Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild-fix
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44 *
45 * Last entry must be all 0s
46 *
47 * Macro expands to...
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 */
50 static struct pci_device_id e1000_pci_tbl[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
84 INTEL_E1000_ETHERNET_DEVICE(0x1075),
85 INTEL_E1000_ETHERNET_DEVICE(0x1076),
86 INTEL_E1000_ETHERNET_DEVICE(0x1077),
87 INTEL_E1000_ETHERNET_DEVICE(0x1078),
88 INTEL_E1000_ETHERNET_DEVICE(0x1079),
89 INTEL_E1000_ETHERNET_DEVICE(0x107A),
90 INTEL_E1000_ETHERNET_DEVICE(0x107B),
91 INTEL_E1000_ETHERNET_DEVICE(0x107C),
92 INTEL_E1000_ETHERNET_DEVICE(0x107D),
93 INTEL_E1000_ETHERNET_DEVICE(0x107E),
94 INTEL_E1000_ETHERNET_DEVICE(0x107F),
95 INTEL_E1000_ETHERNET_DEVICE(0x108A),
96 INTEL_E1000_ETHERNET_DEVICE(0x108B),
97 INTEL_E1000_ETHERNET_DEVICE(0x108C),
98 INTEL_E1000_ETHERNET_DEVICE(0x1096),
99 INTEL_E1000_ETHERNET_DEVICE(0x1098),
100 INTEL_E1000_ETHERNET_DEVICE(0x1099),
101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
102 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107 INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108 INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109 INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110 /* required last entry */
111 {0,}
112 };
113
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
115
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130 struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132 struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
134
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 static irqreturn_t e1000_intr_msi(int irq, void *data);
162 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
163 struct e1000_tx_ring *tx_ring);
164 #ifdef CONFIG_E1000_NAPI
165 static int e1000_clean(struct net_device *poll_dev, int *budget);
166 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
167 struct e1000_rx_ring *rx_ring,
168 int *work_done, int work_to_do);
169 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
170 struct e1000_rx_ring *rx_ring,
171 int *work_done, int work_to_do);
172 #else
173 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
174 struct e1000_rx_ring *rx_ring);
175 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
176 struct e1000_rx_ring *rx_ring);
177 #endif
178 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
179 struct e1000_rx_ring *rx_ring,
180 int cleaned_count);
181 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
182 struct e1000_rx_ring *rx_ring,
183 int cleaned_count);
184 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
185 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
186 int cmd);
187 void e1000_set_ethtool_ops(struct net_device *netdev);
188 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
189 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
190 static void e1000_tx_timeout(struct net_device *dev);
191 static void e1000_reset_task(struct work_struct *work);
192 static void e1000_smartspeed(struct e1000_adapter *adapter);
193 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
194 struct sk_buff *skb);
195
196 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
197 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
198 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
199 static void e1000_restore_vlan(struct e1000_adapter *adapter);
200
201 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
202 #ifdef CONFIG_PM
203 static int e1000_resume(struct pci_dev *pdev);
204 #endif
205 static void e1000_shutdown(struct pci_dev *pdev);
206
207 #ifdef CONFIG_NET_POLL_CONTROLLER
208 /* for netdump / net console */
209 static void e1000_netpoll (struct net_device *netdev);
210 #endif
211
212 extern void e1000_check_options(struct e1000_adapter *adapter);
213
214 #define COPYBREAK_DEFAULT 256
215 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
216 module_param(copybreak, uint, 0644);
217 MODULE_PARM_DESC(copybreak,
218 "Maximum size of packet that is copied to a new buffer on receive");
219
220 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
221 pci_channel_state_t state);
222 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
223 static void e1000_io_resume(struct pci_dev *pdev);
224
225 static struct pci_error_handlers e1000_err_handler = {
226 .error_detected = e1000_io_error_detected,
227 .slot_reset = e1000_io_slot_reset,
228 .resume = e1000_io_resume,
229 };
230
231 static struct pci_driver e1000_driver = {
232 .name = e1000_driver_name,
233 .id_table = e1000_pci_tbl,
234 .probe = e1000_probe,
235 .remove = __devexit_p(e1000_remove),
236 #ifdef CONFIG_PM
237 /* Power Managment Hooks */
238 .suspend = e1000_suspend,
239 .resume = e1000_resume,
240 #endif
241 .shutdown = e1000_shutdown,
242 .err_handler = &e1000_err_handler
243 };
244
245 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
246 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
247 MODULE_LICENSE("GPL");
248 MODULE_VERSION(DRV_VERSION);
249
250 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
251 module_param(debug, int, 0);
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254 /**
255 * e1000_init_module - Driver Registration Routine
256 *
257 * e1000_init_module is the first routine called when the driver is
258 * loaded. All it does is register with the PCI subsystem.
259 **/
260
261 static int __init
262 e1000_init_module(void)
263 {
264 int ret;
265 printk(KERN_INFO "%s - version %s\n",
266 e1000_driver_string, e1000_driver_version);
267
268 printk(KERN_INFO "%s\n", e1000_copyright);
269
270 ret = pci_register_driver(&e1000_driver);
271 if (copybreak != COPYBREAK_DEFAULT) {
272 if (copybreak == 0)
273 printk(KERN_INFO "e1000: copybreak disabled\n");
274 else
275 printk(KERN_INFO "e1000: copybreak enabled for "
276 "packets <= %u bytes\n", copybreak);
277 }
278 return ret;
279 }
280
281 module_init(e1000_init_module);
282
283 /**
284 * e1000_exit_module - Driver Exit Cleanup Routine
285 *
286 * e1000_exit_module is called just before the driver is removed
287 * from memory.
288 **/
289
290 static void __exit
291 e1000_exit_module(void)
292 {
293 pci_unregister_driver(&e1000_driver);
294 }
295
296 module_exit(e1000_exit_module);
297
298 static int e1000_request_irq(struct e1000_adapter *adapter)
299 {
300 struct net_device *netdev = adapter->netdev;
301 void (*handler) = &e1000_intr;
302 int irq_flags = IRQF_SHARED;
303 int err;
304
305 if (adapter->hw.mac_type >= e1000_82571) {
306 adapter->have_msi = !pci_enable_msi(adapter->pdev);
307 if (adapter->have_msi) {
308 handler = &e1000_intr_msi;
309 irq_flags = 0;
310 }
311 }
312
313 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
314 netdev);
315 if (err) {
316 if (adapter->have_msi)
317 pci_disable_msi(adapter->pdev);
318 DPRINTK(PROBE, ERR,
319 "Unable to allocate interrupt Error: %d\n", err);
320 }
321
322 return err;
323 }
324
325 static void e1000_free_irq(struct e1000_adapter *adapter)
326 {
327 struct net_device *netdev = adapter->netdev;
328
329 free_irq(adapter->pdev->irq, netdev);
330
331 if (adapter->have_msi)
332 pci_disable_msi(adapter->pdev);
333 }
334
335 /**
336 * e1000_irq_disable - Mask off interrupt generation on the NIC
337 * @adapter: board private structure
338 **/
339
340 static void
341 e1000_irq_disable(struct e1000_adapter *adapter)
342 {
343 atomic_inc(&adapter->irq_sem);
344 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
345 E1000_WRITE_FLUSH(&adapter->hw);
346 synchronize_irq(adapter->pdev->irq);
347 }
348
349 /**
350 * e1000_irq_enable - Enable default interrupt generation settings
351 * @adapter: board private structure
352 **/
353
354 static void
355 e1000_irq_enable(struct e1000_adapter *adapter)
356 {
357 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
358 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
359 E1000_WRITE_FLUSH(&adapter->hw);
360 }
361 }
362
363 static void
364 e1000_update_mng_vlan(struct e1000_adapter *adapter)
365 {
366 struct net_device *netdev = adapter->netdev;
367 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
368 uint16_t old_vid = adapter->mng_vlan_id;
369 if (adapter->vlgrp) {
370 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
371 if (adapter->hw.mng_cookie.status &
372 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
373 e1000_vlan_rx_add_vid(netdev, vid);
374 adapter->mng_vlan_id = vid;
375 } else
376 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
377
378 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
379 (vid != old_vid) &&
380 !vlan_group_get_device(adapter->vlgrp, old_vid))
381 e1000_vlan_rx_kill_vid(netdev, old_vid);
382 } else
383 adapter->mng_vlan_id = vid;
384 }
385 }
386
387 /**
388 * e1000_release_hw_control - release control of the h/w to f/w
389 * @adapter: address of board private structure
390 *
391 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
392 * For ASF and Pass Through versions of f/w this means that the
393 * driver is no longer loaded. For AMT version (only with 82573) i
394 * of the f/w this means that the network i/f is closed.
395 *
396 **/
397
398 static void
399 e1000_release_hw_control(struct e1000_adapter *adapter)
400 {
401 uint32_t ctrl_ext;
402 uint32_t swsm;
403
404 /* Let firmware taken over control of h/w */
405 switch (adapter->hw.mac_type) {
406 case e1000_82573:
407 swsm = E1000_READ_REG(&adapter->hw, SWSM);
408 E1000_WRITE_REG(&adapter->hw, SWSM,
409 swsm & ~E1000_SWSM_DRV_LOAD);
410 break;
411 case e1000_82571:
412 case e1000_82572:
413 case e1000_80003es2lan:
414 case e1000_ich8lan:
415 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
416 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
417 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
418 break;
419 default:
420 break;
421 }
422 }
423
424 /**
425 * e1000_get_hw_control - get control of the h/w from f/w
426 * @adapter: address of board private structure
427 *
428 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
429 * For ASF and Pass Through versions of f/w this means that
430 * the driver is loaded. For AMT version (only with 82573)
431 * of the f/w this means that the network i/f is open.
432 *
433 **/
434
435 static void
436 e1000_get_hw_control(struct e1000_adapter *adapter)
437 {
438 uint32_t ctrl_ext;
439 uint32_t swsm;
440
441 /* Let firmware know the driver has taken over */
442 switch (adapter->hw.mac_type) {
443 case e1000_82573:
444 swsm = E1000_READ_REG(&adapter->hw, SWSM);
445 E1000_WRITE_REG(&adapter->hw, SWSM,
446 swsm | E1000_SWSM_DRV_LOAD);
447 break;
448 case e1000_82571:
449 case e1000_82572:
450 case e1000_80003es2lan:
451 case e1000_ich8lan:
452 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
453 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
454 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
455 break;
456 default:
457 break;
458 }
459 }
460
461 static void
462 e1000_init_manageability(struct e1000_adapter *adapter)
463 {
464 if (adapter->en_mng_pt) {
465 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
466
467 /* disable hardware interception of ARP */
468 manc &= ~(E1000_MANC_ARP_EN);
469
470 /* enable receiving management packets to the host */
471 /* this will probably generate destination unreachable messages
472 * from the host OS, but the packets will be handled on SMBUS */
473 if (adapter->hw.has_manc2h) {
474 uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
475
476 manc |= E1000_MANC_EN_MNG2HOST;
477 #define E1000_MNG2HOST_PORT_623 (1 << 5)
478 #define E1000_MNG2HOST_PORT_664 (1 << 6)
479 manc2h |= E1000_MNG2HOST_PORT_623;
480 manc2h |= E1000_MNG2HOST_PORT_664;
481 E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
482 }
483
484 E1000_WRITE_REG(&adapter->hw, MANC, manc);
485 }
486 }
487
488 static void
489 e1000_release_manageability(struct e1000_adapter *adapter)
490 {
491 if (adapter->en_mng_pt) {
492 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
493
494 /* re-enable hardware interception of ARP */
495 manc |= E1000_MANC_ARP_EN;
496
497 if (adapter->hw.has_manc2h)
498 manc &= ~E1000_MANC_EN_MNG2HOST;
499
500 /* don't explicitly have to mess with MANC2H since
501 * MANC has an enable disable that gates MANC2H */
502
503 E1000_WRITE_REG(&adapter->hw, MANC, manc);
504 }
505 }
506
507 /**
508 * e1000_configure - configure the hardware for RX and TX
509 * @adapter = private board structure
510 **/
511 static void e1000_configure(struct e1000_adapter *adapter)
512 {
513 struct net_device *netdev = adapter->netdev;
514 int i;
515
516 e1000_set_multi(netdev);
517
518 e1000_restore_vlan(adapter);
519 e1000_init_manageability(adapter);
520
521 e1000_configure_tx(adapter);
522 e1000_setup_rctl(adapter);
523 e1000_configure_rx(adapter);
524 /* call E1000_DESC_UNUSED which always leaves
525 * at least 1 descriptor unused to make sure
526 * next_to_use != next_to_clean */
527 for (i = 0; i < adapter->num_rx_queues; i++) {
528 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
529 adapter->alloc_rx_buf(adapter, ring,
530 E1000_DESC_UNUSED(ring));
531 }
532
533 adapter->tx_queue_len = netdev->tx_queue_len;
534 }
535
536 int e1000_up(struct e1000_adapter *adapter)
537 {
538 /* hardware has been reset, we need to reload some things */
539 e1000_configure(adapter);
540
541 clear_bit(__E1000_DOWN, &adapter->flags);
542
543 #ifdef CONFIG_E1000_NAPI
544 netif_poll_enable(adapter->netdev);
545 #endif
546 e1000_irq_enable(adapter);
547
548 /* fire a link change interrupt to start the watchdog */
549 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
550 return 0;
551 }
552
553 /**
554 * e1000_power_up_phy - restore link in case the phy was powered down
555 * @adapter: address of board private structure
556 *
557 * The phy may be powered down to save power and turn off link when the
558 * driver is unloaded and wake on lan is not enabled (among others)
559 * *** this routine MUST be followed by a call to e1000_reset ***
560 *
561 **/
562
563 void e1000_power_up_phy(struct e1000_adapter *adapter)
564 {
565 uint16_t mii_reg = 0;
566
567 /* Just clear the power down bit to wake the phy back up */
568 if (adapter->hw.media_type == e1000_media_type_copper) {
569 /* according to the manual, the phy will retain its
570 * settings across a power-down/up cycle */
571 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
572 mii_reg &= ~MII_CR_POWER_DOWN;
573 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
574 }
575 }
576
577 static void e1000_power_down_phy(struct e1000_adapter *adapter)
578 {
579 /* Power down the PHY so no link is implied when interface is down *
580 * The PHY cannot be powered down if any of the following is TRUE *
581 * (a) WoL is enabled
582 * (b) AMT is active
583 * (c) SoL/IDER session is active */
584 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
585 adapter->hw.media_type == e1000_media_type_copper) {
586 uint16_t mii_reg = 0;
587
588 switch (adapter->hw.mac_type) {
589 case e1000_82540:
590 case e1000_82545:
591 case e1000_82545_rev_3:
592 case e1000_82546:
593 case e1000_82546_rev_3:
594 case e1000_82541:
595 case e1000_82541_rev_2:
596 case e1000_82547:
597 case e1000_82547_rev_2:
598 if (E1000_READ_REG(&adapter->hw, MANC) &
599 E1000_MANC_SMBUS_EN)
600 goto out;
601 break;
602 case e1000_82571:
603 case e1000_82572:
604 case e1000_82573:
605 case e1000_80003es2lan:
606 case e1000_ich8lan:
607 if (e1000_check_mng_mode(&adapter->hw) ||
608 e1000_check_phy_reset_block(&adapter->hw))
609 goto out;
610 break;
611 default:
612 goto out;
613 }
614 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
615 mii_reg |= MII_CR_POWER_DOWN;
616 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
617 mdelay(1);
618 }
619 out:
620 return;
621 }
622
623 void
624 e1000_down(struct e1000_adapter *adapter)
625 {
626 struct net_device *netdev = adapter->netdev;
627
628 /* signal that we're down so the interrupt handler does not
629 * reschedule our watchdog timer */
630 set_bit(__E1000_DOWN, &adapter->flags);
631
632 #ifdef CONFIG_E1000_NAPI
633 netif_poll_disable(netdev);
634 #endif
635 e1000_irq_disable(adapter);
636
637 del_timer_sync(&adapter->tx_fifo_stall_timer);
638 del_timer_sync(&adapter->watchdog_timer);
639 del_timer_sync(&adapter->phy_info_timer);
640
641 netdev->tx_queue_len = adapter->tx_queue_len;
642 adapter->link_speed = 0;
643 adapter->link_duplex = 0;
644 netif_carrier_off(netdev);
645 netif_stop_queue(netdev);
646
647 e1000_reset(adapter);
648 e1000_clean_all_tx_rings(adapter);
649 e1000_clean_all_rx_rings(adapter);
650 }
651
652 void
653 e1000_reinit_locked(struct e1000_adapter *adapter)
654 {
655 WARN_ON(in_interrupt());
656 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
657 msleep(1);
658 e1000_down(adapter);
659 e1000_up(adapter);
660 clear_bit(__E1000_RESETTING, &adapter->flags);
661 }
662
663 void
664 e1000_reset(struct e1000_adapter *adapter)
665 {
666 uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
667 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
668 boolean_t legacy_pba_adjust = FALSE;
669
670 /* Repartition Pba for greater than 9k mtu
671 * To take effect CTRL.RST is required.
672 */
673
674 switch (adapter->hw.mac_type) {
675 case e1000_82542_rev2_0:
676 case e1000_82542_rev2_1:
677 case e1000_82543:
678 case e1000_82544:
679 case e1000_82540:
680 case e1000_82541:
681 case e1000_82541_rev_2:
682 legacy_pba_adjust = TRUE;
683 pba = E1000_PBA_48K;
684 break;
685 case e1000_82545:
686 case e1000_82545_rev_3:
687 case e1000_82546:
688 case e1000_82546_rev_3:
689 pba = E1000_PBA_48K;
690 break;
691 case e1000_82547:
692 case e1000_82547_rev_2:
693 legacy_pba_adjust = TRUE;
694 pba = E1000_PBA_30K;
695 break;
696 case e1000_82571:
697 case e1000_82572:
698 case e1000_80003es2lan:
699 pba = E1000_PBA_38K;
700 break;
701 case e1000_82573:
702 pba = E1000_PBA_20K;
703 break;
704 case e1000_ich8lan:
705 pba = E1000_PBA_8K;
706 case e1000_undefined:
707 case e1000_num_macs:
708 break;
709 }
710
711 if (legacy_pba_adjust == TRUE) {
712 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
713 pba -= 8; /* allocate more FIFO for Tx */
714
715 if (adapter->hw.mac_type == e1000_82547) {
716 adapter->tx_fifo_head = 0;
717 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
718 adapter->tx_fifo_size =
719 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
720 atomic_set(&adapter->tx_fifo_stall, 0);
721 }
722 } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
723 /* adjust PBA for jumbo frames */
724 E1000_WRITE_REG(&adapter->hw, PBA, pba);
725
726 /* To maintain wire speed transmits, the Tx FIFO should be
727 * large enough to accomodate two full transmit packets,
728 * rounded up to the next 1KB and expressed in KB. Likewise,
729 * the Rx FIFO should be large enough to accomodate at least
730 * one full receive packet and is similarly rounded up and
731 * expressed in KB. */
732 pba = E1000_READ_REG(&adapter->hw, PBA);
733 /* upper 16 bits has Tx packet buffer allocation size in KB */
734 tx_space = pba >> 16;
735 /* lower 16 bits has Rx packet buffer allocation size in KB */
736 pba &= 0xffff;
737 /* don't include ethernet FCS because hardware appends/strips */
738 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
739 VLAN_TAG_SIZE;
740 min_tx_space = min_rx_space;
741 min_tx_space *= 2;
742 min_tx_space = ALIGN(min_tx_space, 1024);
743 min_tx_space >>= 10;
744 min_rx_space = ALIGN(min_rx_space, 1024);
745 min_rx_space >>= 10;
746
747 /* If current Tx allocation is less than the min Tx FIFO size,
748 * and the min Tx FIFO size is less than the current Rx FIFO
749 * allocation, take space away from current Rx allocation */
750 if (tx_space < min_tx_space &&
751 ((min_tx_space - tx_space) < pba)) {
752 pba = pba - (min_tx_space - tx_space);
753
754 /* PCI/PCIx hardware has PBA alignment constraints */
755 switch (adapter->hw.mac_type) {
756 case e1000_82545 ... e1000_82546_rev_3:
757 pba &= ~(E1000_PBA_8K - 1);
758 break;
759 default:
760 break;
761 }
762
763 /* if short on rx space, rx wins and must trump tx
764 * adjustment or use Early Receive if available */
765 if (pba < min_rx_space) {
766 switch (adapter->hw.mac_type) {
767 case e1000_82573:
768 /* ERT enabled in e1000_configure_rx */
769 break;
770 default:
771 pba = min_rx_space;
772 break;
773 }
774 }
775 }
776 }
777
778 E1000_WRITE_REG(&adapter->hw, PBA, pba);
779
780 /* flow control settings */
781 /* Set the FC high water mark to 90% of the FIFO size.
