Merge branch 'drm-intel-next' of git://git.kernel.org/pub/scm/linux/kernel/git/anholt...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
44 */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
56 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
57
58 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
61 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
62 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63 u16 words, u16 *data);
64 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
68 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
69 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
70 static s32 e1000_led_on_82574(struct e1000_hw *hw);
71 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
72 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
73
74 /**
75 * e1000_init_phy_params_82571 - Init PHY func ptrs.
76 * @hw: pointer to the HW structure
77 **/
78 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
79 {
80 struct e1000_phy_info *phy = &hw->phy;
81 s32 ret_val;
82
83 if (hw->phy.media_type != e1000_media_type_copper) {
84 phy->type = e1000_phy_none;
85 return 0;
86 }
87
88 phy->addr = 1;
89 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
90 phy->reset_delay_us = 100;
91
92 phy->ops.power_up = e1000_power_up_phy_copper;
93 phy->ops.power_down = e1000_power_down_phy_copper_82571;
94
95 switch (hw->mac.type) {
96 case e1000_82571:
97 case e1000_82572:
98 phy->type = e1000_phy_igp_2;
99 break;
100 case e1000_82573:
101 phy->type = e1000_phy_m88;
102 break;
103 case e1000_82574:
104 case e1000_82583:
105 phy->type = e1000_phy_bm;
106 break;
107 default:
108 return -E1000_ERR_PHY;
109 break;
110 }
111
112 /* This can only be done after all function pointers are setup. */
113 ret_val = e1000_get_phy_id_82571(hw);
114
115 /* Verify phy id */
116 switch (hw->mac.type) {
117 case e1000_82571:
118 case e1000_82572:
119 if (phy->id != IGP01E1000_I_PHY_ID)
120 return -E1000_ERR_PHY;
121 break;
122 case e1000_82573:
123 if (phy->id != M88E1111_I_PHY_ID)
124 return -E1000_ERR_PHY;
125 break;
126 case e1000_82574:
127 case e1000_82583:
128 if (phy->id != BME1000_E_PHY_ID_R2)
129 return -E1000_ERR_PHY;
130 break;
131 default:
132 return -E1000_ERR_PHY;
133 break;
134 }
135
136 return 0;
137 }
138
139 /**
140 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
141 * @hw: pointer to the HW structure
142 **/
143 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
144 {
145 struct e1000_nvm_info *nvm = &hw->nvm;
146 u32 eecd = er32(EECD);
147 u16 size;
148
149 nvm->opcode_bits = 8;
150 nvm->delay_usec = 1;
151 switch (nvm->override) {
152 case e1000_nvm_override_spi_large:
153 nvm->page_size = 32;
154 nvm->address_bits = 16;
155 break;
156 case e1000_nvm_override_spi_small:
157 nvm->page_size = 8;
158 nvm->address_bits = 8;
159 break;
160 default:
161 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
162 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
163 break;
164 }
165
166 switch (hw->mac.type) {
167 case e1000_82573:
168 case e1000_82574:
169 case e1000_82583:
170 if (((eecd >> 15) & 0x3) == 0x3) {
171 nvm->type = e1000_nvm_flash_hw;
172 nvm->word_size = 2048;
173 /*
174 * Autonomous Flash update bit must be cleared due
175 * to Flash update issue.
176 */
177 eecd &= ~E1000_EECD_AUPDEN;
178 ew32(EECD, eecd);
179 break;
180 }
181 /* Fall Through */
182 default:
183 nvm->type = e1000_nvm_eeprom_spi;
184 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
185 E1000_EECD_SIZE_EX_SHIFT);
186 /*
187 * Added to a constant, "size" becomes the left-shift value
188 * for setting word_size.
189 */
190 size += NVM_WORD_SIZE_BASE_SHIFT;
191
192 /* EEPROM access above 16k is unsupported */
193 if (size > 14)
194 size = 14;
195 nvm->word_size = 1 << size;
196 break;
197 }
198
199 return 0;
200 }
201
202 /**
203 * e1000_init_mac_params_82571 - Init MAC func ptrs.
204 * @hw: pointer to the HW structure
205 **/
206 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
207 {
208 struct e1000_hw *hw = &adapter->hw;
209 struct e1000_mac_info *mac = &hw->mac;
210 struct e1000_mac_operations *func = &mac->ops;
211 u32 swsm = 0;
212 u32 swsm2 = 0;
213 bool force_clear_smbi = false;
214
215 /* Set media type */
216 switch (adapter->pdev->device) {
217 case E1000_DEV_ID_82571EB_FIBER:
218 case E1000_DEV_ID_82572EI_FIBER:
219 case E1000_DEV_ID_82571EB_QUAD_FIBER:
220 hw->phy.media_type = e1000_media_type_fiber;
221 break;
222 case E1000_DEV_ID_82571EB_SERDES:
223 case E1000_DEV_ID_82572EI_SERDES:
224 case E1000_DEV_ID_82571EB_SERDES_DUAL:
225 case E1000_DEV_ID_82571EB_SERDES_QUAD:
226 hw->phy.media_type = e1000_media_type_internal_serdes;
227 break;
228 default:
229 hw->phy.media_type = e1000_media_type_copper;
230 break;
231 }
232
233 /* Set mta register count */
234 mac->mta_reg_count = 128;
235 /* Set rar entry count */
236 mac->rar_entry_count = E1000_RAR_ENTRIES;
237 /* Set if manageability features are enabled. */
238 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
239 ? true : false;
240
241 /* check for link */
242 switch (hw->phy.media_type) {
243 case e1000_media_type_copper:
244 func->setup_physical_interface = e1000_setup_copper_link_82571;
245 func->check_for_link = e1000e_check_for_copper_link;
246 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
247 break;
248 case e1000_media_type_fiber:
249 func->setup_physical_interface =
250 e1000_setup_fiber_serdes_link_82571;
251 func->check_for_link = e1000e_check_for_fiber_link;
252 func->get_link_up_info =
253 e1000e_get_speed_and_duplex_fiber_serdes;
254 break;
255 case e1000_media_type_internal_serdes:
256 func->setup_physical_interface =
257 e1000_setup_fiber_serdes_link_82571;
258 func->check_for_link = e1000_check_for_serdes_link_82571;
259 func->get_link_up_info =
260 e1000e_get_speed_and_duplex_fiber_serdes;
261 break;
262 default:
263 return -E1000_ERR_CONFIG;
264 break;
265 }
266
267 switch (hw->mac.type) {
268 case e1000_82574:
269 case e1000_82583:
270 func->check_mng_mode = e1000_check_mng_mode_82574;
271 func->led_on = e1000_led_on_82574;
272 break;
273 default:
274 func->check_mng_mode = e1000e_check_mng_mode_generic;
275 func->led_on = e1000e_led_on_generic;
276 break;
277 }
278
279 /*
280 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
281 * first NVM or PHY acess. This should be done for single-port
282 * devices, and for one port only on dual-port devices so that
283 * for those devices we can still use the SMBI lock to synchronize
284 * inter-port accesses to the PHY & NVM.
