Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / net / epic100.c
1 /* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */
2 /*
3 Written/copyright 1997-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 This driver is for the SMC83c170/175 "EPIC" series, as used on the
13 SMC EtherPower II 9432 PCI adapter, and several CardBus cards.
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Information and updates available at
21 http://www.scyld.com/network/epic100.html
22 [this link no longer provides anything useful -jgarzik]
23
24 ---------------------------------------------------------------------
25
26 */
27
28 #define DRV_NAME "epic100"
29 #define DRV_VERSION "2.1"
30 #define DRV_RELDATE "Sept 11, 2006"
31
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
34
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36
37 /* Used to pass the full-duplex flag, etc. */
38 #define MAX_UNITS 8 /* More are supported, limit only on options */
39 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
40 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
41
42 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
43 Setting to > 1518 effectively disables this feature. */
44 static int rx_copybreak;
45
46 /* Operational parameters that are set at compile time. */
47
48 /* Keep the ring sizes a power of two for operational efficiency.
49 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
50 Making the Tx ring too large decreases the effectiveness of channel
51 bonding and packet priority.
52 There are no ill effects from too-large receive rings. */
53 #define TX_RING_SIZE 256
54 #define TX_QUEUE_LEN 240 /* Limit ring entries actually used. */
55 #define RX_RING_SIZE 256
56 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct epic_tx_desc)
57 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct epic_rx_desc)
58
59 /* Operational parameters that usually are not changed. */
60 /* Time in jiffies before concluding the transmitter is hung. */
61 #define TX_TIMEOUT (2*HZ)
62
63 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
64
65 /* Bytes transferred to chip before transmission starts. */
66 /* Initial threshold, increased on underflow, rounded down to 4 byte units. */
67 #define TX_FIFO_THRESH 256
68 #define RX_FIFO_THRESH 1 /* 0-3, 0==32, 64,96, or 3==128 bytes */
69
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/string.h>
73 #include <linux/timer.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/interrupt.h>
77 #include <linux/pci.h>
78 #include <linux/delay.h>
79 #include <linux/netdevice.h>
80 #include <linux/etherdevice.h>
81 #include <linux/skbuff.h>
82 #include <linux/init.h>
83 #include <linux/spinlock.h>
84 #include <linux/ethtool.h>
85 #include <linux/mii.h>
86 #include <linux/crc32.h>
87 #include <linux/bitops.h>
88 #include <asm/io.h>
89 #include <asm/uaccess.h>
90
91 /* These identify the driver base version and may not be removed. */
92 static char version[] __devinitdata =
93 DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>\n";
94 static char version2[] __devinitdata =
95 " (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
96
97 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
98 MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver");
99 MODULE_LICENSE("GPL");
100
101 module_param(debug, int, 0);
102 module_param(rx_copybreak, int, 0);
103 module_param_array(options, int, NULL, 0);
104 module_param_array(full_duplex, int, NULL, 0);
105 MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)");
106 MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex");
107 MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames");
108 MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)");
109
110 /*
111 Theory of Operation
112
113 I. Board Compatibility
114
115 This device driver is designed for the SMC "EPIC/100", the SMC
116 single-chip Ethernet controllers for PCI. This chip is used on
117 the SMC EtherPower II boards.
118
119 II. Board-specific settings
120
121 PCI bus devices are configured by the system at boot time, so no jumpers
122 need to be set on the board. The system BIOS will assign the
123 PCI INTA signal to a (preferably otherwise unused) system IRQ line.
124 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
125 interrupt lines.
126
127 III. Driver operation
128
129 IIIa. Ring buffers
130
131 IVb. References
132
133 http://www.smsc.com/main/tools/discontinued/83c171.pdf
134 http://www.smsc.com/main/tools/discontinued/83c175.pdf
135 http://scyld.com/expert/NWay.html
136 http://www.national.com/pf/DP/DP83840A.html
137
138 IVc. Errata
139
140 */
141
142
143 enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 };
144
145 #define EPIC_TOTAL_SIZE 0x100
146 #define USE_IO_OPS 1
147
148 typedef enum {
149 SMSC_83C170_0,
150 SMSC_83C170,
151 SMSC_83C175,
152 } chip_t;
153
154
155 struct epic_chip_info {
156 const char *name;
157 int drv_flags; /* Driver use, intended as capability flags. */
158 };
159
160
161 /* indexed by chip_t */
162 static const struct epic_chip_info pci_id_tbl[] = {
163 { "SMSC EPIC/100 83c170", TYPE2_INTR | NO_MII | MII_PWRDWN },
164 { "SMSC EPIC/100 83c170", TYPE2_INTR },
165 { "SMSC EPIC/C 83c175", TYPE2_INTR | MII_PWRDWN },
166 };
167
168
169 static DEFINE_PCI_DEVICE_TABLE(epic_pci_tbl) = {
170 { 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 },
171 { 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 },
172 { 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID,
173 PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 },
174 { 0,}
175 };
176 MODULE_DEVICE_TABLE (pci, epic_pci_tbl);
177
178
179 #ifndef USE_IO_OPS
180 #undef inb
181 #undef inw
182 #undef inl
183 #undef outb
184 #undef outw
185 #undef outl
186 #define inb readb
187 #define inw readw
188 #define inl readl
189 #define outb writeb
190 #define outw writew
191 #define outl writel
192 #endif
193
194 /* Offsets to registers, using the (ugh) SMC names. */
195 enum epic_registers {
196 COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14,
197 PCIBurstCnt=0x18,
198 TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */
199 MIICtrl=0x30, MIIData=0x34, MIICfg=0x38,
200 LAN0=64, /* MAC address. */
201 MC0=80, /* Multicast filter table. */
202 RxCtrl=96, TxCtrl=112, TxSTAT=0x74,
203 PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC,
204 };
205
206 /* Interrupt register bits, using my own meaningful names. */
207 enum IntrStatus {
208 TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000,
209 PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000,
210 RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100,
211 TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010,
212 RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001,
213 };
214 enum CommandBits {
215 StopRx=1, StartRx=2, TxQueued=4, RxQueued=8,
216 StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80,
217 };
218
219 #define EpicRemoved 0xffffffff /* Chip failed or removed (CardBus) */
220
221 #define EpicNapiEvent (TxEmpty | TxDone | \
222 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull)
223 #define EpicNormalEvent (0x0000ffff & ~EpicNapiEvent)
224
225 static const u16 media2miictl[16] = {
226 0, 0x0C00, 0x0C00, 0x2000, 0x0100, 0x2100, 0, 0,
227 0, 0, 0, 0, 0, 0, 0, 0 };
228
229 /*
230 * The EPIC100 Rx and Tx buffer descriptors. Note that these
231 * really ARE host-endian; it's not a misannotation. We tell
232 * the card to byteswap them internally on big-endian hosts -
233 * look for #ifdef CONFIG_BIG_ENDIAN in epic_open().
