Merge branch 'upstream-fixes' into upstream
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.0.38-k4"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44 *
45 * Last entry must be all 0s
46 *
47 * Macro expands to...
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 */
50 static struct pci_device_id e1000_pci_tbl[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x105E),
77 INTEL_E1000_ETHERNET_DEVICE(0x105F),
78 INTEL_E1000_ETHERNET_DEVICE(0x1060),
79 INTEL_E1000_ETHERNET_DEVICE(0x1075),
80 INTEL_E1000_ETHERNET_DEVICE(0x1076),
81 INTEL_E1000_ETHERNET_DEVICE(0x1077),
82 INTEL_E1000_ETHERNET_DEVICE(0x1078),
83 INTEL_E1000_ETHERNET_DEVICE(0x1079),
84 INTEL_E1000_ETHERNET_DEVICE(0x107A),
85 INTEL_E1000_ETHERNET_DEVICE(0x107B),
86 INTEL_E1000_ETHERNET_DEVICE(0x107C),
87 INTEL_E1000_ETHERNET_DEVICE(0x107D),
88 INTEL_E1000_ETHERNET_DEVICE(0x107E),
89 INTEL_E1000_ETHERNET_DEVICE(0x107F),
90 INTEL_E1000_ETHERNET_DEVICE(0x108A),
91 INTEL_E1000_ETHERNET_DEVICE(0x108B),
92 INTEL_E1000_ETHERNET_DEVICE(0x108C),
93 INTEL_E1000_ETHERNET_DEVICE(0x1096),
94 INTEL_E1000_ETHERNET_DEVICE(0x1098),
95 INTEL_E1000_ETHERNET_DEVICE(0x1099),
96 INTEL_E1000_ETHERNET_DEVICE(0x109A),
97 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
98 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
99 /* required last entry */
100 {0,}
101 };
102
103 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
104
105 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *txdr);
107 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rxdr);
109 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
110 struct e1000_tx_ring *tx_ring);
111 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
112 struct e1000_rx_ring *rx_ring);
113
114 /* Local Function Prototypes */
115
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
119 static void __devexit e1000_remove(struct pci_dev *pdev);
120 static int e1000_alloc_queues(struct e1000_adapter *adapter);
121 static int e1000_sw_init(struct e1000_adapter *adapter);
122 static int e1000_open(struct net_device *netdev);
123 static int e1000_close(struct net_device *netdev);
124 static void e1000_configure_tx(struct e1000_adapter *adapter);
125 static void e1000_configure_rx(struct e1000_adapter *adapter);
126 static void e1000_setup_rctl(struct e1000_adapter *adapter);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
129 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
130 struct e1000_tx_ring *tx_ring);
131 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
132 struct e1000_rx_ring *rx_ring);
133 static void e1000_set_multi(struct net_device *netdev);
134 static void e1000_update_phy_info(unsigned long data);
135 static void e1000_watchdog(unsigned long data);
136 static void e1000_watchdog_task(struct e1000_adapter *adapter);
137 static void e1000_82547_tx_fifo_stall(unsigned long data);
138 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
139 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
140 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
141 static int e1000_set_mac(struct net_device *netdev, void *p);
142 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
143 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
144 struct e1000_tx_ring *tx_ring);
145 #ifdef CONFIG_E1000_NAPI
146 static int e1000_clean(struct net_device *poll_dev, int *budget);
147 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int *work_done, int work_to_do);
150 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int *work_done, int work_to_do);
153 #else
154 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
155 struct e1000_rx_ring *rx_ring);
156 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
157 struct e1000_rx_ring *rx_ring);
158 #endif
159 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160 struct e1000_rx_ring *rx_ring,
161 int cleaned_count);
162 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
163 struct e1000_rx_ring *rx_ring,
164 int cleaned_count);
165 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
166 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
167 int cmd);
168 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
169 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
170 static void e1000_tx_timeout(struct net_device *dev);
171 static void e1000_reset_task(struct net_device *dev);
172 static void e1000_smartspeed(struct e1000_adapter *adapter);
173 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
174 struct sk_buff *skb);
175
176 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
177 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
178 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
179 static void e1000_restore_vlan(struct e1000_adapter *adapter);
180
181 #ifdef CONFIG_PM
182 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
183 static int e1000_resume(struct pci_dev *pdev);
184 #endif
185 static void e1000_shutdown(struct pci_dev *pdev);
186
187 #ifdef CONFIG_NET_POLL_CONTROLLER
188 /* for netdump / net console */
189 static void e1000_netpoll (struct net_device *netdev);
190 #endif
191
192
193 static struct pci_driver e1000_driver = {
194 .name = e1000_driver_name,
195 .id_table = e1000_pci_tbl,
196 .probe = e1000_probe,
197 .remove = __devexit_p(e1000_remove),
198 /* Power Managment Hooks */
199 #ifdef CONFIG_PM
200 .suspend = e1000_suspend,
201 .resume = e1000_resume,
202 #endif
203 .shutdown = e1000_shutdown
204 };
205
206 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
207 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
208 MODULE_LICENSE("GPL");
209 MODULE_VERSION(DRV_VERSION);
210
211 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
212 module_param(debug, int, 0);
213 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
214
215 /**
216 * e1000_init_module - Driver Registration Routine
217 *
218 * e1000_init_module is the first routine called when the driver is
219 * loaded. All it does is register with the PCI subsystem.
220 **/
221
222 static int __init
223 e1000_init_module(void)
224 {
225 int ret;
226 printk(KERN_INFO "%s - version %s\n",
227 e1000_driver_string, e1000_driver_version);
228
229 printk(KERN_INFO "%s\n", e1000_copyright);
230
231 ret = pci_module_init(&e1000_driver);
232
233 return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239 * e1000_exit_module - Driver Exit Cleanup Routine
240 *
241 * e1000_exit_module is called just before the driver is removed
242 * from memory.
243 **/
244
245 static void __exit
246 e1000_exit_module(void)
247 {
248 pci_unregister_driver(&e1000_driver);
249 }
250
251 module_exit(e1000_exit_module);
252
253 /**
254 * e1000_irq_disable - Mask off interrupt generation on the NIC
255 * @adapter: board private structure
256 **/
257
258 static void
259 e1000_irq_disable(struct e1000_adapter *adapter)
260 {
261 atomic_inc(&adapter->irq_sem);
262 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
263 E1000_WRITE_FLUSH(&adapter->hw);
264 synchronize_irq(adapter->pdev->irq);
265 }
266
267 /**
268 * e1000_irq_enable - Enable default interrupt generation settings
269 * @adapter: board private structure
270 **/
271
272 static void
273 e1000_irq_enable(struct e1000_adapter *adapter)
274 {
275 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
276 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
277 E1000_WRITE_FLUSH(&adapter->hw);
278 }
279 }
280
281 static void
282 e1000_update_mng_vlan(struct e1000_adapter *adapter)
283 {
284 struct net_device *netdev = adapter->netdev;
285 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
286 uint16_t old_vid = adapter->mng_vlan_id;
287 if (adapter->vlgrp) {
288 if (!adapter->vlgrp->vlan_devices[vid]) {
289 if (adapter->hw.mng_cookie.status &
290 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
291 e1000_vlan_rx_add_vid(netdev, vid);
292 adapter->mng_vlan_id = vid;
293 } else
294 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
295
296 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
297 (vid != old_vid) &&
298 !adapter->vlgrp->vlan_devices[old_vid])
299 e1000_vlan_rx_kill_vid(netdev, old_vid);
300 } else
301 adapter->mng_vlan_id = vid;
302 }
303 }
304
305 /**
306 * e1000_release_hw_control - release control of the h/w to f/w
307 * @adapter: address of board private structure
308 *
309 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
310 * For ASF and Pass Through versions of f/w this means that the
311 * driver is no longer loaded. For AMT version (only with 82573) i
312 * of the f/w this means that the netowrk i/f is closed.
313 *
314 **/
315
316 static void
317 e1000_release_hw_control(struct e1000_adapter *adapter)
318 {
319 uint32_t ctrl_ext;
320 uint32_t swsm;
321
322 /* Let firmware taken over control of h/w */
323 switch (adapter->hw.mac_type) {
324 case e1000_82571:
325 case e1000_82572:
326 case e1000_80003es2lan:
327 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
328 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
329 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
330 break;
331 case e1000_82573:
332 swsm = E1000_READ_REG(&adapter->hw, SWSM);
333 E1000_WRITE_REG(&adapter->hw, SWSM,
334 swsm & ~E1000_SWSM_DRV_LOAD);
335 default:
336 break;
337 }
338 }
339
340 /**
341 * e1000_get_hw_control - get control of the h/w from f/w
342 * @adapter: address of board private structure
343 *
344 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
345 * For ASF and Pass Through versions of f/w this means that
346 * the driver is loaded. For AMT version (only with 82573)
347 * of the f/w this means that the netowrk i/f is open.
348 *
349 **/
350
351 static void
352 e1000_get_hw_control(struct e1000_adapter *adapter)
353 {
354 uint32_t ctrl_ext;
355 uint32_t swsm;
356 /* Let firmware know the driver has taken over */
357 switch (adapter->hw.mac_type) {
358 case e1000_82571:
359 case e1000_82572:
360 case e1000_80003es2lan:
361 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
362 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
363 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
364 break;
365 case e1000_82573:
366 swsm = E1000_READ_REG(&adapter->hw, SWSM);
367 E1000_WRITE_REG(&adapter->hw, SWSM,
368 swsm | E1000_SWSM_DRV_LOAD);
369 break;
370 default:
371 break;
372 }
373 }
374
375 int
376 e1000_up(struct e1000_adapter *adapter)
377 {
378 struct net_device *netdev = adapter->netdev;
379 int i, err;
380
381 /* hardware has been reset, we need to reload some things */
382
383 /* Reset the PHY if it was previously powered down */
384 if (adapter->hw.media_type == e1000_media_type_copper) {
385 uint16_t mii_reg;
386 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
387 if (mii_reg & MII_CR_POWER_DOWN)
388 e1000_phy_hw_reset(&adapter->hw);
389 }
390
391 e1000_set_multi(netdev);
392
393 e1000_restore_vlan(adapter);
394
395 e1000_configure_tx(adapter);
396 e1000_setup_rctl(adapter);
397 e1000_configure_rx(adapter);
398 /* call E1000_DESC_UNUSED which always leaves
399 * at least 1 descriptor unused to make sure
400 * next_to_use != next_to_clean */
401 for (i = 0; i < adapter->num_rx_queues; i++) {
402 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
403 adapter->alloc_rx_buf(adapter, ring,
404 E1000_DESC_UNUSED(ring));
405 }
406
407 #ifdef CONFIG_PCI_MSI
408 if (adapter->hw.mac_type > e1000_82547_rev_2) {
409 adapter->have_msi = TRUE;
410 if ((err = pci_enable_msi(adapter->pdev))) {
411 DPRINTK(PROBE, ERR,
412 "Unable to allocate MSI interrupt Error: %d\n", err);
413 adapter->have_msi = FALSE;
414 }
415 }
416 #endif
417 if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
418 SA_SHIRQ | SA_SAMPLE_RANDOM,
419 netdev->name, netdev))) {
420 DPRINTK(PROBE, ERR,
421 "Unable to allocate interrupt Error: %d\n", err);
422 return err;
423 }
424
425 adapter->tx_queue_len = netdev->tx_queue_len;
426
427 mod_timer(&adapter->watchdog_timer, jiffies);
428
429 #ifdef CONFIG_E1000_NAPI
430 netif_poll_enable(netdev);
431 #endif
432 e1000_irq_enable(adapter);
433
434 return 0;
435 }
436
437 void
438 e1000_down(struct e1000_adapter *adapter)
439 {
440 struct net_device *netdev = adapter->netdev;
441 boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
442 e1000_check_mng_mode(&adapter->hw);
443
444 e1000_irq_disable(adapter);
445
446 free_irq(adapter->pdev->irq, netdev);
447 #ifdef CONFIG_PCI_MSI
448 if (adapter->hw.mac_type > e1000_82547_rev_2 &&
449 adapter->have_msi == TRUE)
450 pci_disable_msi(adapter->pdev);
451 #endif
452 del_timer_sync(&adapter->tx_fifo_stall_timer);
453 del_timer_sync(&adapter->watchdog_timer);
454 del_timer_sync(&adapter->phy_info_timer);
455
456 #ifdef CONFIG_E1000_NAPI
457 netif_poll_disable(netdev);
458 #endif
459 netdev->tx_queue_len = adapter->tx_queue_len;
460 adapter->link_speed = 0;
461 adapter->link_duplex = 0;
462 netif_carrier_off(netdev);
463 netif_stop_queue(netdev);
464
465 e1000_reset(adapter);
466 e1000_clean_all_tx_rings(adapter);
467 e1000_clean_all_rx_rings(adapter);
468
469 /* Power down the PHY so no link is implied when interface is down *
470 * The PHY cannot be powered down if any of the following is TRUE *
471 * (a) WoL is enabled
472 * (b) AMT is active
473 * (c) SoL/IDER session is active */
474 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
475 adapter->hw.media_type == e1000_media_type_copper &&
476 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
477 !mng_mode_enabled &&
478 !e1000_check_phy_reset_block(&adapter->hw)) {
479 uint16_t mii_reg;
480 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
481 mii_reg |= MII_CR_POWER_DOWN;
482 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
483 mdelay(1);
484 }
485 }
486
487 void
488 e1000_reset(struct e1000_adapter *adapter)
489 {
490 uint32_t pba, manc;
491 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
492
493 /* Repartition Pba for greater than 9k mtu
494 * To take effect CTRL.RST is required.
495 */
496
497 switch (adapter->hw.mac_type) {
498 case e1000_82547:
499 case e1000_82547_rev_2:
500 pba = E1000_PBA_30K;
501 break;
502 case e1000_82571:
503 case e1000_82572:
504 case e1000_80003es2lan:
505 pba = E1000_PBA_38K;
506 break;
507 case e1000_82573:
508 pba = E1000_PBA_12K;
509 break;
510 default:
511 pba = E1000_PBA_48K;
512 break;
513 }
514
515 if ((adapter->hw.mac_type != e1000_82573) &&
516 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
517 pba -= 8; /* allocate more FIFO for Tx */
518
519
520 if (adapter->hw.mac_type == e1000_82547) {
521 adapter->tx_fifo_head = 0;
522 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
523 adapter->tx_fifo_size =
524 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
525 atomic_set(&adapter->tx_fifo_stall, 0);
526 }
527
528 E1000_WRITE_REG(&adapter->hw, PBA, pba);
529
530 /* flow control settings */
531 /* Set the FC high water mark to 90% of the FIFO size.
532 * Required to clear last 3 LSB */
533 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
534
535 adapter->hw.fc_high_water = fc_high_water_mark;
536 adapter->hw.fc_low_water = fc_high_water_mark - 8;
537 if (adapter->hw.mac_type == e1000_80003es2lan)
538 adapter->hw.fc_pause_time = 0xFFFF;
539 else
540 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
541 adapter->hw.fc_send_xon = 1;
542 adapter->hw.fc = adapter->hw.original_fc;
543
544 /* Allow time for pending master requests to run */
545 e1000_reset_hw(&adapter->hw);
546 if (adapter->hw.mac_type >= e1000_82544)
547 E1000_WRITE_REG(&adapter->hw, WUC, 0);
548 if (e1000_init_hw(&adapter->hw))
549 DPRINTK(PROBE, ERR, "Hardware Error\n");
550 e1000_update_mng_vlan(adapter);
551 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
552 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
553
554 e1000_reset_adaptive(&adapter->hw);
555 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
556 if (adapter->en_mng_pt) {
557 manc = E1000_READ_REG(&adapter->hw, MANC);
558 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
559 E1000_WRITE_REG(&adapter->hw, MANC, manc);
560 }
561 }
562
563 /**
564 * e1000_probe - Device Initialization Routine
565 * @pdev: PCI device information struct
566 * @ent: entry in e1000_pci_tbl
567 *
568 * Returns 0 on success, negative on failure
569 *
570 * e1000_probe initializes an adapter identified by a pci_dev structure.
571 * The OS initialization, configuring of the adapter private structure,
572 * and a hardware reset occur.