285 */
286 switch (hw->mac.type) {
287 case e1000_82571:
288 case e1000_82572:
289 swsm2 = er32(SWSM2);
290
291 if (!(swsm2 & E1000_SWSM2_LOCK)) {
292 /* Only do this for the first interface on this card */
293 ew32(SWSM2,
294 swsm2 | E1000_SWSM2_LOCK);
295 force_clear_smbi = true;
296 } else
297 force_clear_smbi = false;
298 break;
299 default:
300 force_clear_smbi = true;
301 break;
302 }
303
304 if (force_clear_smbi) {
305 /* Make sure SWSM.SMBI is clear */
306 swsm = er32(SWSM);
307 if (swsm & E1000_SWSM_SMBI) {
308 /* This bit should not be set on a first interface, and
309 * indicates that the bootagent or EFI code has
310 * improperly left this bit enabled
311 */
312 e_dbg("Please update your 82571 Bootagent\n");
313 }
314 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
315 }
316
317 /*
318 * Initialze device specific counter of SMBI acquisition
319 * timeouts.
320 */
321 hw->dev_spec.e82571.smb_counter = 0;
322
323 return 0;
324 }
325
326 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
327 {
328 struct e1000_hw *hw = &adapter->hw;
329 static int global_quad_port_a; /* global port a indication */
330 struct pci_dev *pdev = adapter->pdev;
331 u16 eeprom_data = 0;
332 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
333 s32 rc;
334
335 rc = e1000_init_mac_params_82571(adapter);
336 if (rc)
337 return rc;
338
339 rc = e1000_init_nvm_params_82571(hw);
340 if (rc)
341 return rc;
342
343 rc = e1000_init_phy_params_82571(hw);
344 if (rc)
345 return rc;
346
347 /* tag quad port adapters first, it's used below */
348 switch (pdev->device) {
349 case E1000_DEV_ID_82571EB_QUAD_COPPER:
350 case E1000_DEV_ID_82571EB_QUAD_FIBER:
351 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
352 case E1000_DEV_ID_82571PT_QUAD_COPPER:
353 adapter->flags |= FLAG_IS_QUAD_PORT;
354 /* mark the first port */
355 if (global_quad_port_a == 0)
356 adapter->flags |= FLAG_IS_QUAD_PORT_A;
357 /* Reset for multiple quad port adapters */
358 global_quad_port_a++;
359 if (global_quad_port_a == 4)
360 global_quad_port_a = 0;
361 break;
362 default:
363 break;
364 }
365
366 switch (adapter->hw.mac.type) {
367 case e1000_82571:
368 /* these dual ports don't have WoL on port B at all */
369 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
370 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
371 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
372 (is_port_b))
373 adapter->flags &= ~FLAG_HAS_WOL;
374 /* quad ports only support WoL on port A */
375 if (adapter->flags & FLAG_IS_QUAD_PORT &&
376 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
377 adapter->flags &= ~FLAG_HAS_WOL;
378 /* Does not support WoL on any port */
379 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
380 adapter->flags &= ~FLAG_HAS_WOL;
381 break;
382
383 case e1000_82573:
384 if (pdev->device == E1000_DEV_ID_82573L) {
385 if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
386 &eeprom_data) < 0)
387 break;
388 if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
389 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
390 adapter->max_hw_frame_size = DEFAULT_JUMBO;
391 }
392 }
393 break;
394 default:
395 break;
396 }
397
398 return 0;
399 }
400
401 /**
402 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
403 * @hw: pointer to the HW structure
404 *
405 * Reads the PHY registers and stores the PHY ID and possibly the PHY
406 * revision in the hardware structure.
407 **/
408 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
409 {
410 struct e1000_phy_info *phy = &hw->phy;
411 s32 ret_val;
412 u16 phy_id = 0;
413
414 switch (hw->mac.type) {
415 case e1000_82571:
416 case e1000_82572:
417 /*
418 * The 82571 firmware may still be configuring the PHY.
419 * In this case, we cannot access the PHY until the
420 * configuration is done. So we explicitly set the
421 * PHY ID.
422 */
423 phy->id = IGP01E1000_I_PHY_ID;
424 break;
425 case e1000_82573:
426 return e1000e_get_phy_id(hw);
427 break;
428 case e1000_82574:
429 case e1000_82583:
430 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
431 if (ret_val)
432 return ret_val;
433
434 phy->id = (u32)(phy_id << 16);
435 udelay(20);
436 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
437 if (ret_val)
438 return ret_val;
439
440 phy->id |= (u32)(phy_id);
441 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
442 break;
443 default:
444 return -E1000_ERR_PHY;
445 break;
446 }
447
448 return 0;
449 }
450
451 /**
452 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
453 * @hw: pointer to the HW structure
454 *
455 * Acquire the HW semaphore to access the PHY or NVM
456 **/
457 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
458 {
459 u32 swsm;
460 s32 sw_timeout = hw->nvm.word_size + 1;
461 s32 fw_timeout = hw->nvm.word_size + 1;
462 s32 i = 0;
463
464 /*
465 * If we have timedout 3 times on trying to acquire
466 * the inter-port SMBI semaphore, there is old code
467 * operating on the other port, and it is not
468 * releasing SMBI. Modify the number of times that
469 * we try for the semaphore to interwork with this
470 * older code.
471 */
472 if (hw->dev_spec.e82571.smb_counter > 2)
473 sw_timeout = 1;
474
475 /* Get the SW semaphore */
476 while (i < sw_timeout) {
477 swsm = er32(SWSM);
478 if (!(swsm & E1000_SWSM_SMBI))
479 break;
480
481 udelay(50);
482 i++;
483 }
484
485 if (i == sw_timeout) {
486 e_dbg("Driver can't access device - SMBI bit is set.\n");
487 hw->dev_spec.e82571.smb_counter++;
488 }
489 /* Get the FW semaphore. */
490 for (i = 0; i < fw_timeout; i++) {
491 swsm = er32(SWSM);
492 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
493
494 /* Semaphore acquired if bit latched */
495 if (er32(SWSM) & E1000_SWSM_SWESMBI)
496 break;
497
498 udelay(50);
499 }
500
501 if (i == fw_timeout) {
502 /* Release semaphores */
503 e1000_put_hw_semaphore_82571(hw);
504 e_dbg("Driver can't access the NVM\n");
505 return -E1000_ERR_NVM;
506 }
507
508 return 0;
509 }
510
511 /**
512 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
513 * @hw: pointer to the HW structure
514 *
515 * Release hardware semaphore used to access the PHY or NVM
516 **/
517 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
518 {
519 u32 swsm;
520
521 swsm = er32(SWSM);
522 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
523 ew32(SWSM, swsm);
524 }
525
526 /**
527 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
528 * @hw: pointer to the HW structure
529 *
530 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
531 * Then for non-82573 hardware, set the EEPROM access request bit and wait
532 * for EEPROM access grant bit. If the access grant bit is not set, release
533 * hardware semaphore.