234 */
235
236 struct epic_tx_desc {
237 u32 txstatus;
238 u32 bufaddr;
239 u32 buflength;
240 u32 next;
241 };
242
243 struct epic_rx_desc {
244 u32 rxstatus;
245 u32 bufaddr;
246 u32 buflength;
247 u32 next;
248 };
249
250 enum desc_status_bits {
251 DescOwn=0x8000,
252 };
253
254 #define PRIV_ALIGN 15 /* Required alignment mask */
255 struct epic_private {
256 struct epic_rx_desc *rx_ring;
257 struct epic_tx_desc *tx_ring;
258 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
259 struct sk_buff* tx_skbuff[TX_RING_SIZE];
260 /* The addresses of receive-in-place skbuffs. */
261 struct sk_buff* rx_skbuff[RX_RING_SIZE];
262
263 dma_addr_t tx_ring_dma;
264 dma_addr_t rx_ring_dma;
265
266 /* Ring pointers. */
267 spinlock_t lock; /* Group with Tx control cache line. */
268 spinlock_t napi_lock;
269 struct napi_struct napi;
270 unsigned int reschedule_in_poll;
271 unsigned int cur_tx, dirty_tx;
272
273 unsigned int cur_rx, dirty_rx;
274 u32 irq_mask;
275 unsigned int rx_buf_sz; /* Based on MTU+slack. */
276
277 struct pci_dev *pci_dev; /* PCI bus location. */
278 int chip_id, chip_flags;
279
280 struct net_device_stats stats;
281 struct timer_list timer; /* Media selection timer. */
282 int tx_threshold;
283 unsigned char mc_filter[8];
284 signed char phys[4]; /* MII device addresses. */
285 u16 advertising; /* NWay media advertisement */
286 int mii_phy_cnt;
287 struct mii_if_info mii;
288 unsigned int tx_full:1; /* The Tx queue is full. */
289 unsigned int default_port:4; /* Last dev->if_port value. */
290 };
291
292 static int epic_open(struct net_device *dev);
293 static int read_eeprom(long ioaddr, int location);
294 static int mdio_read(struct net_device *dev, int phy_id, int location);
295 static void mdio_write(struct net_device *dev, int phy_id, int loc, int val);
296 static void epic_restart(struct net_device *dev);
297 static void epic_timer(unsigned long data);
298 static void epic_tx_timeout(struct net_device *dev);
299 static void epic_init_ring(struct net_device *dev);
300 static netdev_tx_t epic_start_xmit(struct sk_buff *skb,
301 struct net_device *dev);
302 static int epic_rx(struct net_device *dev, int budget);
303 static int epic_poll(struct napi_struct *napi, int budget);
304 static irqreturn_t epic_interrupt(int irq, void *dev_instance);
305 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
306 static const struct ethtool_ops netdev_ethtool_ops;
307 static int epic_close(struct net_device *dev);
308 static struct net_device_stats *epic_get_stats(struct net_device *dev);
309 static void set_rx_mode(struct net_device *dev);
310
311 static const struct net_device_ops epic_netdev_ops = {
312 .ndo_open = epic_open,
313 .ndo_stop = epic_close,
314 .ndo_start_xmit = epic_start_xmit,
315 .ndo_tx_timeout = epic_tx_timeout,
316 .ndo_get_stats = epic_get_stats,
317 .ndo_set_multicast_list = set_rx_mode,
318 .ndo_do_ioctl = netdev_ioctl,
319 .ndo_change_mtu = eth_change_mtu,
320 .ndo_set_mac_address = eth_mac_addr,
321 .ndo_validate_addr = eth_validate_addr,
322 };
323
324 static int __devinit epic_init_one (struct pci_dev *pdev,
325 const struct pci_device_id *ent)
326 {
327 static int card_idx = -1;
328 long ioaddr;
329 int chip_idx = (int) ent->driver_data;
330 int irq;
331 struct net_device *dev;
332 struct epic_private *ep;
333 int i, ret, option = 0, duplex = 0;
334 void *ring_space;
335 dma_addr_t ring_dma;
336
337 /* when built into the kernel, we only print version if device is found */
338 #ifndef MODULE
339 static int printed_version;
340 if (!printed_version++)
341 printk(KERN_INFO "%s%s", version, version2);
342 #endif
343
344 card_idx++;
345
346 ret = pci_enable_device(pdev);
347 if (ret)
348 goto out;
349 irq = pdev->irq;
350
351 if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) {
352 dev_err(&pdev->dev, "no PCI region space\n");
353 ret = -ENODEV;
354 goto err_out_disable;
355 }
356
357 pci_set_master(pdev);
358
359 ret = pci_request_regions(pdev, DRV_NAME);
360 if (ret < 0)
361 goto err_out_disable;
362
363 ret = -ENOMEM;
364
365 dev = alloc_etherdev(sizeof (*ep));
366 if (!dev) {
367 dev_err(&pdev->dev, "no memory for eth device\n");
368 goto err_out_free_res;
369 }
370 SET_NETDEV_DEV(dev, &pdev->dev);
371
372 #ifdef USE_IO_OPS
373 ioaddr = pci_resource_start (pdev, 0);
374 #else
375 ioaddr = pci_resource_start (pdev, 1);
376 ioaddr = (long) pci_ioremap_bar(pdev, 1);
377 if (!ioaddr) {
378 dev_err(&pdev->dev, "ioremap failed\n");
379 goto err_out_free_netdev;
380 }
381 #endif
382
383 pci_set_drvdata(pdev, dev);
384 ep = netdev_priv(dev);
385 ep->mii.dev = dev;
386 ep->mii.mdio_read = mdio_read;
387 ep->mii.mdio_write = mdio_write;
388 ep->mii.phy_id_mask = 0x1f;
389 ep->mii.reg_num_mask = 0x1f;
390
391 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
392 if (!ring_space)
393 goto err_out_iounmap;
394 ep->tx_ring = (struct epic_tx_desc *)ring_space;
395 ep->tx_ring_dma = ring_dma;
396
397 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
398 if (!ring_space)
399 goto err_out_unmap_tx;
400 ep->rx_ring = (struct epic_rx_desc *)ring_space;
401 ep->rx_ring_dma = ring_dma;
402
403 if (dev->mem_start) {
404 option = dev->mem_start;
405 duplex = (dev->mem_start & 16) ? 1 : 0;
406 } else if (card_idx >= 0 && card_idx < MAX_UNITS) {
407 if (options[card_idx] >= 0)
408 option = options[card_idx];
409 if (full_duplex[card_idx] >= 0)
410 duplex = full_duplex[card_idx];
411 }
412
413 dev->base_addr = ioaddr;
414 dev->irq = irq;
415
416 spin_lock_init(&ep->lock);
417 spin_lock_init(&ep->napi_lock);
418 ep->reschedule_in_poll = 0;
419
420 /* Bring the chip out of low-power mode. */
421 outl(0x4200, ioaddr + GENCTL);
422 /* Magic?! If we don't set this bit the MII interface won't work. */
423 /* This magic is documented in SMSC app note 7.15 */
424 for (i = 16; i > 0; i--)
425 outl(0x0008, ioaddr + TEST1);
426
427 /* Turn on the MII transceiver. */
428 outl(0x12, ioaddr + MIICfg);
429 if (chip_idx == 1)
430 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
431 outl(0x0200, ioaddr + GENCTL);
432
433 /* Note: the '175 does not have a serial EEPROM. */
434 for (i = 0; i < 3; i++)
435 ((__le16 *)dev->dev_addr)[i] = cpu_to_le16(inw(ioaddr + LAN0 + i*4));
436
437 if (debug > 2) {
438 dev_printk(KERN_DEBUG, &pdev->dev, "EEPROM contents:\n");
439 for (i = 0; i < 64; i++)
440 printk(" %4.4x%s", read_eeprom(ioaddr, i),
441 i % 16 == 15 ? "\n" : "");
442 }
443
444 ep->pci_dev = pdev;
445 ep->chip_id = chip_idx;
446 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags;
447 ep->irq_mask =
448 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
449 | CntFull | TxUnderrun | EpicNapiEvent;
450
451 /* Find the connected MII xcvrs.