573 **/
574
575 static int __devinit
576 e1000_probe(struct pci_dev *pdev,
577 const struct pci_device_id *ent)
578 {
579 struct net_device *netdev;
580 struct e1000_adapter *adapter;
581 unsigned long mmio_start, mmio_len;
582
583 static int cards_found = 0;
584 static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
585 int i, err, pci_using_dac;
586 uint16_t eeprom_data;
587 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
588 if ((err = pci_enable_device(pdev)))
589 return err;
590
591 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
592 pci_using_dac = 1;
593 } else {
594 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
595 E1000_ERR("No usable DMA configuration, aborting\n");
596 return err;
597 }
598 pci_using_dac = 0;
599 }
600
601 if ((err = pci_request_regions(pdev, e1000_driver_name)))
602 return err;
603
604 pci_set_master(pdev);
605
606 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
607 if (!netdev) {
608 err = -ENOMEM;
609 goto err_alloc_etherdev;
610 }
611
612 SET_MODULE_OWNER(netdev);
613 SET_NETDEV_DEV(netdev, &pdev->dev);
614
615 pci_set_drvdata(pdev, netdev);
616 adapter = netdev_priv(netdev);
617 adapter->netdev = netdev;
618 adapter->pdev = pdev;
619 adapter->hw.back = adapter;
620 adapter->msg_enable = (1 << debug) - 1;
621
622 mmio_start = pci_resource_start(pdev, BAR_0);
623 mmio_len = pci_resource_len(pdev, BAR_0);
624
625 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
626 if (!adapter->hw.hw_addr) {
627 err = -EIO;
628 goto err_ioremap;
629 }
630
631 for (i = BAR_1; i <= BAR_5; i++) {
632 if (pci_resource_len(pdev, i) == 0)
633 continue;
634 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
635 adapter->hw.io_base = pci_resource_start(pdev, i);
636 break;
637 }
638 }
639
640 netdev->open = &e1000_open;
641 netdev->stop = &e1000_close;
642 netdev->hard_start_xmit = &e1000_xmit_frame;
643 netdev->get_stats = &e1000_get_stats;
644 netdev->set_multicast_list = &e1000_set_multi;
645 netdev->set_mac_address = &e1000_set_mac;
646 netdev->change_mtu = &e1000_change_mtu;
647 netdev->do_ioctl = &e1000_ioctl;
648 e1000_set_ethtool_ops(netdev);
649 netdev->tx_timeout = &e1000_tx_timeout;
650 netdev->watchdog_timeo = 5 * HZ;
651 #ifdef CONFIG_E1000_NAPI
652 netdev->poll = &e1000_clean;
653 netdev->weight = 64;
654 #endif
655 netdev->vlan_rx_register = e1000_vlan_rx_register;
656 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
657 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
658 #ifdef CONFIG_NET_POLL_CONTROLLER
659 netdev->poll_controller = e1000_netpoll;
660 #endif
661 strcpy(netdev->name, pci_name(pdev));
662
663 netdev->mem_start = mmio_start;
664 netdev->mem_end = mmio_start + mmio_len;
665 netdev->base_addr = adapter->hw.io_base;
666
667 adapter->bd_number = cards_found;
668
669 /* setup the private structure */
670
671 if ((err = e1000_sw_init(adapter)))
672 goto err_sw_init;
673
674 if ((err = e1000_check_phy_reset_block(&adapter->hw)))
675 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
676
677 /* if ksp3, indicate if it's port a being setup */
678 if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
679 e1000_ksp3_port_a == 0)
680 adapter->ksp3_port_a = 1;
681 e1000_ksp3_port_a++;
682 /* Reset for multiple KP3 adapters */
683 if (e1000_ksp3_port_a == 4)
684 e1000_ksp3_port_a = 0;
685
686 if (adapter->hw.mac_type >= e1000_82543) {
687 netdev->features = NETIF_F_SG |
688 NETIF_F_HW_CSUM |
689 NETIF_F_HW_VLAN_TX |
690 NETIF_F_HW_VLAN_RX |
691 NETIF_F_HW_VLAN_FILTER;
692 }
693
694 #ifdef NETIF_F_TSO
695 if ((adapter->hw.mac_type >= e1000_82544) &&
696 (adapter->hw.mac_type != e1000_82547))
697 netdev->features |= NETIF_F_TSO;
698
699 #ifdef NETIF_F_TSO_IPV6
700 if (adapter->hw.mac_type > e1000_82547_rev_2)
701 netdev->features |= NETIF_F_TSO_IPV6;
702 #endif
703 #endif
704 if (pci_using_dac)
705 netdev->features |= NETIF_F_HIGHDMA;
706
707 /* hard_start_xmit is safe against parallel locking */
708 netdev->features |= NETIF_F_LLTX;
709
710 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
711
712 /* before reading the EEPROM, reset the controller to
713 * put the device in a known good starting state */
714
715 e1000_reset_hw(&adapter->hw);
716
717 /* make sure the EEPROM is good */
718
719 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
720 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
721 err = -EIO;
722 goto err_eeprom;
723 }
724
725 /* copy the MAC address out of the EEPROM */
726
727 if (e1000_read_mac_addr(&adapter->hw))
728 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
729 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
730 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
731
732 if (!is_valid_ether_addr(netdev->perm_addr)) {
733 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
734 err = -EIO;
735 goto err_eeprom;
736 }
737
738 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
739
740 e1000_get_bus_info(&adapter->hw);
741
742 init_timer(&adapter->tx_fifo_stall_timer);
743 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
744 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
745
746 init_timer(&adapter->watchdog_timer);
747 adapter->watchdog_timer.function = &e1000_watchdog;
748 adapter->watchdog_timer.data = (unsigned long) adapter;
749
750 INIT_WORK(&adapter->watchdog_task,
751 (void (*)(void *))e1000_watchdog_task, adapter);
752
753 init_timer(&adapter->phy_info_timer);
754 adapter->phy_info_timer.function = &e1000_update_phy_info;
755 adapter->phy_info_timer.data = (unsigned long) adapter;
756
757 INIT_WORK(&adapter->reset_task,
758 (void (*)(void *))e1000_reset_task, netdev);
759
760 /* we're going to reset, so assume we have no link for now */
761
762 netif_carrier_off(netdev);
763 netif_stop_queue(netdev);
764
765 e1000_check_options(adapter);
766
767 /* Initial Wake on LAN setting
768 * If APM wake is enabled in the EEPROM,
769 * enable the ACPI Magic Packet filter
770 */
771
772 switch (adapter->hw.mac_type) {
773 case e1000_82542_rev2_0:
774 case e1000_82542_rev2_1:
775 case e1000_82543:
776 break;
777 case e1000_82544:
778 e1000_read_eeprom(&adapter->hw,
779 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
780 eeprom_apme_mask = E1000_EEPROM_82544_APM;
781 break;
782 case e1000_82546:
783 case e1000_82546_rev_3:
784 case e1000_82571:
785 case e1000_80003es2lan:
786 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
787 e1000_read_eeprom(&adapter->hw,
788 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
789 break;
790 }
791 /* Fall Through */
792 default:
793 e1000_read_eeprom(&adapter->hw,
794 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
795 break;
796 }
797 if (eeprom_data & eeprom_apme_mask)
798 adapter->wol |= E1000_WUFC_MAG;
799
800 /* print bus type/speed/width info */
801 {
802 struct e1000_hw *hw = &adapter->hw;
803 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
804 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
805 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
806 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
807 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
808 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
809 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
810 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
811 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
812 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
813 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
814 "32-bit"));
815 }
816
817 for (i = 0; i < 6; i++)
818 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
819
820 /* reset the hardware with the new settings */
821 e1000_reset(adapter);
822
823 /* If the controller is 82573 and f/w is AMT, do not set
824 * DRV_LOAD until the interface is up. For all other cases,
825 * let the f/w know that the h/w is now under the control
826 * of the driver. */
827 if (adapter->hw.mac_type != e1000_82573 ||
828 !e1000_check_mng_mode(&adapter->hw))
829 e1000_get_hw_control(adapter);
830
831 strcpy(netdev->name, "eth%d");
832 if ((err = register_netdev(netdev)))
833 goto err_register;
834
835 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
836
837 cards_found++;
838 return 0;
839
840 err_register:
841 err_sw_init:
842 err_eeprom:
843 iounmap(adapter->hw.hw_addr);
844 err_ioremap:
845 free_netdev(netdev);
846 err_alloc_etherdev:
847 pci_release_regions(pdev);
848 return err;
849 }
850
851 /**
852 * e1000_remove - Device Removal Routine
853 * @pdev: PCI device information struct
854 *
855 * e1000_remove is called by the PCI subsystem to alert the driver
856 * that it should release a PCI device. The could be caused by a
857 * Hot-Plug event, or because the driver is going to be removed from
858 * memory.
859 **/
860
861 static void __devexit
862 e1000_remove(struct pci_dev *pdev)
863 {
864 struct net_device *netdev = pci_get_drvdata(pdev);
865 struct e1000_adapter *adapter = netdev_priv(netdev);
866 uint32_t manc;
867 #ifdef CONFIG_E1000_NAPI
868 int i;
869 #endif
870
871 flush_scheduled_work();
872
873 if (adapter->hw.mac_type >= e1000_82540 &&
874 adapter->hw.media_type == e1000_media_type_copper) {
875 manc = E1000_READ_REG(&adapter->hw, MANC);
876 if (manc & E1000_MANC_SMBUS_EN) {
877 manc |= E1000_MANC_ARP_EN;
878 E1000_WRITE_REG(&adapter->hw, MANC, manc);
879 }
880 }
881
882 /* Release control of h/w to f/w. If f/w is AMT enabled, this
883 * would have already happened in close and is redundant. */
884 e1000_release_hw_control(adapter);
885
886 unregister_netdev(netdev);
887 #ifdef CONFIG_E1000_NAPI
888 for (i = 0; i < adapter->num_rx_queues; i++)
889 dev_put(&adapter->polling_netdev[i]);
890 #endif
891
892 if (!e1000_check_phy_reset_block(&adapter->hw))
893 e1000_phy_hw_reset(&adapter->hw);
894
895 kfree(adapter->tx_ring);
896 kfree(adapter->rx_ring);
897 #ifdef CONFIG_E1000_NAPI
898 kfree(adapter->polling_netdev);
899 #endif
900
901 iounmap(adapter->hw.hw_addr);
902 pci_release_regions(pdev);
903
904 free_netdev(netdev);
905
906 pci_disable_device(pdev);
907 }
908
909 /**
910 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
911 * @adapter: board private structure to initialize
912 *
913 * e1000_sw_init initializes the Adapter private data structure.
914 * Fields are initialized based on PCI device information and
915 * OS network device settings (MTU size).
916 **/
917
918 static int __devinit
919 e1000_sw_init(struct e1000_adapter *adapter)
920 {
921 struct e1000_hw *hw = &adapter->hw;
922 struct net_device *netdev = adapter->netdev;
923 struct pci_dev *pdev = adapter->pdev;
924 #ifdef CONFIG_E1000_NAPI
925 int i;
926 #endif
927
928 /* PCI config space info */
929
930 hw->vendor_id = pdev->vendor;
931 hw->device_id = pdev->device;
932 hw->subsystem_vendor_id = pdev->subsystem_vendor;
933 hw->subsystem_id = pdev->subsystem_device;
934
935 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
936
937 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
938
939 adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
940 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
941 hw->max_frame_size = netdev->mtu +
942 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
943 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
944
945 /* identify the MAC */
946
947 if (e1000_set_mac_type(hw)) {
948 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
949 return -EIO;
950 }
951
952 /* initialize eeprom parameters */
953
954 if (e1000_init_eeprom_params(hw)) {
955 E1000_ERR("EEPROM initialization failed\n");
956 return -EIO;
957 }
958
959 switch (hw->mac_type) {
960 default:
961 break;
962 case e1000_82541:
963 case e1000_82547:
964 case e1000_82541_rev_2:
965 case e1000_82547_rev_2:
966 hw->phy_init_script = 1;
967 break;
968 }
969
970 e1000_set_media_type(hw);
971
972 hw->wait_autoneg_complete = FALSE;
973 hw->tbi_compatibility_en = TRUE;
974 hw->adaptive_ifs = TRUE;
975
976 /* Copper options */
977
978 if (hw->media_type == e1000_media_type_copper) {
979 hw->mdix = AUTO_ALL_MODES;
980 hw->disable_polarity_correction = FALSE;
981 hw->master_slave = E1000_MASTER_SLAVE;
982 }
983
984 adapter->num_tx_queues = 1;
985 adapter->num_rx_queues = 1;
986
987 if (e1000_alloc_queues(adapter)) {
988 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
989 return -ENOMEM;
990 }
991
992 #ifdef CONFIG_E1000_NAPI
993 for (i = 0; i < adapter->num_rx_queues; i++) {
994 adapter->polling_netdev[i].priv = adapter;
995 adapter->polling_netdev[i].poll = &e1000_clean;
996 adapter->polling_netdev[i].weight = 64;
997 dev_hold(&adapter->polling_netdev[i]);
998 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
999 }
1000 spin_lock_init(&adapter->tx_queue_lock);
1001 #endif
1002
1003 atomic_set(&adapter->irq_sem, 1);
1004 spin_lock_init(&adapter->stats_lock);
1005
1006 return 0;
1007 }
1008
1009 /**
1010 * e1000_alloc_queues - Allocate memory for all rings
1011 * @adapter: board private structure to initialize
1012 *
1013 * We allocate one ring per queue at run-time since we don't know the
1014 * number of queues at compile-time. The polling_netdev array is
1015 * intended for Multiqueue, but should work fine with a single queue.
1016 **/
1017
1018 static int __devinit
1019 e1000_alloc_queues(struct e1000_adapter *adapter)
1020 {
1021 int size;
1022
1023 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1024 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1025 if (!adapter->tx_ring)
1026 return -ENOMEM;
1027 memset(adapter->tx_ring, 0, size);
1028
1029 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1030 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1031 if (!adapter->rx_ring) {
1032 kfree(adapter->tx_ring);
1033 return -ENOMEM;
1034 }
1035 memset(adapter->rx_ring, 0, size);
1036
1037 #ifdef CONFIG_E1000_NAPI
1038 size = sizeof(struct net_device) * adapter->num_rx_queues;
1039 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1040 if (!adapter->polling_netdev) {
1041 kfree(adapter->tx_ring);
1042 kfree(adapter->rx_ring);
1043 return -ENOMEM;
1044 }
1045 memset(adapter->polling_netdev, 0, size);
1046 #endif
1047
1048 return E1000_SUCCESS;
1049 }
1050
1051 /**
1052 * e1000_open - Called when a network interface is made active
1053 * @netdev: network interface device structure
1054 *
1055 * Returns 0 on success, negative value on failure
1056 *
1057 * The open entry point is called when a network interface is made
1058 * active by the system (IFF_UP). At this point all resources needed
1059 * for transmit and receive operations are allocated, the interrupt
1060 * handler is registered with the OS, the watchdog timer is started,
1061 * and the stack is notified that the interface is ready.
1062 **/
1063
1064 static int
1065 e1000_open(struct net_device *netdev)
1066 {
1067 struct e1000_adapter *adapter = netdev_priv(netdev);
1068 int err;
1069
1070 /* allocate transmit descriptors */
1071
1072 if ((err = e1000_setup_all_tx_resources(adapter)))
1073 goto err_setup_tx;
1074
1075 /* allocate receive descriptors */
1076
1077 if ((err = e1000_setup_all_rx_resources(adapter)))
1078 goto err_setup_rx;
1079
1080 if ((err = e1000_up(adapter)))
1081 goto err_up;
1082 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1083 if ((adapter->hw.mng_cookie.status &
1084 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1085 e1000_update_mng_vlan(adapter);
1086 }
1087
1088 /* If AMT is enabled, let the firmware know that the network
1089 * interface is now open */
1090 if (adapter->hw.mac_type == e1000_82573 &&
1091 e1000_check_mng_mode(&adapter->hw))
1092 e1000_get_hw_control(adapter);
1093
1094 return E1000_SUCCESS;
1095
1096 err_up:
1097 e1000_free_all_rx_resources(adapter);
1098 err_setup_rx:
1099 e1000_free_all_tx_resources(adapter);
1100 err_setup_tx:
1101 e1000_reset(adapter);
1102
1103 return err;
1104 }
1105
1106 /**
1107 * e1000_close - Disables a network interface
1108 * @netdev: network interface device structure
1109 *
1110 * Returns 0, this is not allowed to fail
1111 *
1112 * The close entry point is called when an interface is de-activated
1113 * by the OS. The hardware is still under the drivers control, but
1114 * needs to be disabled. A global MAC reset is issued to stop the
1115 * hardware, and all transmit and receive resources are freed.
1116 **/
1117
1118 static int
1119 e1000_close(struct net_device *netdev)
1120 {
1121 struct e1000_adapter *adapter = netdev_priv(netdev);
1122
1123 e1000_down(adapter);
1124
1125 e1000_free_all_tx_resources(adapter);
1126 e1000_free_all_rx_resources(adapter);
1127
1128 if ((adapter->hw.mng_cookie.status &
1129 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1130 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1131 }
1132
1133 /* If AMT is enabled, let the firmware know that the network
1134 * interface is now closed */
1135 if (adapter->hw.mac_type == e1000_82573 &&
1136 e1000_check_mng_mode(&adapter->hw))
1137 e1000_release_hw_control(adapter);
1138
1139 return 0;
1140 }
1141
1142 /**
1143 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1144 * @adapter: address of board private structure
1145 * @start: address of beginning of memory
1146 * @len: length of memory
1147 **/
1148 static boolean_t
1149 e1000_check_64k_bound(struct e1000_adapter *adapter,
1150 void *start, unsigned long len)
1151 {
1152 unsigned long begin = (unsigned long) start;
1153 unsigned long end = begin + len;
1154
1155 /* First rev 82545 and 82546 need to not allow any memory
1156 * write location to cross 64k boundary due to errata 23 */
1157 if (adapter->hw.mac_type == e1000_82545 ||
1158 adapter->hw.mac_type == e1000_82546) {
1159 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1160 }
1161
1162 return TRUE;
1163 }
1164
1165 /**
1166 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1167 * @adapter: board private structure
1168 * @txdr: tx descriptor ring (for a specific queue) to setup
1169 *
1170 * Return 0 on success, negative on failure
1171 **/
1172
1173 static int
1174 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1175 struct e1000_tx_ring *txdr)
1176 {
1177 struct pci_dev *pdev = adapter->pdev;
1178 int size;
1179
1180 size = sizeof(struct e1000_buffer) * txdr->count;
1181
1182 txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1183 if (!txdr->buffer_info) {
1184 DPRINTK(PROBE, ERR,
1185 "Unable to allocate memory for the transmit descriptor ring\n");
1186 return -ENOMEM;
1187 }
1188 memset(txdr->buffer_info, 0, size);
1189
1190 /* round up to nearest 4K */
1191
1192 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1193 E1000_ROUNDUP(txdr->size, 4096);
1194
1195 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1196 if (!txdr->desc) {
1197 setup_tx_desc_die:
1198 vfree(txdr->buffer_info);
1199 DPRINTK(PROBE, ERR,
1200 "Unable to allocate memory for the transmit descriptor ring\n");
1201 return -ENOMEM;
1202 }
1203
1204 /* Fix for errata 23, can't cross 64kB boundary */
1205 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1206 void *olddesc = txdr->desc;
1207 dma_addr_t olddma = txdr->dma;
1208 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1209 "at %p\n", txdr->size, txdr->desc);
1210 /* Try again, without freeing the previous */
1211 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1212 /* Failed allocation, critical failure */
1213 if (!txdr->desc) {
1214 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1215 goto setup_tx_desc_die;
1216 }
1217
1218 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1219 /* give up */
1220 pci_free_consistent(pdev, txdr->size, txdr->desc,
1221 txdr->dma);
1222 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1223 DPRINTK(PROBE, ERR,
1224 "Unable to allocate aligned memory "
1225 "for the transmit descriptor ring\n");
1226 vfree(txdr->buffer_info);
1227 return -ENOMEM;
1228 } else {
1229 /* Free old allocation, new allocation was successful */
1230 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1231 }
1232 }
1233 memset(txdr->desc, 0, txdr->size);
1234
1235 txdr->next_to_use = 0;
1236 txdr->next_to_clean = 0;
1237 spin_lock_init(&txdr->tx_lock);
1238
1239 return 0;
1240 }
1241
1242 /**
1243 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1244 * (Descriptors) for all queues
1245 * @adapter: board private structure
1246 *
1247 * If this function returns with an error, then it's possible one or
1248 * more of the rings is populated (while the rest are not). It is the
1249 * callers duty to clean those orphaned rings.
