Merge git://git.infradead.org/users/eparis/audit
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_init_ops.h
1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2 * Static functions needed during the initialization.
3 * This file is "included" in bnx2x_main.c.
4 *
5 * Copyright (c) 2007-2013 Broadcom Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12 * Written by: Vladislav Zolotarov <vladz@broadcom.com>
13 */
14
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
17
18
19 #ifndef BP_ILT
20 #define BP_ILT(bp) NULL
21 #endif
22
23 #ifndef BP_FUNC
24 #define BP_FUNC(bp) 0
25 #endif
26
27 #ifndef BP_PORT
28 #define BP_PORT(bp) 0
29 #endif
30
31 #ifndef BNX2X_ILT_FREE
32 #define BNX2X_ILT_FREE(x, y, sz)
33 #endif
34
35 #ifndef BNX2X_ILT_ZALLOC
36 #define BNX2X_ILT_ZALLOC(x, y, sz)
37 #endif
38
39 #ifndef ILOG2
40 #define ILOG2(x) x
41 #endif
42
43 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
44 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
45 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
46 dma_addr_t phys_addr, u32 addr,
47 u32 len);
48
49 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr,
50 const u32 *data, u32 len)
51 {
52 u32 i;
53
54 for (i = 0; i < len; i++)
55 REG_WR(bp, addr + i*4, data[i]);
56 }
57
58 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr,
59 const u32 *data, u32 len)
60 {
61 u32 i;
62
63 for (i = 0; i < len; i++)
64 bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
65 }
66
67 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len,
68 u8 wb)
69 {
70 if (bp->dmae_ready)
71 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
72
73 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
74 else if (wb && CHIP_IS_E1(bp))
75 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
76
77 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
78 else
79 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
80 }
81
82 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill,
83 u32 len, u8 wb)
84 {
85 u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
86 u32 buf_len32 = buf_len/4;
87 u32 i;
88
89 memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
90
91 for (i = 0; i < len; i += buf_len32) {
92 u32 cur_len = min(buf_len32, len - i);
93
94 bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
95 }
96 }
97
98 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
99 {
100 if (bp->dmae_ready)
101 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
102
103 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
104 else if (CHIP_IS_E1(bp))
105 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
106
107 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
108 else
109 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
110 }
111
112 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr,
113 const u32 *data, u32 len64)
114 {
115 u32 buf_len32 = FW_BUF_SIZE/4;
116 u32 len = len64*2;
117 u64 data64 = 0;
118 u32 i;
119
120 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
121 data64 = HILO_U64((*(data + 1)), (*data));
122
123 len64 = min((u32)(FW_BUF_SIZE/8), len64);
124 for (i = 0; i < len64; i++) {
125 u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
126
127 *pdata = data64;
128 }
129
130 for (i = 0; i < len; i += buf_len32) {
131 u32 cur_len = min(buf_len32, len - i);
132
133 bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
134 }
135 }
136
137 /*********************************************************
138 There are different blobs for each PRAM section.
139 In addition, each blob write operation is divided into a few operations
140 in order to decrease the amount of phys. contiguous buffer needed.
141 Thus, when we select a blob the address may be with some offset
142 from the beginning of PRAM section.
