Staging: et131x: config is already zeroed
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39 *
40 * Last entry must be all 0s
41 *
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44 */
45 static struct pci_device_id e1000_pci_tbl[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
129 struct net_device *netdev);
130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
132 static int e1000_set_mac(struct net_device *netdev, void *p);
133 static irqreturn_t e1000_intr(int irq, void *data);
134 static irqreturn_t e1000_intr_msi(int irq, void *data);
135 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
136 struct e1000_tx_ring *tx_ring);
137 static int e1000_clean(struct napi_struct *napi, int budget);
138 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
139 struct e1000_rx_ring *rx_ring,
140 int *work_done, int work_to_do);
141 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int cleaned_count);
147 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count);
150 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
151 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
152 int cmd);
153 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
155 static void e1000_tx_timeout(struct net_device *dev);
156 static void e1000_reset_task(struct work_struct *work);
157 static void e1000_smartspeed(struct e1000_adapter *adapter);
158 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
159 struct sk_buff *skb);
160
161 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
162 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
163 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
164 static void e1000_restore_vlan(struct e1000_adapter *adapter);
165
166 #ifdef CONFIG_PM
167 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
168 static int e1000_resume(struct pci_dev *pdev);
169 #endif
170 static void e1000_shutdown(struct pci_dev *pdev);
171
172 #ifdef CONFIG_NET_POLL_CONTROLLER
173 /* for netdump / net console */
174 static void e1000_netpoll (struct net_device *netdev);
175 #endif
176
177 #define COPYBREAK_DEFAULT 256
178 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
179 module_param(copybreak, uint, 0644);
180 MODULE_PARM_DESC(copybreak,
181 "Maximum size of packet that is copied to a new buffer on receive");
182
183 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
184 pci_channel_state_t state);
185 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
186 static void e1000_io_resume(struct pci_dev *pdev);
187
188 static struct pci_error_handlers e1000_err_handler = {
189 .error_detected = e1000_io_error_detected,
190 .slot_reset = e1000_io_slot_reset,
191 .resume = e1000_io_resume,
192 };
193
194 static struct pci_driver e1000_driver = {
195 .name = e1000_driver_name,
196 .id_table = e1000_pci_tbl,
197 .probe = e1000_probe,
198 .remove = __devexit_p(e1000_remove),
199 #ifdef CONFIG_PM
200 /* Power Managment Hooks */
201 .suspend = e1000_suspend,
202 .resume = e1000_resume,
203 #endif
204 .shutdown = e1000_shutdown,
205 .err_handler = &e1000_err_handler
206 };
207
208 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
209 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
210 MODULE_LICENSE("GPL");
211 MODULE_VERSION(DRV_VERSION);
212
213 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
214 module_param(debug, int, 0);
215 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
216
217 /**
218 * e1000_init_module - Driver Registration Routine
219 *
220 * e1000_init_module is the first routine called when the driver is
221 * loaded. All it does is register with the PCI subsystem.
222 **/
223
224 static int __init e1000_init_module(void)
225 {
226 int ret;
227 printk(KERN_INFO "%s - version %s\n",
228 e1000_driver_string, e1000_driver_version);
229
230 printk(KERN_INFO "%s\n", e1000_copyright);
231
232 ret = pci_register_driver(&e1000_driver);
233 if (copybreak != COPYBREAK_DEFAULT) {
234 if (copybreak == 0)
235 printk(KERN_INFO "e1000: copybreak disabled\n");
236 else
237 printk(KERN_INFO "e1000: copybreak enabled for "
238 "packets <= %u bytes\n", copybreak);
239 }
240 return ret;
241 }
242
243 module_init(e1000_init_module);
244
245 /**
246 * e1000_exit_module - Driver Exit Cleanup Routine
247 *
248 * e1000_exit_module is called just before the driver is removed
249 * from memory.
250 **/
251
252 static void __exit e1000_exit_module(void)
253 {
254 pci_unregister_driver(&e1000_driver);
255 }
256
257 module_exit(e1000_exit_module);
258
259 static int e1000_request_irq(struct e1000_adapter *adapter)
260 {
261 struct e1000_hw *hw = &adapter->hw;
262 struct net_device *netdev = adapter->netdev;
263 irq_handler_t handler = e1000_intr;
264 int irq_flags = IRQF_SHARED;
265 int err;
266
267 if (hw->mac_type >= e1000_82571) {
268 adapter->have_msi = !pci_enable_msi(adapter->pdev);
269 if (adapter->have_msi) {
270 handler = e1000_intr_msi;
271 irq_flags = 0;
272 }
273 }
274
275 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
276 netdev);
277 if (err) {
278 if (adapter->have_msi)
279 pci_disable_msi(adapter->pdev);
280 DPRINTK(PROBE, ERR,
281 "Unable to allocate interrupt Error: %d\n", err);
282 }
283
284 return err;
285 }
286
287 static void e1000_free_irq(struct e1000_adapter *adapter)
288 {
289 struct net_device *netdev = adapter->netdev;
290
291 free_irq(adapter->pdev->irq, netdev);
292
293 if (adapter->have_msi)
294 pci_disable_msi(adapter->pdev);
295 }
296
297 /**
298 * e1000_irq_disable - Mask off interrupt generation on the NIC
299 * @adapter: board private structure
300 **/
301
302 static void e1000_irq_disable(struct e1000_adapter *adapter)
303 {
304 struct e1000_hw *hw = &adapter->hw;
305
306 ew32(IMC, ~0);
307 E1000_WRITE_FLUSH();
308 synchronize_irq(adapter->pdev->irq);
309 }
310
311 /**
312 * e1000_irq_enable - Enable default interrupt generation settings
313 * @adapter: board private structure
314 **/
315
316 static void e1000_irq_enable(struct e1000_adapter *adapter)
317 {
318 struct e1000_hw *hw = &adapter->hw;
319
320 ew32(IMS, IMS_ENABLE_MASK);
321 E1000_WRITE_FLUSH();
322 }
323
324 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
325 {
326 struct e1000_hw *hw = &adapter->hw;
327 struct net_device *netdev = adapter->netdev;
328 u16 vid = hw->mng_cookie.vlan_id;
329 u16 old_vid = adapter->mng_vlan_id;
330 if (adapter->vlgrp) {
331 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
332 if (hw->mng_cookie.status &
333 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
334 e1000_vlan_rx_add_vid(netdev, vid);
335 adapter->mng_vlan_id = vid;
336 } else
337 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
338
339 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
340 (vid != old_vid) &&
341 !vlan_group_get_device(adapter->vlgrp, old_vid))
342 e1000_vlan_rx_kill_vid(netdev, old_vid);
343 } else
344 adapter->mng_vlan_id = vid;
345 }
346 }
347
348 /**
349 * e1000_release_hw_control - release control of the h/w to f/w
350 * @adapter: address of board private structure
351 *
352 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
353 * For ASF and Pass Through versions of f/w this means that the
354 * driver is no longer loaded. For AMT version (only with 82573) i
355 * of the f/w this means that the network i/f is closed.
356 *
357 **/
358
359 static void e1000_release_hw_control(struct e1000_adapter *adapter)
360 {
361 u32 ctrl_ext;
362 u32 swsm;
363 struct e1000_hw *hw = &adapter->hw;
364
365 /* Let firmware taken over control of h/w */
366 switch (hw->mac_type) {
367 case e1000_82573:
368 swsm = er32(SWSM);
369 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
370 break;
371 case e1000_82571:
372 case e1000_82572:
373 case e1000_80003es2lan:
374 case e1000_ich8lan:
375 ctrl_ext = er32(CTRL_EXT);
376 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
377 break;
378 default:
379 break;
380 }
381 }
382
383 /**
384 * e1000_get_hw_control - get control of the h/w from f/w
385 * @adapter: address of board private structure
386 *
387 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
388 * For ASF and Pass Through versions of f/w this means that
389 * the driver is loaded. For AMT version (only with 82573)
390 * of the f/w this means that the network i/f is open.
391 *
392 **/
393
394 static void e1000_get_hw_control(struct e1000_adapter *adapter)
395 {
396 u32 ctrl_ext;
397 u32 swsm;
398 struct e1000_hw *hw = &adapter->hw;
399
400 /* Let firmware know the driver has taken over */
401 switch (hw->mac_type) {
402 case e1000_82573:
403 swsm = er32(SWSM);
404 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
405 break;
406 case e1000_82571:
407 case e1000_82572:
408 case e1000_80003es2lan:
409 case e1000_ich8lan:
410 ctrl_ext = er32(CTRL_EXT);
411 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
412 break;
413 default:
414 break;
415 }
416 }
417
418 static void e1000_init_manageability(struct e1000_adapter *adapter)
419 {
420 struct e1000_hw *hw = &adapter->hw;
421
422 if (adapter->en_mng_pt) {
423 u32 manc = er32(MANC);
424
425 /* disable hardware interception of ARP */
426 manc &= ~(E1000_MANC_ARP_EN);
427
428 /* enable receiving management packets to the host */
429 /* this will probably generate destination unreachable messages
430 * from the host OS, but the packets will be handled on SMBUS */
431 if (hw->has_manc2h) {
432 u32 manc2h = er32(MANC2H);
433
434 manc |= E1000_MANC_EN_MNG2HOST;
435 #define E1000_MNG2HOST_PORT_623 (1 << 5)
436 #define E1000_MNG2HOST_PORT_664 (1 << 6)
437 manc2h |= E1000_MNG2HOST_PORT_623;
438 manc2h |= E1000_MNG2HOST_PORT_664;
439 ew32(MANC2H, manc2h);
440 }
441
442 ew32(MANC, manc);
443 }
444 }
445
446 static void e1000_release_manageability(struct e1000_adapter *adapter)
447 {
448 struct e1000_hw *hw = &adapter->hw;
449
450 if (adapter->en_mng_pt) {
451 u32 manc = er32(MANC);
452
453 /* re-enable hardware interception of ARP */
454 manc |= E1000_MANC_ARP_EN;
455
456 if (hw->has_manc2h)
457 manc &= ~E1000_MANC_EN_MNG2HOST;
458
459 /* don't explicitly have to mess with MANC2H since
460 * MANC has an enable disable that gates MANC2H */
461
462 ew32(MANC, manc);
463 }
464 }
465
466 /**
467 * e1000_configure - configure the hardware for RX and TX
468 * @adapter = private board structure
469 **/
470 static void e1000_configure(struct e1000_adapter *adapter)
471 {
472 struct net_device *netdev = adapter->netdev;
473 int i;
474
475 e1000_set_rx_mode(netdev);
476
477 e1000_restore_vlan(adapter);
478 e1000_init_manageability(adapter);
479
480 e1000_configure_tx(adapter);
481 e1000_setup_rctl(adapter);
482 e1000_configure_rx(adapter);
483 /* call E1000_DESC_UNUSED which always leaves
484 * at least 1 descriptor unused to make sure
485 * next_to_use != next_to_clean */
486 for (i = 0; i < adapter->num_rx_queues; i++) {
487 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
488 adapter->alloc_rx_buf(adapter, ring,
489 E1000_DESC_UNUSED(ring));
490 }
491
492 adapter->tx_queue_len = netdev->tx_queue_len;
493 }
494
495 int e1000_up(struct e1000_adapter *adapter)
496 {
497 struct e1000_hw *hw = &adapter->hw;
498
499 /* hardware has been reset, we need to reload some things */
500 e1000_configure(adapter);
501
502 clear_bit(__E1000_DOWN, &adapter->flags);
503
504 napi_enable(&adapter->napi);
505
506 e1000_irq_enable(adapter);
507
508 netif_wake_queue(adapter->netdev);
509
510 /* fire a link change interrupt to start the watchdog */
511 ew32(ICS, E1000_ICS_LSC);
512 return 0;
513 }
514
515 /**
516 * e1000_power_up_phy - restore link in case the phy was powered down
517 * @adapter: address of board private structure
518 *
519 * The phy may be powered down to save power and turn off link when the
520 * driver is unloaded and wake on lan is not enabled (among others)
521 * *** this routine MUST be followed by a call to e1000_reset ***
522 *
523 **/
524
525 void e1000_power_up_phy(struct e1000_adapter *adapter)
526 {
527 struct e1000_hw *hw = &adapter->hw;
528 u16 mii_reg = 0;
529
530 /* Just clear the power down bit to wake the phy back up */
531 if (hw->media_type == e1000_media_type_copper) {
532 /* according to the manual, the phy will retain its
533 * settings across a power-down/up cycle */
534 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
535 mii_reg &= ~MII_CR_POWER_DOWN;
536 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
537 }
538 }
539
540 static void e1000_power_down_phy(struct e1000_adapter *adapter)
541 {
542 struct e1000_hw *hw = &adapter->hw;
543
544 /* Power down the PHY so no link is implied when interface is down *
545 * The PHY cannot be powered down if any of the following is true *
546 * (a) WoL is enabled
547 * (b) AMT is active
548 * (c) SoL/IDER session is active */
549 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
550 hw->media_type == e1000_media_type_copper) {
551 u16 mii_reg = 0;
552
553 switch (hw->mac_type) {
554 case e1000_82540:
555 case e1000_82545:
556 case e1000_82545_rev_3:
557 case e1000_82546:
558 case e1000_82546_rev_3:
559 case e1000_82541:
560 case e1000_82541_rev_2:
561 case e1000_82547:
562 case e1000_82547_rev_2:
563 if (er32(MANC) & E1000_MANC_SMBUS_EN)
564 goto out;
565 break;
566 case e1000_82571:
567 case e1000_82572:
568 case e1000_82573:
569 case e1000_80003es2lan:
570 case e1000_ich8lan:
571 if (e1000_check_mng_mode(hw) ||
572 e1000_check_phy_reset_block(hw))
573 goto out;
574 break;
575 default:
576 goto out;
577 }
578 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
579 mii_reg |= MII_CR_POWER_DOWN;
580 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
581 mdelay(1);
582 }
583 out:
584 return;
585 }
586
587 void e1000_down(struct e1000_adapter *adapter)
588 {
589 struct e1000_hw *hw = &adapter->hw;
590 struct net_device *netdev = adapter->netdev;
591 u32 rctl, tctl;
592
593 /* signal that we're down so the interrupt handler does not
594 * reschedule our watchdog timer */
595 set_bit(__E1000_DOWN, &adapter->flags);
596
597 /* disable receives in the hardware */
598 rctl = er32(RCTL);
599 ew32(RCTL, rctl & ~E1000_RCTL_EN);
600 /* flush and sleep below */
601
602 /* can be netif_tx_disable when NETIF_F_LLTX is removed */
603 netif_stop_queue(netdev);
604
605 /* disable transmits in the hardware */
606 tctl = er32(TCTL);
607 tctl &= ~E1000_TCTL_EN;
608 ew32(TCTL, tctl);
609 /* flush both disables and wait for them to finish */
610 E1000_WRITE_FLUSH();
611 msleep(10);
612
613 napi_disable(&adapter->napi);
614
615 e1000_irq_disable(adapter);
616
617 del_timer_sync(&adapter->tx_fifo_stall_timer);
618 del_timer_sync(&adapter->watchdog_timer);
619 del_timer_sync(&adapter->phy_info_timer);
620
621 netdev->tx_queue_len = adapter->tx_queue_len;
622 adapter->link_speed = 0;
623 adapter->link_duplex = 0;
624 netif_carrier_off(netdev);
625
626 e1000_reset(adapter);
627 e1000_clean_all_tx_rings(adapter);
628 e1000_clean_all_rx_rings(adapter);
629 }
630
631 void e1000_reinit_locked(struct e1000_adapter *adapter)
632 {
633 WARN_ON(in_interrupt());
634 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
635 msleep(1);
636 e1000_down(adapter);
637 e1000_up(adapter);
638 clear_bit(__E1000_RESETTING, &adapter->flags);
639 }
640
641 void e1000_reset(struct e1000_adapter *adapter)
642 {
643 struct e1000_hw *hw = &adapter->hw;
644 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
645 bool legacy_pba_adjust = false;
646 u16 hwm;
647
648 /* Repartition Pba for greater than 9k mtu
649 * To take effect CTRL.RST is required.
650 */
651
652 switch (hw->mac_type) {
653 case e1000_82542_rev2_0:
654 case e1000_82542_rev2_1:
655 case e1000_82543:
656 case e1000_82544:
657 case e1000_82540:
658 case e1000_82541:
659 case e1000_82541_rev_2:
660 legacy_pba_adjust = true;
661 pba = E1000_PBA_48K;
662 break;
663 case e1000_82545:
664 case e1000_82545_rev_3:
665 case e1000_82546:
666 case e1000_82546_rev_3:
667 pba = E1000_PBA_48K;
668 break;
669 case e1000_82547:
670 case e1000_82547_rev_2:
671 legacy_pba_adjust = true;
672 pba = E1000_PBA_30K;
673 break;
674 case e1000_82571:
675 case e1000_82572:
676 case e1000_80003es2lan:
677 pba = E1000_PBA_38K;
678 break;
679 case e1000_82573:
680 pba = E1000_PBA_20K;
681 break;
682 case e1000_ich8lan:
683 pba = E1000_PBA_8K;
684 case e1000_undefined:
685 case e1000_num_macs:
686 break;
687 }
688
689 if (legacy_pba_adjust) {
690 if (hw->max_frame_size > E1000_RXBUFFER_8192)
691 pba -= 8; /* allocate more FIFO for Tx */
692
693 if (hw->mac_type == e1000_82547) {
694 adapter->tx_fifo_head = 0;
695 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
696 adapter->tx_fifo_size =
697 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
698 atomic_set(&adapter->tx_fifo_stall, 0);
699 }
700 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
701 /* adjust PBA for jumbo frames */
702 ew32(PBA, pba);
703
704 /* To maintain wire speed transmits, the Tx FIFO should be
705 * large enough to accommodate two full transmit packets,
706 * rounded up to the next 1KB and expressed in KB. Likewise,
707 * the Rx FIFO should be large enough to accommodate at least
708 * one full receive packet and is similarly rounded up and
709 * expressed in KB. */
710 pba = er32(PBA);
711 /* upper 16 bits has Tx packet buffer allocation size in KB */
712 tx_space = pba >> 16;
713 /* lower 16 bits has Rx packet buffer allocation size in KB */
714 pba &= 0xffff;
715 /*
716 * the tx fifo also stores 16 bytes of information about the tx
717 * but don't include ethernet FCS because hardware appends it
718 */
719 min_tx_space = (hw->max_frame_size +
720 sizeof(struct e1000_tx_desc) -
721 ETH_FCS_LEN) * 2;
722 min_tx_space = ALIGN(min_tx_space, 1024);
723 min_tx_space >>= 10;
724 /* software strips receive CRC, so leave room for it */
725 min_rx_space = hw->max_frame_size;
726 min_rx_space = ALIGN(min_rx_space, 1024);
727 min_rx_space >>= 10;
728
729 /* If current Tx allocation is less than the min Tx FIFO size,
730 * and the min Tx FIFO size is less than the current Rx FIFO
731 * allocation, take space away from current Rx allocation */
732 if (tx_space < min_tx_space &&
733 ((min_tx_space - tx_space) < pba)) {
734 pba = pba - (min_tx_space - tx_space);
735
736 /* PCI/PCIx hardware has PBA alignment constraints */
737 switch (hw->mac_type) {
738 case e1000_82545 ... e1000_82546_rev_3:
739 pba &= ~(E1000_PBA_8K - 1);
740 break;
741 default:
742 break;
743 }
744
745 /* if short on rx space, rx wins and must trump tx
746 * adjustment or use Early Receive if available */
747 if (pba < min_rx_space) {
748 switch (hw->mac_type) {
749 case e1000_82573:
750 /* ERT enabled in e1000_configure_rx */
751 break;
752 default:
753 pba = min_rx_space;
754 break;
755 }
756 }
757 }
758 }
759
760 ew32(PBA, pba);
761
762 /*
763 * flow control settings:
764 * The high water mark must be low enough to fit one full frame
765 * (or the size used for early receive) above it in the Rx FIFO.