452 Doing this in open() would allow detecting external xcvrs later, but
453 takes much time and no cards have external MII. */
454 {
455 int phy, phy_idx = 0;
456 for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) {
457 int mii_status = mdio_read(dev, phy, MII_BMSR);
458 if (mii_status != 0xffff && mii_status != 0x0000) {
459 ep->phys[phy_idx++] = phy;
460 dev_info(&pdev->dev,
461 "MII transceiver #%d control "
462 "%4.4x status %4.4x.\n",
463 phy, mdio_read(dev, phy, 0), mii_status);
464 }
465 }
466 ep->mii_phy_cnt = phy_idx;
467 if (phy_idx != 0) {
468 phy = ep->phys[0];
469 ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE);
470 dev_info(&pdev->dev,
471 "Autonegotiation advertising %4.4x link "
472 "partner %4.4x.\n",
473 ep->mii.advertising, mdio_read(dev, phy, 5));
474 } else if ( ! (ep->chip_flags & NO_MII)) {
475 dev_warn(&pdev->dev,
476 "***WARNING***: No MII transceiver found!\n");
477 /* Use the known PHY address of the EPII. */
478 ep->phys[0] = 3;
479 }
480 ep->mii.phy_id = ep->phys[0];
481 }
482
483 /* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */
484 if (ep->chip_flags & MII_PWRDWN)
485 outl(inl(ioaddr + NVCTL) & ~0x483C, ioaddr + NVCTL);
486 outl(0x0008, ioaddr + GENCTL);
487
488 /* The lower four bits are the media type. */
489 if (duplex) {
490 ep->mii.force_media = ep->mii.full_duplex = 1;
491 dev_info(&pdev->dev, "Forced full duplex requested.\n");
492 }
493 dev->if_port = ep->default_port = option;
494
495 /* The Epic-specific entries in the device structure. */
496 dev->netdev_ops = &epic_netdev_ops;
497 dev->ethtool_ops = &netdev_ethtool_ops;
498 dev->watchdog_timeo = TX_TIMEOUT;
499 netif_napi_add(dev, &ep->napi, epic_poll, 64);
500
501 ret = register_netdev(dev);
502 if (ret < 0)
503 goto err_out_unmap_rx;
504
505 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
506 dev->name, pci_id_tbl[chip_idx].name, ioaddr, dev->irq,
507 dev->dev_addr);
508
509 out:
510 return ret;
511
512 err_out_unmap_rx:
513 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
514 err_out_unmap_tx:
515 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
516 err_out_iounmap:
517 #ifndef USE_IO_OPS
518 iounmap(ioaddr);
519 err_out_free_netdev:
520 #endif
521 free_netdev(dev);
522 err_out_free_res:
523 pci_release_regions(pdev);
524 err_out_disable:
525 pci_disable_device(pdev);
526 goto out;
527 }
528
529 /* Serial EEPROM section. */
530
531 /* EEPROM_Ctrl bits. */
532 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
533 #define EE_CS 0x02 /* EEPROM chip select. */
534 #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */
535 #define EE_WRITE_0 0x01
536 #define EE_WRITE_1 0x09
537 #define EE_DATA_READ 0x10 /* EEPROM chip data out. */
538 #define EE_ENB (0x0001 | EE_CS)
539
540 /* Delay between EEPROM clock transitions.
541 This serves to flush the operation to the PCI bus.
542 */
543
544 #define eeprom_delay() inl(ee_addr)
545
546 /* The EEPROM commands include the alway-set leading bit. */
547 #define EE_WRITE_CMD (5 << 6)
548 #define EE_READ64_CMD (6 << 6)
549 #define EE_READ256_CMD (6 << 8)
550 #define EE_ERASE_CMD (7 << 6)
551
552 static void epic_disable_int(struct net_device *dev, struct epic_private *ep)
553 {
554 long ioaddr = dev->base_addr;
555
556 outl(0x00000000, ioaddr + INTMASK);
557 }
558
559 static inline void __epic_pci_commit(long ioaddr)
560 {
561 #ifndef USE_IO_OPS
562 inl(ioaddr + INTMASK);
563 #endif
564 }
565
566 static inline void epic_napi_irq_off(struct net_device *dev,
567 struct epic_private *ep)
568 {
569 long ioaddr = dev->base_addr;
570
571 outl(ep->irq_mask & ~EpicNapiEvent, ioaddr + INTMASK);
572 __epic_pci_commit(ioaddr);
573 }
574
575 static inline void epic_napi_irq_on(struct net_device *dev,
576 struct epic_private *ep)
577 {
578 long ioaddr = dev->base_addr;
579
580 /* No need to commit possible posted write */
581 outl(ep->irq_mask | EpicNapiEvent, ioaddr + INTMASK);
582 }
583
584 static int __devinit read_eeprom(long ioaddr, int location)
585 {
586 int i;
587 int retval = 0;
588 long ee_addr = ioaddr + EECTL;
589 int read_cmd = location |
590 (inl(ee_addr) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD);
591
592 outl(EE_ENB & ~EE_CS, ee_addr);
593 outl(EE_ENB, ee_addr);
594
595 /* Shift the read command bits out. */
596 for (i = 12; i >= 0; i--) {
597 short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0;
598 outl(EE_ENB | dataval, ee_addr);
599 eeprom_delay();
600 outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
601 eeprom_delay();
602 }
603 outl(EE_ENB, ee_addr);
604
605 for (i = 16; i > 0; i--) {
606 outl(EE_ENB | EE_SHIFT_CLK, ee_addr);
607 eeprom_delay();
608 retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
609 outl(EE_ENB, ee_addr);
610 eeprom_delay();
611 }
612
613 /* Terminate the EEPROM access. */
614 outl(EE_ENB & ~EE_CS, ee_addr);
615 return retval;
616 }
617
618 #define MII_READOP 1
619 #define MII_WRITEOP 2
620 static int mdio_read(struct net_device *dev, int phy_id, int location)
621 {
622 long ioaddr = dev->base_addr;
623 int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP;
624 int i;
625
626 outl(read_cmd, ioaddr + MIICtrl);
627 /* Typical operation takes 25 loops. */
628 for (i = 400; i > 0; i--) {
629 barrier();
630 if ((inl(ioaddr + MIICtrl) & MII_READOP) == 0) {
631 /* Work around read failure bug. */
632 if (phy_id == 1 && location < 6 &&
633 inw(ioaddr + MIIData) == 0xffff) {
634 outl(read_cmd, ioaddr + MIICtrl);
635 continue;
636 }
637 return inw(ioaddr + MIIData);
638 }
639 }
640 return 0xffff;
641 }
642
643 static void mdio_write(struct net_device *dev, int phy_id, int loc, int value)
644 {
645 long ioaddr = dev->base_addr;
646 int i;
647
648 outw(value, ioaddr + MIIData);
649 outl((phy_id << 9) | (loc << 4) | MII_WRITEOP, ioaddr + MIICtrl);
650 for (i = 10000; i > 0; i--) {
651 barrier();
652 if ((inl(ioaddr + MIICtrl) & MII_WRITEOP) == 0)
653 break;
654 }
655 }
656
657
658 static int epic_open(struct net_device *dev)
659 {
660 struct epic_private *ep = netdev_priv(dev);
661 long ioaddr = dev->base_addr;
662 int i;
663 int retval;
664
665 /* Soft reset the chip. */
666 outl(0x4001, ioaddr + GENCTL);
667
668 napi_enable(&ep->napi);
669 if ((retval = request_irq(dev->irq, epic_interrupt, IRQF_SHARED, dev->name, dev))) {
670 napi_disable(&ep->napi);
671 return retval;
672 }
673
674 epic_init_ring(dev);
675
676 outl(0x4000, ioaddr + GENCTL);
677 /* This magic is documented in SMSC app note 7.15 */
678 for (i = 16; i > 0; i--)
679 outl(0x0008, ioaddr + TEST1);
680
681 /* Pull the chip out of low-power mode, enable interrupts, and set for
682 PCI read multiple. The MIIcfg setting and strange write order are
683 required by the details of which bits are reset and the transceiver
684 wiring on the Ositech CardBus card.