143 The same holds for the INT_TABLE sections.
144 **********************************************************/
145 #define IF_IS_INT_TABLE_ADDR(base, addr) \
146 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
147
148 #define IF_IS_PRAM_ADDR(base, addr) \
149 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
150
151 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr,
152 const u8 *data)
153 {
154 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
155 data = INIT_TSEM_INT_TABLE_DATA(bp);
156 else
157 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
158 data = INIT_CSEM_INT_TABLE_DATA(bp);
159 else
160 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
161 data = INIT_USEM_INT_TABLE_DATA(bp);
162 else
163 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
164 data = INIT_XSEM_INT_TABLE_DATA(bp);
165 else
166 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
167 data = INIT_TSEM_PRAM_DATA(bp);
168 else
169 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
170 data = INIT_CSEM_PRAM_DATA(bp);
171 else
172 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
173 data = INIT_USEM_PRAM_DATA(bp);
174 else
175 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
176 data = INIT_XSEM_PRAM_DATA(bp);
177
178 return data;
179 }
180
181 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr,
182 const u32 *data, u32 len)
183 {
184 if (bp->dmae_ready)
185 VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
186
187 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
188 else if (CHIP_IS_E1(bp))
189 bnx2x_init_ind_wr(bp, addr, data, len);
190
191 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
192 else
193 bnx2x_init_str_wr(bp, addr, data, len);
194 }
195
196 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo,
197 u32 val_hi)
198 {
199 u32 wb_write[2];
200
201 wb_write[0] = val_lo;
202 wb_write[1] = val_hi;
203 REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
204 }
205 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len,
206 u32 blob_off)
207 {
208 const u8 *data = NULL;
209 int rc;
210 u32 i;
211
212 data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
213
214 rc = bnx2x_gunzip(bp, data, len);
215 if (rc)
216 return;
217
218 /* gunzip_outlen is in dwords */
219 len = GUNZIP_OUTLEN(bp);
220 for (i = 0; i < len; i++)
221 ((u32 *)GUNZIP_BUF(bp))[i] = (__force u32)
222 cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
223
224 bnx2x_write_big_buf_wb(bp, addr, len);
225 }
226
227 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
228 {
229 u16 op_start =
230 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
231 STAGE_START)];
232 u16 op_end =
233 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
234 STAGE_END)];
235 const union init_op *op;
236 u32 op_idx, op_type, addr, len;
237 const u32 *data, *data_base;
238
239 /* If empty block */
240 if (op_start == op_end)
241 return;
242
243 data_base = INIT_DATA(bp);
244
245 for (op_idx = op_start; op_idx < op_end; op_idx++) {
246
247 op = (const union init_op *)&(INIT_OPS(bp)[op_idx]);
248 /* Get generic data */
249 op_type = op->raw.op;
250 addr = op->raw.offset;
251 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
252 * OP_WR64 (we assume that op_arr_write and op_write have the
253 * same structure).
254 */
255 len = op->arr_wr.data_len;
256 data = data_base + op->arr_wr.data_off;
257
258 switch (op_type) {
259 case OP_RD:
260 REG_RD(bp, addr);
261 break;
262 case OP_WR:
263 REG_WR(bp, addr, op->write.val);
264 break;
265 case OP_SW:
266 bnx2x_init_str_wr(bp, addr, data, len);
267 break;
268 case OP_WB:
269 bnx2x_init_wr_wb(bp, addr, data, len);
270 break;
271 case OP_ZR:
272 bnx2x_init_fill(bp, addr, 0, op->zero.len, 0);
273 break;
274 case OP_WB_ZR:
275 bnx2x_init_fill(bp, addr, 0, op->zero.len, 1);
276 break;
277 case OP_ZP:
278 bnx2x_init_wr_zp(bp, addr, len,
279 op->arr_wr.data_off);
280 break;
281 case OP_WR_64:
282 bnx2x_init_wr_64(bp, addr, data, len);
283 break;
284 case OP_IF_MODE_AND:
285 /* if any of the flags doesn't match, skip the
286 * conditional block.
287 */
288 if ((INIT_MODE_FLAGS(bp) &
289 op->if_mode.mode_bit_map) !=
290 op->if_mode.mode_bit_map)
291 op_idx += op->if_mode.cmd_offset;
292 break;
293 case OP_IF_MODE_OR:
294 /* if all the flags don't match, skip the conditional
295 * block.
296 */
297 if ((INIT_MODE_FLAGS(bp) &
298 op->if_mode.mode_bit_map) == 0)
299 op_idx += op->if_mode.cmd_offset;
300 break;
301 default:
302 /* Should never get here! */
303
304 break;
305 }
306 }
307 }
308
309
310 /****************************************************************************
311 * PXP Arbiter
312 ****************************************************************************/
313 /*
314 * This code configures the PCI read/write arbiter
315 * which implements a weighted round robin
316 * between the virtual queues in the chip.