1250 *
1251 * Return 0 on success, negative on failure
1252 **/
1253
1254 int
1255 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1256 {
1257 int i, err = 0;
1258
1259 for (i = 0; i < adapter->num_tx_queues; i++) {
1260 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1261 if (err) {
1262 DPRINTK(PROBE, ERR,
1263 "Allocation for Tx Queue %u failed\n", i);
1264 break;
1265 }
1266 }
1267
1268 return err;
1269 }
1270
1271 /**
1272 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1273 * @adapter: board private structure
1274 *
1275 * Configure the Tx unit of the MAC after a reset.
1276 **/
1277
1278 static void
1279 e1000_configure_tx(struct e1000_adapter *adapter)
1280 {
1281 uint64_t tdba;
1282 struct e1000_hw *hw = &adapter->hw;
1283 uint32_t tdlen, tctl, tipg, tarc;
1284 uint32_t ipgr1, ipgr2;
1285
1286 /* Setup the HW Tx Head and Tail descriptor pointers */
1287
1288 switch (adapter->num_tx_queues) {
1289 case 1:
1290 default:
1291 tdba = adapter->tx_ring[0].dma;
1292 tdlen = adapter->tx_ring[0].count *
1293 sizeof(struct e1000_tx_desc);
1294 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1295 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1296 E1000_WRITE_REG(hw, TDLEN, tdlen);
1297 E1000_WRITE_REG(hw, TDH, 0);
1298 E1000_WRITE_REG(hw, TDT, 0);
1299 adapter->tx_ring[0].tdh = E1000_TDH;
1300 adapter->tx_ring[0].tdt = E1000_TDT;
1301 break;
1302 }
1303
1304 /* Set the default values for the Tx Inter Packet Gap timer */
1305
1306 if (hw->media_type == e1000_media_type_fiber ||
1307 hw->media_type == e1000_media_type_internal_serdes)
1308 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1309 else
1310 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1311
1312 switch (hw->mac_type) {
1313 case e1000_82542_rev2_0:
1314 case e1000_82542_rev2_1:
1315 tipg = DEFAULT_82542_TIPG_IPGT;
1316 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1317 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1318 break;
1319 case e1000_80003es2lan:
1320 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1321 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1322 break;
1323 default:
1324 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1325 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1326 break;
1327 }
1328 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1329 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1330 E1000_WRITE_REG(hw, TIPG, tipg);
1331
1332 /* Set the Tx Interrupt Delay register */
1333
1334 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1335 if (hw->mac_type >= e1000_82540)
1336 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1337
1338 /* Program the Transmit Control Register */
1339
1340 tctl = E1000_READ_REG(hw, TCTL);
1341
1342 tctl &= ~E1000_TCTL_CT;
1343 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1344 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1345
1346 #ifdef DISABLE_MULR
1347 /* disable Multiple Reads for debugging */
1348 tctl &= ~E1000_TCTL_MULR;
1349 #endif
1350
1351 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1352 tarc = E1000_READ_REG(hw, TARC0);
1353 tarc |= ((1 << 25) | (1 << 21));
1354 E1000_WRITE_REG(hw, TARC0, tarc);
1355 tarc = E1000_READ_REG(hw, TARC1);
1356 tarc |= (1 << 25);
1357 if (tctl & E1000_TCTL_MULR)
1358 tarc &= ~(1 << 28);
1359 else
1360 tarc |= (1 << 28);
1361 E1000_WRITE_REG(hw, TARC1, tarc);
1362 } else if (hw->mac_type == e1000_80003es2lan) {
1363 tarc = E1000_READ_REG(hw, TARC0);
1364 tarc |= 1;
1365 if (hw->media_type == e1000_media_type_internal_serdes)
1366 tarc |= (1 << 20);
1367 E1000_WRITE_REG(hw, TARC0, tarc);
1368 tarc = E1000_READ_REG(hw, TARC1);
1369 tarc |= 1;
1370 E1000_WRITE_REG(hw, TARC1, tarc);
1371 }
1372
1373 e1000_config_collision_dist(hw);
1374
1375 /* Setup Transmit Descriptor Settings for eop descriptor */
1376 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1377 E1000_TXD_CMD_IFCS;
1378
1379 if (hw->mac_type < e1000_82543)
1380 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1381 else
1382 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1383
1384 /* Cache if we're 82544 running in PCI-X because we'll
1385 * need this to apply a workaround later in the send path. */
1386 if (hw->mac_type == e1000_82544 &&
1387 hw->bus_type == e1000_bus_type_pcix)
1388 adapter->pcix_82544 = 1;
1389
1390 E1000_WRITE_REG(hw, TCTL, tctl);
1391
1392 }
1393
1394 /**
1395 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1396 * @adapter: board private structure
1397 * @rxdr: rx descriptor ring (for a specific queue) to setup
1398 *
1399 * Returns 0 on success, negative on failure
1400 **/
1401
1402 static int
1403 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1404 struct e1000_rx_ring *rxdr)
1405 {
1406 struct pci_dev *pdev = adapter->pdev;
1407 int size, desc_len;
1408
1409 size = sizeof(struct e1000_buffer) * rxdr->count;
1410 rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1411 if (!rxdr->buffer_info) {
1412 DPRINTK(PROBE, ERR,
1413 "Unable to allocate memory for the receive descriptor ring\n");
1414 return -ENOMEM;
1415 }
1416 memset(rxdr->buffer_info, 0, size);
1417
1418 size = sizeof(struct e1000_ps_page) * rxdr->count;
1419 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1420 if (!rxdr->ps_page) {
1421 vfree(rxdr->buffer_info);
1422 DPRINTK(PROBE, ERR,
1423 "Unable to allocate memory for the receive descriptor ring\n");
1424 return -ENOMEM;
1425 }
1426 memset(rxdr->ps_page, 0, size);
1427
1428 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1429 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1430 if (!rxdr->ps_page_dma) {
1431 vfree(rxdr->buffer_info);
1432 kfree(rxdr->ps_page);
1433 DPRINTK(PROBE, ERR,
1434 "Unable to allocate memory for the receive descriptor ring\n");
1435 return -ENOMEM;
1436 }
1437 memset(rxdr->ps_page_dma, 0, size);
1438
1439 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1440 desc_len = sizeof(struct e1000_rx_desc);
1441 else
1442 desc_len = sizeof(union e1000_rx_desc_packet_split);
1443
1444 /* Round up to nearest 4K */
1445
1446 rxdr->size = rxdr->count * desc_len;
1447 E1000_ROUNDUP(rxdr->size, 4096);
1448
1449 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1450
1451 if (!rxdr->desc) {
1452 DPRINTK(PROBE, ERR,
1453 "Unable to allocate memory for the receive descriptor ring\n");
1454 setup_rx_desc_die:
1455 vfree(rxdr->buffer_info);
1456 kfree(rxdr->ps_page);
1457 kfree(rxdr->ps_page_dma);
1458 return -ENOMEM;
1459 }
1460
1461 /* Fix for errata 23, can't cross 64kB boundary */
1462 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1463 void *olddesc = rxdr->desc;
1464 dma_addr_t olddma = rxdr->dma;
1465 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1466 "at %p\n", rxdr->size, rxdr->desc);
1467 /* Try again, without freeing the previous */
1468 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1469 /* Failed allocation, critical failure */
1470 if (!rxdr->desc) {
1471 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1472 DPRINTK(PROBE, ERR,
1473 "Unable to allocate memory "
1474 "for the receive descriptor ring\n");
1475 goto setup_rx_desc_die;
1476 }
1477
1478 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1479 /* give up */
1480 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1481 rxdr->dma);
1482 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1483 DPRINTK(PROBE, ERR,
1484 "Unable to allocate aligned memory "
1485 "for the receive descriptor ring\n");
1486 goto setup_rx_desc_die;
1487 } else {
1488 /* Free old allocation, new allocation was successful */
1489 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1490 }
1491 }
1492 memset(rxdr->desc, 0, rxdr->size);
1493
1494 rxdr->next_to_clean = 0;
1495 rxdr->next_to_use = 0;
1496
1497 return 0;
1498 }
1499
1500 /**
1501 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1502 * (Descriptors) for all queues
1503 * @adapter: board private structure
1504 *
1505 * If this function returns with an error, then it's possible one or
1506 * more of the rings is populated (while the rest are not). It is the
1507 * callers duty to clean those orphaned rings.
1508 *
1509 * Return 0 on success, negative on failure
1510 **/
1511
1512 int
1513 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1514 {
1515 int i, err = 0;
1516
1517 for (i = 0; i < adapter->num_rx_queues; i++) {
1518 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1519 if (err) {
1520 DPRINTK(PROBE, ERR,
1521 "Allocation for Rx Queue %u failed\n", i);
1522 break;
1523 }
1524 }
1525
1526 return err;
1527 }
1528
1529 /**
1530 * e1000_setup_rctl - configure the receive control registers
1531 * @adapter: Board private structure
1532 **/
1533 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1534 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1535 static void
1536 e1000_setup_rctl(struct e1000_adapter *adapter)
1537 {
1538 uint32_t rctl, rfctl;
1539 uint32_t psrctl = 0;
1540 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1541 uint32_t pages = 0;
1542 #endif
1543
1544 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1545
1546 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1547
1548 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1549 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1550 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1551
1552 if (adapter->hw.mac_type > e1000_82543)
1553 rctl |= E1000_RCTL_SECRC;
1554
1555 if (adapter->hw.tbi_compatibility_on == 1)
1556 rctl |= E1000_RCTL_SBP;
1557 else
1558 rctl &= ~E1000_RCTL_SBP;
1559
1560 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1561 rctl &= ~E1000_RCTL_LPE;
1562 else
1563 rctl |= E1000_RCTL_LPE;
1564
1565 /* Setup buffer sizes */
1566 rctl &= ~E1000_RCTL_SZ_4096;
1567 rctl |= E1000_RCTL_BSEX;
1568 switch (adapter->rx_buffer_len) {
1569 case E1000_RXBUFFER_256:
1570 rctl |= E1000_RCTL_SZ_256;
1571 rctl &= ~E1000_RCTL_BSEX;
1572 break;
1573 case E1000_RXBUFFER_512:
1574 rctl |= E1000_RCTL_SZ_512;
1575 rctl &= ~E1000_RCTL_BSEX;
1576 break;
1577 case E1000_RXBUFFER_1024:
1578 rctl |= E1000_RCTL_SZ_1024;
1579 rctl &= ~E1000_RCTL_BSEX;
1580 break;
1581 case E1000_RXBUFFER_2048:
1582 default:
1583 rctl |= E1000_RCTL_SZ_2048;
1584 rctl &= ~E1000_RCTL_BSEX;
1585 break;
1586 case E1000_RXBUFFER_4096:
1587 rctl |= E1000_RCTL_SZ_4096;
1588 break;
1589 case E1000_RXBUFFER_8192:
1590 rctl |= E1000_RCTL_SZ_8192;
1591 break;
1592 case E1000_RXBUFFER_16384:
1593 rctl |= E1000_RCTL_SZ_16384;
1594 break;
1595 }
1596
1597 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1598 /* 82571 and greater support packet-split where the protocol
1599 * header is placed in skb->data and the packet data is
1600 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1601 * In the case of a non-split, skb->data is linearly filled,
1602 * followed by the page buffers. Therefore, skb->data is
1603 * sized to hold the largest protocol header.
1604 */
1605 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1606 if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1607 PAGE_SIZE <= 16384)
1608 adapter->rx_ps_pages = pages;
1609 else
1610 adapter->rx_ps_pages = 0;
1611 #endif
1612 if (adapter->rx_ps_pages) {
1613 /* Configure extra packet-split registers */
1614 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1615 rfctl |= E1000_RFCTL_EXTEN;
1616 /* disable IPv6 packet split support */
1617 rfctl |= E1000_RFCTL_IPV6_DIS;
1618 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1619
1620 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1621
1622 psrctl |= adapter->rx_ps_bsize0 >>
1623 E1000_PSRCTL_BSIZE0_SHIFT;
1624
1625 switch (adapter->rx_ps_pages) {
1626 case 3:
1627 psrctl |= PAGE_SIZE <<
1628 E1000_PSRCTL_BSIZE3_SHIFT;
1629 case 2:
1630 psrctl |= PAGE_SIZE <<
1631 E1000_PSRCTL_BSIZE2_SHIFT;
1632 case 1:
1633 psrctl |= PAGE_SIZE >>
1634 E1000_PSRCTL_BSIZE1_SHIFT;
1635 break;
1636 }
1637
1638 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1639 }
1640
1641 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1642 }
1643
1644 /**
1645 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1646 * @adapter: board private structure
1647 *
1648 * Configure the Rx unit of the MAC after a reset.
