[PATCH] irq-flags: drivers/net: Use the new IRQF_ constants
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / eepro.c
1 /* eepro.c: Intel EtherExpress Pro/10 device driver for Linux. */
2 /*
3 Written 1994, 1995,1996 by Bao C. Ha.
4
5 Copyright (C) 1994, 1995,1996 by Bao C. Ha.
6
7 This software may be used and distributed
8 according to the terms of the GNU General Public License,
9 incorporated herein by reference.
10
11 The author may be reached at bao.ha@srs.gov
12 or 418 Hastings Place, Martinez, GA 30907.
13
14 Things remaining to do:
15 Better record keeping of errors.
16 Eliminate transmit interrupt to reduce overhead.
17 Implement "concurrent processing". I won't be doing it!
18
19 Bugs:
20
21 If you have a problem of not detecting the 82595 during a
22 reboot (warm reset), disable the FLASH memory should fix it.
23 This is a compatibility hardware problem.
24
25 Versions:
26 0.13b basic ethtool support (aris, 09/13/2004)
27 0.13a in memory shortage, drop packets also in board
28 (Michael Westermann <mw@microdata-pos.de>, 07/30/2002)
29 0.13 irq sharing, rewrote probe function, fixed a nasty bug in
30 hardware_send_packet and a major cleanup (aris, 11/08/2001)
31 0.12d fixing a problem with single card detected as eight eth devices
32 fixing a problem with sudden drop in card performance
33 (chris (asdn@go2.pl), 10/29/2001)
34 0.12c fixing some problems with old cards (aris, 01/08/2001)
35 0.12b misc fixes (aris, 06/26/2000)
36 0.12a port of version 0.12a of 2.2.x kernels to 2.3.x
37 (aris (aris@conectiva.com.br), 05/19/2000)
38 0.11e some tweaks about multiple cards support (PdP, jul/aug 1999)
39 0.11d added __initdata, __init stuff; call spin_lock_init
40 in eepro_probe1. Replaced "eepro" by dev->name. Augmented
41 the code protected by spin_lock in interrupt routine
42 (PdP, 12/12/1998)
43 0.11c minor cleanup (PdP, RMC, 09/12/1998)
44 0.11b Pascal Dupuis (dupuis@lei.ucl.ac.be): works as a module
45 under 2.1.xx. Debug messages are flagged as KERN_DEBUG to
46 avoid console flooding. Added locking at critical parts. Now
47 the dawn thing is SMP safe.
48 0.11a Attempt to get 2.1.xx support up (RMC)
49 0.11 Brian Candler added support for multiple cards. Tested as
50 a module, no idea if it works when compiled into kernel.
51
52 0.10e Rick Bressler notified me that ifconfig up;ifconfig down fails
53 because the irq is lost somewhere. Fixed that by moving
54 request_irq and free_irq to eepro_open and eepro_close respectively.
55 0.10d Ugh! Now Wakeup works. Was seriously broken in my first attempt.
56 I'll need to find a way to specify an ioport other than
57 the default one in the PnP case. PnP definitively sucks.
58 And, yes, this is not the only reason.
59 0.10c PnP Wakeup Test for 595FX. uncomment #define PnPWakeup;
60 to use.
61 0.10b Should work now with (some) Pro/10+. At least for
62 me (and my two cards) it does. _No_ guarantee for
63 function with non-Pro/10+ cards! (don't have any)
64 (RMC, 9/11/96)
65
66 0.10 Added support for the Etherexpress Pro/10+. The
67 IRQ map was changed significantly from the old
68 pro/10. The new interrupt map was provided by
69 Rainer M. Canavan (Canavan@Zeus.cs.bonn.edu).
70 (BCH, 9/3/96)
71
72 0.09 Fixed a race condition in the transmit algorithm,
73 which causes crashes under heavy load with fast
74 pentium computers. The performance should also
75 improve a bit. The size of RX buffer, and hence
76 TX buffer, can also be changed via lilo or insmod.
77 (BCH, 7/31/96)
78
79 0.08 Implement 32-bit I/O for the 82595TX and 82595FX
80 based lan cards. Disable full-duplex mode if TPE
81 is not used. (BCH, 4/8/96)
82
83 0.07a Fix a stat report which counts every packet as a
84 heart-beat failure. (BCH, 6/3/95)
85
86 0.07 Modified to support all other 82595-based lan cards.
87 The IRQ vector of the EtherExpress Pro will be set
88 according to the value saved in the EEPROM. For other
89 cards, I will do autoirq_request() to grab the next
90 available interrupt vector. (BCH, 3/17/95)
91
92 0.06a,b Interim released. Minor changes in the comments and
93 print out format. (BCH, 3/9/95 and 3/14/95)
94
95 0.06 First stable release that I am comfortable with. (BCH,
96 3/2/95)
97
98 0.05 Complete testing of multicast. (BCH, 2/23/95)
99
100 0.04 Adding multicast support. (BCH, 2/14/95)
101
102 0.03 First widely alpha release for public testing.
103 (BCH, 2/14/95)
104
105 */
106
107 static const char version[] =
108 "eepro.c: v0.13b 09/13/2004 aris@cathedrallabs.org\n";
109
110 #include <linux/module.h>
111
112 /*
113 Sources:
114
115 This driver wouldn't have been written without the availability
116 of the Crynwr's Lan595 driver source code. It helps me to
117 familiarize with the 82595 chipset while waiting for the Intel
118 documentation. I also learned how to detect the 82595 using
119 the packet driver's technique.
120
121 This driver is written by cutting and pasting the skeleton.c driver
122 provided by Donald Becker. I also borrowed the EEPROM routine from
123 Donald Becker's 82586 driver.
124
125 Datasheet for the Intel 82595 (including the TX and FX version). It
126 provides just enough info that the casual reader might think that it
127 documents the i82595.
128
129 The User Manual for the 82595. It provides a lot of the missing
130 information.
131
132 */
133
134 #include <linux/kernel.h>
135 #include <linux/types.h>
136 #include <linux/fcntl.h>
137 #include <linux/interrupt.h>
138 #include <linux/ioport.h>
139 #include <linux/in.h>
140 #include <linux/slab.h>
141 #include <linux/string.h>
142 #include <linux/errno.h>
143 #include <linux/netdevice.h>
144 #include <linux/etherdevice.h>
145 #include <linux/skbuff.h>
146 #include <linux/spinlock.h>
147 #include <linux/init.h>
148 #include <linux/delay.h>
149 #include <linux/bitops.h>
150 #include <linux/ethtool.h>
151
152 #include <asm/system.h>
153 #include <asm/io.h>
154 #include <asm/dma.h>
155
156 #define DRV_NAME "eepro"
157 #define DRV_VERSION "0.13b"
158
159 #define compat_dev_kfree_skb( skb, mode ) dev_kfree_skb( (skb) )
160 /* I had reports of looong delays with SLOW_DOWN defined as udelay(2) */
161 #define SLOW_DOWN inb(0x80)
162 /* udelay(2) */
163 #define compat_init_data __initdata
164 enum iftype { AUI=0, BNC=1, TPE=2 };
165
166 /* First, a few definitions that the brave might change. */
167 /* A zero-terminated list of I/O addresses to be probed. */
168 static unsigned int eepro_portlist[] compat_init_data =
169 { 0x300, 0x210, 0x240, 0x280, 0x2C0, 0x200, 0x320, 0x340, 0x360, 0};
170 /* note: 0x300 is default, the 595FX supports ALL IO Ports
171 from 0x000 to 0x3F0, some of which are reserved in PCs */
172
173 /* To try the (not-really PnP Wakeup: */
174 /*
175 #define PnPWakeup
176 */
177
178 /* use 0 for production, 1 for verification, >2 for debug */
179 #ifndef NET_DEBUG
180 #define NET_DEBUG 0
181 #endif
182 static unsigned int net_debug = NET_DEBUG;
183
184 /* The number of low I/O ports used by the ethercard. */
185 #define EEPRO_IO_EXTENT 16
186
187 /* Different 82595 chips */
