Merge 4.14.23 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / ethernet / arc / emac_main.c
1 /*
2 * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * Driver for the ARC EMAC 10100 (hardware revision 5)
9 *
10 * Contributors:
11 * Amit Bhor
12 * Sameer Dhavale
13 * Vineet Gupta
14 */
15
16 #include <linux/crc32.h>
17 #include <linux/etherdevice.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/of_platform.h>
26
27 #include "emac.h"
28
29 /**
30 * arc_emac_tx_avail - Return the number of available slots in the tx ring.
31 * @priv: Pointer to ARC EMAC private data structure.
32 *
33 * returns: the number of slots available for transmission in tx the ring.
34 */
35 static inline int arc_emac_tx_avail(struct arc_emac_priv *priv)
36 {
37 return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM;
38 }
39
40 /**
41 * arc_emac_adjust_link - Adjust the PHY link duplex.
42 * @ndev: Pointer to the net_device structure.
43 *
44 * This function is called to change the duplex setting after auto negotiation
45 * is done by the PHY.
46 */
47 static void arc_emac_adjust_link(struct net_device *ndev)
48 {
49 struct arc_emac_priv *priv = netdev_priv(ndev);
50 struct phy_device *phy_dev = ndev->phydev;
51 unsigned int reg, state_changed = 0;
52
53 if (priv->link != phy_dev->link) {
54 priv->link = phy_dev->link;
55 state_changed = 1;
56 }
57
58 if (priv->speed != phy_dev->speed) {
59 priv->speed = phy_dev->speed;
60 state_changed = 1;
61 if (priv->set_mac_speed)
62 priv->set_mac_speed(priv, priv->speed);
63 }
64
65 if (priv->duplex != phy_dev->duplex) {
66 reg = arc_reg_get(priv, R_CTRL);
67
68 if (phy_dev->duplex == DUPLEX_FULL)
69 reg |= ENFL_MASK;
70 else
71 reg &= ~ENFL_MASK;
72
73 arc_reg_set(priv, R_CTRL, reg);
74 priv->duplex = phy_dev->duplex;
75 state_changed = 1;
76 }
77
78 if (state_changed)
79 phy_print_status(phy_dev);
80 }
81
82 /**
83 * arc_emac_get_drvinfo - Get EMAC driver information.
84 * @ndev: Pointer to net_device structure.
85 * @info: Pointer to ethtool_drvinfo structure.
86 *
87 * This implements ethtool command for getting the driver information.
88 * Issue "ethtool -i ethX" under linux prompt to execute this function.
89 */
90 static void arc_emac_get_drvinfo(struct net_device *ndev,
91 struct ethtool_drvinfo *info)
92 {
93 struct arc_emac_priv *priv = netdev_priv(ndev);
94
95 strlcpy(info->driver, priv->drv_name, sizeof(info->driver));
96 strlcpy(info->version, priv->drv_version, sizeof(info->version));
97 }
98
99 static const struct ethtool_ops arc_emac_ethtool_ops = {
100 .get_drvinfo = arc_emac_get_drvinfo,
101 .get_link = ethtool_op_get_link,
102 .get_link_ksettings = phy_ethtool_get_link_ksettings,
103 .set_link_ksettings = phy_ethtool_set_link_ksettings,
104 };
105
106 #define FIRST_OR_LAST_MASK (FIRST_MASK | LAST_MASK)
107
108 /**
109 * arc_emac_tx_clean - clears processed by EMAC Tx BDs.
110 * @ndev: Pointer to the network device.
111 */
112 static void arc_emac_tx_clean(struct net_device *ndev)
113 {
114 struct arc_emac_priv *priv = netdev_priv(ndev);
115 struct net_device_stats *stats = &ndev->stats;
116 unsigned int i;
117
118 for (i = 0; i < TX_BD_NUM; i++) {
119 unsigned int *txbd_dirty = &priv->txbd_dirty;
120 struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty];
121 struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty];
122 struct sk_buff *skb = tx_buff->skb;
123 unsigned int info = le32_to_cpu(txbd->info);
124
125 if ((info & FOR_EMAC) || !txbd->data || !skb)
126 break;
127
128 if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) {
129 stats->tx_errors++;
130 stats->tx_dropped++;
131
132 if (info & DEFR)
133 stats->tx_carrier_errors++;
134
135 if (info & LTCL)
136 stats->collisions++;
137
138 if (info & UFLO)
139 stats->tx_fifo_errors++;
140 } else if (likely(info & FIRST_OR_LAST_MASK)) {
141 stats->tx_packets++;
142 stats->tx_bytes += skb->len;
143 }
144
145 dma_unmap_single(&ndev->dev, dma_unmap_addr(tx_buff, addr),
146 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE);
147
148 /* return the sk_buff to system */
149 dev_kfree_skb_irq(skb);
150
151 txbd->data = 0;
152 txbd->info = 0;
153 tx_buff->skb = NULL;
154
155 *txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM;
156 }
157
158 /* Ensure that txbd_dirty is visible to tx() before checking
159 * for queue stopped.
