Merge branch 'upstream' of git://lost.foo-projects.org/~ahkok/git/netdev-2.6 into tmp
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.0.38-k4"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44 *
45 * Last entry must be all 0s
46 *
47 * Macro expands to...
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 */
50 static struct pci_device_id e1000_pci_tbl[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x105E),
77 INTEL_E1000_ETHERNET_DEVICE(0x105F),
78 INTEL_E1000_ETHERNET_DEVICE(0x1060),
79 INTEL_E1000_ETHERNET_DEVICE(0x1075),
80 INTEL_E1000_ETHERNET_DEVICE(0x1076),
81 INTEL_E1000_ETHERNET_DEVICE(0x1077),
82 INTEL_E1000_ETHERNET_DEVICE(0x1078),
83 INTEL_E1000_ETHERNET_DEVICE(0x1079),
84 INTEL_E1000_ETHERNET_DEVICE(0x107A),
85 INTEL_E1000_ETHERNET_DEVICE(0x107B),
86 INTEL_E1000_ETHERNET_DEVICE(0x107C),
87 INTEL_E1000_ETHERNET_DEVICE(0x107D),
88 INTEL_E1000_ETHERNET_DEVICE(0x107E),
89 INTEL_E1000_ETHERNET_DEVICE(0x107F),
90 INTEL_E1000_ETHERNET_DEVICE(0x108A),
91 INTEL_E1000_ETHERNET_DEVICE(0x108B),
92 INTEL_E1000_ETHERNET_DEVICE(0x108C),
93 INTEL_E1000_ETHERNET_DEVICE(0x1096),
94 INTEL_E1000_ETHERNET_DEVICE(0x1098),
95 INTEL_E1000_ETHERNET_DEVICE(0x1099),
96 INTEL_E1000_ETHERNET_DEVICE(0x109A),
97 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
98 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
99 /* required last entry */
100 {0,}
101 };
102
103 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
104
105 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *txdr);
107 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rxdr);
109 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
110 struct e1000_tx_ring *tx_ring);
111 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
112 struct e1000_rx_ring *rx_ring);
113
114 /* Local Function Prototypes */
115
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
119 static void __devexit e1000_remove(struct pci_dev *pdev);
120 static int e1000_alloc_queues(struct e1000_adapter *adapter);
121 static int e1000_sw_init(struct e1000_adapter *adapter);
122 static int e1000_open(struct net_device *netdev);
123 static int e1000_close(struct net_device *netdev);
124 static void e1000_configure_tx(struct e1000_adapter *adapter);
125 static void e1000_configure_rx(struct e1000_adapter *adapter);
126 static void e1000_setup_rctl(struct e1000_adapter *adapter);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
129 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
130 struct e1000_tx_ring *tx_ring);
131 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
132 struct e1000_rx_ring *rx_ring);
133 static void e1000_set_multi(struct net_device *netdev);
134 static void e1000_update_phy_info(unsigned long data);
135 static void e1000_watchdog(unsigned long data);
136 static void e1000_watchdog_task(struct e1000_adapter *adapter);
137 static void e1000_82547_tx_fifo_stall(unsigned long data);
138 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
139 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
140 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
141 static int e1000_set_mac(struct net_device *netdev, void *p);
142 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
143 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
144 struct e1000_tx_ring *tx_ring);
145 #ifdef CONFIG_E1000_NAPI
146 static int e1000_clean(struct net_device *poll_dev, int *budget);
147 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int *work_done, int work_to_do);
150 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int *work_done, int work_to_do);
153 #else
154 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
155 struct e1000_rx_ring *rx_ring);
156 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
157 struct e1000_rx_ring *rx_ring);
158 #endif
159 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160 struct e1000_rx_ring *rx_ring,
161 int cleaned_count);
162 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
163 struct e1000_rx_ring *rx_ring,
164 int cleaned_count);
165 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
166 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
167 int cmd);
168 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
169 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
170 static void e1000_tx_timeout(struct net_device *dev);
171 static void e1000_reset_task(struct net_device *dev);
172 static void e1000_smartspeed(struct e1000_adapter *adapter);
173 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
174 struct sk_buff *skb);
175
176 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
177 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
178 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
179 static void e1000_restore_vlan(struct e1000_adapter *adapter);
180
181 #ifdef CONFIG_PM
182 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
183 static int e1000_resume(struct pci_dev *pdev);
184 #endif
185 static void e1000_shutdown(struct pci_dev *pdev);
186
187 #ifdef CONFIG_NET_POLL_CONTROLLER
188 /* for netdump / net console */
189 static void e1000_netpoll (struct net_device *netdev);
190 #endif
191
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193 pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196
197 static struct pci_error_handlers e1000_err_handler = {
198 .error_detected = e1000_io_error_detected,
199 .slot_reset = e1000_io_slot_reset,
200 .resume = e1000_io_resume,
201 };
202
203 static struct pci_driver e1000_driver = {
204 .name = e1000_driver_name,
205 .id_table = e1000_pci_tbl,
206 .probe = e1000_probe,
207 .remove = __devexit_p(e1000_remove),
208 /* Power Managment Hooks */
209 #ifdef CONFIG_PM
210 .suspend = e1000_suspend,
211 .resume = e1000_resume,
212 #endif
213 .shutdown = e1000_shutdown,
214 .err_handler = &e1000_err_handler
215 };
216
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221
222 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
223 module_param(debug, int, 0);
224 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
225
226 /**
227 * e1000_init_module - Driver Registration Routine
228 *
229 * e1000_init_module is the first routine called when the driver is
230 * loaded. All it does is register with the PCI subsystem.
231 **/
232
233 static int __init
234 e1000_init_module(void)
235 {
236 int ret;
237 printk(KERN_INFO "%s - version %s\n",
238 e1000_driver_string, e1000_driver_version);
239
240 printk(KERN_INFO "%s\n", e1000_copyright);
241
242 ret = pci_module_init(&e1000_driver);
243
244 return ret;
245 }
246
247 module_init(e1000_init_module);
248
249 /**
250 * e1000_exit_module - Driver Exit Cleanup Routine
251 *
252 * e1000_exit_module is called just before the driver is removed
253 * from memory.
254 **/
255
256 static void __exit
257 e1000_exit_module(void)
258 {
259 pci_unregister_driver(&e1000_driver);
260 }
261
262 module_exit(e1000_exit_module);
263
264 /**
265 * e1000_irq_disable - Mask off interrupt generation on the NIC
266 * @adapter: board private structure
267 **/
268
269 static void
270 e1000_irq_disable(struct e1000_adapter *adapter)
271 {
272 atomic_inc(&adapter->irq_sem);
273 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
274 E1000_WRITE_FLUSH(&adapter->hw);
275 synchronize_irq(adapter->pdev->irq);
276 }
277
278 /**
279 * e1000_irq_enable - Enable default interrupt generation settings
280 * @adapter: board private structure
281 **/
282
283 static void
284 e1000_irq_enable(struct e1000_adapter *adapter)
285 {
286 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
287 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
288 E1000_WRITE_FLUSH(&adapter->hw);
289 }
290 }
291
292 static void
293 e1000_update_mng_vlan(struct e1000_adapter *adapter)
294 {
295 struct net_device *netdev = adapter->netdev;
296 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
297 uint16_t old_vid = adapter->mng_vlan_id;
298 if (adapter->vlgrp) {
299 if (!adapter->vlgrp->vlan_devices[vid]) {
300 if (adapter->hw.mng_cookie.status &
301 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
302 e1000_vlan_rx_add_vid(netdev, vid);
303 adapter->mng_vlan_id = vid;
304 } else
305 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
306
307 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
308 (vid != old_vid) &&
309 !adapter->vlgrp->vlan_devices[old_vid])
310 e1000_vlan_rx_kill_vid(netdev, old_vid);
311 } else
312 adapter->mng_vlan_id = vid;
313 }
314 }
315
316 /**
317 * e1000_release_hw_control - release control of the h/w to f/w
318 * @adapter: address of board private structure
319 *
320 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
321 * For ASF and Pass Through versions of f/w this means that the
322 * driver is no longer loaded. For AMT version (only with 82573) i
323 * of the f/w this means that the netowrk i/f is closed.
324 *
325 **/
326
327 static void
328 e1000_release_hw_control(struct e1000_adapter *adapter)
329 {
330 uint32_t ctrl_ext;
331 uint32_t swsm;
332
333 /* Let firmware taken over control of h/w */
334 switch (adapter->hw.mac_type) {
335 case e1000_82571:
336 case e1000_82572:
337 case e1000_80003es2lan:
338 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
339 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
340 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
341 break;
342 case e1000_82573:
343 swsm = E1000_READ_REG(&adapter->hw, SWSM);
344 E1000_WRITE_REG(&adapter->hw, SWSM,
345 swsm & ~E1000_SWSM_DRV_LOAD);
346 default:
347 break;
348 }
349 }
350
351 /**
352 * e1000_get_hw_control - get control of the h/w from f/w
353 * @adapter: address of board private structure
354 *
355 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
356 * For ASF and Pass Through versions of f/w this means that
357 * the driver is loaded. For AMT version (only with 82573)
358 * of the f/w this means that the netowrk i/f is open.
359 *
360 **/
361
362 static void
363 e1000_get_hw_control(struct e1000_adapter *adapter)
364 {
365 uint32_t ctrl_ext;
366 uint32_t swsm;
367 /* Let firmware know the driver has taken over */
368 switch (adapter->hw.mac_type) {
369 case e1000_82571:
370 case e1000_82572:
371 case e1000_80003es2lan:
372 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
373 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
374 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
375 break;
376 case e1000_82573:
377 swsm = E1000_READ_REG(&adapter->hw, SWSM);
378 E1000_WRITE_REG(&adapter->hw, SWSM,
379 swsm | E1000_SWSM_DRV_LOAD);
380 break;
381 default:
382 break;
383 }
384 }
385
386 int
387 e1000_up(struct e1000_adapter *adapter)
388 {
389 struct net_device *netdev = adapter->netdev;
390 int i, err;
391
392 /* hardware has been reset, we need to reload some things */
393
394 /* Reset the PHY if it was previously powered down */
395 if (adapter->hw.media_type == e1000_media_type_copper) {
396 uint16_t mii_reg;
397 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
398 if (mii_reg & MII_CR_POWER_DOWN)
399 e1000_phy_hw_reset(&adapter->hw);
400 }
401
402 e1000_set_multi(netdev);
403
404 e1000_restore_vlan(adapter);
405
406 e1000_configure_tx(adapter);
407 e1000_setup_rctl(adapter);
408 e1000_configure_rx(adapter);
409 /* call E1000_DESC_UNUSED which always leaves
410 * at least 1 descriptor unused to make sure
411 * next_to_use != next_to_clean */
412 for (i = 0; i < adapter->num_rx_queues; i++) {
413 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
414 adapter->alloc_rx_buf(adapter, ring,
415 E1000_DESC_UNUSED(ring));
416 }
417
418 #ifdef CONFIG_PCI_MSI
419 if (adapter->hw.mac_type > e1000_82547_rev_2) {
420 adapter->have_msi = TRUE;
421 if ((err = pci_enable_msi(adapter->pdev))) {
422 DPRINTK(PROBE, ERR,
423 "Unable to allocate MSI interrupt Error: %d\n", err);
424 adapter->have_msi = FALSE;
425 }
426 }
427 #endif
428 if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
429 SA_SHIRQ | SA_SAMPLE_RANDOM,
430 netdev->name, netdev))) {
431 DPRINTK(PROBE, ERR,
432 "Unable to allocate interrupt Error: %d\n", err);
433 return err;
434 }
435
436 adapter->tx_queue_len = netdev->tx_queue_len;
437
438 mod_timer(&adapter->watchdog_timer, jiffies);
439
440 #ifdef CONFIG_E1000_NAPI
441 netif_poll_enable(netdev);
442 #endif
443 e1000_irq_enable(adapter);
444
445 return 0;
446 }
447
448 void
449 e1000_down(struct e1000_adapter *adapter)
450 {
451 struct net_device *netdev = adapter->netdev;
452 boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
453 e1000_check_mng_mode(&adapter->hw);
454
455 e1000_irq_disable(adapter);
456
457 free_irq(adapter->pdev->irq, netdev);
458 #ifdef CONFIG_PCI_MSI
459 if (adapter->hw.mac_type > e1000_82547_rev_2 &&
460 adapter->have_msi == TRUE)
461 pci_disable_msi(adapter->pdev);
462 #endif
463 del_timer_sync(&adapter->tx_fifo_stall_timer);
464 del_timer_sync(&adapter->watchdog_timer);
465 del_timer_sync(&adapter->phy_info_timer);
466
467 #ifdef CONFIG_E1000_NAPI
468 netif_poll_disable(netdev);
469 #endif
470 netdev->tx_queue_len = adapter->tx_queue_len;
471 adapter->link_speed = 0;
472 adapter->link_duplex = 0;
473 netif_carrier_off(netdev);
474 netif_stop_queue(netdev);
475
476 e1000_reset(adapter);
477 e1000_clean_all_tx_rings(adapter);
478 e1000_clean_all_rx_rings(adapter);
479
480 /* Power down the PHY so no link is implied when interface is down *
481 * The PHY cannot be powered down if any of the following is TRUE *
482 * (a) WoL is enabled
483 * (b) AMT is active
484 * (c) SoL/IDER session is active */
485 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
486 adapter->hw.media_type == e1000_media_type_copper &&
487 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
488 !mng_mode_enabled &&
489 !e1000_check_phy_reset_block(&adapter->hw)) {
490 uint16_t mii_reg;
491 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
492 mii_reg |= MII_CR_POWER_DOWN;
493 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
494 mdelay(1);
495 }
496 }
497
498 void
499 e1000_reset(struct e1000_adapter *adapter)
500 {
501 uint32_t pba, manc;
502 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
503
504 /* Repartition Pba for greater than 9k mtu
505 * To take effect CTRL.RST is required.
506 */
507
508 switch (adapter->hw.mac_type) {
509 case e1000_82547:
510 case e1000_82547_rev_2:
511 pba = E1000_PBA_30K;
512 break;
513 case e1000_82571:
514 case e1000_82572:
515 case e1000_80003es2lan:
516 pba = E1000_PBA_38K;
517 break;
518 case e1000_82573:
519 pba = E1000_PBA_12K;
520 break;
521 default:
522 pba = E1000_PBA_48K;
523 break;
524 }
525
526 if ((adapter->hw.mac_type != e1000_82573) &&
527 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
528 pba -= 8; /* allocate more FIFO for Tx */
529
530
531 if (adapter->hw.mac_type == e1000_82547) {
532 adapter->tx_fifo_head = 0;
533 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
534 adapter->tx_fifo_size =
535 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
536 atomic_set(&adapter->tx_fifo_stall, 0);
537 }
538
539 E1000_WRITE_REG(&adapter->hw, PBA, pba);
540
541 /* flow control settings */
542 /* Set the FC high water mark to 90% of the FIFO size.
543 * Required to clear last 3 LSB */
544 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
545
546 adapter->hw.fc_high_water = fc_high_water_mark;
547 adapter->hw.fc_low_water = fc_high_water_mark - 8;
548 if (adapter->hw.mac_type == e1000_80003es2lan)
549 adapter->hw.fc_pause_time = 0xFFFF;
550 else
551 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
552 adapter->hw.fc_send_xon = 1;
553 adapter->hw.fc = adapter->hw.original_fc;
554
555 /* Allow time for pending master requests to run */
556 e1000_reset_hw(&adapter->hw);
557 if (adapter->hw.mac_type >= e1000_82544)
558 E1000_WRITE_REG(&adapter->hw, WUC, 0);
559 if (e1000_init_hw(&adapter->hw))
560 DPRINTK(PROBE, ERR, "Hardware Error\n");
561 e1000_update_mng_vlan(adapter);
562 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
563 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
564
565 e1000_reset_adaptive(&adapter->hw);
566 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
567 if (adapter->en_mng_pt) {
568 manc = E1000_READ_REG(&adapter->hw, MANC);
569 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
570 E1000_WRITE_REG(&adapter->hw, MANC, manc);
571 }
572 }
573
574 /**
575 * e1000_probe - Device Initialization Routine
576 * @pdev: PCI device information struct
577 * @ent: entry in e1000_pci_tbl
578 *
579 * Returns 0 on success, negative on failure
580 *
581 * e1000_probe initializes an adapter identified by a pci_dev structure.
582 * The OS initialization, configuring of the adapter private structure,
583 * and a hardware reset occur.