188 #define LAN595 0
189 #define LAN595TX 1
190 #define LAN595FX 2
191 #define LAN595FX_10ISA 3
192
193 /* Information that need to be kept for each board. */
194 struct eepro_local {
195 struct net_device_stats stats;
196 unsigned rx_start;
197 unsigned tx_start; /* start of the transmit chain */
198 int tx_last; /* pointer to last packet in the transmit chain */
199 unsigned tx_end; /* end of the transmit chain (plus 1) */
200 int eepro; /* 1 for the EtherExpress Pro/10,
201 2 for the EtherExpress Pro/10+,
202 3 for the EtherExpress 10 (blue cards),
203 0 for other 82595-based lan cards. */
204 int version; /* a flag to indicate if this is a TX or FX
205 version of the 82595 chip. */
206 int stepping;
207
208 spinlock_t lock; /* Serializing lock */
209
210 unsigned rcv_ram; /* pre-calculated space for rx */
211 unsigned xmt_ram; /* pre-calculated space for tx */
212 unsigned char xmt_bar;
213 unsigned char xmt_lower_limit_reg;
214 unsigned char xmt_upper_limit_reg;
215 short xmt_lower_limit;
216 short xmt_upper_limit;
217 short rcv_lower_limit;
218 short rcv_upper_limit;
219 unsigned char eeprom_reg;
220 unsigned short word[8];
221 };
222
223 /* The station (ethernet) address prefix, used for IDing the board. */
224 #define SA_ADDR0 0x00 /* Etherexpress Pro/10 */
225 #define SA_ADDR1 0xaa
226 #define SA_ADDR2 0x00
227
228 #define GetBit(x,y) ((x & (1<<y))>>y)
229
230 /* EEPROM Word 0: */
231 #define ee_PnP 0 /* Plug 'n Play enable bit */
232 #define ee_Word1 1 /* Word 1? */
233 #define ee_BusWidth 2 /* 8/16 bit */
234 #define ee_FlashAddr 3 /* Flash Address */
235 #define ee_FlashMask 0x7 /* Mask */
236 #define ee_AutoIO 6 /* */
237 #define ee_reserved0 7 /* =0! */
238 #define ee_Flash 8 /* Flash there? */
239 #define ee_AutoNeg 9 /* Auto Negotiation enabled? */
240 #define ee_IO0 10 /* IO Address LSB */
241 #define ee_IO0Mask 0x /*...*/
242 #define ee_IO1 15 /* IO MSB */
243
244 /* EEPROM Word 1: */
245 #define ee_IntSel 0 /* Interrupt */
246 #define ee_IntMask 0x7
247 #define ee_LI 3 /* Link Integrity 0= enabled */
248 #define ee_PC 4 /* Polarity Correction 0= enabled */
249 #define ee_TPE_AUI 5 /* PortSelection 1=TPE */
250 #define ee_Jabber 6 /* Jabber prevention 0= enabled */
251 #define ee_AutoPort 7 /* Auto Port Selection 1= Disabled */
252 #define ee_SMOUT 8 /* SMout Pin Control 0= Input */
253 #define ee_PROM 9 /* Flash EPROM / PROM 0=Flash */
254 #define ee_reserved1 10 /* .. 12 =0! */
255 #define ee_AltReady 13 /* Alternate Ready, 0=normal */
256 #define ee_reserved2 14 /* =0! */
257 #define ee_Duplex 15
258
259 /* Word2,3,4: */
260 #define ee_IA5 0 /*bit start for individual Addr Byte 5 */
261 #define ee_IA4 8 /*bit start for individual Addr Byte 5 */
262 #define ee_IA3 0 /*bit start for individual Addr Byte 5 */
263 #define ee_IA2 8 /*bit start for individual Addr Byte 5 */
264 #define ee_IA1 0 /*bit start for individual Addr Byte 5 */
265 #define ee_IA0 8 /*bit start for individual Addr Byte 5 */
266
267 /* Word 5: */
268 #define ee_BNC_TPE 0 /* 0=TPE */
269 #define ee_BootType 1 /* 00=None, 01=IPX, 10=ODI, 11=NDIS */
270 #define ee_BootTypeMask 0x3
271 #define ee_NumConn 3 /* Number of Connections 0= One or Two */
272 #define ee_FlashSock 4 /* Presence of Flash Socket 0= Present */
273 #define ee_PortTPE 5
274 #define ee_PortBNC 6
275 #define ee_PortAUI 7
276 #define ee_PowerMgt 10 /* 0= disabled */
277 #define ee_CP 13 /* Concurrent Processing */
278 #define ee_CPMask 0x7
279
280 /* Word 6: */
281 #define ee_Stepping 0 /* Stepping info */
282 #define ee_StepMask 0x0F
283 #define ee_BoardID 4 /* Manucaturer Board ID, reserved */
284 #define ee_BoardMask 0x0FFF
285
286 /* Word 7: */
287 #define ee_INT_TO_IRQ 0 /* int to IRQ Mapping = 0x1EB8 for Pro/10+ */
288 #define ee_FX_INT2IRQ 0x1EB8 /* the _only_ mapping allowed for FX chips */
289
290 /*..*/
291 #define ee_SIZE 0x40 /* total EEprom Size */
292 #define ee_Checksum 0xBABA /* initial and final value for adding checksum */
293
294
295 /* Card identification via EEprom: */
296 #define ee_addr_vendor 0x10 /* Word offset for EISA Vendor ID */
297 #define ee_addr_id 0x11 /* Word offset for Card ID */
298 #define ee_addr_SN 0x12 /* Serial Number */
299 #define ee_addr_CRC_8 0x14 /* CRC over last thee Bytes */
300
301
302 #define ee_vendor_intel0 0x25 /* Vendor ID Intel */
303 #define ee_vendor_intel1 0xD4
304 #define ee_id_eepro10p0 0x10 /* ID for eepro/10+ */
305 #define ee_id_eepro10p1 0x31
306
307 #define TX_TIMEOUT 40
308
309 /* Index to functions, as function prototypes. */
310
311 static int eepro_probe1(struct net_device *dev, int autoprobe);
312 static int eepro_open(struct net_device *dev);
313 static int eepro_send_packet(struct sk_buff *skb, struct net_device *dev);
314 static irqreturn_t eepro_interrupt(int irq, void *dev_id, struct pt_regs *regs);
315 static void eepro_rx(struct net_device *dev);
316 static void eepro_transmit_interrupt(struct net_device *dev);
317 static int eepro_close(struct net_device *dev);
318 static struct net_device_stats *eepro_get_stats(struct net_device *dev);
319 static void set_multicast_list(struct net_device *dev);
320 static void eepro_tx_timeout (struct net_device *dev);
321
322 static int read_eeprom(int ioaddr, int location, struct net_device *dev);
323 static int hardware_send_packet(struct net_device *dev, void *buf, short length);
324 static int eepro_grab_irq(struct net_device *dev);
325
326 /*
327 Details of the i82595.
328
329 You will need either the datasheet or the user manual to understand what
330 is going on here. The 82595 is very different from the 82586, 82593.
331
332 The receive algorithm in eepro_rx() is just an implementation of the
333 RCV ring structure that the Intel 82595 imposes at the hardware level.
334 The receive buffer is set at 24K, and the transmit buffer is 8K. I
335 am assuming that the total buffer memory is 32K, which is true for the
336 Intel EtherExpress Pro/10. If it is less than that on a generic card,
337 the driver will be broken.
338
339 The transmit algorithm in the hardware_send_packet() is similar to the
340 one in the eepro_rx(). The transmit buffer is a ring linked list.
341 I just queue the next available packet to the end of the list. In my
342 system, the 82595 is so fast that the list seems to always contain a
343 single packet. In other systems with faster computers and more congested
344 network traffics, the ring linked list should improve performance by
345 allowing up to 8K worth of packets to be queued.
346
347 The sizes of the receive and transmit buffers can now be changed via lilo
348 or insmod. Lilo uses the appended line "ether=io,irq,debug,rx-buffer,eth0"
349 where rx-buffer is in KB unit. Modules uses the parameter mem which is
350 also in KB unit, for example "insmod io=io-address irq=0 mem=rx-buffer."
351 The receive buffer has to be more than 3K or less than 29K. Otherwise,
352 it is reset to the default of 24K, and, hence, 8K for the trasnmit
353 buffer (transmit-buffer = 32K - receive-buffer).