685 */
686 #if 0
687 outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
688 #endif
689 if (ep->chip_flags & MII_PWRDWN)
690 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
691
692 /* Tell the chip to byteswap descriptors on big-endian hosts */
693 #ifdef CONFIG_BIG_ENDIAN
694 outl(0x4432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
695 inl(ioaddr + GENCTL);
696 outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
697 #else
698 outl(0x4412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
699 inl(ioaddr + GENCTL);
700 outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
701 #endif
702
703 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */
704
705 for (i = 0; i < 3; i++)
706 outl(le16_to_cpu(((__le16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
707
708 ep->tx_threshold = TX_FIFO_THRESH;
709 outl(ep->tx_threshold, ioaddr + TxThresh);
710
711 if (media2miictl[dev->if_port & 15]) {
712 if (ep->mii_phy_cnt)
713 mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]);
714 if (dev->if_port == 1) {
715 if (debug > 1)
716 printk(KERN_INFO "%s: Using the 10base2 transceiver, MII "
717 "status %4.4x.\n",
718 dev->name, mdio_read(dev, ep->phys[0], MII_BMSR));
719 }
720 } else {
721 int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA);
722 if (mii_lpa != 0xffff) {
723 if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL)
724 ep->mii.full_duplex = 1;
725 else if (! (mii_lpa & LPA_LPACK))
726 mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
727 if (debug > 1)
728 printk(KERN_INFO "%s: Setting %s-duplex based on MII xcvr %d"
729 " register read of %4.4x.\n", dev->name,
730 ep->mii.full_duplex ? "full" : "half",
731 ep->phys[0], mii_lpa);
732 }
733 }
734
735 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
736 outl(ep->rx_ring_dma, ioaddr + PRxCDAR);
737 outl(ep->tx_ring_dma, ioaddr + PTxCDAR);
738
739 /* Start the chip's Rx process. */
740 set_rx_mode(dev);
741 outl(StartRx | RxQueued, ioaddr + COMMAND);
742
743 netif_start_queue(dev);
744
745 /* Enable interrupts by setting the interrupt mask. */
746 outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
747 | CntFull | TxUnderrun
748 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
749
750 if (debug > 1)
751 printk(KERN_DEBUG "%s: epic_open() ioaddr %lx IRQ %d status %4.4x "
752 "%s-duplex.\n",
753 dev->name, ioaddr, dev->irq, (int)inl(ioaddr + GENCTL),
754 ep->mii.full_duplex ? "full" : "half");
755
756 /* Set the timer to switch to check for link beat and perhaps switch
757 to an alternate media type. */
758 init_timer(&ep->timer);
759 ep->timer.expires = jiffies + 3*HZ;
760 ep->timer.data = (unsigned long)dev;
761 ep->timer.function = &epic_timer; /* timer handler */
762 add_timer(&ep->timer);
763
764 return 0;
765 }
766
767 /* Reset the chip to recover from a PCI transaction error.
768 This may occur at interrupt time. */
769 static void epic_pause(struct net_device *dev)
770 {
771 long ioaddr = dev->base_addr;
772 struct epic_private *ep = netdev_priv(dev);
773
774 netif_stop_queue (dev);
775
776 /* Disable interrupts by clearing the interrupt mask. */
777 outl(0x00000000, ioaddr + INTMASK);
778 /* Stop the chip's Tx and Rx DMA processes. */
779 outw(StopRx | StopTxDMA | StopRxDMA, ioaddr + COMMAND);
780
781 /* Update the error counts. */
782 if (inw(ioaddr + COMMAND) != 0xffff) {
783 ep->stats.rx_missed_errors += inb(ioaddr + MPCNT);
784 ep->stats.rx_frame_errors += inb(ioaddr + ALICNT);
785 ep->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
786 }
787
788 /* Remove the packets on the Rx queue. */
789 epic_rx(dev, RX_RING_SIZE);
790 }
791
792 static void epic_restart(struct net_device *dev)
793 {
794 long ioaddr = dev->base_addr;
795 struct epic_private *ep = netdev_priv(dev);
796 int i;
797
798 /* Soft reset the chip. */
799 outl(0x4001, ioaddr + GENCTL);
800
801 printk(KERN_DEBUG "%s: Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n",
802 dev->name, ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx);
803 udelay(1);
804
805 /* This magic is documented in SMSC app note 7.15 */
806 for (i = 16; i > 0; i--)
807 outl(0x0008, ioaddr + TEST1);
808
809 #ifdef CONFIG_BIG_ENDIAN
810 outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
811 #else
812 outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
813 #endif
814 outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
815 if (ep->chip_flags & MII_PWRDWN)
816 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
817
818 for (i = 0; i < 3; i++)
819 outl(le16_to_cpu(((__le16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
820
821 ep->tx_threshold = TX_FIFO_THRESH;
822 outl(ep->tx_threshold, ioaddr + TxThresh);
823 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
824 outl(ep->rx_ring_dma + (ep->cur_rx%RX_RING_SIZE)*
825 sizeof(struct epic_rx_desc), ioaddr + PRxCDAR);
826 outl(ep->tx_ring_dma + (ep->dirty_tx%TX_RING_SIZE)*
827 sizeof(struct epic_tx_desc), ioaddr + PTxCDAR);
828
829 /* Start the chip's Rx process. */
830 set_rx_mode(dev);
831 outl(StartRx | RxQueued, ioaddr + COMMAND);
832
833 /* Enable interrupts by setting the interrupt mask. */
834 outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
835 | CntFull | TxUnderrun
836 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
837
838 printk(KERN_DEBUG "%s: epic_restart() done, cmd status %4.4x, ctl %4.4x"
839 " interrupt %4.4x.\n",
840 dev->name, (int)inl(ioaddr + COMMAND), (int)inl(ioaddr + GENCTL),
841 (int)inl(ioaddr + INTSTAT));
842 }
843
844 static void check_media(struct net_device *dev)
845 {
846 struct epic_private *ep = netdev_priv(dev);
847 long ioaddr = dev->base_addr;
848 int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0;
849 int negotiated = mii_lpa & ep->mii.advertising;
850 int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
851
852 if (ep->mii.force_media)
853 return;
854 if (mii_lpa == 0xffff) /* Bogus read */
855 return;
856 if (ep->mii.full_duplex != duplex) {
857 ep->mii.full_duplex = duplex;