584 **/
585
586 static int __devinit
587 e1000_probe(struct pci_dev *pdev,
588 const struct pci_device_id *ent)
589 {
590 struct net_device *netdev;
591 struct e1000_adapter *adapter;
592 unsigned long mmio_start, mmio_len;
593
594 static int cards_found = 0;
595 static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
596 int i, err, pci_using_dac;
597 uint16_t eeprom_data;
598 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
599 if ((err = pci_enable_device(pdev)))
600 return err;
601
602 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
603 pci_using_dac = 1;
604 } else {
605 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
606 E1000_ERR("No usable DMA configuration, aborting\n");
607 return err;
608 }
609 pci_using_dac = 0;
610 }
611
612 if ((err = pci_request_regions(pdev, e1000_driver_name)))
613 return err;
614
615 pci_set_master(pdev);
616
617 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
618 if (!netdev) {
619 err = -ENOMEM;
620 goto err_alloc_etherdev;
621 }
622
623 SET_MODULE_OWNER(netdev);
624 SET_NETDEV_DEV(netdev, &pdev->dev);
625
626 pci_set_drvdata(pdev, netdev);
627 adapter = netdev_priv(netdev);
628 adapter->netdev = netdev;
629 adapter->pdev = pdev;
630 adapter->hw.back = adapter;
631 adapter->msg_enable = (1 << debug) - 1;
632
633 mmio_start = pci_resource_start(pdev, BAR_0);
634 mmio_len = pci_resource_len(pdev, BAR_0);
635
636 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
637 if (!adapter->hw.hw_addr) {
638 err = -EIO;
639 goto err_ioremap;
640 }
641
642 for (i = BAR_1; i <= BAR_5; i++) {
643 if (pci_resource_len(pdev, i) == 0)
644 continue;
645 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
646 adapter->hw.io_base = pci_resource_start(pdev, i);
647 break;
648 }
649 }
650
651 netdev->open = &e1000_open;
652 netdev->stop = &e1000_close;
653 netdev->hard_start_xmit = &e1000_xmit_frame;
654 netdev->get_stats = &e1000_get_stats;
655 netdev->set_multicast_list = &e1000_set_multi;
656 netdev->set_mac_address = &e1000_set_mac;
657 netdev->change_mtu = &e1000_change_mtu;
658 netdev->do_ioctl = &e1000_ioctl;
659 e1000_set_ethtool_ops(netdev);
660 netdev->tx_timeout = &e1000_tx_timeout;
661 netdev->watchdog_timeo = 5 * HZ;
662 #ifdef CONFIG_E1000_NAPI
663 netdev->poll = &e1000_clean;
664 netdev->weight = 64;
665 #endif
666 netdev->vlan_rx_register = e1000_vlan_rx_register;
667 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
668 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
669 #ifdef CONFIG_NET_POLL_CONTROLLER
670 netdev->poll_controller = e1000_netpoll;
671 #endif
672 strcpy(netdev->name, pci_name(pdev));
673
674 netdev->mem_start = mmio_start;
675 netdev->mem_end = mmio_start + mmio_len;
676 netdev->base_addr = adapter->hw.io_base;
677
678 adapter->bd_number = cards_found;
679
680 /* setup the private structure */
681
682 if ((err = e1000_sw_init(adapter)))
683 goto err_sw_init;
684
685 if ((err = e1000_check_phy_reset_block(&adapter->hw)))
686 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
687
688 /* if ksp3, indicate if it's port a being setup */
689 if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
690 e1000_ksp3_port_a == 0)
691 adapter->ksp3_port_a = 1;
692 e1000_ksp3_port_a++;
693 /* Reset for multiple KP3 adapters */
694 if (e1000_ksp3_port_a == 4)
695 e1000_ksp3_port_a = 0;
696
697 if (adapter->hw.mac_type >= e1000_82543) {
698 netdev->features = NETIF_F_SG |
699 NETIF_F_HW_CSUM |
700 NETIF_F_HW_VLAN_TX |
701 NETIF_F_HW_VLAN_RX |
702 NETIF_F_HW_VLAN_FILTER;
703 }
704
705 #ifdef NETIF_F_TSO
706 if ((adapter->hw.mac_type >= e1000_82544) &&
707 (adapter->hw.mac_type != e1000_82547))
708 netdev->features |= NETIF_F_TSO;
709
710 #ifdef NETIF_F_TSO_IPV6
711 if (adapter->hw.mac_type > e1000_82547_rev_2)
712 netdev->features |= NETIF_F_TSO_IPV6;
713 #endif
714 #endif
715 if (pci_using_dac)
716 netdev->features |= NETIF_F_HIGHDMA;
717
718 /* hard_start_xmit is safe against parallel locking */
719 netdev->features |= NETIF_F_LLTX;
720
721 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
722
723 /* before reading the EEPROM, reset the controller to
724 * put the device in a known good starting state */
725
726 e1000_reset_hw(&adapter->hw);
727
728 /* make sure the EEPROM is good */
729
730 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
731 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
732 err = -EIO;
733 goto err_eeprom;
734 }
735
736 /* copy the MAC address out of the EEPROM */
737
738 if (e1000_read_mac_addr(&adapter->hw))
739 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
740 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
741 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
742
743 if (!is_valid_ether_addr(netdev->perm_addr)) {
744 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
745 err = -EIO;
746 goto err_eeprom;
747 }
748
749 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
750
751 e1000_get_bus_info(&adapter->hw);
752
753 init_timer(&adapter->tx_fifo_stall_timer);
754 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
755 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
756
757 init_timer(&adapter->watchdog_timer);
758 adapter->watchdog_timer.function = &e1000_watchdog;
759 adapter->watchdog_timer.data = (unsigned long) adapter;
760
761 INIT_WORK(&adapter->watchdog_task,
762 (void (*)(void *))e1000_watchdog_task, adapter);
763
764 init_timer(&adapter->phy_info_timer);
765 adapter->phy_info_timer.function = &e1000_update_phy_info;
766 adapter->phy_info_timer.data = (unsigned long) adapter;
767
768 INIT_WORK(&adapter->reset_task,
769 (void (*)(void *))e1000_reset_task, netdev);
770
771 /* we're going to reset, so assume we have no link for now */
772
773 netif_carrier_off(netdev);
774 netif_stop_queue(netdev);
775
776 e1000_check_options(adapter);
777
778 /* Initial Wake on LAN setting
779 * If APM wake is enabled in the EEPROM,
780 * enable the ACPI Magic Packet filter
781 */
782
783 switch (adapter->hw.mac_type) {
784 case e1000_82542_rev2_0:
785 case e1000_82542_rev2_1:
786 case e1000_82543:
787 break;
788 case e1000_82544:
789 e1000_read_eeprom(&adapter->hw,
790 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
791 eeprom_apme_mask = E1000_EEPROM_82544_APM;
792 break;
793 case e1000_82546:
794 case e1000_82546_rev_3:
795 case e1000_82571:
796 case e1000_80003es2lan:
797 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
798 e1000_read_eeprom(&adapter->hw,
799 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
800 break;
801 }
802 /* Fall Through */
803 default:
804 e1000_read_eeprom(&adapter->hw,
805 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
806 break;
807 }
808 if (eeprom_data & eeprom_apme_mask)
809 adapter->wol |= E1000_WUFC_MAG;
810
811 /* print bus type/speed/width info */
812 {
813 struct e1000_hw *hw = &adapter->hw;
814 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
815 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
816 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
817 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
818 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
819 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
820 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
821 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
822 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
823 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
824 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
825 "32-bit"));
826 }
827
828 for (i = 0; i < 6; i++)
829 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
830
831 /* reset the hardware with the new settings */
832 e1000_reset(adapter);
833
834 /* If the controller is 82573 and f/w is AMT, do not set
835 * DRV_LOAD until the interface is up. For all other cases,
836 * let the f/w know that the h/w is now under the control
837 * of the driver. */
838 if (adapter->hw.mac_type != e1000_82573 ||
839 !e1000_check_mng_mode(&adapter->hw))
840 e1000_get_hw_control(adapter);
841
842 strcpy(netdev->name, "eth%d");
843 if ((err = register_netdev(netdev)))
844 goto err_register;
845
846 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
847
848 cards_found++;
849 return 0;
850
851 err_register:
852 err_sw_init:
853 err_eeprom:
854 iounmap(adapter->hw.hw_addr);
855 err_ioremap:
856 free_netdev(netdev);
857 err_alloc_etherdev:
858 pci_release_regions(pdev);
859 return err;
860 }
861
862 /**
863 * e1000_remove - Device Removal Routine
864 * @pdev: PCI device information struct
865 *
866 * e1000_remove is called by the PCI subsystem to alert the driver
867 * that it should release a PCI device. The could be caused by a
868 * Hot-Plug event, or because the driver is going to be removed from
869 * memory.
870 **/
871
872 static void __devexit
873 e1000_remove(struct pci_dev *pdev)
874 {
875 struct net_device *netdev = pci_get_drvdata(pdev);
876 struct e1000_adapter *adapter = netdev_priv(netdev);
877 uint32_t manc;
878 #ifdef CONFIG_E1000_NAPI
879 int i;
880 #endif
881
882 flush_scheduled_work();
883
884 if (adapter->hw.mac_type >= e1000_82540 &&
885 adapter->hw.media_type == e1000_media_type_copper) {
886 manc = E1000_READ_REG(&adapter->hw, MANC);
887 if (manc & E1000_MANC_SMBUS_EN) {
888 manc |= E1000_MANC_ARP_EN;
889 E1000_WRITE_REG(&adapter->hw, MANC, manc);
890 }
891 }
892
893 /* Release control of h/w to f/w. If f/w is AMT enabled, this
894 * would have already happened in close and is redundant. */
895 e1000_release_hw_control(adapter);
896
897 unregister_netdev(netdev);
898 #ifdef CONFIG_E1000_NAPI
899 for (i = 0; i < adapter->num_rx_queues; i++)
900 dev_put(&adapter->polling_netdev[i]);
901 #endif
902
903 if (!e1000_check_phy_reset_block(&adapter->hw))
904 e1000_phy_hw_reset(&adapter->hw);
905
906 kfree(adapter->tx_ring);
907 kfree(adapter->rx_ring);
908 #ifdef CONFIG_E1000_NAPI
909 kfree(adapter->polling_netdev);
910 #endif
911
912 iounmap(adapter->hw.hw_addr);
913 pci_release_regions(pdev);
914
915 free_netdev(netdev);
916
917 pci_disable_device(pdev);
918 }
919
920 /**
921 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
922 * @adapter: board private structure to initialize
923 *
924 * e1000_sw_init initializes the Adapter private data structure.
925 * Fields are initialized based on PCI device information and
926 * OS network device settings (MTU size).
927 **/
928
929 static int __devinit
930 e1000_sw_init(struct e1000_adapter *adapter)
931 {
932 struct e1000_hw *hw = &adapter->hw;
933 struct net_device *netdev = adapter->netdev;
934 struct pci_dev *pdev = adapter->pdev;
935 #ifdef CONFIG_E1000_NAPI
936 int i;
937 #endif
938
939 /* PCI config space info */
940
941 hw->vendor_id = pdev->vendor;
942 hw->device_id = pdev->device;
943 hw->subsystem_vendor_id = pdev->subsystem_vendor;
944 hw->subsystem_id = pdev->subsystem_device;
945
946 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
947
948 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
949
950 adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
951 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
952 hw->max_frame_size = netdev->mtu +
953 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
954 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
955
956 /* identify the MAC */
957
958 if (e1000_set_mac_type(hw)) {
959 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
960 return -EIO;
961 }
962
963 /* initialize eeprom parameters */
964
965 if (e1000_init_eeprom_params(hw)) {
966 E1000_ERR("EEPROM initialization failed\n");
967 return -EIO;
968 }
969
970 switch (hw->mac_type) {
971 default:
972 break;
973 case e1000_82541:
974 case e1000_82547:
975 case e1000_82541_rev_2:
976 case e1000_82547_rev_2:
977 hw->phy_init_script = 1;
978 break;
979 }
980
981 e1000_set_media_type(hw);
982
983 hw->wait_autoneg_complete = FALSE;
984 hw->tbi_compatibility_en = TRUE;
985 hw->adaptive_ifs = TRUE;
986
987 /* Copper options */
988
989 if (hw->media_type == e1000_media_type_copper) {
990 hw->mdix = AUTO_ALL_MODES;
991 hw->disable_polarity_correction = FALSE;
992 hw->master_slave = E1000_MASTER_SLAVE;
993 }
994
995 adapter->num_tx_queues = 1;
996 adapter->num_rx_queues = 1;
997
998 if (e1000_alloc_queues(adapter)) {
999 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1000 return -ENOMEM;
1001 }
1002
1003 #ifdef CONFIG_E1000_NAPI
1004 for (i = 0; i < adapter->num_rx_queues; i++) {
1005 adapter->polling_netdev[i].priv = adapter;
1006 adapter->polling_netdev[i].poll = &e1000_clean;
1007 adapter->polling_netdev[i].weight = 64;
1008 dev_hold(&adapter->polling_netdev[i]);
1009 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1010 }
1011 spin_lock_init(&adapter->tx_queue_lock);
1012 #endif
1013
1014 atomic_set(&adapter->irq_sem, 1);
1015 spin_lock_init(&adapter->stats_lock);
1016
1017 return 0;
1018 }
1019
1020 /**
1021 * e1000_alloc_queues - Allocate memory for all rings
1022 * @adapter: board private structure to initialize
1023 *
1024 * We allocate one ring per queue at run-time since we don't know the
1025 * number of queues at compile-time. The polling_netdev array is
1026 * intended for Multiqueue, but should work fine with a single queue.
1027 **/
1028
1029 static int __devinit
1030 e1000_alloc_queues(struct e1000_adapter *adapter)
1031 {
1032 int size;
1033
1034 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1035 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1036 if (!adapter->tx_ring)
1037 return -ENOMEM;
1038 memset(adapter->tx_ring, 0, size);
1039
1040 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1041 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1042 if (!adapter->rx_ring) {
1043 kfree(adapter->tx_ring);
1044 return -ENOMEM;
1045 }
1046 memset(adapter->rx_ring, 0, size);
1047
1048 #ifdef CONFIG_E1000_NAPI
1049 size = sizeof(struct net_device) * adapter->num_rx_queues;
1050 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1051 if (!adapter->polling_netdev) {
1052 kfree(adapter->tx_ring);
1053 kfree(adapter->rx_ring);
1054 return -ENOMEM;
1055 }
1056 memset(adapter->polling_netdev, 0, size);
1057 #endif
1058
1059 return E1000_SUCCESS;
1060 }
1061
1062 /**
1063 * e1000_open - Called when a network interface is made active
1064 * @netdev: network interface device structure
1065 *
1066 * Returns 0 on success, negative value on failure
1067 *
1068 * The open entry point is called when a network interface is made
1069 * active by the system (IFF_UP). At this point all resources needed
1070 * for transmit and receive operations are allocated, the interrupt
1071 * handler is registered with the OS, the watchdog timer is started,
1072 * and the stack is notified that the interface is ready.
1073 **/
1074
1075 static int
1076 e1000_open(struct net_device *netdev)
1077 {
1078 struct e1000_adapter *adapter = netdev_priv(netdev);
1079 int err;
1080
1081 /* allocate transmit descriptors */
1082
1083 if ((err = e1000_setup_all_tx_resources(adapter)))
1084 goto err_setup_tx;
1085
1086 /* allocate receive descriptors */
1087
1088 if ((err = e1000_setup_all_rx_resources(adapter)))
1089 goto err_setup_rx;
1090
1091 if ((err = e1000_up(adapter)))
1092 goto err_up;
1093 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1094 if ((adapter->hw.mng_cookie.status &
1095 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1096 e1000_update_mng_vlan(adapter);
1097 }
1098
1099 /* If AMT is enabled, let the firmware know that the network
1100 * interface is now open */
1101 if (adapter->hw.mac_type == e1000_82573 &&
1102 e1000_check_mng_mode(&adapter->hw))
1103 e1000_get_hw_control(adapter);
1104
1105 return E1000_SUCCESS;
1106
1107 err_up:
1108 e1000_free_all_rx_resources(adapter);
1109 err_setup_rx:
1110 e1000_free_all_tx_resources(adapter);
1111 err_setup_tx:
1112 e1000_reset(adapter);
1113
1114 return err;
1115 }
1116
1117 /**
1118 * e1000_close - Disables a network interface
1119 * @netdev: network interface device structure
1120 *
1121 * Returns 0, this is not allowed to fail
1122 *
1123 * The close entry point is called when an interface is de-activated
1124 * by the OS. The hardware is still under the drivers control, but
1125 * needs to be disabled. A global MAC reset is issued to stop the
1126 * hardware, and all transmit and receive resources are freed.
1127 **/
1128
1129 static int
1130 e1000_close(struct net_device *netdev)
1131 {
1132 struct e1000_adapter *adapter = netdev_priv(netdev);
1133
1134 e1000_down(adapter);
1135
1136 e1000_free_all_tx_resources(adapter);
1137 e1000_free_all_rx_resources(adapter);
1138
1139 if ((adapter->hw.mng_cookie.status &
1140 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1141 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1142 }
1143
1144 /* If AMT is enabled, let the firmware know that the network
1145 * interface is now closed */
1146 if (adapter->hw.mac_type == e1000_82573 &&
1147 e1000_check_mng_mode(&adapter->hw))
1148 e1000_release_hw_control(adapter);
1149
1150 return 0;
1151 }
1152
1153 /**
1154 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1155 * @adapter: address of board private structure
1156 * @start: address of beginning of memory
1157 * @len: length of memory
1158 **/
1159 static boolean_t
1160 e1000_check_64k_bound(struct e1000_adapter *adapter,
1161 void *start, unsigned long len)
1162 {
1163 unsigned long begin = (unsigned long) start;
1164 unsigned long end = begin + len;
1165
1166 /* First rev 82545 and 82546 need to not allow any memory
1167 * write location to cross 64k boundary due to errata 23 */
1168 if (adapter->hw.mac_type == e1000_82545 ||
1169 adapter->hw.mac_type == e1000_82546) {
1170 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1171 }
1172
1173 return TRUE;
1174 }
1175
1176 /**
1177 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1178 * @adapter: board private structure
1179 * @txdr: tx descriptor ring (for a specific queue) to setup
1180 *
1181 * Return 0 on success, negative on failure
1182 **/
1183
1184 static int
1185 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1186 struct e1000_tx_ring *txdr)
1187 {
1188 struct pci_dev *pdev = adapter->pdev;
1189 int size;
1190
1191 size = sizeof(struct e1000_buffer) * txdr->count;
1192
1193 txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1194 if (!txdr->buffer_info) {
1195 DPRINTK(PROBE, ERR,
1196 "Unable to allocate memory for the transmit descriptor ring\n");
1197 return -ENOMEM;
1198 }
1199 memset(txdr->buffer_info, 0, size);
1200
1201 /* round up to nearest 4K */
1202
1203 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1204 E1000_ROUNDUP(txdr->size, 4096);
1205
1206 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1207 if (!txdr->desc) {
1208 setup_tx_desc_die:
1209 vfree(txdr->buffer_info);
1210 DPRINTK(PROBE, ERR,
1211 "Unable to allocate memory for the transmit descriptor ring\n");
1212 return -ENOMEM;
1213 }
1214
1215 /* Fix for errata 23, can't cross 64kB boundary */
1216 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1217 void *olddesc = txdr->desc;
1218 dma_addr_t olddma = txdr->dma;
1219 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1220 "at %p\n", txdr->size, txdr->desc);
1221 /* Try again, without freeing the previous */
1222 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1223 /* Failed allocation, critical failure */
1224 if (!txdr->desc) {
1225 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1226 goto setup_tx_desc_die;
1227 }
1228
1229 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1230 /* give up */
1231 pci_free_consistent(pdev, txdr->size, txdr->desc,
1232 txdr->dma);
1233 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1234 DPRINTK(PROBE, ERR,
1235 "Unable to allocate aligned memory "
1236 "for the transmit descriptor ring\n");
1237 vfree(txdr->buffer_info);
1238 return -ENOMEM;
1239 } else {
1240 /* Free old allocation, new allocation was successful */
1241 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1242 }
1243 }
1244 memset(txdr->desc, 0, txdr->size);
1245
1246 txdr->next_to_use = 0;
1247 txdr->next_to_clean = 0;
1248 spin_lock_init(&txdr->tx_lock);
1249
1250 return 0;
1251 }
1252
1253 /**
1254 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1255 * (Descriptors) for all queues
1256 * @adapter: board private structure
1257 *
1258 * If this function returns with an error, then it's possible one or
1259 * more of the rings is populated (while the rest are not). It is the
1260 * callers duty to clean those orphaned rings.