534 **/
535 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
536 {
537 s32 ret_val;
538
539 ret_val = e1000_get_hw_semaphore_82571(hw);
540 if (ret_val)
541 return ret_val;
542
543 switch (hw->mac.type) {
544 case e1000_82573:
545 case e1000_82574:
546 case e1000_82583:
547 break;
548 default:
549 ret_val = e1000e_acquire_nvm(hw);
550 break;
551 }
552
553 if (ret_val)
554 e1000_put_hw_semaphore_82571(hw);
555
556 return ret_val;
557 }
558
559 /**
560 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
561 * @hw: pointer to the HW structure
562 *
563 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
564 **/
565 static void e1000_release_nvm_82571(struct e1000_hw *hw)
566 {
567 e1000e_release_nvm(hw);
568 e1000_put_hw_semaphore_82571(hw);
569 }
570
571 /**
572 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
573 * @hw: pointer to the HW structure
574 * @offset: offset within the EEPROM to be written to
575 * @words: number of words to write
576 * @data: 16 bit word(s) to be written to the EEPROM
577 *
578 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
579 *
580 * If e1000e_update_nvm_checksum is not called after this function, the
581 * EEPROM will most likely contain an invalid checksum.
582 **/
583 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
584 u16 *data)
585 {
586 s32 ret_val;
587
588 switch (hw->mac.type) {
589 case e1000_82573:
590 case e1000_82574:
591 case e1000_82583:
592 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
593 break;
594 case e1000_82571:
595 case e1000_82572:
596 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
597 break;
598 default:
599 ret_val = -E1000_ERR_NVM;
600 break;
601 }
602
603 return ret_val;
604 }
605
606 /**
607 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
608 * @hw: pointer to the HW structure
609 *
610 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
611 * up to the checksum. Then calculates the EEPROM checksum and writes the
612 * value to the EEPROM.
613 **/
614 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
615 {
616 u32 eecd;
617 s32 ret_val;
618 u16 i;
619
620 ret_val = e1000e_update_nvm_checksum_generic(hw);
621 if (ret_val)
622 return ret_val;
623
624 /*
625 * If our nvm is an EEPROM, then we're done
626 * otherwise, commit the checksum to the flash NVM.
627 */
628 if (hw->nvm.type != e1000_nvm_flash_hw)
629 return ret_val;
630
631 /* Check for pending operations. */
632 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
633 msleep(1);
634 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
635 break;
636 }
637
638 if (i == E1000_FLASH_UPDATES)
639 return -E1000_ERR_NVM;
640
641 /* Reset the firmware if using STM opcode. */
642 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
643 /*
644 * The enabling of and the actual reset must be done
645 * in two write cycles.
646 */
647 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
648 e1e_flush();
649 ew32(HICR, E1000_HICR_FW_RESET);
650 }
651
652 /* Commit the write to flash */
653 eecd = er32(EECD) | E1000_EECD_FLUPD;
654 ew32(EECD, eecd);
655
656 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
657 msleep(1);
658 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
659 break;
660 }
661
662 if (i == E1000_FLASH_UPDATES)
663 return -E1000_ERR_NVM;
664
665 return 0;
666 }
667
668 /**
669 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
670 * @hw: pointer to the HW structure
671 *
672 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
673 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
674 **/
675 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
676 {
677 if (hw->nvm.type == e1000_nvm_flash_hw)
678 e1000_fix_nvm_checksum_82571(hw);
679
680 return e1000e_validate_nvm_checksum_generic(hw);
681 }
682
683 /**
684 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
685 * @hw: pointer to the HW structure
686 * @offset: offset within the EEPROM to be written to
687 * @words: number of words to write
688 * @data: 16 bit word(s) to be written to the EEPROM
689 *
690 * After checking for invalid values, poll the EEPROM to ensure the previous
691 * command has completed before trying to write the next word. After write
692 * poll for completion.
693 *
694 * If e1000e_update_nvm_checksum is not called after this function, the
695 * EEPROM will most likely contain an invalid checksum.
696 **/
697 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
698 u16 words, u16 *data)
699 {
700 struct e1000_nvm_info *nvm = &hw->nvm;
701 u32 i, eewr = 0;
702 s32 ret_val = 0;
703
704 /*
705 * A check for invalid values: offset too large, too many words,
706 * and not enough words.
707 */
708 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
709 (words == 0)) {
710 e_dbg("nvm parameter(s) out of bounds\n");
711 return -E1000_ERR_NVM;
712 }
713
714 for (i = 0; i < words; i++) {
715 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
716 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
717 E1000_NVM_RW_REG_START;
718
719 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
720 if (ret_val)
721 break;
722
723 ew32(EEWR, eewr);
724
725 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
726 if (ret_val)
727 break;
728 }
729
730 return ret_val;
731 }
732
733 /**
734 * e1000_get_cfg_done_82571 - Poll for configuration done
735 * @hw: pointer to the HW structure
736 *
737 * Reads the management control register for the config done bit to be set.
738 **/
739 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
740 {
741 s32 timeout = PHY_CFG_TIMEOUT;
742
743 while (timeout) {
744 if (er32(EEMNGCTL) &
745 E1000_NVM_CFG_DONE_PORT_0)
746 break;
747 msleep(1);
748 timeout--;
749 }
750 if (!timeout) {
751 e_dbg("MNG configuration cycle has not completed.\n");
752 return -E1000_ERR_RESET;
753 }
754
755 return 0;
756 }
757
758 /**
759 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
760 * @hw: pointer to the HW structure
761 * @active: true to enable LPLU, false to disable
762 *
763 * Sets the LPLU D0 state according to the active flag. When activating LPLU
764 * this function also disables smart speed and vice versa. LPLU will not be
765 * activated unless the device autonegotiation advertisement meets standards
766 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
767 * pointer entry point only called by PHY setup routines.
768 **/
769 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
770 {
771 struct e1000_phy_info *phy = &hw->phy;
772 s32 ret_val;
773 u16 data;
774
775 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
776 if (ret_val)
777 return ret_val;
778
779 if (active) {
780 data |= IGP02E1000_PM_D0_LPLU;
781 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
782 if (ret_val)
783 return ret_val;
784
785 /* When LPLU is enabled, we should disable SmartSpeed */
786 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
787 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
788 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
789 if (ret_val)
790 return ret_val;
791 } else {
792 data &= ~IGP02E1000_PM_D0_LPLU;
793 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
794 /*
795 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
796 * during Dx states where the power conservation is most
797 * important. During driver activity we should enable
798 * SmartSpeed, so performance is maintained.
799 */
800 if (phy->smart_speed == e1000_smart_speed_on) {
801 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
802 &data);
803 if (ret_val)
804 return ret_val;
805
806 data |= IGP01E1000_PSCFR_SMART_SPEED;
807 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
808 data);
809 if (ret_val)
810 return ret_val;
811 } else if (phy->smart_speed == e1000_smart_speed_off) {
812 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
813 &data);
814 if (ret_val)
815 return ret_val;
816
817 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
818 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
819 data);
820 if (ret_val)
821 return ret_val;
822 }
823 }
824
825 return 0;
826 }
827
828 /**
829 * e1000_reset_hw_82571 - Reset hardware
830 * @hw: pointer to the HW structure
831 *
832 * This resets the hardware into a known state.
