11003 const struct pci_device_id *ent)
11004 {
11005 struct net_device *dev = NULL;
11006 struct bnx2x *bp;
11007 int pcie_width, pcie_speed;
11008 int rc, max_non_def_sbs;
11009 int rx_count, tx_count, rss_count;
11010 /*
11011 * An estimated maximum supported CoS number according to the chip
11012 * version.
11013 * We will try to roughly estimate the maximum number of CoSes this chip
11014 * may support in order to minimize the memory allocated for Tx
11015 * netdev_queue's. This number will be accurately calculated during the
11016 * initialization of bp->max_cos based on the chip versions AND chip
11017 * revision in the bnx2x_init_bp().
11018 */
11019 u8 max_cos_est = 0;
11020
11021 switch (ent->driver_data) {
11022 case BCM57710:
11023 case BCM57711:
11024 case BCM57711E:
11025 max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11026 break;
11027
11028 case BCM57712:
11029 case BCM57712_MF:
11030 max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11031 break;
11032
11033 case BCM57800:
11034 case BCM57800_MF:
11035 case BCM57810:
11036 case BCM57810_MF:
11037 case BCM57840:
11038 case BCM57840_MF:
11039 max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11040 break;
11041
11042 default:
11043 pr_err("Unknown board_type (%ld), aborting\n",
11044 ent->driver_data);
11045 return -ENODEV;
11046 }
11047
11048 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11049
11050 /* !!! FIXME !!!
11051 * Do not allow the maximum SB count to grow above 16
11052 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11053 * We will use the FP_SB_MAX_E1x macro for this matter.
11054 */
11055 max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11056
11057 WARN_ON(!max_non_def_sbs);
11058
11059 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
11060 rss_count = max_non_def_sbs - CNIC_PRESENT;
11061
11062 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11063 rx_count = rss_count + FCOE_PRESENT;
11064
11065 /*
11066 * Maximum number of netdev Tx queues:
11067 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
11068 */
11069 tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11070
11071 /* dev zeroed in init_etherdev */
11072 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11073 if (!dev) {
11074 dev_err(&pdev->dev, "Cannot allocate net device\n");
11075 return -ENOMEM;
11076 }
11077
11078 bp = netdev_priv(dev);
11079
11080 DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
11081 tx_count, rx_count);
11082
11083 bp->igu_sb_cnt = max_non_def_sbs;
11084 bp->msg_enable = debug;
11085 pci_set_drvdata(pdev, dev);
11086
11087 rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11088 if (rc < 0) {
11089 free_netdev(dev);
11090 return rc;
11091 }
11092
11093 DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
11094
11095 rc = bnx2x_init_bp(bp);
11096 if (rc)
11097 goto init_one_exit;
11098
11099 /*
11100 * Map doorbels here as we need the real value of bp->max_cos which
11101 * is initialized in bnx2x_init_bp().
11102 */
11103 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11104 min_t(u64, BNX2X_DB_SIZE(bp),
11105 pci_resource_len(pdev, 2)));
11106 if (!bp->doorbells) {
11107 dev_err(&bp->pdev->dev,
11108 "Cannot map doorbell space, aborting\n");
11109 rc = -ENOMEM;
11110 goto init_one_exit;
11111 }
11112
11113 /* calc qm_cid_count */
11114 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11115
11116 #ifdef BCM_CNIC
11117 /* disable FCOE L2 queue for E1x */
11118 if (CHIP_IS_E1x(bp))
11119 bp->flags |= NO_FCOE_FLAG;
11120
11121 #endif
11122
11123 /* Configure interrupt mode: try to enable MSI-X/MSI if
11124 * needed, set bp->num_queues appropriately.