354
355 */
356 #define RAM_SIZE 0x8000
357
358 #define RCV_HEADER 8
359 #define RCV_DEFAULT_RAM 0x6000
360
361 #define XMT_HEADER 8
362 #define XMT_DEFAULT_RAM (RAM_SIZE - RCV_DEFAULT_RAM)
363
364 #define XMT_START_PRO RCV_DEFAULT_RAM
365 #define XMT_START_10 0x0000
366 #define RCV_START_PRO 0x0000
367 #define RCV_START_10 XMT_DEFAULT_RAM
368
369 #define RCV_DONE 0x0008
370 #define RX_OK 0x2000
371 #define RX_ERROR 0x0d81
372
373 #define TX_DONE_BIT 0x0080
374 #define TX_OK 0x2000
375 #define CHAIN_BIT 0x8000
376 #define XMT_STATUS 0x02
377 #define XMT_CHAIN 0x04
378 #define XMT_COUNT 0x06
379
380 #define BANK0_SELECT 0x00
381 #define BANK1_SELECT 0x40
382 #define BANK2_SELECT 0x80
383
384 /* Bank 0 registers */
385 #define COMMAND_REG 0x00 /* Register 0 */
386 #define MC_SETUP 0x03
387 #define XMT_CMD 0x04
388 #define DIAGNOSE_CMD 0x07
389 #define RCV_ENABLE_CMD 0x08
390 #define RCV_DISABLE_CMD 0x0a
391 #define STOP_RCV_CMD 0x0b
392 #define RESET_CMD 0x0e
393 #define POWER_DOWN_CMD 0x18
394 #define RESUME_XMT_CMD 0x1c
395 #define SEL_RESET_CMD 0x1e
396 #define STATUS_REG 0x01 /* Register 1 */
397 #define RX_INT 0x02
398 #define TX_INT 0x04
399 #define EXEC_STATUS 0x30
400 #define ID_REG 0x02 /* Register 2 */
401 #define R_ROBIN_BITS 0xc0 /* round robin counter */
402 #define ID_REG_MASK 0x2c
403 #define ID_REG_SIG 0x24
404 #define AUTO_ENABLE 0x10
405 #define INT_MASK_REG 0x03 /* Register 3 */
406 #define RX_STOP_MASK 0x01
407 #define RX_MASK 0x02
408 #define TX_MASK 0x04
409 #define EXEC_MASK 0x08
410 #define ALL_MASK 0x0f
411 #define IO_32_BIT 0x10
412 #define RCV_BAR 0x04 /* The following are word (16-bit) registers */
413 #define RCV_STOP 0x06
414
415 #define XMT_BAR_PRO 0x0a
416 #define XMT_BAR_10 0x0b
417
418 #define HOST_ADDRESS_REG 0x0c
419 #define IO_PORT 0x0e
420 #define IO_PORT_32_BIT 0x0c
421
422 /* Bank 1 registers */
423 #define REG1 0x01
424 #define WORD_WIDTH 0x02
425 #define INT_ENABLE 0x80
426 #define INT_NO_REG 0x02
427 #define RCV_LOWER_LIMIT_REG 0x08
428 #define RCV_UPPER_LIMIT_REG 0x09
429
430 #define XMT_LOWER_LIMIT_REG_PRO 0x0a
431 #define XMT_UPPER_LIMIT_REG_PRO 0x0b
432 #define XMT_LOWER_LIMIT_REG_10 0x0b
433 #define XMT_UPPER_LIMIT_REG_10 0x0a
434
435 /* Bank 2 registers */
436 #define XMT_Chain_Int 0x20 /* Interrupt at the end of the transmit chain */
437 #define XMT_Chain_ErrStop 0x40 /* Interrupt at the end of the chain even if there are errors */
438 #define RCV_Discard_BadFrame 0x80 /* Throw bad frames away, and continue to receive others */
439 #define REG2 0x02
440 #define PRMSC_Mode 0x01
441 #define Multi_IA 0x20
442 #define REG3 0x03
443 #define TPE_BIT 0x04
444 #define BNC_BIT 0x20
445 #define REG13 0x0d
446 #define FDX 0x00
447 #define A_N_ENABLE 0x02
448
449 #define I_ADD_REG0 0x04
450 #define I_ADD_REG1 0x05
451 #define I_ADD_REG2 0x06
452 #define I_ADD_REG3 0x07
453 #define I_ADD_REG4 0x08
454 #define I_ADD_REG5 0x09
455
456 #define EEPROM_REG_PRO 0x0a
457 #define EEPROM_REG_10 0x0b
458
459 #define EESK 0x01
460 #define EECS 0x02
461 #define EEDI 0x04
462 #define EEDO 0x08
463
464 /* do a full reset */
465 #define eepro_reset(ioaddr) outb(RESET_CMD, ioaddr)
466
467 /* do a nice reset */
468 #define eepro_sel_reset(ioaddr) { \
469 outb(SEL_RESET_CMD, ioaddr); \
470 SLOW_DOWN; \
471 SLOW_DOWN; \
472 }
473
474 /* disable all interrupts */
475 #define eepro_dis_int(ioaddr) outb(ALL_MASK, ioaddr + INT_MASK_REG)
476
477 /* clear all interrupts */
478 #define eepro_clear_int(ioaddr) outb(ALL_MASK, ioaddr + STATUS_REG)
479
480 /* enable tx/rx */
481 #define eepro_en_int(ioaddr) outb(ALL_MASK & ~(RX_MASK | TX_MASK), \
482 ioaddr + INT_MASK_REG)
483
484 /* enable exec event interrupt */
485 #define eepro_en_intexec(ioaddr) outb(ALL_MASK & ~(EXEC_MASK), ioaddr + INT_MASK_REG)
486
487 /* enable rx */
488 #define eepro_en_rx(ioaddr) outb(RCV_ENABLE_CMD, ioaddr)
489
490 /* disable rx */
491 #define eepro_dis_rx(ioaddr) outb(RCV_DISABLE_CMD, ioaddr)
492
493 /* switch bank */
494 #define eepro_sw2bank0(ioaddr) outb(BANK0_SELECT, ioaddr)
495 #define eepro_sw2bank1(ioaddr) outb(BANK1_SELECT, ioaddr)
496 #define eepro_sw2bank2(ioaddr) outb(BANK2_SELECT, ioaddr)
497
498 /* enable interrupt line */
499 #define eepro_en_intline(ioaddr) outb(inb(ioaddr + REG1) | INT_ENABLE,\
500 ioaddr + REG1)
501
502 /* disable interrupt line */
503 #define eepro_dis_intline(ioaddr) outb(inb(ioaddr + REG1) & 0x7f, \
504 ioaddr + REG1);
505
506 /* set diagnose flag */
507 #define eepro_diag(ioaddr) outb(DIAGNOSE_CMD, ioaddr)
508
509 /* ack for rx int */
510 #define eepro_ack_rx(ioaddr) outb (RX_INT, ioaddr + STATUS_REG)
511
512 /* ack for tx int */
513 #define eepro_ack_tx(ioaddr) outb (TX_INT, ioaddr + STATUS_REG)
514
515 /* a complete sel reset */
516 #define eepro_complete_selreset(ioaddr) { \
517 lp->stats.tx_errors++;\
518 eepro_sel_reset(ioaddr);\
519 lp->tx_end = \
520 lp->xmt_lower_limit;\
521 lp->tx_start = lp->tx_end;\
522 lp->tx_last = 0;\
523 dev->trans_start = jiffies;\
524 netif_wake_queue(dev);\
525 eepro_en_rx(ioaddr);\
526 }
527
528 /* Check for a network adaptor of this type, and return '0' if one exists.
529 If dev->base_addr == 0, probe all likely locations.
530 If dev->base_addr == 1, always return failure.
531 If dev->base_addr == 2, allocate space for the device and return success
532 (detachable devices only).
533 */
534 static int __init do_eepro_probe(struct net_device *dev)
535 {
536 int i;
537 int base_addr = dev->base_addr;
538 int irq = dev->irq;
539
540 SET_MODULE_OWNER(dev);
541
542 #ifdef PnPWakeup
543 /* XXXX for multiple cards should this only be run once? */
544
545 /* Wakeup: */
546 #define WakeupPort 0x279
547 #define WakeupSeq {0x6A, 0xB5, 0xDA, 0xED, 0xF6, 0xFB, 0x7D, 0xBE,\
548 0xDF, 0x6F, 0x37, 0x1B, 0x0D, 0x86, 0xC3, 0x61,\
549 0xB0, 0x58, 0x2C, 0x16, 0x8B, 0x45, 0xA2, 0xD1,\
550 0xE8, 0x74, 0x3A, 0x9D, 0xCE, 0xE7, 0x73, 0x43}
551
552 {
553 unsigned short int WS[32]=WakeupSeq;
554
555 if (request_region(WakeupPort, 2, "eepro wakeup")) {
556 if (net_debug>5)
557 printk(KERN_DEBUG "Waking UP\n");
558
559 outb_p(0,WakeupPort);
560 outb_p(0,WakeupPort);
561 for (i=0; i<32; i++) {
562 outb_p(WS[i],WakeupPort);
563 if (net_debug>5) printk(KERN_DEBUG ": %#x ",WS[i]);
564 }
565
566 release_region(WakeupPort, 2);
567 } else
568 printk(KERN_WARNING "PnP wakeup region busy!\n");
569 }
570 #endif
571
572 if (base_addr > 0x1ff) /* Check a single specified location. */
573 return eepro_probe1(dev, 0);
574
575 else if (base_addr != 0) /* Don't probe at all. */
576 return -ENXIO;
577
578 for (i = 0; eepro_portlist[i]; i++) {
579 dev->base_addr = eepro_portlist[i];
580 dev->irq = irq;
581 if (eepro_probe1(dev, 1) == 0)
582 return 0;
583 }
584
585 return -ENODEV;
586 }
587
588 #ifndef MODULE
589 struct net_device * __init eepro_probe(int unit)
590 {
591 struct net_device *dev = alloc_etherdev(sizeof(struct eepro_local));
592 int err;
593
594 if (!dev)
595 return ERR_PTR(-ENODEV);
596
597 SET_MODULE_OWNER(dev);
598
599 sprintf(dev->name, "eth%d", unit);
600 netdev_boot_setup_check(dev);
601
602 err = do_eepro_probe(dev);
603 if (err)
604 goto out;
605 return dev;
606 out:
607 free_netdev(dev);
608 return ERR_PTR(err);
609 }
610 #endif
611
612 static void __init printEEPROMInfo(struct net_device *dev)
613 {
614 struct eepro_local *lp = (struct eepro_local *)dev->priv;
615 int ioaddr = dev->base_addr;
616 unsigned short Word;
617 int i,j;
618
619 j = ee_Checksum;
620 for (i = 0; i < 8; i++)
621 j += lp->word[i];
622 for ( ; i < ee_SIZE; i++)
623 j += read_eeprom(ioaddr, i, dev);
624
625 printk(KERN_DEBUG "Checksum: %#x\n",j&0xffff);
626
627 Word = lp->word[0];
628 printk(KERN_DEBUG "Word0:\n");
629 printk(KERN_DEBUG " Plug 'n Pray: %d\n",GetBit(Word,ee_PnP));
630 printk(KERN_DEBUG " Buswidth: %d\n",(GetBit(Word,ee_BusWidth)+1)*8 );