858 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d link"
859 " partner capability of %4.4x.\n", dev->name,
860 ep->mii.full_duplex ? "full" : "half", ep->phys[0], mii_lpa);
861 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
862 }
863 }
864
865 static void epic_timer(unsigned long data)
866 {
867 struct net_device *dev = (struct net_device *)data;
868 struct epic_private *ep = netdev_priv(dev);
869 long ioaddr = dev->base_addr;
870 int next_tick = 5*HZ;
871
872 if (debug > 3) {
873 printk(KERN_DEBUG "%s: Media monitor tick, Tx status %8.8x.\n",
874 dev->name, (int)inl(ioaddr + TxSTAT));
875 printk(KERN_DEBUG "%s: Other registers are IntMask %4.4x "
876 "IntStatus %4.4x RxStatus %4.4x.\n",
877 dev->name, (int)inl(ioaddr + INTMASK),
878 (int)inl(ioaddr + INTSTAT), (int)inl(ioaddr + RxSTAT));
879 }
880
881 check_media(dev);
882
883 ep->timer.expires = jiffies + next_tick;
884 add_timer(&ep->timer);
885 }
886
887 static void epic_tx_timeout(struct net_device *dev)
888 {
889 struct epic_private *ep = netdev_priv(dev);
890 long ioaddr = dev->base_addr;
891
892 if (debug > 0) {
893 printk(KERN_WARNING "%s: Transmit timeout using MII device, "
894 "Tx status %4.4x.\n",
895 dev->name, (int)inw(ioaddr + TxSTAT));
896 if (debug > 1) {
897 printk(KERN_DEBUG "%s: Tx indices: dirty_tx %d, cur_tx %d.\n",
898 dev->name, ep->dirty_tx, ep->cur_tx);
899 }
900 }
901 if (inw(ioaddr + TxSTAT) & 0x10) { /* Tx FIFO underflow. */
902 ep->stats.tx_fifo_errors++;
903 outl(RestartTx, ioaddr + COMMAND);
904 } else {
905 epic_restart(dev);
906 outl(TxQueued, dev->base_addr + COMMAND);
907 }
908
909 dev->trans_start = jiffies; /* prevent tx timeout */
910 ep->stats.tx_errors++;
911 if (!ep->tx_full)
912 netif_wake_queue(dev);
913 }
914
915 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
916 static void epic_init_ring(struct net_device *dev)
917 {
918 struct epic_private *ep = netdev_priv(dev);
919 int i;
920
921 ep->tx_full = 0;
922 ep->dirty_tx = ep->cur_tx = 0;
923 ep->cur_rx = ep->dirty_rx = 0;
924 ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
925
926 /* Initialize all Rx descriptors. */
927 for (i = 0; i < RX_RING_SIZE; i++) {
928 ep->rx_ring[i].rxstatus = 0;
929 ep->rx_ring[i].buflength = ep->rx_buf_sz;
930 ep->rx_ring[i].next = ep->rx_ring_dma +
931 (i+1)*sizeof(struct epic_rx_desc);
932 ep->rx_skbuff[i] = NULL;
933 }
934 /* Mark the last entry as wrapping the ring. */
935 ep->rx_ring[i-1].next = ep->rx_ring_dma;
936
937 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
938 for (i = 0; i < RX_RING_SIZE; i++) {
939 struct sk_buff *skb = dev_alloc_skb(ep->rx_buf_sz);
940 ep->rx_skbuff[i] = skb;
941 if (skb == NULL)
942 break;
943 skb_reserve(skb, 2); /* 16 byte align the IP header. */
944 ep->rx_ring[i].bufaddr = pci_map_single(ep->pci_dev,
945 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
946 ep->rx_ring[i].rxstatus = DescOwn;
947 }
948 ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
949
950 /* The Tx buffer descriptor is filled in as needed, but we
951 do need to clear the ownership bit. */
952 for (i = 0; i < TX_RING_SIZE; i++) {
953 ep->tx_skbuff[i] = NULL;
954 ep->tx_ring[i].txstatus = 0x0000;
955 ep->tx_ring[i].next = ep->tx_ring_dma +
956 (i+1)*sizeof(struct epic_tx_desc);
957 }
958 ep->tx_ring[i-1].next = ep->tx_ring_dma;
959 }
960
961 static netdev_tx_t epic_start_xmit(struct sk_buff *skb, struct net_device *dev)
962 {
963 struct epic_private *ep = netdev_priv(dev);
964 int entry, free_count;
965 u32 ctrl_word;
966 unsigned long flags;
967
968 if (skb_padto(skb, ETH_ZLEN))
969 return NETDEV_TX_OK;
970
971 /* Caution: the write order is important here, set the field with the
972 "ownership" bit last. */
973
974 /* Calculate the next Tx descriptor entry. */
975 spin_lock_irqsave(&ep->lock, flags);
976 free_count = ep->cur_tx - ep->dirty_tx;
977 entry = ep->cur_tx % TX_RING_SIZE;
978
979 ep->tx_skbuff[entry] = skb;
980 ep->tx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, skb->data,
981 skb->len, PCI_DMA_TODEVICE);
982 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */
983 ctrl_word = 0x100000; /* No interrupt */
984 } else if (free_count == TX_QUEUE_LEN/2) {
985 ctrl_word = 0x140000; /* Tx-done intr. */
986 } else if (free_count < TX_QUEUE_LEN - 1) {
987 ctrl_word = 0x100000; /* No Tx-done intr. */
988 } else {
989 /* Leave room for an additional entry. */
990 ctrl_word = 0x140000; /* Tx-done intr. */
991 ep->tx_full = 1;
992 }
993 ep->tx_ring[entry].buflength = ctrl_word | skb->len;
994 ep->tx_ring[entry].txstatus =
995 ((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16)
996 | DescOwn;
997
998 ep->cur_tx++;
999 if (ep->tx_full)
1000 netif_stop_queue(dev);
1001
1002 spin_unlock_irqrestore(&ep->lock, flags);
1003 /* Trigger an immediate transmit demand. */
1004 outl(TxQueued, dev->base_addr + COMMAND);
1005
1006 if (debug > 4)
1007 printk(KERN_DEBUG "%s: Queued Tx packet size %d to slot %d, "
1008 "flag %2.2x Tx status %8.8x.\n",
1009 dev->name, (int)skb->len, entry, ctrl_word,
1010 (int)inl(dev->base_addr + TxSTAT));
1011
1012 return NETDEV_TX_OK;
1013 }
1014
1015 static void epic_tx_error(struct net_device *dev, struct epic_private *ep,
1016 int status)
1017 {
1018 struct net_device_stats *stats = &ep->stats;
1019
1020 #ifndef final_version
1021 /* There was an major error, log it. */
1022 if (debug > 1)
1023 printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
1024 dev->name, status);
1025 #endif
1026 stats->tx_errors++;
1027 if (status & 0x1050)
1028 stats->tx_aborted_errors++;
1029 if (status & 0x0008)
1030 stats->tx_carrier_errors++;
1031 if (status & 0x0040)
1032 stats->tx_window_errors++;
1033 if (status & 0x0010)
1034 stats->tx_fifo_errors++;
1035 }
1036
1037 static void epic_tx(struct net_device *dev, struct epic_private *ep)
1038 {
1039 unsigned int dirty_tx, cur_tx;
1040
1041 /*
1042 * Note: if this lock becomes a problem we can narrow the locked
1043 * region at the cost of occasionally grabbing the lock more times.