11125 */
11126 bnx2x_set_int_mode(bp);
11127
11128 /* Add all NAPI objects */
11129 bnx2x_add_all_napi(bp);
11130
11131 rc = register_netdev(dev);
11132 if (rc) {
11133 dev_err(&pdev->dev, "Cannot register net device\n");
11134 goto init_one_exit;
11135 }
11136
11137 #ifdef BCM_CNIC
11138 if (!NO_FCOE(bp)) {
11139 /* Add storage MAC address */
11140 rtnl_lock();
11141 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11142 rtnl_unlock();
11143 }
11144 #endif
11145
11146 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11147
11148 netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11149 board_info[ent->driver_data].name,
11150 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11151 pcie_width,
11152 ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11153 (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11154 "5GHz (Gen2)" : "2.5GHz",
11155 dev->base_addr, bp->pdev->irq, dev->dev_addr);
11156
11157 return 0;
11158
11159 init_one_exit:
11160 if (bp->regview)
11161 iounmap(bp->regview);
11162
11163 if (bp->doorbells)
11164 iounmap(bp->doorbells);
11165
11166 free_netdev(dev);
11167
11168 if (atomic_read(&pdev->enable_cnt) == 1)
11169 pci_release_regions(pdev);
11170
11171 pci_disable_device(pdev);
11172 pci_set_drvdata(pdev, NULL);
11173
11174 return rc;
11175 }
11176
11177 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11178 {
11179 struct net_device *dev = pci_get_drvdata(pdev);
11180 struct bnx2x *bp;
11181
11182 if (!dev) {
11183 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11184 return;
11185 }
11186 bp = netdev_priv(dev);
11187
11188 #ifdef BCM_CNIC
11189 /* Delete storage MAC address */
11190 if (!NO_FCOE(bp)) {
11191 rtnl_lock();
11192 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11193 rtnl_unlock();
11194 }
11195 #endif
11196
11197 #ifdef BCM_DCBNL
11198 /* Delete app tlvs from dcbnl */
11199 bnx2x_dcbnl_update_applist(bp, true);
11200 #endif
11201
11202 unregister_netdev(dev);
11203
11204 /* Delete all NAPI objects */
11205 bnx2x_del_all_napi(bp);
11206
11207 /* Power on: we can't let PCI layer write to us while we are in D3 */
11208 bnx2x_set_power_state(bp, PCI_D0);
11209
11210 /* Disable MSI/MSI-X */
11211 bnx2x_disable_msi(bp);
11212
11213 /* Power off */
11214 bnx2x_set_power_state(bp, PCI_D3hot);
11215
11216 /* Make sure RESET task is not scheduled before continuing */
11217 cancel_delayed_work_sync(&bp->sp_rtnl_task);
11218
11219 if (bp->regview)
11220 iounmap(bp->regview);
11221
11222 if (bp->doorbells)
11223 iounmap(bp->doorbells);
11224
11225 bnx2x_release_firmware(bp);
11226
11227 bnx2x_free_mem_bp(bp);
11228
11229 free_netdev(dev);
11230
11231 if (atomic_read(&pdev->enable_cnt) == 1)
11232 pci_release_regions(pdev);
11233
11234 pci_disable_device(pdev);
11235 pci_set_drvdata(pdev, NULL);
11236 }
11237
11238 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11239 {
11240 int i;
11241
11242 bp->state = BNX2X_STATE_ERROR;
11243
11244 bp->rx_mode = BNX2X_RX_MODE_NONE;
11245
11246 #ifdef BCM_CNIC
11247 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11248 #endif
11249 /* Stop Tx */
11250 bnx2x_tx_disable(bp);
11251
11252 bnx2x_netif_stop(bp, 0);
11253
11254 del_timer_sync(&bp->timer);
11255
11256 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11257
11258 /* Release IRQs */
11259 bnx2x_free_irq(bp);
11260
11261 /* Free SKBs, SGEs, TPA pool and driver internals */
11262 bnx2x_free_skbs(bp);
11263
11264 for_each_rx_queue(bp, i)
11265 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11266
11267 bnx2x_free_mem(bp);
11268
11269 bp->state = BNX2X_STATE_CLOSED;
11270
11271 netif_carrier_off(bp->dev);
11272
11273 return 0;
11274 }
11275
11276 static void bnx2x_eeh_recover(struct bnx2x *bp)
11277 {
11278 u32 val;
11279
11280 mutex_init(&bp->port.phy_mutex);
11281
11282 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
11283 bp->link_params.shmem_base = bp->common.shmem_base;
11284 BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
11285
11286 if (!bp->common.shmem_base ||
11287 (bp->common.shmem_base < 0xA0000) ||
11288 (bp->common.shmem_base >= 0xC0000)) {
11289 BNX2X_DEV_INFO("MCP not active\n");
11290 bp->flags |= NO_MCP_FLAG;
11291 return;
11292 }
11293
11294 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11295 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11296 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11297 BNX2X_ERR("BAD MCP validity signature\n");
11298
11299 if (!BP_NOMCP(bp)) {
11300 bp->fw_seq =
11301 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11302 DRV_MSG_SEQ_NUMBER_MASK);
11303 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11304 }
11305 }
11306
11307 /**
11308 * bnx2x_io_error_detected - called when PCI error is detected
11309 * @pdev: Pointer to PCI device
11310 * @state: The current pci connection state
11311 *
11312 * This function is called after a PCI bus error affecting
11313 * this device has been detected.