317 *
318 * The values were derived for each PCI max payload and max request size.
319 * since max payload and max request size are only known at run time,
320 * this is done as a separate init stage.
321 */
322
323 #define NUM_WR_Q 13
324 #define NUM_RD_Q 29
325 #define MAX_RD_ORD 3
326 #define MAX_WR_ORD 2
327
328 /* configuration for one arbiter queue */
329 struct arb_line {
330 int l;
331 int add;
332 int ubound;
333 };
334
335 /* derived configuration for each read queue for each max request size */
336 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
337 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
338 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
339 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
340 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
341 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
342 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
343 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
344 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
345 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
346 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
347 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
348 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
349 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
350 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
351 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
352 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
353 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
354 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
355 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
356 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
357 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
358 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
359 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
360 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
361 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
362 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
363 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
364 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
365 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
366 };
367
368 /* derived configuration for each write queue for each max request size */
369 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
370 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
371 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
372 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
373 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
374 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
375 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
376 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
377 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
378 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
379 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
380 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
381 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
382 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
383 };
384
385 /* register addresses for read queues */
386 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
387 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
388 PXP2_REG_RQ_BW_RD_UBOUND0},
389 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
390 PXP2_REG_PSWRQ_BW_UB1},
391 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
392 PXP2_REG_PSWRQ_BW_UB2},
393 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
394 PXP2_REG_PSWRQ_BW_UB3},
395 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
396 PXP2_REG_RQ_BW_RD_UBOUND4},
397 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
398 PXP2_REG_RQ_BW_RD_UBOUND5},
399 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
400 PXP2_REG_PSWRQ_BW_UB6},
401 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
402 PXP2_REG_PSWRQ_BW_UB7},
403 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
404 PXP2_REG_PSWRQ_BW_UB8},
405 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
406 PXP2_REG_PSWRQ_BW_UB9},
407 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
408 PXP2_REG_PSWRQ_BW_UB10},
409 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
410 PXP2_REG_PSWRQ_BW_UB11},
411 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
412 PXP2_REG_RQ_BW_RD_UBOUND12},
413 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
414 PXP2_REG_RQ_BW_RD_UBOUND13},
415 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
416 PXP2_REG_RQ_BW_RD_UBOUND14},
417 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
418 PXP2_REG_RQ_BW_RD_UBOUND15},
419 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
420 PXP2_REG_RQ_BW_RD_UBOUND16},
421 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
422 PXP2_REG_RQ_BW_RD_UBOUND17},
423 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
424 PXP2_REG_RQ_BW_RD_UBOUND18},
425 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
426 PXP2_REG_RQ_BW_RD_UBOUND19},
427 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
428 PXP2_REG_RQ_BW_RD_UBOUND20},
429 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
430 PXP2_REG_RQ_BW_RD_UBOUND22},
431 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
432 PXP2_REG_RQ_BW_RD_UBOUND23},
433 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
434 PXP2_REG_RQ_BW_RD_UBOUND24},
435 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
436 PXP2_REG_RQ_BW_RD_UBOUND25},
437 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
438 PXP2_REG_RQ_BW_RD_UBOUND26},
439 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
440 PXP2_REG_RQ_BW_RD_UBOUND27},