1261 *
1262 * Return 0 on success, negative on failure
1263 **/
1264
1265 int
1266 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1267 {
1268 int i, err = 0;
1269
1270 for (i = 0; i < adapter->num_tx_queues; i++) {
1271 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1272 if (err) {
1273 DPRINTK(PROBE, ERR,
1274 "Allocation for Tx Queue %u failed\n", i);
1275 break;
1276 }
1277 }
1278
1279 return err;
1280 }
1281
1282 /**
1283 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1284 * @adapter: board private structure
1285 *
1286 * Configure the Tx unit of the MAC after a reset.
1287 **/
1288
1289 static void
1290 e1000_configure_tx(struct e1000_adapter *adapter)
1291 {
1292 uint64_t tdba;
1293 struct e1000_hw *hw = &adapter->hw;
1294 uint32_t tdlen, tctl, tipg, tarc;
1295 uint32_t ipgr1, ipgr2;
1296
1297 /* Setup the HW Tx Head and Tail descriptor pointers */
1298
1299 switch (adapter->num_tx_queues) {
1300 case 1:
1301 default:
1302 tdba = adapter->tx_ring[0].dma;
1303 tdlen = adapter->tx_ring[0].count *
1304 sizeof(struct e1000_tx_desc);
1305 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1306 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1307 E1000_WRITE_REG(hw, TDLEN, tdlen);
1308 E1000_WRITE_REG(hw, TDH, 0);
1309 E1000_WRITE_REG(hw, TDT, 0);
1310 adapter->tx_ring[0].tdh = E1000_TDH;
1311 adapter->tx_ring[0].tdt = E1000_TDT;
1312 break;
1313 }
1314
1315 /* Set the default values for the Tx Inter Packet Gap timer */
1316
1317 if (hw->media_type == e1000_media_type_fiber ||
1318 hw->media_type == e1000_media_type_internal_serdes)
1319 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1320 else
1321 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1322
1323 switch (hw->mac_type) {
1324 case e1000_82542_rev2_0:
1325 case e1000_82542_rev2_1:
1326 tipg = DEFAULT_82542_TIPG_IPGT;
1327 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1328 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1329 break;
1330 case e1000_80003es2lan:
1331 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1332 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1333 break;
1334 default:
1335 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1336 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1337 break;
1338 }
1339 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1340 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1341 E1000_WRITE_REG(hw, TIPG, tipg);
1342
1343 /* Set the Tx Interrupt Delay register */
1344
1345 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1346 if (hw->mac_type >= e1000_82540)
1347 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1348
1349 /* Program the Transmit Control Register */
1350
1351 tctl = E1000_READ_REG(hw, TCTL);
1352
1353 tctl &= ~E1000_TCTL_CT;
1354 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1355 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1356
1357 #ifdef DISABLE_MULR
1358 /* disable Multiple Reads for debugging */
1359 tctl &= ~E1000_TCTL_MULR;
1360 #endif
1361
1362 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1363 tarc = E1000_READ_REG(hw, TARC0);
1364 tarc |= ((1 << 25) | (1 << 21));
1365 E1000_WRITE_REG(hw, TARC0, tarc);
1366 tarc = E1000_READ_REG(hw, TARC1);
1367 tarc |= (1 << 25);
1368 if (tctl & E1000_TCTL_MULR)
1369 tarc &= ~(1 << 28);
1370 else
1371 tarc |= (1 << 28);
1372 E1000_WRITE_REG(hw, TARC1, tarc);
1373 } else if (hw->mac_type == e1000_80003es2lan) {
1374 tarc = E1000_READ_REG(hw, TARC0);
1375 tarc |= 1;
1376 if (hw->media_type == e1000_media_type_internal_serdes)
1377 tarc |= (1 << 20);
1378 E1000_WRITE_REG(hw, TARC0, tarc);
1379 tarc = E1000_READ_REG(hw, TARC1);
1380 tarc |= 1;
1381 E1000_WRITE_REG(hw, TARC1, tarc);
1382 }
1383
1384 e1000_config_collision_dist(hw);
1385
1386 /* Setup Transmit Descriptor Settings for eop descriptor */
1387 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1388 E1000_TXD_CMD_IFCS;
1389
1390 if (hw->mac_type < e1000_82543)
1391 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1392 else
1393 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1394
1395 /* Cache if we're 82544 running in PCI-X because we'll
1396 * need this to apply a workaround later in the send path. */
1397 if (hw->mac_type == e1000_82544 &&
1398 hw->bus_type == e1000_bus_type_pcix)
1399 adapter->pcix_82544 = 1;
1400
1401 E1000_WRITE_REG(hw, TCTL, tctl);
1402
1403 }
1404
1405 /**
1406 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1407 * @adapter: board private structure
1408 * @rxdr: rx descriptor ring (for a specific queue) to setup
1409 *
1410 * Returns 0 on success, negative on failure
1411 **/
1412
1413 static int
1414 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1415 struct e1000_rx_ring *rxdr)
1416 {
1417 struct pci_dev *pdev = adapter->pdev;
1418 int size, desc_len;
1419
1420 size = sizeof(struct e1000_buffer) * rxdr->count;
1421 rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1422 if (!rxdr->buffer_info) {
1423 DPRINTK(PROBE, ERR,
1424 "Unable to allocate memory for the receive descriptor ring\n");
1425 return -ENOMEM;
1426 }
1427 memset(rxdr->buffer_info, 0, size);
1428
1429 size = sizeof(struct e1000_ps_page) * rxdr->count;
1430 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1431 if (!rxdr->ps_page) {
1432 vfree(rxdr->buffer_info);
1433 DPRINTK(PROBE, ERR,
1434 "Unable to allocate memory for the receive descriptor ring\n");
1435 return -ENOMEM;
1436 }
1437 memset(rxdr->ps_page, 0, size);
1438
1439 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1440 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1441 if (!rxdr->ps_page_dma) {
1442 vfree(rxdr->buffer_info);
1443 kfree(rxdr->ps_page);
1444 DPRINTK(PROBE, ERR,
1445 "Unable to allocate memory for the receive descriptor ring\n");
1446 return -ENOMEM;
1447 }
1448 memset(rxdr->ps_page_dma, 0, size);
1449
1450 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1451 desc_len = sizeof(struct e1000_rx_desc);
1452 else
1453 desc_len = sizeof(union e1000_rx_desc_packet_split);
1454
1455 /* Round up to nearest 4K */
1456
1457 rxdr->size = rxdr->count * desc_len;
1458 E1000_ROUNDUP(rxdr->size, 4096);
1459
1460 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1461
1462 if (!rxdr->desc) {
1463 DPRINTK(PROBE, ERR,
1464 "Unable to allocate memory for the receive descriptor ring\n");
1465 setup_rx_desc_die:
1466 vfree(rxdr->buffer_info);
1467 kfree(rxdr->ps_page);
1468 kfree(rxdr->ps_page_dma);
1469 return -ENOMEM;
1470 }
1471
1472 /* Fix for errata 23, can't cross 64kB boundary */
1473 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1474 void *olddesc = rxdr->desc;
1475 dma_addr_t olddma = rxdr->dma;
1476 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1477 "at %p\n", rxdr->size, rxdr->desc);
1478 /* Try again, without freeing the previous */
1479 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1480 /* Failed allocation, critical failure */
1481 if (!rxdr->desc) {
1482 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1483 DPRINTK(PROBE, ERR,
1484 "Unable to allocate memory "
1485 "for the receive descriptor ring\n");
1486 goto setup_rx_desc_die;
1487 }
1488
1489 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1490 /* give up */
1491 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1492 rxdr->dma);
1493 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1494 DPRINTK(PROBE, ERR,
1495 "Unable to allocate aligned memory "
1496 "for the receive descriptor ring\n");
1497 goto setup_rx_desc_die;
1498 } else {
1499 /* Free old allocation, new allocation was successful */
1500 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1501 }
1502 }
1503 memset(rxdr->desc, 0, rxdr->size);
1504
1505 rxdr->next_to_clean = 0;
1506 rxdr->next_to_use = 0;
1507
1508 return 0;
1509 }
1510
1511 /**
1512 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1513 * (Descriptors) for all queues
1514 * @adapter: board private structure
1515 *
1516 * If this function returns with an error, then it's possible one or
1517 * more of the rings is populated (while the rest are not). It is the
1518 * callers duty to clean those orphaned rings.
1519 *
1520 * Return 0 on success, negative on failure
1521 **/
1522
1523 int
1524 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1525 {
1526 int i, err = 0;
1527
1528 for (i = 0; i < adapter->num_rx_queues; i++) {
1529 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1530 if (err) {
1531 DPRINTK(PROBE, ERR,
1532 "Allocation for Rx Queue %u failed\n", i);
1533 break;
1534 }
1535 }
1536
1537 return err;
1538 }
1539
1540 /**
1541 * e1000_setup_rctl - configure the receive control registers
1542 * @adapter: Board private structure
1543 **/
1544 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1545 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1546 static void
1547 e1000_setup_rctl(struct e1000_adapter *adapter)
1548 {
1549 uint32_t rctl, rfctl;
1550 uint32_t psrctl = 0;
1551 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1552 uint32_t pages = 0;
1553 #endif
1554
1555 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1556
1557 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1558
1559 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1560 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1561 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1562
1563 if (adapter->hw.mac_type > e1000_82543)
1564 rctl |= E1000_RCTL_SECRC;
1565
1566 if (adapter->hw.tbi_compatibility_on == 1)
1567 rctl |= E1000_RCTL_SBP;
1568 else
1569 rctl &= ~E1000_RCTL_SBP;
1570
1571 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1572 rctl &= ~E1000_RCTL_LPE;
1573 else
1574 rctl |= E1000_RCTL_LPE;
1575
1576 /* Setup buffer sizes */
1577 rctl &= ~E1000_RCTL_SZ_4096;
1578 rctl |= E1000_RCTL_BSEX;
1579 switch (adapter->rx_buffer_len) {
1580 case E1000_RXBUFFER_256:
1581 rctl |= E1000_RCTL_SZ_256;
1582 rctl &= ~E1000_RCTL_BSEX;
1583 break;
1584 case E1000_RXBUFFER_512:
1585 rctl |= E1000_RCTL_SZ_512;
1586 rctl &= ~E1000_RCTL_BSEX;
1587 break;
1588 case E1000_RXBUFFER_1024:
1589 rctl |= E1000_RCTL_SZ_1024;
1590 rctl &= ~E1000_RCTL_BSEX;
1591 break;
1592 case E1000_RXBUFFER_2048:
1593 default:
1594 rctl |= E1000_RCTL_SZ_2048;
1595 rctl &= ~E1000_RCTL_BSEX;
1596 break;
1597 case E1000_RXBUFFER_4096:
1598 rctl |= E1000_RCTL_SZ_4096;
1599 break;
1600 case E1000_RXBUFFER_8192:
1601 rctl |= E1000_RCTL_SZ_8192;
1602 break;
1603 case E1000_RXBUFFER_16384:
1604 rctl |= E1000_RCTL_SZ_16384;
1605 break;
1606 }
1607
1608 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1609 /* 82571 and greater support packet-split where the protocol
1610 * header is placed in skb->data and the packet data is
1611 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1612 * In the case of a non-split, skb->data is linearly filled,
1613 * followed by the page buffers. Therefore, skb->data is
1614 * sized to hold the largest protocol header.
1615 */
1616 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1617 if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1618 PAGE_SIZE <= 16384)
1619 adapter->rx_ps_pages = pages;
1620 else
1621 adapter->rx_ps_pages = 0;
1622 #endif
1623 if (adapter->rx_ps_pages) {
1624 /* Configure extra packet-split registers */
1625 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1626 rfctl |= E1000_RFCTL_EXTEN;
1627 /* disable IPv6 packet split support */
1628 rfctl |= E1000_RFCTL_IPV6_DIS;
1629 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1630
1631 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1632
1633 psrctl |= adapter->rx_ps_bsize0 >>
1634 E1000_PSRCTL_BSIZE0_SHIFT;
1635
1636 switch (adapter->rx_ps_pages) {
1637 case 3:
1638 psrctl |= PAGE_SIZE <<
1639 E1000_PSRCTL_BSIZE3_SHIFT;
1640 case 2:
1641 psrctl |= PAGE_SIZE <<
1642 E1000_PSRCTL_BSIZE2_SHIFT;
1643 case 1:
1644 psrctl |= PAGE_SIZE >>
1645 E1000_PSRCTL_BSIZE1_SHIFT;
1646 break;
1647 }
1648
1649 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1650 }
1651
1652 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1653 }
1654
1655 /**
1656 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1657 * @adapter: board private structure
1658 *
1659 * Configure the Rx unit of the MAC after a reset.