631 printk(KERN_DEBUG " AutoNegotiation: %d\n",GetBit(Word,ee_AutoNeg));
632 printk(KERN_DEBUG " IO Address: %#x\n", (Word>>ee_IO0)<<4);
633
634 if (net_debug>4) {
635 Word = lp->word[1];
636 printk(KERN_DEBUG "Word1:\n");
637 printk(KERN_DEBUG " INT: %d\n", Word & ee_IntMask);
638 printk(KERN_DEBUG " LI: %d\n", GetBit(Word,ee_LI));
639 printk(KERN_DEBUG " PC: %d\n", GetBit(Word,ee_PC));
640 printk(KERN_DEBUG " TPE/AUI: %d\n", GetBit(Word,ee_TPE_AUI));
641 printk(KERN_DEBUG " Jabber: %d\n", GetBit(Word,ee_Jabber));
642 printk(KERN_DEBUG " AutoPort: %d\n", GetBit(!Word,ee_Jabber));
643 printk(KERN_DEBUG " Duplex: %d\n", GetBit(Word,ee_Duplex));
644 }
645
646 Word = lp->word[5];
647 printk(KERN_DEBUG "Word5:\n");
648 printk(KERN_DEBUG " BNC: %d\n",GetBit(Word,ee_BNC_TPE));
649 printk(KERN_DEBUG " NumConnectors: %d\n",GetBit(Word,ee_NumConn));
650 printk(KERN_DEBUG " Has ");
651 if (GetBit(Word,ee_PortTPE)) printk(KERN_DEBUG "TPE ");
652 if (GetBit(Word,ee_PortBNC)) printk(KERN_DEBUG "BNC ");
653 if (GetBit(Word,ee_PortAUI)) printk(KERN_DEBUG "AUI ");
654 printk(KERN_DEBUG "port(s) \n");
655
656 Word = lp->word[6];
657 printk(KERN_DEBUG "Word6:\n");
658 printk(KERN_DEBUG " Stepping: %d\n",Word & ee_StepMask);
659 printk(KERN_DEBUG " BoardID: %d\n",Word>>ee_BoardID);
660
661 Word = lp->word[7];
662 printk(KERN_DEBUG "Word7:\n");
663 printk(KERN_DEBUG " INT to IRQ:\n");
664
665 for (i=0, j=0; i<15; i++)
666 if (GetBit(Word,i)) printk(KERN_DEBUG " INT%d -> IRQ %d;",j++,i);
667
668 printk(KERN_DEBUG "\n");
669 }
670
671 /* function to recalculate the limits of buffer based on rcv_ram */
672 static void eepro_recalc (struct net_device *dev)
673 {
674 struct eepro_local * lp;
675
676 lp = netdev_priv(dev);
677 lp->xmt_ram = RAM_SIZE - lp->rcv_ram;
678
679 if (lp->eepro == LAN595FX_10ISA) {
680 lp->xmt_lower_limit = XMT_START_10;
681 lp->xmt_upper_limit = (lp->xmt_ram - 2);
682 lp->rcv_lower_limit = lp->xmt_ram;
683 lp->rcv_upper_limit = (RAM_SIZE - 2);
684 }
685 else {
686 lp->rcv_lower_limit = RCV_START_PRO;
687 lp->rcv_upper_limit = (lp->rcv_ram - 2);
688 lp->xmt_lower_limit = lp->rcv_ram;
689 lp->xmt_upper_limit = (RAM_SIZE - 2);
690 }
691 }
692
693 /* prints boot-time info */
694 static void __init eepro_print_info (struct net_device *dev)
695 {
696 struct eepro_local * lp = netdev_priv(dev);
697 int i;
698 const char * ifmap[] = {"AUI", "10Base2", "10BaseT"};
699
700 i = inb(dev->base_addr + ID_REG);
701 printk(KERN_DEBUG " id: %#x ",i);
702 printk(" io: %#x ", (unsigned)dev->base_addr);
703
704 switch (lp->eepro) {
705 case LAN595FX_10ISA:
706 printk("%s: Intel EtherExpress 10 ISA\n at %#x,",
707 dev->name, (unsigned)dev->base_addr);
708 break;
709 case LAN595FX:
710 printk("%s: Intel EtherExpress Pro/10+ ISA\n at %#x,",
711 dev->name, (unsigned)dev->base_addr);
712 break;
713 case LAN595TX:
714 printk("%s: Intel EtherExpress Pro/10 ISA at %#x,",
715 dev->name, (unsigned)dev->base_addr);
716 break;
717 case LAN595:
718 printk("%s: Intel 82595-based lan card at %#x,",
719 dev->name, (unsigned)dev->base_addr);
720 }
721
722 for (i=0; i < 6; i++)
723 printk("%c%02x", i ? ':' : ' ', dev->dev_addr[i]);
724
725 if (net_debug > 3)
726 printk(KERN_DEBUG ", %dK RCV buffer",
727 (int)(lp->rcv_ram)/1024);
728
729 if (dev->irq > 2)
730 printk(", IRQ %d, %s.\n", dev->irq, ifmap[dev->if_port]);
731 else
732 printk(", %s.\n", ifmap[dev->if_port]);
733
734 if (net_debug > 3) {
735 i = lp->word[5];
736 if (i & 0x2000) /* bit 13 of EEPROM word 5 */
737 printk(KERN_DEBUG "%s: Concurrent Processing is "
738 "enabled but not used!\n", dev->name);
739 }
740
741 /* Check the station address for the manufacturer's code */
742 if (net_debug>3)
743 printEEPROMInfo(dev);
744 }
745
746 static struct ethtool_ops eepro_ethtool_ops;
747
748 /* This is the real probe routine. Linux has a history of friendly device
749 probes on the ISA bus. A good device probe avoids doing writes, and
750 verifies that the correct device exists and functions. */
751
752 static int __init eepro_probe1(struct net_device *dev, int autoprobe)
753 {
754 unsigned short station_addr[3], id, counter;
755 int i;
756 struct eepro_local *lp;
757 int ioaddr = dev->base_addr;
758 int err;
759
760 /* Grab the region so we can find another board if autoIRQ fails. */
761 if (!request_region(ioaddr, EEPRO_IO_EXTENT, DRV_NAME)) {
762 if (!autoprobe)
763 printk(KERN_WARNING "EEPRO: io-port 0x%04x in use \n",
764 ioaddr);
765 return -EBUSY;
766 }
767
768 /* Now, we are going to check for the signature of the
769 ID_REG (register 2 of bank 0) */
770
771 id = inb(ioaddr + ID_REG);
772
773 if ((id & ID_REG_MASK) != ID_REG_SIG)
774 goto exit;
775
776 /* We seem to have the 82595 signature, let's
777 play with its counter (last 2 bits of
778 register 2 of bank 0) to be sure. */
779
780 counter = id & R_ROBIN_BITS;
781
782 if ((inb(ioaddr + ID_REG) & R_ROBIN_BITS) != (counter + 0x40))
783 goto exit;
784
785 lp = netdev_priv(dev);
786 memset(lp, 0, sizeof(struct eepro_local));
787 lp->xmt_bar = XMT_BAR_PRO;
788 lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_PRO;
789 lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_PRO;
790 lp->eeprom_reg = EEPROM_REG_PRO;
791 spin_lock_init(&lp->lock);
792
793 /* Now, get the ethernet hardware address from
794 the EEPROM */
795 station_addr[0] = read_eeprom(ioaddr, 2, dev);
796
797 /* FIXME - find another way to know that we've found
798 * an Etherexpress 10
799 */
800 if (station_addr[0] == 0x0000 || station_addr[0] == 0xffff) {
801 lp->eepro = LAN595FX_10ISA;
802 lp->eeprom_reg = EEPROM_REG_10;
803 lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_10;
804 lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_10;
805 lp->xmt_bar = XMT_BAR_10;
806 station_addr[0] = read_eeprom(ioaddr, 2, dev);
807 }
808
809 /* get all words at once. will be used here and for ethtool */
810 for (i = 0; i < 8; i++) {
811 lp->word[i] = read_eeprom(ioaddr, i, dev);
812 }
813 station_addr[1] = lp->word[3];
814 station_addr[2] = lp->word[4];
815
816 if (!lp->eepro) {
817 if (lp->word[7] == ee_FX_INT2IRQ)
818 lp->eepro = 2;
819 else if (station_addr[2] == SA_ADDR1)
820 lp->eepro = 1;
821 }
822
823 /* Fill in the 'dev' fields. */
824 for (i=0; i < 6; i++)
825 dev->dev_addr[i] = ((unsigned char *) station_addr)[5-i];
826
827 /* RX buffer must be more than 3K and less than 29K */
828 if (dev->mem_end < 3072 || dev->mem_end > 29696)
829 lp->rcv_ram = RCV_DEFAULT_RAM;
830
831 /* calculate {xmt,rcv}_{lower,upper}_limit */
832 eepro_recalc(dev);
833
834 if (GetBit(lp->word[5], ee_BNC_TPE))
835 dev->if_port = BNC;
836 else
837 dev->if_port = TPE;
838
839 if (dev->irq < 2 && lp->eepro != 0) {
840 /* Mask off INT number */
841 int count = lp->word[1] & 7;
842 unsigned irqMask = lp->word[7];
843
844 while (count--)
845 irqMask &= irqMask - 1;
846
847 count = ffs(irqMask);
848
849 if (count)
850 dev->irq = count - 1;
851
852 if (dev->irq < 2) {
853 printk(KERN_ERR " Duh! illegal interrupt vector stored in EEPROM.\n");
854 goto exit;
855 } else if (dev->irq == 2) {
856 dev->irq = 9;
857 }
858 }
859
860 dev->open = eepro_open;
861 dev->stop = eepro_close;
862 dev->hard_start_xmit = eepro_send_packet;
863 dev->get_stats = eepro_get_stats;
864 dev->set_multicast_list = &set_multicast_list;
865 dev->tx_timeout = eepro_tx_timeout;
866 dev->watchdog_timeo = TX_TIMEOUT;
867 dev->ethtool_ops = &eepro_ethtool_ops;
868
869 /* print boot time info */
870 eepro_print_info(dev);
871
872 /* reset 82595 */
873 eepro_reset(ioaddr);
874
875 err = register_netdev(dev);
876 if (err)
877 goto err;
878 return 0;
879 exit:
880 err = -ENODEV;
881 err:
882 release_region(dev->base_addr, EEPRO_IO_EXTENT);
883 return err;
884 }
885
886 /* Open/initialize the board. This is called (in the current kernel)
887 sometime after booting when the 'ifconfig' program is run.