441 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
442 PXP2_REG_PSWRQ_BW_UB28}
443 };
444
445 /* register addresses for write queues */
446 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
447 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
448 PXP2_REG_PSWRQ_BW_UB1},
449 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
450 PXP2_REG_PSWRQ_BW_UB2},
451 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
452 PXP2_REG_PSWRQ_BW_UB3},
453 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
454 PXP2_REG_PSWRQ_BW_UB6},
455 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
456 PXP2_REG_PSWRQ_BW_UB7},
457 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
458 PXP2_REG_PSWRQ_BW_UB8},
459 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
460 PXP2_REG_PSWRQ_BW_UB9},
461 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
462 PXP2_REG_PSWRQ_BW_UB10},
463 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
464 PXP2_REG_PSWRQ_BW_UB11},
465 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
466 PXP2_REG_PSWRQ_BW_UB28},
467 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
468 PXP2_REG_RQ_BW_WR_UBOUND29},
469 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
470 PXP2_REG_RQ_BW_WR_UBOUND30}
471 };
472
473 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
474 int w_order)
475 {
476 u32 val, i;
477
478 if (r_order > MAX_RD_ORD) {
479 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
480 r_order, MAX_RD_ORD);
481 r_order = MAX_RD_ORD;
482 }
483 if (w_order > MAX_WR_ORD) {
484 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
485 w_order, MAX_WR_ORD);
486 w_order = MAX_WR_ORD;
487 }
488 if (CHIP_REV_IS_FPGA(bp)) {
489 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
490 w_order = 0;
491 }
492 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
493
494 for (i = 0; i < NUM_RD_Q-1; i++) {
495 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
496 REG_WR(bp, read_arb_addr[i].add,
497 read_arb_data[i][r_order].add);
498 REG_WR(bp, read_arb_addr[i].ubound,
499 read_arb_data[i][r_order].ubound);
500 }
501
502 for (i = 0; i < NUM_WR_Q-1; i++) {
503 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
504 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
505
506 REG_WR(bp, write_arb_addr[i].l,
507 write_arb_data[i][w_order].l);
508
509 REG_WR(bp, write_arb_addr[i].add,
510 write_arb_data[i][w_order].add);
511
512 REG_WR(bp, write_arb_addr[i].ubound,
513 write_arb_data[i][w_order].ubound);
514 } else {
515
516 val = REG_RD(bp, write_arb_addr[i].l);
517 REG_WR(bp, write_arb_addr[i].l,
518 val | (write_arb_data[i][w_order].l << 10));
519
520 val = REG_RD(bp, write_arb_addr[i].add);
521 REG_WR(bp, write_arb_addr[i].add,
522 val | (write_arb_data[i][w_order].add << 10));
523
524 val = REG_RD(bp, write_arb_addr[i].ubound);
525 REG_WR(bp, write_arb_addr[i].ubound,
526 val | (write_arb_data[i][w_order].ubound << 7));
527 }
528 }
529
530 val = write_arb_data[NUM_WR_Q-1][w_order].add;
531 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
532 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
533 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
534
535 val = read_arb_data[NUM_RD_Q-1][r_order].add;
536 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
537 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
538 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
539
540 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
541 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
542 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
543 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
544
545 if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
546 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
547
548 if (CHIP_IS_E3(bp))
549 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
550 else if (CHIP_IS_E2(bp))
551 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
552 else
553 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
554
555 if (!CHIP_IS_E1(bp)) {
556 /* MPS w_order optimal TH presently TH
557 * 128 0 0 2
558 * 256 1 1 3
559 * >=512 2 2 3
560 */
561 /* DMAE is special */
562 if (!CHIP_IS_E1H(bp)) {
563 /* E2 can use optimal TH */
564 val = w_order;
565 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
566 } else {
567 val = ((w_order == 0) ? 2 : 3);
568 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
569 }
570
571 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
572 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
573 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
574 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
575 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
576 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
577 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
578 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
579 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
580 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
581 }
582
583 /* Validate number of tags suppoted by device */
584 #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
585 val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
586 val &= 0xFF;
587 if (val <= 0x20)
588 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
589 }
590
591 /****************************************************************************
592 * ILT management
593 ****************************************************************************/
594 /*
595 * This codes hides the low level HW interaction for ILT management and
596 * configuration. The API consists of a shadow ILT table which is set by the
597 * driver and a set of routines to use it to configure the HW.