1660 **/
1661
1662 static void
1663 e1000_configure_rx(struct e1000_adapter *adapter)
1664 {
1665 uint64_t rdba;
1666 struct e1000_hw *hw = &adapter->hw;
1667 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1668
1669 if (adapter->rx_ps_pages) {
1670 /* this is a 32 byte descriptor */
1671 rdlen = adapter->rx_ring[0].count *
1672 sizeof(union e1000_rx_desc_packet_split);
1673 adapter->clean_rx = e1000_clean_rx_irq_ps;
1674 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1675 } else {
1676 rdlen = adapter->rx_ring[0].count *
1677 sizeof(struct e1000_rx_desc);
1678 adapter->clean_rx = e1000_clean_rx_irq;
1679 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1680 }
1681
1682 /* disable receives while setting up the descriptors */
1683 rctl = E1000_READ_REG(hw, RCTL);
1684 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1685
1686 /* set the Receive Delay Timer Register */
1687 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1688
1689 if (hw->mac_type >= e1000_82540) {
1690 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1691 if (adapter->itr > 1)
1692 E1000_WRITE_REG(hw, ITR,
1693 1000000000 / (adapter->itr * 256));
1694 }
1695
1696 if (hw->mac_type >= e1000_82571) {
1697 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1698 /* Reset delay timers after every interrupt */
1699 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1700 #ifdef CONFIG_E1000_NAPI
1701 /* Auto-Mask interrupts upon ICR read. */
1702 ctrl_ext |= E1000_CTRL_EXT_IAME;
1703 #endif
1704 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1705 E1000_WRITE_REG(hw, IAM, ~0);
1706 E1000_WRITE_FLUSH(hw);
1707 }
1708
1709 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1710 * the Base and Length of the Rx Descriptor Ring */
1711 switch (adapter->num_rx_queues) {
1712 case 1:
1713 default:
1714 rdba = adapter->rx_ring[0].dma;
1715 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1716 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1717 E1000_WRITE_REG(hw, RDLEN, rdlen);
1718 E1000_WRITE_REG(hw, RDH, 0);
1719 E1000_WRITE_REG(hw, RDT, 0);
1720 adapter->rx_ring[0].rdh = E1000_RDH;
1721 adapter->rx_ring[0].rdt = E1000_RDT;
1722 break;
1723 }
1724
1725 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1726 if (hw->mac_type >= e1000_82543) {
1727 rxcsum = E1000_READ_REG(hw, RXCSUM);
1728 if (adapter->rx_csum == TRUE) {
1729 rxcsum |= E1000_RXCSUM_TUOFL;
1730
1731 /* Enable 82571 IPv4 payload checksum for UDP fragments
1732 * Must be used in conjunction with packet-split. */
1733 if ((hw->mac_type >= e1000_82571) &&
1734 (adapter->rx_ps_pages)) {
1735 rxcsum |= E1000_RXCSUM_IPPCSE;
1736 }
1737 } else {
1738 rxcsum &= ~E1000_RXCSUM_TUOFL;
1739 /* don't need to clear IPPCSE as it defaults to 0 */
1740 }
1741 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1742 }
1743
1744 if (hw->mac_type == e1000_82573)
1745 E1000_WRITE_REG(hw, ERT, 0x0100);
1746
1747 /* Enable Receives */
1748 E1000_WRITE_REG(hw, RCTL, rctl);
1749 }
1750
1751 /**
1752 * e1000_free_tx_resources - Free Tx Resources per Queue
1753 * @adapter: board private structure
1754 * @tx_ring: Tx descriptor ring for a specific queue
1755 *
1756 * Free all transmit software resources
1757 **/
1758
1759 static void
1760 e1000_free_tx_resources(struct e1000_adapter *adapter,
1761 struct e1000_tx_ring *tx_ring)
1762 {
1763 struct pci_dev *pdev = adapter->pdev;
1764
1765 e1000_clean_tx_ring(adapter, tx_ring);
1766
1767 vfree(tx_ring->buffer_info);
1768 tx_ring->buffer_info = NULL;
1769
1770 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1771
1772 tx_ring->desc = NULL;
1773 }
1774
1775 /**
1776 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1777 * @adapter: board private structure
1778 *
1779 * Free all transmit software resources
1780 **/
1781
1782 void
1783 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1784 {
1785 int i;
1786
1787 for (i = 0; i < adapter->num_tx_queues; i++)
1788 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1789 }
1790
1791 static void
1792 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1793 struct e1000_buffer *buffer_info)
1794 {
1795 if (buffer_info->dma) {
1796 pci_unmap_page(adapter->pdev,
1797 buffer_info->dma,
1798 buffer_info->length,
1799 PCI_DMA_TODEVICE);
1800 }
1801 if (buffer_info->skb)
1802 dev_kfree_skb_any(buffer_info->skb);
1803 memset(buffer_info, 0, sizeof(struct e1000_buffer));
1804 }
1805
1806 /**
1807 * e1000_clean_tx_ring - Free Tx Buffers
1808 * @adapter: board private structure
1809 * @tx_ring: ring to be cleaned
1810 **/
1811
1812 static void
1813 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1814 struct e1000_tx_ring *tx_ring)
1815 {
1816 struct e1000_buffer *buffer_info;
1817 unsigned long size;
1818 unsigned int i;
1819
1820 /* Free all the Tx ring sk_buffs */
1821
1822 for (i = 0; i < tx_ring->count; i++) {
1823 buffer_info = &tx_ring->buffer_info[i];
1824 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1825 }
1826
1827 size = sizeof(struct e1000_buffer) * tx_ring->count;
1828 memset(tx_ring->buffer_info, 0, size);
1829
1830 /* Zero out the descriptor ring */
1831
1832 memset(tx_ring->desc, 0, tx_ring->size);
1833
1834 tx_ring->next_to_use = 0;
1835 tx_ring->next_to_clean = 0;
1836 tx_ring->last_tx_tso = 0;
1837
1838 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1839 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1840 }
1841
1842 /**
1843 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1844 * @adapter: board private structure
1845 **/
1846
1847 static void
1848 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1849 {
1850 int i;
1851
1852 for (i = 0; i < adapter->num_tx_queues; i++)
1853 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1854 }
1855
1856 /**
1857 * e1000_free_rx_resources - Free Rx Resources
1858 * @adapter: board private structure
1859 * @rx_ring: ring to clean the resources from
1860 *
1861 * Free all receive software resources
1862 **/
1863
1864 static void
1865 e1000_free_rx_resources(struct e1000_adapter *adapter,
1866 struct e1000_rx_ring *rx_ring)
1867 {
1868 struct pci_dev *pdev = adapter->pdev;
1869
1870 e1000_clean_rx_ring(adapter, rx_ring);
1871
1872 vfree(rx_ring->buffer_info);
1873 rx_ring->buffer_info = NULL;
1874 kfree(rx_ring->ps_page);
1875 rx_ring->ps_page = NULL;
1876 kfree(rx_ring->ps_page_dma);
1877 rx_ring->ps_page_dma = NULL;
1878
1879 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1880
1881 rx_ring->desc = NULL;
1882 }
1883
1884 /**
1885 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1886 * @adapter: board private structure
1887 *
1888 * Free all receive software resources
1889 **/
1890
1891 void
1892 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1893 {
1894 int i;
1895
1896 for (i = 0; i < adapter->num_rx_queues; i++)
1897 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1898 }
1899
1900 /**
1901 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1902 * @adapter: board private structure
1903 * @rx_ring: ring to free buffers from
1904 **/
1905
1906 static void
1907 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1908 struct e1000_rx_ring *rx_ring)
1909 {
1910 struct e1000_buffer *buffer_info;
1911 struct e1000_ps_page *ps_page;
1912 struct e1000_ps_page_dma *ps_page_dma;
1913 struct pci_dev *pdev = adapter->pdev;
1914 unsigned long size;
1915 unsigned int i, j;
1916
1917 /* Free all the Rx ring sk_buffs */
1918 for (i = 0; i < rx_ring->count; i++) {
1919 buffer_info = &rx_ring->buffer_info[i];
1920 if (buffer_info->skb) {
1921 pci_unmap_single(pdev,
1922 buffer_info->dma,
1923 buffer_info->length,
1924 PCI_DMA_FROMDEVICE);
1925
1926 dev_kfree_skb(buffer_info->skb);
1927 buffer_info->skb = NULL;
1928 }
1929 ps_page = &rx_ring->ps_page[i];
1930 ps_page_dma = &rx_ring->ps_page_dma[i];
1931 for (j = 0; j < adapter->rx_ps_pages; j++) {
1932 if (!ps_page->ps_page[j]) break;
1933 pci_unmap_page(pdev,
1934 ps_page_dma->ps_page_dma[j],
1935 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1936 ps_page_dma->ps_page_dma[j] = 0;
1937 put_page(ps_page->ps_page[j]);
1938 ps_page->ps_page[j] = NULL;
1939 }
1940 }
1941
1942 size = sizeof(struct e1000_buffer) * rx_ring->count;
1943 memset(rx_ring->buffer_info, 0, size);
1944 size = sizeof(struct e1000_ps_page) * rx_ring->count;
1945 memset(rx_ring->ps_page, 0, size);
1946 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1947 memset(rx_ring->ps_page_dma, 0, size);
1948
1949 /* Zero out the descriptor ring */
1950
1951 memset(rx_ring->desc, 0, rx_ring->size);
1952
1953 rx_ring->next_to_clean = 0;
1954 rx_ring->next_to_use = 0;
1955
1956 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1957 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1958 }
1959
1960 /**
1961 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1962 * @adapter: board private structure
1963 **/
1964
1965 static void
1966 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1967 {
1968 int i;
1969
1970 for (i = 0; i < adapter->num_rx_queues; i++)
1971 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1972 }
1973
1974 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1975 * and memory write and invalidate disabled for certain operations
1976 */
1977 static void
1978 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1979 {
1980 struct net_device *netdev = adapter->netdev;
1981 uint32_t rctl;
1982
1983 e1000_pci_clear_mwi(&adapter->hw);
1984
1985 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1986 rctl |= E1000_RCTL_RST;
1987 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1988 E1000_WRITE_FLUSH(&adapter->hw);
1989 mdelay(5);
1990
1991 if (netif_running(netdev))
1992 e1000_clean_all_rx_rings(adapter);
1993 }
1994
1995 static void
1996 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1997 {
1998 struct net_device *netdev = adapter->netdev;
1999 uint32_t rctl;
2000
2001 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2002 rctl &= ~E1000_RCTL_RST;
2003 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2004 E1000_WRITE_FLUSH(&adapter->hw);
2005 mdelay(5);
2006
2007 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2008 e1000_pci_set_mwi(&adapter->hw);
2009
2010 if (netif_running(netdev)) {
2011 /* No need to loop, because 82542 supports only 1 queue */
2012 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2013 e1000_configure_rx(adapter);
2014 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2015 }
2016 }
2017
2018 /**
2019 * e1000_set_mac - Change the Ethernet Address of the NIC
2020 * @netdev: network interface device structure
2021 * @p: pointer to an address structure
2022 *
2023 * Returns 0 on success, negative on failure
2024 **/
2025
2026 static int
2027 e1000_set_mac(struct net_device *netdev, void *p)
2028 {
2029 struct e1000_adapter *adapter = netdev_priv(netdev);
2030 struct sockaddr *addr = p;
2031
2032 if (!is_valid_ether_addr(addr->sa_data))
2033 return -EADDRNOTAVAIL;
2034
2035 /* 82542 2.0 needs to be in reset to write receive address registers */
2036
2037 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2038 e1000_enter_82542_rst(adapter);
2039
2040 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2041 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2042
2043 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2044
2045 /* With 82571 controllers, LAA may be overwritten (with the default)
2046 * due to controller reset from the other port. */
2047 if (adapter->hw.mac_type == e1000_82571) {
2048 /* activate the work around */
2049 adapter->hw.laa_is_present = 1;
2050
2051 /* Hold a copy of the LAA in RAR[14] This is done so that
2052 * between the time RAR[0] gets clobbered and the time it
2053 * gets fixed (in e1000_watchdog), the actual LAA is in one
2054 * of the RARs and no incoming packets directed to this port
2055 * are dropped. Eventaully the LAA will be in RAR[0] and
2056 * RAR[14] */
2057 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2058 E1000_RAR_ENTRIES - 1);
2059 }
2060
2061 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2062 e1000_leave_82542_rst(adapter);
2063
2064 return 0;
2065 }
2066
2067 /**
2068 * e1000_set_multi - Multicast and Promiscuous mode set
2069 * @netdev: network interface device structure
2070 *
2071 * The set_multi entry point is called whenever the multicast address
2072 * list or the network interface flags are updated. This routine is
2073 * responsible for configuring the hardware for proper multicast,
2074 * promiscuous mode, and all-multi behavior.
2075 **/
2076
2077 static void
2078 e1000_set_multi(struct net_device *netdev)
2079 {
2080 struct e1000_adapter *adapter = netdev_priv(netdev);
2081 struct e1000_hw *hw = &adapter->hw;
2082 struct dev_mc_list *mc_ptr;
2083 uint32_t rctl;
2084 uint32_t hash_value;
2085 int i, rar_entries = E1000_RAR_ENTRIES;
2086
2087 /* reserve RAR[14] for LAA over-write work-around */
2088 if (adapter->hw.mac_type == e1000_82571)
2089 rar_entries--;
2090
2091 /* Check for Promiscuous and All Multicast modes */
2092
2093 rctl = E1000_READ_REG(hw, RCTL);
2094
2095 if (netdev->flags & IFF_PROMISC) {
2096 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2097 } else if (netdev->flags & IFF_ALLMULTI) {
2098 rctl |= E1000_RCTL_MPE;
2099 rctl &= ~E1000_RCTL_UPE;
2100 } else {
2101 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2102 }
2103
2104 E1000_WRITE_REG(hw, RCTL, rctl);
2105
2106 /* 82542 2.0 needs to be in reset to write receive address registers */
2107
2108 if (hw->mac_type == e1000_82542_rev2_0)
2109 e1000_enter_82542_rst(adapter);
2110
2111 /* load the first 14 multicast address into the exact filters 1-14
2112 * RAR 0 is used for the station MAC adddress
2113 * if there are not 14 addresses, go ahead and clear the filters
2114 * -- with 82571 controllers only 0-13 entries are filled here
2115 */
2116 mc_ptr = netdev->mc_list;
2117
2118 for (i = 1; i < rar_entries; i++) {
2119 if (mc_ptr) {
2120 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2121 mc_ptr = mc_ptr->next;
2122 } else {
2123 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2124 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2125 }
2126 }
2127
2128 /* clear the old settings from the multicast hash table */
2129
2130 for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2131 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2132
2133 /* load any remaining addresses into the hash table */
2134
2135 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2136 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2137 e1000_mta_set(hw, hash_value);
2138 }
2139
2140 if (hw->mac_type == e1000_82542_rev2_0)
2141 e1000_leave_82542_rst(adapter);
2142 }
2143
2144 /* Need to wait a few seconds after link up to get diagnostic information from
2145 * the phy */
2146
2147 static void
2148 e1000_update_phy_info(unsigned long data)
2149 {
2150 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2151 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2152 }
2153
2154 /**
2155 * e1000_82547_tx_fifo_stall - Timer Call-back
2156 * @data: pointer to adapter cast into an unsigned long
2157 **/
2158
2159 static void
2160 e1000_82547_tx_fifo_stall(unsigned long data)
2161 {
2162 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2163 struct net_device *netdev = adapter->netdev;
2164 uint32_t tctl;
2165
2166 if (atomic_read(&adapter->tx_fifo_stall)) {
2167 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2168 E1000_READ_REG(&adapter->hw, TDH)) &&
2169 (E1000_READ_REG(&adapter->hw, TDFT) ==
2170 E1000_READ_REG(&adapter->hw, TDFH)) &&
2171 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2172 E1000_READ_REG(&adapter->hw, TDFHS))) {
2173 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2174 E1000_WRITE_REG(&adapter->hw, TCTL,
2175 tctl & ~E1000_TCTL_EN);
2176 E1000_WRITE_REG(&adapter->hw, TDFT,
2177 adapter->tx_head_addr);
2178 E1000_WRITE_REG(&adapter->hw, TDFH,
2179 adapter->tx_head_addr);
2180 E1000_WRITE_REG(&adapter->hw, TDFTS,
2181 adapter->tx_head_addr);
2182 E1000_WRITE_REG(&adapter->hw, TDFHS,
2183 adapter->tx_head_addr);
2184 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2185 E1000_WRITE_FLUSH(&adapter->hw);
2186
2187 adapter->tx_fifo_head = 0;
2188 atomic_set(&adapter->tx_fifo_stall, 0);
2189 netif_wake_queue(netdev);
2190 } else {
2191 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2192 }
2193 }
2194 }
2195
2196 /**
2197 * e1000_watchdog - Timer Call-back
2198 * @data: pointer to adapter cast into an unsigned long
2199 **/
2200 static void
2201 e1000_watchdog(unsigned long data)
2202 {
2203 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2204
2205 /* Do the rest outside of interrupt context */
2206 schedule_work(&adapter->watchdog_task);
2207 }
2208
2209 static void
2210 e1000_watchdog_task(struct e1000_adapter *adapter)
2211 {
2212 struct net_device *netdev = adapter->netdev;
2213 struct e1000_tx_ring *txdr = adapter->tx_ring;
2214 uint32_t link, tctl;
2215
2216 e1000_check_for_link(&adapter->hw);
2217 if (adapter->hw.mac_type == e1000_82573) {
2218 e1000_enable_tx_pkt_filtering(&adapter->hw);
2219 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2220 e1000_update_mng_vlan(adapter);
2221 }
2222
2223 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2224 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2225 link = !adapter->hw.serdes_link_down;
2226 else
2227 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2228
2229 if (link) {
2230 if (!netif_carrier_ok(netdev)) {
2231 boolean_t txb2b = 1;
2232 e1000_get_speed_and_duplex(&adapter->hw,
2233 &adapter->link_speed,
2234 &adapter->link_duplex);
2235
2236 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2237 adapter->link_speed,
2238 adapter->link_duplex == FULL_DUPLEX ?
2239 "Full Duplex" : "Half Duplex");
2240
2241 /* tweak tx_queue_len according to speed/duplex
2242 * and adjust the timeout factor */
2243 netdev->tx_queue_len = adapter->tx_queue_len;
2244 adapter->tx_timeout_factor = 1;
2245 switch (adapter->link_speed) {
2246 case SPEED_10:
2247 txb2b = 0;
2248 netdev->tx_queue_len = 10;
2249 adapter->tx_timeout_factor = 8;
2250 break;
2251 case SPEED_100:
2252 txb2b = 0;
2253 netdev->tx_queue_len = 100;
2254 /* maybe add some timeout factor ? */
2255 break;
2256 }
2257
2258 if ((adapter->hw.mac_type == e1000_82571 ||
2259 adapter->hw.mac_type == e1000_82572) &&
2260 txb2b == 0) {
2261 #define SPEED_MODE_BIT (1 << 21)
2262 uint32_t tarc0;
2263 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2264 tarc0 &= ~SPEED_MODE_BIT;
2265 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2266 }
2267
2268 #ifdef NETIF_F_TSO
2269 /* disable TSO for pcie and 10/100 speeds, to avoid
2270 * some hardware issues */
2271 if (!adapter->tso_force &&
2272 adapter->hw.bus_type == e1000_bus_type_pci_express){
2273 switch (adapter->link_speed) {
2274 case SPEED_10:
2275 case SPEED_100:
2276 DPRINTK(PROBE,INFO,
2277 "10/100 speed: disabling TSO\n");
2278 netdev->features &= ~NETIF_F_TSO;
2279 break;
2280 case SPEED_1000:
2281 netdev->features |= NETIF_F_TSO;
2282 break;
2283 default:
2284 /* oops */
2285 break;
2286 }
2287 }
2288 #endif
2289
2290 /* enable transmits in the hardware, need to do this
2291 * after setting TARC0 */
2292 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2293 tctl |= E1000_TCTL_EN;
2294 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2295
2296 netif_carrier_on(netdev);
2297 netif_wake_queue(netdev);
2298 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2299 adapter->smartspeed = 0;
2300 }
2301 } else {
2302 if (netif_carrier_ok(netdev)) {
2303 adapter->link_speed = 0;
2304 adapter->link_duplex = 0;
2305 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2306 netif_carrier_off(netdev);
2307 netif_stop_queue(netdev);
2308 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2309
2310 /* 80003ES2LAN workaround--
2311 * For packet buffer work-around on link down event;
2312 * disable receives in the ISR and
2313 * reset device here in the watchdog
2314 */
2315 if (adapter->hw.mac_type == e1000_80003es2lan) {
2316 /* reset device */
2317 schedule_work(&adapter->reset_task);
2318 }
2319 }
2320
2321 e1000_smartspeed(adapter);
2322 }
2323
2324 e1000_update_stats(adapter);
2325
2326 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2327 adapter->tpt_old = adapter->stats.tpt;
2328 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2329 adapter->colc_old = adapter->stats.colc;
2330
2331 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2332 adapter->gorcl_old = adapter->stats.gorcl;
2333 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2334 adapter->gotcl_old = adapter->stats.gotcl;
2335
2336 e1000_update_adaptive(&adapter->hw);
2337
2338 if (!netif_carrier_ok(netdev)) {
2339 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2340 /* We've lost link, so the controller stops DMA,
2341 * but we've got queued Tx work that's never going
2342 * to get done, so reset controller to flush Tx.