1044 */
1045 cur_tx = ep->cur_tx;
1046 for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) {
1047 struct sk_buff *skb;
1048 int entry = dirty_tx % TX_RING_SIZE;
1049 int txstatus = ep->tx_ring[entry].txstatus;
1050
1051 if (txstatus & DescOwn)
1052 break; /* It still hasn't been Txed */
1053
1054 if (likely(txstatus & 0x0001)) {
1055 ep->stats.collisions += (txstatus >> 8) & 15;
1056 ep->stats.tx_packets++;
1057 ep->stats.tx_bytes += ep->tx_skbuff[entry]->len;
1058 } else
1059 epic_tx_error(dev, ep, txstatus);
1060
1061 /* Free the original skb. */
1062 skb = ep->tx_skbuff[entry];
1063 pci_unmap_single(ep->pci_dev, ep->tx_ring[entry].bufaddr,
1064 skb->len, PCI_DMA_TODEVICE);
1065 dev_kfree_skb_irq(skb);
1066 ep->tx_skbuff[entry] = NULL;
1067 }
1068
1069 #ifndef final_version
1070 if (cur_tx - dirty_tx > TX_RING_SIZE) {
1071 printk(KERN_WARNING
1072 "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1073 dev->name, dirty_tx, cur_tx, ep->tx_full);
1074 dirty_tx += TX_RING_SIZE;
1075 }
1076 #endif
1077 ep->dirty_tx = dirty_tx;
1078 if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) {
1079 /* The ring is no longer full, allow new TX entries. */
1080 ep->tx_full = 0;
1081 netif_wake_queue(dev);
1082 }
1083 }
1084
1085 /* The interrupt handler does all of the Rx thread work and cleans up
1086 after the Tx thread. */
1087 static irqreturn_t epic_interrupt(int irq, void *dev_instance)
1088 {
1089 struct net_device *dev = dev_instance;
1090 struct epic_private *ep = netdev_priv(dev);
1091 long ioaddr = dev->base_addr;
1092 unsigned int handled = 0;
1093 int status;
1094
1095 status = inl(ioaddr + INTSTAT);
1096 /* Acknowledge all of the current interrupt sources ASAP. */
1097 outl(status & EpicNormalEvent, ioaddr + INTSTAT);
1098
1099 if (debug > 4) {
1100 printk(KERN_DEBUG "%s: Interrupt, status=%#8.8x new "
1101 "intstat=%#8.8x.\n", dev->name, status,
1102 (int)inl(ioaddr + INTSTAT));
1103 }
1104
1105 if ((status & IntrSummary) == 0)
1106 goto out;
1107
1108 handled = 1;
1109
1110 if ((status & EpicNapiEvent) && !ep->reschedule_in_poll) {
1111 spin_lock(&ep->napi_lock);
1112 if (napi_schedule_prep(&ep->napi)) {
1113 epic_napi_irq_off(dev, ep);
1114 __napi_schedule(&ep->napi);
1115 } else
1116 ep->reschedule_in_poll++;
1117 spin_unlock(&ep->napi_lock);
1118 }
1119 status &= ~EpicNapiEvent;
1120
1121 /* Check uncommon events all at once. */
1122 if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) {
1123 if (status == EpicRemoved)
1124 goto out;
1125
1126 /* Always update the error counts to avoid overhead later. */
1127 ep->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1128 ep->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1129 ep->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1130
1131 if (status & TxUnderrun) { /* Tx FIFO underflow. */
1132 ep->stats.tx_fifo_errors++;
1133 outl(ep->tx_threshold += 128, ioaddr + TxThresh);
1134 /* Restart the transmit process. */
1135 outl(RestartTx, ioaddr + COMMAND);
1136 }
1137 if (status & PCIBusErr170) {
1138 printk(KERN_ERR "%s: PCI Bus Error! status %4.4x.\n",
1139 dev->name, status);
1140 epic_pause(dev);
1141 epic_restart(dev);
1142 }
1143 /* Clear all error sources. */
1144 outl(status & 0x7f18, ioaddr + INTSTAT);
1145 }
1146
1147 out:
1148 if (debug > 3) {
1149 printk(KERN_DEBUG "%s: exit interrupt, intr_status=%#4.4x.\n",
1150 dev->name, status);
1151 }
1152
1153 return IRQ_RETVAL(handled);
1154 }
1155
1156 static int epic_rx(struct net_device *dev, int budget)
1157 {
1158 struct epic_private *ep = netdev_priv(dev);
1159 int entry = ep->cur_rx % RX_RING_SIZE;
1160 int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx;
1161 int work_done = 0;
1162
1163 if (debug > 4)
1164 printk(KERN_DEBUG " In epic_rx(), entry %d %8.8x.\n", entry,
1165 ep->rx_ring[entry].rxstatus);
1166
1167 if (rx_work_limit > budget)
1168 rx_work_limit = budget;
1169
1170 /* If we own the next entry, it's a new packet. Send it up. */
1171 while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) {
1172 int status = ep->rx_ring[entry].rxstatus;
1173
1174 if (debug > 4)
1175 printk(KERN_DEBUG " epic_rx() status was %8.8x.\n", status);
1176 if (--rx_work_limit < 0)
1177 break;
1178 if (status & 0x2006) {
1179 if (debug > 2)
1180 printk(KERN_DEBUG "%s: epic_rx() error status was %8.8x.\n",
1181 dev->name, status);
1182 if (status & 0x2000) {
1183 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
1184 "multiple buffers, status %4.4x!\n", dev->name, status);
1185 ep->stats.rx_length_errors++;
1186 } else if (status & 0x0006)
1187 /* Rx Frame errors are counted in hardware. */
1188 ep->stats.rx_errors++;
1189 } else {
1190 /* Malloc up new buffer, compatible with net-2e. */
1191 /* Omit the four octet CRC from the length. */
1192 short pkt_len = (status >> 16) - 4;
1193 struct sk_buff *skb;
1194
1195 if (pkt_len > PKT_BUF_SZ - 4) {
1196 printk(KERN_ERR "%s: Oversized Ethernet frame, status %x "
1197 "%d bytes.\n",
1198 dev->name, status, pkt_len);