833 **/
834 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
835 {
836 u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
837 s32 ret_val;
838 u16 i = 0;
839
840 /*
841 * Prevent the PCI-E bus from sticking if there is no TLP connection
842 * on the last TLP read/write transaction when MAC is reset.
843 */
844 ret_val = e1000e_disable_pcie_master(hw);
845 if (ret_val)
846 e_dbg("PCI-E Master disable polling has failed.\n");
847
848 e_dbg("Masking off all interrupts\n");
849 ew32(IMC, 0xffffffff);
850
851 ew32(RCTL, 0);
852 ew32(TCTL, E1000_TCTL_PSP);
853 e1e_flush();
854
855 msleep(10);
856
857 /*
858 * Must acquire the MDIO ownership before MAC reset.
859 * Ownership defaults to firmware after a reset.
860 */
861 switch (hw->mac.type) {
862 case e1000_82573:
863 case e1000_82574:
864 case e1000_82583:
865 extcnf_ctrl = er32(EXTCNF_CTRL);
866 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
867
868 do {
869 ew32(EXTCNF_CTRL, extcnf_ctrl);
870 extcnf_ctrl = er32(EXTCNF_CTRL);
871
872 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
873 break;
874
875 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
876
877 msleep(2);
878 i++;
879 } while (i < MDIO_OWNERSHIP_TIMEOUT);
880 break;
881 default:
882 break;
883 }
884
885 ctrl = er32(CTRL);
886
887 e_dbg("Issuing a global reset to MAC\n");
888 ew32(CTRL, ctrl | E1000_CTRL_RST);
889
890 if (hw->nvm.type == e1000_nvm_flash_hw) {
891 udelay(10);
892 ctrl_ext = er32(CTRL_EXT);
893 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
894 ew32(CTRL_EXT, ctrl_ext);
895 e1e_flush();
896 }
897
898 ret_val = e1000e_get_auto_rd_done(hw);
899 if (ret_val)
900 /* We don't want to continue accessing MAC registers. */
901 return ret_val;
902
903 /*
904 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
905 * Need to wait for Phy configuration completion before accessing
906 * NVM and Phy.
907 */
908
909 switch (hw->mac.type) {
910 case e1000_82573:
911 case e1000_82574:
912 case e1000_82583:
913 msleep(25);
914 break;
915 default:
916 break;
917 }
918
919 /* Clear any pending interrupt events. */
920 ew32(IMC, 0xffffffff);
921 icr = er32(ICR);
922
923 if (hw->mac.type == e1000_82571 &&
924 hw->dev_spec.e82571.alt_mac_addr_is_present)
925 e1000e_set_laa_state_82571(hw, true);
926
927 /* Reinitialize the 82571 serdes link state machine */
928 if (hw->phy.media_type == e1000_media_type_internal_serdes)
929 hw->mac.serdes_link_state = e1000_serdes_link_down;
930
931 return 0;
932 }
933
934 /**
935 * e1000_init_hw_82571 - Initialize hardware
936 * @hw: pointer to the HW structure
937 *
938 * This inits the hardware readying it for operation.
939 **/
940 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
941 {
942 struct e1000_mac_info *mac = &hw->mac;
943 u32 reg_data;
944 s32 ret_val;
945 u16 i, rar_count = mac->rar_entry_count;
946
947 e1000_initialize_hw_bits_82571(hw);
948
949 /* Initialize identification LED */
950 ret_val = e1000e_id_led_init(hw);
951 if (ret_val)
952 e_dbg("Error initializing identification LED\n");
953 /* This is not fatal and we should not stop init due to this */
954
955 /* Disabling VLAN filtering */
956 e_dbg("Initializing the IEEE VLAN\n");
957 mac->ops.clear_vfta(hw);
958
959 /* Setup the receive address. */
960 /*
961 * If, however, a locally administered address was assigned to the
962 * 82571, we must reserve a RAR for it to work around an issue where
963 * resetting one port will reload the MAC on the other port.
964 */
965 if (e1000e_get_laa_state_82571(hw))
966 rar_count--;
967 e1000e_init_rx_addrs(hw, rar_count);
968
969 /* Zero out the Multicast HASH table */
970 e_dbg("Zeroing the MTA\n");
971 for (i = 0; i < mac->mta_reg_count; i++)
972 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
973
974 /* Setup link and flow control */
975 ret_val = e1000_setup_link_82571(hw);
976
977 /* Set the transmit descriptor write-back policy */
978 reg_data = er32(TXDCTL(0));
979 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
980 E1000_TXDCTL_FULL_TX_DESC_WB |
981 E1000_TXDCTL_COUNT_DESC;
982 ew32(TXDCTL(0), reg_data);
983
984 /* ...for both queues. */
985 switch (mac->type) {
986 case e1000_82573:
987 case e1000_82574:
988 case e1000_82583:
989 e1000e_enable_tx_pkt_filtering(hw);
990 reg_data = er32(GCR);
991 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
992 ew32(GCR, reg_data);
993 break;
994 default:
995 reg_data = er32(TXDCTL(1));
996 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
997 E1000_TXDCTL_FULL_TX_DESC_WB |
998 E1000_TXDCTL_COUNT_DESC;
999 ew32(TXDCTL(1), reg_data);
1000 break;
1001 }
1002
1003 /*
1004 * Clear all of the statistics registers (clear on read). It is
1005 * important that we do this after we have tried to establish link
1006 * because the symbol error count will increment wildly if there
1007 * is no link.
1008 */
1009 e1000_clear_hw_cntrs_82571(hw);
1010
1011 return ret_val;
1012 }
1013
1014 /**
1015 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1016 * @hw: pointer to the HW structure
1017 *
1018 * Initializes required hardware-dependent bits needed for normal operation.