2343 * (Do the reset outside of interrupt context). */
2344 adapter->tx_timeout_count++;
2345 schedule_work(&adapter->reset_task);
2346 }
2347 }
2348
2349 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2350 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2351 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2352 * asymmetrical Tx or Rx gets ITR=8000; everyone
2353 * else is between 2000-8000. */
2354 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2355 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2356 adapter->gotcl - adapter->gorcl :
2357 adapter->gorcl - adapter->gotcl) / 10000;
2358 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2359 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2360 }
2361
2362 /* Cause software interrupt to ensure rx ring is cleaned */
2363 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2364
2365 /* Force detection of hung controller every watchdog period */
2366 adapter->detect_tx_hung = TRUE;
2367
2368 /* With 82571 controllers, LAA may be overwritten due to controller
2369 * reset from the other port. Set the appropriate LAA in RAR[0] */
2370 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2371 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2372
2373 /* Reset the timer */
2374 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2375 }
2376
2377 #define E1000_TX_FLAGS_CSUM 0x00000001
2378 #define E1000_TX_FLAGS_VLAN 0x00000002
2379 #define E1000_TX_FLAGS_TSO 0x00000004
2380 #define E1000_TX_FLAGS_IPV4 0x00000008
2381 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2382 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2383
2384 static int
2385 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2386 struct sk_buff *skb)
2387 {
2388 #ifdef NETIF_F_TSO
2389 struct e1000_context_desc *context_desc;
2390 struct e1000_buffer *buffer_info;
2391 unsigned int i;
2392 uint32_t cmd_length = 0;
2393 uint16_t ipcse = 0, tucse, mss;
2394 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2395 int err;
2396
2397 if (skb_shinfo(skb)->tso_size) {
2398 if (skb_header_cloned(skb)) {
2399 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2400 if (err)
2401 return err;
2402 }
2403
2404 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2405 mss = skb_shinfo(skb)->tso_size;
2406 if (skb->protocol == htons(ETH_P_IP)) {
2407 skb->nh.iph->tot_len = 0;
2408 skb->nh.iph->check = 0;
2409 skb->h.th->check =
2410 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2411 skb->nh.iph->daddr,
2412 0,
2413 IPPROTO_TCP,
2414 0);
2415 cmd_length = E1000_TXD_CMD_IP;
2416 ipcse = skb->h.raw - skb->data - 1;
2417 #ifdef NETIF_F_TSO_IPV6
2418 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2419 skb->nh.ipv6h->payload_len = 0;
2420 skb->h.th->check =
2421 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2422 &skb->nh.ipv6h->daddr,
2423 0,
2424 IPPROTO_TCP,
2425 0);
2426 ipcse = 0;
2427 #endif
2428 }
2429 ipcss = skb->nh.raw - skb->data;
2430 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2431 tucss = skb->h.raw - skb->data;
2432 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2433 tucse = 0;
2434
2435 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2436 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2437
2438 i = tx_ring->next_to_use;
2439 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2440 buffer_info = &tx_ring->buffer_info[i];
2441
2442 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2443 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2444 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2445 context_desc->upper_setup.tcp_fields.tucss = tucss;
2446 context_desc->upper_setup.tcp_fields.tucso = tucso;
2447 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2448 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2449 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2450 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2451
2452 buffer_info->time_stamp = jiffies;
2453
2454 if (++i == tx_ring->count) i = 0;
2455 tx_ring->next_to_use = i;
2456
2457 return TRUE;
2458 }
2459 #endif
2460
2461 return FALSE;
2462 }
2463
2464 static boolean_t
2465 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2466 struct sk_buff *skb)
2467 {
2468 struct e1000_context_desc *context_desc;
2469 struct e1000_buffer *buffer_info;
2470 unsigned int i;
2471 uint8_t css;
2472
2473 if (likely(skb->ip_summed == CHECKSUM_HW)) {
2474 css = skb->h.raw - skb->data;
2475
2476 i = tx_ring->next_to_use;
2477 buffer_info = &tx_ring->buffer_info[i];
2478 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2479
2480 context_desc->upper_setup.tcp_fields.tucss = css;
2481 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2482 context_desc->upper_setup.tcp_fields.tucse = 0;
2483 context_desc->tcp_seg_setup.data = 0;
2484 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2485
2486 buffer_info->time_stamp = jiffies;
2487
2488 if (unlikely(++i == tx_ring->count)) i = 0;
2489 tx_ring->next_to_use = i;
2490
2491 return TRUE;
2492 }
2493
2494 return FALSE;
2495 }
2496
2497 #define E1000_MAX_TXD_PWR 12
2498 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2499
2500 static int
2501 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2502 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2503 unsigned int nr_frags, unsigned int mss)
2504 {
2505 struct e1000_buffer *buffer_info;
2506 unsigned int len = skb->len;
2507 unsigned int offset = 0, size, count = 0, i;
2508 unsigned int f;
2509 len -= skb->data_len;
2510
2511 i = tx_ring->next_to_use;
2512
2513 while (len) {
2514 buffer_info = &tx_ring->buffer_info[i];
2515 size = min(len, max_per_txd);
2516 #ifdef NETIF_F_TSO
2517 /* Workaround for Controller erratum --
2518 * descriptor for non-tso packet in a linear SKB that follows a
2519 * tso gets written back prematurely before the data is fully
2520 * DMA'd to the controller */
2521 if (!skb->data_len && tx_ring->last_tx_tso &&
2522 !skb_shinfo(skb)->tso_size) {
2523 tx_ring->last_tx_tso = 0;
2524 size -= 4;
2525 }
2526
2527 /* Workaround for premature desc write-backs
2528 * in TSO mode. Append 4-byte sentinel desc */
2529 if (unlikely(mss && !nr_frags && size == len && size > 8))
2530 size -= 4;
2531 #endif
2532 /* work-around for errata 10 and it applies
2533 * to all controllers in PCI-X mode
2534 * The fix is to make sure that the first descriptor of a
2535 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2536 */
2537 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2538 (size > 2015) && count == 0))
2539 size = 2015;
2540
2541 /* Workaround for potential 82544 hang in PCI-X. Avoid
2542 * terminating buffers within evenly-aligned dwords. */
2543 if (unlikely(adapter->pcix_82544 &&
2544 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2545 size > 4))
2546 size -= 4;
2547
2548 buffer_info->length = size;
2549 buffer_info->dma =
2550 pci_map_single(adapter->pdev,
2551 skb->data + offset,
2552 size,
2553 PCI_DMA_TODEVICE);
2554 buffer_info->time_stamp = jiffies;
2555
2556 len -= size;
2557 offset += size;
2558 count++;
2559 if (unlikely(++i == tx_ring->count)) i = 0;
2560 }
2561
2562 for (f = 0; f < nr_frags; f++) {
2563 struct skb_frag_struct *frag;
2564
2565 frag = &skb_shinfo(skb)->frags[f];
2566 len = frag->size;
2567 offset = frag->page_offset;
2568
2569 while (len) {
2570 buffer_info = &tx_ring->buffer_info[i];
2571 size = min(len, max_per_txd);
2572 #ifdef NETIF_F_TSO
2573 /* Workaround for premature desc write-backs
2574 * in TSO mode. Append 4-byte sentinel desc */
2575 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2576 size -= 4;
2577 #endif
2578 /* Workaround for potential 82544 hang in PCI-X.
2579 * Avoid terminating buffers within evenly-aligned
2580 * dwords. */
2581 if (unlikely(adapter->pcix_82544 &&
2582 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2583 size > 4))
2584 size -= 4;
2585
2586 buffer_info->length = size;
2587 buffer_info->dma =
2588 pci_map_page(adapter->pdev,
2589 frag->page,
2590 offset,
2591 size,
2592 PCI_DMA_TODEVICE);
2593 buffer_info->time_stamp = jiffies;
2594
2595 len -= size;
2596 offset += size;
2597 count++;
2598 if (unlikely(++i == tx_ring->count)) i = 0;
2599 }
2600 }
2601
2602 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2603 tx_ring->buffer_info[i].skb = skb;
2604 tx_ring->buffer_info[first].next_to_watch = i;
2605
2606 return count;
2607 }
2608
2609 static void
2610 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2611 int tx_flags, int count)
2612 {
2613 struct e1000_tx_desc *tx_desc = NULL;
2614 struct e1000_buffer *buffer_info;
2615 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2616 unsigned int i;
2617
2618 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2619 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2620 E1000_TXD_CMD_TSE;
2621 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2622
2623 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2624 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2625 }
2626
2627 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2628 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2629 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2630 }
2631
2632 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2633 txd_lower |= E1000_TXD_CMD_VLE;
2634 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2635 }
2636
2637 i = tx_ring->next_to_use;
2638
2639 while (count--) {
2640 buffer_info = &tx_ring->buffer_info[i];
2641 tx_desc = E1000_TX_DESC(*tx_ring, i);
2642 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2643 tx_desc->lower.data =
2644 cpu_to_le32(txd_lower | buffer_info->length);
2645 tx_desc->upper.data = cpu_to_le32(txd_upper);
2646 if (unlikely(++i == tx_ring->count)) i = 0;
2647 }
2648
2649 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2650
2651 /* Force memory writes to complete before letting h/w
2652 * know there are new descriptors to fetch. (Only
2653 * applicable for weak-ordered memory model archs,
2654 * such as IA-64). */
2655 wmb();
2656
2657 tx_ring->next_to_use = i;
2658 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2659 }
2660
2661 /**
2662 * 82547 workaround to avoid controller hang in half-duplex environment.
2663 * The workaround is to avoid queuing a large packet that would span
2664 * the internal Tx FIFO ring boundary by notifying the stack to resend
2665 * the packet at a later time. This gives the Tx FIFO an opportunity to
2666 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2667 * to the beginning of the Tx FIFO.
2668 **/
2669
2670 #define E1000_FIFO_HDR 0x10
2671 #define E1000_82547_PAD_LEN 0x3E0
2672
2673 static int
2674 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2675 {
2676 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2677 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2678
2679 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2680
2681 if (adapter->link_duplex != HALF_DUPLEX)
2682 goto no_fifo_stall_required;
2683
2684 if (atomic_read(&adapter->tx_fifo_stall))
2685 return 1;
2686
2687 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2688 atomic_set(&adapter->tx_fifo_stall, 1);
2689 return 1;
2690 }
2691
2692 no_fifo_stall_required:
2693 adapter->tx_fifo_head += skb_fifo_len;
2694 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2695 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2696 return 0;
2697 }
2698
2699 #define MINIMUM_DHCP_PACKET_SIZE 282
2700 static int
2701 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2702 {
2703 struct e1000_hw *hw = &adapter->hw;
2704 uint16_t length, offset;
2705 if (vlan_tx_tag_present(skb)) {
2706 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2707 ( adapter->hw.mng_cookie.status &
2708 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2709 return 0;
2710 }
2711 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2712 struct ethhdr *eth = (struct ethhdr *) skb->data;
2713 if ((htons(ETH_P_IP) == eth->h_proto)) {
2714 const struct iphdr *ip =
2715 (struct iphdr *)((uint8_t *)skb->data+14);
2716 if (IPPROTO_UDP == ip->protocol) {
2717 struct udphdr *udp =
2718 (struct udphdr *)((uint8_t *)ip +
2719 (ip->ihl << 2));
2720 if (ntohs(udp->dest) == 67) {
2721 offset = (uint8_t *)udp + 8 - skb->data;
2722 length = skb->len - offset;
2723
2724 return e1000_mng_write_dhcp_info(hw,
2725 (uint8_t *)udp + 8,
2726 length);
2727 }
2728 }
2729 }
2730 }
2731 return 0;
2732 }
2733
2734 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2735 static int
2736 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2737 {
2738 struct e1000_adapter *adapter = netdev_priv(netdev);
2739 struct e1000_tx_ring *tx_ring;
2740 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2741 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2742 unsigned int tx_flags = 0;
2743 unsigned int len = skb->len;
2744 unsigned long flags;
2745 unsigned int nr_frags = 0;
2746 unsigned int mss = 0;
2747 int count = 0;
2748 int tso;
2749 unsigned int f;
2750 len -= skb->data_len;
2751
2752 tx_ring = adapter->tx_ring;
2753
2754 if (unlikely(skb->len <= 0)) {
2755 dev_kfree_skb_any(skb);
2756 return NETDEV_TX_OK;
2757 }
2758
2759 #ifdef NETIF_F_TSO
2760 mss = skb_shinfo(skb)->tso_size;
2761 /* The controller does a simple calculation to
2762 * make sure there is enough room in the FIFO before
2763 * initiating the DMA for each buffer. The calc is:
2764 * 4 = ceil(buffer len/mss). To make sure we don't
2765 * overrun the FIFO, adjust the max buffer len if mss
2766 * drops. */
2767 if (mss) {
2768 uint8_t hdr_len;
2769 max_per_txd = min(mss << 2, max_per_txd);
2770 max_txd_pwr = fls(max_per_txd) - 1;
2771
2772 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2773 * points to just header, pull a few bytes of payload from
2774 * frags into skb->data */
2775 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2776 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2777 switch (adapter->hw.mac_type) {
2778 unsigned int pull_size;
2779 case e1000_82571:
2780 case e1000_82572:
2781 case e1000_82573:
2782 pull_size = min((unsigned int)4, skb->data_len);
2783 if (!__pskb_pull_tail(skb, pull_size)) {
2784 printk(KERN_ERR
2785 "__pskb_pull_tail failed.\n");
2786 dev_kfree_skb_any(skb);
2787 return NETDEV_TX_OK;
2788 }
2789 len = skb->len - skb->data_len;
2790 break;
2791 default:
2792 /* do nothing */
2793 break;
2794 }
2795 }
2796 }
2797
2798 /* reserve a descriptor for the offload context */
2799 if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2800 count++;
2801 count++;
2802 #else
2803 if (skb->ip_summed == CHECKSUM_HW)
2804 count++;
2805 #endif
2806
2807 #ifdef NETIF_F_TSO
2808 /* Controller Erratum workaround */
2809 if (!skb->data_len && tx_ring->last_tx_tso &&
2810 !skb_shinfo(skb)->tso_size)
2811 count++;
2812 #endif
2813
2814 count += TXD_USE_COUNT(len, max_txd_pwr);
2815
2816 if (adapter->pcix_82544)
2817 count++;
2818
2819 /* work-around for errata 10 and it applies to all controllers
2820 * in PCI-X mode, so add one more descriptor to the count
2821 */
2822 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2823 (len > 2015)))
2824 count++;
2825
2826 nr_frags = skb_shinfo(skb)->nr_frags;
2827 for (f = 0; f < nr_frags; f++)
2828 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2829 max_txd_pwr);
2830 if (adapter->pcix_82544)
2831 count += nr_frags;
2832
2833
2834 if (adapter->hw.tx_pkt_filtering &&
2835 (adapter->hw.mac_type == e1000_82573))
2836 e1000_transfer_dhcp_info(adapter, skb);
2837
2838 local_irq_save(flags);
2839 if (!spin_trylock(&tx_ring->tx_lock)) {
2840 /* Collision - tell upper layer to requeue */
2841 local_irq_restore(flags);
2842 return NETDEV_TX_LOCKED;
2843 }
2844
2845 /* need: count + 2 desc gap to keep tail from touching
2846 * head, otherwise try next time */
2847 if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2848 netif_stop_queue(netdev);
2849 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2850 return NETDEV_TX_BUSY;
2851 }
2852
2853 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2854 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2855 netif_stop_queue(netdev);
2856 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2857 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2858 return NETDEV_TX_BUSY;
2859 }
2860 }
2861
2862 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2863 tx_flags |= E1000_TX_FLAGS_VLAN;
2864 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2865 }
2866
2867 first = tx_ring->next_to_use;
2868
2869 tso = e1000_tso(adapter, tx_ring, skb);
2870 if (tso < 0) {
2871 dev_kfree_skb_any(skb);
2872 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2873 return NETDEV_TX_OK;
2874 }
2875
2876 if (likely(tso)) {
2877 tx_ring->last_tx_tso = 1;
2878 tx_flags |= E1000_TX_FLAGS_TSO;
2879 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2880 tx_flags |= E1000_TX_FLAGS_CSUM;
2881
2882 /* Old method was to assume IPv4 packet by default if TSO was enabled.
2883 * 82571 hardware supports TSO capabilities for IPv6 as well...
2884 * no longer assume, we must. */
2885 if (likely(skb->protocol == htons(ETH_P_IP)))
2886 tx_flags |= E1000_TX_FLAGS_IPV4;
2887
2888 e1000_tx_queue(adapter, tx_ring, tx_flags,
2889 e1000_tx_map(adapter, tx_ring, skb, first,
2890 max_per_txd, nr_frags, mss));
2891
2892 netdev->trans_start = jiffies;
2893
2894 /* Make sure there is space in the ring for the next send. */
2895 if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2896 netif_stop_queue(netdev);
2897
2898 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2899 return NETDEV_TX_OK;
2900 }
2901
2902 /**
2903 * e1000_tx_timeout - Respond to a Tx Hang
2904 * @netdev: network interface device structure
2905 **/
2906
2907 static void
2908 e1000_tx_timeout(struct net_device *netdev)
2909 {
2910 struct e1000_adapter *adapter = netdev_priv(netdev);
2911
2912 /* Do the reset outside of interrupt context */
2913 adapter->tx_timeout_count++;
2914 schedule_work(&adapter->reset_task);
2915 }
2916
2917 static void
2918 e1000_reset_task(struct net_device *netdev)
2919 {
2920 struct e1000_adapter *adapter = netdev_priv(netdev);
2921
2922 e1000_down(adapter);
2923 e1000_up(adapter);
2924 }
2925
2926 /**
2927 * e1000_get_stats - Get System Network Statistics
2928 * @netdev: network interface device structure
2929 *
2930 * Returns the address of the device statistics structure.
2931 * The statistics are actually updated from the timer callback.