1199 pkt_len = 1514;
1200 }
1201 /* Check if the packet is long enough to accept without copying
1202 to a minimally-sized skbuff. */
1203 if (pkt_len < rx_copybreak &&
1204 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1205 skb_reserve(skb, 2); /* 16 byte align the IP header */
1206 pci_dma_sync_single_for_cpu(ep->pci_dev,
1207 ep->rx_ring[entry].bufaddr,
1208 ep->rx_buf_sz,
1209 PCI_DMA_FROMDEVICE);
1210 skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len);
1211 skb_put(skb, pkt_len);
1212 pci_dma_sync_single_for_device(ep->pci_dev,
1213 ep->rx_ring[entry].bufaddr,
1214 ep->rx_buf_sz,
1215 PCI_DMA_FROMDEVICE);
1216 } else {
1217 pci_unmap_single(ep->pci_dev,
1218 ep->rx_ring[entry].bufaddr,
1219 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1220 skb_put(skb = ep->rx_skbuff[entry], pkt_len);
1221 ep->rx_skbuff[entry] = NULL;
1222 }
1223 skb->protocol = eth_type_trans(skb, dev);
1224 netif_receive_skb(skb);
1225 ep->stats.rx_packets++;
1226 ep->stats.rx_bytes += pkt_len;
1227 }
1228 work_done++;
1229 entry = (++ep->cur_rx) % RX_RING_SIZE;
1230 }
1231
1232 /* Refill the Rx ring buffers. */
1233 for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) {
1234 entry = ep->dirty_rx % RX_RING_SIZE;
1235 if (ep->rx_skbuff[entry] == NULL) {
1236 struct sk_buff *skb;
1237 skb = ep->rx_skbuff[entry] = dev_alloc_skb(ep->rx_buf_sz);
1238 if (skb == NULL)
1239 break;
1240 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1241 ep->rx_ring[entry].bufaddr = pci_map_single(ep->pci_dev,
1242 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1243 work_done++;
1244 }
1245 /* AV: shouldn't we add a barrier here? */
1246 ep->rx_ring[entry].rxstatus = DescOwn;
1247 }
1248 return work_done;
1249 }
1250
1251 static void epic_rx_err(struct net_device *dev, struct epic_private *ep)
1252 {
1253 long ioaddr = dev->base_addr;
1254 int status;
1255
1256 status = inl(ioaddr + INTSTAT);
1257
1258 if (status == EpicRemoved)
1259 return;
1260 if (status & RxOverflow) /* Missed a Rx frame. */
1261 ep->stats.rx_errors++;
1262 if (status & (RxOverflow | RxFull))
1263 outw(RxQueued, ioaddr + COMMAND);
1264 }
1265
1266 static int epic_poll(struct napi_struct *napi, int budget)
1267 {
1268 struct epic_private *ep = container_of(napi, struct epic_private, napi);
1269 struct net_device *dev = ep->mii.dev;
1270 int work_done = 0;
1271 long ioaddr = dev->base_addr;
1272
1273 rx_action:
1274
1275 epic_tx(dev, ep);
1276
1277 work_done += epic_rx(dev, budget);
1278
1279 epic_rx_err(dev, ep);
1280
1281 if (work_done < budget) {
1282 unsigned long flags;
1283 int more;
1284
1285 /* A bit baroque but it avoids a (space hungry) spin_unlock */
1286
1287 spin_lock_irqsave(&ep->napi_lock, flags);
1288
1289 more = ep->reschedule_in_poll;
1290 if (!more) {
1291 __napi_complete(napi);
1292 outl(EpicNapiEvent, ioaddr + INTSTAT);
1293 epic_napi_irq_on(dev, ep);
1294 } else
1295 ep->reschedule_in_poll--;
1296
1297 spin_unlock_irqrestore(&ep->napi_lock, flags);
1298
1299 if (more)
1300 goto rx_action;
1301 }
1302
1303 return work_done;
1304 }
1305
1306 static int epic_close(struct net_device *dev)
1307 {
1308 long ioaddr = dev->base_addr;
1309 struct epic_private *ep = netdev_priv(dev);
1310 struct sk_buff *skb;
1311 int i;
1312
1313 netif_stop_queue(dev);
1314 napi_disable(&ep->napi);
1315
1316 if (debug > 1)
1317 printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
1318 dev->name, (int)inl(ioaddr + INTSTAT));
1319
1320 del_timer_sync(&ep->timer);
1321
1322 epic_disable_int(dev, ep);
1323
1324 free_irq(dev->irq, dev);
1325
1326 epic_pause(dev);
1327
1328 /* Free all the skbuffs in the Rx queue. */
1329 for (i = 0; i < RX_RING_SIZE; i++) {
1330 skb = ep->rx_skbuff[i];
1331 ep->rx_skbuff[i] = NULL;
1332 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */
1333 ep->rx_ring[i].buflength = 0;
1334 if (skb) {
1335 pci_unmap_single(ep->pci_dev, ep->rx_ring[i].bufaddr,
1336 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1337 dev_kfree_skb(skb);
1338 }
1339 ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */
1340 }
1341 for (i = 0; i < TX_RING_SIZE; i++) {
1342 skb = ep->tx_skbuff[i];
1343 ep->tx_skbuff[i] = NULL;
1344 if (!skb)
1345 continue;
1346 pci_unmap_single(ep->pci_dev, ep->tx_ring[i].bufaddr,
1347 skb->len, PCI_DMA_TODEVICE);
1348 dev_kfree_skb(skb);
1349 }
1350
1351 /* Green! Leave the chip in low-power mode. */
1352 outl(0x0008, ioaddr + GENCTL);
1353
1354 return 0;
1355 }
1356
1357 static struct net_device_stats *epic_get_stats(struct net_device *dev)
1358 {
1359 struct epic_private *ep = netdev_priv(dev);
1360 long ioaddr = dev->base_addr;
1361
1362 if (netif_running(dev)) {
1363 /* Update the error counts. */
1364 ep->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1365 ep->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1366 ep->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1367 }
1368
1369 return &ep->stats;
1370 }
1371
1372 /* Set or clear the multicast filter for this adaptor.