1019 **/
1020 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1021 {
1022 u32 reg;
1023
1024 /* Transmit Descriptor Control 0 */
1025 reg = er32(TXDCTL(0));
1026 reg |= (1 << 22);
1027 ew32(TXDCTL(0), reg);
1028
1029 /* Transmit Descriptor Control 1 */
1030 reg = er32(TXDCTL(1));
1031 reg |= (1 << 22);
1032 ew32(TXDCTL(1), reg);
1033
1034 /* Transmit Arbitration Control 0 */
1035 reg = er32(TARC(0));
1036 reg &= ~(0xF << 27); /* 30:27 */
1037 switch (hw->mac.type) {
1038 case e1000_82571:
1039 case e1000_82572:
1040 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1041 break;
1042 default:
1043 break;
1044 }
1045 ew32(TARC(0), reg);
1046
1047 /* Transmit Arbitration Control 1 */
1048 reg = er32(TARC(1));
1049 switch (hw->mac.type) {
1050 case e1000_82571:
1051 case e1000_82572:
1052 reg &= ~((1 << 29) | (1 << 30));
1053 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1054 if (er32(TCTL) & E1000_TCTL_MULR)
1055 reg &= ~(1 << 28);
1056 else
1057 reg |= (1 << 28);
1058 ew32(TARC(1), reg);
1059 break;
1060 default:
1061 break;
1062 }
1063
1064 /* Device Control */
1065 switch (hw->mac.type) {
1066 case e1000_82573:
1067 case e1000_82574:
1068 case e1000_82583:
1069 reg = er32(CTRL);
1070 reg &= ~(1 << 29);
1071 ew32(CTRL, reg);
1072 break;
1073 default:
1074 break;
1075 }
1076
1077 /* Extended Device Control */
1078 switch (hw->mac.type) {
1079 case e1000_82573:
1080 case e1000_82574:
1081 case e1000_82583:
1082 reg = er32(CTRL_EXT);
1083 reg &= ~(1 << 23);
1084 reg |= (1 << 22);
1085 ew32(CTRL_EXT, reg);
1086 break;
1087 default:
1088 break;
1089 }
1090
1091 if (hw->mac.type == e1000_82571) {
1092 reg = er32(PBA_ECC);
1093 reg |= E1000_PBA_ECC_CORR_EN;
1094 ew32(PBA_ECC, reg);
1095 }
1096 /*
1097 * Workaround for hardware errata.
1098 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1099 */
1100
1101 if ((hw->mac.type == e1000_82571) ||
1102 (hw->mac.type == e1000_82572)) {
1103 reg = er32(CTRL_EXT);
1104 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1105 ew32(CTRL_EXT, reg);
1106 }
1107
1108
1109 /* PCI-Ex Control Registers */
1110 switch (hw->mac.type) {
1111 case e1000_82574:
1112 case e1000_82583:
1113 reg = er32(GCR);
1114 reg |= (1 << 22);
1115 ew32(GCR, reg);
1116
1117 /*
1118 * Workaround for hardware errata.
1119 * apply workaround for hardware errata documented in errata
1120 * docs Fixes issue where some error prone or unreliable PCIe
1121 * completions are occurring, particularly with ASPM enabled.
1122 * Without fix, issue can cause tx timeouts.
1123 */
1124 reg = er32(GCR2);
1125 reg |= 1;
1126 ew32(GCR2, reg);
1127 break;
1128 default:
1129 break;
1130 }
1131
1132 return;
1133 }
1134
1135 /**
1136 * e1000_clear_vfta_82571 - Clear VLAN filter table
1137 * @hw: pointer to the HW structure
1138 *
1139 * Clears the register array which contains the VLAN filter table by
1140 * setting all the values to 0.
1141 **/
1142 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1143 {
1144 u32 offset;
1145 u32 vfta_value = 0;
1146 u32 vfta_offset = 0;
1147 u32 vfta_bit_in_reg = 0;
1148
1149 switch (hw->mac.type) {
1150 case e1000_82573:
1151 case e1000_82574:
1152 case e1000_82583:
1153 if (hw->mng_cookie.vlan_id != 0) {
1154 /*
1155 * The VFTA is a 4096b bit-field, each identifying
1156 * a single VLAN ID. The following operations
1157 * determine which 32b entry (i.e. offset) into the
1158 * array we want to set the VLAN ID (i.e. bit) of
1159 * the manageability unit.
1160 */
1161 vfta_offset = (hw->mng_cookie.vlan_id >>
1162 E1000_VFTA_ENTRY_SHIFT) &
1163 E1000_VFTA_ENTRY_MASK;
1164 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1165 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1166 }
1167 break;
1168 default:
1169 break;
1170 }
1171 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1172 /*
1173 * If the offset we want to clear is the same offset of the
1174 * manageability VLAN ID, then clear all bits except that of
1175 * the manageability unit.
1176 */
1177 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1178 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1179 e1e_flush();
1180 }
1181 }
1182
1183 /**
1184 * e1000_check_mng_mode_82574 - Check manageability is enabled
1185 * @hw: pointer to the HW structure
1186 *
1187 * Reads the NVM Initialization Control Word 2 and returns true
1188 * (>0) if any manageability is enabled, else false (0).
1189 **/
1190 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1191 {
1192 u16 data;
1193
1194 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1195 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1196 }
1197
1198 /**
1199 * e1000_led_on_82574 - Turn LED on
1200 * @hw: pointer to the HW structure
1201 *
1202 * Turn LED on.
1203 **/
1204 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1205 {
1206 u32 ctrl;
1207 u32 i;
1208
1209 ctrl = hw->mac.ledctl_mode2;
1210 if (!(E1000_STATUS_LU & er32(STATUS))) {
1211 /*
1212 * If no link, then turn LED on by setting the invert bit
1213 * for each LED that's "on" (0x0E) in ledctl_mode2.
1214 */
1215 for (i = 0; i < 4; i++)
1216 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1217 E1000_LEDCTL_MODE_LED_ON)
1218 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1219 }
1220 ew32(LEDCTL, ctrl);
1221
1222 return 0;
1223 }
1224
1225 /**
1226 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
1227 * @hw: pointer to the HW structure
1228 * @mc_addr_list: array of multicast addresses to program
1229 * @mc_addr_count: number of multicast addresses to program
1230 * @rar_used_count: the first RAR register free to program
1231 * @rar_count: total number of supported Receive Address Registers
1232 *
1233 * Updates the Receive Address Registers and Multicast Table Array.
1234 * The caller must have a packed mc_addr_list of multicast addresses.
1235 * The parameter rar_count will usually be hw->mac.rar_entry_count
1236 * unless there are workarounds that change this.
1237 **/
1238 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
1239 u8 *mc_addr_list,
1240 u32 mc_addr_count,
1241 u32 rar_used_count,
1242 u32 rar_count)
1243 {
1244 if (e1000e_get_laa_state_82571(hw))
1245 rar_count--;
1246
1247 e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1248 rar_used_count, rar_count);
1249 }
1250
1251 /**
1252 * e1000_setup_link_82571 - Setup flow control and link settings
1253 * @hw: pointer to the HW structure
1254 *
1255 * Determines which flow control settings to use, then configures flow
1256 * control. Calls the appropriate media-specific link configuration
1257 * function. Assuming the adapter has a valid link partner, a valid link
1258 * should be established. Assumes the hardware has previously been reset
1259 * and the transmitter and receiver are not enabled.
1260 **/
1261 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1262 {
1263 /*
1264 * 82573 does not have a word in the NVM to determine
1265 * the default flow control setting, so we explicitly
1266 * set it to full.
1267 */
1268 switch (hw->mac.type) {
1269 case e1000_82573:
1270 case e1000_82574:
1271 case e1000_82583:
1272 if (hw->fc.requested_mode == e1000_fc_default)
1273 hw->fc.requested_mode = e1000_fc_full;
1274 break;
1275 default:
1276 break;
1277 }
1278
1279 return e1000e_setup_link(hw);
1280 }
1281
1282 /**
1283 * e1000_setup_copper_link_82571 - Configure copper link settings
1284 * @hw: pointer to the HW structure
1285 *
1286 * Configures the link for auto-neg or forced speed and duplex. Then we check
1287 * for link, once link is established calls to configure collision distance
1288 * and flow control are called.