2932 **/
2933
2934 static struct net_device_stats *
2935 e1000_get_stats(struct net_device *netdev)
2936 {
2937 struct e1000_adapter *adapter = netdev_priv(netdev);
2938
2939 /* only return the current stats */
2940 return &adapter->net_stats;
2941 }
2942
2943 /**
2944 * e1000_change_mtu - Change the Maximum Transfer Unit
2945 * @netdev: network interface device structure
2946 * @new_mtu: new value for maximum frame size
2947 *
2948 * Returns 0 on success, negative on failure
2949 **/
2950
2951 static int
2952 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2953 {
2954 struct e1000_adapter *adapter = netdev_priv(netdev);
2955 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2956 uint16_t eeprom_data = 0;
2957
2958 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2959 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2960 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2961 return -EINVAL;
2962 }
2963
2964 /* Adapter-specific max frame size limits. */
2965 switch (adapter->hw.mac_type) {
2966 case e1000_undefined ... e1000_82542_rev2_1:
2967 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2968 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2969 return -EINVAL;
2970 }
2971 break;
2972 case e1000_82573:
2973 /* only enable jumbo frames if ASPM is disabled completely
2974 * this means both bits must be zero in 0x1A bits 3:2 */
2975 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
2976 &eeprom_data);
2977 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
2978 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2979 DPRINTK(PROBE, ERR,
2980 "Jumbo Frames not supported.\n");
2981 return -EINVAL;
2982 }
2983 break;
2984 }
2985 /* fall through to get support */
2986 case e1000_82571:
2987 case e1000_82572:
2988 case e1000_80003es2lan:
2989 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2990 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2991 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
2992 return -EINVAL;
2993 }
2994 break;
2995 default:
2996 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
2997 break;
2998 }
2999
3000 /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3001 * means we reserve 2 more, this pushes us to allocate from the next
3002 * larger slab size
3003 * i.e. RXBUFFER_2048 --> size-4096 slab */
3004
3005 if (max_frame <= E1000_RXBUFFER_256)
3006 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3007 else if (max_frame <= E1000_RXBUFFER_512)
3008 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3009 else if (max_frame <= E1000_RXBUFFER_1024)
3010 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3011 else if (max_frame <= E1000_RXBUFFER_2048)
3012 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3013 else if (max_frame <= E1000_RXBUFFER_4096)
3014 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3015 else if (max_frame <= E1000_RXBUFFER_8192)
3016 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3017 else if (max_frame <= E1000_RXBUFFER_16384)
3018 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3019
3020 /* adjust allocation if LPE protects us, and we aren't using SBP */
3021 #define MAXIMUM_ETHERNET_VLAN_SIZE 1522
3022 if (!adapter->hw.tbi_compatibility_on &&
3023 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3024 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3025 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3026
3027 netdev->mtu = new_mtu;
3028
3029 if (netif_running(netdev)) {
3030 e1000_down(adapter);
3031 e1000_up(adapter);
3032 }
3033
3034 adapter->hw.max_frame_size = max_frame;
3035
3036 return 0;
3037 }
3038
3039 /**
3040 * e1000_update_stats - Update the board statistics counters
3041 * @adapter: board private structure
3042 **/
3043
3044 void
3045 e1000_update_stats(struct e1000_adapter *adapter)
3046 {
3047 struct e1000_hw *hw = &adapter->hw;
3048 unsigned long flags;
3049 uint16_t phy_tmp;
3050
3051 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3052
3053 /* Prevent stats update while adapter is being reset */
3054 if (adapter->link_speed == 0)
3055 return;
3056
3057 spin_lock_irqsave(&adapter->stats_lock, flags);
3058
3059 /* these counters are modified from e1000_adjust_tbi_stats,
3060 * called from the interrupt context, so they must only
3061 * be written while holding adapter->stats_lock
3062 */
3063
3064 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3065 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3066 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3067 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3068 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3069 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3070 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3071 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3072 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3073 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3074 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3075 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3076 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3077
3078 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3079 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3080 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3081 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3082 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3083 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3084 adapter->stats.dc += E1000_READ_REG(hw, DC);
3085 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3086 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3087 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3088 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3089 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3090 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3091 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3092 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3093 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3094 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3095 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3096 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3097 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3098 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3099 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3100 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3101 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3102 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3103 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3104 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3105 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3106 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3107 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3108 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3109 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3110 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3111 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3112
3113 /* used for adaptive IFS */
3114
3115 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3116 adapter->stats.tpt += hw->tx_packet_delta;
3117 hw->collision_delta = E1000_READ_REG(hw, COLC);
3118 adapter->stats.colc += hw->collision_delta;
3119
3120 if (hw->mac_type >= e1000_82543) {
3121 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3122 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3123 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3124 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3125 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3126 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3127 }
3128 if (hw->mac_type > e1000_82547_rev_2) {
3129 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3130 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3131 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3132 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3133 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3134 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3135 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3136 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3137 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3138 }
3139
3140 /* Fill out the OS statistics structure */
3141
3142 adapter->net_stats.rx_packets = adapter->stats.gprc;
3143 adapter->net_stats.tx_packets = adapter->stats.gptc;
3144 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3145 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3146 adapter->net_stats.multicast = adapter->stats.mprc;
3147 adapter->net_stats.collisions = adapter->stats.colc;
3148
3149 /* Rx Errors */
3150
3151 /* RLEC on some newer hardware can be incorrect so build
3152 * our own version based on RUC and ROC */
3153 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3154 adapter->stats.crcerrs + adapter->stats.algnerrc +
3155 adapter->stats.ruc + adapter->stats.roc +
3156 adapter->stats.cexterr;
3157 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3158 adapter->stats.roc;
3159 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3160 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3161 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3162
3163 /* Tx Errors */
3164
3165 adapter->net_stats.tx_errors = adapter->stats.ecol +
3166 adapter->stats.latecol;
3167 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3168 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3169 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3170
3171 /* Tx Dropped needs to be maintained elsewhere */
3172
3173 /* Phy Stats */
3174
3175 if (hw->media_type == e1000_media_type_copper) {
3176 if ((adapter->link_speed == SPEED_1000) &&
3177 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3178 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3179 adapter->phy_stats.idle_errors += phy_tmp;
3180 }
3181
3182 if ((hw->mac_type <= e1000_82546) &&
3183 (hw->phy_type == e1000_phy_m88) &&
3184 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3185 adapter->phy_stats.receive_errors += phy_tmp;
3186 }
3187
3188 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3189 }
3190
3191 /**
3192 * e1000_intr - Interrupt Handler
3193 * @irq: interrupt number
3194 * @data: pointer to a network interface device structure
3195 * @pt_regs: CPU registers structure
3196 **/
3197
3198 static irqreturn_t
3199 e1000_intr(int irq, void *data, struct pt_regs *regs)
3200 {
3201 struct net_device *netdev = data;
3202 struct e1000_adapter *adapter = netdev_priv(netdev);
3203 struct e1000_hw *hw = &adapter->hw;
3204 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3205 #ifndef CONFIG_E1000_NAPI
3206 int i;
3207 #else
3208 /* Interrupt Auto-Mask...upon reading ICR,
3209 * interrupts are masked. No need for the
3210 * IMC write, but it does mean we should
3211 * account for it ASAP. */
3212 if (likely(hw->mac_type >= e1000_82571))
3213 atomic_inc(&adapter->irq_sem);
3214 #endif
3215
3216 if (unlikely(!icr)) {
3217 #ifdef CONFIG_E1000_NAPI
3218 if (hw->mac_type >= e1000_82571)
3219 e1000_irq_enable(adapter);
3220 #endif
3221 return IRQ_NONE; /* Not our interrupt */
3222 }
3223
3224 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3225 hw->get_link_status = 1;
3226 /* 80003ES2LAN workaround--
3227 * For packet buffer work-around on link down event;
3228 * disable receives here in the ISR and
3229 * reset adapter in watchdog
3230 */
3231 if (netif_carrier_ok(netdev) &&
3232 (adapter->hw.mac_type == e1000_80003es2lan)) {
3233 /* disable receives */
3234 rctl = E1000_READ_REG(hw, RCTL);
3235 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3236 }
3237 mod_timer(&adapter->watchdog_timer, jiffies);
3238 }
3239
3240 #ifdef CONFIG_E1000_NAPI
3241 if (unlikely(hw->mac_type < e1000_82571)) {
3242 atomic_inc(&adapter->irq_sem);
3243 E1000_WRITE_REG(hw, IMC, ~0);
3244 E1000_WRITE_FLUSH(hw);
3245 }
3246 if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3247 __netif_rx_schedule(&adapter->polling_netdev[0]);
3248 else
3249 e1000_irq_enable(adapter);
3250 #else
3251 /* Writing IMC and IMS is needed for 82547.
3252 * Due to Hub Link bus being occupied, an interrupt
3253 * de-assertion message is not able to be sent.
3254 * When an interrupt assertion message is generated later,
3255 * two messages are re-ordered and sent out.
3256 * That causes APIC to think 82547 is in de-assertion
3257 * state, while 82547 is in assertion state, resulting
3258 * in dead lock. Writing IMC forces 82547 into
3259 * de-assertion state.
3260 */
3261 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3262 atomic_inc(&adapter->irq_sem);
3263 E1000_WRITE_REG(hw, IMC, ~0);
3264 }
3265
3266 for (i = 0; i < E1000_MAX_INTR; i++)
3267 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3268 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3269 break;
3270
3271 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3272 e1000_irq_enable(adapter);
3273
3274 #endif
3275
3276 return IRQ_HANDLED;
3277 }
3278
3279 #ifdef CONFIG_E1000_NAPI
3280 /**
3281 * e1000_clean - NAPI Rx polling callback
3282 * @adapter: board private structure
3283 **/
3284
3285 static int
3286 e1000_clean(struct net_device *poll_dev, int *budget)
3287 {
3288 struct e1000_adapter *adapter;
3289 int work_to_do = min(*budget, poll_dev->quota);
3290 int tx_cleaned = 0, i = 0, work_done = 0;
3291
3292 /* Must NOT use netdev_priv macro here. */
3293 adapter = poll_dev->priv;
3294
3295 /* Keep link state information with original netdev */
3296 if (!netif_carrier_ok(adapter->netdev))
3297 goto quit_polling;
3298
3299 while (poll_dev != &adapter->polling_netdev[i]) {
3300 i++;
3301 BUG_ON(i == adapter->num_rx_queues);
3302 }
3303
3304 if (likely(adapter->num_tx_queues == 1)) {
3305 /* e1000_clean is called per-cpu. This lock protects
3306 * tx_ring[0] from being cleaned by multiple cpus
3307 * simultaneously. A failure obtaining the lock means
3308 * tx_ring[0] is currently being cleaned anyway. */
3309 if (spin_trylock(&adapter->tx_queue_lock)) {
3310 tx_cleaned = e1000_clean_tx_irq(adapter,
3311 &adapter->tx_ring[0]);
3312 spin_unlock(&adapter->tx_queue_lock);
3313 }
3314 } else
3315 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3316
3317 adapter->clean_rx(adapter, &adapter->rx_ring[i],
3318 &work_done, work_to_do);
3319
3320 *budget -= work_done;
3321 poll_dev->quota -= work_done;
3322
3323 /* If no Tx and not enough Rx work done, exit the polling mode */
3324 if ((!tx_cleaned && (work_done == 0)) ||
3325 !netif_running(adapter->netdev)) {
3326 quit_polling:
3327 netif_rx_complete(poll_dev);
3328 e1000_irq_enable(adapter);
3329 return 0;
3330 }
3331
3332 return 1;
3333 }
3334
3335 #endif
3336 /**
3337 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3338 * @adapter: board private structure
3339 **/
3340
3341 static boolean_t
3342 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3343 struct e1000_tx_ring *tx_ring)
3344 {
3345 struct net_device *netdev = adapter->netdev;
3346 struct e1000_tx_desc *tx_desc, *eop_desc;
3347 struct e1000_buffer *buffer_info;
3348 unsigned int i, eop;
3349 #ifdef CONFIG_E1000_NAPI
3350 unsigned int count = 0;
3351 #endif
3352 boolean_t cleaned = FALSE;
3353
3354 i = tx_ring->next_to_clean;
3355 eop = tx_ring->buffer_info[i].next_to_watch;
3356 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3357
3358 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3359 for (cleaned = FALSE; !cleaned; ) {
3360 tx_desc = E1000_TX_DESC(*tx_ring, i);
3361 buffer_info = &tx_ring->buffer_info[i];
3362 cleaned = (i == eop);
3363
3364 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3365 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3366
3367 if (unlikely(++i == tx_ring->count)) i = 0;
3368 }
3369
3370
3371 eop = tx_ring->buffer_info[i].next_to_watch;
3372 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3373 #ifdef CONFIG_E1000_NAPI
3374 #define E1000_TX_WEIGHT 64
3375 /* weight of a sort for tx, to avoid endless transmit cleanup */
3376 if (count++ == E1000_TX_WEIGHT) break;
3377 #endif
3378 }
3379
3380 tx_ring->next_to_clean = i;
3381
3382 #define TX_WAKE_THRESHOLD 32
3383 if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3384 netif_carrier_ok(netdev))) {
3385 spin_lock(&tx_ring->tx_lock);
3386 if (netif_queue_stopped(netdev) &&
3387 (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3388 netif_wake_queue(netdev);
3389 spin_unlock(&tx_ring->tx_lock);
3390 }
3391
3392 if (adapter->detect_tx_hung) {
3393 /* Detect a transmit hang in hardware, this serializes the
3394 * check with the clearing of time_stamp and movement of i */
3395 adapter->detect_tx_hung = FALSE;
3396 if (tx_ring->buffer_info[eop].dma &&
3397 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3398 (adapter->tx_timeout_factor * HZ))
3399 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3400 E1000_STATUS_TXOFF)) {
3401
3402 /* detected Tx unit hang */
3403 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3404 " Tx Queue <%lu>\n"
3405 " TDH <%x>\n"
3406 " TDT <%x>\n"
3407 " next_to_use <%x>\n"
3408 " next_to_clean <%x>\n"
3409 "buffer_info[next_to_clean]\n"
3410 " time_stamp <%lx>\n"
3411 " next_to_watch <%x>\n"
3412 " jiffies <%lx>\n"
3413 " next_to_watch.status <%x>\n",
3414 (unsigned long)((tx_ring - adapter->tx_ring) /
3415 sizeof(struct e1000_tx_ring)),
3416 readl(adapter->hw.hw_addr + tx_ring->tdh),
3417 readl(adapter->hw.hw_addr + tx_ring->tdt),
3418 tx_ring->next_to_use,
3419 tx_ring->next_to_clean,
3420 tx_ring->buffer_info[eop].time_stamp,
3421 eop,
3422 jiffies,
3423 eop_desc->upper.fields.status);
3424 netif_stop_queue(netdev);
3425 }
3426 }
3427 return cleaned;
3428 }
3429
3430 /**
3431 * e1000_rx_checksum - Receive Checksum Offload for 82543
3432 * @adapter: board private structure
3433 * @status_err: receive descriptor status and error fields
3434 * @csum: receive descriptor csum field
3435 * @sk_buff: socket buffer with received data
3436 **/
3437
3438 static void
3439 e1000_rx_checksum(struct e1000_adapter *adapter,
3440 uint32_t status_err, uint32_t csum,
3441 struct sk_buff *skb)
3442 {
3443 uint16_t status = (uint16_t)status_err;
3444 uint8_t errors = (uint8_t)(status_err >> 24);
3445 skb->ip_summed = CHECKSUM_NONE;
3446
3447 /* 82543 or newer only */
3448 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3449 /* Ignore Checksum bit is set */
3450 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3451 /* TCP/UDP checksum error bit is set */
3452 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3453 /* let the stack verify checksum errors */
3454 adapter->hw_csum_err++;
3455 return;
3456 }
3457 /* TCP/UDP Checksum has not been calculated */
3458 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3459 if (!(status & E1000_RXD_STAT_TCPCS))
3460 return;
3461 } else {
3462 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3463 return;
3464 }
3465 /* It must be a TCP or UDP packet with a valid checksum */
3466 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3467 /* TCP checksum is good */
3468 skb->ip_summed = CHECKSUM_UNNECESSARY;
3469 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3470 /* IP fragment with UDP payload */
3471 /* Hardware complements the payload checksum, so we undo it
3472 * and then put the value in host order for further stack use.