11314 */
11315 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11316 pci_channel_state_t state)
11317 {
11318 struct net_device *dev = pci_get_drvdata(pdev);
11319 struct bnx2x *bp = netdev_priv(dev);
11320
11321 rtnl_lock();
11322
11323 netif_device_detach(dev);
11324
11325 if (state == pci_channel_io_perm_failure) {
11326 rtnl_unlock();
11327 return PCI_ERS_RESULT_DISCONNECT;
11328 }
11329
11330 if (netif_running(dev))
11331 bnx2x_eeh_nic_unload(bp);
11332
11333 pci_disable_device(pdev);
11334
11335 rtnl_unlock();
11336
11337 /* Request a slot reset */
11338 return PCI_ERS_RESULT_NEED_RESET;
11339 }
11340
11341 /**
11342 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11343 * @pdev: Pointer to PCI device
11344 *
11345 * Restart the card from scratch, as if from a cold-boot.
11346 */
11347 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11348 {
11349 struct net_device *dev = pci_get_drvdata(pdev);
11350 struct bnx2x *bp = netdev_priv(dev);
11351
11352 rtnl_lock();
11353
11354 if (pci_enable_device(pdev)) {
11355 dev_err(&pdev->dev,
11356 "Cannot re-enable PCI device after reset\n");
11357 rtnl_unlock();
11358 return PCI_ERS_RESULT_DISCONNECT;
11359 }
11360
11361 pci_set_master(pdev);
11362 pci_restore_state(pdev);
11363
11364 if (netif_running(dev))
11365 bnx2x_set_power_state(bp, PCI_D0);
11366
11367 rtnl_unlock();
11368
11369 return PCI_ERS_RESULT_RECOVERED;
11370 }
11371
11372 /**
11373 * bnx2x_io_resume - called when traffic can start flowing again
11374 * @pdev: Pointer to PCI device
11375 *
11376 * This callback is called when the error recovery driver tells us that
11377 * its OK to resume normal operation.