1289 **/
1290 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1291 {
1292 u32 ctrl;
1293 s32 ret_val;
1294
1295 ctrl = er32(CTRL);
1296 ctrl |= E1000_CTRL_SLU;
1297 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1298 ew32(CTRL, ctrl);
1299
1300 switch (hw->phy.type) {
1301 case e1000_phy_m88:
1302 case e1000_phy_bm:
1303 ret_val = e1000e_copper_link_setup_m88(hw);
1304 break;
1305 case e1000_phy_igp_2:
1306 ret_val = e1000e_copper_link_setup_igp(hw);
1307 break;
1308 default:
1309 return -E1000_ERR_PHY;
1310 break;
1311 }
1312
1313 if (ret_val)
1314 return ret_val;
1315
1316 ret_val = e1000e_setup_copper_link(hw);
1317
1318 return ret_val;
1319 }
1320
1321 /**
1322 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1323 * @hw: pointer to the HW structure
1324 *
1325 * Configures collision distance and flow control for fiber and serdes links.
1326 * Upon successful setup, poll for link.
1327 **/
1328 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1329 {
1330 switch (hw->mac.type) {
1331 case e1000_82571:
1332 case e1000_82572:
1333 /*
1334 * If SerDes loopback mode is entered, there is no form
1335 * of reset to take the adapter out of that mode. So we
1336 * have to explicitly take the adapter out of loopback
1337 * mode. This prevents drivers from twiddling their thumbs
1338 * if another tool failed to take it out of loopback mode.
1339 */
1340 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1341 break;
1342 default:
1343 break;
1344 }
1345
1346 return e1000e_setup_fiber_serdes_link(hw);
1347 }
1348
1349 /**
1350 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1351 * @hw: pointer to the HW structure
1352 *
1353 * Reports the link state as up or down.
1354 *
1355 * If autonegotiation is supported by the link partner, the link state is
1356 * determined by the result of autonegotiation. This is the most likely case.
1357 * If autonegotiation is not supported by the link partner, and the link
1358 * has a valid signal, force the link up.
1359 *
1360 * The link state is represented internally here by 4 states:
1361 *
1362 * 1) down
1363 * 2) autoneg_progress
1364 * 3) autoneg_complete (the link sucessfully autonegotiated)
1365 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1366 *
1367 **/
1368 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1369 {
1370 struct e1000_mac_info *mac = &hw->mac;
1371 u32 rxcw;
1372 u32 ctrl;
1373 u32 status;
1374 s32 ret_val = 0;
1375
1376 ctrl = er32(CTRL);
1377 status = er32(STATUS);
1378 rxcw = er32(RXCW);
1379
1380 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1381
1382 /* Receiver is synchronized with no invalid bits. */
1383 switch (mac->serdes_link_state) {
1384 case e1000_serdes_link_autoneg_complete:
1385 if (!(status & E1000_STATUS_LU)) {
1386 /*
1387 * We have lost link, retry autoneg before
1388 * reporting link failure
1389 */
1390 mac->serdes_link_state =
1391 e1000_serdes_link_autoneg_progress;
1392 mac->serdes_has_link = false;
1393 e_dbg("AN_UP -> AN_PROG\n");
1394 }
1395 break;
1396
1397 case e1000_serdes_link_forced_up:
1398 /*
1399 * If we are receiving /C/ ordered sets, re-enable
1400 * auto-negotiation in the TXCW register and disable
1401 * forced link in the Device Control register in an
1402 * attempt to auto-negotiate with our link partner.
1403 */
1404 if (rxcw & E1000_RXCW_C) {
1405 /* Enable autoneg, and unforce link up */
1406 ew32(TXCW, mac->txcw);
1407 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1408 mac->serdes_link_state =
1409 e1000_serdes_link_autoneg_progress;
1410 mac->serdes_has_link = false;
1411 e_dbg("FORCED_UP -> AN_PROG\n");
1412 }
1413 break;
1414
1415 case e1000_serdes_link_autoneg_progress:
1416 if (rxcw & E1000_RXCW_C) {
1417 /*
1418 * We received /C/ ordered sets, meaning the
1419 * link partner has autonegotiated, and we can
1420 * trust the Link Up (LU) status bit.
1421 */
1422 if (status & E1000_STATUS_LU) {
1423 mac->serdes_link_state =
1424 e1000_serdes_link_autoneg_complete;
1425 e_dbg("AN_PROG -> AN_UP\n");
1426 mac->serdes_has_link = true;
1427 } else {
1428 /* Autoneg completed, but failed. */
1429 mac->serdes_link_state =
1430 e1000_serdes_link_down;
1431 e_dbg("AN_PROG -> DOWN\n");
1432 }
1433 } else {
1434 /*
1435 * The link partner did not autoneg.
1436 * Force link up and full duplex, and change
1437 * state to forced.
1438 */
1439 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1440 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1441 ew32(CTRL, ctrl);
1442
1443 /* Configure Flow Control after link up. */
1444 ret_val = e1000e_config_fc_after_link_up(hw);
1445 if (ret_val) {
1446 e_dbg("Error config flow control\n");
1447 break;
1448 }
1449 mac->serdes_link_state =
1450 e1000_serdes_link_forced_up;
1451 mac->serdes_has_link = true;
1452 e_dbg("AN_PROG -> FORCED_UP\n");
1453 }
1454 break;
1455
1456 case e1000_serdes_link_down:
1457 default:
1458 /*
1459 * The link was down but the receiver has now gained
1460 * valid sync, so lets see if we can bring the link
1461 * up.
1462 */
1463 ew32(TXCW, mac->txcw);
1464 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1465 mac->serdes_link_state =
1466 e1000_serdes_link_autoneg_progress;
1467 e_dbg("DOWN -> AN_PROG\n");
1468 break;
1469 }
1470 } else {
1471 if (!(rxcw & E1000_RXCW_SYNCH)) {
1472 mac->serdes_has_link = false;
1473 mac->serdes_link_state = e1000_serdes_link_down;
1474 e_dbg("ANYSTATE -> DOWN\n");
1475 } else {
1476 /*
1477 * We have sync, and can tolerate one invalid (IV)
1478 * codeword before declaring link down, so reread
1479 * to look again.
1480 */
1481 udelay(10);
1482 rxcw = er32(RXCW);
1483 if (rxcw & E1000_RXCW_IV) {
1484 mac->serdes_link_state = e1000_serdes_link_down;
1485 mac->serdes_has_link = false;
1486 e_dbg("ANYSTATE -> DOWN\n");
1487 }
1488 }
1489 }
1490
1491 return ret_val;
1492 }
1493
1494 /**
1495 * e1000_valid_led_default_82571 - Verify a valid default LED config
1496 * @hw: pointer to the HW structure
1497 * @data: pointer to the NVM (EEPROM)
1498 *
1499 * Read the EEPROM for the current default LED configuration. If the
1500 * LED configuration is not valid, set to a valid LED configuration.