766 * Set it to the lower of:
767 * - 90% of the Rx FIFO size, and
768 * - the full Rx FIFO size minus the early receive size (for parts
769 * with ERT support assuming ERT set to E1000_ERT_2048), or
770 * - the full Rx FIFO size minus one full frame
771 */
772 hwm = min(((pba << 10) * 9 / 10),
773 ((pba << 10) - hw->max_frame_size));
774
775 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
776 hw->fc_low_water = hw->fc_high_water - 8;
777 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
778 hw->fc_send_xon = 1;
779 hw->fc = hw->original_fc;
780
781 /* Allow time for pending master requests to run */
782 e1000_reset_hw(hw);
783 if (hw->mac_type >= e1000_82544)
784 ew32(WUC, 0);
785
786 if (e1000_init_hw(hw))
787 DPRINTK(PROBE, ERR, "Hardware Error\n");
788 e1000_update_mng_vlan(adapter);
789
790 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
791 if (hw->mac_type >= e1000_82544 &&
792 hw->mac_type <= e1000_82547_rev_2 &&
793 hw->autoneg == 1 &&
794 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
795 u32 ctrl = er32(CTRL);
796 /* clear phy power management bit if we are in gig only mode,
797 * which if enabled will attempt negotiation to 100Mb, which
798 * can cause a loss of link at power off or driver unload */
799 ctrl &= ~E1000_CTRL_SWDPIN3;
800 ew32(CTRL, ctrl);
801 }
802
803 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
804 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
805
806 e1000_reset_adaptive(hw);
807 e1000_phy_get_info(hw, &adapter->phy_info);
808
809 if (!adapter->smart_power_down &&
810 (hw->mac_type == e1000_82571 ||
811 hw->mac_type == e1000_82572)) {
812 u16 phy_data = 0;
813 /* speed up time to link by disabling smart power down, ignore
814 * the return value of this function because there is nothing
815 * different we would do if it failed */
816 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
817 &phy_data);
818 phy_data &= ~IGP02E1000_PM_SPD;
819 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
820 phy_data);
821 }
822
823 e1000_release_manageability(adapter);
824 }
825
826 /**
827 * Dump the eeprom for users having checksum issues
828 **/
829 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
830 {
831 struct net_device *netdev = adapter->netdev;
832 struct ethtool_eeprom eeprom;
833 const struct ethtool_ops *ops = netdev->ethtool_ops;
834 u8 *data;
835 int i;
836 u16 csum_old, csum_new = 0;
837
838 eeprom.len = ops->get_eeprom_len(netdev);
839 eeprom.offset = 0;
840
841 data = kmalloc(eeprom.len, GFP_KERNEL);
842 if (!data) {
843 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
844 " data\n");
845 return;
846 }
847
848 ops->get_eeprom(netdev, &eeprom, data);
849
850 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
851 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
852 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
853 csum_new += data[i] + (data[i + 1] << 8);
854 csum_new = EEPROM_SUM - csum_new;
855
856 printk(KERN_ERR "/*********************/\n");
857 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
858 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
859
860 printk(KERN_ERR "Offset Values\n");
861 printk(KERN_ERR "======== ======\n");
862 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
863
864 printk(KERN_ERR "Include this output when contacting your support "
865 "provider.\n");
866 printk(KERN_ERR "This is not a software error! Something bad "
867 "happened to your hardware or\n");
868 printk(KERN_ERR "EEPROM image. Ignoring this "
869 "problem could result in further problems,\n");
870 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
871 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
872 "which is invalid\n");
873 printk(KERN_ERR "and requires you to set the proper MAC "
874 "address manually before continuing\n");
875 printk(KERN_ERR "to enable this network device.\n");
876 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
877 "to your hardware vendor\n");
878 printk(KERN_ERR "or Intel Customer Support.\n");
879 printk(KERN_ERR "/*********************/\n");
880
881 kfree(data);
882 }
883
884 /**
885 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
886 * @pdev: PCI device information struct
887 *
888 * Return true if an adapter needs ioport resources
889 **/
890 static int e1000_is_need_ioport(struct pci_dev *pdev)
891 {
892 switch (pdev->device) {
893 case E1000_DEV_ID_82540EM:
894 case E1000_DEV_ID_82540EM_LOM:
895 case E1000_DEV_ID_82540EP:
896 case E1000_DEV_ID_82540EP_LOM:
897 case E1000_DEV_ID_82540EP_LP:
898 case E1000_DEV_ID_82541EI:
899 case E1000_DEV_ID_82541EI_MOBILE:
900 case E1000_DEV_ID_82541ER:
901 case E1000_DEV_ID_82541ER_LOM:
902 case E1000_DEV_ID_82541GI:
903 case E1000_DEV_ID_82541GI_LF:
904 case E1000_DEV_ID_82541GI_MOBILE:
905 case E1000_DEV_ID_82544EI_COPPER:
906 case E1000_DEV_ID_82544EI_FIBER:
907 case E1000_DEV_ID_82544GC_COPPER:
908 case E1000_DEV_ID_82544GC_LOM:
909 case E1000_DEV_ID_82545EM_COPPER:
910 case E1000_DEV_ID_82545EM_FIBER:
911 case E1000_DEV_ID_82546EB_COPPER:
912 case E1000_DEV_ID_82546EB_FIBER:
913 case E1000_DEV_ID_82546EB_QUAD_COPPER:
914 return true;
915 default:
916 return false;
917 }
918 }
919
920 static const struct net_device_ops e1000_netdev_ops = {
921 .ndo_open = e1000_open,
922 .ndo_stop = e1000_close,
923 .ndo_start_xmit = e1000_xmit_frame,
924 .ndo_get_stats = e1000_get_stats,
925 .ndo_set_rx_mode = e1000_set_rx_mode,
926 .ndo_set_mac_address = e1000_set_mac,
927 .ndo_tx_timeout = e1000_tx_timeout,
928 .ndo_change_mtu = e1000_change_mtu,
929 .ndo_do_ioctl = e1000_ioctl,
930 .ndo_validate_addr = eth_validate_addr,
931
932 .ndo_vlan_rx_register = e1000_vlan_rx_register,
933 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
934 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
935 #ifdef CONFIG_NET_POLL_CONTROLLER
936 .ndo_poll_controller = e1000_netpoll,
937 #endif
938 };
939
940 /**
941 * e1000_probe - Device Initialization Routine
942 * @pdev: PCI device information struct
943 * @ent: entry in e1000_pci_tbl
944 *
945 * Returns 0 on success, negative on failure
946 *
947 * e1000_probe initializes an adapter identified by a pci_dev structure.
948 * The OS initialization, configuring of the adapter private structure,
949 * and a hardware reset occur.
950 **/
951 static int __devinit e1000_probe(struct pci_dev *pdev,
952 const struct pci_device_id *ent)
953 {
954 struct net_device *netdev;
955 struct e1000_adapter *adapter;
956 struct e1000_hw *hw;
957
958 static int cards_found = 0;
959 static int global_quad_port_a = 0; /* global ksp3 port a indication */
960 int i, err, pci_using_dac;
961 u16 eeprom_data = 0;
962 u16 eeprom_apme_mask = E1000_EEPROM_APME;
963 int bars, need_ioport;
964
965 /* do not allocate ioport bars when not needed */
966 need_ioport = e1000_is_need_ioport(pdev);
967 if (need_ioport) {
968 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
969 err = pci_enable_device(pdev);
970 } else {
971 bars = pci_select_bars(pdev, IORESOURCE_MEM);
972 err = pci_enable_device_mem(pdev);
973 }
974 if (err)
975 return err;
976
977 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
978 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
979 pci_using_dac = 1;
980 } else {
981 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
982 if (err) {
983 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
984 if (err) {
985 E1000_ERR("No usable DMA configuration, "
986 "aborting\n");
987 goto err_dma;
988 }
989 }
990 pci_using_dac = 0;
991 }
992
993 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
994 if (err)
995 goto err_pci_reg;
996
997 pci_set_master(pdev);
998
999 err = -ENOMEM;
1000 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
1001 if (!netdev)
1002 goto err_alloc_etherdev;
1003
1004 SET_NETDEV_DEV(netdev, &pdev->dev);
1005
1006 pci_set_drvdata(pdev, netdev);
1007 adapter = netdev_priv(netdev);
1008 adapter->netdev = netdev;
1009 adapter->pdev = pdev;
1010 adapter->msg_enable = (1 << debug) - 1;
1011 adapter->bars = bars;
1012 adapter->need_ioport = need_ioport;
1013
1014 hw = &adapter->hw;
1015 hw->back = adapter;
1016
1017 err = -EIO;
1018 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1019 if (!hw->hw_addr)
1020 goto err_ioremap;
1021
1022 if (adapter->need_ioport) {
1023 for (i = BAR_1; i <= BAR_5; i++) {
1024 if (pci_resource_len(pdev, i) == 0)
1025 continue;
1026 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1027 hw->io_base = pci_resource_start(pdev, i);
1028 break;
1029 }
1030 }
1031 }
1032
1033 netdev->netdev_ops = &e1000_netdev_ops;
1034 e1000_set_ethtool_ops(netdev);
1035 netdev->watchdog_timeo = 5 * HZ;
1036 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1037
1038 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1039
1040 adapter->bd_number = cards_found;
1041
1042 /* setup the private structure */
1043
1044 err = e1000_sw_init(adapter);
1045 if (err)
1046 goto err_sw_init;
1047
1048 err = -EIO;
1049 /* Flash BAR mapping must happen after e1000_sw_init
1050 * because it depends on mac_type */
1051 if ((hw->mac_type == e1000_ich8lan) &&
1052 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1053 hw->flash_address = pci_ioremap_bar(pdev, 1);
1054 if (!hw->flash_address)
1055 goto err_flashmap;
1056 }
1057
1058 if (e1000_check_phy_reset_block(hw))
1059 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1060
1061 if (hw->mac_type >= e1000_82543) {
1062 netdev->features = NETIF_F_SG |
1063 NETIF_F_HW_CSUM |
1064 NETIF_F_HW_VLAN_TX |
1065 NETIF_F_HW_VLAN_RX |
1066 NETIF_F_HW_VLAN_FILTER;
1067 if (hw->mac_type == e1000_ich8lan)
1068 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1069 }
1070
1071 if ((hw->mac_type >= e1000_82544) &&
1072 (hw->mac_type != e1000_82547))
1073 netdev->features |= NETIF_F_TSO;
1074
1075 if (hw->mac_type > e1000_82547_rev_2)
1076 netdev->features |= NETIF_F_TSO6;
1077 if (pci_using_dac)
1078 netdev->features |= NETIF_F_HIGHDMA;
1079
1080 netdev->vlan_features |= NETIF_F_TSO;
1081 netdev->vlan_features |= NETIF_F_TSO6;
1082 netdev->vlan_features |= NETIF_F_HW_CSUM;
1083 netdev->vlan_features |= NETIF_F_SG;
1084
1085 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1086
1087 /* initialize eeprom parameters */
1088 if (e1000_init_eeprom_params(hw)) {
1089 E1000_ERR("EEPROM initialization failed\n");
1090 goto err_eeprom;
1091 }
1092
1093 /* before reading the EEPROM, reset the controller to
1094 * put the device in a known good starting state */
1095
1096 e1000_reset_hw(hw);
1097
1098 /* make sure the EEPROM is good */
1099 if (e1000_validate_eeprom_checksum(hw) < 0) {
1100 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1101 e1000_dump_eeprom(adapter);
1102 /*
1103 * set MAC address to all zeroes to invalidate and temporary
1104 * disable this device for the user. This blocks regular
1105 * traffic while still permitting ethtool ioctls from reaching
1106 * the hardware as well as allowing the user to run the
1107 * interface after manually setting a hw addr using
1108 * `ip set address`
1109 */
1110 memset(hw->mac_addr, 0, netdev->addr_len);
1111 } else {
1112 /* copy the MAC address out of the EEPROM */
1113 if (e1000_read_mac_addr(hw))
1114 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1115 }
1116 /* don't block initalization here due to bad MAC address */
1117 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1118 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1119
1120 if (!is_valid_ether_addr(netdev->perm_addr))
1121 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1122
1123 e1000_get_bus_info(hw);
1124
1125 init_timer(&adapter->tx_fifo_stall_timer);
1126 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1127 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1128
1129 init_timer(&adapter->watchdog_timer);
1130 adapter->watchdog_timer.function = &e1000_watchdog;
1131 adapter->watchdog_timer.data = (unsigned long) adapter;
1132
1133 init_timer(&adapter->phy_info_timer);
1134 adapter->phy_info_timer.function = &e1000_update_phy_info;
1135 adapter->phy_info_timer.data = (unsigned long)adapter;
1136
1137 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1138
1139 e1000_check_options(adapter);
1140
1141 /* Initial Wake on LAN setting
1142 * If APM wake is enabled in the EEPROM,
1143 * enable the ACPI Magic Packet filter
1144 */
1145
1146 switch (hw->mac_type) {
1147 case e1000_82542_rev2_0:
1148 case e1000_82542_rev2_1:
1149 case e1000_82543:
1150 break;
1151 case e1000_82544:
1152 e1000_read_eeprom(hw,
1153 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1154 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1155 break;
1156 case e1000_ich8lan:
1157 e1000_read_eeprom(hw,
1158 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1159 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1160 break;
1161 case e1000_82546:
1162 case e1000_82546_rev_3:
1163 case e1000_82571:
1164 case e1000_80003es2lan:
1165 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1166 e1000_read_eeprom(hw,
1167 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1168 break;
1169 }
1170 /* Fall Through */
1171 default:
1172 e1000_read_eeprom(hw,
1173 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1174 break;
1175 }
1176 if (eeprom_data & eeprom_apme_mask)
1177 adapter->eeprom_wol |= E1000_WUFC_MAG;
1178
1179 /* now that we have the eeprom settings, apply the special cases
1180 * where the eeprom may be wrong or the board simply won't support
1181 * wake on lan on a particular port */
1182 switch (pdev->device) {
1183 case E1000_DEV_ID_82546GB_PCIE:
1184 adapter->eeprom_wol = 0;
1185 break;
1186 case E1000_DEV_ID_82546EB_FIBER:
1187 case E1000_DEV_ID_82546GB_FIBER:
1188 case E1000_DEV_ID_82571EB_FIBER:
1189 /* Wake events only supported on port A for dual fiber
1190 * regardless of eeprom setting */
1191 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1192 adapter->eeprom_wol = 0;
1193 break;
1194 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1195 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1196 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1197 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1198 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1199 /* if quad port adapter, disable WoL on all but port A */
1200 if (global_quad_port_a != 0)
1201 adapter->eeprom_wol = 0;
1202 else
1203 adapter->quad_port_a = 1;
1204 /* Reset for multiple quad port adapters */
1205 if (++global_quad_port_a == 4)
1206 global_quad_port_a = 0;
1207 break;
1208 }
1209
1210 /* initialize the wol settings based on the eeprom settings */
1211 adapter->wol = adapter->eeprom_wol;
1212 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1213
1214 /* print bus type/speed/width info */
1215 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1216 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1217 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1218 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1219 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1220 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1221 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1222 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1223 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1224 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1225 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1226 "32-bit"));
1227
1228 printk("%pM\n", netdev->dev_addr);
1229
1230 if (hw->bus_type == e1000_bus_type_pci_express) {
1231 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1232 "longer be supported by this driver in the future.\n",
1233 pdev->vendor, pdev->device);
1234 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1235 "driver instead.\n");
1236 }
1237
1238 /* reset the hardware with the new settings */
1239 e1000_reset(adapter);
1240
1241 /* If the controller is 82573 and f/w is AMT, do not set
1242 * DRV_LOAD until the interface is up. For all other cases,
1243 * let the f/w know that the h/w is now under the control
1244 * of the driver. */
1245 if (hw->mac_type != e1000_82573 ||
1246 !e1000_check_mng_mode(hw))
1247 e1000_get_hw_control(adapter);
1248
1249 strcpy(netdev->name, "eth%d");
1250 err = register_netdev(netdev);
1251 if (err)
1252 goto err_register;
1253
1254 /* carrier off reporting is important to ethtool even BEFORE open */
1255 netif_carrier_off(netdev);
1256
1257 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1258
1259 cards_found++;
1260 return 0;
1261
1262 err_register:
1263 e1000_release_hw_control(adapter);
1264 err_eeprom:
1265 if (!e1000_check_phy_reset_block(hw))
1266 e1000_phy_hw_reset(hw);
1267
1268 if (hw->flash_address)
1269 iounmap(hw->flash_address);
1270 err_flashmap:
1271 kfree(adapter->tx_ring);
1272 kfree(adapter->rx_ring);
1273 err_sw_init:
1274 iounmap(hw->hw_addr);
1275 err_ioremap:
1276 free_netdev(netdev);
1277 err_alloc_etherdev:
1278 pci_release_selected_regions(pdev, bars);
1279 err_pci_reg:
1280 err_dma:
1281 pci_disable_device(pdev);
1282 return err;
1283 }
1284
1285 /**
1286 * e1000_remove - Device Removal Routine
1287 * @pdev: PCI device information struct
1288 *
1289 * e1000_remove is called by the PCI subsystem to alert the driver
1290 * that it should release a PCI device. The could be caused by a
1291 * Hot-Plug event, or because the driver is going to be removed from
1292 * memory.
1293 **/
1294
1295 static void __devexit e1000_remove(struct pci_dev *pdev)
1296 {
1297 struct net_device *netdev = pci_get_drvdata(pdev);
1298 struct e1000_adapter *adapter = netdev_priv(netdev);
1299 struct e1000_hw *hw = &adapter->hw;
1300
1301 cancel_work_sync(&adapter->reset_task);
1302
1303 e1000_release_manageability(adapter);
1304
1305 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1306 * would have already happened in close and is redundant. */
1307 e1000_release_hw_control(adapter);
1308
1309 unregister_netdev(netdev);
1310
1311 if (!e1000_check_phy_reset_block(hw))
1312 e1000_phy_hw_reset(hw);
1313
1314 kfree(adapter->tx_ring);
1315 kfree(adapter->rx_ring);
1316
1317 iounmap(hw->hw_addr);
1318 if (hw->flash_address)
1319 iounmap(hw->flash_address);
1320 pci_release_selected_regions(pdev, adapter->bars);
1321
1322 free_netdev(netdev);
1323
1324 pci_disable_device(pdev);
1325 }
1326
1327 /**
1328 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1329 * @adapter: board private structure to initialize
1330 *
1331 * e1000_sw_init initializes the Adapter private data structure.
1332 * Fields are initialized based on PCI device information and
1333 * OS network device settings (MTU size).