888
889 This routine should set everything up anew at each open, even
890 registers that "should" only need to be set once at boot, so that
891 there is non-reboot way to recover if something goes wrong.
892 */
893
894 static char irqrmap[] = {-1,-1,0,1,-1,2,-1,-1,-1,0,3,4,-1,-1,-1,-1};
895 static char irqrmap2[] = {-1,-1,4,0,1,2,-1,3,-1,4,5,6,7,-1,-1,-1};
896 static int eepro_grab_irq(struct net_device *dev)
897 {
898 int irqlist[] = { 3, 4, 5, 7, 9, 10, 11, 12, 0 };
899 int *irqp = irqlist, temp_reg, ioaddr = dev->base_addr;
900
901 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
902
903 /* Enable the interrupt line. */
904 eepro_en_intline(ioaddr);
905
906 /* be CAREFUL, BANK 0 now */
907 eepro_sw2bank0(ioaddr);
908
909 /* clear all interrupts */
910 eepro_clear_int(ioaddr);
911
912 /* Let EXEC event to interrupt */
913 eepro_en_intexec(ioaddr);
914
915 do {
916 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
917
918 temp_reg = inb(ioaddr + INT_NO_REG);
919 outb((temp_reg & 0xf8) | irqrmap[*irqp], ioaddr + INT_NO_REG);
920
921 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
922
923 if (request_irq (*irqp, NULL, IRQF_SHARED, "bogus", dev) != EBUSY) {
924 unsigned long irq_mask;
925 /* Twinkle the interrupt, and check if it's seen */
926 irq_mask = probe_irq_on();
927
928 eepro_diag(ioaddr); /* RESET the 82595 */
929 mdelay(20);
930
931 if (*irqp == probe_irq_off(irq_mask)) /* It's a good IRQ line */
932 break;
933
934 /* clear all interrupts */
935 eepro_clear_int(ioaddr);
936 }
937 } while (*++irqp);
938
939 eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
940
941 /* Disable the physical interrupt line. */
942 eepro_dis_intline(ioaddr);
943
944 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
945
946 /* Mask all the interrupts. */
947 eepro_dis_int(ioaddr);
948
949 /* clear all interrupts */
950 eepro_clear_int(ioaddr);
951
952 return dev->irq;
953 }
954
955 static int eepro_open(struct net_device *dev)
956 {
957 unsigned short temp_reg, old8, old9;
958 int irqMask;
959 int i, ioaddr = dev->base_addr;
960 struct eepro_local *lp = netdev_priv(dev);
961
962 if (net_debug > 3)
963 printk(KERN_DEBUG "%s: entering eepro_open routine.\n", dev->name);
964
965 irqMask = lp->word[7];
966
967 if (lp->eepro == LAN595FX_10ISA) {
968 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 3;\n");
969 }
970 else if (irqMask == ee_FX_INT2IRQ) /* INT to IRQ Mask */
971 {
972 lp->eepro = 2; /* Yes, an Intel EtherExpress Pro/10+ */
973 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 2;\n");
974 }
975
976 else if ((dev->dev_addr[0] == SA_ADDR0 &&
977 dev->dev_addr[1] == SA_ADDR1 &&
978 dev->dev_addr[2] == SA_ADDR2))
979 {
980 lp->eepro = 1;
981 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 1;\n");
982 } /* Yes, an Intel EtherExpress Pro/10 */
983
984 else lp->eepro = 0; /* No, it is a generic 82585 lan card */
985
986 /* Get the interrupt vector for the 82595 */
987 if (dev->irq < 2 && eepro_grab_irq(dev) == 0) {
988 printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
989 return -EAGAIN;
990 }
991
992 if (request_irq(dev->irq , &eepro_interrupt, 0, dev->name, dev)) {
993 printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
994 return -EAGAIN;
995 }
996
997 #ifdef irq2dev_map
998 if (((irq2dev_map[dev->irq] != 0)
999 || (irq2dev_map[dev->irq] = dev) == 0) &&
1000 (irq2dev_map[dev->irq]!=dev)) {
1001 /* printk("%s: IRQ map wrong\n", dev->name); */
1002 free_irq(dev->irq, dev);
1003 return -EAGAIN;
1004 }
1005 #endif
1006
1007 /* Initialize the 82595. */
1008
1009 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1010 temp_reg = inb(ioaddr + lp->eeprom_reg);
1011
1012 lp->stepping = temp_reg >> 5; /* Get the stepping number of the 595 */
1013
1014 if (net_debug > 3)
1015 printk(KERN_DEBUG "The stepping of the 82595 is %d\n", lp->stepping);
1016
1017 if (temp_reg & 0x10) /* Check the TurnOff Enable bit */
1018 outb(temp_reg & 0xef, ioaddr + lp->eeprom_reg);
1019 for (i=0; i < 6; i++)
1020 outb(dev->dev_addr[i] , ioaddr + I_ADD_REG0 + i);
1021
1022 temp_reg = inb(ioaddr + REG1); /* Setup Transmit Chaining */
1023 outb(temp_reg | XMT_Chain_Int | XMT_Chain_ErrStop /* and discard bad RCV frames */
1024 | RCV_Discard_BadFrame, ioaddr + REG1);
1025
1026 temp_reg = inb(ioaddr + REG2); /* Match broadcast */
1027 outb(temp_reg | 0x14, ioaddr + REG2);
1028
1029 temp_reg = inb(ioaddr + REG3);
1030 outb(temp_reg & 0x3f, ioaddr + REG3); /* clear test mode */
1031
1032 /* Set the receiving mode */
1033 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
1034
1035 /* Set the interrupt vector */
1036 temp_reg = inb(ioaddr + INT_NO_REG);
1037 if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1038 outb((temp_reg & 0xf8) | irqrmap2[dev->irq], ioaddr + INT_NO_REG);
1039 else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1040
1041
1042 temp_reg = inb(ioaddr + INT_NO_REG);
1043 if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1044 outb((temp_reg & 0xf0) | irqrmap2[dev->irq] | 0x08,ioaddr+INT_NO_REG);
1045 else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1046
1047 if (net_debug > 3)
1048 printk(KERN_DEBUG "eepro_open: content of INT Reg is %x\n", temp_reg);
1049
1050
1051 /* Initialize the RCV and XMT upper and lower limits */
1052 outb(lp->rcv_lower_limit >> 8, ioaddr + RCV_LOWER_LIMIT_REG);
1053 outb(lp->rcv_upper_limit >> 8, ioaddr + RCV_UPPER_LIMIT_REG);
1054 outb(lp->xmt_lower_limit >> 8, ioaddr + lp->xmt_lower_limit_reg);
1055 outb(lp->xmt_upper_limit >> 8, ioaddr + lp->xmt_upper_limit_reg);
1056
1057 /* Enable the interrupt line. */
1058 eepro_en_intline(ioaddr);
1059
1060 /* Switch back to Bank 0 */
1061 eepro_sw2bank0(ioaddr);
1062
1063 /* Let RX and TX events to interrupt */
1064 eepro_en_int(ioaddr);
1065
1066 /* clear all interrupts */
1067 eepro_clear_int(ioaddr);
1068
1069 /* Initialize RCV */
1070 outw(lp->rcv_lower_limit, ioaddr + RCV_BAR);
1071 lp->rx_start = lp->rcv_lower_limit;
1072 outw(lp->rcv_upper_limit | 0xfe, ioaddr + RCV_STOP);
1073
1074 /* Initialize XMT */
1075 outw(lp->xmt_lower_limit, ioaddr + lp->xmt_bar);
1076 lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1077 lp->tx_last = 0;
1078
1079 /* Check for the i82595TX and i82595FX */
1080 old8 = inb(ioaddr + 8);
1081 outb(~old8, ioaddr + 8);
1082
1083 if ((temp_reg = inb(ioaddr + 8)) == old8) {
1084 if (net_debug > 3)
1085 printk(KERN_DEBUG "i82595 detected!\n");
1086 lp->version = LAN595;
1087 }
1088 else {
1089 lp->version = LAN595TX;