782 * Required to clear last 3 LSB */
783 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
784 /* We can't use 90% on small FIFOs because the remainder
785 * would be less than 1 full frame. In this case, we size
786 * it to allow at least a full frame above the high water
787 * mark. */
788 if (pba < E1000_PBA_16K)
789 fc_high_water_mark = (pba * 1024) - 1600;
790
791 adapter->hw.fc_high_water = fc_high_water_mark;
792 adapter->hw.fc_low_water = fc_high_water_mark - 8;
793 if (adapter->hw.mac_type == e1000_80003es2lan)
794 adapter->hw.fc_pause_time = 0xFFFF;
795 else
796 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
797 adapter->hw.fc_send_xon = 1;
798 adapter->hw.fc = adapter->hw.original_fc;
799
800 /* Allow time for pending master requests to run */
801 e1000_reset_hw(&adapter->hw);
802 if (adapter->hw.mac_type >= e1000_82544)
803 E1000_WRITE_REG(&adapter->hw, WUC, 0);
804
805 if (e1000_init_hw(&adapter->hw))
806 DPRINTK(PROBE, ERR, "Hardware Error\n");
807 e1000_update_mng_vlan(adapter);
808
809 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
810 if (adapter->hw.mac_type >= e1000_82544 &&
811 adapter->hw.mac_type <= e1000_82547_rev_2 &&
812 adapter->hw.autoneg == 1 &&
813 adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
814 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
815 /* clear phy power management bit if we are in gig only mode,
816 * which if enabled will attempt negotiation to 100Mb, which
817 * can cause a loss of link at power off or driver unload */
818 ctrl &= ~E1000_CTRL_SWDPIN3;
819 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
820 }
821
822 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
823 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
824
825 e1000_reset_adaptive(&adapter->hw);
826 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
827
828 if (!adapter->smart_power_down &&
829 (adapter->hw.mac_type == e1000_82571 ||
830 adapter->hw.mac_type == e1000_82572)) {
831 uint16_t phy_data = 0;
832 /* speed up time to link by disabling smart power down, ignore
833 * the return value of this function because there is nothing
834 * different we would do if it failed */
835 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
836 &phy_data);
837 phy_data &= ~IGP02E1000_PM_SPD;
838 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
839 phy_data);
840 }
841
842 e1000_release_manageability(adapter);
843 }
844
845 /**
846 * e1000_probe - Device Initialization Routine
847 * @pdev: PCI device information struct
848 * @ent: entry in e1000_pci_tbl
849 *
850 * Returns 0 on success, negative on failure
851 *
852 * e1000_probe initializes an adapter identified by a pci_dev structure.
853 * The OS initialization, configuring of the adapter private structure,
854 * and a hardware reset occur.
855 **/
856
857 static int __devinit
858 e1000_probe(struct pci_dev *pdev,
859 const struct pci_device_id *ent)
860 {
861 struct net_device *netdev;
862 struct e1000_adapter *adapter;
863 unsigned long mmio_start, mmio_len;
864 unsigned long flash_start, flash_len;
865
866 static int cards_found = 0;
867 static int global_quad_port_a = 0; /* global ksp3 port a indication */
868 int i, err, pci_using_dac;
869 uint16_t eeprom_data = 0;
870 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
871 if ((err = pci_enable_device(pdev)))
872 return err;
873
874 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
875 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
876 pci_using_dac = 1;
877 } else {
878 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
879 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
880 E1000_ERR("No usable DMA configuration, aborting\n");
881 goto err_dma;
882 }
883 pci_using_dac = 0;
884 }
885
886 if ((err = pci_request_regions(pdev, e1000_driver_name)))
887 goto err_pci_reg;
888
889 pci_set_master(pdev);
890
891 err = -ENOMEM;
892 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
893 if (!netdev)
894 goto err_alloc_etherdev;
895
896 SET_MODULE_OWNER(netdev);
897 SET_NETDEV_DEV(netdev, &pdev->dev);
898
899 pci_set_drvdata(pdev, netdev);
900 adapter = netdev_priv(netdev);
901 adapter->netdev = netdev;
902 adapter->pdev = pdev;
903 adapter->hw.back = adapter;
904 adapter->msg_enable = (1 << debug) - 1;
905
906 mmio_start = pci_resource_start(pdev, BAR_0);
907 mmio_len = pci_resource_len(pdev, BAR_0);
908
909 err = -EIO;
910 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
911 if (!adapter->hw.hw_addr)
912 goto err_ioremap;
913
914 for (i = BAR_1; i <= BAR_5; i++) {
915 if (pci_resource_len(pdev, i) == 0)
916 continue;
917 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
918 adapter->hw.io_base = pci_resource_start(pdev, i);
919 break;
920 }
921 }
922
923 netdev->open = &e1000_open;
924 netdev->stop = &e1000_close;
925 netdev->hard_start_xmit = &e1000_xmit_frame;
926 netdev->get_stats = &e1000_get_stats;
927 netdev->set_multicast_list = &e1000_set_multi;
928 netdev->set_mac_address = &e1000_set_mac;
929 netdev->change_mtu = &e1000_change_mtu;
930 netdev->do_ioctl = &e1000_ioctl;
931 e1000_set_ethtool_ops(netdev);
932 netdev->tx_timeout = &e1000_tx_timeout;
933 netdev->watchdog_timeo = 5 * HZ;
934 #ifdef CONFIG_E1000_NAPI
935 netdev->poll = &e1000_clean;
936 netdev->weight = 64;
937 #endif
938 netdev->vlan_rx_register = e1000_vlan_rx_register;
939 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
940 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
941 #ifdef CONFIG_NET_POLL_CONTROLLER
942 netdev->poll_controller = e1000_netpoll;
943 #endif
944 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
945
946 netdev->mem_start = mmio_start;
947 netdev->mem_end = mmio_start + mmio_len;
948 netdev->base_addr = adapter->hw.io_base;
949
950 adapter->bd_number = cards_found;
951
952 /* setup the private structure */
953
954 if ((err = e1000_sw_init(adapter)))
955 goto err_sw_init;
956
957 err = -EIO;
958 /* Flash BAR mapping must happen after e1000_sw_init
959 * because it depends on mac_type */
960 if ((adapter->hw.mac_type == e1000_ich8lan) &&
961 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
962 flash_start = pci_resource_start(pdev, 1);
963 flash_len = pci_resource_len(pdev, 1);
964 adapter->hw.flash_address = ioremap(flash_start, flash_len);
965 if (!adapter->hw.flash_address)
966 goto err_flashmap;
967 }
968
969 if (e1000_check_phy_reset_block(&adapter->hw))
970 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
971
972 if (adapter->hw.mac_type >= e1000_82543) {
973 netdev->features = NETIF_F_SG |
974 NETIF_F_HW_CSUM |
975 NETIF_F_HW_VLAN_TX |
976 NETIF_F_HW_VLAN_RX |
977 NETIF_F_HW_VLAN_FILTER;
978 if (adapter->hw.mac_type == e1000_ich8lan)
979 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
980 }
981
982 if ((adapter->hw.mac_type >= e1000_82544) &&
983 (adapter->hw.mac_type != e1000_82547))
984 netdev->features |= NETIF_F_TSO;
985
986 if (adapter->hw.mac_type > e1000_82547_rev_2)
987 netdev->features |= NETIF_F_TSO6;
988 if (pci_using_dac)
989 netdev->features |= NETIF_F_HIGHDMA;
990
991 netdev->features |= NETIF_F_LLTX;
992
993 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
994
995 /* initialize eeprom parameters */
996
997 if (e1000_init_eeprom_params(&adapter->hw)) {
998 E1000_ERR("EEPROM initialization failed\n");
999 goto err_eeprom;
1000 }
1001
1002 /* before reading the EEPROM, reset the controller to
1003 * put the device in a known good starting state */
1004
1005 e1000_reset_hw(&adapter->hw);
1006
1007 /* make sure the EEPROM is good */
1008
1009 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1010 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1011 goto err_eeprom;
1012 }
1013
1014 /* copy the MAC address out of the EEPROM */
1015
1016 if (e1000_read_mac_addr(&adapter->hw))
1017 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1018 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1019 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1020
1021 if (!is_valid_ether_addr(netdev->perm_addr)) {
1022 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1023 goto err_eeprom;
1024 }
1025
1026 e1000_get_bus_info(&adapter->hw);
1027
1028 init_timer(&adapter->tx_fifo_stall_timer);
1029 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1030 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1031
1032 init_timer(&adapter->watchdog_timer);
1033 adapter->watchdog_timer.function = &e1000_watchdog;
1034 adapter->watchdog_timer.data = (unsigned long) adapter;
1035
1036 init_timer(&adapter->phy_info_timer);
1037 adapter->phy_info_timer.function = &e1000_update_phy_info;
1038 adapter->phy_info_timer.data = (unsigned long) adapter;
1039
1040 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1041
1042 e1000_check_options(adapter);
1043
1044 /* Initial Wake on LAN setting
1045 * If APM wake is enabled in the EEPROM,
1046 * enable the ACPI Magic Packet filter
1047 */
1048
1049 switch (adapter->hw.mac_type) {
1050 case e1000_82542_rev2_0:
1051 case e1000_82542_rev2_1:
1052 case e1000_82543:
1053 break;
1054 case e1000_82544:
1055 e1000_read_eeprom(&adapter->hw,
1056 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1057 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1058 break;
1059 case e1000_ich8lan:
1060 e1000_read_eeprom(&adapter->hw,
1061 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1062 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1063 break;
1064 case e1000_82546:
1065 case e1000_82546_rev_3:
1066 case e1000_82571:
1067 case e1000_80003es2lan:
1068 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1069 e1000_read_eeprom(&adapter->hw,
1070 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1071 break;
1072 }
1073 /* Fall Through */
1074 default:
1075 e1000_read_eeprom(&adapter->hw,
1076 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1077 break;
1078 }
1079 if (eeprom_data & eeprom_apme_mask)
1080 adapter->eeprom_wol |= E1000_WUFC_MAG;
1081
1082 /* now that we have the eeprom settings, apply the special cases
1083 * where the eeprom may be wrong or the board simply won't support
1084 * wake on lan on a particular port */
1085 switch (pdev->device) {
1086 case E1000_DEV_ID_82546GB_PCIE:
1087 adapter->eeprom_wol = 0;
1088 break;
1089 case E1000_DEV_ID_82546EB_FIBER:
1090 case E1000_DEV_ID_82546GB_FIBER:
1091 case E1000_DEV_ID_82571EB_FIBER:
1092 /* Wake events only supported on port A for dual fiber
1093 * regardless of eeprom setting */
1094 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1095 adapter->eeprom_wol = 0;
1096 break;
1097 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1098 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1099 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1100 /* if quad port adapter, disable WoL on all but port A */
1101 if (global_quad_port_a != 0)
1102 adapter->eeprom_wol = 0;
1103 else
1104 adapter->quad_port_a = 1;
1105 /* Reset for multiple quad port adapters */
1106 if (++global_quad_port_a == 4)
1107 global_quad_port_a = 0;
1108 break;
1109 }
1110
1111 /* initialize the wol settings based on the eeprom settings */
1112 adapter->wol = adapter->eeprom_wol;
1113
1114 /* print bus type/speed/width info */
1115 {
1116 struct e1000_hw *hw = &adapter->hw;
1117 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1118 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1119 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1120 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1121 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1122 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1123 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1124 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1125 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1126 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1127 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1128 "32-bit"));
1129 }
1130
1131 for (i = 0; i < 6; i++)
1132 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1133
1134 /* reset the hardware with the new settings */
1135 e1000_reset(adapter);
1136
1137 /* If the controller is 82573 and f/w is AMT, do not set
1138 * DRV_LOAD until the interface is up. For all other cases,
1139 * let the f/w know that the h/w is now under the control
1140 * of the driver. */
1141 if (adapter->hw.mac_type != e1000_82573 ||
1142 !e1000_check_mng_mode(&adapter->hw))
1143 e1000_get_hw_control(adapter);
1144
1145 strcpy(netdev->name, "eth%d");
1146 if ((err = register_netdev(netdev)))
1147 goto err_register;
1148
1149 /* tell the stack to leave us alone until e1000_open() is called */
1150 netif_carrier_off(netdev);
1151 netif_stop_queue(netdev);
1152
1153 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1154
1155 cards_found++;
1156 return 0;
1157
1158 err_register:
1159 e1000_release_hw_control(adapter);
1160 err_eeprom:
1161 if (!e1000_check_phy_reset_block(&adapter->hw))
1162 e1000_phy_hw_reset(&adapter->hw);
1163
1164 if (adapter->hw.flash_address)
1165 iounmap(adapter->hw.flash_address);
1166 err_flashmap:
1167 #ifdef CONFIG_E1000_NAPI
1168 for (i = 0; i < adapter->num_rx_queues; i++)
1169 dev_put(&adapter->polling_netdev[i]);
1170 #endif
1171
1172 kfree(adapter->tx_ring);
1173 kfree(adapter->rx_ring);
1174 #ifdef CONFIG_E1000_NAPI
1175 kfree(adapter->polling_netdev);
1176 #endif
1177 err_sw_init:
1178 iounmap(adapter->hw.hw_addr);
1179 err_ioremap:
1180 free_netdev(netdev);
1181 err_alloc_etherdev:
1182 pci_release_regions(pdev);
1183 err_pci_reg:
1184 err_dma:
1185 pci_disable_device(pdev);
1186 return err;
1187 }
1188
1189 /**
1190 * e1000_remove - Device Removal Routine
1191 * @pdev: PCI device information struct
1192 *
1193 * e1000_remove is called by the PCI subsystem to alert the driver
1194 * that it should release a PCI device. The could be caused by a
1195 * Hot-Plug event, or because the driver is going to be removed from
1196 * memory.
1197 **/
1198
1199 static void __devexit
1200 e1000_remove(struct pci_dev *pdev)
1201 {
1202 struct net_device *netdev = pci_get_drvdata(pdev);
1203 struct e1000_adapter *adapter = netdev_priv(netdev);
1204 #ifdef CONFIG_E1000_NAPI
1205 int i;
1206 #endif
1207
1208 cancel_work_sync(&adapter->reset_task);
1209
1210 e1000_release_manageability(adapter);
1211
1212 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1213 * would have already happened in close and is redundant. */
1214 e1000_release_hw_control(adapter);
1215
1216 unregister_netdev(netdev);
1217 #ifdef CONFIG_E1000_NAPI
1218 for (i = 0; i < adapter->num_rx_queues; i++)
1219 dev_put(&adapter->polling_netdev[i]);
1220 #endif
1221
1222 if (!e1000_check_phy_reset_block(&adapter->hw))
1223 e1000_phy_hw_reset(&adapter->hw);
1224
1225 kfree(adapter->tx_ring);
1226 kfree(adapter->rx_ring);
1227 #ifdef CONFIG_E1000_NAPI
1228 kfree(adapter->polling_netdev);
1229 #endif
1230
1231 iounmap(adapter->hw.hw_addr);
1232 if (adapter->hw.flash_address)
1233 iounmap(adapter->hw.flash_address);
1234 pci_release_regions(pdev);
1235
1236 free_netdev(netdev);
1237
1238 pci_disable_device(pdev);
1239 }
1240
1241 /**
1242 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1243 * @adapter: board private structure to initialize
1244 *
1245 * e1000_sw_init initializes the Adapter private data structure.
1246 * Fields are initialized based on PCI device information and
1247 * OS network device settings (MTU size).
1248 **/
1249
1250 static int __devinit
1251 e1000_sw_init(struct e1000_adapter *adapter)
1252 {
1253 struct e1000_hw *hw = &adapter->hw;
1254 struct net_device *netdev = adapter->netdev;
1255 struct pci_dev *pdev = adapter->pdev;
1256 #ifdef CONFIG_E1000_NAPI
1257 int i;
1258 #endif
1259
1260 /* PCI config space info */
1261
1262 hw->vendor_id = pdev->vendor;
1263 hw->device_id = pdev->device;
1264 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1265 hw->subsystem_id = pdev->subsystem_device;
1266
1267 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1268
1269 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1270
1271 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1272 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1273 hw->max_frame_size = netdev->mtu +
1274 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1275 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1276
1277 /* identify the MAC */
1278
1279 if (e1000_set_mac_type(hw)) {
1280 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1281 return -EIO;
1282 }
1283
1284 switch (hw->mac_type) {
1285 default:
1286 break;
1287 case e1000_82541:
1288 case e1000_82547:
1289 case e1000_82541_rev_2:
1290 case e1000_82547_rev_2:
1291 hw->phy_init_script = 1;
1292 break;
1293 }
1294
1295 e1000_set_media_type(hw);
1296
1297 hw->wait_autoneg_complete = FALSE;
1298 hw->tbi_compatibility_en = TRUE;
1299 hw->adaptive_ifs = TRUE;
1300
1301 /* Copper options */
1302
1303 if (hw->media_type == e1000_media_type_copper) {
1304 hw->mdix = AUTO_ALL_MODES;
1305 hw->disable_polarity_correction = FALSE;
1306 hw->master_slave = E1000_MASTER_SLAVE;
1307 }
1308
1309 adapter->num_tx_queues = 1;
1310 adapter->num_rx_queues = 1;
1311
1312 if (e1000_alloc_queues(adapter)) {
1313 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1314 return -ENOMEM;
1315 }
1316
1317 #ifdef CONFIG_E1000_NAPI
1318 for (i = 0; i < adapter->num_rx_queues; i++) {
1319 adapter->polling_netdev[i].priv = adapter;
1320 adapter->polling_netdev[i].poll = &e1000_clean;
1321 adapter->polling_netdev[i].weight = 64;
1322 dev_hold(&adapter->polling_netdev[i]);
1323 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1324 }
1325 spin_lock_init(&adapter->tx_queue_lock);
1326 #endif
1327
1328 /* Explicitly disable IRQ since the NIC can be in any state. */
1329 atomic_set(&adapter->irq_sem, 0);
1330 e1000_irq_disable(adapter);
1331
1332 spin_lock_init(&adapter->stats_lock);
1333
1334 set_bit(__E1000_DOWN, &adapter->flags);
1335
1336 return 0;
1337 }
1338
1339 /**
1340 * e1000_alloc_queues - Allocate memory for all rings
1341 * @adapter: board private structure to initialize
1342 *
1343 * We allocate one ring per queue at run-time since we don't know the
1344 * number of queues at compile-time. The polling_netdev array is
1345 * intended for Multiqueue, but should work fine with a single queue.
1346 **/
1347
1348 static int __devinit
1349 e1000_alloc_queues(struct e1000_adapter *adapter)
1350 {
1351 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1352 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1353 if (!adapter->tx_ring)
1354 return -ENOMEM;
1355
1356 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1357 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1358 if (!adapter->rx_ring) {
1359 kfree(adapter->tx_ring);
1360 return -ENOMEM;
1361 }
1362
1363 #ifdef CONFIG_E1000_NAPI
1364 adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1365 sizeof(struct net_device),
1366 GFP_KERNEL);
1367 if (!adapter->polling_netdev) {
1368 kfree(adapter->tx_ring);
1369 kfree(adapter->rx_ring);
1370 return -ENOMEM;
1371 }
1372 #endif
1373
1374 return E1000_SUCCESS;
1375 }
1376
1377 /**
1378 * e1000_open - Called when a network interface is made active
1379 * @netdev: network interface device structure
1380 *
1381 * Returns 0 on success, negative value on failure
1382 *
1383 * The open entry point is called when a network interface is made
1384 * active by the system (IFF_UP). At this point all resources needed
1385 * for transmit and receive operations are allocated, the interrupt
1386 * handler is registered with the OS, the watchdog timer is started,
1387 * and the stack is notified that the interface is ready.