160 */
161 smp_mb();
162
163 if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv))
164 netif_wake_queue(ndev);
165 }
166
167 /**
168 * arc_emac_rx - processing of Rx packets.
169 * @ndev: Pointer to the network device.
170 * @budget: How many BDs to process on 1 call.
171 *
172 * returns: Number of processed BDs
173 *
174 * Iterate through Rx BDs and deliver received packages to upper layer.
175 */
176 static int arc_emac_rx(struct net_device *ndev, int budget)
177 {
178 struct arc_emac_priv *priv = netdev_priv(ndev);
179 unsigned int work_done;
180
181 for (work_done = 0; work_done < budget; work_done++) {
182 unsigned int *last_rx_bd = &priv->last_rx_bd;
183 struct net_device_stats *stats = &ndev->stats;
184 struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
185 struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
186 unsigned int pktlen, info = le32_to_cpu(rxbd->info);
187 struct sk_buff *skb;
188 dma_addr_t addr;
189
190 if (unlikely((info & OWN_MASK) == FOR_EMAC))
191 break;
192
193 /* Make a note that we saw a packet at this BD.
194 * So next time, driver starts from this + 1
195 */
196 *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
197
198 if (unlikely((info & FIRST_OR_LAST_MASK) !=
199 FIRST_OR_LAST_MASK)) {
200 /* We pre-allocate buffers of MTU size so incoming
201 * packets won't be split/chained.
202 */
203 if (net_ratelimit())
204 netdev_err(ndev, "incomplete packet received\n");
205
206 /* Return ownership to EMAC */
207 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
208 stats->rx_errors++;
209 stats->rx_length_errors++;
210 continue;
211 }
212
213 pktlen = info & LEN_MASK;
214 stats->rx_packets++;
215 stats->rx_bytes += pktlen;
216 skb = rx_buff->skb;
217 skb_put(skb, pktlen);
218 skb->dev = ndev;
219 skb->protocol = eth_type_trans(skb, ndev);
220
221 dma_unmap_single(&ndev->dev, dma_unmap_addr(rx_buff, addr),
222 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE);
223
224 /* Prepare the BD for next cycle */
225 rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
226 EMAC_BUFFER_SIZE);
227 if (unlikely(!rx_buff->skb)) {
228 stats->rx_errors++;
229 /* Because receive_skb is below, increment rx_dropped */
230 stats->rx_dropped++;
231 continue;
232 }
233
234 /* receive_skb only if new skb was allocated to avoid holes */
235 netif_receive_skb(skb);
236
237 addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data,
238 EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
239 if (dma_mapping_error(&ndev->dev, addr)) {
240 if (net_ratelimit())
241 netdev_err(ndev, "cannot dma map\n");
242 dev_kfree_skb(rx_buff->skb);
243 stats->rx_errors++;
244 continue;
245 }
246 dma_unmap_addr_set(rx_buff, addr, addr);
247 dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
248
249 rxbd->data = cpu_to_le32(addr);
250
251 /* Make sure pointer to data buffer is set */
252 wmb();
253
254 /* Return ownership to EMAC */
255 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
256 }
257
258 return work_done;
259 }
260
261 /**
262 * arc_emac_poll - NAPI poll handler.
263 * @napi: Pointer to napi_struct structure.
264 * @budget: How many BDs to process on 1 call.