1090 outb(old8, ioaddr + 8);
1091 old9 = inb(ioaddr + 9);
1092
1093 if (irqMask==ee_FX_INT2IRQ) {
1094 if (net_debug > 3) {
1095 printk(KERN_DEBUG "IrqMask: %#x\n",irqMask);
1096 printk(KERN_DEBUG "i82595FX detected!\n");
1097 }
1098 lp->version = LAN595FX;
1099 outb(old9, ioaddr + 9);
1100 if (dev->if_port != TPE) { /* Hopefully, this will fix the
1101 problem of using Pentiums and
1102 pro/10 w/ BNC. */
1103 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1104 temp_reg = inb(ioaddr + REG13);
1105 /* disable the full duplex mode since it is not
1106 applicable with the 10Base2 cable. */
1107 outb(temp_reg & ~(FDX | A_N_ENABLE), REG13);
1108 eepro_sw2bank0(ioaddr); /* be CAREFUL, BANK 0 now */
1109 }
1110 }
1111 else if (net_debug > 3) {
1112 printk(KERN_DEBUG "temp_reg: %#x ~old9: %#x\n",temp_reg,((~old9)&0xff));
1113 printk(KERN_DEBUG "i82595TX detected!\n");
1114 }
1115 }
1116
1117 eepro_sel_reset(ioaddr);
1118
1119 netif_start_queue(dev);
1120
1121 if (net_debug > 3)
1122 printk(KERN_DEBUG "%s: exiting eepro_open routine.\n", dev->name);
1123
1124 /* enabling rx */
1125 eepro_en_rx(ioaddr);
1126
1127 return 0;
1128 }
1129
1130 static void eepro_tx_timeout (struct net_device *dev)
1131 {
1132 struct eepro_local *lp = netdev_priv(dev);
1133 int ioaddr = dev->base_addr;
1134
1135 /* if (net_debug > 1) */
1136 printk (KERN_ERR "%s: transmit timed out, %s?\n", dev->name,
1137 "network cable problem");
1138 /* This is not a duplicate. One message for the console,
1139 one for the the log file */
1140 printk (KERN_DEBUG "%s: transmit timed out, %s?\n", dev->name,
1141 "network cable problem");
1142 eepro_complete_selreset(ioaddr);
1143 }
1144
1145
1146 static int eepro_send_packet(struct sk_buff *skb, struct net_device *dev)
1147 {
1148 struct eepro_local *lp = netdev_priv(dev);
1149 unsigned long flags;
1150 int ioaddr = dev->base_addr;
1151 short length = skb->len;
1152
1153 if (net_debug > 5)
1154 printk(KERN_DEBUG "%s: entering eepro_send_packet routine.\n", dev->name);
1155
1156 if (length < ETH_ZLEN) {
1157 if (skb_padto(skb, ETH_ZLEN))
1158 return 0;
1159 length = ETH_ZLEN;
1160 }
1161 netif_stop_queue (dev);
1162
1163 eepro_dis_int(ioaddr);
1164 spin_lock_irqsave(&lp->lock, flags);
1165
1166 {
1167 unsigned char *buf = skb->data;
1168
1169 if (hardware_send_packet(dev, buf, length))
1170 /* we won't wake queue here because we're out of space */
1171 lp->stats.tx_dropped++;
1172 else {
1173 lp->stats.tx_bytes+=skb->len;
1174 dev->trans_start = jiffies;
1175 netif_wake_queue(dev);
1176 }
1177
1178 }
1179
1180 dev_kfree_skb (skb);
1181
1182 /* You might need to clean up and record Tx statistics here. */
1183 /* lp->stats.tx_aborted_errors++; */
1184
1185 if (net_debug > 5)
1186 printk(KERN_DEBUG "%s: exiting eepro_send_packet routine.\n", dev->name);
1187
1188 eepro_en_int(ioaddr);
1189 spin_unlock_irqrestore(&lp->lock, flags);
1190
1191 return 0;
1192 }
1193
1194
1195 /* The typical workload of the driver:
1196 Handle the network interface interrupts. */
1197
1198 static irqreturn_t
1199 eepro_interrupt(int irq, void *dev_id, struct pt_regs * regs)
1200 {
1201 struct net_device *dev = (struct net_device *)dev_id;
1202 /* (struct net_device *)(irq2dev_map[irq]);*/
1203 struct eepro_local *lp;
1204 int ioaddr, status, boguscount = 20;
1205 int handled = 0;
1206
1207 if (dev == NULL) {
1208 printk (KERN_ERR "eepro_interrupt(): irq %d for unknown device.\\n", irq);
1209 return IRQ_NONE;
1210 }
1211
1212 lp = netdev_priv(dev);
1213
1214 spin_lock(&lp->lock);
1215
1216 if (net_debug > 5)
1217 printk(KERN_DEBUG "%s: entering eepro_interrupt routine.\n", dev->name);
1218
1219 ioaddr = dev->base_addr;
1220
1221 while (((status = inb(ioaddr + STATUS_REG)) & (RX_INT|TX_INT)) && (boguscount--))
1222 {
1223 handled = 1;
1224 if (status & RX_INT) {
1225 if (net_debug > 4)
1226 printk(KERN_DEBUG "%s: packet received interrupt.\n", dev->name);
1227
1228 eepro_dis_int(ioaddr);
1229
1230 /* Get the received packets */
1231 eepro_ack_rx(ioaddr);
1232 eepro_rx(dev);
1233
1234 eepro_en_int(ioaddr);
1235 }
1236 if (status & TX_INT) {
1237 if (net_debug > 4)
1238 printk(KERN_DEBUG "%s: packet transmit interrupt.\n", dev->name);
1239
1240
1241 eepro_dis_int(ioaddr);
1242
1243 /* Process the status of transmitted packets */
1244 eepro_ack_tx(ioaddr);
1245 eepro_transmit_interrupt(dev);
1246
1247 eepro_en_int(ioaddr);
1248 }
1249 }
1250
1251 if (net_debug > 5)
1252 printk(KERN_DEBUG "%s: exiting eepro_interrupt routine.\n", dev->name);
1253
1254 spin_unlock(&lp->lock);
1255 return IRQ_RETVAL(handled);
1256 }
1257
1258 static int eepro_close(struct net_device *dev)
1259 {
1260 struct eepro_local *lp = netdev_priv(dev);
1261 int ioaddr = dev->base_addr;
1262 short temp_reg;
1263
1264 netif_stop_queue(dev);
1265
1266 eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
1267
1268 /* Disable the physical interrupt line. */
1269 temp_reg = inb(ioaddr + REG1);
1270 outb(temp_reg & 0x7f, ioaddr + REG1);
1271
1272 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
1273
1274 /* Flush the Tx and disable Rx. */
1275 outb(STOP_RCV_CMD, ioaddr);
1276 lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1277 lp->tx_last = 0;
1278
1279 /* Mask all the interrupts. */
1280 eepro_dis_int(ioaddr);
1281
1282 /* clear all interrupts */
1283 eepro_clear_int(ioaddr);
1284
1285 /* Reset the 82595 */
1286 eepro_reset(ioaddr);
1287
1288 /* release the interrupt */
1289 free_irq(dev->irq, dev);
1290
1291 #ifdef irq2dev_map
1292 irq2dev_map[dev->irq] = 0;
1293 #endif
1294
1295 /* Update the statistics here. What statistics? */
1296
1297 return 0;
1298 }
1299
1300 /* Get the current statistics. This may be called with the card open or
1301 closed. */
1302 static struct net_device_stats *
1303 eepro_get_stats(struct net_device *dev)
1304 {
1305 struct eepro_local *lp = netdev_priv(dev);
1306
1307 return &lp->stats;
1308 }
1309
1310 /* Set or clear the multicast filter for this adaptor.
1311 */
1312 static void
1313 set_multicast_list(struct net_device *dev)
1314 {
1315 struct eepro_local *lp = netdev_priv(dev);
1316 short ioaddr = dev->base_addr;
1317 unsigned short mode;
1318 struct dev_mc_list *dmi=dev->mc_list;
1319
1320 if (dev->flags&(IFF_ALLMULTI|IFF_PROMISC) || dev->mc_count > 63)
1321 {
1322 /*
1323 * We must make the kernel realise we had to move
1324 * into promisc mode or we start all out war on
1325 * the cable. If it was a promisc request the
1326 * flag is already set. If not we assert it.