11378 */
11379 static void bnx2x_io_resume(struct pci_dev *pdev)
11380 {
11381 struct net_device *dev = pci_get_drvdata(pdev);
11382 struct bnx2x *bp = netdev_priv(dev);
11383
11384 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11385 netdev_err(bp->dev, "Handling parity error recovery. "
11386 "Try again later\n");
11387 return;
11388 }
11389
11390 rtnl_lock();
11391
11392 bnx2x_eeh_recover(bp);
11393
11394 if (netif_running(dev))
11395 bnx2x_nic_load(bp, LOAD_NORMAL);
11396
11397 netif_device_attach(dev);
11398
11399 rtnl_unlock();
11400 }
11401
11402 static struct pci_error_handlers bnx2x_err_handler = {
11403 .error_detected = bnx2x_io_error_detected,
11404 .slot_reset = bnx2x_io_slot_reset,
11405 .resume = bnx2x_io_resume,
11406 };
11407
11408 static struct pci_driver bnx2x_pci_driver = {
11409 .name = DRV_MODULE_NAME,
11410 .id_table = bnx2x_pci_tbl,
11411 .probe = bnx2x_init_one,
11412 .remove = __devexit_p(bnx2x_remove_one),
11413 .suspend = bnx2x_suspend,
11414 .resume = bnx2x_resume,
11415 .err_handler = &bnx2x_err_handler,
11416 };
11417
11418 static int __init bnx2x_init(void)
11419 {
11420 int ret;
11421
11422 pr_info("%s", version);
11423
11424 bnx2x_wq = create_singlethread_workqueue("bnx2x");
11425 if (bnx2x_wq == NULL) {
11426 pr_err("Cannot create workqueue\n");
11427 return -ENOMEM;
11428 }
11429
11430 ret = pci_register_driver(&bnx2x_pci_driver);
11431 if (ret) {
11432 pr_err("Cannot register driver\n");
11433 destroy_workqueue(bnx2x_wq);
11434 }
11435 return ret;
11436 }
11437
11438 static void __exit bnx2x_cleanup(void)
11439 {
11440 pci_unregister_driver(&bnx2x_pci_driver);
11441
11442 destroy_workqueue(bnx2x_wq);
11443 }
11444
11445 void bnx2x_notify_link_changed(struct bnx2x *bp)
11446 {
11447 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11448 }
11449
11450 module_init(bnx2x_init);
11451 module_exit(bnx2x_cleanup);
11452
11453 #ifdef BCM_CNIC
11454 /**
11455 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11456 *
11457 * @bp: driver handle
11458 * @set: set or clear the CAM entry
11459 *
11460 * This function will wait until the ramdord completion returns.
11461 * Return 0 if success, -ENODEV if ramrod doesn't return.
11462 */
11463 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11464 {
11465 unsigned long ramrod_flags = 0;
11466
11467 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11468 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11469 &bp->iscsi_l2_mac_obj, true,
11470 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11471 }
11472
11473 /* count denotes the number of new completions we have seen */
11474 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11475 {
11476 struct eth_spe *spe;
11477
11478 #ifdef BNX2X_STOP_ON_ERROR
11479 if (unlikely(bp->panic))
11480 return;
11481 #endif
11482
11483 spin_lock_bh(&bp->spq_lock);
11484 BUG_ON(bp->cnic_spq_pending < count);
11485 bp->cnic_spq_pending -= count;
11486
11487
11488 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11489 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11490 & SPE_HDR_CONN_TYPE) >>
11491 SPE_HDR_CONN_TYPE_SHIFT;
11492 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11493 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11494
11495 /* Set validation for iSCSI L2 client before sending SETUP
11496 * ramrod
11497 */
11498 if (type == ETH_CONNECTION_TYPE) {
11499 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11500 bnx2x_set_ctx_validation(bp, &bp->context.
11501 vcxt[BNX2X_ISCSI_ETH_CID].eth,
11502 BNX2X_ISCSI_ETH_CID);
11503 }
11504
11505 /*
11506 * There may be not more than 8 L2, not more than 8 L5 SPEs
11507 * and in the air. We also check that number of outstanding
11508 * COMMON ramrods is not more than the EQ and SPQ can
11509 * accommodate.