1649 **/
1650
1651 static void
1652 e1000_configure_rx(struct e1000_adapter *adapter)
1653 {
1654 uint64_t rdba;
1655 struct e1000_hw *hw = &adapter->hw;
1656 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1657
1658 if (adapter->rx_ps_pages) {
1659 /* this is a 32 byte descriptor */
1660 rdlen = adapter->rx_ring[0].count *
1661 sizeof(union e1000_rx_desc_packet_split);
1662 adapter->clean_rx = e1000_clean_rx_irq_ps;
1663 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1664 } else {
1665 rdlen = adapter->rx_ring[0].count *
1666 sizeof(struct e1000_rx_desc);
1667 adapter->clean_rx = e1000_clean_rx_irq;
1668 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1669 }
1670
1671 /* disable receives while setting up the descriptors */
1672 rctl = E1000_READ_REG(hw, RCTL);
1673 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1674
1675 /* set the Receive Delay Timer Register */
1676 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1677
1678 if (hw->mac_type >= e1000_82540) {
1679 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1680 if (adapter->itr > 1)
1681 E1000_WRITE_REG(hw, ITR,
1682 1000000000 / (adapter->itr * 256));
1683 }
1684
1685 if (hw->mac_type >= e1000_82571) {
1686 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1687 /* Reset delay timers after every interrupt */
1688 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1689 #ifdef CONFIG_E1000_NAPI
1690 /* Auto-Mask interrupts upon ICR read. */
1691 ctrl_ext |= E1000_CTRL_EXT_IAME;
1692 #endif
1693 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1694 E1000_WRITE_REG(hw, IAM, ~0);
1695 E1000_WRITE_FLUSH(hw);
1696 }
1697
1698 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1699 * the Base and Length of the Rx Descriptor Ring */
1700 switch (adapter->num_rx_queues) {
1701 case 1:
1702 default:
1703 rdba = adapter->rx_ring[0].dma;
1704 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1705 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1706 E1000_WRITE_REG(hw, RDLEN, rdlen);
1707 E1000_WRITE_REG(hw, RDH, 0);
1708 E1000_WRITE_REG(hw, RDT, 0);
1709 adapter->rx_ring[0].rdh = E1000_RDH;
1710 adapter->rx_ring[0].rdt = E1000_RDT;
1711 break;
1712 }
1713
1714 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1715 if (hw->mac_type >= e1000_82543) {
1716 rxcsum = E1000_READ_REG(hw, RXCSUM);
1717 if (adapter->rx_csum == TRUE) {
1718 rxcsum |= E1000_RXCSUM_TUOFL;
1719
1720 /* Enable 82571 IPv4 payload checksum for UDP fragments
1721 * Must be used in conjunction with packet-split. */
1722 if ((hw->mac_type >= e1000_82571) &&
1723 (adapter->rx_ps_pages)) {
1724 rxcsum |= E1000_RXCSUM_IPPCSE;
1725 }
1726 } else {
1727 rxcsum &= ~E1000_RXCSUM_TUOFL;
1728 /* don't need to clear IPPCSE as it defaults to 0 */
1729 }
1730 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1731 }
1732
1733 if (hw->mac_type == e1000_82573)
1734 E1000_WRITE_REG(hw, ERT, 0x0100);
1735
1736 /* Enable Receives */
1737 E1000_WRITE_REG(hw, RCTL, rctl);
1738 }
1739
1740 /**
1741 * e1000_free_tx_resources - Free Tx Resources per Queue
1742 * @adapter: board private structure
1743 * @tx_ring: Tx descriptor ring for a specific queue
1744 *
1745 * Free all transmit software resources
1746 **/
1747
1748 static void
1749 e1000_free_tx_resources(struct e1000_adapter *adapter,
1750 struct e1000_tx_ring *tx_ring)
1751 {
1752 struct pci_dev *pdev = adapter->pdev;
1753
1754 e1000_clean_tx_ring(adapter, tx_ring);
1755
1756 vfree(tx_ring->buffer_info);
1757 tx_ring->buffer_info = NULL;
1758
1759 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1760
1761 tx_ring->desc = NULL;
1762 }
1763
1764 /**
1765 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1766 * @adapter: board private structure
1767 *
1768 * Free all transmit software resources
1769 **/
1770
1771 void
1772 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1773 {
1774 int i;
1775
1776 for (i = 0; i < adapter->num_tx_queues; i++)
1777 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1778 }
1779
1780 static void
1781 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1782 struct e1000_buffer *buffer_info)
1783 {
1784 if (buffer_info->dma) {
1785 pci_unmap_page(adapter->pdev,
1786 buffer_info->dma,
1787 buffer_info->length,
1788 PCI_DMA_TODEVICE);
1789 }
1790 if (buffer_info->skb)
1791 dev_kfree_skb_any(buffer_info->skb);
1792 memset(buffer_info, 0, sizeof(struct e1000_buffer));
1793 }
1794
1795 /**
1796 * e1000_clean_tx_ring - Free Tx Buffers
1797 * @adapter: board private structure
1798 * @tx_ring: ring to be cleaned
1799 **/
1800
1801 static void
1802 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1803 struct e1000_tx_ring *tx_ring)
1804 {
1805 struct e1000_buffer *buffer_info;
1806 unsigned long size;
1807 unsigned int i;
1808
1809 /* Free all the Tx ring sk_buffs */
1810
1811 for (i = 0; i < tx_ring->count; i++) {
1812 buffer_info = &tx_ring->buffer_info[i];
1813 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1814 }
1815
1816 size = sizeof(struct e1000_buffer) * tx_ring->count;
1817 memset(tx_ring->buffer_info, 0, size);
1818
1819 /* Zero out the descriptor ring */
1820
1821 memset(tx_ring->desc, 0, tx_ring->size);
1822
1823 tx_ring->next_to_use = 0;
1824 tx_ring->next_to_clean = 0;
1825 tx_ring->last_tx_tso = 0;
1826
1827 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1828 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1829 }
1830
1831 /**
1832 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1833 * @adapter: board private structure
1834 **/
1835
1836 static void
1837 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1838 {
1839 int i;
1840
1841 for (i = 0; i < adapter->num_tx_queues; i++)
1842 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1843 }
1844
1845 /**
1846 * e1000_free_rx_resources - Free Rx Resources
1847 * @adapter: board private structure
1848 * @rx_ring: ring to clean the resources from
1849 *
1850 * Free all receive software resources
1851 **/
1852
1853 static void
1854 e1000_free_rx_resources(struct e1000_adapter *adapter,
1855 struct e1000_rx_ring *rx_ring)
1856 {
1857 struct pci_dev *pdev = adapter->pdev;
1858
1859 e1000_clean_rx_ring(adapter, rx_ring);
1860
1861 vfree(rx_ring->buffer_info);
1862 rx_ring->buffer_info = NULL;
1863 kfree(rx_ring->ps_page);
1864 rx_ring->ps_page = NULL;
1865 kfree(rx_ring->ps_page_dma);
1866 rx_ring->ps_page_dma = NULL;
1867
1868 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1869
1870 rx_ring->desc = NULL;
1871 }
1872
1873 /**
1874 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1875 * @adapter: board private structure
1876 *
1877 * Free all receive software resources
1878 **/
1879
1880 void
1881 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1882 {
1883 int i;
1884
1885 for (i = 0; i < adapter->num_rx_queues; i++)
1886 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1887 }
1888
1889 /**
1890 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1891 * @adapter: board private structure
1892 * @rx_ring: ring to free buffers from
1893 **/
1894
1895 static void
1896 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1897 struct e1000_rx_ring *rx_ring)
1898 {
1899 struct e1000_buffer *buffer_info;
1900 struct e1000_ps_page *ps_page;
1901 struct e1000_ps_page_dma *ps_page_dma;
1902 struct pci_dev *pdev = adapter->pdev;
1903 unsigned long size;
1904 unsigned int i, j;
1905
1906 /* Free all the Rx ring sk_buffs */
1907 for (i = 0; i < rx_ring->count; i++) {
1908 buffer_info = &rx_ring->buffer_info[i];
1909 if (buffer_info->skb) {
1910 pci_unmap_single(pdev,
1911 buffer_info->dma,
1912 buffer_info->length,
1913 PCI_DMA_FROMDEVICE);
1914
1915 dev_kfree_skb(buffer_info->skb);
1916 buffer_info->skb = NULL;
1917 }
1918 ps_page = &rx_ring->ps_page[i];
1919 ps_page_dma = &rx_ring->ps_page_dma[i];
1920 for (j = 0; j < adapter->rx_ps_pages; j++) {
1921 if (!ps_page->ps_page[j]) break;
1922 pci_unmap_page(pdev,
1923 ps_page_dma->ps_page_dma[j],
1924 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1925 ps_page_dma->ps_page_dma[j] = 0;
1926 put_page(ps_page->ps_page[j]);
1927 ps_page->ps_page[j] = NULL;
1928 }
1929 }
1930
1931 size = sizeof(struct e1000_buffer) * rx_ring->count;
1932 memset(rx_ring->buffer_info, 0, size);
1933 size = sizeof(struct e1000_ps_page) * rx_ring->count;
1934 memset(rx_ring->ps_page, 0, size);
1935 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1936 memset(rx_ring->ps_page_dma, 0, size);
1937
1938 /* Zero out the descriptor ring */
1939
1940 memset(rx_ring->desc, 0, rx_ring->size);
1941
1942 rx_ring->next_to_clean = 0;
1943 rx_ring->next_to_use = 0;
1944
1945 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1946 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1947 }
1948
1949 /**
1950 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1951 * @adapter: board private structure
1952 **/
1953
1954 static void
1955 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1956 {
1957 int i;
1958
1959 for (i = 0; i < adapter->num_rx_queues; i++)
1960 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1961 }
1962
1963 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1964 * and memory write and invalidate disabled for certain operations
1965 */
1966 static void
1967 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1968 {
1969 struct net_device *netdev = adapter->netdev;
1970 uint32_t rctl;
1971
1972 e1000_pci_clear_mwi(&adapter->hw);
1973
1974 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1975 rctl |= E1000_RCTL_RST;
1976 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1977 E1000_WRITE_FLUSH(&adapter->hw);
1978 mdelay(5);
1979
1980 if (netif_running(netdev))
1981 e1000_clean_all_rx_rings(adapter);
1982 }
1983
1984 static void
1985 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1986 {
1987 struct net_device *netdev = adapter->netdev;
1988 uint32_t rctl;
1989
1990 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1991 rctl &= ~E1000_RCTL_RST;
1992 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1993 E1000_WRITE_FLUSH(&adapter->hw);
1994 mdelay(5);
1995
1996 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1997 e1000_pci_set_mwi(&adapter->hw);
1998
1999 if (netif_running(netdev)) {
2000 /* No need to loop, because 82542 supports only 1 queue */
2001 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2002 e1000_configure_rx(adapter);
2003 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2004 }
2005 }
2006
2007 /**
2008 * e1000_set_mac - Change the Ethernet Address of the NIC
2009 * @netdev: network interface device structure
2010 * @p: pointer to an address structure
2011 *
2012 * Returns 0 on success, negative on failure
2013 **/
2014
2015 static int
2016 e1000_set_mac(struct net_device *netdev, void *p)
2017 {
2018 struct e1000_adapter *adapter = netdev_priv(netdev);
2019 struct sockaddr *addr = p;
2020
2021 if (!is_valid_ether_addr(addr->sa_data))
2022 return -EADDRNOTAVAIL;
2023
2024 /* 82542 2.0 needs to be in reset to write receive address registers */
2025
2026 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2027 e1000_enter_82542_rst(adapter);
2028
2029 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2030 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2031
2032 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2033
2034 /* With 82571 controllers, LAA may be overwritten (with the default)
2035 * due to controller reset from the other port. */
2036 if (adapter->hw.mac_type == e1000_82571) {
2037 /* activate the work around */
2038 adapter->hw.laa_is_present = 1;
2039
2040 /* Hold a copy of the LAA in RAR[14] This is done so that
2041 * between the time RAR[0] gets clobbered and the time it
2042 * gets fixed (in e1000_watchdog), the actual LAA is in one
2043 * of the RARs and no incoming packets directed to this port
2044 * are dropped. Eventaully the LAA will be in RAR[0] and
2045 * RAR[14] */
2046 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2047 E1000_RAR_ENTRIES - 1);
2048 }
2049
2050 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2051 e1000_leave_82542_rst(adapter);
2052
2053 return 0;
2054 }
2055
2056 /**
2057 * e1000_set_multi - Multicast and Promiscuous mode set
2058 * @netdev: network interface device structure
2059 *
2060 * The set_multi entry point is called whenever the multicast address
2061 * list or the network interface flags are updated. This routine is
2062 * responsible for configuring the hardware for proper multicast,
2063 * promiscuous mode, and all-multi behavior.
2064 **/
2065
2066 static void
2067 e1000_set_multi(struct net_device *netdev)
2068 {
2069 struct e1000_adapter *adapter = netdev_priv(netdev);
2070 struct e1000_hw *hw = &adapter->hw;
2071 struct dev_mc_list *mc_ptr;
2072 uint32_t rctl;
2073 uint32_t hash_value;
2074 int i, rar_entries = E1000_RAR_ENTRIES;
2075
2076 /* reserve RAR[14] for LAA over-write work-around */
2077 if (adapter->hw.mac_type == e1000_82571)
2078 rar_entries--;
2079
2080 /* Check for Promiscuous and All Multicast modes */
2081
2082 rctl = E1000_READ_REG(hw, RCTL);
2083
2084 if (netdev->flags & IFF_PROMISC) {
2085 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2086 } else if (netdev->flags & IFF_ALLMULTI) {
2087 rctl |= E1000_RCTL_MPE;
2088 rctl &= ~E1000_RCTL_UPE;
2089 } else {
2090 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2091 }
2092
2093 E1000_WRITE_REG(hw, RCTL, rctl);
2094
2095 /* 82542 2.0 needs to be in reset to write receive address registers */
2096
2097 if (hw->mac_type == e1000_82542_rev2_0)
2098 e1000_enter_82542_rst(adapter);
2099
2100 /* load the first 14 multicast address into the exact filters 1-14
2101 * RAR 0 is used for the station MAC adddress
2102 * if there are not 14 addresses, go ahead and clear the filters
2103 * -- with 82571 controllers only 0-13 entries are filled here
2104 */
2105 mc_ptr = netdev->mc_list;
2106
2107 for (i = 1; i < rar_entries; i++) {
2108 if (mc_ptr) {
2109 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2110 mc_ptr = mc_ptr->next;
2111 } else {
2112 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2113 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2114 }
2115 }
2116
2117 /* clear the old settings from the multicast hash table */
2118
2119 for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2120 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2121
2122 /* load any remaining addresses into the hash table */
2123
2124 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2125 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2126 e1000_mta_set(hw, hash_value);
2127 }
2128
2129 if (hw->mac_type == e1000_82542_rev2_0)
2130 e1000_leave_82542_rst(adapter);
2131 }
2132
2133 /* Need to wait a few seconds after link up to get diagnostic information from
2134 * the phy */
2135
2136 static void
2137 e1000_update_phy_info(unsigned long data)
2138 {
2139 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2140 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2141 }
2142
2143 /**
2144 * e1000_82547_tx_fifo_stall - Timer Call-back
2145 * @data: pointer to adapter cast into an unsigned long
2146 **/
2147
2148 static void
2149 e1000_82547_tx_fifo_stall(unsigned long data)
2150 {
2151 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2152 struct net_device *netdev = adapter->netdev;
2153 uint32_t tctl;
2154
2155 if (atomic_read(&adapter->tx_fifo_stall)) {
2156 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2157 E1000_READ_REG(&adapter->hw, TDH)) &&
2158 (E1000_READ_REG(&adapter->hw, TDFT) ==
2159 E1000_READ_REG(&adapter->hw, TDFH)) &&
2160 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2161 E1000_READ_REG(&adapter->hw, TDFHS))) {
2162 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2163 E1000_WRITE_REG(&adapter->hw, TCTL,
2164 tctl & ~E1000_TCTL_EN);
2165 E1000_WRITE_REG(&adapter->hw, TDFT,
2166 adapter->tx_head_addr);
2167 E1000_WRITE_REG(&adapter->hw, TDFH,
2168 adapter->tx_head_addr);
2169 E1000_WRITE_REG(&adapter->hw, TDFTS,
2170 adapter->tx_head_addr);
2171 E1000_WRITE_REG(&adapter->hw, TDFHS,
2172 adapter->tx_head_addr);
2173 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2174 E1000_WRITE_FLUSH(&adapter->hw);
2175
2176 adapter->tx_fifo_head = 0;
2177 atomic_set(&adapter->tx_fifo_stall, 0);
2178 netif_wake_queue(netdev);
2179 } else {
2180 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2181 }
2182 }
2183 }
2184
2185 /**
2186 * e1000_watchdog - Timer Call-back
2187 * @data: pointer to adapter cast into an unsigned long
2188 **/
2189 static void
2190 e1000_watchdog(unsigned long data)
2191 {
2192 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2193
2194 /* Do the rest outside of interrupt context */
2195 schedule_work(&adapter->watchdog_task);
2196 }
2197
2198 static void
2199 e1000_watchdog_task(struct e1000_adapter *adapter)
2200 {
2201 struct net_device *netdev = adapter->netdev;
2202 struct e1000_tx_ring *txdr = adapter->tx_ring;
2203 uint32_t link, tctl;
2204
2205 e1000_check_for_link(&adapter->hw);
2206 if (adapter->hw.mac_type == e1000_82573) {
2207 e1000_enable_tx_pkt_filtering(&adapter->hw);
2208 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2209 e1000_update_mng_vlan(adapter);
2210 }
2211
2212 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2213 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2214 link = !adapter->hw.serdes_link_down;
2215 else
2216 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2217
2218 if (link) {
2219 if (!netif_carrier_ok(netdev)) {
2220 boolean_t txb2b = 1;
2221 e1000_get_speed_and_duplex(&adapter->hw,
2222 &adapter->link_speed,
2223 &adapter->link_duplex);
2224
2225 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2226 adapter->link_speed,
2227 adapter->link_duplex == FULL_DUPLEX ?
2228 "Full Duplex" : "Half Duplex");
2229
2230 /* tweak tx_queue_len according to speed/duplex
2231 * and adjust the timeout factor */
2232 netdev->tx_queue_len = adapter->tx_queue_len;
2233 adapter->tx_timeout_factor = 1;
2234 switch (adapter->link_speed) {
2235 case SPEED_10:
2236 txb2b = 0;
2237 netdev->tx_queue_len = 10;
2238 adapter->tx_timeout_factor = 8;
2239 break;
2240 case SPEED_100:
2241 txb2b = 0;
2242 netdev->tx_queue_len = 100;
2243 /* maybe add some timeout factor ? */
2244 break;
2245 }
2246
2247 if ((adapter->hw.mac_type == e1000_82571 ||
2248 adapter->hw.mac_type == e1000_82572) &&
2249 txb2b == 0) {
2250 #define SPEED_MODE_BIT (1 << 21)
2251 uint32_t tarc0;
2252 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2253 tarc0 &= ~SPEED_MODE_BIT;
2254 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2255 }
2256
2257 #ifdef NETIF_F_TSO
2258 /* disable TSO for pcie and 10/100 speeds, to avoid
2259 * some hardware issues */
2260 if (!adapter->tso_force &&
2261 adapter->hw.bus_type == e1000_bus_type_pci_express){
2262 switch (adapter->link_speed) {
2263 case SPEED_10:
2264 case SPEED_100:
2265 DPRINTK(PROBE,INFO,
2266 "10/100 speed: disabling TSO\n");
2267 netdev->features &= ~NETIF_F_TSO;
2268 break;
2269 case SPEED_1000:
2270 netdev->features |= NETIF_F_TSO;
2271 break;
2272 default:
2273 /* oops */
2274 break;
2275 }
2276 }
2277 #endif
2278
2279 /* enable transmits in the hardware, need to do this
2280 * after setting TARC0 */
2281 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2282 tctl |= E1000_TCTL_EN;
2283 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2284
2285 netif_carrier_on(netdev);
2286 netif_wake_queue(netdev);
2287 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2288 adapter->smartspeed = 0;
2289 }
2290 } else {
2291 if (netif_carrier_ok(netdev)) {
2292 adapter->link_speed = 0;
2293 adapter->link_duplex = 0;
2294 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2295 netif_carrier_off(netdev);
2296 netif_stop_queue(netdev);
2297 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2298
2299 /* 80003ES2LAN workaround--
2300 * For packet buffer work-around on link down event;
2301 * disable receives in the ISR and
2302 * reset device here in the watchdog
2303 */
2304 if (adapter->hw.mac_type == e1000_80003es2lan) {
2305 /* reset device */
2306 schedule_work(&adapter->reset_task);
2307 }
2308 }
2309
2310 e1000_smartspeed(adapter);
2311 }
2312
2313 e1000_update_stats(adapter);
2314
2315 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2316 adapter->tpt_old = adapter->stats.tpt;
2317 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2318 adapter->colc_old = adapter->stats.colc;
2319
2320 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2321 adapter->gorcl_old = adapter->stats.gorcl;
2322 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2323 adapter->gotcl_old = adapter->stats.gotcl;
2324
2325 e1000_update_adaptive(&adapter->hw);
2326
2327 if (!netif_carrier_ok(netdev)) {
2328 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2329 /* We've lost link, so the controller stops DMA,
2330 * but we've got queued Tx work that's never going
2331 * to get done, so reset controller to flush Tx.