598 *
599 */
600
601 /* ILT HW init operations */
602
603 /* ILT memory management operations */
604 #define ILT_MEMOP_ALLOC 0
605 #define ILT_MEMOP_FREE 1
606
607 /* the phys address is shifted right 12 bits and has an added
608 * 1=valid bit added to the 53rd bit
609 * then since this is a wide register(TM)
610 * we split it into two 32 bit writes
611 */
612 #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
613 #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
614 #define ILT_RANGE(f, l) (((l) << 10) | f)
615
616 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
617 struct ilt_line *line, u32 size, u8 memop)
618 {
619 if (memop == ILT_MEMOP_FREE) {
620 BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
621 return 0;
622 }
623 BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
624 if (!line->page)
625 return -1;
626 line->size = size;
627 return 0;
628 }
629
630
631 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
632 u8 memop)
633 {
634 int i, rc;
635 struct bnx2x_ilt *ilt = BP_ILT(bp);
636 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
637
638 if (!ilt || !ilt->lines)
639 return -1;
640
641 if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
642 return 0;
643
644 for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
645 rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
646 ilt_cli->page_size, memop);
647 }
648 return rc;
649 }
650
651 static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, u8 memop)
652 {
653 int rc = 0;
654
655 if (CONFIGURE_NIC_MODE(bp))
656 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
657 if (!rc)
658 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
659
660 return rc;
661 }
662
663 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
664 {
665 int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
666 if (!rc)
667 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
668 if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
669 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
670
671 return rc;
672 }
673
674 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
675 dma_addr_t page_mapping)
676 {
677 u32 reg;
678
679 if (CHIP_IS_E1(bp))
680 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
681 else
682 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
683
684 bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
685 }
686
687 static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
688 struct bnx2x_ilt *ilt, int idx, u8 initop)
689 {
690 dma_addr_t null_mapping;
691 int abs_idx = ilt->start_line + idx;
692
693
694 switch (initop) {
695 case INITOP_INIT:
696 /* set in the init-value array */
697 case INITOP_SET:
698 bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
699 break;
700 case INITOP_CLEAR:
701 null_mapping = 0;
702 bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
703 break;
704 }
705 }
706
707 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
708 struct ilt_client_info *ilt_cli,
709 u32 ilt_start, u8 initop)
710 {
711 u32 start_reg = 0;
712 u32 end_reg = 0;
713
714 /* The boundary is either SET or INIT,
715 CLEAR => SET and for now SET ~~ INIT */
716
717 /* find the appropriate regs */
718 if (CHIP_IS_E1(bp)) {
719 switch (ilt_cli->client_num) {
720 case ILT_CLIENT_CDU:
721 start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
722 break;
723 case ILT_CLIENT_QM:
724 start_reg = PXP2_REG_PSWRQ_QM0_L2P;
725 break;
726 case ILT_CLIENT_SRC:
727 start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
728 break;
729 case ILT_CLIENT_TM:
730 start_reg = PXP2_REG_PSWRQ_TM0_L2P;
731 break;
732 }
733 REG_WR(bp, start_reg + BP_FUNC(bp)*4,
734 ILT_RANGE((ilt_start + ilt_cli->start),
735 (ilt_start + ilt_cli->end)));
736 } else {
737 switch (ilt_cli->client_num) {
738 case ILT_CLIENT_CDU:
739 start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
740 end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
741 break;
742 case ILT_CLIENT_QM:
743 start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
744 end_reg = PXP2_REG_RQ_QM_LAST_ILT;
745 break;
746 case ILT_CLIENT_SRC:
747 start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
748 end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
749 break;
750 case ILT_CLIENT_TM:
751 start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
752 end_reg = PXP2_REG_RQ_TM_LAST_ILT;
753 break;
754 }
755 REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
756 REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
757 }
758 }
759
760 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
761 struct bnx2x_ilt *ilt,
762 struct ilt_client_info *ilt_cli,
763 u8 initop)
764 {
765 int i;
766
767 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
768 return;
769
770 for (i = ilt_cli->start; i <= ilt_cli->end; i++)
771 bnx2x_ilt_line_init_op(bp, ilt, i, initop);
772
773 /* init/clear the ILT boundries */