1501 **/
1502 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1503 {
1504 s32 ret_val;
1505
1506 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1507 if (ret_val) {
1508 e_dbg("NVM Read Error\n");
1509 return ret_val;
1510 }
1511
1512 switch (hw->mac.type) {
1513 case e1000_82573:
1514 case e1000_82574:
1515 case e1000_82583:
1516 if (*data == ID_LED_RESERVED_F746)
1517 *data = ID_LED_DEFAULT_82573;
1518 break;
1519 default:
1520 if (*data == ID_LED_RESERVED_0000 ||
1521 *data == ID_LED_RESERVED_FFFF)
1522 *data = ID_LED_DEFAULT;
1523 break;
1524 }
1525
1526 return 0;
1527 }
1528
1529 /**
1530 * e1000e_get_laa_state_82571 - Get locally administered address state
1531 * @hw: pointer to the HW structure
1532 *
1533 * Retrieve and return the current locally administered address state.
1534 **/
1535 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1536 {
1537 if (hw->mac.type != e1000_82571)
1538 return false;
1539
1540 return hw->dev_spec.e82571.laa_is_present;
1541 }
1542
1543 /**
1544 * e1000e_set_laa_state_82571 - Set locally administered address state
1545 * @hw: pointer to the HW structure
1546 * @state: enable/disable locally administered address
1547 *
1548 * Enable/Disable the current locally administered address state.
1549 **/
1550 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1551 {
1552 if (hw->mac.type != e1000_82571)
1553 return;
1554
1555 hw->dev_spec.e82571.laa_is_present = state;
1556
1557 /* If workaround is activated... */
1558 if (state)
1559 /*
1560 * Hold a copy of the LAA in RAR[14] This is done so that
1561 * between the time RAR[0] gets clobbered and the time it
1562 * gets fixed, the actual LAA is in one of the RARs and no
1563 * incoming packets directed to this port are dropped.
1564 * Eventually the LAA will be in RAR[0] and RAR[14].
1565 */
1566 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1567 }
1568
1569 /**
1570 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1571 * @hw: pointer to the HW structure
1572 *
1573 * Verifies that the EEPROM has completed the update. After updating the
1574 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1575 * the checksum fix is not implemented, we need to set the bit and update
1576 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1577 * we need to return bad checksum.
1578 **/
1579 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1580 {
1581 struct e1000_nvm_info *nvm = &hw->nvm;
1582 s32 ret_val;
1583 u16 data;
1584
1585 if (nvm->type != e1000_nvm_flash_hw)
1586 return 0;
1587
1588 /*
1589 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1590 * 10h-12h. Checksum may need to be fixed.
1591 */
1592 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1593 if (ret_val)
1594 return ret_val;
1595
1596 if (!(data & 0x10)) {
1597 /*
1598 * Read 0x23 and check bit 15. This bit is a 1
1599 * when the checksum has already been fixed. If
1600 * the checksum is still wrong and this bit is a
1601 * 1, we need to return bad checksum. Otherwise,
1602 * we need to set this bit to a 1 and update the
1603 * checksum.
1604 */
1605 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1606 if (ret_val)
1607 return ret_val;
1608
1609 if (!(data & 0x8000)) {
1610 data |= 0x8000;
1611 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1612 if (ret_val)
1613 return ret_val;
1614 ret_val = e1000e_update_nvm_checksum(hw);
1615 }
1616 }
1617
1618 return 0;
1619 }
1620
1621 /**
1622 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1623 * @hw: pointer to the HW structure
1624 *
1625 * In the case of a PHY power down to save power, or to turn off link during a
1626 * driver unload, or wake on lan is not enabled, remove the link.
1627 **/
1628 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1629 {
1630 struct e1000_phy_info *phy = &hw->phy;
1631 struct e1000_mac_info *mac = &hw->mac;
1632
1633 if (!(phy->ops.check_reset_block))
1634 return;
1635
1636 /* If the management interface is not enabled, then power down */
1637 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1638 e1000_power_down_phy_copper(hw);
1639
1640 return;
1641 }
1642
1643 /**
1644 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1645 * @hw: pointer to the HW structure
1646 *
1647 * Clears the hardware counters by reading the counter registers.
1648 **/
1649 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1650 {
1651 e1000e_clear_hw_cntrs_base(hw);
1652
1653 er32(PRC64);
1654 er32(PRC127);
1655 er32(PRC255);
1656 er32(PRC511);
1657 er32(PRC1023);
1658 er32(PRC1522);
1659 er32(PTC64);
1660 er32(PTC127);
1661 er32(PTC255);
1662 er32(PTC511);
1663 er32(PTC1023);
1664 er32(PTC1522);
1665
1666 er32(ALGNERRC);
1667 er32(RXERRC);
1668 er32(TNCRS);
1669 er32(CEXTERR);
1670 er32(TSCTC);
1671 er32(TSCTFC);
1672
1673 er32(MGTPRC);
1674 er32(MGTPDC);
1675 er32(MGTPTC);
1676
1677 er32(IAC);
1678 er32(ICRXOC);
1679
1680 er32(ICRXPTC);
1681 er32(ICRXATC);
1682 er32(ICTXPTC);
1683 er32(ICTXATC);
1684 er32(ICTXQEC);
1685 er32(ICTXQMTC);
1686 er32(ICRXDMTC);
1687 }
1688
1689 static struct e1000_mac_operations e82571_mac_ops = {
1690 /* .check_mng_mode: mac type dependent */
1691 /* .check_for_link: media type dependent */
1692 .id_led_init = e1000e_id_led_init,
1693 .cleanup_led = e1000e_cleanup_led_generic,
1694 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1695 .get_bus_info = e1000e_get_bus_info_pcie,
1696 /* .get_link_up_info: media type dependent */
1697 /* .led_on: mac type dependent */
1698 .led_off = e1000e_led_off_generic,
1699 .update_mc_addr_list = e1000_update_mc_addr_list_82571,
1700 .write_vfta = e1000_write_vfta_generic,
1701 .clear_vfta = e1000_clear_vfta_82571,