1388 **/
1389
1390 static int
1391 e1000_open(struct net_device *netdev)
1392 {
1393 struct e1000_adapter *adapter = netdev_priv(netdev);
1394 int err;
1395
1396 /* disallow open during test */
1397 if (test_bit(__E1000_TESTING, &adapter->flags))
1398 return -EBUSY;
1399
1400 /* allocate transmit descriptors */
1401 err = e1000_setup_all_tx_resources(adapter);
1402 if (err)
1403 goto err_setup_tx;
1404
1405 /* allocate receive descriptors */
1406 err = e1000_setup_all_rx_resources(adapter);
1407 if (err)
1408 goto err_setup_rx;
1409
1410 e1000_power_up_phy(adapter);
1411
1412 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1413 if ((adapter->hw.mng_cookie.status &
1414 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1415 e1000_update_mng_vlan(adapter);
1416 }
1417
1418 /* If AMT is enabled, let the firmware know that the network
1419 * interface is now open */
1420 if (adapter->hw.mac_type == e1000_82573 &&
1421 e1000_check_mng_mode(&adapter->hw))
1422 e1000_get_hw_control(adapter);
1423
1424 /* before we allocate an interrupt, we must be ready to handle it.
1425 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1426 * as soon as we call pci_request_irq, so we have to setup our
1427 * clean_rx handler before we do so. */
1428 e1000_configure(adapter);
1429
1430 err = e1000_request_irq(adapter);
1431 if (err)
1432 goto err_req_irq;
1433
1434 /* From here on the code is the same as e1000_up() */
1435 clear_bit(__E1000_DOWN, &adapter->flags);
1436
1437 #ifdef CONFIG_E1000_NAPI
1438 netif_poll_enable(netdev);
1439 #endif
1440
1441 e1000_irq_enable(adapter);
1442
1443 /* fire a link status change interrupt to start the watchdog */
1444 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1445
1446 return E1000_SUCCESS;
1447
1448 err_req_irq:
1449 e1000_release_hw_control(adapter);
1450 e1000_power_down_phy(adapter);
1451 e1000_free_all_rx_resources(adapter);
1452 err_setup_rx:
1453 e1000_free_all_tx_resources(adapter);
1454 err_setup_tx:
1455 e1000_reset(adapter);
1456
1457 return err;
1458 }
1459
1460 /**
1461 * e1000_close - Disables a network interface
1462 * @netdev: network interface device structure
1463 *
1464 * Returns 0, this is not allowed to fail
1465 *
1466 * The close entry point is called when an interface is de-activated
1467 * by the OS. The hardware is still under the drivers control, but
1468 * needs to be disabled. A global MAC reset is issued to stop the
1469 * hardware, and all transmit and receive resources are freed.
1470 **/
1471
1472 static int
1473 e1000_close(struct net_device *netdev)
1474 {
1475 struct e1000_adapter *adapter = netdev_priv(netdev);
1476
1477 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1478 e1000_down(adapter);
1479 e1000_power_down_phy(adapter);
1480 e1000_free_irq(adapter);
1481
1482 e1000_free_all_tx_resources(adapter);
1483 e1000_free_all_rx_resources(adapter);
1484
1485 /* kill manageability vlan ID if supported, but not if a vlan with
1486 * the same ID is registered on the host OS (let 8021q kill it) */
1487 if ((adapter->hw.mng_cookie.status &
1488 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1489 !(adapter->vlgrp &&
1490 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1491 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1492 }
1493
1494 /* If AMT is enabled, let the firmware know that the network
1495 * interface is now closed */
1496 if (adapter->hw.mac_type == e1000_82573 &&
1497 e1000_check_mng_mode(&adapter->hw))
1498 e1000_release_hw_control(adapter);
1499
1500 return 0;
1501 }
1502
1503 /**
1504 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1505 * @adapter: address of board private structure
1506 * @start: address of beginning of memory
1507 * @len: length of memory
1508 **/
1509 static boolean_t
1510 e1000_check_64k_bound(struct e1000_adapter *adapter,
1511 void *start, unsigned long len)
1512 {
1513 unsigned long begin = (unsigned long) start;
1514 unsigned long end = begin + len;
1515
1516 /* First rev 82545 and 82546 need to not allow any memory
1517 * write location to cross 64k boundary due to errata 23 */
1518 if (adapter->hw.mac_type == e1000_82545 ||
1519 adapter->hw.mac_type == e1000_82546) {
1520 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1521 }
1522
1523 return TRUE;
1524 }
1525
1526 /**
1527 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1528 * @adapter: board private structure
1529 * @txdr: tx descriptor ring (for a specific queue) to setup
1530 *
1531 * Return 0 on success, negative on failure
1532 **/
1533
1534 static int
1535 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1536 struct e1000_tx_ring *txdr)
1537 {
1538 struct pci_dev *pdev = adapter->pdev;
1539 int size;
1540
1541 size = sizeof(struct e1000_buffer) * txdr->count;
1542 txdr->buffer_info = vmalloc(size);
1543 if (!txdr->buffer_info) {
1544 DPRINTK(PROBE, ERR,
1545 "Unable to allocate memory for the transmit descriptor ring\n");
1546 return -ENOMEM;
1547 }
1548 memset(txdr->buffer_info, 0, size);
1549
1550 /* round up to nearest 4K */
1551
1552 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1553 txdr->size = ALIGN(txdr->size, 4096);
1554
1555 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1556 if (!txdr->desc) {
1557 setup_tx_desc_die:
1558 vfree(txdr->buffer_info);
1559 DPRINTK(PROBE, ERR,
1560 "Unable to allocate memory for the transmit descriptor ring\n");
1561 return -ENOMEM;
1562 }
1563
1564 /* Fix for errata 23, can't cross 64kB boundary */
1565 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1566 void *olddesc = txdr->desc;
1567 dma_addr_t olddma = txdr->dma;
1568 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1569 "at %p\n", txdr->size, txdr->desc);
1570 /* Try again, without freeing the previous */
1571 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1572 /* Failed allocation, critical failure */
1573 if (!txdr->desc) {
1574 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1575 goto setup_tx_desc_die;
1576 }
1577
1578 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1579 /* give up */
1580 pci_free_consistent(pdev, txdr->size, txdr->desc,
1581 txdr->dma);
1582 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1583 DPRINTK(PROBE, ERR,
1584 "Unable to allocate aligned memory "
1585 "for the transmit descriptor ring\n");
1586 vfree(txdr->buffer_info);
1587 return -ENOMEM;
1588 } else {
1589 /* Free old allocation, new allocation was successful */
1590 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1591 }
1592 }
1593 memset(txdr->desc, 0, txdr->size);
1594
1595 txdr->next_to_use = 0;
1596 txdr->next_to_clean = 0;
1597 spin_lock_init(&txdr->tx_lock);
1598
1599 return 0;
1600 }
1601
1602 /**
1603 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1604 * (Descriptors) for all queues
1605 * @adapter: board private structure
1606 *
1607 * Return 0 on success, negative on failure
1608 **/
1609
1610 int
1611 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1612 {
1613 int i, err = 0;
1614
1615 for (i = 0; i < adapter->num_tx_queues; i++) {
1616 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1617 if (err) {
1618 DPRINTK(PROBE, ERR,
1619 "Allocation for Tx Queue %u failed\n", i);
1620 for (i-- ; i >= 0; i--)
1621 e1000_free_tx_resources(adapter,
1622 &adapter->tx_ring[i]);
1623 break;
1624 }
1625 }
1626
1627 return err;
1628 }
1629
1630 /**
1631 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1632 * @adapter: board private structure
1633 *
1634 * Configure the Tx unit of the MAC after a reset.
1635 **/
1636
1637 static void
1638 e1000_configure_tx(struct e1000_adapter *adapter)
1639 {
1640 uint64_t tdba;
1641 struct e1000_hw *hw = &adapter->hw;
1642 uint32_t tdlen, tctl, tipg, tarc;
1643 uint32_t ipgr1, ipgr2;
1644
1645 /* Setup the HW Tx Head and Tail descriptor pointers */
1646
1647 switch (adapter->num_tx_queues) {
1648 case 1:
1649 default:
1650 tdba = adapter->tx_ring[0].dma;
1651 tdlen = adapter->tx_ring[0].count *
1652 sizeof(struct e1000_tx_desc);
1653 E1000_WRITE_REG(hw, TDLEN, tdlen);
1654 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1655 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1656 E1000_WRITE_REG(hw, TDT, 0);
1657 E1000_WRITE_REG(hw, TDH, 0);
1658 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1659 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1660 break;
1661 }
1662
1663 /* Set the default values for the Tx Inter Packet Gap timer */
1664 if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1665 (hw->media_type == e1000_media_type_fiber ||
1666 hw->media_type == e1000_media_type_internal_serdes))
1667 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1668 else
1669 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1670
1671 switch (hw->mac_type) {
1672 case e1000_82542_rev2_0:
1673 case e1000_82542_rev2_1:
1674 tipg = DEFAULT_82542_TIPG_IPGT;
1675 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1676 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1677 break;
1678 case e1000_80003es2lan:
1679 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1680 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1681 break;
1682 default:
1683 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1684 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1685 break;
1686 }
1687 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1688 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1689 E1000_WRITE_REG(hw, TIPG, tipg);
1690
1691 /* Set the Tx Interrupt Delay register */
1692
1693 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1694 if (hw->mac_type >= e1000_82540)
1695 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1696
1697 /* Program the Transmit Control Register */
1698
1699 tctl = E1000_READ_REG(hw, TCTL);
1700 tctl &= ~E1000_TCTL_CT;
1701 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1702 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1703
1704 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1705 tarc = E1000_READ_REG(hw, TARC0);
1706 /* set the speed mode bit, we'll clear it if we're not at
1707 * gigabit link later */
1708 tarc |= (1 << 21);
1709 E1000_WRITE_REG(hw, TARC0, tarc);
1710 } else if (hw->mac_type == e1000_80003es2lan) {
1711 tarc = E1000_READ_REG(hw, TARC0);
1712 tarc |= 1;
1713 E1000_WRITE_REG(hw, TARC0, tarc);
1714 tarc = E1000_READ_REG(hw, TARC1);
1715 tarc |= 1;
1716 E1000_WRITE_REG(hw, TARC1, tarc);
1717 }
1718
1719 e1000_config_collision_dist(hw);
1720
1721 /* Setup Transmit Descriptor Settings for eop descriptor */
1722 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1723
1724 /* only set IDE if we are delaying interrupts using the timers */
1725 if (adapter->tx_int_delay)
1726 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1727
1728 if (hw->mac_type < e1000_82543)
1729 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1730 else
1731 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1732
1733 /* Cache if we're 82544 running in PCI-X because we'll
1734 * need this to apply a workaround later in the send path. */
1735 if (hw->mac_type == e1000_82544 &&
1736 hw->bus_type == e1000_bus_type_pcix)
1737 adapter->pcix_82544 = 1;
1738
1739 E1000_WRITE_REG(hw, TCTL, tctl);
1740
1741 }
1742
1743 /**
1744 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1745 * @adapter: board private structure
1746 * @rxdr: rx descriptor ring (for a specific queue) to setup
1747 *
1748 * Returns 0 on success, negative on failure
1749 **/
1750
1751 static int
1752 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1753 struct e1000_rx_ring *rxdr)
1754 {
1755 struct pci_dev *pdev = adapter->pdev;
1756 int size, desc_len;
1757
1758 size = sizeof(struct e1000_buffer) * rxdr->count;
1759 rxdr->buffer_info = vmalloc(size);
1760 if (!rxdr->buffer_info) {
1761 DPRINTK(PROBE, ERR,
1762 "Unable to allocate memory for the receive descriptor ring\n");
1763 return -ENOMEM;
1764 }
1765 memset(rxdr->buffer_info, 0, size);
1766
1767 rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
1768 GFP_KERNEL);
1769 if (!rxdr->ps_page) {
1770 vfree(rxdr->buffer_info);
1771 DPRINTK(PROBE, ERR,
1772 "Unable to allocate memory for the receive descriptor ring\n");
1773 return -ENOMEM;
1774 }
1775
1776 rxdr->ps_page_dma = kcalloc(rxdr->count,
1777 sizeof(struct e1000_ps_page_dma),
1778 GFP_KERNEL);
1779 if (!rxdr->ps_page_dma) {
1780 vfree(rxdr->buffer_info);
1781 kfree(rxdr->ps_page);
1782 DPRINTK(PROBE, ERR,
1783 "Unable to allocate memory for the receive descriptor ring\n");
1784 return -ENOMEM;
1785 }
1786
1787 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1788 desc_len = sizeof(struct e1000_rx_desc);
1789 else
1790 desc_len = sizeof(union e1000_rx_desc_packet_split);
1791
1792 /* Round up to nearest 4K */
1793
1794 rxdr->size = rxdr->count * desc_len;
1795 rxdr->size = ALIGN(rxdr->size, 4096);
1796
1797 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1798
1799 if (!rxdr->desc) {
1800 DPRINTK(PROBE, ERR,
1801 "Unable to allocate memory for the receive descriptor ring\n");
1802 setup_rx_desc_die:
1803 vfree(rxdr->buffer_info);
1804 kfree(rxdr->ps_page);
1805 kfree(rxdr->ps_page_dma);
1806 return -ENOMEM;
1807 }
1808
1809 /* Fix for errata 23, can't cross 64kB boundary */
1810 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1811 void *olddesc = rxdr->desc;
1812 dma_addr_t olddma = rxdr->dma;
1813 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1814 "at %p\n", rxdr->size, rxdr->desc);
1815 /* Try again, without freeing the previous */
1816 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1817 /* Failed allocation, critical failure */
1818 if (!rxdr->desc) {
1819 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1820 DPRINTK(PROBE, ERR,
1821 "Unable to allocate memory "
1822 "for the receive descriptor ring\n");
1823 goto setup_rx_desc_die;
1824 }
1825
1826 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1827 /* give up */
1828 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1829 rxdr->dma);
1830 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1831 DPRINTK(PROBE, ERR,
1832 "Unable to allocate aligned memory "
1833 "for the receive descriptor ring\n");
1834 goto setup_rx_desc_die;
1835 } else {
1836 /* Free old allocation, new allocation was successful */
1837 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1838 }
1839 }
1840 memset(rxdr->desc, 0, rxdr->size);
1841
1842 rxdr->next_to_clean = 0;
1843 rxdr->next_to_use = 0;
1844
1845 return 0;
1846 }
1847
1848 /**
1849 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1850 * (Descriptors) for all queues
1851 * @adapter: board private structure
1852 *
1853 * Return 0 on success, negative on failure
1854 **/
1855
1856 int
1857 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1858 {
1859 int i, err = 0;
1860
1861 for (i = 0; i < adapter->num_rx_queues; i++) {
1862 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1863 if (err) {
1864 DPRINTK(PROBE, ERR,
1865 "Allocation for Rx Queue %u failed\n", i);
1866 for (i-- ; i >= 0; i--)
1867 e1000_free_rx_resources(adapter,
1868 &adapter->rx_ring[i]);
1869 break;
1870 }
1871 }
1872
1873 return err;
1874 }
1875
1876 /**
1877 * e1000_setup_rctl - configure the receive control registers
1878 * @adapter: Board private structure
1879 **/
1880 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1881 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1882 static void
1883 e1000_setup_rctl(struct e1000_adapter *adapter)
1884 {
1885 uint32_t rctl, rfctl;
1886 uint32_t psrctl = 0;
1887 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1888 uint32_t pages = 0;
1889 #endif
1890
1891 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1892
1893 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1894
1895 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1896 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1897 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1898
1899 if (adapter->hw.tbi_compatibility_on == 1)
1900 rctl |= E1000_RCTL_SBP;
1901 else
1902 rctl &= ~E1000_RCTL_SBP;
1903
1904 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1905 rctl &= ~E1000_RCTL_LPE;
1906 else
1907 rctl |= E1000_RCTL_LPE;
1908
1909 /* Setup buffer sizes */
1910 rctl &= ~E1000_RCTL_SZ_4096;
1911 rctl |= E1000_RCTL_BSEX;
1912 switch (adapter->rx_buffer_len) {
1913 case E1000_RXBUFFER_256:
1914 rctl |= E1000_RCTL_SZ_256;
1915 rctl &= ~E1000_RCTL_BSEX;
1916 break;
1917 case E1000_RXBUFFER_512:
1918 rctl |= E1000_RCTL_SZ_512;
1919 rctl &= ~E1000_RCTL_BSEX;
1920 break;
1921 case E1000_RXBUFFER_1024:
1922 rctl |= E1000_RCTL_SZ_1024;
1923 rctl &= ~E1000_RCTL_BSEX;
1924 break;
1925 case E1000_RXBUFFER_2048:
1926 default:
1927 rctl |= E1000_RCTL_SZ_2048;
1928 rctl &= ~E1000_RCTL_BSEX;
1929 break;
1930 case E1000_RXBUFFER_4096:
1931 rctl |= E1000_RCTL_SZ_4096;
1932 break;
1933 case E1000_RXBUFFER_8192:
1934 rctl |= E1000_RCTL_SZ_8192;
1935 break;
1936 case E1000_RXBUFFER_16384:
1937 rctl |= E1000_RCTL_SZ_16384;
1938 break;
1939 }
1940
1941 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1942 /* 82571 and greater support packet-split where the protocol
1943 * header is placed in skb->data and the packet data is
1944 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1945 * In the case of a non-split, skb->data is linearly filled,
1946 * followed by the page buffers. Therefore, skb->data is
1947 * sized to hold the largest protocol header.
1948 */
1949 /* allocations using alloc_page take too long for regular MTU
1950 * so only enable packet split for jumbo frames */
1951 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1952 if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1953 PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1954 adapter->rx_ps_pages = pages;
1955 else
1956 adapter->rx_ps_pages = 0;
1957 #endif
1958 if (adapter->rx_ps_pages) {
1959 /* Configure extra packet-split registers */
1960 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1961 rfctl |= E1000_RFCTL_EXTEN;
1962 /* disable packet split support for IPv6 extension headers,
1963 * because some malformed IPv6 headers can hang the RX */
1964 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1965 E1000_RFCTL_NEW_IPV6_EXT_DIS);
1966
1967 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1968
1969 rctl |= E1000_RCTL_DTYP_PS;
1970
1971 psrctl |= adapter->rx_ps_bsize0 >>
1972 E1000_PSRCTL_BSIZE0_SHIFT;
1973
1974 switch (adapter->rx_ps_pages) {
1975 case 3:
1976 psrctl |= PAGE_SIZE <<
1977 E1000_PSRCTL_BSIZE3_SHIFT;
1978 case 2:
1979 psrctl |= PAGE_SIZE <<
1980 E1000_PSRCTL_BSIZE2_SHIFT;
1981 case 1:
1982 psrctl |= PAGE_SIZE >>
1983 E1000_PSRCTL_BSIZE1_SHIFT;
1984 break;
1985 }
1986
1987 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1988 }
1989
1990 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1991 }
1992
1993 /**
1994 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1995 * @adapter: board private structure
1996 *
1997 * Configure the Rx unit of the MAC after a reset.