3473 */
3474 csum = ntohl(csum ^ 0xFFFF);
3475 skb->csum = csum;
3476 skb->ip_summed = CHECKSUM_HW;
3477 }
3478 adapter->hw_csum_good++;
3479 }
3480
3481 /**
3482 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3483 * @adapter: board private structure
3484 **/
3485
3486 static boolean_t
3487 #ifdef CONFIG_E1000_NAPI
3488 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3489 struct e1000_rx_ring *rx_ring,
3490 int *work_done, int work_to_do)
3491 #else
3492 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3493 struct e1000_rx_ring *rx_ring)
3494 #endif
3495 {
3496 struct net_device *netdev = adapter->netdev;
3497 struct pci_dev *pdev = adapter->pdev;
3498 struct e1000_rx_desc *rx_desc, *next_rxd;
3499 struct e1000_buffer *buffer_info, *next_buffer;
3500 unsigned long flags;
3501 uint32_t length;
3502 uint8_t last_byte;
3503 unsigned int i;
3504 int cleaned_count = 0;
3505 boolean_t cleaned = FALSE;
3506
3507 i = rx_ring->next_to_clean;
3508 rx_desc = E1000_RX_DESC(*rx_ring, i);
3509 buffer_info = &rx_ring->buffer_info[i];
3510
3511 while (rx_desc->status & E1000_RXD_STAT_DD) {
3512 struct sk_buff *skb;
3513 u8 status;
3514 #ifdef CONFIG_E1000_NAPI
3515 if (*work_done >= work_to_do)
3516 break;
3517 (*work_done)++;
3518 #endif
3519 status = rx_desc->status;
3520 skb = buffer_info->skb;
3521 buffer_info->skb = NULL;
3522
3523 prefetch(skb->data - NET_IP_ALIGN);
3524
3525 if (++i == rx_ring->count) i = 0;
3526 next_rxd = E1000_RX_DESC(*rx_ring, i);
3527 prefetch(next_rxd);
3528
3529 next_buffer = &rx_ring->buffer_info[i];
3530
3531 cleaned = TRUE;
3532 cleaned_count++;
3533 pci_unmap_single(pdev,
3534 buffer_info->dma,
3535 buffer_info->length,
3536 PCI_DMA_FROMDEVICE);
3537
3538 length = le16_to_cpu(rx_desc->length);
3539
3540 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3541 /* All receives must fit into a single buffer */
3542 E1000_DBG("%s: Receive packet consumed multiple"
3543 " buffers\n", netdev->name);
3544 dev_kfree_skb_irq(skb);
3545 goto next_desc;
3546 }
3547
3548 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3549 last_byte = *(skb->data + length - 1);
3550 if (TBI_ACCEPT(&adapter->hw, status,
3551 rx_desc->errors, length, last_byte)) {
3552 spin_lock_irqsave(&adapter->stats_lock, flags);
3553 e1000_tbi_adjust_stats(&adapter->hw,
3554 &adapter->stats,
3555 length, skb->data);
3556 spin_unlock_irqrestore(&adapter->stats_lock,
3557 flags);
3558 length--;
3559 } else {
3560 /* recycle */
3561 buffer_info->skb = skb;
3562 goto next_desc;
3563 }
3564 }
3565
3566 /* code added for copybreak, this should improve
3567 * performance for small packets with large amounts
3568 * of reassembly being done in the stack */
3569 #define E1000_CB_LENGTH 256
3570 if (length < E1000_CB_LENGTH) {
3571 struct sk_buff *new_skb =
3572 dev_alloc_skb(length + NET_IP_ALIGN);
3573 if (new_skb) {
3574 skb_reserve(new_skb, NET_IP_ALIGN);
3575 new_skb->dev = netdev;
3576 memcpy(new_skb->data - NET_IP_ALIGN,
3577 skb->data - NET_IP_ALIGN,
3578 length + NET_IP_ALIGN);
3579 /* save the skb in buffer_info as good */
3580 buffer_info->skb = skb;
3581 skb = new_skb;
3582 skb_put(skb, length);
3583 }
3584 } else
3585 skb_put(skb, length);
3586
3587 /* end copybreak code */
3588
3589 /* Receive Checksum Offload */
3590 e1000_rx_checksum(adapter,
3591 (uint32_t)(status) |
3592 ((uint32_t)(rx_desc->errors) << 24),
3593 le16_to_cpu(rx_desc->csum), skb);
3594
3595 skb->protocol = eth_type_trans(skb, netdev);
3596 #ifdef CONFIG_E1000_NAPI
3597 if (unlikely(adapter->vlgrp &&
3598 (status & E1000_RXD_STAT_VP))) {
3599 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3600 le16_to_cpu(rx_desc->special) &
3601 E1000_RXD_SPC_VLAN_MASK);
3602 } else {
3603 netif_receive_skb(skb);
3604 }
3605 #else /* CONFIG_E1000_NAPI */
3606 if (unlikely(adapter->vlgrp &&
3607 (status & E1000_RXD_STAT_VP))) {
3608 vlan_hwaccel_rx(skb, adapter->vlgrp,
3609 le16_to_cpu(rx_desc->special) &
3610 E1000_RXD_SPC_VLAN_MASK);
3611 } else {
3612 netif_rx(skb);
3613 }
3614 #endif /* CONFIG_E1000_NAPI */
3615 netdev->last_rx = jiffies;
3616
3617 next_desc:
3618 rx_desc->status = 0;
3619
3620 /* return some buffers to hardware, one at a time is too slow */
3621 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3622 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3623 cleaned_count = 0;
3624 }
3625
3626 /* use prefetched values */
3627 rx_desc = next_rxd;
3628 buffer_info = next_buffer;
3629 }
3630 rx_ring->next_to_clean = i;
3631
3632 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3633 if (cleaned_count)
3634 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3635
3636 return cleaned;
3637 }
3638
3639 /**
3640 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3641 * @adapter: board private structure
3642 **/
3643
3644 static boolean_t
3645 #ifdef CONFIG_E1000_NAPI
3646 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3647 struct e1000_rx_ring *rx_ring,
3648 int *work_done, int work_to_do)
3649 #else
3650 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3651 struct e1000_rx_ring *rx_ring)
3652 #endif
3653 {
3654 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3655 struct net_device *netdev = adapter->netdev;
3656 struct pci_dev *pdev = adapter->pdev;
3657 struct e1000_buffer *buffer_info, *next_buffer;
3658 struct e1000_ps_page *ps_page;
3659 struct e1000_ps_page_dma *ps_page_dma;
3660 struct sk_buff *skb;
3661 unsigned int i, j;
3662 uint32_t length, staterr;
3663 int cleaned_count = 0;
3664 boolean_t cleaned = FALSE;
3665
3666 i = rx_ring->next_to_clean;
3667 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3668 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3669 buffer_info = &rx_ring->buffer_info[i];
3670
3671 while (staterr & E1000_RXD_STAT_DD) {
3672 buffer_info = &rx_ring->buffer_info[i];
3673 ps_page = &rx_ring->ps_page[i];
3674 ps_page_dma = &rx_ring->ps_page_dma[i];
3675 #ifdef CONFIG_E1000_NAPI
3676 if (unlikely(*work_done >= work_to_do))
3677 break;
3678 (*work_done)++;
3679 #endif
3680 skb = buffer_info->skb;
3681
3682 /* in the packet split case this is header only */
3683 prefetch(skb->data - NET_IP_ALIGN);
3684
3685 if (++i == rx_ring->count) i = 0;
3686 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3687 prefetch(next_rxd);
3688
3689 next_buffer = &rx_ring->buffer_info[i];
3690
3691 cleaned = TRUE;
3692 cleaned_count++;
3693 pci_unmap_single(pdev, buffer_info->dma,
3694 buffer_info->length,
3695 PCI_DMA_FROMDEVICE);
3696
3697 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3698 E1000_DBG("%s: Packet Split buffers didn't pick up"
3699 " the full packet\n", netdev->name);
3700 dev_kfree_skb_irq(skb);
3701 goto next_desc;
3702 }
3703
3704 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3705 dev_kfree_skb_irq(skb);
3706 goto next_desc;
3707 }
3708
3709 length = le16_to_cpu(rx_desc->wb.middle.length0);
3710
3711 if (unlikely(!length)) {
3712 E1000_DBG("%s: Last part of the packet spanning"
3713 " multiple descriptors\n", netdev->name);
3714 dev_kfree_skb_irq(skb);
3715 goto next_desc;
3716 }
3717
3718 /* Good Receive */
3719 skb_put(skb, length);
3720
3721 {
3722 /* this looks ugly, but it seems compiler issues make it
3723 more efficient than reusing j */
3724 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3725
3726 /* page alloc/put takes too long and effects small packet
3727 * throughput, so unsplit small packets and save the alloc/put*/
3728 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3729 u8 *vaddr;
3730 /* there is no documentation about how to call
3731 * kmap_atomic, so we can't hold the mapping
3732 * very long */
3733 pci_dma_sync_single_for_cpu(pdev,
3734 ps_page_dma->ps_page_dma[0],
3735 PAGE_SIZE,
3736 PCI_DMA_FROMDEVICE);
3737 vaddr = kmap_atomic(ps_page->ps_page[0],
3738 KM_SKB_DATA_SOFTIRQ);
3739 memcpy(skb->tail, vaddr, l1);
3740 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3741 pci_dma_sync_single_for_device(pdev,
3742 ps_page_dma->ps_page_dma[0],
3743 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3744 skb_put(skb, l1);
3745 length += l1;
3746 goto copydone;
3747 } /* if */
3748 }
3749
3750 for (j = 0; j < adapter->rx_ps_pages; j++) {
3751 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3752 break;
3753 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3754 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3755 ps_page_dma->ps_page_dma[j] = 0;
3756 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3757 length);
3758 ps_page->ps_page[j] = NULL;
3759 skb->len += length;
3760 skb->data_len += length;
3761 skb->truesize += length;
3762 }
3763
3764 copydone:
3765 e1000_rx_checksum(adapter, staterr,
3766 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3767 skb->protocol = eth_type_trans(skb, netdev);
3768
3769 if (likely(rx_desc->wb.upper.header_status &
3770 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3771 adapter->rx_hdr_split++;
3772 #ifdef CONFIG_E1000_NAPI
3773 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3774 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3775 le16_to_cpu(rx_desc->wb.middle.vlan) &
3776 E1000_RXD_SPC_VLAN_MASK);
3777 } else {
3778 netif_receive_skb(skb);
3779 }
3780 #else /* CONFIG_E1000_NAPI */
3781 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3782 vlan_hwaccel_rx(skb, adapter->vlgrp,
3783 le16_to_cpu(rx_desc->wb.middle.vlan) &
3784 E1000_RXD_SPC_VLAN_MASK);
3785 } else {
3786 netif_rx(skb);
3787 }
3788 #endif /* CONFIG_E1000_NAPI */
3789 netdev->last_rx = jiffies;
3790
3791 next_desc:
3792 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3793 buffer_info->skb = NULL;
3794
3795 /* return some buffers to hardware, one at a time is too slow */
3796 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3797 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3798 cleaned_count = 0;
3799 }
3800
3801 /* use prefetched values */
3802 rx_desc = next_rxd;
3803 buffer_info = next_buffer;
3804
3805 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3806 }
3807 rx_ring->next_to_clean = i;
3808
3809 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3810 if (cleaned_count)
3811 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3812
3813 return cleaned;
3814 }
3815
3816 /**
3817 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3818 * @adapter: address of board private structure
3819 **/
3820
3821 static void
3822 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3823 struct e1000_rx_ring *rx_ring,
3824 int cleaned_count)
3825 {
3826 struct net_device *netdev = adapter->netdev;
3827 struct pci_dev *pdev = adapter->pdev;
3828 struct e1000_rx_desc *rx_desc;
3829 struct e1000_buffer *buffer_info;
3830 struct sk_buff *skb;
3831 unsigned int i;
3832 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3833
3834 i = rx_ring->next_to_use;
3835 buffer_info = &rx_ring->buffer_info[i];
3836
3837 while (cleaned_count--) {
3838 if (!(skb = buffer_info->skb))
3839 skb = dev_alloc_skb(bufsz);
3840 else {
3841 skb_trim(skb, 0);
3842 goto map_skb;
3843 }
3844
3845 if (unlikely(!skb)) {
3846 /* Better luck next round */
3847 adapter->alloc_rx_buff_failed++;
3848 break;
3849 }
3850
3851 /* Fix for errata 23, can't cross 64kB boundary */
3852 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3853 struct sk_buff *oldskb = skb;
3854 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3855 "at %p\n", bufsz, skb->data);
3856 /* Try again, without freeing the previous */
3857 skb = dev_alloc_skb(bufsz);
3858 /* Failed allocation, critical failure */
3859 if (!skb) {
3860 dev_kfree_skb(oldskb);
3861 break;
3862 }
3863
3864 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3865 /* give up */
3866 dev_kfree_skb(skb);
3867 dev_kfree_skb(oldskb);
3868 break; /* while !buffer_info->skb */
3869 } else {
3870 /* Use new allocation */
3871 dev_kfree_skb(oldskb);
3872 }
3873 }
3874 /* Make buffer alignment 2 beyond a 16 byte boundary
3875 * this will result in a 16 byte aligned IP header after
3876 * the 14 byte MAC header is removed
3877 */
3878 skb_reserve(skb, NET_IP_ALIGN);
3879
3880 skb->dev = netdev;
3881
3882 buffer_info->skb = skb;
3883 buffer_info->length = adapter->rx_buffer_len;
3884 map_skb:
3885 buffer_info->dma = pci_map_single(pdev,
3886 skb->data,
3887 adapter->rx_buffer_len,
3888 PCI_DMA_FROMDEVICE);
3889
3890 /* Fix for errata 23, can't cross 64kB boundary */
3891 if (!e1000_check_64k_bound(adapter,
3892 (void *)(unsigned long)buffer_info->dma,
3893 adapter->rx_buffer_len)) {
3894 DPRINTK(RX_ERR, ERR,
3895 "dma align check failed: %u bytes at %p\n",
3896 adapter->rx_buffer_len,
3897 (void *)(unsigned long)buffer_info->dma);
3898 dev_kfree_skb(skb);
3899 buffer_info->skb = NULL;
3900
3901 pci_unmap_single(pdev, buffer_info->dma,
3902 adapter->rx_buffer_len,
3903 PCI_DMA_FROMDEVICE);
3904
3905 break; /* while !buffer_info->skb */
3906 }
3907 rx_desc = E1000_RX_DESC(*rx_ring, i);
3908 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3909
3910 if (unlikely(++i == rx_ring->count))
3911 i = 0;
3912 buffer_info = &rx_ring->buffer_info[i];
3913 }
3914
3915 if (likely(rx_ring->next_to_use != i)) {
3916 rx_ring->next_to_use = i;
3917 if (unlikely(i-- == 0))
3918 i = (rx_ring->count - 1);
3919
3920 /* Force memory writes to complete before letting h/w
3921 * know there are new descriptors to fetch. (Only
3922 * applicable for weak-ordered memory model archs,
3923 * such as IA-64). */
3924 wmb();
3925 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3926 }
3927 }
3928
3929 /**
3930 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3931 * @adapter: address of board private structure
3932 **/
3933
3934 static void
3935 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3936 struct e1000_rx_ring *rx_ring,
3937 int cleaned_count)
3938 {
3939 struct net_device *netdev = adapter->netdev;
3940 struct pci_dev *pdev = adapter->pdev;
3941 union e1000_rx_desc_packet_split *rx_desc;
3942 struct e1000_buffer *buffer_info;
3943 struct e1000_ps_page *ps_page;
3944 struct e1000_ps_page_dma *ps_page_dma;
3945 struct sk_buff *skb;
3946 unsigned int i, j;
3947
3948 i = rx_ring->next_to_use;
3949 buffer_info = &rx_ring->buffer_info[i];
3950 ps_page = &rx_ring->ps_page[i];
3951 ps_page_dma = &rx_ring->ps_page_dma[i];
3952
3953 while (cleaned_count--) {
3954 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3955
3956 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
3957 if (j < adapter->rx_ps_pages) {
3958 if (likely(!ps_page->ps_page[j])) {
3959 ps_page->ps_page[j] =
3960 alloc_page(GFP_ATOMIC);
3961 if (unlikely(!ps_page->ps_page[j])) {
3962 adapter->alloc_rx_buff_failed++;
3963 goto no_buffers;
3964 }
3965 ps_page_dma->ps_page_dma[j] =
3966 pci_map_page(pdev,
3967 ps_page->ps_page[j],
3968 0, PAGE_SIZE,
3969 PCI_DMA_FROMDEVICE);
3970 }
3971 /* Refresh the desc even if buffer_addrs didn't
3972 * change because each write-back erases
3973 * this info.
3974 */
3975 rx_desc->read.buffer_addr[j+1] =
3976 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3977 } else
3978 rx_desc->read.buffer_addr[j+1] = ~0;
3979 }
3980
3981 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3982
3983 if (unlikely(!skb)) {
3984 adapter->alloc_rx_buff_failed++;
3985 break;
3986 }
3987
3988 /* Make buffer alignment 2 beyond a 16 byte boundary
3989 * this will result in a 16 byte aligned IP header after
3990 * the 14 byte MAC header is removed
3991 */
3992 skb_reserve(skb, NET_IP_ALIGN);
3993
3994 skb->dev = netdev;
3995
3996 buffer_info->skb = skb;
3997 buffer_info->length = adapter->rx_ps_bsize0;
3998 buffer_info->dma = pci_map_single(pdev, skb->data,
3999 adapter->rx_ps_bsize0,
4000 PCI_DMA_FROMDEVICE);
4001
4002 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4003
4004 if (unlikely(++i == rx_ring->count)) i = 0;
4005 buffer_info = &rx_ring->buffer_info[i];
4006 ps_page = &rx_ring->ps_page[i];
4007 ps_page_dma = &rx_ring->ps_page_dma[i];
4008 }
4009
4010 no_buffers:
4011 if (likely(rx_ring->next_to_use != i)) {
4012 rx_ring->next_to_use = i;
4013 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4014
4015 /* Force memory writes to complete before letting h/w
4016 * know there are new descriptors to fetch. (Only
4017 * applicable for weak-ordered memory model archs,
4018 * such as IA-64). */
4019 wmb();
4020 /* Hardware increments by 16 bytes, but packet split
4021 * descriptors are 32 bytes...so we increment tail
4022 * twice as much.