1702 .reset_hw = e1000_reset_hw_82571,
1703 .init_hw = e1000_init_hw_82571,
1704 .setup_link = e1000_setup_link_82571,
1705 /* .setup_physical_interface: media type dependent */
1706 .setup_led = e1000e_setup_led_generic,
1707 };
1708
1709 static struct e1000_phy_operations e82_phy_ops_igp = {
1710 .acquire = e1000_get_hw_semaphore_82571,
1711 .check_polarity = e1000_check_polarity_igp,
1712 .check_reset_block = e1000e_check_reset_block_generic,
1713 .commit = NULL,
1714 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1715 .get_cfg_done = e1000_get_cfg_done_82571,
1716 .get_cable_length = e1000e_get_cable_length_igp_2,
1717 .get_info = e1000e_get_phy_info_igp,
1718 .read_reg = e1000e_read_phy_reg_igp,
1719 .release = e1000_put_hw_semaphore_82571,
1720 .reset = e1000e_phy_hw_reset_generic,
1721 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1722 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1723 .write_reg = e1000e_write_phy_reg_igp,
1724 .cfg_on_link_up = NULL,
1725 };
1726
1727 static struct e1000_phy_operations e82_phy_ops_m88 = {
1728 .acquire = e1000_get_hw_semaphore_82571,
1729 .check_polarity = e1000_check_polarity_m88,
1730 .check_reset_block = e1000e_check_reset_block_generic,
1731 .commit = e1000e_phy_sw_reset,
1732 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1733 .get_cfg_done = e1000e_get_cfg_done,
1734 .get_cable_length = e1000e_get_cable_length_m88,
1735 .get_info = e1000e_get_phy_info_m88,
1736 .read_reg = e1000e_read_phy_reg_m88,
1737 .release = e1000_put_hw_semaphore_82571,
1738 .reset = e1000e_phy_hw_reset_generic,
1739 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1740 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1741 .write_reg = e1000e_write_phy_reg_m88,
1742 .cfg_on_link_up = NULL,
1743 };
1744
1745 static struct e1000_phy_operations e82_phy_ops_bm = {
1746 .acquire = e1000_get_hw_semaphore_82571,
1747 .check_polarity = e1000_check_polarity_m88,
1748 .check_reset_block = e1000e_check_reset_block_generic,
1749 .commit = e1000e_phy_sw_reset,
1750 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1751 .get_cfg_done = e1000e_get_cfg_done,
1752 .get_cable_length = e1000e_get_cable_length_m88,
1753 .get_info = e1000e_get_phy_info_m88,
1754 .read_reg = e1000e_read_phy_reg_bm2,
1755 .release = e1000_put_hw_semaphore_82571,
1756 .reset = e1000e_phy_hw_reset_generic,
1757 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1758 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1759 .write_reg = e1000e_write_phy_reg_bm2,
1760 .cfg_on_link_up = NULL,
1761 };
1762
1763 static struct e1000_nvm_operations e82571_nvm_ops = {
1764 .acquire = e1000_acquire_nvm_82571,
1765 .read = e1000e_read_nvm_eerd,
1766 .release = e1000_release_nvm_82571,
1767 .update = e1000_update_nvm_checksum_82571,
1768 .valid_led_default = e1000_valid_led_default_82571,
1769 .validate = e1000_validate_nvm_checksum_82571,
1770 .write = e1000_write_nvm_82571,
1771 };
1772
1773 struct e1000_info e1000_82571_info = {
1774 .mac = e1000_82571,
1775 .flags = FLAG_HAS_HW_VLAN_FILTER
1776 | FLAG_HAS_JUMBO_FRAMES
1777 | FLAG_HAS_WOL
1778 | FLAG_APME_IN_CTRL3
1779 | FLAG_RX_CSUM_ENABLED
1780 | FLAG_HAS_CTRLEXT_ON_LOAD
1781 | FLAG_HAS_SMART_POWER_DOWN
1782 | FLAG_RESET_OVERWRITES_LAA /* errata */
1783 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1784 | FLAG_APME_CHECK_PORT_B,
1785 .pba = 38,
1786 .max_hw_frame_size = DEFAULT_JUMBO,
1787 .get_variants = e1000_get_variants_82571,
1788 .mac_ops = &e82571_mac_ops,
1789 .phy_ops = &e82_phy_ops_igp,
1790 .nvm_ops = &e82571_nvm_ops,
1791 };
1792
1793 struct e1000_info e1000_82572_info = {
1794 .mac = e1000_82572,
1795 .flags = FLAG_HAS_HW_VLAN_FILTER
1796 | FLAG_HAS_JUMBO_FRAMES
1797 | FLAG_HAS_WOL
1798 | FLAG_APME_IN_CTRL3
1799 | FLAG_RX_CSUM_ENABLED
1800 | FLAG_HAS_CTRLEXT_ON_LOAD
1801 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1802 .pba = 38,
1803 .max_hw_frame_size = DEFAULT_JUMBO,
1804 .get_variants = e1000_get_variants_82571,
1805 .mac_ops = &e82571_mac_ops,
1806 .phy_ops = &e82_phy_ops_igp,
1807 .nvm_ops = &e82571_nvm_ops,
1808 };
1809
1810 struct e1000_info e1000_82573_info = {
1811 .mac = e1000_82573,
1812 .flags = FLAG_HAS_HW_VLAN_FILTER
1813 | FLAG_HAS_JUMBO_FRAMES
1814 | FLAG_HAS_WOL
1815 | FLAG_APME_IN_CTRL3
1816 | FLAG_RX_CSUM_ENABLED
1817 | FLAG_HAS_SMART_POWER_DOWN
1818 | FLAG_HAS_AMT
1819 | FLAG_HAS_ERT
1820 | FLAG_HAS_SWSM_ON_LOAD,
1821 .pba = 20,
1822 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
1823 .get_variants = e1000_get_variants_82571,
1824 .mac_ops = &e82571_mac_ops,
1825 .phy_ops = &e82_phy_ops_m88,
1826 .nvm_ops = &e82571_nvm_ops,
1827 };
1828
1829 struct e1000_info e1000_82574_info = {
1830 .mac = e1000_82574,
1831 .flags = FLAG_HAS_HW_VLAN_FILTER
1832 | FLAG_HAS_MSIX
1833 | FLAG_HAS_JUMBO_FRAMES
1834 | FLAG_HAS_WOL
1835 | FLAG_APME_IN_CTRL3
1836 | FLAG_RX_CSUM_ENABLED
1837 | FLAG_HAS_SMART_POWER_DOWN
1838 | FLAG_HAS_AMT
1839 | FLAG_HAS_CTRLEXT_ON_LOAD,
1840 .pba = 20,
1841 .max_hw_frame_size = DEFAULT_JUMBO,
1842 .get_variants = e1000_get_variants_82571,
1843 .mac_ops = &e82571_mac_ops,
1844 .phy_ops = &e82_phy_ops_bm,
1845 .nvm_ops = &e82571_nvm_ops,
1846 };
1847
1848 struct e1000_info e1000_82583_info = {
1849 .mac = e1000_82583,
1850 .flags = FLAG_HAS_HW_VLAN_FILTER
1851 | FLAG_HAS_WOL
1852 | FLAG_APME_IN_CTRL3
1853 | FLAG_RX_CSUM_ENABLED
1854 | FLAG_HAS_SMART_POWER_DOWN
1855 | FLAG_HAS_AMT
1856 | FLAG_HAS_CTRLEXT_ON_LOAD,
1857 .pba = 20,
1858 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
1859 .get_variants = e1000_get_variants_82571,
1860 .mac_ops = &e82571_mac_ops,
1861 .phy_ops = &e82_phy_ops_bm,
1862 .nvm_ops = &e82571_nvm_ops,
1863 };
1864