1327 */
1328 dev->flags|=IFF_PROMISC;
1329
1330 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1331 mode = inb(ioaddr + REG2);
1332 outb(mode | PRMSC_Mode, ioaddr + REG2);
1333 mode = inb(ioaddr + REG3);
1334 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1335 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1336 printk(KERN_INFO "%s: promiscuous mode enabled.\n", dev->name);
1337 }
1338
1339 else if (dev->mc_count==0 )
1340 {
1341 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1342 mode = inb(ioaddr + REG2);
1343 outb(mode & 0xd6, ioaddr + REG2); /* Turn off Multi-IA and PRMSC_Mode bits */
1344 mode = inb(ioaddr + REG3);
1345 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1346 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1347 }
1348
1349 else
1350 {
1351 unsigned short status, *eaddrs;
1352 int i, boguscount = 0;
1353
1354 /* Disable RX and TX interrupts. Necessary to avoid
1355 corruption of the HOST_ADDRESS_REG by interrupt
1356 service routines. */
1357 eepro_dis_int(ioaddr);
1358
1359 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1360 mode = inb(ioaddr + REG2);
1361 outb(mode | Multi_IA, ioaddr + REG2);
1362 mode = inb(ioaddr + REG3);
1363 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1364 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1365 outw(lp->tx_end, ioaddr + HOST_ADDRESS_REG);
1366 outw(MC_SETUP, ioaddr + IO_PORT);
1367 outw(0, ioaddr + IO_PORT);
1368 outw(0, ioaddr + IO_PORT);
1369 outw(6*(dev->mc_count + 1), ioaddr + IO_PORT);
1370
1371 for (i = 0; i < dev->mc_count; i++)
1372 {
1373 eaddrs=(unsigned short *)dmi->dmi_addr;
1374 dmi=dmi->next;
1375 outw(*eaddrs++, ioaddr + IO_PORT);
1376 outw(*eaddrs++, ioaddr + IO_PORT);
1377 outw(*eaddrs++, ioaddr + IO_PORT);
1378 }
1379
1380 eaddrs = (unsigned short *) dev->dev_addr;
1381 outw(eaddrs[0], ioaddr + IO_PORT);
1382 outw(eaddrs[1], ioaddr + IO_PORT);
1383 outw(eaddrs[2], ioaddr + IO_PORT);
1384 outw(lp->tx_end, ioaddr + lp->xmt_bar);
1385 outb(MC_SETUP, ioaddr);
1386
1387 /* Update the transmit queue */
1388 i = lp->tx_end + XMT_HEADER + 6*(dev->mc_count + 1);
1389
1390 if (lp->tx_start != lp->tx_end)
1391 {
1392 /* update the next address and the chain bit in the
1393 last packet */
1394 outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1395 outw(i, ioaddr + IO_PORT);
1396 outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1397 status = inw(ioaddr + IO_PORT);
1398 outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1399 lp->tx_end = i ;
1400 }
1401 else {
1402 lp->tx_start = lp->tx_end = i ;
1403 }
1404
1405 /* Acknowledge that the MC setup is done */
1406 do { /* We should be doing this in the eepro_interrupt()! */
1407 SLOW_DOWN;
1408 SLOW_DOWN;
1409 if (inb(ioaddr + STATUS_REG) & 0x08)
1410 {
1411 i = inb(ioaddr);
1412 outb(0x08, ioaddr + STATUS_REG);
1413
1414 if (i & 0x20) { /* command ABORTed */
1415 printk(KERN_NOTICE "%s: multicast setup failed.\n",
1416 dev->name);
1417 break;
1418 } else if ((i & 0x0f) == 0x03) { /* MC-Done */
1419 printk(KERN_DEBUG "%s: set Rx mode to %d address%s.\n",
1420 dev->name, dev->mc_count,
1421 dev->mc_count > 1 ? "es":"");
1422 break;
1423 }
1424 }
1425 } while (++boguscount < 100);
1426
1427 /* Re-enable RX and TX interrupts */
1428 eepro_en_int(ioaddr);
1429 }
1430 if (lp->eepro == LAN595FX_10ISA) {
1431 eepro_complete_selreset(ioaddr);
1432 }
1433 else
1434 eepro_en_rx(ioaddr);
1435 }
1436
1437 /* The horrible routine to read a word from the serial EEPROM. */
1438 /* IMPORTANT - the 82595 will be set to Bank 0 after the eeprom is read */
1439
1440 /* The delay between EEPROM clock transitions. */
1441 #define eeprom_delay() { udelay(40); }
1442 #define EE_READ_CMD (6 << 6)
1443
1444 int
1445 read_eeprom(int ioaddr, int location, struct net_device *dev)
1446 {
1447 int i;
1448 unsigned short retval = 0;
1449 struct eepro_local *lp = netdev_priv(dev);
1450 short ee_addr = ioaddr + lp->eeprom_reg;
1451 int read_cmd = location | EE_READ_CMD;
1452 short ctrl_val = EECS ;
1453
1454 /* XXXX - black magic */
1455 eepro_sw2bank1(ioaddr);
1456 outb(0x00, ioaddr + STATUS_REG);
1457 /* XXXX - black magic */
1458
1459 eepro_sw2bank2(ioaddr);
1460 outb(ctrl_val, ee_addr);
1461
1462 /* Shift the read command bits out. */
1463 for (i = 8; i >= 0; i--) {
1464 short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI
1465 : ctrl_val;
1466 outb(outval, ee_addr);
1467 outb(outval | EESK, ee_addr); /* EEPROM clock tick. */
1468 eeprom_delay();
1469 outb(outval, ee_addr); /* Finish EEPROM a clock tick. */
1470 eeprom_delay();
1471 }
1472 outb(ctrl_val, ee_addr);
1473
1474 for (i = 16; i > 0; i--) {
1475 outb(ctrl_val | EESK, ee_addr); eeprom_delay();
1476 retval = (retval << 1) | ((inb(ee_addr) & EEDO) ? 1 : 0);
1477 outb(ctrl_val, ee_addr); eeprom_delay();
1478 }
1479
1480 /* Terminate the EEPROM access. */
1481 ctrl_val &= ~EECS;
1482 outb(ctrl_val | EESK, ee_addr);
1483 eeprom_delay();
1484 outb(ctrl_val, ee_addr);
1485 eeprom_delay();
1486 eepro_sw2bank0(ioaddr);
1487 return retval;
1488 }
1489
1490 static int
1491 hardware_send_packet(struct net_device *dev, void *buf, short length)
1492 {
1493 struct eepro_local *lp = netdev_priv(dev);
1494 short ioaddr = dev->base_addr;
1495 unsigned status, tx_available, last, end;
1496
1497 if (net_debug > 5)
1498 printk(KERN_DEBUG "%s: entering hardware_send_packet routine.\n", dev->name);
1499
1500 /* determine how much of the transmit buffer space is available */
1501 if (lp->tx_end > lp->tx_start)
1502 tx_available = lp->xmt_ram - (lp->tx_end - lp->tx_start);
1503 else if (lp->tx_end < lp->tx_start)
1504 tx_available = lp->tx_start - lp->tx_end;
1505 else tx_available = lp->xmt_ram;
1506
1507 if (((((length + 3) >> 1) << 1) + 2*XMT_HEADER) >= tx_available) {
1508 /* No space available ??? */
1509 return 1;
1510 }
1511
1512 last = lp->tx_end;
1513 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1514
1515 if (end >= lp->xmt_upper_limit + 2) { /* the transmit buffer is wrapped around */
1516 if ((lp->xmt_upper_limit + 2 - last) <= XMT_HEADER) {
1517 /* Arrrr!!!, must keep the xmt header together,
1518 several days were lost to chase this one down. */
1519 last = lp->xmt_lower_limit;
1520 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1521 }
1522 else end = lp->xmt_lower_limit + (end -
1523 lp->xmt_upper_limit + 2);
1524 }
1525
1526 outw(last, ioaddr + HOST_ADDRESS_REG);
1527 outw(XMT_CMD, ioaddr + IO_PORT);
1528 outw(0, ioaddr + IO_PORT);
1529 outw(end, ioaddr + IO_PORT);
1530 outw(length, ioaddr + IO_PORT);
1531
1532 if (lp->version == LAN595)
1533 outsw(ioaddr + IO_PORT, buf, (length + 3) >> 1);
1534 else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1535 unsigned short temp = inb(ioaddr + INT_MASK_REG);
1536 outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1537 outsl(ioaddr + IO_PORT_32_BIT, buf, (length + 3) >> 2);
1538 outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1539 }
1540
1541 /* A dummy read to flush the DRAM write pipeline */
1542 status = inw(ioaddr + IO_PORT);
1543
1544 if (lp->tx_start == lp->tx_end) {
1545 outw(last, ioaddr + lp->xmt_bar);
1546 outb(XMT_CMD, ioaddr);
1547 lp->tx_start = last; /* I don't like to change tx_start here */
1548 }
1549 else {
1550 /* update the next address and the chain bit in the
1551 last packet */
1552
1553 if (lp->tx_end != last) {
1554 outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1555 outw(last, ioaddr + IO_PORT);
1556 }
1557
1558 outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1559 status = inw(ioaddr + IO_PORT);
1560 outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1561
1562 /* Continue the transmit command */
1563 outb(RESUME_XMT_CMD, ioaddr);
1564 }
1565
1566 lp->tx_last = last;
1567 lp->tx_end = end;
1568
1569 if (net_debug > 5)
1570 printk(KERN_DEBUG "%s: exiting hardware_send_packet routine.\n", dev->name);
1571
1572 return 0;
1573 }
1574
1575 static void
1576 eepro_rx(struct net_device *dev)
1577 {
1578 struct eepro_local *lp = netdev_priv(dev);
1579 short ioaddr = dev->base_addr;