11510 */
11511 if (type == ETH_CONNECTION_TYPE) {
11512 if (!atomic_read(&bp->cq_spq_left))
11513 break;
11514 else
11515 atomic_dec(&bp->cq_spq_left);
11516 } else if (type == NONE_CONNECTION_TYPE) {
11517 if (!atomic_read(&bp->eq_spq_left))
11518 break;
11519 else
11520 atomic_dec(&bp->eq_spq_left);
11521 } else if ((type == ISCSI_CONNECTION_TYPE) ||
11522 (type == FCOE_CONNECTION_TYPE)) {
11523 if (bp->cnic_spq_pending >=
11524 bp->cnic_eth_dev.max_kwqe_pending)
11525 break;
11526 else
11527 bp->cnic_spq_pending++;
11528 } else {
11529 BNX2X_ERR("Unknown SPE type: %d\n", type);
11530 bnx2x_panic();
11531 break;
11532 }
11533
11534 spe = bnx2x_sp_get_next(bp);
11535 *spe = *bp->cnic_kwq_cons;
11536
11537 DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11538 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11539
11540 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11541 bp->cnic_kwq_cons = bp->cnic_kwq;
11542 else
11543 bp->cnic_kwq_cons++;
11544 }
11545 bnx2x_sp_prod_update(bp);
11546 spin_unlock_bh(&bp->spq_lock);
11547 }
11548
11549 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11550 struct kwqe_16 *kwqes[], u32 count)
11551 {
11552 struct bnx2x *bp = netdev_priv(dev);
11553 int i;
11554
11555 #ifdef BNX2X_STOP_ON_ERROR
11556 if (unlikely(bp->panic))
11557 return -EIO;
11558 #endif
11559
11560 spin_lock_bh(&bp->spq_lock);
11561
11562 for (i = 0; i < count; i++) {
11563 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11564
11565 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11566 break;
11567
11568 *bp->cnic_kwq_prod = *spe;
11569
11570 bp->cnic_kwq_pending++;
11571
11572 DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11573 spe->hdr.conn_and_cmd_data, spe->hdr.type,
11574 spe->data.update_data_addr.hi,
11575 spe->data.update_data_addr.lo,
11576 bp->cnic_kwq_pending);
11577
11578 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11579 bp->cnic_kwq_prod = bp->cnic_kwq;
11580 else
11581 bp->cnic_kwq_prod++;
11582 }
11583
11584 spin_unlock_bh(&bp->spq_lock);
11585
11586 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11587 bnx2x_cnic_sp_post(bp, 0);
11588
11589 return i;
11590 }
11591
11592 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11593 {
11594 struct cnic_ops *c_ops;
11595 int rc = 0;
11596
11597 mutex_lock(&bp->cnic_mutex);
11598 c_ops = rcu_dereference_protected(bp->cnic_ops,
11599 lockdep_is_held(&bp->cnic_mutex));
11600 if (c_ops)
11601 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11602 mutex_unlock(&bp->cnic_mutex);
11603
11604 return rc;
11605 }
11606
11607 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11608 {
11609 struct cnic_ops *c_ops;
11610 int rc = 0;
11611
11612 rcu_read_lock();
11613 c_ops = rcu_dereference(bp->cnic_ops);
11614 if (c_ops)
11615 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11616 rcu_read_unlock();
11617
11618 return rc;
11619 }
11620
11621 /*
11622 * for commands that have no data
11623 */
11624 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11625 {
11626 struct cnic_ctl_info ctl = {0};
11627
11628 ctl.cmd = cmd;
11629
11630 return bnx2x_cnic_ctl_send(bp, &ctl);
11631 }
11632
11633 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11634 {
11635 struct cnic_ctl_info ctl = {0};
11636
11637 /* first we tell CNIC and only then we count this as a completion */
11638 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11639 ctl.data.comp.cid = cid;
11640 ctl.data.comp.error = err;
11641
11642 bnx2x_cnic_ctl_send_bh(bp, &ctl);
11643 bnx2x_cnic_sp_post(bp, 0);
11644 }
11645
11646
11647 /* Called with netif_addr_lock_bh() taken.
11648 * Sets an rx_mode config for an iSCSI ETH client.
11649 * Doesn't block.
11650 * Completion should be checked outside.
11651 */
11652 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11653 {
11654 unsigned long accept_flags = 0, ramrod_flags = 0;
11655 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11656 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11657
11658 if (start) {
11659 /* Start accepting on iSCSI L2 ring. Accept all multicasts
11660 * because it's the only way for UIO Queue to accept
11661 * multicasts (in non-promiscuous mode only one Queue per
11662 * function will receive multicast packets (leading in our
11663 * case).