1998 **/
1999
2000 static void
2001 e1000_configure_rx(struct e1000_adapter *adapter)
2002 {
2003 uint64_t rdba;
2004 struct e1000_hw *hw = &adapter->hw;
2005 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2006
2007 if (adapter->rx_ps_pages) {
2008 /* this is a 32 byte descriptor */
2009 rdlen = adapter->rx_ring[0].count *
2010 sizeof(union e1000_rx_desc_packet_split);
2011 adapter->clean_rx = e1000_clean_rx_irq_ps;
2012 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2013 } else {
2014 rdlen = adapter->rx_ring[0].count *
2015 sizeof(struct e1000_rx_desc);
2016 adapter->clean_rx = e1000_clean_rx_irq;
2017 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2018 }
2019
2020 /* disable receives while setting up the descriptors */
2021 rctl = E1000_READ_REG(hw, RCTL);
2022 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2023
2024 /* set the Receive Delay Timer Register */
2025 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2026
2027 if (hw->mac_type >= e1000_82540) {
2028 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2029 if (adapter->itr_setting != 0)
2030 E1000_WRITE_REG(hw, ITR,
2031 1000000000 / (adapter->itr * 256));
2032 }
2033
2034 if (hw->mac_type >= e1000_82571) {
2035 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2036 /* Reset delay timers after every interrupt */
2037 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2038 #ifdef CONFIG_E1000_NAPI
2039 /* Auto-Mask interrupts upon ICR access */
2040 ctrl_ext |= E1000_CTRL_EXT_IAME;
2041 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2042 #endif
2043 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2044 E1000_WRITE_FLUSH(hw);
2045 }
2046
2047 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2048 * the Base and Length of the Rx Descriptor Ring */
2049 switch (adapter->num_rx_queues) {
2050 case 1:
2051 default:
2052 rdba = adapter->rx_ring[0].dma;
2053 E1000_WRITE_REG(hw, RDLEN, rdlen);
2054 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2055 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2056 E1000_WRITE_REG(hw, RDT, 0);
2057 E1000_WRITE_REG(hw, RDH, 0);
2058 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2059 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2060 break;
2061 }
2062
2063 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2064 if (hw->mac_type >= e1000_82543) {
2065 rxcsum = E1000_READ_REG(hw, RXCSUM);
2066 if (adapter->rx_csum == TRUE) {
2067 rxcsum |= E1000_RXCSUM_TUOFL;
2068
2069 /* Enable 82571 IPv4 payload checksum for UDP fragments
2070 * Must be used in conjunction with packet-split. */
2071 if ((hw->mac_type >= e1000_82571) &&
2072 (adapter->rx_ps_pages)) {
2073 rxcsum |= E1000_RXCSUM_IPPCSE;
2074 }
2075 } else {
2076 rxcsum &= ~E1000_RXCSUM_TUOFL;
2077 /* don't need to clear IPPCSE as it defaults to 0 */
2078 }
2079 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2080 }
2081
2082 /* enable early receives on 82573, only takes effect if using > 2048
2083 * byte total frame size. for example only for jumbo frames */
2084 #define E1000_ERT_2048 0x100
2085 if (hw->mac_type == e1000_82573)
2086 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2087
2088 /* Enable Receives */
2089 E1000_WRITE_REG(hw, RCTL, rctl);
2090 }
2091
2092 /**
2093 * e1000_free_tx_resources - Free Tx Resources per Queue
2094 * @adapter: board private structure
2095 * @tx_ring: Tx descriptor ring for a specific queue
2096 *
2097 * Free all transmit software resources
2098 **/
2099
2100 static void
2101 e1000_free_tx_resources(struct e1000_adapter *adapter,
2102 struct e1000_tx_ring *tx_ring)
2103 {
2104 struct pci_dev *pdev = adapter->pdev;
2105
2106 e1000_clean_tx_ring(adapter, tx_ring);
2107
2108 vfree(tx_ring->buffer_info);
2109 tx_ring->buffer_info = NULL;
2110
2111 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2112
2113 tx_ring->desc = NULL;
2114 }
2115
2116 /**
2117 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2118 * @adapter: board private structure
2119 *
2120 * Free all transmit software resources
2121 **/
2122
2123 void
2124 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2125 {
2126 int i;
2127
2128 for (i = 0; i < adapter->num_tx_queues; i++)
2129 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2130 }
2131
2132 static void
2133 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2134 struct e1000_buffer *buffer_info)
2135 {
2136 if (buffer_info->dma) {
2137 pci_unmap_page(adapter->pdev,
2138 buffer_info->dma,
2139 buffer_info->length,
2140 PCI_DMA_TODEVICE);
2141 buffer_info->dma = 0;
2142 }
2143 if (buffer_info->skb) {
2144 dev_kfree_skb_any(buffer_info->skb);
2145 buffer_info->skb = NULL;
2146 }
2147 /* buffer_info must be completely set up in the transmit path */
2148 }
2149
2150 /**
2151 * e1000_clean_tx_ring - Free Tx Buffers
2152 * @adapter: board private structure
2153 * @tx_ring: ring to be cleaned
2154 **/
2155
2156 static void
2157 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2158 struct e1000_tx_ring *tx_ring)
2159 {
2160 struct e1000_buffer *buffer_info;
2161 unsigned long size;
2162 unsigned int i;
2163
2164 /* Free all the Tx ring sk_buffs */
2165
2166 for (i = 0; i < tx_ring->count; i++) {
2167 buffer_info = &tx_ring->buffer_info[i];
2168 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2169 }
2170
2171 size = sizeof(struct e1000_buffer) * tx_ring->count;
2172 memset(tx_ring->buffer_info, 0, size);
2173
2174 /* Zero out the descriptor ring */
2175
2176 memset(tx_ring->desc, 0, tx_ring->size);
2177
2178 tx_ring->next_to_use = 0;
2179 tx_ring->next_to_clean = 0;
2180 tx_ring->last_tx_tso = 0;
2181
2182 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2183 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2184 }
2185
2186 /**
2187 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2188 * @adapter: board private structure
2189 **/
2190
2191 static void
2192 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2193 {
2194 int i;
2195
2196 for (i = 0; i < adapter->num_tx_queues; i++)
2197 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2198 }
2199
2200 /**
2201 * e1000_free_rx_resources - Free Rx Resources
2202 * @adapter: board private structure
2203 * @rx_ring: ring to clean the resources from
2204 *
2205 * Free all receive software resources
2206 **/
2207
2208 static void
2209 e1000_free_rx_resources(struct e1000_adapter *adapter,
2210 struct e1000_rx_ring *rx_ring)
2211 {
2212 struct pci_dev *pdev = adapter->pdev;
2213
2214 e1000_clean_rx_ring(adapter, rx_ring);
2215
2216 vfree(rx_ring->buffer_info);
2217 rx_ring->buffer_info = NULL;
2218 kfree(rx_ring->ps_page);
2219 rx_ring->ps_page = NULL;
2220 kfree(rx_ring->ps_page_dma);
2221 rx_ring->ps_page_dma = NULL;
2222
2223 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2224
2225 rx_ring->desc = NULL;
2226 }
2227
2228 /**
2229 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2230 * @adapter: board private structure
2231 *
2232 * Free all receive software resources
2233 **/
2234
2235 void
2236 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2237 {
2238 int i;
2239
2240 for (i = 0; i < adapter->num_rx_queues; i++)
2241 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2242 }
2243
2244 /**
2245 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2246 * @adapter: board private structure
2247 * @rx_ring: ring to free buffers from
2248 **/
2249
2250 static void
2251 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2252 struct e1000_rx_ring *rx_ring)
2253 {
2254 struct e1000_buffer *buffer_info;
2255 struct e1000_ps_page *ps_page;
2256 struct e1000_ps_page_dma *ps_page_dma;
2257 struct pci_dev *pdev = adapter->pdev;
2258 unsigned long size;
2259 unsigned int i, j;
2260
2261 /* Free all the Rx ring sk_buffs */
2262 for (i = 0; i < rx_ring->count; i++) {
2263 buffer_info = &rx_ring->buffer_info[i];
2264 if (buffer_info->skb) {
2265 pci_unmap_single(pdev,
2266 buffer_info->dma,
2267 buffer_info->length,
2268 PCI_DMA_FROMDEVICE);
2269
2270 dev_kfree_skb(buffer_info->skb);
2271 buffer_info->skb = NULL;
2272 }
2273 ps_page = &rx_ring->ps_page[i];
2274 ps_page_dma = &rx_ring->ps_page_dma[i];
2275 for (j = 0; j < adapter->rx_ps_pages; j++) {
2276 if (!ps_page->ps_page[j]) break;
2277 pci_unmap_page(pdev,
2278 ps_page_dma->ps_page_dma[j],
2279 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2280 ps_page_dma->ps_page_dma[j] = 0;
2281 put_page(ps_page->ps_page[j]);
2282 ps_page->ps_page[j] = NULL;
2283 }
2284 }
2285
2286 size = sizeof(struct e1000_buffer) * rx_ring->count;
2287 memset(rx_ring->buffer_info, 0, size);
2288 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2289 memset(rx_ring->ps_page, 0, size);
2290 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2291 memset(rx_ring->ps_page_dma, 0, size);
2292
2293 /* Zero out the descriptor ring */
2294
2295 memset(rx_ring->desc, 0, rx_ring->size);
2296
2297 rx_ring->next_to_clean = 0;
2298 rx_ring->next_to_use = 0;
2299
2300 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2301 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2302 }
2303
2304 /**
2305 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2306 * @adapter: board private structure
2307 **/
2308
2309 static void
2310 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2311 {
2312 int i;
2313
2314 for (i = 0; i < adapter->num_rx_queues; i++)
2315 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2316 }
2317
2318 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2319 * and memory write and invalidate disabled for certain operations
2320 */
2321 static void
2322 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2323 {
2324 struct net_device *netdev = adapter->netdev;
2325 uint32_t rctl;
2326
2327 e1000_pci_clear_mwi(&adapter->hw);
2328
2329 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2330 rctl |= E1000_RCTL_RST;
2331 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2332 E1000_WRITE_FLUSH(&adapter->hw);
2333 mdelay(5);
2334
2335 if (netif_running(netdev))
2336 e1000_clean_all_rx_rings(adapter);
2337 }
2338
2339 static void
2340 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2341 {
2342 struct net_device *netdev = adapter->netdev;
2343 uint32_t rctl;
2344
2345 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2346 rctl &= ~E1000_RCTL_RST;
2347 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2348 E1000_WRITE_FLUSH(&adapter->hw);
2349 mdelay(5);
2350
2351 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2352 e1000_pci_set_mwi(&adapter->hw);
2353
2354 if (netif_running(netdev)) {
2355 /* No need to loop, because 82542 supports only 1 queue */
2356 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2357 e1000_configure_rx(adapter);
2358 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2359 }
2360 }
2361
2362 /**
2363 * e1000_set_mac - Change the Ethernet Address of the NIC
2364 * @netdev: network interface device structure
2365 * @p: pointer to an address structure
2366 *
2367 * Returns 0 on success, negative on failure
2368 **/
2369
2370 static int
2371 e1000_set_mac(struct net_device *netdev, void *p)
2372 {
2373 struct e1000_adapter *adapter = netdev_priv(netdev);
2374 struct sockaddr *addr = p;
2375
2376 if (!is_valid_ether_addr(addr->sa_data))
2377 return -EADDRNOTAVAIL;
2378
2379 /* 82542 2.0 needs to be in reset to write receive address registers */
2380
2381 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2382 e1000_enter_82542_rst(adapter);
2383
2384 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2385 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2386
2387 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2388
2389 /* With 82571 controllers, LAA may be overwritten (with the default)
2390 * due to controller reset from the other port. */
2391 if (adapter->hw.mac_type == e1000_82571) {
2392 /* activate the work around */
2393 adapter->hw.laa_is_present = 1;
2394
2395 /* Hold a copy of the LAA in RAR[14] This is done so that
2396 * between the time RAR[0] gets clobbered and the time it
2397 * gets fixed (in e1000_watchdog), the actual LAA is in one
2398 * of the RARs and no incoming packets directed to this port
2399 * are dropped. Eventaully the LAA will be in RAR[0] and
2400 * RAR[14] */
2401 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2402 E1000_RAR_ENTRIES - 1);
2403 }
2404
2405 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2406 e1000_leave_82542_rst(adapter);
2407
2408 return 0;
2409 }
2410
2411 /**
2412 * e1000_set_multi - Multicast and Promiscuous mode set
2413 * @netdev: network interface device structure
2414 *
2415 * The set_multi entry point is called whenever the multicast address
2416 * list or the network interface flags are updated. This routine is
2417 * responsible for configuring the hardware for proper multicast,
2418 * promiscuous mode, and all-multi behavior.
2419 **/
2420
2421 static void
2422 e1000_set_multi(struct net_device *netdev)
2423 {
2424 struct e1000_adapter *adapter = netdev_priv(netdev);
2425 struct e1000_hw *hw = &adapter->hw;
2426 struct dev_mc_list *mc_ptr;
2427 uint32_t rctl;
2428 uint32_t hash_value;
2429 int i, rar_entries = E1000_RAR_ENTRIES;
2430 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2431 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2432 E1000_NUM_MTA_REGISTERS;
2433
2434 if (adapter->hw.mac_type == e1000_ich8lan)
2435 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2436
2437 /* reserve RAR[14] for LAA over-write work-around */
2438 if (adapter->hw.mac_type == e1000_82571)
2439 rar_entries--;
2440
2441 /* Check for Promiscuous and All Multicast modes */
2442
2443 rctl = E1000_READ_REG(hw, RCTL);
2444
2445 if (netdev->flags & IFF_PROMISC) {
2446 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2447 } else if (netdev->flags & IFF_ALLMULTI) {
2448 rctl |= E1000_RCTL_MPE;
2449 rctl &= ~E1000_RCTL_UPE;
2450 } else {
2451 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2452 }
2453
2454 E1000_WRITE_REG(hw, RCTL, rctl);
2455
2456 /* 82542 2.0 needs to be in reset to write receive address registers */
2457
2458 if (hw->mac_type == e1000_82542_rev2_0)
2459 e1000_enter_82542_rst(adapter);
2460
2461 /* load the first 14 multicast address into the exact filters 1-14
2462 * RAR 0 is used for the station MAC adddress
2463 * if there are not 14 addresses, go ahead and clear the filters
2464 * -- with 82571 controllers only 0-13 entries are filled here
2465 */
2466 mc_ptr = netdev->mc_list;
2467
2468 for (i = 1; i < rar_entries; i++) {
2469 if (mc_ptr) {
2470 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2471 mc_ptr = mc_ptr->next;
2472 } else {
2473 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2474 E1000_WRITE_FLUSH(hw);
2475 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2476 E1000_WRITE_FLUSH(hw);
2477 }
2478 }
2479
2480 /* clear the old settings from the multicast hash table */
2481
2482 for (i = 0; i < mta_reg_count; i++) {
2483 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2484 E1000_WRITE_FLUSH(hw);
2485 }
2486
2487 /* load any remaining addresses into the hash table */
2488
2489 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2490 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2491 e1000_mta_set(hw, hash_value);
2492 }
2493
2494 if (hw->mac_type == e1000_82542_rev2_0)
2495 e1000_leave_82542_rst(adapter);
2496 }
2497
2498 /* Need to wait a few seconds after link up to get diagnostic information from
2499 * the phy */
2500
2501 static void
2502 e1000_update_phy_info(unsigned long data)
2503 {
2504 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2505 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2506 }
2507
2508 /**
2509 * e1000_82547_tx_fifo_stall - Timer Call-back
2510 * @data: pointer to adapter cast into an unsigned long
2511 **/
2512
2513 static void
2514 e1000_82547_tx_fifo_stall(unsigned long data)
2515 {
2516 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2517 struct net_device *netdev = adapter->netdev;
2518 uint32_t tctl;
2519
2520 if (atomic_read(&adapter->tx_fifo_stall)) {
2521 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2522 E1000_READ_REG(&adapter->hw, TDH)) &&
2523 (E1000_READ_REG(&adapter->hw, TDFT) ==
2524 E1000_READ_REG(&adapter->hw, TDFH)) &&
2525 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2526 E1000_READ_REG(&adapter->hw, TDFHS))) {
2527 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2528 E1000_WRITE_REG(&adapter->hw, TCTL,
2529 tctl & ~E1000_TCTL_EN);
2530 E1000_WRITE_REG(&adapter->hw, TDFT,
2531 adapter->tx_head_addr);
2532 E1000_WRITE_REG(&adapter->hw, TDFH,
2533 adapter->tx_head_addr);
2534 E1000_WRITE_REG(&adapter->hw, TDFTS,
2535 adapter->tx_head_addr);
2536 E1000_WRITE_REG(&adapter->hw, TDFHS,
2537 adapter->tx_head_addr);
2538 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2539 E1000_WRITE_FLUSH(&adapter->hw);
2540
2541 adapter->tx_fifo_head = 0;
2542 atomic_set(&adapter->tx_fifo_stall, 0);
2543 netif_wake_queue(netdev);
2544 } else {
2545 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2546 }
2547 }
2548 }
2549
2550 /**
2551 * e1000_watchdog - Timer Call-back
2552 * @data: pointer to adapter cast into an unsigned long
2553 **/
2554 static void
2555 e1000_watchdog(unsigned long data)
2556 {
2557 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2558 struct net_device *netdev = adapter->netdev;
2559 struct e1000_tx_ring *txdr = adapter->tx_ring;
2560 uint32_t link, tctl;
2561 int32_t ret_val;
2562
2563 ret_val = e1000_check_for_link(&adapter->hw);
2564 if ((ret_val == E1000_ERR_PHY) &&
2565 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2566 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2567 /* See e1000_kumeran_lock_loss_workaround() */
2568 DPRINTK(LINK, INFO,
2569 "Gigabit has been disabled, downgrading speed\n");
2570 }
2571
2572 if (adapter->hw.mac_type == e1000_82573) {
2573 e1000_enable_tx_pkt_filtering(&adapter->hw);
2574 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2575 e1000_update_mng_vlan(adapter);
2576 }
2577
2578 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2579 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2580 link = !adapter->hw.serdes_link_down;
2581 else
2582 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2583
2584 if (link) {
2585 if (!netif_carrier_ok(netdev)) {
2586 uint32_t ctrl;
2587 boolean_t txb2b = 1;
2588 e1000_get_speed_and_duplex(&adapter->hw,
2589 &adapter->link_speed,
2590 &adapter->link_duplex);
2591
2592 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2593 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2594 "Flow Control: %s\n",
2595 adapter->link_speed,
2596 adapter->link_duplex == FULL_DUPLEX ?
2597 "Full Duplex" : "Half Duplex",
2598 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2599 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2600 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2601 E1000_CTRL_TFCE) ? "TX" : "None" )));
2602
2603 /* tweak tx_queue_len according to speed/duplex
2604 * and adjust the timeout factor */
2605 netdev->tx_queue_len = adapter->tx_queue_len;
2606 adapter->tx_timeout_factor = 1;
2607 switch (adapter->link_speed) {
2608 case SPEED_10:
2609 txb2b = 0;
2610 netdev->tx_queue_len = 10;
2611 adapter->tx_timeout_factor = 8;
2612 break;
2613 case SPEED_100:
2614 txb2b = 0;
2615 netdev->tx_queue_len = 100;
2616 /* maybe add some timeout factor ? */
2617 break;
2618 }
2619
2620 if ((adapter->hw.mac_type == e1000_82571 ||
2621 adapter->hw.mac_type == e1000_82572) &&
2622 txb2b == 0) {
2623 uint32_t tarc0;
2624 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2625 tarc0 &= ~(1 << 21);
2626 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2627 }
2628
2629 /* disable TSO for pcie and 10/100 speeds, to avoid
2630 * some hardware issues */
2631 if (!adapter->tso_force &&
2632 adapter->hw.bus_type == e1000_bus_type_pci_express){
2633 switch (adapter->link_speed) {
2634 case SPEED_10:
2635 case SPEED_100:
2636 DPRINTK(PROBE,INFO,
2637 "10/100 speed: disabling TSO\n");
2638 netdev->features &= ~NETIF_F_TSO;
2639 netdev->features &= ~NETIF_F_TSO6;
2640 break;
2641 case SPEED_1000:
2642 netdev->features |= NETIF_F_TSO;
2643 netdev->features |= NETIF_F_TSO6;
2644 break;
2645 default:
2646 /* oops */
2647 break;
2648 }
2649 }
2650
2651 /* enable transmits in the hardware, need to do this
2652 * after setting TARC0 */
2653 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2654 tctl |= E1000_TCTL_EN;
2655 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2656
2657 netif_carrier_on(netdev);
2658 netif_wake_queue(netdev);
2659 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2660 adapter->smartspeed = 0;
2661 } else {
2662 /* make sure the receive unit is started */
2663 if (adapter->hw.rx_needs_kicking) {
2664 struct e1000_hw *hw = &adapter->hw;
2665 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2666 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2667 }
2668 }
2669 } else {
2670 if (netif_carrier_ok(netdev)) {
2671 adapter->link_speed = 0;
2672 adapter->link_duplex = 0;
2673 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2674 netif_carrier_off(netdev);
2675 netif_stop_queue(netdev);
2676 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2677
2678 /* 80003ES2LAN workaround--
2679 * For packet buffer work-around on link down event;
2680 * disable receives in the ISR and
2681 * reset device here in the watchdog
2682 */
2683 if (adapter->hw.mac_type == e1000_80003es2lan)
2684 /* reset device */
2685 schedule_work(&adapter->reset_task);
2686 }
2687
2688 e1000_smartspeed(adapter);
2689 }
2690
2691 e1000_update_stats(adapter);
2692
2693 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2694 adapter->tpt_old = adapter->stats.tpt;
2695 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2696 adapter->colc_old = adapter->stats.colc;
2697
2698 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2699 adapter->gorcl_old = adapter->stats.gorcl;
2700 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2701 adapter->gotcl_old = adapter->stats.gotcl;
2702
2703 e1000_update_adaptive(&adapter->hw);
2704
2705 if (!netif_carrier_ok(netdev)) {
2706 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2707 /* We've lost link, so the controller stops DMA,
2708 * but we've got queued Tx work that's never going
2709 * to get done, so reset controller to flush Tx.