1334 **/
1335
1336 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1337 {
1338 struct e1000_hw *hw = &adapter->hw;
1339 struct net_device *netdev = adapter->netdev;
1340 struct pci_dev *pdev = adapter->pdev;
1341
1342 /* PCI config space info */
1343
1344 hw->vendor_id = pdev->vendor;
1345 hw->device_id = pdev->device;
1346 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1347 hw->subsystem_id = pdev->subsystem_device;
1348 hw->revision_id = pdev->revision;
1349
1350 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1351
1352 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1353 hw->max_frame_size = netdev->mtu +
1354 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1355 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1356
1357 /* identify the MAC */
1358
1359 if (e1000_set_mac_type(hw)) {
1360 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1361 return -EIO;
1362 }
1363
1364 switch (hw->mac_type) {
1365 default:
1366 break;
1367 case e1000_82541:
1368 case e1000_82547:
1369 case e1000_82541_rev_2:
1370 case e1000_82547_rev_2:
1371 hw->phy_init_script = 1;
1372 break;
1373 }
1374
1375 e1000_set_media_type(hw);
1376
1377 hw->wait_autoneg_complete = false;
1378 hw->tbi_compatibility_en = true;
1379 hw->adaptive_ifs = true;
1380
1381 /* Copper options */
1382
1383 if (hw->media_type == e1000_media_type_copper) {
1384 hw->mdix = AUTO_ALL_MODES;
1385 hw->disable_polarity_correction = false;
1386 hw->master_slave = E1000_MASTER_SLAVE;
1387 }
1388
1389 adapter->num_tx_queues = 1;
1390 adapter->num_rx_queues = 1;
1391
1392 if (e1000_alloc_queues(adapter)) {
1393 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1394 return -ENOMEM;
1395 }
1396
1397 /* Explicitly disable IRQ since the NIC can be in any state. */
1398 e1000_irq_disable(adapter);
1399
1400 spin_lock_init(&adapter->stats_lock);
1401
1402 set_bit(__E1000_DOWN, &adapter->flags);
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * e1000_alloc_queues - Allocate memory for all rings
1409 * @adapter: board private structure to initialize
1410 *
1411 * We allocate one ring per queue at run-time since we don't know the
1412 * number of queues at compile-time.
1413 **/
1414
1415 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1416 {
1417 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1418 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1419 if (!adapter->tx_ring)
1420 return -ENOMEM;
1421
1422 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1423 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1424 if (!adapter->rx_ring) {
1425 kfree(adapter->tx_ring);
1426 return -ENOMEM;
1427 }
1428
1429 return E1000_SUCCESS;
1430 }
1431
1432 /**
1433 * e1000_open - Called when a network interface is made active
1434 * @netdev: network interface device structure
1435 *
1436 * Returns 0 on success, negative value on failure
1437 *
1438 * The open entry point is called when a network interface is made
1439 * active by the system (IFF_UP). At this point all resources needed
1440 * for transmit and receive operations are allocated, the interrupt
1441 * handler is registered with the OS, the watchdog timer is started,
1442 * and the stack is notified that the interface is ready.
1443 **/
1444
1445 static int e1000_open(struct net_device *netdev)
1446 {
1447 struct e1000_adapter *adapter = netdev_priv(netdev);
1448 struct e1000_hw *hw = &adapter->hw;
1449 int err;
1450
1451 /* disallow open during test */
1452 if (test_bit(__E1000_TESTING, &adapter->flags))
1453 return -EBUSY;
1454
1455 netif_carrier_off(netdev);
1456
1457 /* allocate transmit descriptors */
1458 err = e1000_setup_all_tx_resources(adapter);
1459 if (err)
1460 goto err_setup_tx;
1461
1462 /* allocate receive descriptors */
1463 err = e1000_setup_all_rx_resources(adapter);
1464 if (err)
1465 goto err_setup_rx;
1466
1467 e1000_power_up_phy(adapter);
1468
1469 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1470 if ((hw->mng_cookie.status &
1471 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1472 e1000_update_mng_vlan(adapter);
1473 }
1474
1475 /* If AMT is enabled, let the firmware know that the network
1476 * interface is now open */
1477 if (hw->mac_type == e1000_82573 &&
1478 e1000_check_mng_mode(hw))
1479 e1000_get_hw_control(adapter);
1480
1481 /* before we allocate an interrupt, we must be ready to handle it.
1482 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1483 * as soon as we call pci_request_irq, so we have to setup our
1484 * clean_rx handler before we do so. */
1485 e1000_configure(adapter);
1486
1487 err = e1000_request_irq(adapter);
1488 if (err)
1489 goto err_req_irq;
1490
1491 /* From here on the code is the same as e1000_up() */
1492 clear_bit(__E1000_DOWN, &adapter->flags);
1493
1494 napi_enable(&adapter->napi);
1495
1496 e1000_irq_enable(adapter);
1497
1498 netif_start_queue(netdev);
1499
1500 /* fire a link status change interrupt to start the watchdog */
1501 ew32(ICS, E1000_ICS_LSC);
1502
1503 return E1000_SUCCESS;
1504
1505 err_req_irq:
1506 e1000_release_hw_control(adapter);
1507 e1000_power_down_phy(adapter);
1508 e1000_free_all_rx_resources(adapter);
1509 err_setup_rx:
1510 e1000_free_all_tx_resources(adapter);
1511 err_setup_tx:
1512 e1000_reset(adapter);
1513
1514 return err;
1515 }
1516
1517 /**
1518 * e1000_close - Disables a network interface
1519 * @netdev: network interface device structure
1520 *
1521 * Returns 0, this is not allowed to fail
1522 *
1523 * The close entry point is called when an interface is de-activated
1524 * by the OS. The hardware is still under the drivers control, but
1525 * needs to be disabled. A global MAC reset is issued to stop the
1526 * hardware, and all transmit and receive resources are freed.
1527 **/
1528
1529 static int e1000_close(struct net_device *netdev)
1530 {
1531 struct e1000_adapter *adapter = netdev_priv(netdev);
1532 struct e1000_hw *hw = &adapter->hw;
1533
1534 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1535 e1000_down(adapter);
1536 e1000_power_down_phy(adapter);
1537 e1000_free_irq(adapter);
1538
1539 e1000_free_all_tx_resources(adapter);
1540 e1000_free_all_rx_resources(adapter);
1541
1542 /* kill manageability vlan ID if supported, but not if a vlan with
1543 * the same ID is registered on the host OS (let 8021q kill it) */
1544 if ((hw->mng_cookie.status &
1545 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1546 !(adapter->vlgrp &&
1547 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1548 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1549 }
1550
1551 /* If AMT is enabled, let the firmware know that the network
1552 * interface is now closed */
1553 if (hw->mac_type == e1000_82573 &&
1554 e1000_check_mng_mode(hw))
1555 e1000_release_hw_control(adapter);
1556
1557 return 0;
1558 }
1559
1560 /**
1561 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1562 * @adapter: address of board private structure
1563 * @start: address of beginning of memory
1564 * @len: length of memory
1565 **/
1566 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1567 unsigned long len)
1568 {
1569 struct e1000_hw *hw = &adapter->hw;
1570 unsigned long begin = (unsigned long)start;
1571 unsigned long end = begin + len;
1572
1573 /* First rev 82545 and 82546 need to not allow any memory
1574 * write location to cross 64k boundary due to errata 23 */
1575 if (hw->mac_type == e1000_82545 ||
1576 hw->mac_type == e1000_82546) {
1577 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1578 }
1579
1580 return true;
1581 }
1582
1583 /**
1584 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1585 * @adapter: board private structure
1586 * @txdr: tx descriptor ring (for a specific queue) to setup
1587 *
1588 * Return 0 on success, negative on failure
1589 **/
1590
1591 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1592 struct e1000_tx_ring *txdr)
1593 {
1594 struct pci_dev *pdev = adapter->pdev;
1595 int size;
1596
1597 size = sizeof(struct e1000_buffer) * txdr->count;
1598 txdr->buffer_info = vmalloc(size);
1599 if (!txdr->buffer_info) {
1600 DPRINTK(PROBE, ERR,
1601 "Unable to allocate memory for the transmit descriptor ring\n");
1602 return -ENOMEM;
1603 }
1604 memset(txdr->buffer_info, 0, size);
1605
1606 /* round up to nearest 4K */
1607
1608 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1609 txdr->size = ALIGN(txdr->size, 4096);
1610
1611 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1612 if (!txdr->desc) {
1613 setup_tx_desc_die:
1614 vfree(txdr->buffer_info);
1615 DPRINTK(PROBE, ERR,
1616 "Unable to allocate memory for the transmit descriptor ring\n");
1617 return -ENOMEM;
1618 }
1619
1620 /* Fix for errata 23, can't cross 64kB boundary */
1621 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1622 void *olddesc = txdr->desc;
1623 dma_addr_t olddma = txdr->dma;
1624 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1625 "at %p\n", txdr->size, txdr->desc);
1626 /* Try again, without freeing the previous */
1627 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1628 /* Failed allocation, critical failure */
1629 if (!txdr->desc) {
1630 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1631 goto setup_tx_desc_die;
1632 }
1633
1634 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1635 /* give up */
1636 pci_free_consistent(pdev, txdr->size, txdr->desc,
1637 txdr->dma);
1638 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1639 DPRINTK(PROBE, ERR,
1640 "Unable to allocate aligned memory "
1641 "for the transmit descriptor ring\n");
1642 vfree(txdr->buffer_info);
1643 return -ENOMEM;
1644 } else {
1645 /* Free old allocation, new allocation was successful */
1646 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1647 }
1648 }
1649 memset(txdr->desc, 0, txdr->size);
1650
1651 txdr->next_to_use = 0;
1652 txdr->next_to_clean = 0;
1653
1654 return 0;
1655 }
1656
1657 /**
1658 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1659 * (Descriptors) for all queues
1660 * @adapter: board private structure
1661 *
1662 * Return 0 on success, negative on failure
1663 **/
1664
1665 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1666 {
1667 int i, err = 0;
1668
1669 for (i = 0; i < adapter->num_tx_queues; i++) {
1670 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1671 if (err) {
1672 DPRINTK(PROBE, ERR,
1673 "Allocation for Tx Queue %u failed\n", i);
1674 for (i-- ; i >= 0; i--)
1675 e1000_free_tx_resources(adapter,
1676 &adapter->tx_ring[i]);
1677 break;
1678 }
1679 }
1680
1681 return err;
1682 }
1683
1684 /**
1685 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1686 * @adapter: board private structure
1687 *
1688 * Configure the Tx unit of the MAC after a reset.
1689 **/
1690
1691 static void e1000_configure_tx(struct e1000_adapter *adapter)
1692 {
1693 u64 tdba;
1694 struct e1000_hw *hw = &adapter->hw;
1695 u32 tdlen, tctl, tipg, tarc;
1696 u32 ipgr1, ipgr2;
1697
1698 /* Setup the HW Tx Head and Tail descriptor pointers */
1699
1700 switch (adapter->num_tx_queues) {
1701 case 1:
1702 default:
1703 tdba = adapter->tx_ring[0].dma;
1704 tdlen = adapter->tx_ring[0].count *
1705 sizeof(struct e1000_tx_desc);
1706 ew32(TDLEN, tdlen);
1707 ew32(TDBAH, (tdba >> 32));
1708 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1709 ew32(TDT, 0);
1710 ew32(TDH, 0);
1711 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1712 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1713 break;
1714 }
1715
1716 /* Set the default values for the Tx Inter Packet Gap timer */
1717 if (hw->mac_type <= e1000_82547_rev_2 &&
1718 (hw->media_type == e1000_media_type_fiber ||
1719 hw->media_type == e1000_media_type_internal_serdes))
1720 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1721 else
1722 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1723
1724 switch (hw->mac_type) {
1725 case e1000_82542_rev2_0:
1726 case e1000_82542_rev2_1:
1727 tipg = DEFAULT_82542_TIPG_IPGT;
1728 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1729 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1730 break;
1731 case e1000_80003es2lan:
1732 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1733 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1734 break;
1735 default:
1736 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1737 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1738 break;
1739 }
1740 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1741 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1742 ew32(TIPG, tipg);
1743
1744 /* Set the Tx Interrupt Delay register */
1745
1746 ew32(TIDV, adapter->tx_int_delay);
1747 if (hw->mac_type >= e1000_82540)
1748 ew32(TADV, adapter->tx_abs_int_delay);
1749
1750 /* Program the Transmit Control Register */
1751
1752 tctl = er32(TCTL);
1753 tctl &= ~E1000_TCTL_CT;
1754 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1755 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1756
1757 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1758 tarc = er32(TARC0);
1759 /* set the speed mode bit, we'll clear it if we're not at
1760 * gigabit link later */
1761 tarc |= (1 << 21);
1762 ew32(TARC0, tarc);
1763 } else if (hw->mac_type == e1000_80003es2lan) {
1764 tarc = er32(TARC0);
1765 tarc |= 1;
1766 ew32(TARC0, tarc);
1767 tarc = er32(TARC1);
1768 tarc |= 1;
1769 ew32(TARC1, tarc);
1770 }
1771
1772 e1000_config_collision_dist(hw);
1773
1774 /* Setup Transmit Descriptor Settings for eop descriptor */
1775 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1776
1777 /* only set IDE if we are delaying interrupts using the timers */
1778 if (adapter->tx_int_delay)
1779 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1780
1781 if (hw->mac_type < e1000_82543)
1782 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1783 else
1784 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1785
1786 /* Cache if we're 82544 running in PCI-X because we'll
1787 * need this to apply a workaround later in the send path. */
1788 if (hw->mac_type == e1000_82544 &&
1789 hw->bus_type == e1000_bus_type_pcix)
1790 adapter->pcix_82544 = 1;
1791
1792 ew32(TCTL, tctl);
1793
1794 }
1795
1796 /**
1797 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1798 * @adapter: board private structure
1799 * @rxdr: rx descriptor ring (for a specific queue) to setup
1800 *
1801 * Returns 0 on success, negative on failure
1802 **/
1803
1804 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1805 struct e1000_rx_ring *rxdr)
1806 {
1807 struct e1000_hw *hw = &adapter->hw;
1808 struct pci_dev *pdev = adapter->pdev;
1809 int size, desc_len;
1810
1811 size = sizeof(struct e1000_buffer) * rxdr->count;
1812 rxdr->buffer_info = vmalloc(size);
1813 if (!rxdr->buffer_info) {
1814 DPRINTK(PROBE, ERR,
1815 "Unable to allocate memory for the receive descriptor ring\n");
1816 return -ENOMEM;
1817 }
1818 memset(rxdr->buffer_info, 0, size);
1819
1820 if (hw->mac_type <= e1000_82547_rev_2)
1821 desc_len = sizeof(struct e1000_rx_desc);
1822 else
1823 desc_len = sizeof(union e1000_rx_desc_packet_split);
1824
1825 /* Round up to nearest 4K */
1826
1827 rxdr->size = rxdr->count * desc_len;
1828 rxdr->size = ALIGN(rxdr->size, 4096);
1829
1830 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1831
1832 if (!rxdr->desc) {
1833 DPRINTK(PROBE, ERR,
1834 "Unable to allocate memory for the receive descriptor ring\n");
1835 setup_rx_desc_die:
1836 vfree(rxdr->buffer_info);
1837 return -ENOMEM;
1838 }
1839
1840 /* Fix for errata 23, can't cross 64kB boundary */
1841 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1842 void *olddesc = rxdr->desc;
1843 dma_addr_t olddma = rxdr->dma;
1844 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1845 "at %p\n", rxdr->size, rxdr->desc);
1846 /* Try again, without freeing the previous */
1847 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1848 /* Failed allocation, critical failure */
1849 if (!rxdr->desc) {
1850 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1851 DPRINTK(PROBE, ERR,
1852 "Unable to allocate memory "
1853 "for the receive descriptor ring\n");
1854 goto setup_rx_desc_die;
1855 }
1856
1857 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1858 /* give up */
1859 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1860 rxdr->dma);
1861 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1862 DPRINTK(PROBE, ERR,
1863 "Unable to allocate aligned memory "
1864 "for the receive descriptor ring\n");
1865 goto setup_rx_desc_die;
1866 } else {
1867 /* Free old allocation, new allocation was successful */
1868 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1869 }
1870 }
1871 memset(rxdr->desc, 0, rxdr->size);
1872
1873 rxdr->next_to_clean = 0;
1874 rxdr->next_to_use = 0;
1875 rxdr->rx_skb_top = NULL;
1876
1877 return 0;
1878 }
1879
1880 /**
1881 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1882 * (Descriptors) for all queues
1883 * @adapter: board private structure
1884 *
1885 * Return 0 on success, negative on failure
1886 **/
1887
1888 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1889 {
1890 int i, err = 0;
1891
1892 for (i = 0; i < adapter->num_rx_queues; i++) {
1893 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1894 if (err) {
1895 DPRINTK(PROBE, ERR,
1896 "Allocation for Rx Queue %u failed\n", i);
1897 for (i-- ; i >= 0; i--)
1898 e1000_free_rx_resources(adapter,
1899 &adapter->rx_ring[i]);
1900 break;
1901 }
1902 }
1903
1904 return err;
1905 }
1906
1907 /**
1908 * e1000_setup_rctl - configure the receive control registers
1909 * @adapter: Board private structure
1910 **/
1911 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1912 {
1913 struct e1000_hw *hw = &adapter->hw;
1914 u32 rctl;
1915
1916 rctl = er32(RCTL);
1917
1918 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1919
1920 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1921 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1922 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1923
1924 if (hw->tbi_compatibility_on == 1)
1925 rctl |= E1000_RCTL_SBP;
1926 else
1927 rctl &= ~E1000_RCTL_SBP;
1928
1929 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1930 rctl &= ~E1000_RCTL_LPE;
1931 else
1932 rctl |= E1000_RCTL_LPE;
1933
1934 /* Setup buffer sizes */
1935 rctl &= ~E1000_RCTL_SZ_4096;
1936 rctl |= E1000_RCTL_BSEX;
1937 switch (adapter->rx_buffer_len) {
1938 case E1000_RXBUFFER_256:
1939 rctl |= E1000_RCTL_SZ_256;
1940 rctl &= ~E1000_RCTL_BSEX;
1941 break;
1942 case E1000_RXBUFFER_512:
1943 rctl |= E1000_RCTL_SZ_512;
1944 rctl &= ~E1000_RCTL_BSEX;
1945 break;
1946 case E1000_RXBUFFER_1024:
1947 rctl |= E1000_RCTL_SZ_1024;
1948 rctl &= ~E1000_RCTL_BSEX;
1949 break;
1950 case E1000_RXBUFFER_2048:
1951 default:
1952 rctl |= E1000_RCTL_SZ_2048;
1953 rctl &= ~E1000_RCTL_BSEX;
1954 break;
1955 case E1000_RXBUFFER_4096:
1956 rctl |= E1000_RCTL_SZ_4096;
1957 break;
1958 case E1000_RXBUFFER_8192:
1959 rctl |= E1000_RCTL_SZ_8192;
1960 break;
1961 case E1000_RXBUFFER_16384:
1962 rctl |= E1000_RCTL_SZ_16384;
1963 break;
1964 }
1965
1966 ew32(RCTL, rctl);
1967 }
1968
1969 /**
1970 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1971 * @adapter: board private structure
1972 *
1973 * Configure the Rx unit of the MAC after a reset.