2332 * (Do the reset outside of interrupt context). */
2333 adapter->tx_timeout_count++;
2334 schedule_work(&adapter->reset_task);
2335 }
2336 }
2337
2338 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2339 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2340 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2341 * asymmetrical Tx or Rx gets ITR=8000; everyone
2342 * else is between 2000-8000. */
2343 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2344 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2345 adapter->gotcl - adapter->gorcl :
2346 adapter->gorcl - adapter->gotcl) / 10000;
2347 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2348 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2349 }
2350
2351 /* Cause software interrupt to ensure rx ring is cleaned */
2352 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2353
2354 /* Force detection of hung controller every watchdog period */
2355 adapter->detect_tx_hung = TRUE;
2356
2357 /* With 82571 controllers, LAA may be overwritten due to controller
2358 * reset from the other port. Set the appropriate LAA in RAR[0] */
2359 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2360 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2361
2362 /* Reset the timer */
2363 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2364 }
2365
2366 #define E1000_TX_FLAGS_CSUM 0x00000001
2367 #define E1000_TX_FLAGS_VLAN 0x00000002
2368 #define E1000_TX_FLAGS_TSO 0x00000004
2369 #define E1000_TX_FLAGS_IPV4 0x00000008
2370 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2371 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2372
2373 static int
2374 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2375 struct sk_buff *skb)
2376 {
2377 #ifdef NETIF_F_TSO
2378 struct e1000_context_desc *context_desc;
2379 struct e1000_buffer *buffer_info;
2380 unsigned int i;
2381 uint32_t cmd_length = 0;
2382 uint16_t ipcse = 0, tucse, mss;
2383 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2384 int err;
2385
2386 if (skb_shinfo(skb)->tso_size) {
2387 if (skb_header_cloned(skb)) {
2388 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2389 if (err)
2390 return err;
2391 }
2392
2393 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2394 mss = skb_shinfo(skb)->tso_size;
2395 if (skb->protocol == htons(ETH_P_IP)) {
2396 skb->nh.iph->tot_len = 0;
2397 skb->nh.iph->check = 0;
2398 skb->h.th->check =
2399 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2400 skb->nh.iph->daddr,
2401 0,
2402 IPPROTO_TCP,
2403 0);
2404 cmd_length = E1000_TXD_CMD_IP;
2405 ipcse = skb->h.raw - skb->data - 1;
2406 #ifdef NETIF_F_TSO_IPV6
2407 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2408 skb->nh.ipv6h->payload_len = 0;
2409 skb->h.th->check =
2410 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2411 &skb->nh.ipv6h->daddr,
2412 0,
2413 IPPROTO_TCP,
2414 0);
2415 ipcse = 0;
2416 #endif
2417 }
2418 ipcss = skb->nh.raw - skb->data;
2419 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2420 tucss = skb->h.raw - skb->data;
2421 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2422 tucse = 0;
2423
2424 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2425 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2426
2427 i = tx_ring->next_to_use;
2428 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2429 buffer_info = &tx_ring->buffer_info[i];
2430
2431 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2432 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2433 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2434 context_desc->upper_setup.tcp_fields.tucss = tucss;
2435 context_desc->upper_setup.tcp_fields.tucso = tucso;
2436 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2437 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2438 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2439 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2440
2441 buffer_info->time_stamp = jiffies;
2442
2443 if (++i == tx_ring->count) i = 0;
2444 tx_ring->next_to_use = i;
2445
2446 return TRUE;
2447 }
2448 #endif
2449
2450 return FALSE;
2451 }
2452
2453 static boolean_t
2454 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2455 struct sk_buff *skb)
2456 {
2457 struct e1000_context_desc *context_desc;
2458 struct e1000_buffer *buffer_info;
2459 unsigned int i;
2460 uint8_t css;
2461
2462 if (likely(skb->ip_summed == CHECKSUM_HW)) {
2463 css = skb->h.raw - skb->data;
2464
2465 i = tx_ring->next_to_use;
2466 buffer_info = &tx_ring->buffer_info[i];
2467 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2468
2469 context_desc->upper_setup.tcp_fields.tucss = css;
2470 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2471 context_desc->upper_setup.tcp_fields.tucse = 0;
2472 context_desc->tcp_seg_setup.data = 0;
2473 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2474
2475 buffer_info->time_stamp = jiffies;
2476
2477 if (unlikely(++i == tx_ring->count)) i = 0;
2478 tx_ring->next_to_use = i;
2479
2480 return TRUE;
2481 }
2482
2483 return FALSE;
2484 }
2485
2486 #define E1000_MAX_TXD_PWR 12
2487 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2488
2489 static int
2490 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2491 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2492 unsigned int nr_frags, unsigned int mss)
2493 {
2494 struct e1000_buffer *buffer_info;
2495 unsigned int len = skb->len;
2496 unsigned int offset = 0, size, count = 0, i;
2497 unsigned int f;
2498 len -= skb->data_len;
2499
2500 i = tx_ring->next_to_use;
2501
2502 while (len) {
2503 buffer_info = &tx_ring->buffer_info[i];
2504 size = min(len, max_per_txd);
2505 #ifdef NETIF_F_TSO
2506 /* Workaround for Controller erratum --
2507 * descriptor for non-tso packet in a linear SKB that follows a
2508 * tso gets written back prematurely before the data is fully
2509 * DMA'd to the controller */
2510 if (!skb->data_len && tx_ring->last_tx_tso &&
2511 !skb_shinfo(skb)->tso_size) {
2512 tx_ring->last_tx_tso = 0;
2513 size -= 4;
2514 }
2515
2516 /* Workaround for premature desc write-backs
2517 * in TSO mode. Append 4-byte sentinel desc */
2518 if (unlikely(mss && !nr_frags && size == len && size > 8))
2519 size -= 4;
2520 #endif
2521 /* work-around for errata 10 and it applies
2522 * to all controllers in PCI-X mode
2523 * The fix is to make sure that the first descriptor of a
2524 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2525 */
2526 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2527 (size > 2015) && count == 0))
2528 size = 2015;
2529
2530 /* Workaround for potential 82544 hang in PCI-X. Avoid
2531 * terminating buffers within evenly-aligned dwords. */
2532 if (unlikely(adapter->pcix_82544 &&
2533 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2534 size > 4))
2535 size -= 4;
2536
2537 buffer_info->length = size;
2538 buffer_info->dma =
2539 pci_map_single(adapter->pdev,
2540 skb->data + offset,
2541 size,
2542 PCI_DMA_TODEVICE);
2543 buffer_info->time_stamp = jiffies;
2544
2545 len -= size;
2546 offset += size;
2547 count++;
2548 if (unlikely(++i == tx_ring->count)) i = 0;
2549 }
2550
2551 for (f = 0; f < nr_frags; f++) {
2552 struct skb_frag_struct *frag;
2553
2554 frag = &skb_shinfo(skb)->frags[f];
2555 len = frag->size;
2556 offset = frag->page_offset;
2557
2558 while (len) {
2559 buffer_info = &tx_ring->buffer_info[i];
2560 size = min(len, max_per_txd);
2561 #ifdef NETIF_F_TSO
2562 /* Workaround for premature desc write-backs
2563 * in TSO mode. Append 4-byte sentinel desc */
2564 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2565 size -= 4;
2566 #endif
2567 /* Workaround for potential 82544 hang in PCI-X.
2568 * Avoid terminating buffers within evenly-aligned
2569 * dwords. */
2570 if (unlikely(adapter->pcix_82544 &&
2571 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2572 size > 4))
2573 size -= 4;
2574
2575 buffer_info->length = size;
2576 buffer_info->dma =
2577 pci_map_page(adapter->pdev,
2578 frag->page,
2579 offset,
2580 size,
2581 PCI_DMA_TODEVICE);
2582 buffer_info->time_stamp = jiffies;
2583
2584 len -= size;
2585 offset += size;
2586 count++;
2587 if (unlikely(++i == tx_ring->count)) i = 0;
2588 }
2589 }
2590
2591 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2592 tx_ring->buffer_info[i].skb = skb;
2593 tx_ring->buffer_info[first].next_to_watch = i;
2594
2595 return count;
2596 }
2597
2598 static void
2599 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2600 int tx_flags, int count)
2601 {
2602 struct e1000_tx_desc *tx_desc = NULL;
2603 struct e1000_buffer *buffer_info;
2604 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2605 unsigned int i;
2606
2607 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2608 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2609 E1000_TXD_CMD_TSE;
2610 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2611
2612 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2613 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2614 }
2615
2616 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2617 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2618 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2619 }
2620
2621 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2622 txd_lower |= E1000_TXD_CMD_VLE;
2623 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2624 }
2625
2626 i = tx_ring->next_to_use;
2627
2628 while (count--) {
2629 buffer_info = &tx_ring->buffer_info[i];
2630 tx_desc = E1000_TX_DESC(*tx_ring, i);
2631 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2632 tx_desc->lower.data =
2633 cpu_to_le32(txd_lower | buffer_info->length);
2634 tx_desc->upper.data = cpu_to_le32(txd_upper);
2635 if (unlikely(++i == tx_ring->count)) i = 0;
2636 }
2637
2638 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2639
2640 /* Force memory writes to complete before letting h/w
2641 * know there are new descriptors to fetch. (Only
2642 * applicable for weak-ordered memory model archs,
2643 * such as IA-64). */
2644 wmb();
2645
2646 tx_ring->next_to_use = i;
2647 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2648 }
2649
2650 /**
2651 * 82547 workaround to avoid controller hang in half-duplex environment.
2652 * The workaround is to avoid queuing a large packet that would span
2653 * the internal Tx FIFO ring boundary by notifying the stack to resend
2654 * the packet at a later time. This gives the Tx FIFO an opportunity to
2655 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2656 * to the beginning of the Tx FIFO.
2657 **/
2658
2659 #define E1000_FIFO_HDR 0x10
2660 #define E1000_82547_PAD_LEN 0x3E0
2661
2662 static int
2663 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2664 {
2665 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2666 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2667
2668 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2669
2670 if (adapter->link_duplex != HALF_DUPLEX)
2671 goto no_fifo_stall_required;
2672
2673 if (atomic_read(&adapter->tx_fifo_stall))
2674 return 1;
2675
2676 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2677 atomic_set(&adapter->tx_fifo_stall, 1);
2678 return 1;
2679 }
2680
2681 no_fifo_stall_required:
2682 adapter->tx_fifo_head += skb_fifo_len;
2683 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2684 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2685 return 0;
2686 }
2687
2688 #define MINIMUM_DHCP_PACKET_SIZE 282
2689 static int
2690 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2691 {
2692 struct e1000_hw *hw = &adapter->hw;
2693 uint16_t length, offset;
2694 if (vlan_tx_tag_present(skb)) {
2695 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2696 ( adapter->hw.mng_cookie.status &
2697 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2698 return 0;
2699 }
2700 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2701 struct ethhdr *eth = (struct ethhdr *) skb->data;
2702 if ((htons(ETH_P_IP) == eth->h_proto)) {
2703 const struct iphdr *ip =
2704 (struct iphdr *)((uint8_t *)skb->data+14);
2705 if (IPPROTO_UDP == ip->protocol) {
2706 struct udphdr *udp =
2707 (struct udphdr *)((uint8_t *)ip +
2708 (ip->ihl << 2));
2709 if (ntohs(udp->dest) == 67) {
2710 offset = (uint8_t *)udp + 8 - skb->data;
2711 length = skb->len - offset;
2712
2713 return e1000_mng_write_dhcp_info(hw,
2714 (uint8_t *)udp + 8,
2715 length);
2716 }
2717 }
2718 }
2719 }
2720 return 0;
2721 }
2722
2723 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2724 static int
2725 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2726 {
2727 struct e1000_adapter *adapter = netdev_priv(netdev);
2728 struct e1000_tx_ring *tx_ring;
2729 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2730 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2731 unsigned int tx_flags = 0;
2732 unsigned int len = skb->len;
2733 unsigned long flags;
2734 unsigned int nr_frags = 0;
2735 unsigned int mss = 0;
2736 int count = 0;
2737 int tso;
2738 unsigned int f;
2739 len -= skb->data_len;
2740
2741 tx_ring = adapter->tx_ring;
2742
2743 if (unlikely(skb->len <= 0)) {
2744 dev_kfree_skb_any(skb);
2745 return NETDEV_TX_OK;
2746 }
2747
2748 #ifdef NETIF_F_TSO
2749 mss = skb_shinfo(skb)->tso_size;
2750 /* The controller does a simple calculation to
2751 * make sure there is enough room in the FIFO before
2752 * initiating the DMA for each buffer. The calc is:
2753 * 4 = ceil(buffer len/mss). To make sure we don't
2754 * overrun the FIFO, adjust the max buffer len if mss
2755 * drops. */
2756 if (mss) {
2757 uint8_t hdr_len;
2758 max_per_txd = min(mss << 2, max_per_txd);
2759 max_txd_pwr = fls(max_per_txd) - 1;
2760
2761 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2762 * points to just header, pull a few bytes of payload from
2763 * frags into skb->data */
2764 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2765 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2766 switch (adapter->hw.mac_type) {
2767 unsigned int pull_size;
2768 case e1000_82571:
2769 case e1000_82572:
2770 case e1000_82573:
2771 pull_size = min((unsigned int)4, skb->data_len);
2772 if (!__pskb_pull_tail(skb, pull_size)) {
2773 printk(KERN_ERR
2774 "__pskb_pull_tail failed.\n");
2775 dev_kfree_skb_any(skb);
2776 return NETDEV_TX_OK;
2777 }
2778 len = skb->len - skb->data_len;
2779 break;
2780 default:
2781 /* do nothing */
2782 break;
2783 }
2784 }
2785 }
2786
2787 /* reserve a descriptor for the offload context */
2788 if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2789 count++;
2790 count++;
2791 #else
2792 if (skb->ip_summed == CHECKSUM_HW)
2793 count++;
2794 #endif
2795
2796 #ifdef NETIF_F_TSO
2797 /* Controller Erratum workaround */
2798 if (!skb->data_len && tx_ring->last_tx_tso &&
2799 !skb_shinfo(skb)->tso_size)
2800 count++;
2801 #endif
2802
2803 count += TXD_USE_COUNT(len, max_txd_pwr);
2804
2805 if (adapter->pcix_82544)
2806 count++;
2807
2808 /* work-around for errata 10 and it applies to all controllers
2809 * in PCI-X mode, so add one more descriptor to the count
2810 */
2811 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2812 (len > 2015)))
2813 count++;
2814
2815 nr_frags = skb_shinfo(skb)->nr_frags;
2816 for (f = 0; f < nr_frags; f++)
2817 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2818 max_txd_pwr);
2819 if (adapter->pcix_82544)
2820 count += nr_frags;
2821
2822
2823 if (adapter->hw.tx_pkt_filtering &&
2824 (adapter->hw.mac_type == e1000_82573))
2825 e1000_transfer_dhcp_info(adapter, skb);
2826
2827 local_irq_save(flags);
2828 if (!spin_trylock(&tx_ring->tx_lock)) {
2829 /* Collision - tell upper layer to requeue */
2830 local_irq_restore(flags);
2831 return NETDEV_TX_LOCKED;
2832 }
2833
2834 /* need: count + 2 desc gap to keep tail from touching
2835 * head, otherwise try next time */
2836 if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2837 netif_stop_queue(netdev);
2838 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2839 return NETDEV_TX_BUSY;
2840 }
2841
2842 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2843 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2844 netif_stop_queue(netdev);
2845 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2846 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2847 return NETDEV_TX_BUSY;
2848 }
2849 }
2850
2851 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2852 tx_flags |= E1000_TX_FLAGS_VLAN;
2853 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2854 }
2855
2856 first = tx_ring->next_to_use;
2857
2858 tso = e1000_tso(adapter, tx_ring, skb);
2859 if (tso < 0) {
2860 dev_kfree_skb_any(skb);
2861 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2862 return NETDEV_TX_OK;
2863 }
2864
2865 if (likely(tso)) {
2866 tx_ring->last_tx_tso = 1;
2867 tx_flags |= E1000_TX_FLAGS_TSO;
2868 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2869 tx_flags |= E1000_TX_FLAGS_CSUM;
2870
2871 /* Old method was to assume IPv4 packet by default if TSO was enabled.
2872 * 82571 hardware supports TSO capabilities for IPv6 as well...
2873 * no longer assume, we must. */
2874 if (likely(skb->protocol == htons(ETH_P_IP)))
2875 tx_flags |= E1000_TX_FLAGS_IPV4;
2876
2877 e1000_tx_queue(adapter, tx_ring, tx_flags,
2878 e1000_tx_map(adapter, tx_ring, skb, first,
2879 max_per_txd, nr_frags, mss));
2880
2881 netdev->trans_start = jiffies;
2882
2883 /* Make sure there is space in the ring for the next send. */
2884 if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2885 netif_stop_queue(netdev);
2886
2887 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2888 return NETDEV_TX_OK;
2889 }
2890
2891 /**
2892 * e1000_tx_timeout - Respond to a Tx Hang
2893 * @netdev: network interface device structure
2894 **/
2895
2896 static void
2897 e1000_tx_timeout(struct net_device *netdev)
2898 {
2899 struct e1000_adapter *adapter = netdev_priv(netdev);
2900
2901 /* Do the reset outside of interrupt context */
2902 adapter->tx_timeout_count++;
2903 schedule_work(&adapter->reset_task);
2904 }
2905
2906 static void
2907 e1000_reset_task(struct net_device *netdev)
2908 {
2909 struct e1000_adapter *adapter = netdev_priv(netdev);
2910
2911 e1000_down(adapter);
2912 e1000_up(adapter);
2913 }
2914
2915 /**
2916 * e1000_get_stats - Get System Network Statistics
2917 * @netdev: network interface device structure
2918 *
2919 * Returns the address of the device statistics structure.