265 *
266 * returns: Number of processed BDs
267 */
268 static int arc_emac_poll(struct napi_struct *napi, int budget)
269 {
270 struct net_device *ndev = napi->dev;
271 struct arc_emac_priv *priv = netdev_priv(ndev);
272 unsigned int work_done;
273
274 arc_emac_tx_clean(ndev);
275
276 work_done = arc_emac_rx(ndev, budget);
277 if (work_done < budget) {
278 napi_complete_done(napi, work_done);
279 arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
280 }
281
282 return work_done;
283 }
284
285 /**
286 * arc_emac_intr - Global interrupt handler for EMAC.
287 * @irq: irq number.
288 * @dev_instance: device instance.
289 *
290 * returns: IRQ_HANDLED for all cases.
291 *
292 * ARC EMAC has only 1 interrupt line, and depending on bits raised in
293 * STATUS register we may tell what is a reason for interrupt to fire.
294 */
295 static irqreturn_t arc_emac_intr(int irq, void *dev_instance)
296 {
297 struct net_device *ndev = dev_instance;
298 struct arc_emac_priv *priv = netdev_priv(ndev);
299 struct net_device_stats *stats = &ndev->stats;
300 unsigned int status;
301
302 status = arc_reg_get(priv, R_STATUS);
303 status &= ~MDIO_MASK;
304
305 /* Reset all flags except "MDIO complete" */
306 arc_reg_set(priv, R_STATUS, status);
307
308 if (status & (RXINT_MASK | TXINT_MASK)) {
309 if (likely(napi_schedule_prep(&priv->napi))) {
310 arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
311 __napi_schedule(&priv->napi);
312 }
313 }
314
315 if (status & ERR_MASK) {
316 /* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding
317 * 8-bit error counter overrun.
318 */
319
320 if (status & MSER_MASK) {
321 stats->rx_missed_errors += 0x100;
322 stats->rx_errors += 0x100;
323 }
324
325 if (status & RXCR_MASK) {
326 stats->rx_crc_errors += 0x100;
327 stats->rx_errors += 0x100;
328 }
329
330 if (status & RXFR_MASK) {
331 stats->rx_frame_errors += 0x100;
332 stats->rx_errors += 0x100;
333 }
334
335 if (status & RXFL_MASK) {
336 stats->rx_over_errors += 0x100;
337 stats->rx_errors += 0x100;
338 }
339 }
340
341 return IRQ_HANDLED;
342 }
343
344 #ifdef CONFIG_NET_POLL_CONTROLLER
345 static void arc_emac_poll_controller(struct net_device *dev)
346 {
347 disable_irq(dev->irq);
348 arc_emac_intr(dev->irq, dev);
349 enable_irq(dev->irq);
350 }
351 #endif
352
353 /**
354 * arc_emac_open - Open the network device.
355 * @ndev: Pointer to the network device.
356 *
357 * returns: 0, on success or non-zero error value on failure.
358 *
359 * This function sets the MAC address, requests and enables an IRQ
360 * for the EMAC device and starts the Tx queue.
361 * It also connects to the phy device.
362 */
363 static int arc_emac_open(struct net_device *ndev)
364 {
365 struct arc_emac_priv *priv = netdev_priv(ndev);
366 struct phy_device *phy_dev = ndev->phydev;
367 int i;
368
369 phy_dev->autoneg = AUTONEG_ENABLE;
370 phy_dev->speed = 0;
371 phy_dev->duplex = 0;
372 phy_dev->advertising &= phy_dev->supported;
373
374 priv->last_rx_bd = 0;
375
376 /* Allocate and set buffers for Rx BD's */
377 for (i = 0; i < RX_BD_NUM; i++) {
378 dma_addr_t addr;
379 unsigned int *last_rx_bd = &priv->last_rx_bd;
380 struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
381 struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
382
383 rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
384 EMAC_BUFFER_SIZE);
385 if (unlikely(!rx_buff->skb))
386 return -ENOMEM;
387
388 addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data,
389 EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
390 if (dma_mapping_error(&ndev->dev, addr)) {
391 netdev_err(ndev, "cannot dma map\n");
392 dev_kfree_skb(rx_buff->skb);
393 return -ENOMEM;
394 }
395 dma_unmap_addr_set(rx_buff, addr, addr);
396 dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
397
398 rxbd->data = cpu_to_le32(addr);
399
400 /* Make sure pointer to data buffer is set */
401 wmb();
402
403 /* Return ownership to EMAC */
404 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
405
406 *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
407 }
408
409 priv->txbd_curr = 0;
410 priv->txbd_dirty = 0;
411
412 /* Clean Tx BD's */
413 memset(priv->txbd, 0, TX_RING_SZ);
414
415 /* Initialize logical address filter */
416 arc_reg_set(priv, R_LAFL, 0);
417 arc_reg_set(priv, R_LAFH, 0);
418
419 /* Set BD ring pointers for device side */
420 arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma);
421 arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma);
422
423 /* Enable interrupts */
424 arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
425
426 /* Set CONTROL */
427 arc_reg_set(priv, R_CTRL,
428 (RX_BD_NUM << 24) | /* RX BD table length */
429 (TX_BD_NUM << 16) | /* TX BD table length */
430 TXRN_MASK | RXRN_MASK);
431
432 napi_enable(&priv->napi);
433
434 /* Enable EMAC */
435 arc_reg_or(priv, R_CTRL, EN_MASK);
436
437 phy_start(ndev->phydev);
438
439 netif_start_queue(ndev);
440
441 return 0;
442 }
443
444 /**
445 * arc_emac_set_rx_mode - Change the receive filtering mode.