1580 short boguscount = 20;
1581 short rcv_car = lp->rx_start;
1582 unsigned rcv_event, rcv_status, rcv_next_frame, rcv_size;
1583
1584 if (net_debug > 5)
1585 printk(KERN_DEBUG "%s: entering eepro_rx routine.\n", dev->name);
1586
1587 /* Set the read pointer to the start of the RCV */
1588 outw(rcv_car, ioaddr + HOST_ADDRESS_REG);
1589
1590 rcv_event = inw(ioaddr + IO_PORT);
1591
1592 while (rcv_event == RCV_DONE) {
1593
1594 rcv_status = inw(ioaddr + IO_PORT);
1595 rcv_next_frame = inw(ioaddr + IO_PORT);
1596 rcv_size = inw(ioaddr + IO_PORT);
1597
1598 if ((rcv_status & (RX_OK | RX_ERROR)) == RX_OK) {
1599
1600 /* Malloc up new buffer. */
1601 struct sk_buff *skb;
1602
1603 lp->stats.rx_bytes+=rcv_size;
1604 rcv_size &= 0x3fff;
1605 skb = dev_alloc_skb(rcv_size+5);
1606 if (skb == NULL) {
1607 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1608 lp->stats.rx_dropped++;
1609 rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1610 lp->rx_start = rcv_next_frame;
1611 outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1612
1613 break;
1614 }
1615 skb->dev = dev;
1616 skb_reserve(skb,2);
1617
1618 if (lp->version == LAN595)
1619 insw(ioaddr+IO_PORT, skb_put(skb,rcv_size), (rcv_size + 3) >> 1);
1620 else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1621 unsigned short temp = inb(ioaddr + INT_MASK_REG);
1622 outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1623 insl(ioaddr+IO_PORT_32_BIT, skb_put(skb,rcv_size),
1624 (rcv_size + 3) >> 2);
1625 outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1626 }
1627
1628 skb->protocol = eth_type_trans(skb,dev);
1629 netif_rx(skb);
1630 dev->last_rx = jiffies;
1631 lp->stats.rx_packets++;
1632 }
1633
1634 else { /* Not sure will ever reach here,
1635 I set the 595 to discard bad received frames */
1636 lp->stats.rx_errors++;
1637
1638 if (rcv_status & 0x0100)
1639 lp->stats.rx_over_errors++;
1640
1641 else if (rcv_status & 0x0400)
1642 lp->stats.rx_frame_errors++;
1643
1644 else if (rcv_status & 0x0800)
1645 lp->stats.rx_crc_errors++;
1646
1647 printk(KERN_DEBUG "%s: event = %#x, status = %#x, next = %#x, size = %#x\n",
1648 dev->name, rcv_event, rcv_status, rcv_next_frame, rcv_size);
1649 }
1650
1651 if (rcv_status & 0x1000)
1652 lp->stats.rx_length_errors++;
1653
1654 rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1655 lp->rx_start = rcv_next_frame;
1656
1657 if (--boguscount == 0)
1658 break;
1659
1660 outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1661 rcv_event = inw(ioaddr + IO_PORT);
1662
1663 }
1664 if (rcv_car == 0)
1665 rcv_car = lp->rcv_upper_limit | 0xff;
1666
1667 outw(rcv_car - 1, ioaddr + RCV_STOP);
1668
1669 if (net_debug > 5)
1670 printk(KERN_DEBUG "%s: exiting eepro_rx routine.\n", dev->name);
1671 }
1672
1673 static void
1674 eepro_transmit_interrupt(struct net_device *dev)
1675 {
1676 struct eepro_local *lp = netdev_priv(dev);
1677 short ioaddr = dev->base_addr;
1678 short boguscount = 25;
1679 short xmt_status;
1680
1681 while ((lp->tx_start != lp->tx_end) && boguscount--) {
1682
1683 outw(lp->tx_start, ioaddr + HOST_ADDRESS_REG);
1684 xmt_status = inw(ioaddr+IO_PORT);
1685
1686 if (!(xmt_status & TX_DONE_BIT))
1687 break;
1688
1689 xmt_status = inw(ioaddr+IO_PORT);
1690 lp->tx_start = inw(ioaddr+IO_PORT);
1691
1692 netif_wake_queue (dev);
1693
1694 if (xmt_status & TX_OK)
1695 lp->stats.tx_packets++;
1696 else {
1697 lp->stats.tx_errors++;
1698 if (xmt_status & 0x0400) {
1699 lp->stats.tx_carrier_errors++;
1700 printk(KERN_DEBUG "%s: carrier error\n",
1701 dev->name);
1702 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1703 dev->name, xmt_status);
1704 }
1705 else {
1706 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1707 dev->name, xmt_status);
1708 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1709 dev->name, xmt_status);
1710 }
1711 }
1712 if (xmt_status & 0x000f) {
1713 lp->stats.collisions += (xmt_status & 0x000f);
1714 }
1715
1716 if ((xmt_status & 0x0040) == 0x0) {
1717 lp->stats.tx_heartbeat_errors++;
1718 }
1719 }
1720 }
1721
1722 static int eepro_ethtool_get_settings(struct net_device *dev,
1723 struct ethtool_cmd *cmd)
1724 {
1725 struct eepro_local *lp = (struct eepro_local *)dev->priv;
1726
1727 cmd->supported = SUPPORTED_10baseT_Half |
1728 SUPPORTED_10baseT_Full |
1729 SUPPORTED_Autoneg;
1730 cmd->advertising = ADVERTISED_10baseT_Half |
1731 ADVERTISED_10baseT_Full |
1732 ADVERTISED_Autoneg;
1733
1734 if (GetBit(lp->word[5], ee_PortTPE)) {
1735 cmd->supported |= SUPPORTED_TP;
1736 cmd->advertising |= ADVERTISED_TP;
1737 }
1738 if (GetBit(lp->word[5], ee_PortBNC)) {
1739 cmd->supported |= SUPPORTED_BNC;
1740 cmd->advertising |= ADVERTISED_BNC;
1741 }
1742 if (GetBit(lp->word[5], ee_PortAUI)) {
1743 cmd->supported |= SUPPORTED_AUI;
1744 cmd->advertising |= ADVERTISED_AUI;
1745 }
1746
1747 cmd->speed = SPEED_10;
1748
1749 if (dev->if_port == TPE && lp->word[1] & ee_Duplex) {
1750 cmd->duplex = DUPLEX_FULL;
1751 }
1752 else {
1753 cmd->duplex = DUPLEX_HALF;
1754 }
1755
1756 cmd->port = dev->if_port;
1757 cmd->phy_address = dev->base_addr;
1758 cmd->transceiver = XCVR_INTERNAL;
1759
1760 if (lp->word[0] & ee_AutoNeg) {
1761 cmd->autoneg = 1;
1762 }
1763
1764 return 0;
1765 }
1766
1767 static void eepro_ethtool_get_drvinfo(struct net_device *dev,
1768 struct ethtool_drvinfo *drvinfo)
1769 {
1770 strcpy(drvinfo->driver, DRV_NAME);
1771 strcpy(drvinfo->version, DRV_VERSION);
1772 sprintf(drvinfo->bus_info, "ISA 0x%lx", dev->base_addr);
1773 }
1774
1775 static struct ethtool_ops eepro_ethtool_ops = {
1776 .get_settings = eepro_ethtool_get_settings,
1777 .get_drvinfo = eepro_ethtool_get_drvinfo,
1778 };
1779
1780 #ifdef MODULE
1781
1782 #define MAX_EEPRO 8
1783 static struct net_device *dev_eepro[MAX_EEPRO];
1784
1785 static int io[MAX_EEPRO] = {
1786 [0 ... MAX_EEPRO-1] = -1
1787 };
1788 static int irq[MAX_EEPRO];
1789 static int mem[MAX_EEPRO] = { /* Size of the rx buffer in KB */
1790 [0 ... MAX_EEPRO-1] = RCV_DEFAULT_RAM/1024
1791 };
1792 static int autodetect;
1793
1794 static int n_eepro;
1795 /* For linux 2.1.xx */
1796
1797 MODULE_AUTHOR("Pascal Dupuis and others");
1798 MODULE_DESCRIPTION("Intel i82595 ISA EtherExpressPro10/10+ driver");
1799 MODULE_LICENSE("GPL");
1800
1801 module_param_array(io, int, NULL, 0);
1802 module_param_array(irq, int, NULL, 0);
1803 module_param_array(mem, int, NULL, 0);
1804 module_param(autodetect, int, 0);
1805 MODULE_PARM_DESC(io, "EtherExpress Pro/10 I/O base addres(es)");
1806 MODULE_PARM_DESC(irq, "EtherExpress Pro/10 IRQ number(s)");
1807 MODULE_PARM_DESC(mem, "EtherExpress Pro/10 Rx buffer size(es) in kB (3-29)");
1808 MODULE_PARM_DESC(autodetect, "EtherExpress Pro/10 force board(s) detection (0-1)");
1809
1810 int
1811 init_module(void)
1812 {
1813 struct net_device *dev;
1814 int i;
1815 if (io[0] == -1 && autodetect == 0) {
1816 printk(KERN_WARNING "eepro_init_module: Probe is very dangerous in ISA boards!\n");
1817 printk(KERN_WARNING "eepro_init_module: Please add \"autodetect=1\" to force probe\n");
1818 return -ENODEV;
1819 }
1820 else if (autodetect) {
1821 /* if autodetect is set then we must force detection */
1822 for (i = 0; i < MAX_EEPRO; i++) {
1823 io[i] = 0;
1824 }
1825
1826 printk(KERN_INFO "eepro_init_module: Auto-detecting boards (May God protect us...)\n");
1827 }
1828
1829 for (i = 0; io[i] != -1 && i < MAX_EEPRO; i++) {
1830 dev = alloc_etherdev(sizeof(struct eepro_local));
1831 if (!dev)
1832 break;
1833
1834 dev->mem_end = mem[i];
1835 dev->base_addr = io[i];
1836 dev->irq = irq[i];
1837
1838 if (do_eepro_probe(dev) == 0) {
1839 dev_eepro[n_eepro++] = dev;
1840 continue;
1841 }
1842 free_netdev(dev);
1843 break;
1844 }
1845
1846 if (n_eepro)
1847 printk(KERN_INFO "%s", version);
1848
1849 return n_eepro ? 0 : -ENODEV;
1850 }
1851
1852 void
1853 cleanup_module(void)
1854 {
1855 int i;
1856
1857 for (i=0; i<n_eepro; i++) {
1858 struct net_device *dev = dev_eepro[i];
1859 unregister_netdev(dev);
1860 release_region(dev->base_addr, EEPRO_IO_EXTENT);
1861 free_netdev(dev);
1862 }
1863 }
1864 #endif /* MODULE */