2920 * The statistics are actually updated from the timer callback.
2921 **/
2922
2923 static struct net_device_stats *
2924 e1000_get_stats(struct net_device *netdev)
2925 {
2926 struct e1000_adapter *adapter = netdev_priv(netdev);
2927
2928 /* only return the current stats */
2929 return &adapter->net_stats;
2930 }
2931
2932 /**
2933 * e1000_change_mtu - Change the Maximum Transfer Unit
2934 * @netdev: network interface device structure
2935 * @new_mtu: new value for maximum frame size
2936 *
2937 * Returns 0 on success, negative on failure
2938 **/
2939
2940 static int
2941 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2942 {
2943 struct e1000_adapter *adapter = netdev_priv(netdev);
2944 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2945 uint16_t eeprom_data = 0;
2946
2947 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2948 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2949 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2950 return -EINVAL;
2951 }
2952
2953 /* Adapter-specific max frame size limits. */
2954 switch (adapter->hw.mac_type) {
2955 case e1000_undefined ... e1000_82542_rev2_1:
2956 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2957 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2958 return -EINVAL;
2959 }
2960 break;
2961 case e1000_82573:
2962 /* only enable jumbo frames if ASPM is disabled completely
2963 * this means both bits must be zero in 0x1A bits 3:2 */
2964 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
2965 &eeprom_data);
2966 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
2967 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2968 DPRINTK(PROBE, ERR,
2969 "Jumbo Frames not supported.\n");
2970 return -EINVAL;
2971 }
2972 break;
2973 }
2974 /* fall through to get support */
2975 case e1000_82571:
2976 case e1000_82572:
2977 case e1000_80003es2lan:
2978 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2979 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2980 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
2981 return -EINVAL;
2982 }
2983 break;
2984 default:
2985 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
2986 break;
2987 }
2988
2989 /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2990 * means we reserve 2 more, this pushes us to allocate from the next
2991 * larger slab size
2992 * i.e. RXBUFFER_2048 --> size-4096 slab */
2993
2994 if (max_frame <= E1000_RXBUFFER_256)
2995 adapter->rx_buffer_len = E1000_RXBUFFER_256;
2996 else if (max_frame <= E1000_RXBUFFER_512)
2997 adapter->rx_buffer_len = E1000_RXBUFFER_512;
2998 else if (max_frame <= E1000_RXBUFFER_1024)
2999 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3000 else if (max_frame <= E1000_RXBUFFER_2048)
3001 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3002 else if (max_frame <= E1000_RXBUFFER_4096)
3003 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3004 else if (max_frame <= E1000_RXBUFFER_8192)
3005 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3006 else if (max_frame <= E1000_RXBUFFER_16384)
3007 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3008
3009 /* adjust allocation if LPE protects us, and we aren't using SBP */
3010 #define MAXIMUM_ETHERNET_VLAN_SIZE 1522
3011 if (!adapter->hw.tbi_compatibility_on &&
3012 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3013 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3014 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3015
3016 netdev->mtu = new_mtu;
3017
3018 if (netif_running(netdev)) {
3019 e1000_down(adapter);
3020 e1000_up(adapter);
3021 }
3022
3023 adapter->hw.max_frame_size = max_frame;
3024
3025 return 0;
3026 }
3027
3028 /**
3029 * e1000_update_stats - Update the board statistics counters
3030 * @adapter: board private structure
3031 **/
3032
3033 void
3034 e1000_update_stats(struct e1000_adapter *adapter)
3035 {
3036 struct e1000_hw *hw = &adapter->hw;
3037 unsigned long flags;
3038 uint16_t phy_tmp;
3039
3040 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3041
3042 spin_lock_irqsave(&adapter->stats_lock, flags);
3043
3044 /* these counters are modified from e1000_adjust_tbi_stats,
3045 * called from the interrupt context, so they must only
3046 * be written while holding adapter->stats_lock
3047 */
3048
3049 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3050 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3051 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3052 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3053 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3054 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3055 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3056 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3057 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3058 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3059 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3060 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3061 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3062
3063 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3064 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3065 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3066 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3067 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3068 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3069 adapter->stats.dc += E1000_READ_REG(hw, DC);
3070 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3071 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3072 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3073 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3074 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3075 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3076 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3077 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3078 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3079 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3080 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3081 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3082 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3083 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3084 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3085 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3086 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3087 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3088 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3089 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3090 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3091 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3092 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3093 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3094 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3095 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3096 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3097
3098 /* used for adaptive IFS */
3099
3100 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3101 adapter->stats.tpt += hw->tx_packet_delta;
3102 hw->collision_delta = E1000_READ_REG(hw, COLC);
3103 adapter->stats.colc += hw->collision_delta;
3104
3105 if (hw->mac_type >= e1000_82543) {
3106 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3107 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3108 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3109 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3110 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3111 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3112 }
3113 if (hw->mac_type > e1000_82547_rev_2) {
3114 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3115 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3116 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3117 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3118 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3119 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3120 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3121 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3122 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3123 }
3124
3125 /* Fill out the OS statistics structure */
3126
3127 adapter->net_stats.rx_packets = adapter->stats.gprc;
3128 adapter->net_stats.tx_packets = adapter->stats.gptc;
3129 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3130 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3131 adapter->net_stats.multicast = adapter->stats.mprc;
3132 adapter->net_stats.collisions = adapter->stats.colc;
3133
3134 /* Rx Errors */
3135
3136 /* RLEC on some newer hardware can be incorrect so build
3137 * our own version based on RUC and ROC */
3138 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3139 adapter->stats.crcerrs + adapter->stats.algnerrc +
3140 adapter->stats.ruc + adapter->stats.roc +
3141 adapter->stats.cexterr;
3142 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3143 adapter->stats.roc;
3144 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3145 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3146 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3147
3148 /* Tx Errors */
3149
3150 adapter->net_stats.tx_errors = adapter->stats.ecol +
3151 adapter->stats.latecol;
3152 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3153 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3154 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3155
3156 /* Tx Dropped needs to be maintained elsewhere */
3157
3158 /* Phy Stats */
3159
3160 if (hw->media_type == e1000_media_type_copper) {
3161 if ((adapter->link_speed == SPEED_1000) &&
3162 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3163 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3164 adapter->phy_stats.idle_errors += phy_tmp;
3165 }
3166
3167 if ((hw->mac_type <= e1000_82546) &&
3168 (hw->phy_type == e1000_phy_m88) &&
3169 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3170 adapter->phy_stats.receive_errors += phy_tmp;
3171 }
3172
3173 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3174 }
3175
3176 /**
3177 * e1000_intr - Interrupt Handler
3178 * @irq: interrupt number
3179 * @data: pointer to a network interface device structure
3180 * @pt_regs: CPU registers structure
3181 **/
3182
3183 static irqreturn_t
3184 e1000_intr(int irq, void *data, struct pt_regs *regs)
3185 {
3186 struct net_device *netdev = data;
3187 struct e1000_adapter *adapter = netdev_priv(netdev);
3188 struct e1000_hw *hw = &adapter->hw;
3189 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3190 #ifndef CONFIG_E1000_NAPI
3191 int i;
3192 #else
3193 /* Interrupt Auto-Mask...upon reading ICR,
3194 * interrupts are masked. No need for the
3195 * IMC write, but it does mean we should
3196 * account for it ASAP. */
3197 if (likely(hw->mac_type >= e1000_82571))
3198 atomic_inc(&adapter->irq_sem);
3199 #endif
3200
3201 if (unlikely(!icr)) {
3202 #ifdef CONFIG_E1000_NAPI
3203 if (hw->mac_type >= e1000_82571)
3204 e1000_irq_enable(adapter);
3205 #endif
3206 return IRQ_NONE; /* Not our interrupt */
3207 }
3208
3209 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3210 hw->get_link_status = 1;
3211 /* 80003ES2LAN workaround--
3212 * For packet buffer work-around on link down event;
3213 * disable receives here in the ISR and
3214 * reset adapter in watchdog
3215 */
3216 if (netif_carrier_ok(netdev) &&
3217 (adapter->hw.mac_type == e1000_80003es2lan)) {
3218 /* disable receives */
3219 rctl = E1000_READ_REG(hw, RCTL);
3220 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3221 }
3222 mod_timer(&adapter->watchdog_timer, jiffies);
3223 }
3224
3225 #ifdef CONFIG_E1000_NAPI
3226 if (unlikely(hw->mac_type < e1000_82571)) {
3227 atomic_inc(&adapter->irq_sem);
3228 E1000_WRITE_REG(hw, IMC, ~0);
3229 E1000_WRITE_FLUSH(hw);
3230 }
3231 if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3232 __netif_rx_schedule(&adapter->polling_netdev[0]);
3233 else
3234 e1000_irq_enable(adapter);
3235 #else
3236 /* Writing IMC and IMS is needed for 82547.
3237 * Due to Hub Link bus being occupied, an interrupt
3238 * de-assertion message is not able to be sent.
3239 * When an interrupt assertion message is generated later,
3240 * two messages are re-ordered and sent out.
3241 * That causes APIC to think 82547 is in de-assertion
3242 * state, while 82547 is in assertion state, resulting
3243 * in dead lock. Writing IMC forces 82547 into
3244 * de-assertion state.
3245 */
3246 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3247 atomic_inc(&adapter->irq_sem);
3248 E1000_WRITE_REG(hw, IMC, ~0);
3249 }
3250
3251 for (i = 0; i < E1000_MAX_INTR; i++)
3252 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3253 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3254 break;
3255
3256 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3257 e1000_irq_enable(adapter);
3258
3259 #endif
3260
3261 return IRQ_HANDLED;
3262 }
3263
3264 #ifdef CONFIG_E1000_NAPI
3265 /**
3266 * e1000_clean - NAPI Rx polling callback
3267 * @adapter: board private structure
3268 **/
3269
3270 static int
3271 e1000_clean(struct net_device *poll_dev, int *budget)
3272 {
3273 struct e1000_adapter *adapter;
3274 int work_to_do = min(*budget, poll_dev->quota);
3275 int tx_cleaned = 0, i = 0, work_done = 0;
3276
3277 /* Must NOT use netdev_priv macro here. */
3278 adapter = poll_dev->priv;
3279
3280 /* Keep link state information with original netdev */
3281 if (!netif_carrier_ok(adapter->netdev))
3282 goto quit_polling;
3283
3284 while (poll_dev != &adapter->polling_netdev[i]) {
3285 i++;
3286 BUG_ON(i == adapter->num_rx_queues);
3287 }
3288
3289 if (likely(adapter->num_tx_queues == 1)) {
3290 /* e1000_clean is called per-cpu. This lock protects
3291 * tx_ring[0] from being cleaned by multiple cpus
3292 * simultaneously. A failure obtaining the lock means
3293 * tx_ring[0] is currently being cleaned anyway. */
3294 if (spin_trylock(&adapter->tx_queue_lock)) {
3295 tx_cleaned = e1000_clean_tx_irq(adapter,
3296 &adapter->tx_ring[0]);
3297 spin_unlock(&adapter->tx_queue_lock);
3298 }
3299 } else
3300 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3301
3302 adapter->clean_rx(adapter, &adapter->rx_ring[i],
3303 &work_done, work_to_do);
3304
3305 *budget -= work_done;
3306 poll_dev->quota -= work_done;
3307
3308 /* If no Tx and not enough Rx work done, exit the polling mode */
3309 if ((!tx_cleaned && (work_done == 0)) ||
3310 !netif_running(adapter->netdev)) {
3311 quit_polling:
3312 netif_rx_complete(poll_dev);
3313 e1000_irq_enable(adapter);
3314 return 0;
3315 }
3316
3317 return 1;
3318 }
3319
3320 #endif
3321 /**
3322 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3323 * @adapter: board private structure
3324 **/
3325
3326 static boolean_t
3327 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3328 struct e1000_tx_ring *tx_ring)
3329 {
3330 struct net_device *netdev = adapter->netdev;
3331 struct e1000_tx_desc *tx_desc, *eop_desc;
3332 struct e1000_buffer *buffer_info;
3333 unsigned int i, eop;
3334 #ifdef CONFIG_E1000_NAPI
3335 unsigned int count = 0;
3336 #endif
3337 boolean_t cleaned = FALSE;
3338
3339 i = tx_ring->next_to_clean;
3340 eop = tx_ring->buffer_info[i].next_to_watch;
3341 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3342
3343 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3344 for (cleaned = FALSE; !cleaned; ) {
3345 tx_desc = E1000_TX_DESC(*tx_ring, i);
3346 buffer_info = &tx_ring->buffer_info[i];
3347 cleaned = (i == eop);
3348
3349 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3350 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3351
3352 if (unlikely(++i == tx_ring->count)) i = 0;
3353 }
3354
3355
3356 eop = tx_ring->buffer_info[i].next_to_watch;
3357 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3358 #ifdef CONFIG_E1000_NAPI
3359 #define E1000_TX_WEIGHT 64
3360 /* weight of a sort for tx, to avoid endless transmit cleanup */
3361 if (count++ == E1000_TX_WEIGHT) break;
3362 #endif
3363 }
3364
3365 tx_ring->next_to_clean = i;
3366
3367 #define TX_WAKE_THRESHOLD 32
3368 if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3369 netif_carrier_ok(netdev))) {
3370 spin_lock(&tx_ring->tx_lock);
3371 if (netif_queue_stopped(netdev) &&
3372 (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3373 netif_wake_queue(netdev);
3374 spin_unlock(&tx_ring->tx_lock);
3375 }
3376
3377 if (adapter->detect_tx_hung) {
3378 /* Detect a transmit hang in hardware, this serializes the
3379 * check with the clearing of time_stamp and movement of i */
3380 adapter->detect_tx_hung = FALSE;
3381 if (tx_ring->buffer_info[eop].dma &&
3382 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3383 (adapter->tx_timeout_factor * HZ))
3384 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3385 E1000_STATUS_TXOFF)) {
3386
3387 /* detected Tx unit hang */
3388 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3389 " Tx Queue <%lu>\n"
3390 " TDH <%x>\n"
3391 " TDT <%x>\n"
3392 " next_to_use <%x>\n"
3393 " next_to_clean <%x>\n"
3394 "buffer_info[next_to_clean]\n"
3395 " time_stamp <%lx>\n"
3396 " next_to_watch <%x>\n"
3397 " jiffies <%lx>\n"
3398 " next_to_watch.status <%x>\n",
3399 (unsigned long)((tx_ring - adapter->tx_ring) /
3400 sizeof(struct e1000_tx_ring)),
3401 readl(adapter->hw.hw_addr + tx_ring->tdh),
3402 readl(adapter->hw.hw_addr + tx_ring->tdt),
3403 tx_ring->next_to_use,
3404 tx_ring->next_to_clean,
3405 tx_ring->buffer_info[eop].time_stamp,
3406 eop,
3407 jiffies,
3408 eop_desc->upper.fields.status);
3409 netif_stop_queue(netdev);
3410 }
3411 }
3412 return cleaned;
3413 }
3414
3415 /**
3416 * e1000_rx_checksum - Receive Checksum Offload for 82543
3417 * @adapter: board private structure
3418 * @status_err: receive descriptor status and error fields
3419 * @csum: receive descriptor csum field
3420 * @sk_buff: socket buffer with received data
3421 **/
3422
3423 static void
3424 e1000_rx_checksum(struct e1000_adapter *adapter,
3425 uint32_t status_err, uint32_t csum,
3426 struct sk_buff *skb)
3427 {
3428 uint16_t status = (uint16_t)status_err;
3429 uint8_t errors = (uint8_t)(status_err >> 24);
3430 skb->ip_summed = CHECKSUM_NONE;
3431
3432 /* 82543 or newer only */
3433 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3434 /* Ignore Checksum bit is set */
3435 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3436 /* TCP/UDP checksum error bit is set */
3437 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3438 /* let the stack verify checksum errors */
3439 adapter->hw_csum_err++;
3440 return;
3441 }
3442 /* TCP/UDP Checksum has not been calculated */
3443 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3444 if (!(status & E1000_RXD_STAT_TCPCS))
3445 return;
3446 } else {
3447 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3448 return;
3449 }
3450 /* It must be a TCP or UDP packet with a valid checksum */
3451 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3452 /* TCP checksum is good */
3453 skb->ip_summed = CHECKSUM_UNNECESSARY;
3454 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3455 /* IP fragment with UDP payload */
3456 /* Hardware complements the payload checksum, so we undo it
3457 * and then put the value in host order for further stack use.