446 * @ndev: Pointer to the network device.
447 *
448 * This function enables/disables promiscuous or all-multicast mode
449 * and updates the multicast filtering list of the network device.
450 */
451 static void arc_emac_set_rx_mode(struct net_device *ndev)
452 {
453 struct arc_emac_priv *priv = netdev_priv(ndev);
454
455 if (ndev->flags & IFF_PROMISC) {
456 arc_reg_or(priv, R_CTRL, PROM_MASK);
457 } else {
458 arc_reg_clr(priv, R_CTRL, PROM_MASK);
459
460 if (ndev->flags & IFF_ALLMULTI) {
461 arc_reg_set(priv, R_LAFL, ~0);
462 arc_reg_set(priv, R_LAFH, ~0);
463 } else if (ndev->flags & IFF_MULTICAST) {
464 struct netdev_hw_addr *ha;
465 unsigned int filter[2] = { 0, 0 };
466 int bit;
467
468 netdev_for_each_mc_addr(ha, ndev) {
469 bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26;
470 filter[bit >> 5] |= 1 << (bit & 31);
471 }
472
473 arc_reg_set(priv, R_LAFL, filter[0]);
474 arc_reg_set(priv, R_LAFH, filter[1]);
475 } else {
476 arc_reg_set(priv, R_LAFL, 0);
477 arc_reg_set(priv, R_LAFH, 0);
478 }
479 }
480 }
481
482 /**
483 * arc_free_tx_queue - free skb from tx queue
484 * @ndev: Pointer to the network device.
485 *
486 * This function must be called while EMAC disable
487 */
488 static void arc_free_tx_queue(struct net_device *ndev)
489 {
490 struct arc_emac_priv *priv = netdev_priv(ndev);
491 unsigned int i;
492
493 for (i = 0; i < TX_BD_NUM; i++) {
494 struct arc_emac_bd *txbd = &priv->txbd[i];
495 struct buffer_state *tx_buff = &priv->tx_buff[i];
496
497 if (tx_buff->skb) {
498 dma_unmap_single(&ndev->dev,
499 dma_unmap_addr(tx_buff, addr),
500 dma_unmap_len(tx_buff, len),
501 DMA_TO_DEVICE);
502
503 /* return the sk_buff to system */
504 dev_kfree_skb_irq(tx_buff->skb);
505 }
506
507 txbd->info = 0;
508 txbd->data = 0;
509 tx_buff->skb = NULL;
510 }
511 }
512
513 /**
514 * arc_free_rx_queue - free skb from rx queue
515 * @ndev: Pointer to the network device.
516 *
517 * This function must be called while EMAC disable
518 */
519 static void arc_free_rx_queue(struct net_device *ndev)
520 {
521 struct arc_emac_priv *priv = netdev_priv(ndev);
522 unsigned int i;
523
524 for (i = 0; i < RX_BD_NUM; i++) {
525 struct arc_emac_bd *rxbd = &priv->rxbd[i];
526 struct buffer_state *rx_buff = &priv->rx_buff[i];
527
528 if (rx_buff->skb) {
529 dma_unmap_single(&ndev->dev,
530 dma_unmap_addr(rx_buff, addr),
531 dma_unmap_len(rx_buff, len),
532 DMA_FROM_DEVICE);
533
534 /* return the sk_buff to system */
535 dev_kfree_skb_irq(rx_buff->skb);
536 }
537
538 rxbd->info = 0;
539 rxbd->data = 0;
540 rx_buff->skb = NULL;
541 }
542 }
543
544 /**
545 * arc_emac_stop - Close the network device.