1974 **/
1975
1976 static void e1000_configure_rx(struct e1000_adapter *adapter)
1977 {
1978 u64 rdba;
1979 struct e1000_hw *hw = &adapter->hw;
1980 u32 rdlen, rctl, rxcsum, ctrl_ext;
1981
1982 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1983 rdlen = adapter->rx_ring[0].count *
1984 sizeof(struct e1000_rx_desc);
1985 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1986 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1987 } else {
1988 rdlen = adapter->rx_ring[0].count *
1989 sizeof(struct e1000_rx_desc);
1990 adapter->clean_rx = e1000_clean_rx_irq;
1991 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1992 }
1993
1994 /* disable receives while setting up the descriptors */
1995 rctl = er32(RCTL);
1996 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1997
1998 /* set the Receive Delay Timer Register */
1999 ew32(RDTR, adapter->rx_int_delay);
2000
2001 if (hw->mac_type >= e1000_82540) {
2002 ew32(RADV, adapter->rx_abs_int_delay);
2003 if (adapter->itr_setting != 0)
2004 ew32(ITR, 1000000000 / (adapter->itr * 256));
2005 }
2006
2007 if (hw->mac_type >= e1000_82571) {
2008 ctrl_ext = er32(CTRL_EXT);
2009 /* Reset delay timers after every interrupt */
2010 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2011 /* Auto-Mask interrupts upon ICR access */
2012 ctrl_ext |= E1000_CTRL_EXT_IAME;
2013 ew32(IAM, 0xffffffff);
2014 ew32(CTRL_EXT, ctrl_ext);
2015 E1000_WRITE_FLUSH();
2016 }
2017
2018 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2019 * the Base and Length of the Rx Descriptor Ring */
2020 switch (adapter->num_rx_queues) {
2021 case 1:
2022 default:
2023 rdba = adapter->rx_ring[0].dma;
2024 ew32(RDLEN, rdlen);
2025 ew32(RDBAH, (rdba >> 32));
2026 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2027 ew32(RDT, 0);
2028 ew32(RDH, 0);
2029 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2030 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2031 break;
2032 }
2033
2034 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2035 if (hw->mac_type >= e1000_82543) {
2036 rxcsum = er32(RXCSUM);
2037 if (adapter->rx_csum)
2038 rxcsum |= E1000_RXCSUM_TUOFL;
2039 else
2040 /* don't need to clear IPPCSE as it defaults to 0 */
2041 rxcsum &= ~E1000_RXCSUM_TUOFL;
2042 ew32(RXCSUM, rxcsum);
2043 }
2044
2045 /* Enable Receives */
2046 ew32(RCTL, rctl);
2047 }
2048
2049 /**
2050 * e1000_free_tx_resources - Free Tx Resources per Queue
2051 * @adapter: board private structure
2052 * @tx_ring: Tx descriptor ring for a specific queue
2053 *
2054 * Free all transmit software resources
2055 **/
2056
2057 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2058 struct e1000_tx_ring *tx_ring)
2059 {
2060 struct pci_dev *pdev = adapter->pdev;
2061
2062 e1000_clean_tx_ring(adapter, tx_ring);
2063
2064 vfree(tx_ring->buffer_info);
2065 tx_ring->buffer_info = NULL;
2066
2067 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2068
2069 tx_ring->desc = NULL;
2070 }
2071
2072 /**
2073 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2074 * @adapter: board private structure
2075 *
2076 * Free all transmit software resources
2077 **/
2078
2079 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2080 {
2081 int i;
2082
2083 for (i = 0; i < adapter->num_tx_queues; i++)
2084 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2085 }
2086
2087 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2088 struct e1000_buffer *buffer_info)
2089 {
2090 buffer_info->dma = 0;
2091 if (buffer_info->skb) {
2092 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2093 DMA_TO_DEVICE);
2094 dev_kfree_skb_any(buffer_info->skb);
2095 buffer_info->skb = NULL;
2096 }
2097 buffer_info->time_stamp = 0;
2098 /* buffer_info must be completely set up in the transmit path */
2099 }
2100
2101 /**
2102 * e1000_clean_tx_ring - Free Tx Buffers
2103 * @adapter: board private structure
2104 * @tx_ring: ring to be cleaned
2105 **/
2106
2107 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2108 struct e1000_tx_ring *tx_ring)
2109 {
2110 struct e1000_hw *hw = &adapter->hw;
2111 struct e1000_buffer *buffer_info;
2112 unsigned long size;
2113 unsigned int i;
2114
2115 /* Free all the Tx ring sk_buffs */
2116
2117 for (i = 0; i < tx_ring->count; i++) {
2118 buffer_info = &tx_ring->buffer_info[i];
2119 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2120 }
2121
2122 size = sizeof(struct e1000_buffer) * tx_ring->count;
2123 memset(tx_ring->buffer_info, 0, size);
2124
2125 /* Zero out the descriptor ring */
2126
2127 memset(tx_ring->desc, 0, tx_ring->size);
2128
2129 tx_ring->next_to_use = 0;
2130 tx_ring->next_to_clean = 0;
2131 tx_ring->last_tx_tso = 0;
2132
2133 writel(0, hw->hw_addr + tx_ring->tdh);
2134 writel(0, hw->hw_addr + tx_ring->tdt);
2135 }
2136
2137 /**
2138 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2139 * @adapter: board private structure
2140 **/
2141
2142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2143 {
2144 int i;
2145
2146 for (i = 0; i < adapter->num_tx_queues; i++)
2147 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2148 }
2149
2150 /**
2151 * e1000_free_rx_resources - Free Rx Resources
2152 * @adapter: board private structure
2153 * @rx_ring: ring to clean the resources from
2154 *
2155 * Free all receive software resources
2156 **/
2157
2158 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2159 struct e1000_rx_ring *rx_ring)
2160 {
2161 struct pci_dev *pdev = adapter->pdev;
2162
2163 e1000_clean_rx_ring(adapter, rx_ring);
2164
2165 vfree(rx_ring->buffer_info);
2166 rx_ring->buffer_info = NULL;
2167
2168 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2169
2170 rx_ring->desc = NULL;
2171 }
2172
2173 /**
2174 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2175 * @adapter: board private structure
2176 *
2177 * Free all receive software resources
2178 **/
2179
2180 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2181 {
2182 int i;
2183
2184 for (i = 0; i < adapter->num_rx_queues; i++)
2185 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2186 }
2187
2188 /**
2189 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2190 * @adapter: board private structure
2191 * @rx_ring: ring to free buffers from
2192 **/
2193
2194 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2195 struct e1000_rx_ring *rx_ring)
2196 {
2197 struct e1000_hw *hw = &adapter->hw;
2198 struct e1000_buffer *buffer_info;
2199 struct pci_dev *pdev = adapter->pdev;
2200 unsigned long size;
2201 unsigned int i;
2202
2203 /* Free all the Rx ring sk_buffs */
2204 for (i = 0; i < rx_ring->count; i++) {
2205 buffer_info = &rx_ring->buffer_info[i];
2206 if (buffer_info->dma &&
2207 adapter->clean_rx == e1000_clean_rx_irq) {
2208 pci_unmap_single(pdev, buffer_info->dma,
2209 buffer_info->length,
2210 PCI_DMA_FROMDEVICE);
2211 } else if (buffer_info->dma &&
2212 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2213 pci_unmap_page(pdev, buffer_info->dma,
2214 buffer_info->length,
2215 PCI_DMA_FROMDEVICE);
2216 }
2217
2218 buffer_info->dma = 0;
2219 if (buffer_info->page) {
2220 put_page(buffer_info->page);
2221 buffer_info->page = NULL;
2222 }
2223 if (buffer_info->skb) {
2224 dev_kfree_skb(buffer_info->skb);
2225 buffer_info->skb = NULL;
2226 }
2227 }
2228
2229 /* there also may be some cached data from a chained receive */
2230 if (rx_ring->rx_skb_top) {
2231 dev_kfree_skb(rx_ring->rx_skb_top);
2232 rx_ring->rx_skb_top = NULL;
2233 }
2234
2235 size = sizeof(struct e1000_buffer) * rx_ring->count;
2236 memset(rx_ring->buffer_info, 0, size);
2237
2238 /* Zero out the descriptor ring */
2239 memset(rx_ring->desc, 0, rx_ring->size);
2240
2241 rx_ring->next_to_clean = 0;
2242 rx_ring->next_to_use = 0;
2243
2244 writel(0, hw->hw_addr + rx_ring->rdh);
2245 writel(0, hw->hw_addr + rx_ring->rdt);
2246 }
2247
2248 /**
2249 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2250 * @adapter: board private structure
2251 **/
2252
2253 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2254 {
2255 int i;
2256
2257 for (i = 0; i < adapter->num_rx_queues; i++)
2258 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2259 }
2260
2261 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2262 * and memory write and invalidate disabled for certain operations
2263 */
2264 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2265 {
2266 struct e1000_hw *hw = &adapter->hw;
2267 struct net_device *netdev = adapter->netdev;
2268 u32 rctl;
2269
2270 e1000_pci_clear_mwi(hw);
2271
2272 rctl = er32(RCTL);
2273 rctl |= E1000_RCTL_RST;
2274 ew32(RCTL, rctl);
2275 E1000_WRITE_FLUSH();
2276 mdelay(5);
2277
2278 if (netif_running(netdev))
2279 e1000_clean_all_rx_rings(adapter);
2280 }
2281
2282 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2283 {
2284 struct e1000_hw *hw = &adapter->hw;
2285 struct net_device *netdev = adapter->netdev;
2286 u32 rctl;
2287
2288 rctl = er32(RCTL);
2289 rctl &= ~E1000_RCTL_RST;
2290 ew32(RCTL, rctl);
2291 E1000_WRITE_FLUSH();
2292 mdelay(5);
2293
2294 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2295 e1000_pci_set_mwi(hw);
2296
2297 if (netif_running(netdev)) {
2298 /* No need to loop, because 82542 supports only 1 queue */
2299 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2300 e1000_configure_rx(adapter);
2301 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2302 }
2303 }
2304
2305 /**
2306 * e1000_set_mac - Change the Ethernet Address of the NIC
2307 * @netdev: network interface device structure
2308 * @p: pointer to an address structure
2309 *
2310 * Returns 0 on success, negative on failure
2311 **/
2312
2313 static int e1000_set_mac(struct net_device *netdev, void *p)
2314 {
2315 struct e1000_adapter *adapter = netdev_priv(netdev);
2316 struct e1000_hw *hw = &adapter->hw;
2317 struct sockaddr *addr = p;
2318
2319 if (!is_valid_ether_addr(addr->sa_data))
2320 return -EADDRNOTAVAIL;
2321
2322 /* 82542 2.0 needs to be in reset to write receive address registers */
2323
2324 if (hw->mac_type == e1000_82542_rev2_0)
2325 e1000_enter_82542_rst(adapter);
2326
2327 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2328 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2329
2330 e1000_rar_set(hw, hw->mac_addr, 0);
2331
2332 /* With 82571 controllers, LAA may be overwritten (with the default)
2333 * due to controller reset from the other port. */
2334 if (hw->mac_type == e1000_82571) {
2335 /* activate the work around */
2336 hw->laa_is_present = 1;
2337
2338 /* Hold a copy of the LAA in RAR[14] This is done so that
2339 * between the time RAR[0] gets clobbered and the time it
2340 * gets fixed (in e1000_watchdog), the actual LAA is in one
2341 * of the RARs and no incoming packets directed to this port
2342 * are dropped. Eventaully the LAA will be in RAR[0] and
2343 * RAR[14] */
2344 e1000_rar_set(hw, hw->mac_addr,
2345 E1000_RAR_ENTRIES - 1);
2346 }
2347
2348 if (hw->mac_type == e1000_82542_rev2_0)
2349 e1000_leave_82542_rst(adapter);
2350
2351 return 0;
2352 }
2353
2354 /**
2355 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2356 * @netdev: network interface device structure
2357 *
2358 * The set_rx_mode entry point is called whenever the unicast or multicast
2359 * address lists or the network interface flags are updated. This routine is
2360 * responsible for configuring the hardware for proper unicast, multicast,
2361 * promiscuous mode, and all-multi behavior.
2362 **/
2363
2364 static void e1000_set_rx_mode(struct net_device *netdev)
2365 {
2366 struct e1000_adapter *adapter = netdev_priv(netdev);
2367 struct e1000_hw *hw = &adapter->hw;
2368 struct netdev_hw_addr *ha;
2369 bool use_uc = false;
2370 struct dev_addr_list *mc_ptr;
2371 u32 rctl;
2372 u32 hash_value;
2373 int i, rar_entries = E1000_RAR_ENTRIES;
2374 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2375 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2376 E1000_NUM_MTA_REGISTERS;
2377 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2378
2379 if (!mcarray) {
2380 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2381 return;
2382 }
2383
2384 if (hw->mac_type == e1000_ich8lan)
2385 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2386
2387 /* reserve RAR[14] for LAA over-write work-around */
2388 if (hw->mac_type == e1000_82571)
2389 rar_entries--;
2390
2391 /* Check for Promiscuous and All Multicast modes */
2392
2393 rctl = er32(RCTL);
2394
2395 if (netdev->flags & IFF_PROMISC) {
2396 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2397 rctl &= ~E1000_RCTL_VFE;
2398 } else {
2399 if (netdev->flags & IFF_ALLMULTI) {
2400 rctl |= E1000_RCTL_MPE;
2401 } else {
2402 rctl &= ~E1000_RCTL_MPE;
2403 }
2404 if (adapter->hw.mac_type != e1000_ich8lan)
2405 /* Enable VLAN filter if there is a VLAN */
2406 if (adapter->vlgrp)
2407 rctl |= E1000_RCTL_VFE;
2408 }
2409
2410 if (netdev->uc.count > rar_entries - 1) {
2411 rctl |= E1000_RCTL_UPE;
2412 } else if (!(netdev->flags & IFF_PROMISC)) {
2413 rctl &= ~E1000_RCTL_UPE;
2414 use_uc = true;
2415 }
2416
2417 ew32(RCTL, rctl);
2418
2419 /* 82542 2.0 needs to be in reset to write receive address registers */
2420
2421 if (hw->mac_type == e1000_82542_rev2_0)
2422 e1000_enter_82542_rst(adapter);
2423
2424 /* load the first 14 addresses into the exact filters 1-14. Unicast
2425 * addresses take precedence to avoid disabling unicast filtering
2426 * when possible.
2427 *
2428 * RAR 0 is used for the station MAC adddress
2429 * if there are not 14 addresses, go ahead and clear the filters
2430 * -- with 82571 controllers only 0-13 entries are filled here
2431 */
2432 i = 1;
2433 if (use_uc)
2434 list_for_each_entry(ha, &netdev->uc.list, list) {
2435 if (i == rar_entries)
2436 break;
2437 e1000_rar_set(hw, ha->addr, i++);
2438 }
2439
2440 WARN_ON(i == rar_entries);
2441
2442 mc_ptr = netdev->mc_list;
2443
2444 for (; i < rar_entries; i++) {
2445 if (mc_ptr) {
2446 e1000_rar_set(hw, mc_ptr->da_addr, i);
2447 mc_ptr = mc_ptr->next;
2448 } else {
2449 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2450 E1000_WRITE_FLUSH();
2451 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2452 E1000_WRITE_FLUSH();
2453 }
2454 }
2455
2456 /* load any remaining addresses into the hash table */
2457
2458 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2459 u32 hash_reg, hash_bit, mta;
2460 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2461 hash_reg = (hash_value >> 5) & 0x7F;
2462 hash_bit = hash_value & 0x1F;
2463 mta = (1 << hash_bit);
2464 mcarray[hash_reg] |= mta;
2465 }
2466
2467 /* write the hash table completely, write from bottom to avoid
2468 * both stupid write combining chipsets, and flushing each write */
2469 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2470 /*
2471 * If we are on an 82544 has an errata where writing odd
2472 * offsets overwrites the previous even offset, but writing
2473 * backwards over the range solves the issue by always
2474 * writing the odd offset first
2475 */
2476 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2477 }
2478 E1000_WRITE_FLUSH();
2479
2480 if (hw->mac_type == e1000_82542_rev2_0)
2481 e1000_leave_82542_rst(adapter);
2482
2483 kfree(mcarray);
2484 }
2485
2486 /* Need to wait a few seconds after link up to get diagnostic information from
2487 * the phy */
2488
2489 static void e1000_update_phy_info(unsigned long data)
2490 {
2491 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2492 struct e1000_hw *hw = &adapter->hw;
2493 e1000_phy_get_info(hw, &adapter->phy_info);
2494 }
2495
2496 /**
2497 * e1000_82547_tx_fifo_stall - Timer Call-back
2498 * @data: pointer to adapter cast into an unsigned long
2499 **/
2500
2501 static void e1000_82547_tx_fifo_stall(unsigned long data)
2502 {
2503 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2504 struct e1000_hw *hw = &adapter->hw;
2505 struct net_device *netdev = adapter->netdev;
2506 u32 tctl;
2507
2508 if (atomic_read(&adapter->tx_fifo_stall)) {
2509 if ((er32(TDT) == er32(TDH)) &&
2510 (er32(TDFT) == er32(TDFH)) &&
2511 (er32(TDFTS) == er32(TDFHS))) {
2512 tctl = er32(TCTL);
2513 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2514 ew32(TDFT, adapter->tx_head_addr);
2515 ew32(TDFH, adapter->tx_head_addr);
2516 ew32(TDFTS, adapter->tx_head_addr);
2517 ew32(TDFHS, adapter->tx_head_addr);
2518 ew32(TCTL, tctl);
2519 E1000_WRITE_FLUSH();
2520
2521 adapter->tx_fifo_head = 0;
2522 atomic_set(&adapter->tx_fifo_stall, 0);
2523 netif_wake_queue(netdev);
2524 } else {
2525 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2526 }
2527 }
2528 }
2529
2530 /**
2531 * e1000_watchdog - Timer Call-back
2532 * @data: pointer to adapter cast into an unsigned long
2533 **/
2534 static void e1000_watchdog(unsigned long data)
2535 {
2536 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2537 struct e1000_hw *hw = &adapter->hw;
2538 struct net_device *netdev = adapter->netdev;
2539 struct e1000_tx_ring *txdr = adapter->tx_ring;
2540 u32 link, tctl;
2541 s32 ret_val;
2542
2543 ret_val = e1000_check_for_link(hw);
2544 if ((ret_val == E1000_ERR_PHY) &&
2545 (hw->phy_type == e1000_phy_igp_3) &&
2546 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2547 /* See e1000_kumeran_lock_loss_workaround() */
2548 DPRINTK(LINK, INFO,
2549 "Gigabit has been disabled, downgrading speed\n");
2550 }
2551
2552 if (hw->mac_type == e1000_82573) {
2553 e1000_enable_tx_pkt_filtering(hw);
2554 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2555 e1000_update_mng_vlan(adapter);
2556 }
2557
2558 if ((hw->media_type == e1000_media_type_internal_serdes) &&
2559 !(er32(TXCW) & E1000_TXCW_ANE))
2560 link = !hw->serdes_link_down;
2561 else
2562 link = er32(STATUS) & E1000_STATUS_LU;
2563
2564 if (link) {
2565 if (!netif_carrier_ok(netdev)) {
2566 u32 ctrl;
2567 bool txb2b = true;
2568 e1000_get_speed_and_duplex(hw,
2569 &adapter->link_speed,
2570 &adapter->link_duplex);
2571
2572 ctrl = er32(CTRL);
2573 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2574 "Flow Control: %s\n",
2575 netdev->name,
2576 adapter->link_speed,
2577 adapter->link_duplex == FULL_DUPLEX ?