774 bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
775 }
776
777 static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
778 struct ilt_client_info *ilt_cli, u8 initop)
779 {
780 struct bnx2x_ilt *ilt = BP_ILT(bp);
781
782 bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
783 }
784
785 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
786 int cli_num, u8 initop)
787 {
788 struct bnx2x_ilt *ilt = BP_ILT(bp);
789 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
790
791 bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
792 }
793
794 static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, u8 initop)
795 {
796 if (CONFIGURE_NIC_MODE(bp))
797 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
798 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
799 }
800
801 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
802 {
803 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
804 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
805 if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
806 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
807 }
808
809 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
810 u32 psz_reg, u8 initop)
811 {
812 struct bnx2x_ilt *ilt = BP_ILT(bp);
813 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
814
815 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
816 return;
817
818 switch (initop) {
819 case INITOP_INIT:
820 /* set in the init-value array */
821 case INITOP_SET:
822 REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
823 break;
824 case INITOP_CLEAR:
825 break;
826 }
827 }
828
829 /*
830 * called during init common stage, ilt clients should be initialized
831 * prioir to calling this function
832 */
833 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
834 {
835 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
836 PXP2_REG_RQ_CDU_P_SIZE, initop);
837 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
838 PXP2_REG_RQ_QM_P_SIZE, initop);
839 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
840 PXP2_REG_RQ_SRC_P_SIZE, initop);
841 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
842 PXP2_REG_RQ_TM_P_SIZE, initop);
843 }
844
845 /****************************************************************************
846 * QM initializations
847 ****************************************************************************/
848 #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
849 #define QM_INIT_MIN_CID_COUNT 31
850 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
851
852 /* called during init port stage */
853 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
854 u8 initop)
855 {
856 int port = BP_PORT(bp);
857
858 if (QM_INIT(qm_cid_count)) {
859 switch (initop) {
860 case INITOP_INIT:
861 /* set in the init-value array */
862 case INITOP_SET:
863 REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
864 qm_cid_count/16 - 1);
865 break;
866 case INITOP_CLEAR:
867 break;
868 }
869 }
870 }
871
872 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count,
873 u32 base_reg, u32 reg)
874 {
875 int i;
876 u32 wb_data[2] = {0, 0};
877 for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
878 REG_WR(bp, base_reg + i*4,
879 qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
880 bnx2x_init_wr_wb(bp, reg + i*8, wb_data, 2);
881 }
882 }
883
884 /* called during init common stage */
885 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
886 u8 initop)
887 {
888 if (!QM_INIT(qm_cid_count))
889 return;
890
891 switch (initop) {
892 case INITOP_INIT:
893 /* set in the init-value array */
894 case INITOP_SET:
895 bnx2x_qm_set_ptr_table(bp, qm_cid_count,
896 QM_REG_BASEADDR, QM_REG_PTRTBL);
897 if (CHIP_IS_E1H(bp))
898 bnx2x_qm_set_ptr_table(bp, qm_cid_count,
899 QM_REG_BASEADDR_EXT_A,
900 QM_REG_PTRTBL_EXT_A);
901 break;
902 case INITOP_CLEAR:
903 break;
904 }
905 }
906
907 /****************************************************************************
908 * SRC initializations
909 ****************************************************************************/
910 /* called during init func stage */
911 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
912 dma_addr_t t2_mapping, int src_cid_count)
913 {
914 int i;
915 int port = BP_PORT(bp);
916
917 /* Initialize T2 */
918 for (i = 0; i < src_cid_count-1; i++)
919 t2[i].next = (u64)(t2_mapping +
920 (i+1)*sizeof(struct src_ent));
921
922 /* tell the searcher where the T2 table is */
923 REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
924
925 bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
926 U64_LO(t2_mapping), U64_HI(t2_mapping));
927
928 bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
929 U64_LO((u64)t2_mapping +
930 (src_cid_count-1) * sizeof(struct src_ent)),
931 U64_HI((u64)t2_mapping +
932 (src_cid_count-1) * sizeof(struct src_ent)));
933 }
934 #endif /* BNX2X_INIT_OPS_H */