4023 */
4024 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4025 }
4026 }
4027
4028 /**
4029 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4030 * @adapter:
4031 **/
4032
4033 static void
4034 e1000_smartspeed(struct e1000_adapter *adapter)
4035 {
4036 uint16_t phy_status;
4037 uint16_t phy_ctrl;
4038
4039 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4040 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4041 return;
4042
4043 if (adapter->smartspeed == 0) {
4044 /* If Master/Slave config fault is asserted twice,
4045 * we assume back-to-back */
4046 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4047 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4048 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4049 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4050 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4051 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4052 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4053 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4054 phy_ctrl);
4055 adapter->smartspeed++;
4056 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4057 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4058 &phy_ctrl)) {
4059 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4060 MII_CR_RESTART_AUTO_NEG);
4061 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4062 phy_ctrl);
4063 }
4064 }
4065 return;
4066 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4067 /* If still no link, perhaps using 2/3 pair cable */
4068 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4069 phy_ctrl |= CR_1000T_MS_ENABLE;
4070 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4071 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4072 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4073 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4074 MII_CR_RESTART_AUTO_NEG);
4075 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4076 }
4077 }
4078 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4079 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4080 adapter->smartspeed = 0;
4081 }
4082
4083 /**
4084 * e1000_ioctl -
4085 * @netdev:
4086 * @ifreq:
4087 * @cmd:
4088 **/
4089
4090 static int
4091 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4092 {
4093 switch (cmd) {
4094 case SIOCGMIIPHY:
4095 case SIOCGMIIREG:
4096 case SIOCSMIIREG:
4097 return e1000_mii_ioctl(netdev, ifr, cmd);
4098 default:
4099 return -EOPNOTSUPP;
4100 }
4101 }
4102
4103 /**
4104 * e1000_mii_ioctl -
4105 * @netdev:
4106 * @ifreq:
4107 * @cmd:
4108 **/
4109
4110 static int
4111 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4112 {
4113 struct e1000_adapter *adapter = netdev_priv(netdev);
4114 struct mii_ioctl_data *data = if_mii(ifr);
4115 int retval;
4116 uint16_t mii_reg;
4117 uint16_t spddplx;
4118 unsigned long flags;
4119
4120 if (adapter->hw.media_type != e1000_media_type_copper)
4121 return -EOPNOTSUPP;
4122
4123 switch (cmd) {
4124 case SIOCGMIIPHY:
4125 data->phy_id = adapter->hw.phy_addr;
4126 break;
4127 case SIOCGMIIREG:
4128 if (!capable(CAP_NET_ADMIN))
4129 return -EPERM;
4130 spin_lock_irqsave(&adapter->stats_lock, flags);
4131 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4132 &data->val_out)) {
4133 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4134 return -EIO;
4135 }
4136 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4137 break;
4138 case SIOCSMIIREG:
4139 if (!capable(CAP_NET_ADMIN))
4140 return -EPERM;
4141 if (data->reg_num & ~(0x1F))
4142 return -EFAULT;
4143 mii_reg = data->val_in;
4144 spin_lock_irqsave(&adapter->stats_lock, flags);
4145 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4146 mii_reg)) {
4147 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4148 return -EIO;
4149 }
4150 if (adapter->hw.media_type == e1000_media_type_copper) {
4151 switch (data->reg_num) {
4152 case PHY_CTRL:
4153 if (mii_reg & MII_CR_POWER_DOWN)
4154 break;
4155 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4156 adapter->hw.autoneg = 1;
4157 adapter->hw.autoneg_advertised = 0x2F;
4158 } else {
4159 if (mii_reg & 0x40)
4160 spddplx = SPEED_1000;
4161 else if (mii_reg & 0x2000)
4162 spddplx = SPEED_100;
4163 else
4164 spddplx = SPEED_10;
4165 spddplx += (mii_reg & 0x100)
4166 ? DUPLEX_FULL :
4167 DUPLEX_HALF;
4168 retval = e1000_set_spd_dplx(adapter,
4169 spddplx);
4170 if (retval) {
4171 spin_unlock_irqrestore(
4172 &adapter->stats_lock,
4173 flags);
4174 return retval;
4175 }
4176 }
4177 if (netif_running(adapter->netdev)) {
4178 e1000_down(adapter);
4179 e1000_up(adapter);
4180 } else
4181 e1000_reset(adapter);
4182 break;
4183 case M88E1000_PHY_SPEC_CTRL:
4184 case M88E1000_EXT_PHY_SPEC_CTRL:
4185 if (e1000_phy_reset(&adapter->hw)) {
4186 spin_unlock_irqrestore(
4187 &adapter->stats_lock, flags);
4188 return -EIO;
4189 }
4190 break;
4191 }
4192 } else {
4193 switch (data->reg_num) {
4194 case PHY_CTRL:
4195 if (mii_reg & MII_CR_POWER_DOWN)
4196 break;
4197 if (netif_running(adapter->netdev)) {
4198 e1000_down(adapter);
4199 e1000_up(adapter);
4200 } else
4201 e1000_reset(adapter);
4202 break;
4203 }
4204 }
4205 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4206 break;
4207 default:
4208 return -EOPNOTSUPP;
4209 }
4210 return E1000_SUCCESS;
4211 }
4212
4213 void
4214 e1000_pci_set_mwi(struct e1000_hw *hw)
4215 {
4216 struct e1000_adapter *adapter = hw->back;
4217 int ret_val = pci_set_mwi(adapter->pdev);
4218
4219 if (ret_val)
4220 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4221 }
4222
4223 void
4224 e1000_pci_clear_mwi(struct e1000_hw *hw)
4225 {
4226 struct e1000_adapter *adapter = hw->back;
4227
4228 pci_clear_mwi(adapter->pdev);
4229 }
4230
4231 void
4232 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4233 {
4234 struct e1000_adapter *adapter = hw->back;
4235
4236 pci_read_config_word(adapter->pdev, reg, value);
4237 }
4238
4239 void
4240 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4241 {
4242 struct e1000_adapter *adapter = hw->back;
4243
4244 pci_write_config_word(adapter->pdev, reg, *value);
4245 }
4246
4247 uint32_t
4248 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4249 {
4250 return inl(port);
4251 }
4252
4253 void
4254 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4255 {
4256 outl(value, port);
4257 }
4258
4259 static void
4260 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4261 {
4262 struct e1000_adapter *adapter = netdev_priv(netdev);
4263 uint32_t ctrl, rctl;
4264
4265 e1000_irq_disable(adapter);
4266 adapter->vlgrp = grp;
4267
4268 if (grp) {
4269 /* enable VLAN tag insert/strip */
4270 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4271 ctrl |= E1000_CTRL_VME;
4272 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4273
4274 /* enable VLAN receive filtering */
4275 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4276 rctl |= E1000_RCTL_VFE;
4277 rctl &= ~E1000_RCTL_CFIEN;
4278 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4279 e1000_update_mng_vlan(adapter);
4280 } else {
4281 /* disable VLAN tag insert/strip */
4282 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4283 ctrl &= ~E1000_CTRL_VME;
4284 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4285
4286 /* disable VLAN filtering */
4287 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4288 rctl &= ~E1000_RCTL_VFE;
4289 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4290 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4291 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4292 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4293 }
4294 }
4295
4296 e1000_irq_enable(adapter);
4297 }
4298
4299 static void
4300 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4301 {
4302 struct e1000_adapter *adapter = netdev_priv(netdev);
4303 uint32_t vfta, index;
4304
4305 if ((adapter->hw.mng_cookie.status &
4306 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4307 (vid == adapter->mng_vlan_id))
4308 return;
4309 /* add VID to filter table */
4310 index = (vid >> 5) & 0x7F;
4311 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4312 vfta |= (1 << (vid & 0x1F));
4313 e1000_write_vfta(&adapter->hw, index, vfta);
4314 }
4315
4316 static void
4317 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4318 {
4319 struct e1000_adapter *adapter = netdev_priv(netdev);
4320 uint32_t vfta, index;
4321
4322 e1000_irq_disable(adapter);
4323
4324 if (adapter->vlgrp)
4325 adapter->vlgrp->vlan_devices[vid] = NULL;
4326
4327 e1000_irq_enable(adapter);
4328
4329 if ((adapter->hw.mng_cookie.status &
4330 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4331 (vid == adapter->mng_vlan_id)) {
4332 /* release control to f/w */
4333 e1000_release_hw_control(adapter);
4334 return;
4335 }
4336
4337 /* remove VID from filter table */
4338 index = (vid >> 5) & 0x7F;
4339 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4340 vfta &= ~(1 << (vid & 0x1F));
4341 e1000_write_vfta(&adapter->hw, index, vfta);
4342 }
4343
4344 static void
4345 e1000_restore_vlan(struct e1000_adapter *adapter)
4346 {
4347 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4348
4349 if (adapter->vlgrp) {
4350 uint16_t vid;
4351 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4352 if (!adapter->vlgrp->vlan_devices[vid])
4353 continue;
4354 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4355 }
4356 }
4357 }
4358
4359 int
4360 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4361 {
4362 adapter->hw.autoneg = 0;
4363
4364 /* Fiber NICs only allow 1000 gbps Full duplex */
4365 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4366 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4367 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4368 return -EINVAL;
4369 }
4370
4371 switch (spddplx) {
4372 case SPEED_10 + DUPLEX_HALF:
4373 adapter->hw.forced_speed_duplex = e1000_10_half;
4374 break;
4375 case SPEED_10 + DUPLEX_FULL:
4376 adapter->hw.forced_speed_duplex = e1000_10_full;
4377 break;
4378 case SPEED_100 + DUPLEX_HALF:
4379 adapter->hw.forced_speed_duplex = e1000_100_half;
4380 break;
4381 case SPEED_100 + DUPLEX_FULL:
4382 adapter->hw.forced_speed_duplex = e1000_100_full;
4383 break;
4384 case SPEED_1000 + DUPLEX_FULL:
4385 adapter->hw.autoneg = 1;
4386 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4387 break;
4388 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4389 default:
4390 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4391 return -EINVAL;
4392 }
4393 return 0;
4394 }
4395
4396 #ifdef CONFIG_PM
4397 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4398 * bus we're on (PCI(X) vs. PCI-E)
4399 */
4400 #define PCIE_CONFIG_SPACE_LEN 256
4401 #define PCI_CONFIG_SPACE_LEN 64
4402 static int
4403 e1000_pci_save_state(struct e1000_adapter *adapter)
4404 {
4405 struct pci_dev *dev = adapter->pdev;
4406 int size;
4407 int i;
4408
4409 if (adapter->hw.mac_type >= e1000_82571)
4410 size = PCIE_CONFIG_SPACE_LEN;
4411 else
4412 size = PCI_CONFIG_SPACE_LEN;
4413
4414 WARN_ON(adapter->config_space != NULL);
4415
4416 adapter->config_space = kmalloc(size, GFP_KERNEL);
4417 if (!adapter->config_space) {
4418 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4419 return -ENOMEM;
4420 }
4421 for (i = 0; i < (size / 4); i++)
4422 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4423 return 0;
4424 }
4425
4426 static void
4427 e1000_pci_restore_state(struct e1000_adapter *adapter)
4428 {
4429 struct pci_dev *dev = adapter->pdev;
4430 int size;
4431 int i;
4432
4433 if (adapter->config_space == NULL)
4434 return;
4435
4436 if (adapter->hw.mac_type >= e1000_82571)
4437 size = PCIE_CONFIG_SPACE_LEN;
4438 else
4439 size = PCI_CONFIG_SPACE_LEN;
4440 for (i = 0; i < (size / 4); i++)
4441 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4442 kfree(adapter->config_space);
4443 adapter->config_space = NULL;
4444 return;
4445 }
4446 #endif /* CONFIG_PM */
4447
4448 static int
4449 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4450 {
4451 struct net_device *netdev = pci_get_drvdata(pdev);
4452 struct e1000_adapter *adapter = netdev_priv(netdev);
4453 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4454 uint32_t wufc = adapter->wol;
4455 int retval = 0;
4456
4457 netif_device_detach(netdev);
4458
4459 if (netif_running(netdev))
4460 e1000_down(adapter);
4461
4462 #ifdef CONFIG_PM
4463 /* Implement our own version of pci_save_state(pdev) because pci-
4464 * express adapters have 256-byte config spaces. */
4465 retval = e1000_pci_save_state(adapter);
4466 if (retval)
4467 return retval;
4468 #endif
4469
4470 status = E1000_READ_REG(&adapter->hw, STATUS);
4471 if (status & E1000_STATUS_LU)
4472 wufc &= ~E1000_WUFC_LNKC;
4473
4474 if (wufc) {
4475 e1000_setup_rctl(adapter);
4476 e1000_set_multi(netdev);
4477
4478 /* turn on all-multi mode if wake on multicast is enabled */
4479 if (adapter->wol & E1000_WUFC_MC) {
4480 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4481 rctl |= E1000_RCTL_MPE;
4482 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4483 }
4484
4485 if (adapter->hw.mac_type >= e1000_82540) {
4486 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4487 /* advertise wake from D3Cold */
4488 #define E1000_CTRL_ADVD3WUC 0x00100000
4489 /* phy power management enable */
4490 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4491 ctrl |= E1000_CTRL_ADVD3WUC |
4492 E1000_CTRL_EN_PHY_PWR_MGMT;
4493 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4494 }
4495
4496 if (adapter->hw.media_type == e1000_media_type_fiber ||
4497 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4498 /* keep the laser running in D3 */
4499 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4500 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4501 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4502 }
4503
4504 /* Allow time for pending master requests to run */
4505 e1000_disable_pciex_master(&adapter->hw);
4506
4507 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4508 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4509 pci_enable_wake(pdev, PCI_D3hot, 1);
4510 pci_enable_wake(pdev, PCI_D3cold, 1);
4511 } else {
4512 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4513 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4514 pci_enable_wake(pdev, PCI_D3hot, 0);
4515 pci_enable_wake(pdev, PCI_D3cold, 0);
4516 }
4517
4518 if (adapter->hw.mac_type >= e1000_82540 &&
4519 adapter->hw.media_type == e1000_media_type_copper) {
4520 manc = E1000_READ_REG(&adapter->hw, MANC);
4521 if (manc & E1000_MANC_SMBUS_EN) {
4522 manc |= E1000_MANC_ARP_EN;
4523 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4524 pci_enable_wake(pdev, PCI_D3hot, 1);
4525 pci_enable_wake(pdev, PCI_D3cold, 1);
4526 }
4527 }
4528
4529 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4530 * would have already happened in close and is redundant. */
4531 e1000_release_hw_control(adapter);
4532
4533 pci_disable_device(pdev);
4534
4535 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4536
4537 return 0;
4538 }
4539
4540 #ifdef CONFIG_PM
4541 static int
4542 e1000_resume(struct pci_dev *pdev)
4543 {
4544 struct net_device *netdev = pci_get_drvdata(pdev);
4545 struct e1000_adapter *adapter = netdev_priv(netdev);
4546 uint32_t manc, ret_val;
4547
4548 pci_set_power_state(pdev, PCI_D0);
4549 e1000_pci_restore_state(adapter);
4550 ret_val = pci_enable_device(pdev);
4551 pci_set_master(pdev);
4552
4553 pci_enable_wake(pdev, PCI_D3hot, 0);
4554 pci_enable_wake(pdev, PCI_D3cold, 0);
4555
4556 e1000_reset(adapter);
4557 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4558
4559 if (netif_running(netdev))
4560 e1000_up(adapter);
4561
4562 netif_device_attach(netdev);
4563
4564 if (adapter->hw.mac_type >= e1000_82540 &&
4565 adapter->hw.media_type == e1000_media_type_copper) {
4566 manc = E1000_READ_REG(&adapter->hw, MANC);
4567 manc &= ~(E1000_MANC_ARP_EN);
4568 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4569 }
4570
4571 /* If the controller is 82573 and f/w is AMT, do not set
4572 * DRV_LOAD until the interface is up. For all other cases,
4573 * let the f/w know that the h/w is now under the control
4574 * of the driver. */
4575 if (adapter->hw.mac_type != e1000_82573 ||
4576 !e1000_check_mng_mode(&adapter->hw))
4577 e1000_get_hw_control(adapter);
4578
4579 return 0;
4580 }
4581 #endif
4582
4583 static void e1000_shutdown(struct pci_dev *pdev)
4584 {
4585 e1000_suspend(pdev, PMSG_SUSPEND);
4586 }
4587
4588 #ifdef CONFIG_NET_POLL_CONTROLLER
4589 /*
4590 * Polling 'interrupt' - used by things like netconsole to send skbs
4591 * without having to re-enable interrupts. It's not called while
4592 * the interrupt routine is executing.
4593 */
4594 static void
4595 e1000_netpoll(struct net_device *netdev)
4596 {
4597 struct e1000_adapter *adapter = netdev_priv(netdev);
4598 disable_irq(adapter->pdev->irq);
4599 e1000_intr(adapter->pdev->irq, netdev, NULL);
4600 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4601 #ifndef CONFIG_E1000_NAPI
4602 adapter->clean_rx(adapter, adapter->rx_ring);
4603 #endif
4604 enable_irq(adapter->pdev->irq);
4605 }
4606 #endif
4607
4608 /**
4609 * e1000_io_error_detected - called when PCI error is detected
4610 * @pdev: Pointer to PCI device
4611 * @state: The current pci conneection state
4612 *
4613 * This function is called after a PCI bus error affecting
4614 * this device has been detected.
4615 */
4616 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4617 {
4618 struct net_device *netdev = pci_get_drvdata(pdev);
4619 struct e1000_adapter *adapter = netdev->priv;
4620
4621 netif_device_detach(netdev);
4622
4623 if (netif_running(netdev))
4624 e1000_down(adapter);
4625
4626 /* Request a slot slot reset. */
4627 return PCI_ERS_RESULT_NEED_RESET;
4628 }
4629
4630 /**
4631 * e1000_io_slot_reset - called after the pci bus has been reset.
4632 * @pdev: Pointer to PCI device
4633 *
4634 * Restart the card from scratch, as if from a cold-boot. Implementation
4635 * resembles the first-half of the e1000_resume routine.
4636 */
4637 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4638 {
4639 struct net_device *netdev = pci_get_drvdata(pdev);
4640 struct e1000_adapter *adapter = netdev->priv;
4641
4642 if (pci_enable_device(pdev)) {
4643 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4644 return PCI_ERS_RESULT_DISCONNECT;
4645 }
4646 pci_set_master(pdev);
4647
4648 pci_enable_wake(pdev, 3, 0);
4649 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4650
4651 /* Perform card reset only on one instance of the card */
4652 if (PCI_FUNC (pdev->devfn) != 0)
4653 return PCI_ERS_RESULT_RECOVERED;
4654
4655 e1000_reset(adapter);
4656 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4657
4658 return PCI_ERS_RESULT_RECOVERED;
4659 }
4660
4661 /**
4662 * e1000_io_resume - called when traffic can start flowing again.
4663 * @pdev: Pointer to PCI device
4664 *
4665 * This callback is called when the error recovery driver tells us that
4666 * its OK to resume normal operation. Implementation resembles the
4667 * second-half of the e1000_resume routine.
4668 */
4669 static void e1000_io_resume(struct pci_dev *pdev)
4670 {
4671 struct net_device *netdev = pci_get_drvdata(pdev);
4672 struct e1000_adapter *adapter = netdev->priv;
4673 uint32_t manc, swsm;
4674
4675 if (netif_running(netdev)) {
4676 if (e1000_up(adapter)) {
4677 printk("e1000: can't bring device back up after reset\n");
4678 return;
4679 }
4680 }
4681
4682 netif_device_attach(netdev);
4683
4684 if (adapter->hw.mac_type >= e1000_82540 &&
4685 adapter->hw.media_type == e1000_media_type_copper) {
4686 manc = E1000_READ_REG(&adapter->hw, MANC);
4687 manc &= ~(E1000_MANC_ARP_EN);
4688 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4689 }
4690
4691 switch (adapter->hw.mac_type) {
4692 case e1000_82573:
4693 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4694 E1000_WRITE_REG(&adapter->hw, SWSM,
4695 swsm | E1000_SWSM_DRV_LOAD);
4696 break;
4697 default:
4698 break;
4699 }
4700
4701 if (netif_running(netdev))
4702 mod_timer(&adapter->watchdog_timer, jiffies);
4703 }
4704
4705 /* e1000_main.c */