11664 */
11665 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11666 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11667 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11668 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11669
11670 /* Clear STOP_PENDING bit if START is requested */
11671 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11672
11673 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11674 } else
11675 /* Clear START_PENDING bit if STOP is requested */
11676 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11677
11678 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11679 set_bit(sched_state, &bp->sp_state);
11680 else {
11681 __set_bit(RAMROD_RX, &ramrod_flags);
11682 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11683 ramrod_flags);
11684 }
11685 }
11686
11687
11688 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11689 {
11690 struct bnx2x *bp = netdev_priv(dev);
11691 int rc = 0;
11692
11693 switch (ctl->cmd) {
11694 case DRV_CTL_CTXTBL_WR_CMD: {
11695 u32 index = ctl->data.io.offset;
11696 dma_addr_t addr = ctl->data.io.dma_addr;
11697
11698 bnx2x_ilt_wr(bp, index, addr);
11699 break;
11700 }
11701
11702 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11703 int count = ctl->data.credit.credit_count;
11704
11705 bnx2x_cnic_sp_post(bp, count);
11706 break;
11707 }
11708
11709 /* rtnl_lock is held. */
11710 case DRV_CTL_START_L2_CMD: {
11711 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11712 unsigned long sp_bits = 0;
11713
11714 /* Configure the iSCSI classification object */
11715 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11716 cp->iscsi_l2_client_id,
11717 cp->iscsi_l2_cid, BP_FUNC(bp),
11718 bnx2x_sp(bp, mac_rdata),
11719 bnx2x_sp_mapping(bp, mac_rdata),
11720 BNX2X_FILTER_MAC_PENDING,
11721 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11722 &bp->macs_pool);
11723
11724 /* Set iSCSI MAC address */
11725 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11726 if (rc)
11727 break;
11728
11729 mmiowb();
11730 barrier();
11731
11732 /* Start accepting on iSCSI L2 ring */
11733
11734 netif_addr_lock_bh(dev);
11735 bnx2x_set_iscsi_eth_rx_mode(bp, true);
11736 netif_addr_unlock_bh(dev);
11737
11738 /* bits to wait on */
11739 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11740 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11741
11742 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11743 BNX2X_ERR("rx_mode completion timed out!\n");
11744
11745 break;
11746 }
11747
11748 /* rtnl_lock is held. */
11749 case DRV_CTL_STOP_L2_CMD: {
11750 unsigned long sp_bits = 0;
11751
11752 /* Stop accepting on iSCSI L2 ring */
11753 netif_addr_lock_bh(dev);
11754 bnx2x_set_iscsi_eth_rx_mode(bp, false);
11755 netif_addr_unlock_bh(dev);
11756
11757 /* bits to wait on */
11758 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11759 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11760
11761 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11762 BNX2X_ERR("rx_mode completion timed out!\n");
11763
11764 mmiowb();
11765 barrier();
11766
11767 /* Unset iSCSI L2 MAC */
11768 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11769 BNX2X_ISCSI_ETH_MAC, true);
11770 break;
11771 }
11772 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11773 int count = ctl->data.credit.credit_count;
11774
11775 smp_mb__before_atomic_inc();
11776 atomic_add(count, &bp->cq_spq_left);
11777 smp_mb__after_atomic_inc();
11778 break;
11779 }
11780 case DRV_CTL_ULP_REGISTER_CMD: {
11781 int ulp_type = ctl->data.ulp_type;
11782
11783 if (CHIP_IS_E3(bp)) {
11784 int idx = BP_FW_MB_IDX(bp);
11785 u32 cap;
11786
11787 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11788 if (ulp_type == CNIC_ULP_ISCSI)
11789 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11790 else if (ulp_type == CNIC_ULP_FCOE)
11791 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11792 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11793 }
11794 break;
11795 }
11796 case DRV_CTL_ULP_UNREGISTER_CMD: {
11797 int ulp_type = ctl->data.ulp_type;
11798
11799 if (CHIP_IS_E3(bp)) {
11800 int idx = BP_FW_MB_IDX(bp);
11801 u32 cap;
11802
11803 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11804 if (ulp_type == CNIC_ULP_ISCSI)
11805 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11806 else if (ulp_type == CNIC_ULP_FCOE)