2710 * (Do the reset outside of interrupt context). */
2711 adapter->tx_timeout_count++;
2712 schedule_work(&adapter->reset_task);
2713 }
2714 }
2715
2716 /* Cause software interrupt to ensure rx ring is cleaned */
2717 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2718
2719 /* Force detection of hung controller every watchdog period */
2720 adapter->detect_tx_hung = TRUE;
2721
2722 /* With 82571 controllers, LAA may be overwritten due to controller
2723 * reset from the other port. Set the appropriate LAA in RAR[0] */
2724 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2725 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2726
2727 /* Reset the timer */
2728 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2729 }
2730
2731 enum latency_range {
2732 lowest_latency = 0,
2733 low_latency = 1,
2734 bulk_latency = 2,
2735 latency_invalid = 255
2736 };
2737
2738 /**
2739 * e1000_update_itr - update the dynamic ITR value based on statistics
2740 * Stores a new ITR value based on packets and byte
2741 * counts during the last interrupt. The advantage of per interrupt
2742 * computation is faster updates and more accurate ITR for the current
2743 * traffic pattern. Constants in this function were computed
2744 * based on theoretical maximum wire speed and thresholds were set based
2745 * on testing data as well as attempting to minimize response time
2746 * while increasing bulk throughput.
2747 * this functionality is controlled by the InterruptThrottleRate module
2748 * parameter (see e1000_param.c)
2749 * @adapter: pointer to adapter
2750 * @itr_setting: current adapter->itr
2751 * @packets: the number of packets during this measurement interval
2752 * @bytes: the number of bytes during this measurement interval
2753 **/
2754 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2755 uint16_t itr_setting,
2756 int packets,
2757 int bytes)
2758 {
2759 unsigned int retval = itr_setting;
2760 struct e1000_hw *hw = &adapter->hw;
2761
2762 if (unlikely(hw->mac_type < e1000_82540))
2763 goto update_itr_done;
2764
2765 if (packets == 0)
2766 goto update_itr_done;
2767
2768 switch (itr_setting) {
2769 case lowest_latency:
2770 /* jumbo frames get bulk treatment*/
2771 if (bytes/packets > 8000)
2772 retval = bulk_latency;
2773 else if ((packets < 5) && (bytes > 512))
2774 retval = low_latency;
2775 break;
2776 case low_latency: /* 50 usec aka 20000 ints/s */
2777 if (bytes > 10000) {
2778 /* jumbo frames need bulk latency setting */
2779 if (bytes/packets > 8000)
2780 retval = bulk_latency;
2781 else if ((packets < 10) || ((bytes/packets) > 1200))
2782 retval = bulk_latency;
2783 else if ((packets > 35))
2784 retval = lowest_latency;
2785 } else if (bytes/packets > 2000)
2786 retval = bulk_latency;
2787 else if (packets <= 2 && bytes < 512)
2788 retval = lowest_latency;
2789 break;
2790 case bulk_latency: /* 250 usec aka 4000 ints/s */
2791 if (bytes > 25000) {
2792 if (packets > 35)
2793 retval = low_latency;
2794 } else if (bytes < 6000) {
2795 retval = low_latency;
2796 }
2797 break;
2798 }
2799
2800 update_itr_done:
2801 return retval;
2802 }
2803
2804 static void e1000_set_itr(struct e1000_adapter *adapter)
2805 {
2806 struct e1000_hw *hw = &adapter->hw;
2807 uint16_t current_itr;
2808 uint32_t new_itr = adapter->itr;
2809
2810 if (unlikely(hw->mac_type < e1000_82540))
2811 return;
2812
2813 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2814 if (unlikely(adapter->link_speed != SPEED_1000)) {
2815 current_itr = 0;
2816 new_itr = 4000;
2817 goto set_itr_now;
2818 }
2819
2820 adapter->tx_itr = e1000_update_itr(adapter,
2821 adapter->tx_itr,
2822 adapter->total_tx_packets,
2823 adapter->total_tx_bytes);
2824 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2825 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2826 adapter->tx_itr = low_latency;
2827
2828 adapter->rx_itr = e1000_update_itr(adapter,
2829 adapter->rx_itr,
2830 adapter->total_rx_packets,
2831 adapter->total_rx_bytes);
2832 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2833 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2834 adapter->rx_itr = low_latency;
2835
2836 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2837
2838 switch (current_itr) {
2839 /* counts and packets in update_itr are dependent on these numbers */
2840 case lowest_latency:
2841 new_itr = 70000;
2842 break;
2843 case low_latency:
2844 new_itr = 20000; /* aka hwitr = ~200 */
2845 break;
2846 case bulk_latency:
2847 new_itr = 4000;
2848 break;
2849 default:
2850 break;
2851 }
2852
2853 set_itr_now:
2854 if (new_itr != adapter->itr) {
2855 /* this attempts to bias the interrupt rate towards Bulk
2856 * by adding intermediate steps when interrupt rate is
2857 * increasing */
2858 new_itr = new_itr > adapter->itr ?
2859 min(adapter->itr + (new_itr >> 2), new_itr) :
2860 new_itr;
2861 adapter->itr = new_itr;
2862 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2863 }
2864
2865 return;
2866 }
2867
2868 #define E1000_TX_FLAGS_CSUM 0x00000001
2869 #define E1000_TX_FLAGS_VLAN 0x00000002
2870 #define E1000_TX_FLAGS_TSO 0x00000004
2871 #define E1000_TX_FLAGS_IPV4 0x00000008
2872 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2873 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2874
2875 static int
2876 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2877 struct sk_buff *skb)
2878 {
2879 struct e1000_context_desc *context_desc;
2880 struct e1000_buffer *buffer_info;
2881 unsigned int i;
2882 uint32_t cmd_length = 0;
2883 uint16_t ipcse = 0, tucse, mss;
2884 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2885 int err;
2886
2887 if (skb_is_gso(skb)) {
2888 if (skb_header_cloned(skb)) {
2889 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2890 if (err)
2891 return err;
2892 }
2893
2894 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2895 mss = skb_shinfo(skb)->gso_size;
2896 if (skb->protocol == htons(ETH_P_IP)) {
2897 struct iphdr *iph = ip_hdr(skb);
2898 iph->tot_len = 0;
2899 iph->check = 0;
2900 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2901 iph->daddr, 0,
2902 IPPROTO_TCP,
2903 0);
2904 cmd_length = E1000_TXD_CMD_IP;
2905 ipcse = skb_transport_offset(skb) - 1;
2906 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2907 ipv6_hdr(skb)->payload_len = 0;
2908 tcp_hdr(skb)->check =
2909 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2910 &ipv6_hdr(skb)->daddr,
2911 0, IPPROTO_TCP, 0);
2912 ipcse = 0;
2913 }
2914 ipcss = skb_network_offset(skb);
2915 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2916 tucss = skb_transport_offset(skb);
2917 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2918 tucse = 0;
2919
2920 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2921 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2922
2923 i = tx_ring->next_to_use;
2924 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2925 buffer_info = &tx_ring->buffer_info[i];
2926
2927 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2928 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2929 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2930 context_desc->upper_setup.tcp_fields.tucss = tucss;
2931 context_desc->upper_setup.tcp_fields.tucso = tucso;
2932 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2933 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2934 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2935 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2936
2937 buffer_info->time_stamp = jiffies;
2938 buffer_info->next_to_watch = i;
2939
2940 if (++i == tx_ring->count) i = 0;
2941 tx_ring->next_to_use = i;
2942
2943 return TRUE;
2944 }
2945 return FALSE;
2946 }
2947
2948 static boolean_t
2949 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2950 struct sk_buff *skb)
2951 {
2952 struct e1000_context_desc *context_desc;
2953 struct e1000_buffer *buffer_info;
2954 unsigned int i;
2955 uint8_t css;
2956
2957 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2958 css = skb_transport_offset(skb);
2959
2960 i = tx_ring->next_to_use;
2961 buffer_info = &tx_ring->buffer_info[i];
2962 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2963
2964 context_desc->lower_setup.ip_config = 0;
2965 context_desc->upper_setup.tcp_fields.tucss = css;
2966 context_desc->upper_setup.tcp_fields.tucso =
2967 css + skb->csum_offset;
2968 context_desc->upper_setup.tcp_fields.tucse = 0;
2969 context_desc->tcp_seg_setup.data = 0;
2970 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2971
2972 buffer_info->time_stamp = jiffies;
2973 buffer_info->next_to_watch = i;
2974
2975 if (unlikely(++i == tx_ring->count)) i = 0;
2976 tx_ring->next_to_use = i;
2977
2978 return TRUE;
2979 }
2980
2981 return FALSE;
2982 }
2983
2984 #define E1000_MAX_TXD_PWR 12
2985 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2986
2987 static int
2988 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2989 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2990 unsigned int nr_frags, unsigned int mss)
2991 {
2992 struct e1000_buffer *buffer_info;
2993 unsigned int len = skb->len;
2994 unsigned int offset = 0, size, count = 0, i;
2995 unsigned int f;
2996 len -= skb->data_len;
2997
2998 i = tx_ring->next_to_use;
2999
3000 while (len) {
3001 buffer_info = &tx_ring->buffer_info[i];
3002 size = min(len, max_per_txd);
3003 /* Workaround for Controller erratum --
3004 * descriptor for non-tso packet in a linear SKB that follows a
3005 * tso gets written back prematurely before the data is fully
3006 * DMA'd to the controller */
3007 if (!skb->data_len && tx_ring->last_tx_tso &&
3008 !skb_is_gso(skb)) {
3009 tx_ring->last_tx_tso = 0;
3010 size -= 4;
3011 }
3012
3013 /* Workaround for premature desc write-backs
3014 * in TSO mode. Append 4-byte sentinel desc */
3015 if (unlikely(mss && !nr_frags && size == len && size > 8))
3016 size -= 4;
3017 /* work-around for errata 10 and it applies
3018 * to all controllers in PCI-X mode
3019 * The fix is to make sure that the first descriptor of a
3020 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3021 */
3022 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3023 (size > 2015) && count == 0))
3024 size = 2015;
3025
3026 /* Workaround for potential 82544 hang in PCI-X. Avoid
3027 * terminating buffers within evenly-aligned dwords. */
3028 if (unlikely(adapter->pcix_82544 &&
3029 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3030 size > 4))
3031 size -= 4;
3032
3033 buffer_info->length = size;
3034 buffer_info->dma =
3035 pci_map_single(adapter->pdev,
3036 skb->data + offset,
3037 size,
3038 PCI_DMA_TODEVICE);
3039 buffer_info->time_stamp = jiffies;
3040 buffer_info->next_to_watch = i;
3041
3042 len -= size;
3043 offset += size;
3044 count++;
3045 if (unlikely(++i == tx_ring->count)) i = 0;
3046 }
3047
3048 for (f = 0; f < nr_frags; f++) {
3049 struct skb_frag_struct *frag;
3050
3051 frag = &skb_shinfo(skb)->frags[f];
3052 len = frag->size;
3053 offset = frag->page_offset;
3054
3055 while (len) {
3056 buffer_info = &tx_ring->buffer_info[i];
3057 size = min(len, max_per_txd);
3058 /* Workaround for premature desc write-backs
3059 * in TSO mode. Append 4-byte sentinel desc */
3060 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3061 size -= 4;
3062 /* Workaround for potential 82544 hang in PCI-X.
3063 * Avoid terminating buffers within evenly-aligned
3064 * dwords. */
3065 if (unlikely(adapter->pcix_82544 &&
3066 !((unsigned long)(frag->page+offset+size-1) & 4) &&
3067 size > 4))
3068 size -= 4;
3069
3070 buffer_info->length = size;
3071 buffer_info->dma =
3072 pci_map_page(adapter->pdev,
3073 frag->page,
3074 offset,
3075 size,
3076 PCI_DMA_TODEVICE);
3077 buffer_info->time_stamp = jiffies;
3078 buffer_info->next_to_watch = i;
3079
3080 len -= size;
3081 offset += size;
3082 count++;
3083 if (unlikely(++i == tx_ring->count)) i = 0;
3084 }
3085 }
3086
3087 i = (i == 0) ? tx_ring->count - 1 : i - 1;
3088 tx_ring->buffer_info[i].skb = skb;
3089 tx_ring->buffer_info[first].next_to_watch = i;
3090
3091 return count;
3092 }
3093
3094 static void
3095 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3096 int tx_flags, int count)
3097 {
3098 struct e1000_tx_desc *tx_desc = NULL;
3099 struct e1000_buffer *buffer_info;
3100 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3101 unsigned int i;
3102
3103 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3104 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3105 E1000_TXD_CMD_TSE;
3106 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3107
3108 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3109 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3110 }
3111
3112 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3113 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3114 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3115 }
3116
3117 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3118 txd_lower |= E1000_TXD_CMD_VLE;
3119 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3120 }
3121
3122 i = tx_ring->next_to_use;
3123
3124 while (count--) {
3125 buffer_info = &tx_ring->buffer_info[i];
3126 tx_desc = E1000_TX_DESC(*tx_ring, i);
3127 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3128 tx_desc->lower.data =
3129 cpu_to_le32(txd_lower | buffer_info->length);
3130 tx_desc->upper.data = cpu_to_le32(txd_upper);
3131 if (unlikely(++i == tx_ring->count)) i = 0;
3132 }
3133
3134 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3135
3136 /* Force memory writes to complete before letting h/w
3137 * know there are new descriptors to fetch. (Only
3138 * applicable for weak-ordered memory model archs,
3139 * such as IA-64). */
3140 wmb();
3141
3142 tx_ring->next_to_use = i;
3143 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3144 /* we need this if more than one processor can write to our tail
3145 * at a time, it syncronizes IO on IA64/Altix systems */
3146 mmiowb();
3147 }
3148
3149 /**
3150 * 82547 workaround to avoid controller hang in half-duplex environment.
3151 * The workaround is to avoid queuing a large packet that would span
3152 * the internal Tx FIFO ring boundary by notifying the stack to resend
3153 * the packet at a later time. This gives the Tx FIFO an opportunity to
3154 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3155 * to the beginning of the Tx FIFO.
3156 **/
3157
3158 #define E1000_FIFO_HDR 0x10
3159 #define E1000_82547_PAD_LEN 0x3E0
3160
3161 static int
3162 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3163 {
3164 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3165 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3166
3167 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3168
3169 if (adapter->link_duplex != HALF_DUPLEX)
3170 goto no_fifo_stall_required;
3171
3172 if (atomic_read(&adapter->tx_fifo_stall))
3173 return 1;
3174
3175 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3176 atomic_set(&adapter->tx_fifo_stall, 1);
3177 return 1;
3178 }
3179
3180 no_fifo_stall_required:
3181 adapter->tx_fifo_head += skb_fifo_len;
3182 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3183 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3184 return 0;
3185 }
3186
3187 #define MINIMUM_DHCP_PACKET_SIZE 282
3188 static int
3189 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3190 {
3191 struct e1000_hw *hw = &adapter->hw;
3192 uint16_t length, offset;
3193 if (vlan_tx_tag_present(skb)) {
3194 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3195 ( adapter->hw.mng_cookie.status &
3196 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3197 return 0;
3198 }
3199 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3200 struct ethhdr *eth = (struct ethhdr *) skb->data;
3201 if ((htons(ETH_P_IP) == eth->h_proto)) {
3202 const struct iphdr *ip =
3203 (struct iphdr *)((uint8_t *)skb->data+14);
3204 if (IPPROTO_UDP == ip->protocol) {
3205 struct udphdr *udp =
3206 (struct udphdr *)((uint8_t *)ip +
3207 (ip->ihl << 2));
3208 if (ntohs(udp->dest) == 67) {
3209 offset = (uint8_t *)udp + 8 - skb->data;
3210 length = skb->len - offset;
3211
3212 return e1000_mng_write_dhcp_info(hw,
3213 (uint8_t *)udp + 8,
3214 length);
3215 }
3216 }
3217 }
3218 }
3219 return 0;
3220 }
3221
3222 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3223 {
3224 struct e1000_adapter *adapter = netdev_priv(netdev);
3225 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3226
3227 netif_stop_queue(netdev);
3228 /* Herbert's original patch had:
3229 * smp_mb__after_netif_stop_queue();
3230 * but since that doesn't exist yet, just open code it. */
3231 smp_mb();
3232
3233 /* We need to check again in a case another CPU has just
3234 * made room available. */
3235 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3236 return -EBUSY;
3237
3238 /* A reprieve! */
3239 netif_start_queue(netdev);
3240 ++adapter->restart_queue;
3241 return 0;
3242 }
3243
3244 static int e1000_maybe_stop_tx(struct net_device *netdev,
3245 struct e1000_tx_ring *tx_ring, int size)
3246 {
3247 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3248 return 0;
3249 return __e1000_maybe_stop_tx(netdev, size);
3250 }
3251
3252 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3253 static int
3254 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3255 {
3256 struct e1000_adapter *adapter = netdev_priv(netdev);
3257 struct e1000_tx_ring *tx_ring;
3258 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3259 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3260 unsigned int tx_flags = 0;
3261 unsigned int len = skb->len;
3262 unsigned long flags;
3263 unsigned int nr_frags = 0;
3264 unsigned int mss = 0;
3265 int count = 0;
3266 int tso;
3267 unsigned int f;
3268 len -= skb->data_len;
3269
3270 /* This goes back to the question of how to logically map a tx queue
3271 * to a flow. Right now, performance is impacted slightly negatively
3272 * if using multiple tx queues. If the stack breaks away from a
3273 * single qdisc implementation, we can look at this again. */
3274 tx_ring = adapter->tx_ring;
3275
3276 if (unlikely(skb->len <= 0)) {
3277 dev_kfree_skb_any(skb);
3278 return NETDEV_TX_OK;
3279 }
3280
3281 /* 82571 and newer doesn't need the workaround that limited descriptor
3282 * length to 4kB */
3283 if (adapter->hw.mac_type >= e1000_82571)
3284 max_per_txd = 8192;
3285
3286 mss = skb_shinfo(skb)->gso_size;
3287 /* The controller does a simple calculation to
3288 * make sure there is enough room in the FIFO before
3289 * initiating the DMA for each buffer. The calc is:
3290 * 4 = ceil(buffer len/mss). To make sure we don't
3291 * overrun the FIFO, adjust the max buffer len if mss
3292 * drops. */
3293 if (mss) {
3294 uint8_t hdr_len;
3295 max_per_txd = min(mss << 2, max_per_txd);
3296 max_txd_pwr = fls(max_per_txd) - 1;
3297
3298 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3299 * points to just header, pull a few bytes of payload from
3300 * frags into skb->data */
3301 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3302 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3303 switch (adapter->hw.mac_type) {
3304 unsigned int pull_size;
3305 case e1000_82544:
3306 /* Make sure we have room to chop off 4 bytes,
3307 * and that the end alignment will work out to
3308 * this hardware's requirements
3309 * NOTE: this is a TSO only workaround
3310 * if end byte alignment not correct move us
3311 * into the next dword */
3312 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3313 break;
3314 /* fall through */
3315 case e1000_82571:
3316 case e1000_82572:
3317 case e1000_82573:
3318 case e1000_ich8lan:
3319 pull_size = min((unsigned int)4, skb->data_len);
3320 if (!__pskb_pull_tail(skb, pull_size)) {
3321 DPRINTK(DRV, ERR,
3322 "__pskb_pull_tail failed.\n");
3323 dev_kfree_skb_any(skb);
3324 return NETDEV_TX_OK;
3325 }
3326 len = skb->len - skb->data_len;
3327 break;
3328 default:
3329 /* do nothing */
3330 break;
3331 }
3332 }
3333 }
3334
3335 /* reserve a descriptor for the offload context */
3336 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3337 count++;
3338 count++;
3339
3340 /* Controller Erratum workaround */
3341 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3342 count++;
3343
3344 count += TXD_USE_COUNT(len, max_txd_pwr);
3345
3346 if (adapter->pcix_82544)
3347 count++;
3348
3349 /* work-around for errata 10 and it applies to all controllers
3350 * in PCI-X mode, so add one more descriptor to the count
3351 */
3352 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3353 (len > 2015)))
3354 count++;
3355
3356 nr_frags = skb_shinfo(skb)->nr_frags;
3357 for (f = 0; f < nr_frags; f++)
3358 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3359 max_txd_pwr);
3360 if (adapter->pcix_82544)
3361 count += nr_frags;
3362
3363
3364 if (adapter->hw.tx_pkt_filtering &&
3365 (adapter->hw.mac_type == e1000_82573))
3366 e1000_transfer_dhcp_info(adapter, skb);
3367
3368 if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3369 /* Collision - tell upper layer to requeue */
3370 return NETDEV_TX_LOCKED;
3371
3372 /* need: count + 2 desc gap to keep tail from touching
3373 * head, otherwise try next time */
3374 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3375 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3376 return NETDEV_TX_BUSY;
3377 }
3378
3379 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3380 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3381 netif_stop_queue(netdev);
3382 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3383 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3384 return NETDEV_TX_BUSY;
3385 }
3386 }
3387
3388 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3389 tx_flags |= E1000_TX_FLAGS_VLAN;
3390 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3391 }
3392
3393 first = tx_ring->next_to_use;
3394
3395 tso = e1000_tso(adapter, tx_ring, skb);
3396 if (tso < 0) {
3397 dev_kfree_skb_any(skb);
3398 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3399 return NETDEV_TX_OK;
3400 }
3401
3402 if (likely(tso)) {
3403 tx_ring->last_tx_tso = 1;
3404 tx_flags |= E1000_TX_FLAGS_TSO;
3405 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3406 tx_flags |= E1000_TX_FLAGS_CSUM;
3407
3408 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3409 * 82571 hardware supports TSO capabilities for IPv6 as well...