546 * @ndev: Pointer to the network device.
547 *
548 * This function stops the Tx queue, disables interrupts and frees the IRQ for
549 * the EMAC device.
550 * It also disconnects the PHY device associated with the EMAC device.
551 */
552 static int arc_emac_stop(struct net_device *ndev)
553 {
554 struct arc_emac_priv *priv = netdev_priv(ndev);
555
556 napi_disable(&priv->napi);
557 netif_stop_queue(ndev);
558
559 phy_stop(ndev->phydev);
560
561 /* Disable interrupts */
562 arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
563
564 /* Disable EMAC */
565 arc_reg_clr(priv, R_CTRL, EN_MASK);
566
567 /* Return the sk_buff to system */
568 arc_free_tx_queue(ndev);
569 arc_free_rx_queue(ndev);
570
571 return 0;
572 }
573
574 /**
575 * arc_emac_stats - Get system network statistics.
576 * @ndev: Pointer to net_device structure.
577 *
578 * Returns the address of the device statistics structure.
579 * Statistics are updated in interrupt handler.
580 */
581 static struct net_device_stats *arc_emac_stats(struct net_device *ndev)
582 {
583 struct arc_emac_priv *priv = netdev_priv(ndev);
584 struct net_device_stats *stats = &ndev->stats;
585 unsigned long miss, rxerr;
586 u8 rxcrc, rxfram, rxoflow;
587
588 rxerr = arc_reg_get(priv, R_RXERR);
589 miss = arc_reg_get(priv, R_MISS);
590
591 rxcrc = rxerr;
592 rxfram = rxerr >> 8;
593 rxoflow = rxerr >> 16;
594
595 stats->rx_errors += miss;
596 stats->rx_errors += rxcrc + rxfram + rxoflow;
597
598 stats->rx_over_errors += rxoflow;
599 stats->rx_frame_errors += rxfram;
600 stats->rx_crc_errors += rxcrc;
601 stats->rx_missed_errors += miss;
602
603 return stats;
604 }
605
606 /**
607 * arc_emac_tx - Starts the data transmission.
608 * @skb: sk_buff pointer that contains data to be Transmitted.
609 * @ndev: Pointer to net_device structure.
610 *
611 * returns: NETDEV_TX_OK, on success
612 * NETDEV_TX_BUSY, if any of the descriptors are not free.
613 *
614 * This function is invoked from upper layers to initiate transmission.
615 */
616 static int arc_emac_tx(struct sk_buff *skb, struct net_device *ndev)
617 {
618 struct arc_emac_priv *priv = netdev_priv(ndev);
619 unsigned int len, *txbd_curr = &priv->txbd_curr;
620 struct net_device_stats *stats = &ndev->stats;
621 __le32 *info = &priv->txbd[*txbd_curr].info;
622 dma_addr_t addr;
623
624 if (skb_padto(skb, ETH_ZLEN))
625 return NETDEV_TX_OK;
626
627 len = max_t(unsigned int, ETH_ZLEN, skb->len);
628
629 if (unlikely(!arc_emac_tx_avail(priv))) {
630 netif_stop_queue(ndev);
631 netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n");
632 return NETDEV_TX_BUSY;
633 }
634
635 addr = dma_map_single(&ndev->dev, (void *)skb->data, len,
636 DMA_TO_DEVICE);
637
638 if (unlikely(dma_mapping_error(&ndev->dev, addr))) {
639 stats->tx_dropped++;
640 stats->tx_errors++;
641 dev_kfree_skb_any(skb);
642 return NETDEV_TX_OK;
643 }
644 dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr);
645 dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len);
646
647 priv->txbd[*txbd_curr].data = cpu_to_le32(addr);
648
649 /* Make sure pointer to data buffer is set */
650 wmb();
651
652 skb_tx_timestamp(skb);
653
654 *info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len);
655
656 /* Make sure info word is set */
657 wmb();
658
659 priv->tx_buff[*txbd_curr].skb = skb;
660
661 /* Increment index to point to the next BD */
662 *txbd_curr = (*txbd_curr + 1) % TX_BD_NUM;
663
664 /* Ensure that tx_clean() sees the new txbd_curr before
665 * checking the queue status. This prevents an unneeded wake
666 * of the queue in tx_clean().