11807 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11808 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11809 }
11810 break;
11811 }
11812
11813 default:
11814 BNX2X_ERR("unknown command %x\n", ctl->cmd);
11815 rc = -EINVAL;
11816 }
11817
11818 return rc;
11819 }
11820
11821 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11822 {
11823 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11824
11825 if (bp->flags & USING_MSIX_FLAG) {
11826 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11827 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11828 cp->irq_arr[0].vector = bp->msix_table[1].vector;
11829 } else {
11830 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11831 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11832 }
11833 if (!CHIP_IS_E1x(bp))
11834 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11835 else
11836 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11837
11838 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
11839 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11840 cp->irq_arr[1].status_blk = bp->def_status_blk;
11841 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11842 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11843
11844 cp->num_irq = 2;
11845 }
11846
11847 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11848 void *data)
11849 {
11850 struct bnx2x *bp = netdev_priv(dev);
11851 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11852
11853 if (ops == NULL)
11854 return -EINVAL;
11855
11856 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11857 if (!bp->cnic_kwq)
11858 return -ENOMEM;
11859
11860 bp->cnic_kwq_cons = bp->cnic_kwq;
11861 bp->cnic_kwq_prod = bp->cnic_kwq;
11862 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11863
11864 bp->cnic_spq_pending = 0;
11865 bp->cnic_kwq_pending = 0;
11866
11867 bp->cnic_data = data;
11868
11869 cp->num_irq = 0;
11870 cp->drv_state |= CNIC_DRV_STATE_REGD;
11871 cp->iro_arr = bp->iro_arr;
11872
11873 bnx2x_setup_cnic_irq_info(bp);
11874
11875 rcu_assign_pointer(bp->cnic_ops, ops);
11876
11877 return 0;
11878 }
11879
11880 static int bnx2x_unregister_cnic(struct net_device *dev)
11881 {
11882 struct bnx2x *bp = netdev_priv(dev);
11883 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11884
11885 mutex_lock(&bp->cnic_mutex);
11886 cp->drv_state = 0;
11887 RCU_INIT_POINTER(bp->cnic_ops, NULL);
11888 mutex_unlock(&bp->cnic_mutex);
11889 synchronize_rcu();
11890 kfree(bp->cnic_kwq);
11891 bp->cnic_kwq = NULL;
11892
11893 return 0;
11894 }
11895
11896 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11897 {
11898 struct bnx2x *bp = netdev_priv(dev);
11899 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11900
11901 /* If both iSCSI and FCoE are disabled - return NULL in
11902 * order to indicate CNIC that it should not try to work
11903 * with this device.
11904 */
11905 if (NO_ISCSI(bp) && NO_FCOE(bp))
11906 return NULL;
11907
11908 cp->drv_owner = THIS_MODULE;
11909 cp->chip_id = CHIP_ID(bp);
11910 cp->pdev = bp->pdev;
11911 cp->io_base = bp->regview;
11912 cp->io_base2 = bp->doorbells;
11913 cp->max_kwqe_pending = 8;
11914 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11915 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11916 bnx2x_cid_ilt_lines(bp);
11917 cp->ctx_tbl_len = CNIC_ILT_LINES;
11918 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11919 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11920 cp->drv_ctl = bnx2x_drv_ctl;
11921 cp->drv_register_cnic = bnx2x_register_cnic;
11922 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11923 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11924 cp->iscsi_l2_client_id =
11925 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11926 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11927
11928 if (NO_ISCSI_OOO(bp))
11929 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11930
11931 if (NO_ISCSI(bp))
11932 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11933
11934 if (NO_FCOE(bp))
11935 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11936
11937 DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11938 "starting cid %d\n",
11939 cp->ctx_blk_size,
11940 cp->ctx_tbl_offset,
11941 cp->ctx_tbl_len,
11942 cp->starting_cid);
11943 return cp;
11944 }
11945 EXPORT_SYMBOL(bnx2x_cnic_probe);
11946
11947 #endif /* BCM_CNIC */
11948