2578 "Full Duplex" : "Half Duplex",
2579 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2580 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2581 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2582 E1000_CTRL_TFCE) ? "TX" : "None" )));
2583
2584 /* tweak tx_queue_len according to speed/duplex
2585 * and adjust the timeout factor */
2586 netdev->tx_queue_len = adapter->tx_queue_len;
2587 adapter->tx_timeout_factor = 1;
2588 switch (adapter->link_speed) {
2589 case SPEED_10:
2590 txb2b = false;
2591 netdev->tx_queue_len = 10;
2592 adapter->tx_timeout_factor = 8;
2593 break;
2594 case SPEED_100:
2595 txb2b = false;
2596 netdev->tx_queue_len = 100;
2597 /* maybe add some timeout factor ? */
2598 break;
2599 }
2600
2601 if ((hw->mac_type == e1000_82571 ||
2602 hw->mac_type == e1000_82572) &&
2603 !txb2b) {
2604 u32 tarc0;
2605 tarc0 = er32(TARC0);
2606 tarc0 &= ~(1 << 21);
2607 ew32(TARC0, tarc0);
2608 }
2609
2610 /* disable TSO for pcie and 10/100 speeds, to avoid
2611 * some hardware issues */
2612 if (!adapter->tso_force &&
2613 hw->bus_type == e1000_bus_type_pci_express){
2614 switch (adapter->link_speed) {
2615 case SPEED_10:
2616 case SPEED_100:
2617 DPRINTK(PROBE,INFO,
2618 "10/100 speed: disabling TSO\n");
2619 netdev->features &= ~NETIF_F_TSO;
2620 netdev->features &= ~NETIF_F_TSO6;
2621 break;
2622 case SPEED_1000:
2623 netdev->features |= NETIF_F_TSO;
2624 netdev->features |= NETIF_F_TSO6;
2625 break;
2626 default:
2627 /* oops */
2628 break;
2629 }
2630 }
2631
2632 /* enable transmits in the hardware, need to do this
2633 * after setting TARC0 */
2634 tctl = er32(TCTL);
2635 tctl |= E1000_TCTL_EN;
2636 ew32(TCTL, tctl);
2637
2638 netif_carrier_on(netdev);
2639 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2640 adapter->smartspeed = 0;
2641 } else {
2642 /* make sure the receive unit is started */
2643 if (hw->rx_needs_kicking) {
2644 u32 rctl = er32(RCTL);
2645 ew32(RCTL, rctl | E1000_RCTL_EN);
2646 }
2647 }
2648 } else {
2649 if (netif_carrier_ok(netdev)) {
2650 adapter->link_speed = 0;
2651 adapter->link_duplex = 0;
2652 printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2653 netdev->name);
2654 netif_carrier_off(netdev);
2655 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2656
2657 /* 80003ES2LAN workaround--
2658 * For packet buffer work-around on link down event;
2659 * disable receives in the ISR and
2660 * reset device here in the watchdog
2661 */
2662 if (hw->mac_type == e1000_80003es2lan)
2663 /* reset device */
2664 schedule_work(&adapter->reset_task);
2665 }
2666
2667 e1000_smartspeed(adapter);
2668 }
2669
2670 e1000_update_stats(adapter);
2671
2672 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2673 adapter->tpt_old = adapter->stats.tpt;
2674 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2675 adapter->colc_old = adapter->stats.colc;
2676
2677 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2678 adapter->gorcl_old = adapter->stats.gorcl;
2679 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2680 adapter->gotcl_old = adapter->stats.gotcl;
2681
2682 e1000_update_adaptive(hw);
2683
2684 if (!netif_carrier_ok(netdev)) {
2685 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2686 /* We've lost link, so the controller stops DMA,
2687 * but we've got queued Tx work that's never going
2688 * to get done, so reset controller to flush Tx.
2689 * (Do the reset outside of interrupt context). */
2690 adapter->tx_timeout_count++;
2691 schedule_work(&adapter->reset_task);
2692 /* return immediately since reset is imminent */
2693 return;
2694 }
2695 }
2696
2697 /* Cause software interrupt to ensure rx ring is cleaned */
2698 ew32(ICS, E1000_ICS_RXDMT0);
2699
2700 /* Force detection of hung controller every watchdog period */
2701 adapter->detect_tx_hung = true;
2702
2703 /* With 82571 controllers, LAA may be overwritten due to controller
2704 * reset from the other port. Set the appropriate LAA in RAR[0] */
2705 if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2706 e1000_rar_set(hw, hw->mac_addr, 0);
2707
2708 /* Reset the timer */
2709 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2710 }
2711
2712 enum latency_range {
2713 lowest_latency = 0,
2714 low_latency = 1,
2715 bulk_latency = 2,
2716 latency_invalid = 255
2717 };
2718
2719 /**
2720 * e1000_update_itr - update the dynamic ITR value based on statistics
2721 * Stores a new ITR value based on packets and byte
2722 * counts during the last interrupt. The advantage of per interrupt
2723 * computation is faster updates and more accurate ITR for the current
2724 * traffic pattern. Constants in this function were computed
2725 * based on theoretical maximum wire speed and thresholds were set based
2726 * on testing data as well as attempting to minimize response time
2727 * while increasing bulk throughput.
2728 * this functionality is controlled by the InterruptThrottleRate module
2729 * parameter (see e1000_param.c)
2730 * @adapter: pointer to adapter
2731 * @itr_setting: current adapter->itr
2732 * @packets: the number of packets during this measurement interval
2733 * @bytes: the number of bytes during this measurement interval
2734 **/
2735 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2736 u16 itr_setting, int packets, int bytes)
2737 {
2738 unsigned int retval = itr_setting;
2739 struct e1000_hw *hw = &adapter->hw;
2740
2741 if (unlikely(hw->mac_type < e1000_82540))
2742 goto update_itr_done;
2743
2744 if (packets == 0)
2745 goto update_itr_done;
2746
2747 switch (itr_setting) {
2748 case lowest_latency:
2749 /* jumbo frames get bulk treatment*/
2750 if (bytes/packets > 8000)
2751 retval = bulk_latency;
2752 else if ((packets < 5) && (bytes > 512))
2753 retval = low_latency;
2754 break;
2755 case low_latency: /* 50 usec aka 20000 ints/s */
2756 if (bytes > 10000) {
2757 /* jumbo frames need bulk latency setting */
2758 if (bytes/packets > 8000)
2759 retval = bulk_latency;
2760 else if ((packets < 10) || ((bytes/packets) > 1200))
2761 retval = bulk_latency;
2762 else if ((packets > 35))
2763 retval = lowest_latency;
2764 } else if (bytes/packets > 2000)
2765 retval = bulk_latency;
2766 else if (packets <= 2 && bytes < 512)
2767 retval = lowest_latency;
2768 break;
2769 case bulk_latency: /* 250 usec aka 4000 ints/s */
2770 if (bytes > 25000) {
2771 if (packets > 35)
2772 retval = low_latency;
2773 } else if (bytes < 6000) {
2774 retval = low_latency;
2775 }
2776 break;
2777 }
2778
2779 update_itr_done:
2780 return retval;
2781 }
2782
2783 static void e1000_set_itr(struct e1000_adapter *adapter)
2784 {
2785 struct e1000_hw *hw = &adapter->hw;
2786 u16 current_itr;
2787 u32 new_itr = adapter->itr;
2788
2789 if (unlikely(hw->mac_type < e1000_82540))
2790 return;
2791
2792 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2793 if (unlikely(adapter->link_speed != SPEED_1000)) {
2794 current_itr = 0;
2795 new_itr = 4000;
2796 goto set_itr_now;
2797 }
2798
2799 adapter->tx_itr = e1000_update_itr(adapter,
2800 adapter->tx_itr,
2801 adapter->total_tx_packets,
2802 adapter->total_tx_bytes);
2803 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2804 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2805 adapter->tx_itr = low_latency;
2806
2807 adapter->rx_itr = e1000_update_itr(adapter,
2808 adapter->rx_itr,
2809 adapter->total_rx_packets,
2810 adapter->total_rx_bytes);
2811 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2812 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2813 adapter->rx_itr = low_latency;
2814
2815 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2816
2817 switch (current_itr) {
2818 /* counts and packets in update_itr are dependent on these numbers */
2819 case lowest_latency:
2820 new_itr = 70000;
2821 break;
2822 case low_latency:
2823 new_itr = 20000; /* aka hwitr = ~200 */
2824 break;
2825 case bulk_latency:
2826 new_itr = 4000;
2827 break;
2828 default:
2829 break;
2830 }
2831
2832 set_itr_now:
2833 if (new_itr != adapter->itr) {
2834 /* this attempts to bias the interrupt rate towards Bulk
2835 * by adding intermediate steps when interrupt rate is
2836 * increasing */
2837 new_itr = new_itr > adapter->itr ?
2838 min(adapter->itr + (new_itr >> 2), new_itr) :
2839 new_itr;
2840 adapter->itr = new_itr;
2841 ew32(ITR, 1000000000 / (new_itr * 256));
2842 }
2843
2844 return;
2845 }
2846
2847 #define E1000_TX_FLAGS_CSUM 0x00000001
2848 #define E1000_TX_FLAGS_VLAN 0x00000002
2849 #define E1000_TX_FLAGS_TSO 0x00000004
2850 #define E1000_TX_FLAGS_IPV4 0x00000008
2851 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2852 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2853
2854 static int e1000_tso(struct e1000_adapter *adapter,
2855 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2856 {
2857 struct e1000_context_desc *context_desc;
2858 struct e1000_buffer *buffer_info;
2859 unsigned int i;
2860 u32 cmd_length = 0;
2861 u16 ipcse = 0, tucse, mss;
2862 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2863 int err;
2864
2865 if (skb_is_gso(skb)) {
2866 if (skb_header_cloned(skb)) {
2867 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2868 if (err)
2869 return err;
2870 }
2871
2872 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2873 mss = skb_shinfo(skb)->gso_size;
2874 if (skb->protocol == htons(ETH_P_IP)) {
2875 struct iphdr *iph = ip_hdr(skb);
2876 iph->tot_len = 0;
2877 iph->check = 0;
2878 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2879 iph->daddr, 0,
2880 IPPROTO_TCP,
2881 0);
2882 cmd_length = E1000_TXD_CMD_IP;
2883 ipcse = skb_transport_offset(skb) - 1;
2884 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2885 ipv6_hdr(skb)->payload_len = 0;
2886 tcp_hdr(skb)->check =
2887 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2888 &ipv6_hdr(skb)->daddr,
2889 0, IPPROTO_TCP, 0);
2890 ipcse = 0;
2891 }
2892 ipcss = skb_network_offset(skb);
2893 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2894 tucss = skb_transport_offset(skb);
2895 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2896 tucse = 0;
2897
2898 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2899 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2900
2901 i = tx_ring->next_to_use;
2902 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2903 buffer_info = &tx_ring->buffer_info[i];
2904
2905 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2906 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2907 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2908 context_desc->upper_setup.tcp_fields.tucss = tucss;
2909 context_desc->upper_setup.tcp_fields.tucso = tucso;
2910 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2911 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2912 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2913 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2914
2915 buffer_info->time_stamp = jiffies;
2916 buffer_info->next_to_watch = i;
2917
2918 if (++i == tx_ring->count) i = 0;
2919 tx_ring->next_to_use = i;
2920
2921 return true;
2922 }
2923 return false;
2924 }
2925
2926 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2927 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2928 {
2929 struct e1000_context_desc *context_desc;
2930 struct e1000_buffer *buffer_info;
2931 unsigned int i;
2932 u8 css;
2933 u32 cmd_len = E1000_TXD_CMD_DEXT;
2934
2935 if (skb->ip_summed != CHECKSUM_PARTIAL)
2936 return false;
2937
2938 switch (skb->protocol) {
2939 case cpu_to_be16(ETH_P_IP):
2940 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2941 cmd_len |= E1000_TXD_CMD_TCP;
2942 break;
2943 case cpu_to_be16(ETH_P_IPV6):
2944 /* XXX not handling all IPV6 headers */
2945 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2946 cmd_len |= E1000_TXD_CMD_TCP;
2947 break;
2948 default:
2949 if (unlikely(net_ratelimit()))
2950 DPRINTK(DRV, WARNING,
2951 "checksum_partial proto=%x!\n", skb->protocol);
2952 break;
2953 }
2954
2955 css = skb_transport_offset(skb);
2956
2957 i = tx_ring->next_to_use;
2958 buffer_info = &tx_ring->buffer_info[i];
2959 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2960
2961 context_desc->lower_setup.ip_config = 0;
2962 context_desc->upper_setup.tcp_fields.tucss = css;
2963 context_desc->upper_setup.tcp_fields.tucso =
2964 css + skb->csum_offset;
2965 context_desc->upper_setup.tcp_fields.tucse = 0;
2966 context_desc->tcp_seg_setup.data = 0;
2967 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2968
2969 buffer_info->time_stamp = jiffies;
2970 buffer_info->next_to_watch = i;
2971
2972 if (unlikely(++i == tx_ring->count)) i = 0;
2973 tx_ring->next_to_use = i;
2974
2975 return true;
2976 }
2977
2978 #define E1000_MAX_TXD_PWR 12
2979 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2980
2981 static int e1000_tx_map(struct e1000_adapter *adapter,
2982 struct e1000_tx_ring *tx_ring,
2983 struct sk_buff *skb, unsigned int first,
2984 unsigned int max_per_txd, unsigned int nr_frags,
2985 unsigned int mss)
2986 {
2987 struct e1000_hw *hw = &adapter->hw;
2988 struct e1000_buffer *buffer_info;
2989 unsigned int len = skb_headlen(skb);
2990 unsigned int offset, size, count = 0, i;
2991 unsigned int f;
2992 dma_addr_t *map;
2993
2994 i = tx_ring->next_to_use;
2995
2996 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2997 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2998 return 0;
2999 }
3000
3001 map = skb_shinfo(skb)->dma_maps;
3002 offset = 0;
3003
3004 while (len) {
3005 buffer_info = &tx_ring->buffer_info[i];
3006 size = min(len, max_per_txd);
3007 /* Workaround for Controller erratum --
3008 * descriptor for non-tso packet in a linear SKB that follows a
3009 * tso gets written back prematurely before the data is fully
3010 * DMA'd to the controller */
3011 if (!skb->data_len && tx_ring->last_tx_tso &&
3012 !skb_is_gso(skb)) {
3013 tx_ring->last_tx_tso = 0;
3014 size -= 4;
3015 }
3016
3017 /* Workaround for premature desc write-backs
3018 * in TSO mode. Append 4-byte sentinel desc */
3019 if (unlikely(mss && !nr_frags && size == len && size > 8))
3020 size -= 4;
3021 /* work-around for errata 10 and it applies
3022 * to all controllers in PCI-X mode
3023 * The fix is to make sure that the first descriptor of a
3024 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3025 */
3026 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3027 (size > 2015) && count == 0))
3028 size = 2015;
3029
3030 /* Workaround for potential 82544 hang in PCI-X. Avoid
3031 * terminating buffers within evenly-aligned dwords. */
3032 if (unlikely(adapter->pcix_82544 &&
3033 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3034 size > 4))
3035 size -= 4;
3036
3037 buffer_info->length = size;
3038 buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
3039 buffer_info->time_stamp = jiffies;
3040 buffer_info->next_to_watch = i;
3041
3042 len -= size;
3043 offset += size;
3044 count++;
3045 if (len) {
3046 i++;
3047 if (unlikely(i == tx_ring->count))
3048 i = 0;
3049 }
3050 }
3051
3052 for (f = 0; f < nr_frags; f++) {
3053 struct skb_frag_struct *frag;
3054
3055 frag = &skb_shinfo(skb)->frags[f];
3056 len = frag->size;
3057 offset = 0;
3058
3059 while (len) {
3060 i++;
3061 if (unlikely(i == tx_ring->count))
3062 i = 0;
3063
3064 buffer_info = &tx_ring->buffer_info[i];
3065 size = min(len, max_per_txd);
3066 /* Workaround for premature desc write-backs
3067 * in TSO mode. Append 4-byte sentinel desc */
3068 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3069 size -= 4;
3070 /* Workaround for potential 82544 hang in PCI-X.
3071 * Avoid terminating buffers within evenly-aligned
3072 * dwords. */
3073 if (unlikely(adapter->pcix_82544 &&
3074 !((unsigned long)(frag->page+offset+size-1) & 4) &&
3075 size > 4))
3076 size -= 4;
3077
3078 buffer_info->length = size;
3079 buffer_info->dma = map[f] + offset;
3080 buffer_info->time_stamp = jiffies;
3081 buffer_info->next_to_watch = i;
3082
3083 len -= size;
3084 offset += size;
3085 count++;
3086 }
3087 }
3088
3089 tx_ring->buffer_info[i].skb = skb;
3090 tx_ring->buffer_info[first].next_to_watch = i;
3091
3092 return count;
3093 }
3094
3095 static void e1000_tx_queue(struct e1000_adapter *adapter,
3096 struct e1000_tx_ring *tx_ring, int tx_flags,
3097 int count)
3098 {
3099 struct e1000_hw *hw = &adapter->hw;
3100 struct e1000_tx_desc *tx_desc = NULL;
3101 struct e1000_buffer *buffer_info;
3102 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3103 unsigned int i;
3104
3105 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3106 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3107 E1000_TXD_CMD_TSE;
3108 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3109
3110 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3111 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3112 }
3113
3114 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3115 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3116 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3117 }
3118
3119 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3120 txd_lower |= E1000_TXD_CMD_VLE;
3121 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3122 }
3123
3124 i = tx_ring->next_to_use;
3125
3126 while (count--) {
3127 buffer_info = &tx_ring->buffer_info[i];
3128 tx_desc = E1000_TX_DESC(*tx_ring, i);
3129 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3130 tx_desc->lower.data =
3131 cpu_to_le32(txd_lower | buffer_info->length);
3132 tx_desc->upper.data = cpu_to_le32(txd_upper);
3133 if (unlikely(++i == tx_ring->count)) i = 0;
3134 }
3135
3136 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3137
3138 /* Force memory writes to complete before letting h/w
3139 * know there are new descriptors to fetch. (Only
3140 * applicable for weak-ordered memory model archs,
3141 * such as IA-64). */
3142 wmb();
3143
3144 tx_ring->next_to_use = i;
3145 writel(i, hw->hw_addr + tx_ring->tdt);
3146 /* we need this if more than one processor can write to our tail
3147 * at a time, it syncronizes IO on IA64/Altix systems */
3148 mmiowb();
3149 }
3150
3151 /**
3152 * 82547 workaround to avoid controller hang in half-duplex environment.
3153 * The workaround is to avoid queuing a large packet that would span
3154 * the internal Tx FIFO ring boundary by notifying the stack to resend
3155 * the packet at a later time. This gives the Tx FIFO an opportunity to
3156 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3157 * to the beginning of the Tx FIFO.