667 */
668 smp_mb();
669
670 if (!arc_emac_tx_avail(priv)) {
671 netif_stop_queue(ndev);
672 /* Refresh tx_dirty */
673 smp_mb();
674 if (arc_emac_tx_avail(priv))
675 netif_start_queue(ndev);
676 }
677
678 arc_reg_set(priv, R_STATUS, TXPL_MASK);
679
680 return NETDEV_TX_OK;
681 }
682
683 static void arc_emac_set_address_internal(struct net_device *ndev)
684 {
685 struct arc_emac_priv *priv = netdev_priv(ndev);
686 unsigned int addr_low, addr_hi;
687
688 addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]);
689 addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]);
690
691 arc_reg_set(priv, R_ADDRL, addr_low);
692 arc_reg_set(priv, R_ADDRH, addr_hi);
693 }
694
695 /**
696 * arc_emac_set_address - Set the MAC address for this device.
697 * @ndev: Pointer to net_device structure.
698 * @p: 6 byte Address to be written as MAC address.
699 *
700 * This function copies the HW address from the sockaddr structure to the
701 * net_device structure and updates the address in HW.
702 *
703 * returns: -EBUSY if the net device is busy or 0 if the address is set
704 * successfully.
705 */
706 static int arc_emac_set_address(struct net_device *ndev, void *p)
707 {
708 struct sockaddr *addr = p;
709
710 if (netif_running(ndev))
711 return -EBUSY;
712
713 if (!is_valid_ether_addr(addr->sa_data))
714 return -EADDRNOTAVAIL;
715
716 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
717
718 arc_emac_set_address_internal(ndev);
719
720 return 0;
721 }
722
723 static int arc_emac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
724 {
725 if (!netif_running(dev))
726 return -EINVAL;
727
728 if (!dev->phydev)
729 return -ENODEV;
730
731 return phy_mii_ioctl(dev->phydev, rq, cmd);
732 }
733
734
735 static const struct net_device_ops arc_emac_netdev_ops = {
736 .ndo_open = arc_emac_open,
737 .ndo_stop = arc_emac_stop,
738 .ndo_start_xmit = arc_emac_tx,
739 .ndo_set_mac_address = arc_emac_set_address,
740 .ndo_get_stats = arc_emac_stats,
741 .ndo_set_rx_mode = arc_emac_set_rx_mode,
742 .ndo_do_ioctl = arc_emac_ioctl,
743 #ifdef CONFIG_NET_POLL_CONTROLLER
744 .ndo_poll_controller = arc_emac_poll_controller,
745 #endif
746 };
747
748 int arc_emac_probe(struct net_device *ndev, int interface)
749 {
750 struct device *dev = ndev->dev.parent;
751 struct resource res_regs;
752 struct device_node *phy_node;
753 struct phy_device *phydev = NULL;
754 struct arc_emac_priv *priv;
755 const char *mac_addr;
756 unsigned int id, clock_frequency, irq;
757 int err;
758
759 /* Get PHY from device tree */
760 phy_node = of_parse_phandle(dev->of_node, "phy", 0);
761 if (!phy_node) {
762 dev_err(dev, "failed to retrieve phy description from device tree\n");
763 return -ENODEV;
764 }
765
766 /* Get EMAC registers base address from device tree */
767 err = of_address_to_resource(dev->of_node, 0, &res_regs);
768 if (err) {
769 dev_err(dev, "failed to retrieve registers base from device tree\n");
770 err = -ENODEV;
771 goto out_put_node;
772 }
773
774 /* Get IRQ from device tree */
775 irq = irq_of_parse_and_map(dev->of_node, 0);
776 if (!irq) {
777 dev_err(dev, "failed to retrieve <irq> value from device tree\n");
778 err = -ENODEV;
779 goto out_put_node;
780 }
781
782 ndev->netdev_ops = &arc_emac_netdev_ops;
783 ndev->ethtool_ops = &arc_emac_ethtool_ops;
784 ndev->watchdog_timeo = TX_TIMEOUT;
785
786 priv = netdev_priv(ndev);
787 priv->dev = dev;
788
789 priv->regs = devm_ioremap_resource(dev, &res_regs);
790 if (IS_ERR(priv->regs)) {
791 err = PTR_ERR(priv->regs);
792 goto out_put_node;
793 }
794
795 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs);