3458 */
3459 csum = ntohl(csum ^ 0xFFFF);
3460 skb->csum = csum;
3461 skb->ip_summed = CHECKSUM_HW;
3462 }
3463 adapter->hw_csum_good++;
3464 }
3465
3466 /**
3467 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3468 * @adapter: board private structure
3469 **/
3470
3471 static boolean_t
3472 #ifdef CONFIG_E1000_NAPI
3473 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3474 struct e1000_rx_ring *rx_ring,
3475 int *work_done, int work_to_do)
3476 #else
3477 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3478 struct e1000_rx_ring *rx_ring)
3479 #endif
3480 {
3481 struct net_device *netdev = adapter->netdev;
3482 struct pci_dev *pdev = adapter->pdev;
3483 struct e1000_rx_desc *rx_desc, *next_rxd;
3484 struct e1000_buffer *buffer_info, *next_buffer;
3485 unsigned long flags;
3486 uint32_t length;
3487 uint8_t last_byte;
3488 unsigned int i;
3489 int cleaned_count = 0;
3490 boolean_t cleaned = FALSE;
3491
3492 i = rx_ring->next_to_clean;
3493 rx_desc = E1000_RX_DESC(*rx_ring, i);
3494 buffer_info = &rx_ring->buffer_info[i];
3495
3496 while (rx_desc->status & E1000_RXD_STAT_DD) {
3497 struct sk_buff *skb, *next_skb;
3498 u8 status;
3499 #ifdef CONFIG_E1000_NAPI
3500 if (*work_done >= work_to_do)
3501 break;
3502 (*work_done)++;
3503 #endif
3504 status = rx_desc->status;
3505 skb = buffer_info->skb;
3506 buffer_info->skb = NULL;
3507
3508 prefetch(skb->data - NET_IP_ALIGN);
3509
3510 if (++i == rx_ring->count) i = 0;
3511 next_rxd = E1000_RX_DESC(*rx_ring, i);
3512 prefetch(next_rxd);
3513
3514 next_buffer = &rx_ring->buffer_info[i];
3515 next_skb = next_buffer->skb;
3516 prefetch(next_skb->data - NET_IP_ALIGN);
3517
3518 cleaned = TRUE;
3519 cleaned_count++;
3520 pci_unmap_single(pdev,
3521 buffer_info->dma,
3522 buffer_info->length,
3523 PCI_DMA_FROMDEVICE);
3524
3525 length = le16_to_cpu(rx_desc->length);
3526
3527 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3528 /* All receives must fit into a single buffer */
3529 E1000_DBG("%s: Receive packet consumed multiple"
3530 " buffers\n", netdev->name);
3531 dev_kfree_skb_irq(skb);
3532 goto next_desc;
3533 }
3534
3535 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3536 last_byte = *(skb->data + length - 1);
3537 if (TBI_ACCEPT(&adapter->hw, status,
3538 rx_desc->errors, length, last_byte)) {
3539 spin_lock_irqsave(&adapter->stats_lock, flags);
3540 e1000_tbi_adjust_stats(&adapter->hw,
3541 &adapter->stats,
3542 length, skb->data);
3543 spin_unlock_irqrestore(&adapter->stats_lock,
3544 flags);
3545 length--;
3546 } else {
3547 /* recycle */
3548 buffer_info->skb = skb;
3549 goto next_desc;
3550 }
3551 }
3552
3553 /* code added for copybreak, this should improve
3554 * performance for small packets with large amounts
3555 * of reassembly being done in the stack */
3556 #define E1000_CB_LENGTH 256
3557 if (length < E1000_CB_LENGTH) {
3558 struct sk_buff *new_skb =
3559 dev_alloc_skb(length + NET_IP_ALIGN);
3560 if (new_skb) {
3561 skb_reserve(new_skb, NET_IP_ALIGN);
3562 new_skb->dev = netdev;
3563 memcpy(new_skb->data - NET_IP_ALIGN,
3564 skb->data - NET_IP_ALIGN,
3565 length + NET_IP_ALIGN);
3566 /* save the skb in buffer_info as good */
3567 buffer_info->skb = skb;
3568 skb = new_skb;
3569 skb_put(skb, length);
3570 }
3571 } else
3572 skb_put(skb, length);
3573
3574 /* end copybreak code */
3575
3576 /* Receive Checksum Offload */
3577 e1000_rx_checksum(adapter,
3578 (uint32_t)(status) |
3579 ((uint32_t)(rx_desc->errors) << 24),
3580 le16_to_cpu(rx_desc->csum), skb);
3581
3582 skb->protocol = eth_type_trans(skb, netdev);
3583 #ifdef CONFIG_E1000_NAPI
3584 if (unlikely(adapter->vlgrp &&
3585 (status & E1000_RXD_STAT_VP))) {
3586 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3587 le16_to_cpu(rx_desc->special) &
3588 E1000_RXD_SPC_VLAN_MASK);
3589 } else {
3590 netif_receive_skb(skb);
3591 }
3592 #else /* CONFIG_E1000_NAPI */
3593 if (unlikely(adapter->vlgrp &&
3594 (status & E1000_RXD_STAT_VP))) {
3595 vlan_hwaccel_rx(skb, adapter->vlgrp,
3596 le16_to_cpu(rx_desc->special) &
3597 E1000_RXD_SPC_VLAN_MASK);
3598 } else {
3599 netif_rx(skb);
3600 }
3601 #endif /* CONFIG_E1000_NAPI */
3602 netdev->last_rx = jiffies;
3603
3604 next_desc:
3605 rx_desc->status = 0;
3606
3607 /* return some buffers to hardware, one at a time is too slow */
3608 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3609 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3610 cleaned_count = 0;
3611 }
3612
3613 /* use prefetched values */
3614 rx_desc = next_rxd;
3615 buffer_info = next_buffer;
3616 }
3617 rx_ring->next_to_clean = i;
3618
3619 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3620 if (cleaned_count)
3621 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3622
3623 return cleaned;
3624 }
3625
3626 /**
3627 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3628 * @adapter: board private structure
3629 **/
3630
3631 static boolean_t
3632 #ifdef CONFIG_E1000_NAPI
3633 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3634 struct e1000_rx_ring *rx_ring,
3635 int *work_done, int work_to_do)
3636 #else
3637 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3638 struct e1000_rx_ring *rx_ring)
3639 #endif
3640 {
3641 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3642 struct net_device *netdev = adapter->netdev;
3643 struct pci_dev *pdev = adapter->pdev;
3644 struct e1000_buffer *buffer_info, *next_buffer;
3645 struct e1000_ps_page *ps_page;
3646 struct e1000_ps_page_dma *ps_page_dma;
3647 struct sk_buff *skb, *next_skb;
3648 unsigned int i, j;
3649 uint32_t length, staterr;
3650 int cleaned_count = 0;
3651 boolean_t cleaned = FALSE;
3652
3653 i = rx_ring->next_to_clean;
3654 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3655 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3656 buffer_info = &rx_ring->buffer_info[i];
3657
3658 while (staterr & E1000_RXD_STAT_DD) {
3659 buffer_info = &rx_ring->buffer_info[i];
3660 ps_page = &rx_ring->ps_page[i];
3661 ps_page_dma = &rx_ring->ps_page_dma[i];
3662 #ifdef CONFIG_E1000_NAPI
3663 if (unlikely(*work_done >= work_to_do))
3664 break;
3665 (*work_done)++;
3666 #endif
3667 skb = buffer_info->skb;
3668
3669 /* in the packet split case this is header only */
3670 prefetch(skb->data - NET_IP_ALIGN);
3671
3672 if (++i == rx_ring->count) i = 0;
3673 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3674 prefetch(next_rxd);
3675
3676 next_buffer = &rx_ring->buffer_info[i];
3677 next_skb = next_buffer->skb;
3678 prefetch(next_skb->data - NET_IP_ALIGN);
3679
3680 cleaned = TRUE;
3681 cleaned_count++;
3682 pci_unmap_single(pdev, buffer_info->dma,
3683 buffer_info->length,
3684 PCI_DMA_FROMDEVICE);
3685
3686 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3687 E1000_DBG("%s: Packet Split buffers didn't pick up"
3688 " the full packet\n", netdev->name);
3689 dev_kfree_skb_irq(skb);
3690 goto next_desc;
3691 }
3692
3693 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3694 dev_kfree_skb_irq(skb);
3695 goto next_desc;
3696 }
3697
3698 length = le16_to_cpu(rx_desc->wb.middle.length0);
3699
3700 if (unlikely(!length)) {
3701 E1000_DBG("%s: Last part of the packet spanning"
3702 " multiple descriptors\n", netdev->name);
3703 dev_kfree_skb_irq(skb);
3704 goto next_desc;
3705 }
3706
3707 /* Good Receive */
3708 skb_put(skb, length);
3709
3710 {
3711 /* this looks ugly, but it seems compiler issues make it
3712 more efficient than reusing j */
3713 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3714
3715 /* page alloc/put takes too long and effects small packet
3716 * throughput, so unsplit small packets and save the alloc/put*/
3717 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3718 u8 *vaddr;
3719 /* there is no documentation about how to call
3720 * kmap_atomic, so we can't hold the mapping
3721 * very long */
3722 pci_dma_sync_single_for_cpu(pdev,
3723 ps_page_dma->ps_page_dma[0],
3724 PAGE_SIZE,
3725 PCI_DMA_FROMDEVICE);
3726 vaddr = kmap_atomic(ps_page->ps_page[0],
3727 KM_SKB_DATA_SOFTIRQ);
3728 memcpy(skb->tail, vaddr, l1);
3729 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3730 pci_dma_sync_single_for_device(pdev,
3731 ps_page_dma->ps_page_dma[0],
3732 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3733 skb_put(skb, l1);
3734 length += l1;
3735 goto copydone;
3736 } /* if */
3737 }
3738
3739 for (j = 0; j < adapter->rx_ps_pages; j++) {
3740 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3741 break;
3742 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3743 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3744 ps_page_dma->ps_page_dma[j] = 0;
3745 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3746 length);
3747 ps_page->ps_page[j] = NULL;
3748 skb->len += length;
3749 skb->data_len += length;
3750 skb->truesize += length;
3751 }
3752
3753 copydone:
3754 e1000_rx_checksum(adapter, staterr,
3755 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3756 skb->protocol = eth_type_trans(skb, netdev);
3757
3758 if (likely(rx_desc->wb.upper.header_status &
3759 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3760 adapter->rx_hdr_split++;
3761 #ifdef CONFIG_E1000_NAPI
3762 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3763 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3764 le16_to_cpu(rx_desc->wb.middle.vlan) &
3765 E1000_RXD_SPC_VLAN_MASK);
3766 } else {
3767 netif_receive_skb(skb);
3768 }
3769 #else /* CONFIG_E1000_NAPI */
3770 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3771 vlan_hwaccel_rx(skb, adapter->vlgrp,
3772 le16_to_cpu(rx_desc->wb.middle.vlan) &
3773 E1000_RXD_SPC_VLAN_MASK);
3774 } else {
3775 netif_rx(skb);
3776 }
3777 #endif /* CONFIG_E1000_NAPI */
3778 netdev->last_rx = jiffies;
3779
3780 next_desc:
3781 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3782 buffer_info->skb = NULL;
3783
3784 /* return some buffers to hardware, one at a time is too slow */
3785 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3786 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3787 cleaned_count = 0;
3788 }
3789
3790 /* use prefetched values */
3791 rx_desc = next_rxd;
3792 buffer_info = next_buffer;
3793
3794 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3795 }
3796 rx_ring->next_to_clean = i;
3797
3798 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3799 if (cleaned_count)
3800 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3801
3802 return cleaned;
3803 }
3804
3805 /**
3806 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3807 * @adapter: address of board private structure
3808 **/
3809
3810 static void
3811 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3812 struct e1000_rx_ring *rx_ring,
3813 int cleaned_count)
3814 {
3815 struct net_device *netdev = adapter->netdev;
3816 struct pci_dev *pdev = adapter->pdev;
3817 struct e1000_rx_desc *rx_desc;
3818 struct e1000_buffer *buffer_info;
3819 struct sk_buff *skb;
3820 unsigned int i;
3821 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3822
3823 i = rx_ring->next_to_use;
3824 buffer_info = &rx_ring->buffer_info[i];
3825
3826 while (cleaned_count--) {
3827 if (!(skb = buffer_info->skb))
3828 skb = dev_alloc_skb(bufsz);
3829 else {
3830 skb_trim(skb, 0);
3831 goto map_skb;
3832 }
3833
3834 if (unlikely(!skb)) {
3835 /* Better luck next round */
3836 adapter->alloc_rx_buff_failed++;
3837 break;
3838 }
3839
3840 /* Fix for errata 23, can't cross 64kB boundary */
3841 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3842 struct sk_buff *oldskb = skb;
3843 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3844 "at %p\n", bufsz, skb->data);
3845 /* Try again, without freeing the previous */
3846 skb = dev_alloc_skb(bufsz);
3847 /* Failed allocation, critical failure */
3848 if (!skb) {
3849 dev_kfree_skb(oldskb);
3850 break;
3851 }
3852
3853 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3854 /* give up */
3855 dev_kfree_skb(skb);
3856 dev_kfree_skb(oldskb);
3857 break; /* while !buffer_info->skb */
3858 } else {
3859 /* Use new allocation */
3860 dev_kfree_skb(oldskb);
3861 }
3862 }
3863 /* Make buffer alignment 2 beyond a 16 byte boundary
3864 * this will result in a 16 byte aligned IP header after
3865 * the 14 byte MAC header is removed
3866 */
3867 skb_reserve(skb, NET_IP_ALIGN);
3868
3869 skb->dev = netdev;
3870
3871 buffer_info->skb = skb;
3872 buffer_info->length = adapter->rx_buffer_len;
3873 map_skb:
3874 buffer_info->dma = pci_map_single(pdev,
3875 skb->data,
3876 adapter->rx_buffer_len,
3877 PCI_DMA_FROMDEVICE);
3878
3879 /* Fix for errata 23, can't cross 64kB boundary */
3880 if (!e1000_check_64k_bound(adapter,
3881 (void *)(unsigned long)buffer_info->dma,
3882 adapter->rx_buffer_len)) {
3883 DPRINTK(RX_ERR, ERR,
3884 "dma align check failed: %u bytes at %p\n",
3885 adapter->rx_buffer_len,
3886 (void *)(unsigned long)buffer_info->dma);
3887 dev_kfree_skb(skb);
3888 buffer_info->skb = NULL;
3889
3890 pci_unmap_single(pdev, buffer_info->dma,
3891 adapter->rx_buffer_len,
3892 PCI_DMA_FROMDEVICE);
3893
3894 break; /* while !buffer_info->skb */
3895 }
3896 rx_desc = E1000_RX_DESC(*rx_ring, i);
3897 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3898
3899 if (unlikely(++i == rx_ring->count))
3900 i = 0;
3901 buffer_info = &rx_ring->buffer_info[i];
3902 }
3903
3904 if (likely(rx_ring->next_to_use != i)) {
3905 rx_ring->next_to_use = i;
3906 if (unlikely(i-- == 0))
3907 i = (rx_ring->count - 1);
3908
3909 /* Force memory writes to complete before letting h/w
3910 * know there are new descriptors to fetch. (Only
3911 * applicable for weak-ordered memory model archs,
3912 * such as IA-64). */
3913 wmb();
3914 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3915 }
3916 }
3917
3918 /**
3919 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3920 * @adapter: address of board private structure
3921 **/
3922
3923 static void
3924 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3925 struct e1000_rx_ring *rx_ring,
3926 int cleaned_count)
3927 {
3928 struct net_device *netdev = adapter->netdev;
3929 struct pci_dev *pdev = adapter->pdev;
3930 union e1000_rx_desc_packet_split *rx_desc;
3931 struct e1000_buffer *buffer_info;
3932 struct e1000_ps_page *ps_page;
3933 struct e1000_ps_page_dma *ps_page_dma;
3934 struct sk_buff *skb;
3935 unsigned int i, j;
3936
3937 i = rx_ring->next_to_use;
3938 buffer_info = &rx_ring->buffer_info[i];
3939 ps_page = &rx_ring->ps_page[i];
3940 ps_page_dma = &rx_ring->ps_page_dma[i];
3941
3942 while (cleaned_count--) {
3943 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3944
3945 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
3946 if (j < adapter->rx_ps_pages) {
3947 if (likely(!ps_page->ps_page[j])) {
3948 ps_page->ps_page[j] =
3949 alloc_page(GFP_ATOMIC);
3950 if (unlikely(!ps_page->ps_page[j])) {
3951 adapter->alloc_rx_buff_failed++;
3952 goto no_buffers;
3953 }
3954 ps_page_dma->ps_page_dma[j] =
3955 pci_map_page(pdev,
3956 ps_page->ps_page[j],
3957 0, PAGE_SIZE,
3958 PCI_DMA_FROMDEVICE);
3959 }
3960 /* Refresh the desc even if buffer_addrs didn't
3961 * change because each write-back erases
3962 * this info.
3963 */
3964 rx_desc->read.buffer_addr[j+1] =
3965 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3966 } else
3967 rx_desc->read.buffer_addr[j+1] = ~0;
3968 }
3969
3970 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3971
3972 if (unlikely(!skb)) {
3973 adapter->alloc_rx_buff_failed++;
3974 break;
3975 }
3976
3977 /* Make buffer alignment 2 beyond a 16 byte boundary
3978 * this will result in a 16 byte aligned IP header after
3979 * the 14 byte MAC header is removed
3980 */
3981 skb_reserve(skb, NET_IP_ALIGN);
3982
3983 skb->dev = netdev;
3984
3985 buffer_info->skb = skb;
3986 buffer_info->length = adapter->rx_ps_bsize0;
3987 buffer_info->dma = pci_map_single(pdev, skb->data,
3988 adapter->rx_ps_bsize0,
3989 PCI_DMA_FROMDEVICE);
3990
3991 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3992
3993 if (unlikely(++i == rx_ring->count)) i = 0;
3994 buffer_info = &rx_ring->buffer_info[i];
3995 ps_page = &rx_ring->ps_page[i];
3996 ps_page_dma = &rx_ring->ps_page_dma[i];
3997 }
3998
3999 no_buffers:
4000 if (likely(rx_ring->next_to_use != i)) {
4001 rx_ring->next_to_use = i;
4002 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4003
4004 /* Force memory writes to complete before letting h/w
4005 * know there are new descriptors to fetch. (Only
4006 * applicable for weak-ordered memory model archs,
4007 * such as IA-64). */
4008 wmb();
4009 /* Hardware increments by 16 bytes, but packet split
4010 * descriptors are 32 bytes...so we increment tail
4011 * twice as much.