3158 **/
3159
3160 #define E1000_FIFO_HDR 0x10
3161 #define E1000_82547_PAD_LEN 0x3E0
3162
3163 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3164 struct sk_buff *skb)
3165 {
3166 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3167 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3168
3169 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3170
3171 if (adapter->link_duplex != HALF_DUPLEX)
3172 goto no_fifo_stall_required;
3173
3174 if (atomic_read(&adapter->tx_fifo_stall))
3175 return 1;
3176
3177 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3178 atomic_set(&adapter->tx_fifo_stall, 1);
3179 return 1;
3180 }
3181
3182 no_fifo_stall_required:
3183 adapter->tx_fifo_head += skb_fifo_len;
3184 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3185 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3186 return 0;
3187 }
3188
3189 #define MINIMUM_DHCP_PACKET_SIZE 282
3190 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3191 struct sk_buff *skb)
3192 {
3193 struct e1000_hw *hw = &adapter->hw;
3194 u16 length, offset;
3195 if (vlan_tx_tag_present(skb)) {
3196 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3197 ( hw->mng_cookie.status &
3198 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3199 return 0;
3200 }
3201 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3202 struct ethhdr *eth = (struct ethhdr *)skb->data;
3203 if ((htons(ETH_P_IP) == eth->h_proto)) {
3204 const struct iphdr *ip =
3205 (struct iphdr *)((u8 *)skb->data+14);
3206 if (IPPROTO_UDP == ip->protocol) {
3207 struct udphdr *udp =
3208 (struct udphdr *)((u8 *)ip +
3209 (ip->ihl << 2));
3210 if (ntohs(udp->dest) == 67) {
3211 offset = (u8 *)udp + 8 - skb->data;
3212 length = skb->len - offset;
3213
3214 return e1000_mng_write_dhcp_info(hw,
3215 (u8 *)udp + 8,
3216 length);
3217 }
3218 }
3219 }
3220 }
3221 return 0;
3222 }
3223
3224 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3225 {
3226 struct e1000_adapter *adapter = netdev_priv(netdev);
3227 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3228
3229 netif_stop_queue(netdev);
3230 /* Herbert's original patch had:
3231 * smp_mb__after_netif_stop_queue();
3232 * but since that doesn't exist yet, just open code it. */
3233 smp_mb();
3234
3235 /* We need to check again in a case another CPU has just
3236 * made room available. */
3237 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3238 return -EBUSY;
3239
3240 /* A reprieve! */
3241 netif_start_queue(netdev);
3242 ++adapter->restart_queue;
3243 return 0;
3244 }
3245
3246 static int e1000_maybe_stop_tx(struct net_device *netdev,
3247 struct e1000_tx_ring *tx_ring, int size)
3248 {
3249 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3250 return 0;
3251 return __e1000_maybe_stop_tx(netdev, size);
3252 }
3253
3254 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3255 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3256 struct net_device *netdev)
3257 {
3258 struct e1000_adapter *adapter = netdev_priv(netdev);
3259 struct e1000_hw *hw = &adapter->hw;
3260 struct e1000_tx_ring *tx_ring;
3261 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3262 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3263 unsigned int tx_flags = 0;
3264 unsigned int len = skb->len - skb->data_len;
3265 unsigned int nr_frags;
3266 unsigned int mss;
3267 int count = 0;
3268 int tso;
3269 unsigned int f;
3270
3271 /* This goes back to the question of how to logically map a tx queue
3272 * to a flow. Right now, performance is impacted slightly negatively
3273 * if using multiple tx queues. If the stack breaks away from a
3274 * single qdisc implementation, we can look at this again. */
3275 tx_ring = adapter->tx_ring;
3276
3277 if (unlikely(skb->len <= 0)) {
3278 dev_kfree_skb_any(skb);
3279 return NETDEV_TX_OK;
3280 }
3281
3282 /* 82571 and newer doesn't need the workaround that limited descriptor
3283 * length to 4kB */
3284 if (hw->mac_type >= e1000_82571)
3285 max_per_txd = 8192;
3286
3287 mss = skb_shinfo(skb)->gso_size;
3288 /* The controller does a simple calculation to
3289 * make sure there is enough room in the FIFO before
3290 * initiating the DMA for each buffer. The calc is:
3291 * 4 = ceil(buffer len/mss). To make sure we don't
3292 * overrun the FIFO, adjust the max buffer len if mss
3293 * drops. */
3294 if (mss) {
3295 u8 hdr_len;
3296 max_per_txd = min(mss << 2, max_per_txd);
3297 max_txd_pwr = fls(max_per_txd) - 1;
3298
3299 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3300 * points to just header, pull a few bytes of payload from
3301 * frags into skb->data */
3302 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3303 if (skb->data_len && hdr_len == len) {
3304 switch (hw->mac_type) {
3305 unsigned int pull_size;
3306 case e1000_82544:
3307 /* Make sure we have room to chop off 4 bytes,
3308 * and that the end alignment will work out to
3309 * this hardware's requirements
3310 * NOTE: this is a TSO only workaround
3311 * if end byte alignment not correct move us
3312 * into the next dword */
3313 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3314 break;
3315 /* fall through */
3316 case e1000_82571:
3317 case e1000_82572:
3318 case e1000_82573:
3319 case e1000_ich8lan:
3320 pull_size = min((unsigned int)4, skb->data_len);
3321 if (!__pskb_pull_tail(skb, pull_size)) {
3322 DPRINTK(DRV, ERR,
3323 "__pskb_pull_tail failed.\n");
3324 dev_kfree_skb_any(skb);
3325 return NETDEV_TX_OK;
3326 }
3327 len = skb->len - skb->data_len;
3328 break;
3329 default:
3330 /* do nothing */
3331 break;
3332 }
3333 }
3334 }
3335
3336 /* reserve a descriptor for the offload context */
3337 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3338 count++;
3339 count++;
3340
3341 /* Controller Erratum workaround */
3342 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3343 count++;
3344
3345 count += TXD_USE_COUNT(len, max_txd_pwr);
3346
3347 if (adapter->pcix_82544)
3348 count++;
3349
3350 /* work-around for errata 10 and it applies to all controllers
3351 * in PCI-X mode, so add one more descriptor to the count
3352 */
3353 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3354 (len > 2015)))
3355 count++;
3356
3357 nr_frags = skb_shinfo(skb)->nr_frags;
3358 for (f = 0; f < nr_frags; f++)
3359 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3360 max_txd_pwr);
3361 if (adapter->pcix_82544)
3362 count += nr_frags;
3363
3364
3365 if (hw->tx_pkt_filtering &&
3366 (hw->mac_type == e1000_82573))
3367 e1000_transfer_dhcp_info(adapter, skb);
3368
3369 /* need: count + 2 desc gap to keep tail from touching
3370 * head, otherwise try next time */
3371 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3372 return NETDEV_TX_BUSY;
3373
3374 if (unlikely(hw->mac_type == e1000_82547)) {
3375 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3376 netif_stop_queue(netdev);
3377 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3378 return NETDEV_TX_BUSY;
3379 }
3380 }
3381
3382 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3383 tx_flags |= E1000_TX_FLAGS_VLAN;
3384 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3385 }
3386
3387 first = tx_ring->next_to_use;
3388
3389 tso = e1000_tso(adapter, tx_ring, skb);
3390 if (tso < 0) {
3391 dev_kfree_skb_any(skb);
3392 return NETDEV_TX_OK;
3393 }
3394
3395 if (likely(tso)) {
3396 tx_ring->last_tx_tso = 1;
3397 tx_flags |= E1000_TX_FLAGS_TSO;
3398 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3399 tx_flags |= E1000_TX_FLAGS_CSUM;
3400
3401 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3402 * 82571 hardware supports TSO capabilities for IPv6 as well...
3403 * no longer assume, we must. */
3404 if (likely(skb->protocol == htons(ETH_P_IP)))
3405 tx_flags |= E1000_TX_FLAGS_IPV4;
3406
3407 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3408 nr_frags, mss);
3409
3410 if (count) {
3411 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3412 /* Make sure there is space in the ring for the next send. */
3413 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3414
3415 } else {
3416 dev_kfree_skb_any(skb);
3417 tx_ring->buffer_info[first].time_stamp = 0;
3418 tx_ring->next_to_use = first;
3419 }
3420
3421 return NETDEV_TX_OK;
3422 }
3423
3424 /**
3425 * e1000_tx_timeout - Respond to a Tx Hang
3426 * @netdev: network interface device structure
3427 **/
3428
3429 static void e1000_tx_timeout(struct net_device *netdev)
3430 {
3431 struct e1000_adapter *adapter = netdev_priv(netdev);
3432
3433 /* Do the reset outside of interrupt context */
3434 adapter->tx_timeout_count++;
3435 schedule_work(&adapter->reset_task);
3436 }
3437
3438 static void e1000_reset_task(struct work_struct *work)
3439 {
3440 struct e1000_adapter *adapter =
3441 container_of(work, struct e1000_adapter, reset_task);
3442
3443 e1000_reinit_locked(adapter);
3444 }
3445
3446 /**
3447 * e1000_get_stats - Get System Network Statistics
3448 * @netdev: network interface device structure
3449 *
3450 * Returns the address of the device statistics structure.
3451 * The statistics are actually updated from the timer callback.
3452 **/
3453
3454 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3455 {
3456 struct e1000_adapter *adapter = netdev_priv(netdev);
3457
3458 /* only return the current stats */
3459 return &adapter->net_stats;
3460 }
3461
3462 /**
3463 * e1000_change_mtu - Change the Maximum Transfer Unit
3464 * @netdev: network interface device structure
3465 * @new_mtu: new value for maximum frame size
3466 *
3467 * Returns 0 on success, negative on failure
3468 **/
3469
3470 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3471 {
3472 struct e1000_adapter *adapter = netdev_priv(netdev);
3473 struct e1000_hw *hw = &adapter->hw;
3474 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3475 u16 eeprom_data = 0;
3476
3477 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3478 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3479 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3480 return -EINVAL;
3481 }
3482
3483 /* Adapter-specific max frame size limits. */
3484 switch (hw->mac_type) {
3485 case e1000_undefined ... e1000_82542_rev2_1:
3486 case e1000_ich8lan:
3487 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3488 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3489 return -EINVAL;
3490 }
3491 break;
3492 case e1000_82573:
3493 /* Jumbo Frames not supported if:
3494 * - this is not an 82573L device
3495 * - ASPM is enabled in any way (0x1A bits 3:2) */
3496 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3497 &eeprom_data);
3498 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3499 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3500 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3501 DPRINTK(PROBE, ERR,
3502 "Jumbo Frames not supported.\n");
3503 return -EINVAL;
3504 }
3505 break;
3506 }
3507 /* ERT will be enabled later to enable wire speed receives */
3508
3509 /* fall through to get support */
3510 case e1000_82571:
3511 case e1000_82572:
3512 case e1000_80003es2lan:
3513 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3514 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3515 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3516 return -EINVAL;
3517 }
3518 break;
3519 default:
3520 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3521 break;
3522 }
3523
3524 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3525 * means we reserve 2 more, this pushes us to allocate from the next
3526 * larger slab size.
3527 * i.e. RXBUFFER_2048 --> size-4096 slab
3528 * however with the new *_jumbo_rx* routines, jumbo receives will use
3529 * fragmented skbs */
3530
3531 if (max_frame <= E1000_RXBUFFER_256)
3532 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3533 else if (max_frame <= E1000_RXBUFFER_512)
3534 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3535 else if (max_frame <= E1000_RXBUFFER_1024)
3536 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3537 else if (max_frame <= E1000_RXBUFFER_2048)
3538 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3539 else
3540 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3541 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3542 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3543 adapter->rx_buffer_len = PAGE_SIZE;
3544 #endif
3545
3546 /* adjust allocation if LPE protects us, and we aren't using SBP */
3547 if (!hw->tbi_compatibility_on &&
3548 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3549 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3550 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3551
3552 netdev->mtu = new_mtu;
3553 hw->max_frame_size = max_frame;
3554
3555 if (netif_running(netdev))
3556 e1000_reinit_locked(adapter);
3557
3558 return 0;
3559 }
3560
3561 /**
3562 * e1000_update_stats - Update the board statistics counters
3563 * @adapter: board private structure
3564 **/
3565
3566 void e1000_update_stats(struct e1000_adapter *adapter)
3567 {
3568 struct e1000_hw *hw = &adapter->hw;
3569 struct pci_dev *pdev = adapter->pdev;
3570 unsigned long flags;
3571 u16 phy_tmp;
3572
3573 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3574
3575 /*
3576 * Prevent stats update while adapter is being reset, or if the pci
3577 * connection is down.
3578 */
3579 if (adapter->link_speed == 0)
3580 return;
3581 if (pci_channel_offline(pdev))
3582 return;
3583
3584 spin_lock_irqsave(&adapter->stats_lock, flags);
3585
3586 /* these counters are modified from e1000_tbi_adjust_stats,
3587 * called from the interrupt context, so they must only
3588 * be written while holding adapter->stats_lock
3589 */
3590
3591 adapter->stats.crcerrs += er32(CRCERRS);
3592 adapter->stats.gprc += er32(GPRC);
3593 adapter->stats.gorcl += er32(GORCL);
3594 adapter->stats.gorch += er32(GORCH);
3595 adapter->stats.bprc += er32(BPRC);
3596 adapter->stats.mprc += er32(MPRC);
3597 adapter->stats.roc += er32(ROC);
3598
3599 if (hw->mac_type != e1000_ich8lan) {
3600 adapter->stats.prc64 += er32(PRC64);
3601 adapter->stats.prc127 += er32(PRC127);
3602 adapter->stats.prc255 += er32(PRC255);
3603 adapter->stats.prc511 += er32(PRC511);
3604 adapter->stats.prc1023 += er32(PRC1023);
3605 adapter->stats.prc1522 += er32(PRC1522);
3606 }
3607
3608 adapter->stats.symerrs += er32(SYMERRS);
3609 adapter->stats.mpc += er32(MPC);
3610 adapter->stats.scc += er32(SCC);
3611 adapter->stats.ecol += er32(ECOL);
3612 adapter->stats.mcc += er32(MCC);
3613 adapter->stats.latecol += er32(LATECOL);
3614 adapter->stats.dc += er32(DC);
3615 adapter->stats.sec += er32(SEC);
3616 adapter->stats.rlec += er32(RLEC);
3617 adapter->stats.xonrxc += er32(XONRXC);
3618 adapter->stats.xontxc += er32(XONTXC);
3619 adapter->stats.xoffrxc += er32(XOFFRXC);
3620 adapter->stats.xofftxc += er32(XOFFTXC);
3621 adapter->stats.fcruc += er32(FCRUC);
3622 adapter->stats.gptc += er32(GPTC);
3623 adapter->stats.gotcl += er32(GOTCL);
3624 adapter->stats.gotch += er32(GOTCH);
3625 adapter->stats.rnbc += er32(RNBC);
3626 adapter->stats.ruc += er32(RUC);
3627 adapter->stats.rfc += er32(RFC);
3628 adapter->stats.rjc += er32(RJC);
3629 adapter->stats.torl += er32(TORL);
3630 adapter->stats.torh += er32(TORH);
3631 adapter->stats.totl += er32(TOTL);
3632 adapter->stats.toth += er32(TOTH);
3633 adapter->stats.tpr += er32(TPR);
3634
3635 if (hw->mac_type != e1000_ich8lan) {
3636 adapter->stats.ptc64 += er32(PTC64);
3637 adapter->stats.ptc127 += er32(PTC127);
3638 adapter->stats.ptc255 += er32(PTC255);
3639 adapter->stats.ptc511 += er32(PTC511);
3640 adapter->stats.ptc1023 += er32(PTC1023);
3641 adapter->stats.ptc1522 += er32(PTC1522);
3642 }
3643
3644 adapter->stats.mptc += er32(MPTC);
3645 adapter->stats.bptc += er32(BPTC);
3646
3647 /* used for adaptive IFS */
3648
3649 hw->tx_packet_delta = er32(TPT);
3650 adapter->stats.tpt += hw->tx_packet_delta;
3651 hw->collision_delta = er32(COLC);
3652 adapter->stats.colc += hw->collision_delta;
3653
3654 if (hw->mac_type >= e1000_82543) {
3655 adapter->stats.algnerrc += er32(ALGNERRC);
3656 adapter->stats.rxerrc += er32(RXERRC);
3657 adapter->stats.tncrs += er32(TNCRS);
3658 adapter->stats.cexterr += er32(CEXTERR);
3659 adapter->stats.tsctc += er32(TSCTC);
3660 adapter->stats.tsctfc += er32(TSCTFC);
3661 }
3662 if (hw->mac_type > e1000_82547_rev_2) {
3663 adapter->stats.iac += er32(IAC);
3664 adapter->stats.icrxoc += er32(ICRXOC);
3665
3666 if (hw->mac_type != e1000_ich8lan) {
3667 adapter->stats.icrxptc += er32(ICRXPTC);
3668 adapter->stats.icrxatc += er32(ICRXATC);
3669 adapter->stats.ictxptc += er32(ICTXPTC);
3670 adapter->stats.ictxatc += er32(ICTXATC);
3671 adapter->stats.ictxqec += er32(ICTXQEC);
3672 adapter->stats.ictxqmtc += er32(ICTXQMTC);
3673 adapter->stats.icrxdmtc += er32(ICRXDMTC);
3674 }
3675 }
3676
3677 /* Fill out the OS statistics structure */
3678 adapter->net_stats.multicast = adapter->stats.mprc;
3679 adapter->net_stats.collisions = adapter->stats.colc;
3680
3681 /* Rx Errors */
3682
3683 /* RLEC on some newer hardware can be incorrect so build
3684 * our own version based on RUC and ROC */
3685 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3686 adapter->stats.crcerrs + adapter->stats.algnerrc +
3687 adapter->stats.ruc + adapter->stats.roc +
3688 adapter->stats.cexterr;
3689 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3690 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3691 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3692 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3693 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3694
3695 /* Tx Errors */
3696 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3697 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3698 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3699 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3700 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3701 if (hw->bad_tx_carr_stats_fd &&
3702 adapter->link_duplex == FULL_DUPLEX) {
3703 adapter->net_stats.tx_carrier_errors = 0;
3704 adapter->stats.tncrs = 0;
3705 }
3706
3707 /* Tx Dropped needs to be maintained elsewhere */
3708
3709 /* Phy Stats */
3710 if (hw->media_type == e1000_media_type_copper) {