796
797 if (priv->clk) {
798 err = clk_prepare_enable(priv->clk);
799 if (err) {
800 dev_err(dev, "failed to enable clock\n");
801 goto out_put_node;
802 }
803
804 clock_frequency = clk_get_rate(priv->clk);
805 } else {
806 /* Get CPU clock frequency from device tree */
807 if (of_property_read_u32(dev->of_node, "clock-frequency",
808 &clock_frequency)) {
809 dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n");
810 err = -EINVAL;
811 goto out_put_node;
812 }
813 }
814
815 id = arc_reg_get(priv, R_ID);
816
817 /* Check for EMAC revision 5 or 7, magic number */
818 if (!(id == 0x0005fd02 || id == 0x0007fd02)) {
819 dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id);
820 err = -ENODEV;
821 goto out_clken;
822 }
823 dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id);
824
825 /* Set poll rate so that it polls every 1 ms */
826 arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000);
827
828 ndev->irq = irq;
829 dev_info(dev, "IRQ is %d\n", ndev->irq);
830
831 /* Register interrupt handler for device */
832 err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0,
833 ndev->name, ndev);
834 if (err) {
835 dev_err(dev, "could not allocate IRQ\n");
836 goto out_clken;
837 }
838
839 /* Get MAC address from device tree */
840 mac_addr = of_get_mac_address(dev->of_node);
841
842 if (mac_addr)
843 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
844 else
845 eth_hw_addr_random(ndev);
846
847 arc_emac_set_address_internal(ndev);
848 dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr);
849
850 /* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */
851 priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ,
852 &priv->rxbd_dma, GFP_KERNEL);
853
854 if (!priv->rxbd) {
855 dev_err(dev, "failed to allocate data buffers\n");
856 err = -ENOMEM;
857 goto out_clken;
858 }
859
860 priv->txbd = priv->rxbd + RX_BD_NUM;
861
862 priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ;
863 dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n",
864 (unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma);
865
866 err = arc_mdio_probe(priv);
867 if (err) {
868 dev_err(dev, "failed to probe MII bus\n");
869 goto out_clken;
870 }
871
872 phydev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0,
873 interface);
874 if (!phydev) {
875 dev_err(dev, "of_phy_connect() failed\n");
876 err = -ENODEV;
877 goto out_mdio;
878 }
879
880 dev_info(dev, "connected to %s phy with id 0x%x\n",
881 phydev->drv->name, phydev->phy_id);
882
883 netif_napi_add(ndev, &priv->napi, arc_emac_poll, ARC_EMAC_NAPI_WEIGHT);
884
885 err = register_netdev(ndev);
886 if (err) {
887 dev_err(dev, "failed to register network device\n");
888 goto out_netif_api;
889 }
890
891 of_node_put(phy_node);
892 return 0;
893
894 out_netif_api:
895 netif_napi_del(&priv->napi);
896 phy_disconnect(phydev);
897 out_mdio:
898 arc_mdio_remove(priv);
899 out_clken:
900 if (priv->clk)
901 clk_disable_unprepare(priv->clk);
902 out_put_node:
903 of_node_put(phy_node);
904
905 return err;
906 }
907 EXPORT_SYMBOL_GPL(arc_emac_probe);
908
909 int arc_emac_remove(struct net_device *ndev)
910 {
911 struct arc_emac_priv *priv = netdev_priv(ndev);
912
913 phy_disconnect(ndev->phydev);
914 arc_mdio_remove(priv);
915 unregister_netdev(ndev);
916 netif_napi_del(&priv->napi);
917
918 if (!IS_ERR(priv->clk))
919 clk_disable_unprepare(priv->clk);
920
921 return 0;
922 }
923 EXPORT_SYMBOL_GPL(arc_emac_remove);
924
925 MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>");
926 MODULE_DESCRIPTION("ARC EMAC driver");
927 MODULE_LICENSE("GPL");