3410 * no longer assume, we must. */
3411 if (likely(skb->protocol == htons(ETH_P_IP)))
3412 tx_flags |= E1000_TX_FLAGS_IPV4;
3413
3414 e1000_tx_queue(adapter, tx_ring, tx_flags,
3415 e1000_tx_map(adapter, tx_ring, skb, first,
3416 max_per_txd, nr_frags, mss));
3417
3418 netdev->trans_start = jiffies;
3419
3420 /* Make sure there is space in the ring for the next send. */
3421 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3422
3423 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3424 return NETDEV_TX_OK;
3425 }
3426
3427 /**
3428 * e1000_tx_timeout - Respond to a Tx Hang
3429 * @netdev: network interface device structure
3430 **/
3431
3432 static void
3433 e1000_tx_timeout(struct net_device *netdev)
3434 {
3435 struct e1000_adapter *adapter = netdev_priv(netdev);
3436
3437 /* Do the reset outside of interrupt context */
3438 adapter->tx_timeout_count++;
3439 schedule_work(&adapter->reset_task);
3440 }
3441
3442 static void
3443 e1000_reset_task(struct work_struct *work)
3444 {
3445 struct e1000_adapter *adapter =
3446 container_of(work, struct e1000_adapter, reset_task);
3447
3448 e1000_reinit_locked(adapter);
3449 }
3450
3451 /**
3452 * e1000_get_stats - Get System Network Statistics
3453 * @netdev: network interface device structure
3454 *
3455 * Returns the address of the device statistics structure.
3456 * The statistics are actually updated from the timer callback.
3457 **/
3458
3459 static struct net_device_stats *
3460 e1000_get_stats(struct net_device *netdev)
3461 {
3462 struct e1000_adapter *adapter = netdev_priv(netdev);
3463
3464 /* only return the current stats */
3465 return &adapter->net_stats;
3466 }
3467
3468 /**
3469 * e1000_change_mtu - Change the Maximum Transfer Unit
3470 * @netdev: network interface device structure
3471 * @new_mtu: new value for maximum frame size
3472 *
3473 * Returns 0 on success, negative on failure
3474 **/
3475
3476 static int
3477 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3478 {
3479 struct e1000_adapter *adapter = netdev_priv(netdev);
3480 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3481 uint16_t eeprom_data = 0;
3482
3483 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3484 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3485 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3486 return -EINVAL;
3487 }
3488
3489 /* Adapter-specific max frame size limits. */
3490 switch (adapter->hw.mac_type) {
3491 case e1000_undefined ... e1000_82542_rev2_1:
3492 case e1000_ich8lan:
3493 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3494 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3495 return -EINVAL;
3496 }
3497 break;
3498 case e1000_82573:
3499 /* Jumbo Frames not supported if:
3500 * - this is not an 82573L device
3501 * - ASPM is enabled in any way (0x1A bits 3:2) */
3502 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3503 &eeprom_data);
3504 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3505 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3506 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3507 DPRINTK(PROBE, ERR,
3508 "Jumbo Frames not supported.\n");
3509 return -EINVAL;
3510 }
3511 break;
3512 }
3513 /* ERT will be enabled later to enable wire speed receives */
3514
3515 /* fall through to get support */
3516 case e1000_82571:
3517 case e1000_82572:
3518 case e1000_80003es2lan:
3519 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3520 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3521 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3522 return -EINVAL;
3523 }
3524 break;
3525 default:
3526 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3527 break;
3528 }
3529
3530 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3531 * means we reserve 2 more, this pushes us to allocate from the next
3532 * larger slab size
3533 * i.e. RXBUFFER_2048 --> size-4096 slab */
3534
3535 if (max_frame <= E1000_RXBUFFER_256)
3536 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3537 else if (max_frame <= E1000_RXBUFFER_512)
3538 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3539 else if (max_frame <= E1000_RXBUFFER_1024)
3540 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3541 else if (max_frame <= E1000_RXBUFFER_2048)
3542 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3543 else if (max_frame <= E1000_RXBUFFER_4096)
3544 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3545 else if (max_frame <= E1000_RXBUFFER_8192)
3546 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3547 else if (max_frame <= E1000_RXBUFFER_16384)
3548 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3549
3550 /* adjust allocation if LPE protects us, and we aren't using SBP */
3551 if (!adapter->hw.tbi_compatibility_on &&
3552 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3553 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3554 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3555
3556 netdev->mtu = new_mtu;
3557 adapter->hw.max_frame_size = max_frame;
3558
3559 if (netif_running(netdev))
3560 e1000_reinit_locked(adapter);
3561
3562 return 0;
3563 }
3564
3565 /**
3566 * e1000_update_stats - Update the board statistics counters
3567 * @adapter: board private structure
3568 **/
3569
3570 void
3571 e1000_update_stats(struct e1000_adapter *adapter)
3572 {
3573 struct e1000_hw *hw = &adapter->hw;
3574 struct pci_dev *pdev = adapter->pdev;
3575 unsigned long flags;
3576 uint16_t phy_tmp;
3577
3578 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3579
3580 /*
3581 * Prevent stats update while adapter is being reset, or if the pci
3582 * connection is down.
3583 */
3584 if (adapter->link_speed == 0)
3585 return;
3586 if (pci_channel_offline(pdev))
3587 return;
3588
3589 spin_lock_irqsave(&adapter->stats_lock, flags);
3590
3591 /* these counters are modified from e1000_adjust_tbi_stats,
3592 * called from the interrupt context, so they must only
3593 * be written while holding adapter->stats_lock
3594 */
3595
3596 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3597 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3598 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3599 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3600 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3601 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3602 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3603
3604 if (adapter->hw.mac_type != e1000_ich8lan) {
3605 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3606 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3607 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3608 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3609 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3610 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3611 }
3612
3613 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3614 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3615 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3616 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3617 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3618 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3619 adapter->stats.dc += E1000_READ_REG(hw, DC);
3620 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3621 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3622 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3623 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3624 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3625 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3626 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3627 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3628 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3629 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3630 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3631 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3632 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3633 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3634 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3635 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3636 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3637 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3638 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3639
3640 if (adapter->hw.mac_type != e1000_ich8lan) {
3641 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3642 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3643 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3644 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3645 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3646 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3647 }
3648
3649 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3650 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3651
3652 /* used for adaptive IFS */
3653
3654 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3655 adapter->stats.tpt += hw->tx_packet_delta;
3656 hw->collision_delta = E1000_READ_REG(hw, COLC);
3657 adapter->stats.colc += hw->collision_delta;
3658
3659 if (hw->mac_type >= e1000_82543) {
3660 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3661 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3662 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3663 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3664 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3665 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3666 }
3667 if (hw->mac_type > e1000_82547_rev_2) {
3668 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3669 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3670
3671 if (adapter->hw.mac_type != e1000_ich8lan) {
3672 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3673 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3674 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3675 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3676 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3677 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3678 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3679 }
3680 }
3681
3682 /* Fill out the OS statistics structure */
3683 adapter->net_stats.rx_packets = adapter->stats.gprc;
3684 adapter->net_stats.tx_packets = adapter->stats.gptc;
3685 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3686 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3687 adapter->net_stats.multicast = adapter->stats.mprc;
3688 adapter->net_stats.collisions = adapter->stats.colc;
3689
3690 /* Rx Errors */
3691
3692 /* RLEC on some newer hardware can be incorrect so build
3693 * our own version based on RUC and ROC */
3694 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3695 adapter->stats.crcerrs + adapter->stats.algnerrc +
3696 adapter->stats.ruc + adapter->stats.roc +
3697 adapter->stats.cexterr;
3698 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3699 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3700 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3701 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3702 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3703
3704 /* Tx Errors */
3705 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3706 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3707 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3708 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3709 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3710 if (adapter->hw.bad_tx_carr_stats_fd &&
3711 adapter->link_duplex == FULL_DUPLEX) {
3712 adapter->net_stats.tx_carrier_errors = 0;
3713 adapter->stats.tncrs = 0;
3714 }
3715
3716 /* Tx Dropped needs to be maintained elsewhere */
3717
3718 /* Phy Stats */
3719 if (hw->media_type == e1000_media_type_copper) {
3720 if ((adapter->link_speed == SPEED_1000) &&
3721 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3722 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3723 adapter->phy_stats.idle_errors += phy_tmp;
3724 }
3725
3726 if ((hw->mac_type <= e1000_82546) &&
3727 (hw->phy_type == e1000_phy_m88) &&
3728 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3729 adapter->phy_stats.receive_errors += phy_tmp;
3730 }
3731
3732 /* Management Stats */
3733 if (adapter->hw.has_smbus) {
3734 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3735 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3736 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3737 }
3738
3739 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3740 }
3741
3742 /**
3743 * e1000_intr_msi - Interrupt Handler
3744 * @irq: interrupt number
3745 * @data: pointer to a network interface device structure
3746 **/
3747
3748 static irqreturn_t
3749 e1000_intr_msi(int irq, void *data)
3750 {
3751 struct net_device *netdev = data;
3752 struct e1000_adapter *adapter = netdev_priv(netdev);
3753 struct e1000_hw *hw = &adapter->hw;
3754 #ifndef CONFIG_E1000_NAPI
3755 int i;
3756 #endif
3757 uint32_t icr = E1000_READ_REG(hw, ICR);
3758
3759 #ifdef CONFIG_E1000_NAPI
3760 /* read ICR disables interrupts using IAM, so keep up with our
3761 * enable/disable accounting */
3762 atomic_inc(&adapter->irq_sem);
3763 #endif
3764 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3765 hw->get_link_status = 1;
3766 /* 80003ES2LAN workaround-- For packet buffer work-around on
3767 * link down event; disable receives here in the ISR and reset
3768 * adapter in watchdog */
3769 if (netif_carrier_ok(netdev) &&
3770 (adapter->hw.mac_type == e1000_80003es2lan)) {
3771 /* disable receives */
3772 uint32_t rctl = E1000_READ_REG(hw, RCTL);
3773 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3774 }
3775 /* guard against interrupt when we're going down */
3776 if (!test_bit(__E1000_DOWN, &adapter->flags))
3777 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3778 }
3779
3780 #ifdef CONFIG_E1000_NAPI
3781 if (likely(netif_rx_schedule_prep(netdev))) {
3782 adapter->total_tx_bytes = 0;
3783 adapter->total_tx_packets = 0;
3784 adapter->total_rx_bytes = 0;
3785 adapter->total_rx_packets = 0;
3786 __netif_rx_schedule(netdev);
3787 } else
3788 e1000_irq_enable(adapter);
3789 #else
3790 adapter->total_tx_bytes = 0;
3791 adapter->total_rx_bytes = 0;
3792 adapter->total_tx_packets = 0;
3793 adapter->total_rx_packets = 0;
3794
3795 for (i = 0; i < E1000_MAX_INTR; i++)
3796 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3797 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3798 break;
3799
3800 if (likely(adapter->itr_setting & 3))
3801 e1000_set_itr(adapter);
3802 #endif
3803
3804 return IRQ_HANDLED;
3805 }
3806
3807 /**
3808 * e1000_intr - Interrupt Handler
3809 * @irq: interrupt number
3810 * @data: pointer to a network interface device structure
3811 **/
3812
3813 static irqreturn_t
3814 e1000_intr(int irq, void *data)
3815 {
3816 struct net_device *netdev = data;
3817 struct e1000_adapter *adapter = netdev_priv(netdev);
3818 struct e1000_hw *hw = &adapter->hw;
3819 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3820 #ifndef CONFIG_E1000_NAPI
3821 int i;
3822 #endif
3823 if (unlikely(!icr))
3824 return IRQ_NONE; /* Not our interrupt */
3825
3826 #ifdef CONFIG_E1000_NAPI
3827 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3828 * not set, then the adapter didn't send an interrupt */
3829 if (unlikely(hw->mac_type >= e1000_82571 &&
3830 !(icr & E1000_ICR_INT_ASSERTED)))
3831 return IRQ_NONE;
3832
3833 /* Interrupt Auto-Mask...upon reading ICR,
3834 * interrupts are masked. No need for the
3835 * IMC write, but it does mean we should
3836 * account for it ASAP. */
3837 if (likely(hw->mac_type >= e1000_82571))
3838 atomic_inc(&adapter->irq_sem);
3839 #endif
3840
3841 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3842 hw->get_link_status = 1;
3843 /* 80003ES2LAN workaround--
3844 * For packet buffer work-around on link down event;
3845 * disable receives here in the ISR and
3846 * reset adapter in watchdog
3847 */
3848 if (netif_carrier_ok(netdev) &&
3849 (adapter->hw.mac_type == e1000_80003es2lan)) {
3850 /* disable receives */
3851 rctl = E1000_READ_REG(hw, RCTL);
3852 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3853 }
3854 /* guard against interrupt when we're going down */
3855 if (!test_bit(__E1000_DOWN, &adapter->flags))
3856 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3857 }
3858
3859 #ifdef CONFIG_E1000_NAPI
3860 if (unlikely(hw->mac_type < e1000_82571)) {
3861 /* disable interrupts, without the synchronize_irq bit */
3862 atomic_inc(&adapter->irq_sem);
3863 E1000_WRITE_REG(hw, IMC, ~0);
3864 E1000_WRITE_FLUSH(hw);
3865 }
3866 if (likely(netif_rx_schedule_prep(netdev))) {
3867 adapter->total_tx_bytes = 0;
3868 adapter->total_tx_packets = 0;
3869 adapter->total_rx_bytes = 0;
3870 adapter->total_rx_packets = 0;
3871 __netif_rx_schedule(netdev);
3872 } else
3873 /* this really should not happen! if it does it is basically a
3874 * bug, but not a hard error, so enable ints and continue */
3875 e1000_irq_enable(adapter);
3876 #else
3877 /* Writing IMC and IMS is needed for 82547.
3878 * Due to Hub Link bus being occupied, an interrupt
3879 * de-assertion message is not able to be sent.
3880 * When an interrupt assertion message is generated later,
3881 * two messages are re-ordered and sent out.
3882 * That causes APIC to think 82547 is in de-assertion
3883 * state, while 82547 is in assertion state, resulting
3884 * in dead lock. Writing IMC forces 82547 into
3885 * de-assertion state.
3886 */
3887 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3888 atomic_inc(&adapter->irq_sem);
3889 E1000_WRITE_REG(hw, IMC, ~0);
3890 }
3891
3892 adapter->total_tx_bytes = 0;
3893 adapter->total_rx_bytes = 0;
3894 adapter->total_tx_packets = 0;
3895 adapter->total_rx_packets = 0;
3896
3897 for (i = 0; i < E1000_MAX_INTR; i++)
3898 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3899 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3900 break;
3901
3902 if (likely(adapter->itr_setting & 3))
3903 e1000_set_itr(adapter);
3904
3905 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3906 e1000_irq_enable(adapter);
3907
3908 #endif
3909 return IRQ_HANDLED;
3910 }
3911
3912 #ifdef CONFIG_E1000_NAPI
3913 /**
3914 * e1000_clean - NAPI Rx polling callback
3915 * @adapter: board private structure
3916 **/
3917
3918 static int
3919 e1000_clean(struct net_device *poll_dev, int *budget)
3920 {
3921 struct e1000_adapter *adapter;
3922 int work_to_do = min(*budget, poll_dev->quota);
3923 int tx_cleaned = 0, work_done = 0;
3924
3925 /* Must NOT use netdev_priv macro here. */
3926 adapter = poll_dev->priv;
3927
3928 /* Keep link state information with original netdev */
3929 if (!netif_carrier_ok(poll_dev))
3930 goto quit_polling;
3931
3932 /* e1000_clean is called per-cpu. This lock protects
3933 * tx_ring[0] from being cleaned by multiple cpus
3934 * simultaneously. A failure obtaining the lock means
3935 * tx_ring[0] is currently being cleaned anyway. */
3936 if (spin_trylock(&adapter->tx_queue_lock)) {
3937 tx_cleaned = e1000_clean_tx_irq(adapter,
3938 &adapter->tx_ring[0]);
3939 spin_unlock(&adapter->tx_queue_lock);
3940 }
3941
3942 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3943 &work_done, work_to_do);
3944
3945 *budget -= work_done;
3946 poll_dev->quota -= work_done;
3947
3948 /* If no Tx and not enough Rx work done, exit the polling mode */
3949 if ((!tx_cleaned && (work_done == 0)) ||
3950 !netif_running(poll_dev)) {
3951 quit_polling:
3952 if (likely(adapter->itr_setting & 3))
3953 e1000_set_itr(adapter);
3954 netif_rx_complete(poll_dev);
3955 e1000_irq_enable(adapter);
3956 return 0;
3957 }
3958
3959 return 1;
3960 }
3961
3962 #endif
3963 /**
3964 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3965 * @adapter: board private structure
3966 **/
3967
3968 static boolean_t
3969 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3970 struct e1000_tx_ring *tx_ring)
3971 {
3972 struct net_device *netdev = adapter->netdev;
3973 struct e1000_tx_desc *tx_desc, *eop_desc;
3974 struct e1000_buffer *buffer_info;
3975 unsigned int i, eop;
3976 #ifdef CONFIG_E1000_NAPI
3977 unsigned int count = 0;
3978 #endif
3979 boolean_t cleaned = FALSE;
3980 unsigned int total_tx_bytes=0, total_tx_packets=0;
3981
3982 i = tx_ring->next_to_clean;
3983 eop = tx_ring->buffer_info[i].next_to_watch;
3984 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3985
3986 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3987 for (cleaned = FALSE; !cleaned; ) {
3988 tx_desc = E1000_TX_DESC(*tx_ring, i);
3989 buffer_info = &tx_ring->buffer_info[i];
3990 cleaned = (i == eop);
3991
3992 if (cleaned) {
3993 struct sk_buff *skb = buffer_info->skb;
3994 unsigned int segs, bytecount;
3995 segs = skb_shinfo(skb)->gso_segs ?: 1;
3996 /* multiply data chunks by size of headers */
3997 bytecount = ((segs - 1) * skb_headlen(skb)) +
3998 skb->len;
3999 total_tx_packets += segs;
4000 total_tx_bytes += bytecount;
4001 }
4002 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4003 tx_desc->upper.data = 0;
4004
4005 if (unlikely(++i == tx_ring->count)) i = 0;
4006 }
4007
4008 eop = tx_ring->buffer_info[i].next_to_watch;
4009 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4010 #ifdef CONFIG_E1000_NAPI
4011 #define E1000_TX_WEIGHT 64
4012 /* weight of a sort for tx, to avoid endless transmit cleanup */
4013 if (count++ == E1000_TX_WEIGHT) break;
4014 #endif
4015 }
4016
4017 tx_ring->next_to_clean = i;
4018
4019 #define TX_WAKE_THRESHOLD 32
4020 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4021 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4022 /* Make sure that anybody stopping the queue after this
4023 * sees the new next_to_clean.