3711 if ((adapter->link_speed == SPEED_1000) &&
3712 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3713 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3714 adapter->phy_stats.idle_errors += phy_tmp;
3715 }
3716
3717 if ((hw->mac_type <= e1000_82546) &&
3718 (hw->phy_type == e1000_phy_m88) &&
3719 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3720 adapter->phy_stats.receive_errors += phy_tmp;
3721 }
3722
3723 /* Management Stats */
3724 if (hw->has_smbus) {
3725 adapter->stats.mgptc += er32(MGTPTC);
3726 adapter->stats.mgprc += er32(MGTPRC);
3727 adapter->stats.mgpdc += er32(MGTPDC);
3728 }
3729
3730 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3731 }
3732
3733 /**
3734 * e1000_intr_msi - Interrupt Handler
3735 * @irq: interrupt number
3736 * @data: pointer to a network interface device structure
3737 **/
3738
3739 static irqreturn_t e1000_intr_msi(int irq, void *data)
3740 {
3741 struct net_device *netdev = data;
3742 struct e1000_adapter *adapter = netdev_priv(netdev);
3743 struct e1000_hw *hw = &adapter->hw;
3744 u32 icr = er32(ICR);
3745
3746 /* in NAPI mode read ICR disables interrupts using IAM */
3747
3748 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3749 hw->get_link_status = 1;
3750 /* 80003ES2LAN workaround-- For packet buffer work-around on
3751 * link down event; disable receives here in the ISR and reset
3752 * adapter in watchdog */
3753 if (netif_carrier_ok(netdev) &&
3754 (hw->mac_type == e1000_80003es2lan)) {
3755 /* disable receives */
3756 u32 rctl = er32(RCTL);
3757 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3758 }
3759 /* guard against interrupt when we're going down */
3760 if (!test_bit(__E1000_DOWN, &adapter->flags))
3761 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3762 }
3763
3764 if (likely(napi_schedule_prep(&adapter->napi))) {
3765 adapter->total_tx_bytes = 0;
3766 adapter->total_tx_packets = 0;
3767 adapter->total_rx_bytes = 0;
3768 adapter->total_rx_packets = 0;
3769 __napi_schedule(&adapter->napi);
3770 } else
3771 e1000_irq_enable(adapter);
3772
3773 return IRQ_HANDLED;
3774 }
3775
3776 /**
3777 * e1000_intr - Interrupt Handler
3778 * @irq: interrupt number
3779 * @data: pointer to a network interface device structure
3780 **/
3781
3782 static irqreturn_t e1000_intr(int irq, void *data)
3783 {
3784 struct net_device *netdev = data;
3785 struct e1000_adapter *adapter = netdev_priv(netdev);
3786 struct e1000_hw *hw = &adapter->hw;
3787 u32 rctl, icr = er32(ICR);
3788
3789 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3790 return IRQ_NONE; /* Not our interrupt */
3791
3792 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3793 * not set, then the adapter didn't send an interrupt */
3794 if (unlikely(hw->mac_type >= e1000_82571 &&
3795 !(icr & E1000_ICR_INT_ASSERTED)))
3796 return IRQ_NONE;
3797
3798 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3799 * need for the IMC write */
3800
3801 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3802 hw->get_link_status = 1;
3803 /* 80003ES2LAN workaround--
3804 * For packet buffer work-around on link down event;
3805 * disable receives here in the ISR and
3806 * reset adapter in watchdog
3807 */
3808 if (netif_carrier_ok(netdev) &&
3809 (hw->mac_type == e1000_80003es2lan)) {
3810 /* disable receives */
3811 rctl = er32(RCTL);
3812 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3813 }
3814 /* guard against interrupt when we're going down */
3815 if (!test_bit(__E1000_DOWN, &adapter->flags))
3816 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3817 }
3818
3819 if (unlikely(hw->mac_type < e1000_82571)) {
3820 /* disable interrupts, without the synchronize_irq bit */
3821 ew32(IMC, ~0);
3822 E1000_WRITE_FLUSH();
3823 }
3824 if (likely(napi_schedule_prep(&adapter->napi))) {
3825 adapter->total_tx_bytes = 0;
3826 adapter->total_tx_packets = 0;
3827 adapter->total_rx_bytes = 0;
3828 adapter->total_rx_packets = 0;
3829 __napi_schedule(&adapter->napi);
3830 } else {
3831 /* this really should not happen! if it does it is basically a
3832 * bug, but not a hard error, so enable ints and continue */
3833 if (!test_bit(__E1000_DOWN, &adapter->flags))
3834 e1000_irq_enable(adapter);
3835 }
3836
3837 return IRQ_HANDLED;
3838 }
3839
3840 /**
3841 * e1000_clean - NAPI Rx polling callback
3842 * @adapter: board private structure
3843 **/
3844 static int e1000_clean(struct napi_struct *napi, int budget)
3845 {
3846 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3847 struct net_device *poll_dev = adapter->netdev;
3848 int tx_cleaned = 0, work_done = 0;
3849
3850 adapter = netdev_priv(poll_dev);
3851
3852 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3853
3854 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3855 &work_done, budget);
3856
3857 if (!tx_cleaned)
3858 work_done = budget;
3859
3860 /* If budget not fully consumed, exit the polling mode */
3861 if (work_done < budget) {
3862 if (likely(adapter->itr_setting & 3))
3863 e1000_set_itr(adapter);
3864 napi_complete(napi);
3865 if (!test_bit(__E1000_DOWN, &adapter->flags))
3866 e1000_irq_enable(adapter);
3867 }
3868
3869 return work_done;
3870 }
3871
3872 /**
3873 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3874 * @adapter: board private structure
3875 **/
3876 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3877 struct e1000_tx_ring *tx_ring)
3878 {
3879 struct e1000_hw *hw = &adapter->hw;
3880 struct net_device *netdev = adapter->netdev;
3881 struct e1000_tx_desc *tx_desc, *eop_desc;
3882 struct e1000_buffer *buffer_info;
3883 unsigned int i, eop;
3884 unsigned int count = 0;
3885 unsigned int total_tx_bytes=0, total_tx_packets=0;
3886
3887 i = tx_ring->next_to_clean;
3888 eop = tx_ring->buffer_info[i].next_to_watch;
3889 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3890
3891 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3892 (count < tx_ring->count)) {
3893 bool cleaned = false;
3894 for ( ; !cleaned; count++) {
3895 tx_desc = E1000_TX_DESC(*tx_ring, i);
3896 buffer_info = &tx_ring->buffer_info[i];
3897 cleaned = (i == eop);
3898
3899 if (cleaned) {
3900 struct sk_buff *skb = buffer_info->skb;
3901 unsigned int segs, bytecount;
3902 segs = skb_shinfo(skb)->gso_segs ?: 1;
3903 /* multiply data chunks by size of headers */
3904 bytecount = ((segs - 1) * skb_headlen(skb)) +
3905 skb->len;
3906 total_tx_packets += segs;
3907 total_tx_bytes += bytecount;
3908 }
3909 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3910 tx_desc->upper.data = 0;
3911
3912 if (unlikely(++i == tx_ring->count)) i = 0;
3913 }
3914
3915 eop = tx_ring->buffer_info[i].next_to_watch;
3916 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3917 }
3918
3919 tx_ring->next_to_clean = i;
3920
3921 #define TX_WAKE_THRESHOLD 32
3922 if (unlikely(count && netif_carrier_ok(netdev) &&
3923 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3924 /* Make sure that anybody stopping the queue after this
3925 * sees the new next_to_clean.
3926 */
3927 smp_mb();
3928 if (netif_queue_stopped(netdev)) {
3929 netif_wake_queue(netdev);
3930 ++adapter->restart_queue;
3931 }
3932 }
3933
3934 if (adapter->detect_tx_hung) {
3935 /* Detect a transmit hang in hardware, this serializes the
3936 * check with the clearing of time_stamp and movement of i */
3937 adapter->detect_tx_hung = false;
3938 if (tx_ring->buffer_info[i].time_stamp &&
3939 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3940 (adapter->tx_timeout_factor * HZ))
3941 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3942
3943 /* detected Tx unit hang */
3944 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3945 " Tx Queue <%lu>\n"
3946 " TDH <%x>\n"
3947 " TDT <%x>\n"
3948 " next_to_use <%x>\n"
3949 " next_to_clean <%x>\n"
3950 "buffer_info[next_to_clean]\n"
3951 " time_stamp <%lx>\n"
3952 " next_to_watch <%x>\n"
3953 " jiffies <%lx>\n"
3954 " next_to_watch.status <%x>\n",
3955 (unsigned long)((tx_ring - adapter->tx_ring) /
3956 sizeof(struct e1000_tx_ring)),
3957 readl(hw->hw_addr + tx_ring->tdh),
3958 readl(hw->hw_addr + tx_ring->tdt),
3959 tx_ring->next_to_use,
3960 tx_ring->next_to_clean,
3961 tx_ring->buffer_info[i].time_stamp,
3962 eop,
3963 jiffies,
3964 eop_desc->upper.fields.status);
3965 netif_stop_queue(netdev);
3966 }
3967 }
3968 adapter->total_tx_bytes += total_tx_bytes;
3969 adapter->total_tx_packets += total_tx_packets;
3970 adapter->net_stats.tx_bytes += total_tx_bytes;
3971 adapter->net_stats.tx_packets += total_tx_packets;
3972 return (count < tx_ring->count);
3973 }
3974
3975 /**
3976 * e1000_rx_checksum - Receive Checksum Offload for 82543
3977 * @adapter: board private structure
3978 * @status_err: receive descriptor status and error fields
3979 * @csum: receive descriptor csum field
3980 * @sk_buff: socket buffer with received data
3981 **/
3982
3983 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3984 u32 csum, struct sk_buff *skb)
3985 {
3986 struct e1000_hw *hw = &adapter->hw;
3987 u16 status = (u16)status_err;
3988 u8 errors = (u8)(status_err >> 24);
3989 skb->ip_summed = CHECKSUM_NONE;
3990
3991 /* 82543 or newer only */
3992 if (unlikely(hw->mac_type < e1000_82543)) return;
3993 /* Ignore Checksum bit is set */
3994 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3995 /* TCP/UDP checksum error bit is set */
3996 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3997 /* let the stack verify checksum errors */
3998 adapter->hw_csum_err++;
3999 return;
4000 }
4001 /* TCP/UDP Checksum has not been calculated */
4002 if (hw->mac_type <= e1000_82547_rev_2) {
4003 if (!(status & E1000_RXD_STAT_TCPCS))
4004 return;
4005 } else {
4006 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4007 return;
4008 }
4009 /* It must be a TCP or UDP packet with a valid checksum */
4010 if (likely(status & E1000_RXD_STAT_TCPCS)) {
4011 /* TCP checksum is good */
4012 skb->ip_summed = CHECKSUM_UNNECESSARY;
4013 } else if (hw->mac_type > e1000_82547_rev_2) {
4014 /* IP fragment with UDP payload */
4015 /* Hardware complements the payload checksum, so we undo it
4016 * and then put the value in host order for further stack use.
4017 */
4018 __sum16 sum = (__force __sum16)htons(csum);
4019 skb->csum = csum_unfold(~sum);
4020 skb->ip_summed = CHECKSUM_COMPLETE;
4021 }
4022 adapter->hw_csum_good++;
4023 }
4024
4025 /**
4026 * e1000_consume_page - helper function
4027 **/
4028 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
4029 u16 length)
4030 {
4031 bi->page = NULL;
4032 skb->len += length;
4033 skb->data_len += length;
4034 skb->truesize += length;
4035 }
4036
4037 /**
4038 * e1000_receive_skb - helper function to handle rx indications
4039 * @adapter: board private structure
4040 * @status: descriptor status field as written by hardware
4041 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4042 * @skb: pointer to sk_buff to be indicated to stack
4043 */
4044 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4045 __le16 vlan, struct sk_buff *skb)
4046 {
4047 if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
4048 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4049 le16_to_cpu(vlan) &
4050 E1000_RXD_SPC_VLAN_MASK);
4051 } else {
4052 netif_receive_skb(skb);
4053 }
4054 }
4055
4056 /**
4057 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4058 * @adapter: board private structure
4059 * @rx_ring: ring to clean
4060 * @work_done: amount of napi work completed this call
4061 * @work_to_do: max amount of work allowed for this call to do
4062 *
4063 * the return value indicates whether actual cleaning was done, there
4064 * is no guarantee that everything was cleaned
4065 */
4066 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4067 struct e1000_rx_ring *rx_ring,
4068 int *work_done, int work_to_do)
4069 {
4070 struct e1000_hw *hw = &adapter->hw;
4071 struct net_device *netdev = adapter->netdev;
4072 struct pci_dev *pdev = adapter->pdev;
4073 struct e1000_rx_desc *rx_desc, *next_rxd;
4074 struct e1000_buffer *buffer_info, *next_buffer;
4075 unsigned long irq_flags;
4076 u32 length;
4077 unsigned int i;
4078 int cleaned_count = 0;
4079 bool cleaned = false;
4080 unsigned int total_rx_bytes=0, total_rx_packets=0;
4081
4082 i = rx_ring->next_to_clean;
4083 rx_desc = E1000_RX_DESC(*rx_ring, i);
4084 buffer_info = &rx_ring->buffer_info[i];
4085
4086 while (rx_desc->status & E1000_RXD_STAT_DD) {
4087 struct sk_buff *skb;
4088 u8 status;
4089
4090 if (*work_done >= work_to_do)
4091 break;
4092 (*work_done)++;
4093
4094 status = rx_desc->status;
4095 skb = buffer_info->skb;
4096 buffer_info->skb = NULL;
4097
4098 if (++i == rx_ring->count) i = 0;
4099 next_rxd = E1000_RX_DESC(*rx_ring, i);
4100 prefetch(next_rxd);
4101
4102 next_buffer = &rx_ring->buffer_info[i];
4103
4104 cleaned = true;
4105 cleaned_count++;
4106 pci_unmap_page(pdev, buffer_info->dma, buffer_info->length,
4107 PCI_DMA_FROMDEVICE);
4108 buffer_info->dma = 0;
4109
4110 length = le16_to_cpu(rx_desc->length);
4111
4112 /* errors is only valid for DD + EOP descriptors */
4113 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4114 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4115 u8 last_byte = *(skb->data + length - 1);
4116 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4117 last_byte)) {
4118 spin_lock_irqsave(&adapter->stats_lock,
4119 irq_flags);
4120 e1000_tbi_adjust_stats(hw, &adapter->stats,
4121 length, skb->data);
4122 spin_unlock_irqrestore(&adapter->stats_lock,
4123 irq_flags);
4124 length--;
4125 } else {
4126 /* recycle both page and skb */
4127 buffer_info->skb = skb;
4128 /* an error means any chain goes out the window
4129 * too */
4130 if (rx_ring->rx_skb_top)
4131 dev_kfree_skb(rx_ring->rx_skb_top);
4132 rx_ring->rx_skb_top = NULL;
4133 goto next_desc;
4134 }
4135 }
4136
4137 #define rxtop rx_ring->rx_skb_top
4138 if (!(status & E1000_RXD_STAT_EOP)) {
4139 /* this descriptor is only the beginning (or middle) */
4140 if (!rxtop) {
4141 /* this is the beginning of a chain */
4142 rxtop = skb;
4143 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4144 0, length);
4145 } else {
4146 /* this is the middle of a chain */
4147 skb_fill_page_desc(rxtop,
4148 skb_shinfo(rxtop)->nr_frags,
4149 buffer_info->page, 0, length);
4150 /* re-use the skb, only consumed the page */
4151 buffer_info->skb = skb;
4152 }
4153 e1000_consume_page(buffer_info, rxtop, length);
4154 goto next_desc;
4155 } else {
4156 if (rxtop) {
4157 /* end of the chain */
4158 skb_fill_page_desc(rxtop,
4159 skb_shinfo(rxtop)->nr_frags,
4160 buffer_info->page, 0, length);
4161 /* re-use the current skb, we only consumed the
4162 * page */
4163 buffer_info->skb = skb;
4164 skb = rxtop;
4165 rxtop = NULL;
4166 e1000_consume_page(buffer_info, skb, length);
4167 } else {
4168 /* no chain, got EOP, this buf is the packet
4169 * copybreak to save the put_page/alloc_page */
4170 if (length <= copybreak &&
4171 skb_tailroom(skb) >= length) {
4172 u8 *vaddr;
4173 vaddr = kmap_atomic(buffer_info->page,
4174 KM_SKB_DATA_SOFTIRQ);
4175 memcpy(skb_tail_pointer(skb), vaddr, length);
4176 kunmap_atomic(vaddr,
4177 KM_SKB_DATA_SOFTIRQ);
4178 /* re-use the page, so don't erase
4179 * buffer_info->page */
4180 skb_put(skb, length);
4181 } else {
4182 skb_fill_page_desc(skb, 0,
4183 buffer_info->page, 0,
4184 length);
4185 e1000_consume_page(buffer_info, skb,
4186 length);
4187 }
4188 }
4189 }
4190
4191 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4192 e1000_rx_checksum(adapter,
4193 (u32)(status) |
4194 ((u32)(rx_desc->errors) << 24),
4195 le16_to_cpu(rx_desc->csum), skb);
4196
4197 pskb_trim(skb, skb->len - 4);
4198
4199 /* probably a little skewed due to removing CRC */
4200 total_rx_bytes += skb->len;
4201 total_rx_packets++;
4202
4203 /* eth type trans needs skb->data to point to something */
4204 if (!pskb_may_pull(skb, ETH_HLEN)) {
4205 DPRINTK(DRV, ERR, "pskb_may_pull failed.\n");
4206 dev_kfree_skb(skb);
4207 goto next_desc;
4208 }
4209
4210 skb->protocol = eth_type_trans(skb, netdev);
4211
4212 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4213
4214 next_desc:
4215 rx_desc->status = 0;
4216
4217 /* return some buffers to hardware, one at a time is too slow */
4218 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4219 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4220 cleaned_count = 0;
4221 }
4222
4223 /* use prefetched values */
4224 rx_desc = next_rxd;
4225 buffer_info = next_buffer;
4226 }
4227 rx_ring->next_to_clean = i;
4228
4229 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4230 if (cleaned_count)
4231 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4232
4233 adapter->total_rx_packets += total_rx_packets;
4234 adapter->total_rx_bytes += total_rx_bytes;
4235 adapter->net_stats.rx_bytes += total_rx_bytes;
4236 adapter->net_stats.rx_packets += total_rx_packets;
4237 return cleaned;
4238 }
4239
4240 /**
4241 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4242 * @adapter: board private structure
4243 * @rx_ring: ring to clean
4244 * @work_done: amount of napi work completed this call
4245 * @work_to_do: max amount of work allowed for this call to do
4246 */
4247 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4248 struct e1000_rx_ring *rx_ring,
4249 int *work_done, int work_to_do)
4250 {
4251 struct e1000_hw *hw = &adapter->hw;
4252 struct net_device *netdev = adapter->netdev;
4253 struct pci_dev *pdev = adapter->pdev;
4254 struct e1000_rx_desc *rx_desc, *next_rxd;
4255 struct e1000_buffer *buffer_info, *next_buffer;
4256 unsigned long flags;
4257 u32 length;
4258 unsigned int i;
4259 int cleaned_count = 0;
4260 bool cleaned = false;
4261 unsigned int total_rx_bytes=0, total_rx_packets=0;
4262
4263 i = rx_ring->next_to_clean;
4264 rx_desc = E1000_RX_DESC(*rx_ring, i);
4265 buffer_info = &rx_ring->buffer_info[i];
4266
4267 while (rx_desc->status & E1000_RXD_STAT_DD) {
4268 struct sk_buff *skb;
4269 u8 status;
4270
4271 if (*work_done >= work_to_do)
4272 break;
4273 (*work_done)++;
4274
4275 status = rx_desc->status;
4276 skb = buffer_info->skb;
4277 buffer_info->skb = NULL;
4278
4279 prefetch(skb->data - NET_IP_ALIGN);
4280
4281 if (++i == rx_ring->count) i = 0;