1373 Note that we only use exclusion around actually queueing the
1374 new frame, not around filling ep->setup_frame. This is non-deterministic
1375 when re-entered but still correct. */
1376
1377 static void set_rx_mode(struct net_device *dev)
1378 {
1379 long ioaddr = dev->base_addr;
1380 struct epic_private *ep = netdev_priv(dev);
1381 unsigned char mc_filter[8]; /* Multicast hash filter */
1382 int i;
1383
1384 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1385 outl(0x002C, ioaddr + RxCtrl);
1386 /* Unconditionally log net taps. */
1387 memset(mc_filter, 0xff, sizeof(mc_filter));
1388 } else if ((!netdev_mc_empty(dev)) || (dev->flags & IFF_ALLMULTI)) {
1389 /* There is apparently a chip bug, so the multicast filter
1390 is never enabled. */
1391 /* Too many to filter perfectly -- accept all multicasts. */
1392 memset(mc_filter, 0xff, sizeof(mc_filter));
1393 outl(0x000C, ioaddr + RxCtrl);
1394 } else if (netdev_mc_empty(dev)) {
1395 outl(0x0004, ioaddr + RxCtrl);
1396 return;
1397 } else { /* Never executed, for now. */
1398 struct netdev_hw_addr *ha;
1399
1400 memset(mc_filter, 0, sizeof(mc_filter));
1401 netdev_for_each_mc_addr(ha, dev) {
1402 unsigned int bit_nr =
1403 ether_crc_le(ETH_ALEN, ha->addr) & 0x3f;
1404 mc_filter[bit_nr >> 3] |= (1 << bit_nr);
1405 }
1406 }
1407 /* ToDo: perhaps we need to stop the Tx and Rx process here? */
1408 if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) {
1409 for (i = 0; i < 4; i++)
1410 outw(((u16 *)mc_filter)[i], ioaddr + MC0 + i*4);
1411 memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter));
1412 }
1413 }
1414
1415 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1416 {
1417 struct epic_private *np = netdev_priv(dev);
1418
1419 strcpy (info->driver, DRV_NAME);
1420 strcpy (info->version, DRV_VERSION);
1421 strcpy (info->bus_info, pci_name(np->pci_dev));
1422 }
1423
1424 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1425 {
1426 struct epic_private *np = netdev_priv(dev);
1427 int rc;
1428
1429 spin_lock_irq(&np->lock);
1430 rc = mii_ethtool_gset(&np->mii, cmd);
1431 spin_unlock_irq(&np->lock);
1432
1433 return rc;
1434 }
1435
1436 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1437 {
1438 struct epic_private *np = netdev_priv(dev);
1439 int rc;
1440
1441 spin_lock_irq(&np->lock);
1442 rc = mii_ethtool_sset(&np->mii, cmd);
1443 spin_unlock_irq(&np->lock);
1444
1445 return rc;
1446 }
1447
1448 static int netdev_nway_reset(struct net_device *dev)
1449 {
1450 struct epic_private *np = netdev_priv(dev);
1451 return mii_nway_restart(&np->mii);
1452 }
1453
1454 static u32 netdev_get_link(struct net_device *dev)
1455 {
1456 struct epic_private *np = netdev_priv(dev);
1457 return mii_link_ok(&np->mii);
1458 }
1459
1460 static u32 netdev_get_msglevel(struct net_device *dev)
1461 {
1462 return debug;
1463 }
1464
1465 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1466 {
1467 debug = value;
1468 }
1469
1470 static int ethtool_begin(struct net_device *dev)
1471 {
1472 unsigned long ioaddr = dev->base_addr;
1473 /* power-up, if interface is down */
1474 if (! netif_running(dev)) {
1475 outl(0x0200, ioaddr + GENCTL);
1476 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1477 }
1478 return 0;
1479 }
1480
1481 static void ethtool_complete(struct net_device *dev)
1482 {
1483 unsigned long ioaddr = dev->base_addr;
1484 /* power-down, if interface is down */
1485 if (! netif_running(dev)) {
1486 outl(0x0008, ioaddr + GENCTL);
1487 outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1488 }
1489 }
1490
1491 static const struct ethtool_ops netdev_ethtool_ops = {
1492 .get_drvinfo = netdev_get_drvinfo,
1493 .get_settings = netdev_get_settings,
1494 .set_settings = netdev_set_settings,
1495 .nway_reset = netdev_nway_reset,
1496 .get_link = netdev_get_link,
1497 .get_msglevel = netdev_get_msglevel,
1498 .set_msglevel = netdev_set_msglevel,
1499 .begin = ethtool_begin,
1500 .complete = ethtool_complete
1501 };
1502
1503 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1504 {
1505 struct epic_private *np = netdev_priv(dev);
1506 long ioaddr = dev->base_addr;
1507 struct mii_ioctl_data *data = if_mii(rq);
1508 int rc;
1509
1510 /* power-up, if interface is down */
1511 if (! netif_running(dev)) {
1512 outl(0x0200, ioaddr + GENCTL);
1513 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1514 }
1515
1516 /* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */
1517 spin_lock_irq(&np->lock);
1518 rc = generic_mii_ioctl(&np->mii, data, cmd, NULL);
1519 spin_unlock_irq(&np->lock);
1520
1521 /* power-down, if interface is down */
1522 if (! netif_running(dev)) {
1523 outl(0x0008, ioaddr + GENCTL);
1524 outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1525 }
1526 return rc;
1527 }
1528
1529
1530 static void __devexit epic_remove_one (struct pci_dev *pdev)
1531 {
1532 struct net_device *dev = pci_get_drvdata(pdev);
1533 struct epic_private *ep = netdev_priv(dev);
1534
1535 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
1536 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
1537 unregister_netdev(dev);
1538 #ifndef USE_IO_OPS
1539 iounmap((void*) dev->base_addr);
1540 #endif
1541 pci_release_regions(pdev);
1542 free_netdev(dev);
1543 pci_disable_device(pdev);
1544 pci_set_drvdata(pdev, NULL);
1545 /* pci_power_off(pdev, -1); */
1546 }
1547
1548
1549 #ifdef CONFIG_PM
1550
1551 static int epic_suspend (struct pci_dev *pdev, pm_message_t state)
1552 {
1553 struct net_device *dev = pci_get_drvdata(pdev);
1554 long ioaddr = dev->base_addr;
1555
1556 if (!netif_running(dev))
1557 return 0;
1558 epic_pause(dev);
1559 /* Put the chip into low-power mode. */
1560 outl(0x0008, ioaddr + GENCTL);
1561 /* pci_power_off(pdev, -1); */
1562 return 0;
1563 }
1564
1565
1566 static int epic_resume (struct pci_dev *pdev)
1567 {
1568 struct net_device *dev = pci_get_drvdata(pdev);
1569
1570 if (!netif_running(dev))
1571 return 0;
1572 epic_restart(dev);
1573 /* pci_power_on(pdev); */
1574 return 0;
1575 }
1576
1577 #endif /* CONFIG_PM */
1578
1579
1580 static struct pci_driver epic_driver = {
1581 .name = DRV_NAME,
1582 .id_table = epic_pci_tbl,
1583 .probe = epic_init_one,
1584 .remove = __devexit_p(epic_remove_one),
1585 #ifdef CONFIG_PM
1586 .suspend = epic_suspend,
1587 .resume = epic_resume,
1588 #endif /* CONFIG_PM */
1589 };
1590
1591
1592 static int __init epic_init (void)
1593 {
1594 /* when a module, this is printed whether or not devices are found in probe */
1595 #ifdef MODULE
1596 printk (KERN_INFO "%s%s",
1597 version, version2);
1598 #endif
1599
1600 return pci_register_driver(&epic_driver);
1601 }
1602
1603
1604 static void __exit epic_cleanup (void)
1605 {
1606 pci_unregister_driver (&epic_driver);
1607 }
1608
1609
1610 module_init(epic_init);
1611 module_exit(epic_cleanup);