4024 */
4025 smp_mb();
4026 if (netif_queue_stopped(netdev)) {
4027 netif_wake_queue(netdev);
4028 ++adapter->restart_queue;
4029 }
4030 }
4031
4032 if (adapter->detect_tx_hung) {
4033 /* Detect a transmit hang in hardware, this serializes the
4034 * check with the clearing of time_stamp and movement of i */
4035 adapter->detect_tx_hung = FALSE;
4036 if (tx_ring->buffer_info[eop].dma &&
4037 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4038 (adapter->tx_timeout_factor * HZ))
4039 && !(E1000_READ_REG(&adapter->hw, STATUS) &
4040 E1000_STATUS_TXOFF)) {
4041
4042 /* detected Tx unit hang */
4043 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4044 " Tx Queue <%lu>\n"
4045 " TDH <%x>\n"
4046 " TDT <%x>\n"
4047 " next_to_use <%x>\n"
4048 " next_to_clean <%x>\n"
4049 "buffer_info[next_to_clean]\n"
4050 " time_stamp <%lx>\n"
4051 " next_to_watch <%x>\n"
4052 " jiffies <%lx>\n"
4053 " next_to_watch.status <%x>\n",
4054 (unsigned long)((tx_ring - adapter->tx_ring) /
4055 sizeof(struct e1000_tx_ring)),
4056 readl(adapter->hw.hw_addr + tx_ring->tdh),
4057 readl(adapter->hw.hw_addr + tx_ring->tdt),
4058 tx_ring->next_to_use,
4059 tx_ring->next_to_clean,
4060 tx_ring->buffer_info[eop].time_stamp,
4061 eop,
4062 jiffies,
4063 eop_desc->upper.fields.status);
4064 netif_stop_queue(netdev);
4065 }
4066 }
4067 adapter->total_tx_bytes += total_tx_bytes;
4068 adapter->total_tx_packets += total_tx_packets;
4069 return cleaned;
4070 }
4071
4072 /**
4073 * e1000_rx_checksum - Receive Checksum Offload for 82543
4074 * @adapter: board private structure
4075 * @status_err: receive descriptor status and error fields
4076 * @csum: receive descriptor csum field
4077 * @sk_buff: socket buffer with received data
4078 **/
4079
4080 static void
4081 e1000_rx_checksum(struct e1000_adapter *adapter,
4082 uint32_t status_err, uint32_t csum,
4083 struct sk_buff *skb)
4084 {
4085 uint16_t status = (uint16_t)status_err;
4086 uint8_t errors = (uint8_t)(status_err >> 24);
4087 skb->ip_summed = CHECKSUM_NONE;
4088
4089 /* 82543 or newer only */
4090 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4091 /* Ignore Checksum bit is set */
4092 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4093 /* TCP/UDP checksum error bit is set */
4094 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4095 /* let the stack verify checksum errors */
4096 adapter->hw_csum_err++;
4097 return;
4098 }
4099 /* TCP/UDP Checksum has not been calculated */
4100 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4101 if (!(status & E1000_RXD_STAT_TCPCS))
4102 return;
4103 } else {
4104 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4105 return;
4106 }
4107 /* It must be a TCP or UDP packet with a valid checksum */
4108 if (likely(status & E1000_RXD_STAT_TCPCS)) {
4109 /* TCP checksum is good */
4110 skb->ip_summed = CHECKSUM_UNNECESSARY;
4111 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4112 /* IP fragment with UDP payload */
4113 /* Hardware complements the payload checksum, so we undo it
4114 * and then put the value in host order for further stack use.
4115 */
4116 csum = ntohl(csum ^ 0xFFFF);
4117 skb->csum = csum;
4118 skb->ip_summed = CHECKSUM_COMPLETE;
4119 }
4120 adapter->hw_csum_good++;
4121 }
4122
4123 /**
4124 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4125 * @adapter: board private structure
4126 **/
4127
4128 static boolean_t
4129 #ifdef CONFIG_E1000_NAPI
4130 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4131 struct e1000_rx_ring *rx_ring,
4132 int *work_done, int work_to_do)
4133 #else
4134 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4135 struct e1000_rx_ring *rx_ring)
4136 #endif
4137 {
4138 struct net_device *netdev = adapter->netdev;
4139 struct pci_dev *pdev = adapter->pdev;
4140 struct e1000_rx_desc *rx_desc, *next_rxd;
4141 struct e1000_buffer *buffer_info, *next_buffer;
4142 unsigned long flags;
4143 uint32_t length;
4144 uint8_t last_byte;
4145 unsigned int i;
4146 int cleaned_count = 0;
4147 boolean_t cleaned = FALSE;
4148 unsigned int total_rx_bytes=0, total_rx_packets=0;
4149
4150 i = rx_ring->next_to_clean;
4151 rx_desc = E1000_RX_DESC(*rx_ring, i);
4152 buffer_info = &rx_ring->buffer_info[i];
4153
4154 while (rx_desc->status & E1000_RXD_STAT_DD) {
4155 struct sk_buff *skb;
4156 u8 status;
4157
4158 #ifdef CONFIG_E1000_NAPI
4159 if (*work_done >= work_to_do)
4160 break;
4161 (*work_done)++;
4162 #endif
4163 status = rx_desc->status;
4164 skb = buffer_info->skb;
4165 buffer_info->skb = NULL;
4166
4167 prefetch(skb->data - NET_IP_ALIGN);
4168
4169 if (++i == rx_ring->count) i = 0;
4170 next_rxd = E1000_RX_DESC(*rx_ring, i);
4171 prefetch(next_rxd);
4172
4173 next_buffer = &rx_ring->buffer_info[i];
4174
4175 cleaned = TRUE;
4176 cleaned_count++;
4177 pci_unmap_single(pdev,
4178 buffer_info->dma,
4179 buffer_info->length,
4180 PCI_DMA_FROMDEVICE);
4181
4182 length = le16_to_cpu(rx_desc->length);
4183
4184 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4185 /* All receives must fit into a single buffer */
4186 E1000_DBG("%s: Receive packet consumed multiple"
4187 " buffers\n", netdev->name);
4188 /* recycle */
4189 buffer_info->skb = skb;
4190 goto next_desc;
4191 }
4192
4193 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4194 last_byte = *(skb->data + length - 1);
4195 if (TBI_ACCEPT(&adapter->hw, status,
4196 rx_desc->errors, length, last_byte)) {
4197 spin_lock_irqsave(&adapter->stats_lock, flags);
4198 e1000_tbi_adjust_stats(&adapter->hw,
4199 &adapter->stats,
4200 length, skb->data);
4201 spin_unlock_irqrestore(&adapter->stats_lock,
4202 flags);
4203 length--;
4204 } else {
4205 /* recycle */
4206 buffer_info->skb = skb;
4207 goto next_desc;
4208 }
4209 }
4210
4211 /* adjust length to remove Ethernet CRC, this must be
4212 * done after the TBI_ACCEPT workaround above */
4213 length -= 4;
4214
4215 /* probably a little skewed due to removing CRC */
4216 total_rx_bytes += length;
4217 total_rx_packets++;
4218
4219 /* code added for copybreak, this should improve
4220 * performance for small packets with large amounts
4221 * of reassembly being done in the stack */
4222 if (length < copybreak) {
4223 struct sk_buff *new_skb =
4224 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4225 if (new_skb) {
4226 skb_reserve(new_skb, NET_IP_ALIGN);
4227 skb_copy_to_linear_data_offset(new_skb,
4228 -NET_IP_ALIGN,
4229 (skb->data -
4230 NET_IP_ALIGN),
4231 (length +
4232 NET_IP_ALIGN));
4233 /* save the skb in buffer_info as good */
4234 buffer_info->skb = skb;
4235 skb = new_skb;
4236 }
4237 /* else just continue with the old one */
4238 }
4239 /* end copybreak code */
4240 skb_put(skb, length);
4241
4242 /* Receive Checksum Offload */
4243 e1000_rx_checksum(adapter,
4244 (uint32_t)(status) |
4245 ((uint32_t)(rx_desc->errors) << 24),
4246 le16_to_cpu(rx_desc->csum), skb);
4247
4248 skb->protocol = eth_type_trans(skb, netdev);
4249 #ifdef CONFIG_E1000_NAPI
4250 if (unlikely(adapter->vlgrp &&
4251 (status & E1000_RXD_STAT_VP))) {
4252 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4253 le16_to_cpu(rx_desc->special) &
4254 E1000_RXD_SPC_VLAN_MASK);
4255 } else {
4256 netif_receive_skb(skb);
4257 }
4258 #else /* CONFIG_E1000_NAPI */
4259 if (unlikely(adapter->vlgrp &&
4260 (status & E1000_RXD_STAT_VP))) {
4261 vlan_hwaccel_rx(skb, adapter->vlgrp,
4262 le16_to_cpu(rx_desc->special) &
4263 E1000_RXD_SPC_VLAN_MASK);
4264 } else {
4265 netif_rx(skb);
4266 }
4267 #endif /* CONFIG_E1000_NAPI */
4268 netdev->last_rx = jiffies;
4269
4270 next_desc:
4271 rx_desc->status = 0;
4272
4273 /* return some buffers to hardware, one at a time is too slow */
4274 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4275 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4276 cleaned_count = 0;
4277 }
4278
4279 /* use prefetched values */
4280 rx_desc = next_rxd;
4281 buffer_info = next_buffer;
4282 }
4283 rx_ring->next_to_clean = i;
4284
4285 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4286 if (cleaned_count)
4287 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4288
4289 adapter->total_rx_packets += total_rx_packets;
4290 adapter->total_rx_bytes += total_rx_bytes;
4291 return cleaned;
4292 }
4293
4294 /**
4295 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4296 * @adapter: board private structure
4297 **/
4298
4299 static boolean_t
4300 #ifdef CONFIG_E1000_NAPI
4301 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4302 struct e1000_rx_ring *rx_ring,
4303 int *work_done, int work_to_do)
4304 #else
4305 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4306 struct e1000_rx_ring *rx_ring)
4307 #endif
4308 {
4309 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4310 struct net_device *netdev = adapter->netdev;
4311 struct pci_dev *pdev = adapter->pdev;
4312 struct e1000_buffer *buffer_info, *next_buffer;
4313 struct e1000_ps_page *ps_page;
4314 struct e1000_ps_page_dma *ps_page_dma;
4315 struct sk_buff *skb;
4316 unsigned int i, j;
4317 uint32_t length, staterr;
4318 int cleaned_count = 0;
4319 boolean_t cleaned = FALSE;
4320 unsigned int total_rx_bytes=0, total_rx_packets=0;
4321
4322 i = rx_ring->next_to_clean;
4323 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4324 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4325 buffer_info = &rx_ring->buffer_info[i];
4326
4327 while (staterr & E1000_RXD_STAT_DD) {
4328 ps_page = &rx_ring->ps_page[i];
4329 ps_page_dma = &rx_ring->ps_page_dma[i];
4330 #ifdef CONFIG_E1000_NAPI
4331 if (unlikely(*work_done >= work_to_do))
4332 break;
4333 (*work_done)++;
4334 #endif
4335 skb = buffer_info->skb;
4336
4337 /* in the packet split case this is header only */
4338 prefetch(skb->data - NET_IP_ALIGN);
4339
4340 if (++i == rx_ring->count) i = 0;
4341 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4342 prefetch(next_rxd);
4343
4344 next_buffer = &rx_ring->buffer_info[i];
4345
4346 cleaned = TRUE;
4347 cleaned_count++;
4348 pci_unmap_single(pdev, buffer_info->dma,
4349 buffer_info->length,
4350 PCI_DMA_FROMDEVICE);
4351
4352 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4353 E1000_DBG("%s: Packet Split buffers didn't pick up"
4354 " the full packet\n", netdev->name);
4355 dev_kfree_skb_irq(skb);
4356 goto next_desc;
4357 }
4358
4359 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4360 dev_kfree_skb_irq(skb);
4361 goto next_desc;
4362 }
4363
4364 length = le16_to_cpu(rx_desc->wb.middle.length0);
4365
4366 if (unlikely(!length)) {
4367 E1000_DBG("%s: Last part of the packet spanning"
4368 " multiple descriptors\n", netdev->name);
4369 dev_kfree_skb_irq(skb);
4370 goto next_desc;
4371 }
4372
4373 /* Good Receive */
4374 skb_put(skb, length);
4375
4376 {
4377 /* this looks ugly, but it seems compiler issues make it
4378 more efficient than reusing j */
4379 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4380
4381 /* page alloc/put takes too long and effects small packet
4382 * throughput, so unsplit small packets and save the alloc/put*/
4383 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4384 u8 *vaddr;
4385 /* there is no documentation about how to call
4386 * kmap_atomic, so we can't hold the mapping
4387 * very long */
4388 pci_dma_sync_single_for_cpu(pdev,
4389 ps_page_dma->ps_page_dma[0],
4390 PAGE_SIZE,
4391 PCI_DMA_FROMDEVICE);
4392 vaddr = kmap_atomic(ps_page->ps_page[0],
4393 KM_SKB_DATA_SOFTIRQ);
4394 memcpy(skb_tail_pointer(skb), vaddr, l1);
4395 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4396 pci_dma_sync_single_for_device(pdev,
4397 ps_page_dma->ps_page_dma[0],
4398 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4399 /* remove the CRC */
4400 l1 -= 4;
4401 skb_put(skb, l1);
4402 goto copydone;
4403 } /* if */
4404 }
4405
4406 for (j = 0; j < adapter->rx_ps_pages; j++) {
4407 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4408 break;
4409 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4410 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4411 ps_page_dma->ps_page_dma[j] = 0;
4412 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4413 length);
4414 ps_page->ps_page[j] = NULL;
4415 skb->len += length;
4416 skb->data_len += length;
4417 skb->truesize += length;
4418 }
4419
4420 /* strip the ethernet crc, problem is we're using pages now so
4421 * this whole operation can get a little cpu intensive */
4422 pskb_trim(skb, skb->len - 4);
4423
4424 copydone:
4425 total_rx_bytes += skb->len;
4426 total_rx_packets++;
4427
4428 e1000_rx_checksum(adapter, staterr,
4429 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4430 skb->protocol = eth_type_trans(skb, netdev);
4431
4432 if (likely(rx_desc->wb.upper.header_status &
4433 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4434 adapter->rx_hdr_split++;
4435 #ifdef CONFIG_E1000_NAPI
4436 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4437 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4438 le16_to_cpu(rx_desc->wb.middle.vlan) &
4439 E1000_RXD_SPC_VLAN_MASK);
4440 } else {
4441 netif_receive_skb(skb);
4442 }
4443 #else /* CONFIG_E1000_NAPI */
4444 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4445 vlan_hwaccel_rx(skb, adapter->vlgrp,
4446 le16_to_cpu(rx_desc->wb.middle.vlan) &
4447 E1000_RXD_SPC_VLAN_MASK);
4448 } else {
4449 netif_rx(skb);
4450 }
4451 #endif /* CONFIG_E1000_NAPI */
4452 netdev->last_rx = jiffies;
4453
4454 next_desc:
4455 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4456 buffer_info->skb = NULL;
4457
4458 /* return some buffers to hardware, one at a time is too slow */
4459 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4460 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4461 cleaned_count = 0;
4462 }
4463
4464 /* use prefetched values */
4465 rx_desc = next_rxd;
4466 buffer_info = next_buffer;
4467
4468 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4469 }
4470 rx_ring->next_to_clean = i;
4471
4472 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4473 if (cleaned_count)
4474 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4475
4476 adapter->total_rx_packets += total_rx_packets;
4477 adapter->total_rx_bytes += total_rx_bytes;
4478 return cleaned;
4479 }
4480
4481 /**
4482 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4483 * @adapter: address of board private structure
4484 **/
4485
4486 static void
4487 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4488 struct e1000_rx_ring *rx_ring,
4489 int cleaned_count)
4490 {
4491 struct net_device *netdev = adapter->netdev;
4492 struct pci_dev *pdev = adapter->pdev;
4493 struct e1000_rx_desc *rx_desc;
4494 struct e1000_buffer *buffer_info;
4495 struct sk_buff *skb;
4496 unsigned int i;
4497 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4498
4499 i = rx_ring->next_to_use;
4500 buffer_info = &rx_ring->buffer_info[i];
4501
4502 while (cleaned_count--) {
4503 skb = buffer_info->skb;
4504 if (skb) {
4505 skb_trim(skb, 0);
4506 goto map_skb;
4507 }
4508
4509 skb = netdev_alloc_skb(netdev, bufsz);
4510 if (unlikely(!skb)) {
4511 /* Better luck next round */
4512 adapter->alloc_rx_buff_failed++;
4513 break;
4514 }
4515
4516 /* Fix for errata 23, can't cross 64kB boundary */
4517 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4518 struct sk_buff *oldskb = skb;
4519 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4520 "at %p\n", bufsz, skb->data);
4521 /* Try again, without freeing the previous */
4522 skb = netdev_alloc_skb(netdev, bufsz);
4523 /* Failed allocation, critical failure */
4524 if (!skb) {
4525 dev_kfree_skb(oldskb);
4526 break;
4527 }
4528
4529 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4530 /* give up */
4531 dev_kfree_skb(skb);
4532 dev_kfree_skb(oldskb);
4533 break; /* while !buffer_info->skb */
4534 }
4535
4536 /* Use new allocation */
4537 dev_kfree_skb(oldskb);
4538 }
4539 /* Make buffer alignment 2 beyond a 16 byte boundary
4540 * this will result in a 16 byte aligned IP header after
4541 * the 14 byte MAC header is removed
4542 */
4543 skb_reserve(skb, NET_IP_ALIGN);
4544
4545 buffer_info->skb = skb;
4546 buffer_info->length = adapter->rx_buffer_len;
4547 map_skb:
4548 buffer_info->dma = pci_map_single(pdev,
4549 skb->data,
4550 adapter->rx_buffer_len,
4551 PCI_DMA_FROMDEVICE);
4552
4553 /* Fix for errata 23, can't cross 64kB boundary */
4554 if (!e1000_check_64k_bound(adapter,
4555 (void *)(unsigned long)buffer_info->dma,
4556 adapter->rx_buffer_len)) {
4557 DPRINTK(RX_ERR, ERR,
4558 "dma align check failed: %u bytes at %p\n",
4559 adapter->rx_buffer_len,
4560 (void *)(unsigned long)buffer_info->dma);
4561 dev_kfree_skb(skb);
4562 buffer_info->skb = NULL;
4563
4564 pci_unmap_single(pdev, buffer_info->dma,
4565 adapter->rx_buffer_len,
4566 PCI_DMA_FROMDEVICE);
4567
4568 break; /* while !buffer_info->skb */
4569 }
4570 rx_desc = E1000_RX_DESC(*rx_ring, i);
4571 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4572
4573 if (unlikely(++i == rx_ring->count))
4574 i = 0;
4575 buffer_info = &rx_ring->buffer_info[i];
4576 }
4577
4578 if (likely(rx_ring->next_to_use != i)) {
4579 rx_ring->next_to_use = i;
4580 if (unlikely(i-- == 0))
4581 i = (rx_ring->count - 1);
4582
4583 /* Force memory writes to complete before letting h/w
4584 * know there are new descriptors to fetch. (Only
4585 * applicable for weak-ordered memory model archs,
4586 * such as IA-64). */
4587 wmb();
4588 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4589 }
4590 }
4591
4592 /**
4593 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4594 * @adapter: address of board private structure
4595 **/
4596
4597 static void
4598 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4599 struct e1000_rx_ring *rx_ring,
4600 int cleaned_count)
4601 {
4602 struct net_device *netdev = adapter->netdev;
4603 struct pci_dev *pdev = adapter->pdev;
4604 union e1000_rx_desc_packet_split *rx_desc;
4605 struct e1000_buffer *buffer_info;
4606 struct e1000_ps_page *ps_page;
4607 struct e1000_ps_page_dma *ps_page_dma;
4608 struct sk_buff *skb;
4609 unsigned int i, j;
4610
4611 i = rx_ring->next_to_use;
4612 buffer_info = &rx_ring->buffer_info[i];
4613 ps_page = &rx_ring->ps_page[i];
4614 ps_page_dma = &rx_ring->ps_page_dma[i];
4615
4616 while (cleaned_count--) {
4617 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4618
4619 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4620 if (j < adapter->rx_ps_pages) {
4621 if (likely(!ps_page->ps_page[j])) {
4622 ps_page->ps_page[j] =
4623 alloc_page(GFP_ATOMIC);
4624 if (unlikely(!ps_page->ps_page[j])) {
4625 adapter->alloc_rx_buff_failed++;
4626 goto no_buffers;
4627 }
4628 ps_page_dma->ps_page_dma[j] =
4629 pci_map_page(pdev,
4630 ps_page->ps_page[j],
4631 0, PAGE_SIZE,
4632 PCI_DMA_FROMDEVICE);
4633 }
4634 /* Refresh the desc even if buffer_addrs didn't
4635 * change because each write-back erases
4636 * this info.