4012 */
4013 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4014 }
4015 }
4016
4017 /**
4018 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4019 * @adapter:
4020 **/
4021
4022 static void
4023 e1000_smartspeed(struct e1000_adapter *adapter)
4024 {
4025 uint16_t phy_status;
4026 uint16_t phy_ctrl;
4027
4028 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4029 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4030 return;
4031
4032 if (adapter->smartspeed == 0) {
4033 /* If Master/Slave config fault is asserted twice,
4034 * we assume back-to-back */
4035 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4036 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4037 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4038 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4039 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4040 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4041 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4042 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4043 phy_ctrl);
4044 adapter->smartspeed++;
4045 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4046 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4047 &phy_ctrl)) {
4048 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4049 MII_CR_RESTART_AUTO_NEG);
4050 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4051 phy_ctrl);
4052 }
4053 }
4054 return;
4055 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4056 /* If still no link, perhaps using 2/3 pair cable */
4057 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4058 phy_ctrl |= CR_1000T_MS_ENABLE;
4059 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4060 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4061 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4062 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4063 MII_CR_RESTART_AUTO_NEG);
4064 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4065 }
4066 }
4067 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4068 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4069 adapter->smartspeed = 0;
4070 }
4071
4072 /**
4073 * e1000_ioctl -
4074 * @netdev:
4075 * @ifreq:
4076 * @cmd:
4077 **/
4078
4079 static int
4080 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4081 {
4082 switch (cmd) {
4083 case SIOCGMIIPHY:
4084 case SIOCGMIIREG:
4085 case SIOCSMIIREG:
4086 return e1000_mii_ioctl(netdev, ifr, cmd);
4087 default:
4088 return -EOPNOTSUPP;
4089 }
4090 }
4091
4092 /**
4093 * e1000_mii_ioctl -
4094 * @netdev:
4095 * @ifreq:
4096 * @cmd:
4097 **/
4098
4099 static int
4100 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4101 {
4102 struct e1000_adapter *adapter = netdev_priv(netdev);
4103 struct mii_ioctl_data *data = if_mii(ifr);
4104 int retval;
4105 uint16_t mii_reg;
4106 uint16_t spddplx;
4107 unsigned long flags;
4108
4109 if (adapter->hw.media_type != e1000_media_type_copper)
4110 return -EOPNOTSUPP;
4111
4112 switch (cmd) {
4113 case SIOCGMIIPHY:
4114 data->phy_id = adapter->hw.phy_addr;
4115 break;
4116 case SIOCGMIIREG:
4117 if (!capable(CAP_NET_ADMIN))
4118 return -EPERM;
4119 spin_lock_irqsave(&adapter->stats_lock, flags);
4120 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4121 &data->val_out)) {
4122 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4123 return -EIO;
4124 }
4125 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4126 break;
4127 case SIOCSMIIREG:
4128 if (!capable(CAP_NET_ADMIN))
4129 return -EPERM;
4130 if (data->reg_num & ~(0x1F))
4131 return -EFAULT;
4132 mii_reg = data->val_in;
4133 spin_lock_irqsave(&adapter->stats_lock, flags);
4134 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4135 mii_reg)) {
4136 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4137 return -EIO;
4138 }
4139 if (adapter->hw.media_type == e1000_media_type_copper) {
4140 switch (data->reg_num) {
4141 case PHY_CTRL:
4142 if (mii_reg & MII_CR_POWER_DOWN)
4143 break;
4144 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4145 adapter->hw.autoneg = 1;
4146 adapter->hw.autoneg_advertised = 0x2F;
4147 } else {
4148 if (mii_reg & 0x40)
4149 spddplx = SPEED_1000;
4150 else if (mii_reg & 0x2000)
4151 spddplx = SPEED_100;
4152 else
4153 spddplx = SPEED_10;
4154 spddplx += (mii_reg & 0x100)
4155 ? DUPLEX_FULL :
4156 DUPLEX_HALF;
4157 retval = e1000_set_spd_dplx(adapter,
4158 spddplx);
4159 if (retval) {
4160 spin_unlock_irqrestore(
4161 &adapter->stats_lock,
4162 flags);
4163 return retval;
4164 }
4165 }
4166 if (netif_running(adapter->netdev)) {
4167 e1000_down(adapter);
4168 e1000_up(adapter);
4169 } else
4170 e1000_reset(adapter);
4171 break;
4172 case M88E1000_PHY_SPEC_CTRL:
4173 case M88E1000_EXT_PHY_SPEC_CTRL:
4174 if (e1000_phy_reset(&adapter->hw)) {
4175 spin_unlock_irqrestore(
4176 &adapter->stats_lock, flags);
4177 return -EIO;
4178 }
4179 break;
4180 }
4181 } else {
4182 switch (data->reg_num) {
4183 case PHY_CTRL:
4184 if (mii_reg & MII_CR_POWER_DOWN)
4185 break;
4186 if (netif_running(adapter->netdev)) {
4187 e1000_down(adapter);
4188 e1000_up(adapter);
4189 } else
4190 e1000_reset(adapter);
4191 break;
4192 }
4193 }
4194 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4195 break;
4196 default:
4197 return -EOPNOTSUPP;
4198 }
4199 return E1000_SUCCESS;
4200 }
4201
4202 void
4203 e1000_pci_set_mwi(struct e1000_hw *hw)
4204 {
4205 struct e1000_adapter *adapter = hw->back;
4206 int ret_val = pci_set_mwi(adapter->pdev);
4207
4208 if (ret_val)
4209 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4210 }
4211
4212 void
4213 e1000_pci_clear_mwi(struct e1000_hw *hw)
4214 {
4215 struct e1000_adapter *adapter = hw->back;
4216
4217 pci_clear_mwi(adapter->pdev);
4218 }
4219
4220 void
4221 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4222 {
4223 struct e1000_adapter *adapter = hw->back;
4224
4225 pci_read_config_word(adapter->pdev, reg, value);
4226 }
4227
4228 void
4229 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4230 {
4231 struct e1000_adapter *adapter = hw->back;
4232
4233 pci_write_config_word(adapter->pdev, reg, *value);
4234 }
4235
4236 uint32_t
4237 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4238 {
4239 return inl(port);
4240 }
4241
4242 void
4243 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4244 {
4245 outl(value, port);
4246 }
4247
4248 static void
4249 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4250 {
4251 struct e1000_adapter *adapter = netdev_priv(netdev);
4252 uint32_t ctrl, rctl;
4253
4254 e1000_irq_disable(adapter);
4255 adapter->vlgrp = grp;
4256
4257 if (grp) {
4258 /* enable VLAN tag insert/strip */
4259 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4260 ctrl |= E1000_CTRL_VME;
4261 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4262
4263 /* enable VLAN receive filtering */
4264 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4265 rctl |= E1000_RCTL_VFE;
4266 rctl &= ~E1000_RCTL_CFIEN;
4267 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4268 e1000_update_mng_vlan(adapter);
4269 } else {
4270 /* disable VLAN tag insert/strip */
4271 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4272 ctrl &= ~E1000_CTRL_VME;
4273 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4274
4275 /* disable VLAN filtering */
4276 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4277 rctl &= ~E1000_RCTL_VFE;
4278 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4279 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4280 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4281 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4282 }
4283 }
4284
4285 e1000_irq_enable(adapter);
4286 }
4287
4288 static void
4289 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4290 {
4291 struct e1000_adapter *adapter = netdev_priv(netdev);
4292 uint32_t vfta, index;
4293
4294 if ((adapter->hw.mng_cookie.status &
4295 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4296 (vid == adapter->mng_vlan_id))
4297 return;
4298 /* add VID to filter table */
4299 index = (vid >> 5) & 0x7F;
4300 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4301 vfta |= (1 << (vid & 0x1F));
4302 e1000_write_vfta(&adapter->hw, index, vfta);
4303 }
4304
4305 static void
4306 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4307 {
4308 struct e1000_adapter *adapter = netdev_priv(netdev);
4309 uint32_t vfta, index;
4310
4311 e1000_irq_disable(adapter);
4312
4313 if (adapter->vlgrp)
4314 adapter->vlgrp->vlan_devices[vid] = NULL;
4315
4316 e1000_irq_enable(adapter);
4317
4318 if ((adapter->hw.mng_cookie.status &
4319 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4320 (vid == adapter->mng_vlan_id)) {
4321 /* release control to f/w */
4322 e1000_release_hw_control(adapter);
4323 return;
4324 }
4325
4326 /* remove VID from filter table */
4327 index = (vid >> 5) & 0x7F;
4328 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4329 vfta &= ~(1 << (vid & 0x1F));
4330 e1000_write_vfta(&adapter->hw, index, vfta);
4331 }
4332
4333 static void
4334 e1000_restore_vlan(struct e1000_adapter *adapter)
4335 {
4336 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4337
4338 if (adapter->vlgrp) {
4339 uint16_t vid;
4340 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4341 if (!adapter->vlgrp->vlan_devices[vid])
4342 continue;
4343 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4344 }
4345 }
4346 }
4347
4348 int
4349 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4350 {
4351 adapter->hw.autoneg = 0;
4352
4353 /* Fiber NICs only allow 1000 gbps Full duplex */
4354 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4355 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4356 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4357 return -EINVAL;
4358 }
4359
4360 switch (spddplx) {
4361 case SPEED_10 + DUPLEX_HALF:
4362 adapter->hw.forced_speed_duplex = e1000_10_half;
4363 break;
4364 case SPEED_10 + DUPLEX_FULL:
4365 adapter->hw.forced_speed_duplex = e1000_10_full;
4366 break;
4367 case SPEED_100 + DUPLEX_HALF:
4368 adapter->hw.forced_speed_duplex = e1000_100_half;
4369 break;
4370 case SPEED_100 + DUPLEX_FULL:
4371 adapter->hw.forced_speed_duplex = e1000_100_full;
4372 break;
4373 case SPEED_1000 + DUPLEX_FULL:
4374 adapter->hw.autoneg = 1;
4375 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4376 break;
4377 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4378 default:
4379 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4380 return -EINVAL;
4381 }
4382 return 0;
4383 }
4384
4385 #ifdef CONFIG_PM
4386 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4387 * bus we're on (PCI(X) vs. PCI-E)
4388 */
4389 #define PCIE_CONFIG_SPACE_LEN 256
4390 #define PCI_CONFIG_SPACE_LEN 64
4391 static int
4392 e1000_pci_save_state(struct e1000_adapter *adapter)
4393 {
4394 struct pci_dev *dev = adapter->pdev;
4395 int size;
4396 int i;
4397
4398 if (adapter->hw.mac_type >= e1000_82571)
4399 size = PCIE_CONFIG_SPACE_LEN;
4400 else
4401 size = PCI_CONFIG_SPACE_LEN;
4402
4403 WARN_ON(adapter->config_space != NULL);
4404
4405 adapter->config_space = kmalloc(size, GFP_KERNEL);
4406 if (!adapter->config_space) {
4407 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4408 return -ENOMEM;
4409 }
4410 for (i = 0; i < (size / 4); i++)
4411 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4412 return 0;
4413 }
4414
4415 static void
4416 e1000_pci_restore_state(struct e1000_adapter *adapter)
4417 {
4418 struct pci_dev *dev = adapter->pdev;
4419 int size;
4420 int i;
4421
4422 if (adapter->config_space == NULL)
4423 return;
4424
4425 if (adapter->hw.mac_type >= e1000_82571)
4426 size = PCIE_CONFIG_SPACE_LEN;
4427 else
4428 size = PCI_CONFIG_SPACE_LEN;
4429 for (i = 0; i < (size / 4); i++)
4430 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4431 kfree(adapter->config_space);
4432 adapter->config_space = NULL;
4433 return;
4434 }
4435 #endif /* CONFIG_PM */
4436
4437 static int
4438 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4439 {
4440 struct net_device *netdev = pci_get_drvdata(pdev);
4441 struct e1000_adapter *adapter = netdev_priv(netdev);
4442 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4443 uint32_t wufc = adapter->wol;
4444 int retval = 0;
4445
4446 netif_device_detach(netdev);
4447
4448 if (netif_running(netdev))
4449 e1000_down(adapter);
4450
4451 #ifdef CONFIG_PM
4452 /* Implement our own version of pci_save_state(pdev) because pci-
4453 * express adapters have 256-byte config spaces. */
4454 retval = e1000_pci_save_state(adapter);
4455 if (retval)
4456 return retval;
4457 #endif
4458
4459 status = E1000_READ_REG(&adapter->hw, STATUS);
4460 if (status & E1000_STATUS_LU)
4461 wufc &= ~E1000_WUFC_LNKC;
4462
4463 if (wufc) {
4464 e1000_setup_rctl(adapter);
4465 e1000_set_multi(netdev);
4466
4467 /* turn on all-multi mode if wake on multicast is enabled */
4468 if (adapter->wol & E1000_WUFC_MC) {
4469 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4470 rctl |= E1000_RCTL_MPE;
4471 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4472 }
4473
4474 if (adapter->hw.mac_type >= e1000_82540) {
4475 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4476 /* advertise wake from D3Cold */
4477 #define E1000_CTRL_ADVD3WUC 0x00100000
4478 /* phy power management enable */
4479 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4480 ctrl |= E1000_CTRL_ADVD3WUC |
4481 E1000_CTRL_EN_PHY_PWR_MGMT;
4482 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4483 }
4484
4485 if (adapter->hw.media_type == e1000_media_type_fiber ||
4486 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4487 /* keep the laser running in D3 */
4488 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4489 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4490 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4491 }
4492
4493 /* Allow time for pending master requests to run */
4494 e1000_disable_pciex_master(&adapter->hw);
4495
4496 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4497 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4498 pci_enable_wake(pdev, PCI_D3hot, 1);
4499 pci_enable_wake(pdev, PCI_D3cold, 1);
4500 } else {
4501 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4502 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4503 pci_enable_wake(pdev, PCI_D3hot, 0);
4504 pci_enable_wake(pdev, PCI_D3cold, 0);
4505 }
4506
4507 if (adapter->hw.mac_type >= e1000_82540 &&
4508 adapter->hw.media_type == e1000_media_type_copper) {
4509 manc = E1000_READ_REG(&adapter->hw, MANC);
4510 if (manc & E1000_MANC_SMBUS_EN) {
4511 manc |= E1000_MANC_ARP_EN;
4512 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4513 pci_enable_wake(pdev, PCI_D3hot, 1);
4514 pci_enable_wake(pdev, PCI_D3cold, 1);
4515 }
4516 }
4517
4518 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4519 * would have already happened in close and is redundant. */
4520 e1000_release_hw_control(adapter);
4521
4522 pci_disable_device(pdev);
4523
4524 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4525
4526 return 0;
4527 }
4528
4529 #ifdef CONFIG_PM
4530 static int
4531 e1000_resume(struct pci_dev *pdev)
4532 {
4533 struct net_device *netdev = pci_get_drvdata(pdev);
4534 struct e1000_adapter *adapter = netdev_priv(netdev);
4535 uint32_t manc, ret_val;
4536
4537 pci_set_power_state(pdev, PCI_D0);
4538 e1000_pci_restore_state(adapter);
4539 ret_val = pci_enable_device(pdev);
4540 pci_set_master(pdev);
4541
4542 pci_enable_wake(pdev, PCI_D3hot, 0);
4543 pci_enable_wake(pdev, PCI_D3cold, 0);
4544
4545 e1000_reset(adapter);
4546 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4547
4548 if (netif_running(netdev))
4549 e1000_up(adapter);
4550
4551 netif_device_attach(netdev);
4552
4553 if (adapter->hw.mac_type >= e1000_82540 &&
4554 adapter->hw.media_type == e1000_media_type_copper) {
4555 manc = E1000_READ_REG(&adapter->hw, MANC);
4556 manc &= ~(E1000_MANC_ARP_EN);
4557 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4558 }
4559
4560 /* If the controller is 82573 and f/w is AMT, do not set
4561 * DRV_LOAD until the interface is up. For all other cases,
4562 * let the f/w know that the h/w is now under the control
4563 * of the driver. */
4564 if (adapter->hw.mac_type != e1000_82573 ||
4565 !e1000_check_mng_mode(&adapter->hw))
4566 e1000_get_hw_control(adapter);
4567
4568 return 0;
4569 }
4570 #endif
4571
4572 static void e1000_shutdown(struct pci_dev *pdev)
4573 {
4574 e1000_suspend(pdev, PMSG_SUSPEND);
4575 }
4576
4577 #ifdef CONFIG_NET_POLL_CONTROLLER
4578 /*
4579 * Polling 'interrupt' - used by things like netconsole to send skbs
4580 * without having to re-enable interrupts. It's not called while
4581 * the interrupt routine is executing.
4582 */
4583 static void
4584 e1000_netpoll(struct net_device *netdev)
4585 {
4586 struct e1000_adapter *adapter = netdev_priv(netdev);
4587 disable_irq(adapter->pdev->irq);
4588 e1000_intr(adapter->pdev->irq, netdev, NULL);
4589 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4590 #ifndef CONFIG_E1000_NAPI
4591 adapter->clean_rx(adapter, adapter->rx_ring);
4592 #endif
4593 enable_irq(adapter->pdev->irq);
4594 }
4595 #endif
4596
4597 /* e1000_main.c */