4637 */
4638 rx_desc->read.buffer_addr[j+1] =
4639 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4640 } else
4641 rx_desc->read.buffer_addr[j+1] = ~0;
4642 }
4643
4644 skb = netdev_alloc_skb(netdev,
4645 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4646
4647 if (unlikely(!skb)) {
4648 adapter->alloc_rx_buff_failed++;
4649 break;
4650 }
4651
4652 /* Make buffer alignment 2 beyond a 16 byte boundary
4653 * this will result in a 16 byte aligned IP header after
4654 * the 14 byte MAC header is removed
4655 */
4656 skb_reserve(skb, NET_IP_ALIGN);
4657
4658 buffer_info->skb = skb;
4659 buffer_info->length = adapter->rx_ps_bsize0;
4660 buffer_info->dma = pci_map_single(pdev, skb->data,
4661 adapter->rx_ps_bsize0,
4662 PCI_DMA_FROMDEVICE);
4663
4664 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4665
4666 if (unlikely(++i == rx_ring->count)) i = 0;
4667 buffer_info = &rx_ring->buffer_info[i];
4668 ps_page = &rx_ring->ps_page[i];
4669 ps_page_dma = &rx_ring->ps_page_dma[i];
4670 }
4671
4672 no_buffers:
4673 if (likely(rx_ring->next_to_use != i)) {
4674 rx_ring->next_to_use = i;
4675 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4676
4677 /* Force memory writes to complete before letting h/w
4678 * know there are new descriptors to fetch. (Only
4679 * applicable for weak-ordered memory model archs,
4680 * such as IA-64). */
4681 wmb();
4682 /* Hardware increments by 16 bytes, but packet split
4683 * descriptors are 32 bytes...so we increment tail
4684 * twice as much.
4685 */
4686 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4687 }
4688 }
4689
4690 /**
4691 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4692 * @adapter:
4693 **/
4694
4695 static void
4696 e1000_smartspeed(struct e1000_adapter *adapter)
4697 {
4698 uint16_t phy_status;
4699 uint16_t phy_ctrl;
4700
4701 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4702 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4703 return;
4704
4705 if (adapter->smartspeed == 0) {
4706 /* If Master/Slave config fault is asserted twice,
4707 * we assume back-to-back */
4708 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4709 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4710 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4711 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4712 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4713 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4714 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4715 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4716 phy_ctrl);
4717 adapter->smartspeed++;
4718 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4719 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4720 &phy_ctrl)) {
4721 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4722 MII_CR_RESTART_AUTO_NEG);
4723 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4724 phy_ctrl);
4725 }
4726 }
4727 return;
4728 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4729 /* If still no link, perhaps using 2/3 pair cable */
4730 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4731 phy_ctrl |= CR_1000T_MS_ENABLE;
4732 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4733 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4734 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4735 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4736 MII_CR_RESTART_AUTO_NEG);
4737 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4738 }
4739 }
4740 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4741 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4742 adapter->smartspeed = 0;
4743 }
4744
4745 /**
4746 * e1000_ioctl -
4747 * @netdev:
4748 * @ifreq:
4749 * @cmd:
4750 **/
4751
4752 static int
4753 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4754 {
4755 switch (cmd) {
4756 case SIOCGMIIPHY:
4757 case SIOCGMIIREG:
4758 case SIOCSMIIREG:
4759 return e1000_mii_ioctl(netdev, ifr, cmd);
4760 default:
4761 return -EOPNOTSUPP;
4762 }
4763 }
4764
4765 /**
4766 * e1000_mii_ioctl -
4767 * @netdev:
4768 * @ifreq:
4769 * @cmd:
4770 **/
4771
4772 static int
4773 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4774 {
4775 struct e1000_adapter *adapter = netdev_priv(netdev);
4776 struct mii_ioctl_data *data = if_mii(ifr);
4777 int retval;
4778 uint16_t mii_reg;
4779 uint16_t spddplx;
4780 unsigned long flags;
4781
4782 if (adapter->hw.media_type != e1000_media_type_copper)
4783 return -EOPNOTSUPP;
4784
4785 switch (cmd) {
4786 case SIOCGMIIPHY:
4787 data->phy_id = adapter->hw.phy_addr;
4788 break;
4789 case SIOCGMIIREG:
4790 if (!capable(CAP_NET_ADMIN))
4791 return -EPERM;
4792 spin_lock_irqsave(&adapter->stats_lock, flags);
4793 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4794 &data->val_out)) {
4795 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4796 return -EIO;
4797 }
4798 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4799 break;
4800 case SIOCSMIIREG:
4801 if (!capable(CAP_NET_ADMIN))
4802 return -EPERM;
4803 if (data->reg_num & ~(0x1F))
4804 return -EFAULT;
4805 mii_reg = data->val_in;
4806 spin_lock_irqsave(&adapter->stats_lock, flags);
4807 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4808 mii_reg)) {
4809 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4810 return -EIO;
4811 }
4812 if (adapter->hw.media_type == e1000_media_type_copper) {
4813 switch (data->reg_num) {
4814 case PHY_CTRL:
4815 if (mii_reg & MII_CR_POWER_DOWN)
4816 break;
4817 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4818 adapter->hw.autoneg = 1;
4819 adapter->hw.autoneg_advertised = 0x2F;
4820 } else {
4821 if (mii_reg & 0x40)
4822 spddplx = SPEED_1000;
4823 else if (mii_reg & 0x2000)
4824 spddplx = SPEED_100;
4825 else
4826 spddplx = SPEED_10;
4827 spddplx += (mii_reg & 0x100)
4828 ? DUPLEX_FULL :
4829 DUPLEX_HALF;
4830 retval = e1000_set_spd_dplx(adapter,
4831 spddplx);
4832 if (retval) {
4833 spin_unlock_irqrestore(
4834 &adapter->stats_lock,
4835 flags);
4836 return retval;
4837 }
4838 }
4839 if (netif_running(adapter->netdev))
4840 e1000_reinit_locked(adapter);
4841 else
4842 e1000_reset(adapter);
4843 break;
4844 case M88E1000_PHY_SPEC_CTRL:
4845 case M88E1000_EXT_PHY_SPEC_CTRL:
4846 if (e1000_phy_reset(&adapter->hw)) {
4847 spin_unlock_irqrestore(
4848 &adapter->stats_lock, flags);
4849 return -EIO;
4850 }
4851 break;
4852 }
4853 } else {
4854 switch (data->reg_num) {
4855 case PHY_CTRL:
4856 if (mii_reg & MII_CR_POWER_DOWN)
4857 break;
4858 if (netif_running(adapter->netdev))
4859 e1000_reinit_locked(adapter);
4860 else
4861 e1000_reset(adapter);
4862 break;
4863 }
4864 }
4865 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4866 break;
4867 default:
4868 return -EOPNOTSUPP;
4869 }
4870 return E1000_SUCCESS;
4871 }
4872
4873 void
4874 e1000_pci_set_mwi(struct e1000_hw *hw)
4875 {
4876 struct e1000_adapter *adapter = hw->back;
4877 int ret_val = pci_set_mwi(adapter->pdev);
4878
4879 if (ret_val)
4880 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4881 }
4882
4883 void
4884 e1000_pci_clear_mwi(struct e1000_hw *hw)
4885 {
4886 struct e1000_adapter *adapter = hw->back;
4887
4888 pci_clear_mwi(adapter->pdev);
4889 }
4890
4891 void
4892 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4893 {
4894 struct e1000_adapter *adapter = hw->back;
4895
4896 pci_read_config_word(adapter->pdev, reg, value);
4897 }
4898
4899 void
4900 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4901 {
4902 struct e1000_adapter *adapter = hw->back;
4903
4904 pci_write_config_word(adapter->pdev, reg, *value);
4905 }
4906
4907 int32_t
4908 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4909 {
4910 struct e1000_adapter *adapter = hw->back;
4911 uint16_t cap_offset;
4912
4913 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4914 if (!cap_offset)
4915 return -E1000_ERR_CONFIG;
4916
4917 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4918
4919 return E1000_SUCCESS;
4920 }
4921
4922 void
4923 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4924 {
4925 outl(value, port);
4926 }
4927
4928 static void
4929 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4930 {
4931 struct e1000_adapter *adapter = netdev_priv(netdev);
4932 uint32_t ctrl, rctl;
4933
4934 e1000_irq_disable(adapter);
4935 adapter->vlgrp = grp;
4936
4937 if (grp) {
4938 /* enable VLAN tag insert/strip */
4939 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4940 ctrl |= E1000_CTRL_VME;
4941 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4942
4943 if (adapter->hw.mac_type != e1000_ich8lan) {
4944 /* enable VLAN receive filtering */
4945 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4946 rctl |= E1000_RCTL_VFE;
4947 rctl &= ~E1000_RCTL_CFIEN;
4948 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4949 e1000_update_mng_vlan(adapter);
4950 }
4951 } else {
4952 /* disable VLAN tag insert/strip */
4953 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4954 ctrl &= ~E1000_CTRL_VME;
4955 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4956
4957 if (adapter->hw.mac_type != e1000_ich8lan) {
4958 /* disable VLAN filtering */
4959 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4960 rctl &= ~E1000_RCTL_VFE;
4961 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4962 if (adapter->mng_vlan_id !=
4963 (uint16_t)E1000_MNG_VLAN_NONE) {
4964 e1000_vlan_rx_kill_vid(netdev,
4965 adapter->mng_vlan_id);
4966 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4967 }
4968 }
4969 }
4970
4971 e1000_irq_enable(adapter);
4972 }
4973
4974 static void
4975 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4976 {
4977 struct e1000_adapter *adapter = netdev_priv(netdev);
4978 uint32_t vfta, index;
4979
4980 if ((adapter->hw.mng_cookie.status &
4981 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4982 (vid == adapter->mng_vlan_id))
4983 return;
4984 /* add VID to filter table */
4985 index = (vid >> 5) & 0x7F;
4986 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4987 vfta |= (1 << (vid & 0x1F));
4988 e1000_write_vfta(&adapter->hw, index, vfta);
4989 }
4990
4991 static void
4992 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4993 {
4994 struct e1000_adapter *adapter = netdev_priv(netdev);
4995 uint32_t vfta, index;
4996
4997 e1000_irq_disable(adapter);
4998 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4999 e1000_irq_enable(adapter);
5000
5001 if ((adapter->hw.mng_cookie.status &
5002 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5003 (vid == adapter->mng_vlan_id)) {
5004 /* release control to f/w */
5005 e1000_release_hw_control(adapter);
5006 return;
5007 }
5008
5009 /* remove VID from filter table */
5010 index = (vid >> 5) & 0x7F;
5011 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5012 vfta &= ~(1 << (vid & 0x1F));
5013 e1000_write_vfta(&adapter->hw, index, vfta);
5014 }
5015
5016 static void
5017 e1000_restore_vlan(struct e1000_adapter *adapter)
5018 {
5019 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5020
5021 if (adapter->vlgrp) {
5022 uint16_t vid;
5023 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5024 if (!vlan_group_get_device(adapter->vlgrp, vid))
5025 continue;
5026 e1000_vlan_rx_add_vid(adapter->netdev, vid);
5027 }
5028 }
5029 }
5030
5031 int
5032 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5033 {
5034 adapter->hw.autoneg = 0;
5035
5036 /* Fiber NICs only allow 1000 gbps Full duplex */
5037 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5038 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5039 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5040 return -EINVAL;
5041 }
5042
5043 switch (spddplx) {
5044 case SPEED_10 + DUPLEX_HALF:
5045 adapter->hw.forced_speed_duplex = e1000_10_half;
5046 break;
5047 case SPEED_10 + DUPLEX_FULL:
5048 adapter->hw.forced_speed_duplex = e1000_10_full;
5049 break;
5050 case SPEED_100 + DUPLEX_HALF:
5051 adapter->hw.forced_speed_duplex = e1000_100_half;
5052 break;
5053 case SPEED_100 + DUPLEX_FULL:
5054 adapter->hw.forced_speed_duplex = e1000_100_full;
5055 break;
5056 case SPEED_1000 + DUPLEX_FULL:
5057 adapter->hw.autoneg = 1;
5058 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5059 break;
5060 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5061 default:
5062 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5063 return -EINVAL;
5064 }
5065 return 0;
5066 }
5067
5068 static int
5069 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5070 {
5071 struct net_device *netdev = pci_get_drvdata(pdev);
5072 struct e1000_adapter *adapter = netdev_priv(netdev);
5073 uint32_t ctrl, ctrl_ext, rctl, status;
5074 uint32_t wufc = adapter->wol;
5075 #ifdef CONFIG_PM
5076 int retval = 0;
5077 #endif
5078
5079 netif_device_detach(netdev);
5080
5081 if (netif_running(netdev)) {
5082 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5083 e1000_down(adapter);
5084 }
5085
5086 #ifdef CONFIG_PM
5087 retval = pci_save_state(pdev);
5088 if (retval)
5089 return retval;
5090 #endif
5091
5092 status = E1000_READ_REG(&adapter->hw, STATUS);
5093 if (status & E1000_STATUS_LU)
5094 wufc &= ~E1000_WUFC_LNKC;
5095
5096 if (wufc) {
5097 e1000_setup_rctl(adapter);
5098 e1000_set_multi(netdev);
5099
5100 /* turn on all-multi mode if wake on multicast is enabled */
5101 if (wufc & E1000_WUFC_MC) {
5102 rctl = E1000_READ_REG(&adapter->hw, RCTL);
5103 rctl |= E1000_RCTL_MPE;
5104 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5105 }
5106
5107 if (adapter->hw.mac_type >= e1000_82540) {
5108 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5109 /* advertise wake from D3Cold */
5110 #define E1000_CTRL_ADVD3WUC 0x00100000
5111 /* phy power management enable */
5112 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5113 ctrl |= E1000_CTRL_ADVD3WUC |
5114 E1000_CTRL_EN_PHY_PWR_MGMT;
5115 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5116 }
5117
5118 if (adapter->hw.media_type == e1000_media_type_fiber ||
5119 adapter->hw.media_type == e1000_media_type_internal_serdes) {
5120 /* keep the laser running in D3 */
5121 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5122 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5123 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5124 }
5125
5126 /* Allow time for pending master requests to run */
5127 e1000_disable_pciex_master(&adapter->hw);
5128
5129 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5130 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5131 pci_enable_wake(pdev, PCI_D3hot, 1);
5132 pci_enable_wake(pdev, PCI_D3cold, 1);
5133 } else {
5134 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5135 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5136 pci_enable_wake(pdev, PCI_D3hot, 0);
5137 pci_enable_wake(pdev, PCI_D3cold, 0);
5138 }
5139
5140 e1000_release_manageability(adapter);
5141
5142 /* make sure adapter isn't asleep if manageability is enabled */
5143 if (adapter->en_mng_pt) {
5144 pci_enable_wake(pdev, PCI_D3hot, 1);
5145 pci_enable_wake(pdev, PCI_D3cold, 1);
5146 }
5147
5148 if (adapter->hw.phy_type == e1000_phy_igp_3)
5149 e1000_phy_powerdown_workaround(&adapter->hw);
5150
5151 if (netif_running(netdev))
5152 e1000_free_irq(adapter);
5153
5154 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5155 * would have already happened in close and is redundant. */
5156 e1000_release_hw_control(adapter);
5157
5158 pci_disable_device(pdev);
5159
5160 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5161
5162 return 0;
5163 }
5164
5165 #ifdef CONFIG_PM
5166 static int
5167 e1000_resume(struct pci_dev *pdev)
5168 {
5169 struct net_device *netdev = pci_get_drvdata(pdev);
5170 struct e1000_adapter *adapter = netdev_priv(netdev);
5171 uint32_t err;
5172
5173 pci_set_power_state(pdev, PCI_D0);
5174 pci_restore_state(pdev);
5175 if ((err = pci_enable_device(pdev))) {
5176 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5177 return err;
5178 }
5179 pci_set_master(pdev);
5180
5181 pci_enable_wake(pdev, PCI_D3hot, 0);
5182 pci_enable_wake(pdev, PCI_D3cold, 0);
5183
5184 if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5185 return err;
5186
5187 e1000_power_up_phy(adapter);
5188 e1000_reset(adapter);
5189 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5190
5191 e1000_init_manageability(adapter);
5192
5193 if (netif_running(netdev))
5194 e1000_up(adapter);
5195
5196 netif_device_attach(netdev);
5197
5198 /* If the controller is 82573 and f/w is AMT, do not set
5199 * DRV_LOAD until the interface is up. For all other cases,
5200 * let the f/w know that the h/w is now under the control
5201 * of the driver. */
5202 if (adapter->hw.mac_type != e1000_82573 ||
5203 !e1000_check_mng_mode(&adapter->hw))
5204 e1000_get_hw_control(adapter);
5205
5206 return 0;
5207 }
5208 #endif
5209
5210 static void e1000_shutdown(struct pci_dev *pdev)
5211 {
5212 e1000_suspend(pdev, PMSG_SUSPEND);
5213 }
5214
5215 #ifdef CONFIG_NET_POLL_CONTROLLER
5216 /*
5217 * Polling 'interrupt' - used by things like netconsole to send skbs
5218 * without having to re-enable interrupts. It's not called while
5219 * the interrupt routine is executing.
5220 */
5221 static void
5222 e1000_netpoll(struct net_device *netdev)
5223 {
5224 struct e1000_adapter *adapter = netdev_priv(netdev);
5225
5226 disable_irq(adapter->pdev->irq);
5227 e1000_intr(adapter->pdev->irq, netdev);
5228 e1000_clean_tx_irq(adapter, adapter->tx_ring);
5229 #ifndef CONFIG_E1000_NAPI
5230 adapter->clean_rx(adapter, adapter->rx_ring);
5231 #endif
5232 enable_irq(adapter->pdev->irq);
5233 }
5234 #endif
5235
5236 /**
5237 * e1000_io_error_detected - called when PCI error is detected
5238 * @pdev: Pointer to PCI device
5239 * @state: The current pci conneection state
5240 *
5241 * This function is called after a PCI bus error affecting
5242 * this device has been detected.
5243 */
5244 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5245 {
5246 struct net_device *netdev = pci_get_drvdata(pdev);
5247 struct e1000_adapter *adapter = netdev->priv;
5248
5249 netif_device_detach(netdev);
5250
5251 if (netif_running(netdev))
5252 e1000_down(adapter);
5253 pci_disable_device(pdev);
5254
5255 /* Request a slot slot reset. */
5256 return PCI_ERS_RESULT_NEED_RESET;
5257 }
5258
5259 /**
5260 * e1000_io_slot_reset - called after the pci bus has been reset.
5261 * @pdev: Pointer to PCI device
5262 *
5263 * Restart the card from scratch, as if from a cold-boot. Implementation
5264 * resembles the first-half of the e1000_resume routine.
5265 */
5266 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5267 {
5268 struct net_device *netdev = pci_get_drvdata(pdev);
5269 struct e1000_adapter *adapter = netdev->priv;
5270
5271 if (pci_enable_device(pdev)) {
5272 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5273 return PCI_ERS_RESULT_DISCONNECT;
5274 }
5275 pci_set_master(pdev);
5276
5277 pci_enable_wake(pdev, PCI_D3hot, 0);
5278 pci_enable_wake(pdev, PCI_D3cold, 0);
5279
5280 e1000_reset(adapter);
5281 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5282
5283 return PCI_ERS_RESULT_RECOVERED;
5284 }
5285
5286 /**
5287 * e1000_io_resume - called when traffic can start flowing again.
5288 * @pdev: Pointer to PCI device
5289 *
5290 * This callback is called when the error recovery driver tells us that
5291 * its OK to resume normal operation. Implementation resembles the
5292 * second-half of the e1000_resume routine.
5293 */
5294 static void e1000_io_resume(struct pci_dev *pdev)
5295 {
5296 struct net_device *netdev = pci_get_drvdata(pdev);
5297 struct e1000_adapter *adapter = netdev->priv;
5298
5299 e1000_init_manageability(adapter);
5300
5301 if (netif_running(netdev)) {
5302 if (e1000_up(adapter)) {
5303 printk("e1000: can't bring device back up after reset\n");
5304 return;
5305 }
5306 }
5307
5308 netif_device_attach(netdev);
5309
5310 /* If the controller is 82573 and f/w is AMT, do not set
5311 * DRV_LOAD until the interface is up. For all other cases,
5312 * let the f/w know that the h/w is now under the control
5313 * of the driver. */
5314 if (adapter->hw.mac_type != e1000_82573 ||
5315 !e1000_check_mng_mode(&adapter->hw))
5316 e1000_get_hw_control(adapter);
5317
5318 }
5319
5320 /* e1000_main.c */