4282 next_rxd = E1000_RX_DESC(*rx_ring, i);
4283 prefetch(next_rxd);
4284
4285 next_buffer = &rx_ring->buffer_info[i];
4286
4287 cleaned = true;
4288 cleaned_count++;
4289 pci_unmap_single(pdev, buffer_info->dma, buffer_info->length,
4290 PCI_DMA_FROMDEVICE);
4291 buffer_info->dma = 0;
4292
4293 length = le16_to_cpu(rx_desc->length);
4294 /* !EOP means multiple descriptors were used to store a single
4295 * packet, also make sure the frame isn't just CRC only */
4296 if (unlikely(!(status & E1000_RXD_STAT_EOP) || (length <= 4))) {
4297 /* All receives must fit into a single buffer */
4298 E1000_DBG("%s: Receive packet consumed multiple"
4299 " buffers\n", netdev->name);
4300 /* recycle */
4301 buffer_info->skb = skb;
4302 goto next_desc;
4303 }
4304
4305 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4306 u8 last_byte = *(skb->data + length - 1);
4307 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4308 last_byte)) {
4309 spin_lock_irqsave(&adapter->stats_lock, flags);
4310 e1000_tbi_adjust_stats(hw, &adapter->stats,
4311 length, skb->data);
4312 spin_unlock_irqrestore(&adapter->stats_lock,
4313 flags);
4314 length--;
4315 } else {
4316 /* recycle */
4317 buffer_info->skb = skb;
4318 goto next_desc;
4319 }
4320 }
4321
4322 /* adjust length to remove Ethernet CRC, this must be
4323 * done after the TBI_ACCEPT workaround above */
4324 length -= 4;
4325
4326 /* probably a little skewed due to removing CRC */
4327 total_rx_bytes += length;
4328 total_rx_packets++;
4329
4330 /* code added for copybreak, this should improve
4331 * performance for small packets with large amounts
4332 * of reassembly being done in the stack */
4333 if (length < copybreak) {
4334 struct sk_buff *new_skb =
4335 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4336 if (new_skb) {
4337 skb_reserve(new_skb, NET_IP_ALIGN);
4338 skb_copy_to_linear_data_offset(new_skb,
4339 -NET_IP_ALIGN,
4340 (skb->data -
4341 NET_IP_ALIGN),
4342 (length +
4343 NET_IP_ALIGN));
4344 /* save the skb in buffer_info as good */
4345 buffer_info->skb = skb;
4346 skb = new_skb;
4347 }
4348 /* else just continue with the old one */
4349 }
4350 /* end copybreak code */
4351 skb_put(skb, length);
4352
4353 /* Receive Checksum Offload */
4354 e1000_rx_checksum(adapter,
4355 (u32)(status) |
4356 ((u32)(rx_desc->errors) << 24),
4357 le16_to_cpu(rx_desc->csum), skb);
4358
4359 skb->protocol = eth_type_trans(skb, netdev);
4360
4361 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4362
4363 next_desc:
4364 rx_desc->status = 0;
4365
4366 /* return some buffers to hardware, one at a time is too slow */
4367 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4368 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4369 cleaned_count = 0;
4370 }
4371
4372 /* use prefetched values */
4373 rx_desc = next_rxd;
4374 buffer_info = next_buffer;
4375 }
4376 rx_ring->next_to_clean = i;
4377
4378 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4379 if (cleaned_count)
4380 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4381
4382 adapter->total_rx_packets += total_rx_packets;
4383 adapter->total_rx_bytes += total_rx_bytes;
4384 adapter->net_stats.rx_bytes += total_rx_bytes;
4385 adapter->net_stats.rx_packets += total_rx_packets;
4386 return cleaned;
4387 }
4388
4389 /**
4390 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4391 * @adapter: address of board private structure
4392 * @rx_ring: pointer to receive ring structure
4393 * @cleaned_count: number of buffers to allocate this pass
4394 **/
4395
4396 static void
4397 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4398 struct e1000_rx_ring *rx_ring, int cleaned_count)
4399 {
4400 struct net_device *netdev = adapter->netdev;
4401 struct pci_dev *pdev = adapter->pdev;
4402 struct e1000_rx_desc *rx_desc;
4403 struct e1000_buffer *buffer_info;
4404 struct sk_buff *skb;
4405 unsigned int i;
4406 unsigned int bufsz = 256 -
4407 16 /*for skb_reserve */ -
4408 NET_IP_ALIGN;
4409
4410 i = rx_ring->next_to_use;
4411 buffer_info = &rx_ring->buffer_info[i];
4412
4413 while (cleaned_count--) {
4414 skb = buffer_info->skb;
4415 if (skb) {
4416 skb_trim(skb, 0);
4417 goto check_page;
4418 }
4419
4420 skb = netdev_alloc_skb(netdev, bufsz);
4421 if (unlikely(!skb)) {
4422 /* Better luck next round */
4423 adapter->alloc_rx_buff_failed++;
4424 break;
4425 }
4426
4427 /* Fix for errata 23, can't cross 64kB boundary */
4428 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4429 struct sk_buff *oldskb = skb;
4430 DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
4431 "at %p\n", bufsz, skb->data);
4432 /* Try again, without freeing the previous */
4433 skb = netdev_alloc_skb(netdev, bufsz);
4434 /* Failed allocation, critical failure */
4435 if (!skb) {
4436 dev_kfree_skb(oldskb);
4437 adapter->alloc_rx_buff_failed++;
4438 break;
4439 }
4440
4441 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4442 /* give up */
4443 dev_kfree_skb(skb);
4444 dev_kfree_skb(oldskb);
4445 break; /* while (cleaned_count--) */
4446 }
4447
4448 /* Use new allocation */
4449 dev_kfree_skb(oldskb);
4450 }
4451 /* Make buffer alignment 2 beyond a 16 byte boundary
4452 * this will result in a 16 byte aligned IP header after
4453 * the 14 byte MAC header is removed
4454 */
4455 skb_reserve(skb, NET_IP_ALIGN);
4456
4457 buffer_info->skb = skb;
4458 buffer_info->length = adapter->rx_buffer_len;
4459 check_page:
4460 /* allocate a new page if necessary */
4461 if (!buffer_info->page) {
4462 buffer_info->page = alloc_page(GFP_ATOMIC);
4463 if (unlikely(!buffer_info->page)) {
4464 adapter->alloc_rx_buff_failed++;
4465 break;
4466 }
4467 }
4468
4469 if (!buffer_info->dma)
4470 buffer_info->dma = pci_map_page(pdev,
4471 buffer_info->page, 0,
4472 buffer_info->length,
4473 PCI_DMA_FROMDEVICE);
4474
4475 rx_desc = E1000_RX_DESC(*rx_ring, i);
4476 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4477
4478 if (unlikely(++i == rx_ring->count))
4479 i = 0;
4480 buffer_info = &rx_ring->buffer_info[i];
4481 }
4482
4483 if (likely(rx_ring->next_to_use != i)) {
4484 rx_ring->next_to_use = i;
4485 if (unlikely(i-- == 0))
4486 i = (rx_ring->count - 1);
4487
4488 /* Force memory writes to complete before letting h/w
4489 * know there are new descriptors to fetch. (Only
4490 * applicable for weak-ordered memory model archs,
4491 * such as IA-64). */
4492 wmb();
4493 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4494 }
4495 }
4496
4497 /**
4498 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4499 * @adapter: address of board private structure
4500 **/
4501
4502 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4503 struct e1000_rx_ring *rx_ring,
4504 int cleaned_count)
4505 {
4506 struct e1000_hw *hw = &adapter->hw;
4507 struct net_device *netdev = adapter->netdev;
4508 struct pci_dev *pdev = adapter->pdev;
4509 struct e1000_rx_desc *rx_desc;
4510 struct e1000_buffer *buffer_info;
4511 struct sk_buff *skb;
4512 unsigned int i;
4513 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4514
4515 i = rx_ring->next_to_use;
4516 buffer_info = &rx_ring->buffer_info[i];
4517
4518 while (cleaned_count--) {
4519 skb = buffer_info->skb;
4520 if (skb) {
4521 skb_trim(skb, 0);
4522 goto map_skb;
4523 }
4524
4525 skb = netdev_alloc_skb(netdev, bufsz);
4526 if (unlikely(!skb)) {
4527 /* Better luck next round */
4528 adapter->alloc_rx_buff_failed++;
4529 break;
4530 }
4531
4532 /* Fix for errata 23, can't cross 64kB boundary */
4533 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4534 struct sk_buff *oldskb = skb;
4535 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4536 "at %p\n", bufsz, skb->data);
4537 /* Try again, without freeing the previous */
4538 skb = netdev_alloc_skb(netdev, bufsz);
4539 /* Failed allocation, critical failure */
4540 if (!skb) {
4541 dev_kfree_skb(oldskb);
4542 adapter->alloc_rx_buff_failed++;
4543 break;
4544 }
4545
4546 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4547 /* give up */
4548 dev_kfree_skb(skb);
4549 dev_kfree_skb(oldskb);
4550 adapter->alloc_rx_buff_failed++;
4551 break; /* while !buffer_info->skb */
4552 }
4553
4554 /* Use new allocation */
4555 dev_kfree_skb(oldskb);
4556 }
4557 /* Make buffer alignment 2 beyond a 16 byte boundary
4558 * this will result in a 16 byte aligned IP header after
4559 * the 14 byte MAC header is removed
4560 */
4561 skb_reserve(skb, NET_IP_ALIGN);
4562
4563 buffer_info->skb = skb;
4564 buffer_info->length = adapter->rx_buffer_len;
4565 map_skb:
4566 buffer_info->dma = pci_map_single(pdev,
4567 skb->data,
4568 buffer_info->length,
4569 PCI_DMA_FROMDEVICE);
4570
4571 /*
4572 * XXX if it was allocated cleanly it will never map to a
4573 * boundary crossing
4574 */
4575
4576 /* Fix for errata 23, can't cross 64kB boundary */
4577 if (!e1000_check_64k_bound(adapter,
4578 (void *)(unsigned long)buffer_info->dma,
4579 adapter->rx_buffer_len)) {
4580 DPRINTK(RX_ERR, ERR,
4581 "dma align check failed: %u bytes at %p\n",
4582 adapter->rx_buffer_len,
4583 (void *)(unsigned long)buffer_info->dma);
4584 dev_kfree_skb(skb);
4585 buffer_info->skb = NULL;
4586
4587 pci_unmap_single(pdev, buffer_info->dma,
4588 adapter->rx_buffer_len,
4589 PCI_DMA_FROMDEVICE);
4590 buffer_info->dma = 0;
4591
4592 adapter->alloc_rx_buff_failed++;
4593 break; /* while !buffer_info->skb */
4594 }
4595 rx_desc = E1000_RX_DESC(*rx_ring, i);
4596 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4597
4598 if (unlikely(++i == rx_ring->count))
4599 i = 0;
4600 buffer_info = &rx_ring->buffer_info[i];
4601 }
4602
4603 if (likely(rx_ring->next_to_use != i)) {
4604 rx_ring->next_to_use = i;
4605 if (unlikely(i-- == 0))
4606 i = (rx_ring->count - 1);
4607
4608 /* Force memory writes to complete before letting h/w
4609 * know there are new descriptors to fetch. (Only
4610 * applicable for weak-ordered memory model archs,
4611 * such as IA-64). */
4612 wmb();
4613 writel(i, hw->hw_addr + rx_ring->rdt);
4614 }
4615 }
4616
4617 /**
4618 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4619 * @adapter:
4620 **/
4621
4622 static void e1000_smartspeed(struct e1000_adapter *adapter)
4623 {
4624 struct e1000_hw *hw = &adapter->hw;
4625 u16 phy_status;
4626 u16 phy_ctrl;
4627
4628 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4629 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4630 return;
4631
4632 if (adapter->smartspeed == 0) {
4633 /* If Master/Slave config fault is asserted twice,
4634 * we assume back-to-back */
4635 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4636 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4637 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4638 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4639 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4640 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4641 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4642 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4643 phy_ctrl);
4644 adapter->smartspeed++;
4645 if (!e1000_phy_setup_autoneg(hw) &&
4646 !e1000_read_phy_reg(hw, PHY_CTRL,
4647 &phy_ctrl)) {
4648 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4649 MII_CR_RESTART_AUTO_NEG);
4650 e1000_write_phy_reg(hw, PHY_CTRL,
4651 phy_ctrl);
4652 }
4653 }
4654 return;
4655 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4656 /* If still no link, perhaps using 2/3 pair cable */
4657 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4658 phy_ctrl |= CR_1000T_MS_ENABLE;
4659 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4660 if (!e1000_phy_setup_autoneg(hw) &&
4661 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4662 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4663 MII_CR_RESTART_AUTO_NEG);
4664 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4665 }
4666 }
4667 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4668 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4669 adapter->smartspeed = 0;
4670 }
4671
4672 /**
4673 * e1000_ioctl -
4674 * @netdev:
4675 * @ifreq:
4676 * @cmd:
4677 **/
4678
4679 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4680 {
4681 switch (cmd) {
4682 case SIOCGMIIPHY:
4683 case SIOCGMIIREG:
4684 case SIOCSMIIREG:
4685 return e1000_mii_ioctl(netdev, ifr, cmd);
4686 default:
4687 return -EOPNOTSUPP;
4688 }
4689 }
4690
4691 /**
4692 * e1000_mii_ioctl -
4693 * @netdev:
4694 * @ifreq:
4695 * @cmd:
4696 **/
4697
4698 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4699 int cmd)
4700 {
4701 struct e1000_adapter *adapter = netdev_priv(netdev);
4702 struct e1000_hw *hw = &adapter->hw;
4703 struct mii_ioctl_data *data = if_mii(ifr);
4704 int retval;
4705 u16 mii_reg;
4706 u16 spddplx;
4707 unsigned long flags;
4708
4709 if (hw->media_type != e1000_media_type_copper)
4710 return -EOPNOTSUPP;
4711
4712 switch (cmd) {
4713 case SIOCGMIIPHY:
4714 data->phy_id = hw->phy_addr;
4715 break;
4716 case SIOCGMIIREG:
4717 spin_lock_irqsave(&adapter->stats_lock, flags);
4718 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4719 &data->val_out)) {
4720 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4721 return -EIO;
4722 }
4723 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4724 break;
4725 case SIOCSMIIREG:
4726 if (data->reg_num & ~(0x1F))
4727 return -EFAULT;
4728 mii_reg = data->val_in;
4729 spin_lock_irqsave(&adapter->stats_lock, flags);
4730 if (e1000_write_phy_reg(hw, data->reg_num,
4731 mii_reg)) {
4732 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4733 return -EIO;
4734 }
4735 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4736 if (hw->media_type == e1000_media_type_copper) {
4737 switch (data->reg_num) {
4738 case PHY_CTRL:
4739 if (mii_reg & MII_CR_POWER_DOWN)
4740 break;
4741 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4742 hw->autoneg = 1;
4743 hw->autoneg_advertised = 0x2F;
4744 } else {
4745 if (mii_reg & 0x40)
4746 spddplx = SPEED_1000;
4747 else if (mii_reg & 0x2000)
4748 spddplx = SPEED_100;
4749 else
4750 spddplx = SPEED_10;
4751 spddplx += (mii_reg & 0x100)
4752 ? DUPLEX_FULL :
4753 DUPLEX_HALF;
4754 retval = e1000_set_spd_dplx(adapter,
4755 spddplx);
4756 if (retval)
4757 return retval;
4758 }
4759 if (netif_running(adapter->netdev))
4760 e1000_reinit_locked(adapter);
4761 else
4762 e1000_reset(adapter);
4763 break;
4764 case M88E1000_PHY_SPEC_CTRL:
4765 case M88E1000_EXT_PHY_SPEC_CTRL:
4766 if (e1000_phy_reset(hw))
4767 return -EIO;
4768 break;
4769 }
4770 } else {
4771 switch (data->reg_num) {
4772 case PHY_CTRL:
4773 if (mii_reg & MII_CR_POWER_DOWN)
4774 break;
4775 if (netif_running(adapter->netdev))
4776 e1000_reinit_locked(adapter);
4777 else
4778 e1000_reset(adapter);
4779 break;
4780 }
4781 }
4782 break;
4783 default:
4784 return -EOPNOTSUPP;
4785 }
4786 return E1000_SUCCESS;
4787 }
4788
4789 void e1000_pci_set_mwi(struct e1000_hw *hw)
4790 {
4791 struct e1000_adapter *adapter = hw->back;
4792 int ret_val = pci_set_mwi(adapter->pdev);
4793
4794 if (ret_val)
4795 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4796 }
4797
4798 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4799 {
4800 struct e1000_adapter *adapter = hw->back;
4801
4802 pci_clear_mwi(adapter->pdev);
4803 }
4804
4805 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4806 {
4807 struct e1000_adapter *adapter = hw->back;
4808 return pcix_get_mmrbc(adapter->pdev);
4809 }
4810
4811 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4812 {
4813 struct e1000_adapter *adapter = hw->back;
4814 pcix_set_mmrbc(adapter->pdev, mmrbc);
4815 }
4816
4817 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4818 {
4819 struct e1000_adapter *adapter = hw->back;
4820 u16 cap_offset;
4821
4822 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4823 if (!cap_offset)
4824 return -E1000_ERR_CONFIG;
4825
4826 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4827
4828 return E1000_SUCCESS;
4829 }
4830
4831 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4832 {
4833 outl(value, port);
4834 }
4835
4836 static void e1000_vlan_rx_register(struct net_device *netdev,
4837 struct vlan_group *grp)
4838 {
4839 struct e1000_adapter *adapter = netdev_priv(netdev);
4840 struct e1000_hw *hw = &adapter->hw;
4841 u32 ctrl, rctl;
4842
4843 if (!test_bit(__E1000_DOWN, &adapter->flags))
4844 e1000_irq_disable(adapter);
4845 adapter->vlgrp = grp;
4846
4847 if (grp) {
4848 /* enable VLAN tag insert/strip */
4849 ctrl = er32(CTRL);
4850 ctrl |= E1000_CTRL_VME;
4851 ew32(CTRL, ctrl);
4852
4853 if (adapter->hw.mac_type != e1000_ich8lan) {
4854 /* enable VLAN receive filtering */
4855 rctl = er32(RCTL);
4856 rctl &= ~E1000_RCTL_CFIEN;
4857 if (!(netdev->flags & IFF_PROMISC))
4858 rctl |= E1000_RCTL_VFE;
4859 ew32(RCTL, rctl);
4860 e1000_update_mng_vlan(adapter);
4861 }
4862 } else {
4863 /* disable VLAN tag insert/strip */
4864 ctrl = er32(CTRL);
4865 ctrl &= ~E1000_CTRL_VME;
4866 ew32(CTRL, ctrl);
4867
4868 if (adapter->hw.mac_type != e1000_ich8lan) {
4869 /* disable VLAN receive filtering */
4870 rctl = er32(RCTL);
4871 rctl &= ~E1000_RCTL_VFE;
4872 ew32(RCTL, rctl);
4873
4874 if (adapter->mng_vlan_id !=
4875 (u16)E1000_MNG_VLAN_NONE) {
4876 e1000_vlan_rx_kill_vid(netdev,
4877 adapter->mng_vlan_id);
4878 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4879 }
4880 }
4881 }
4882
4883 if (!test_bit(__E1000_DOWN, &adapter->flags))
4884 e1000_irq_enable(adapter);
4885 }
4886
4887 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4888 {
4889 struct e1000_adapter *adapter = netdev_priv(netdev);
4890 struct e1000_hw *hw = &adapter->hw;
4891 u32 vfta, index;
4892
4893 if ((hw->mng_cookie.status &
4894 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4895 (vid == adapter->mng_vlan_id))
4896 return;
4897 /* add VID to filter table */
4898 index = (vid >> 5) & 0x7F;
4899 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4900 vfta |= (1 << (vid & 0x1F));
4901 e1000_write_vfta(hw, index, vfta);
4902 }
4903
4904 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4905 {
4906 struct e1000_adapter *adapter = netdev_priv(netdev);
4907 struct e1000_hw *hw = &adapter->hw;
4908 u32 vfta, index;
4909
4910 if (!test_bit(__E1000_DOWN, &adapter->flags))
4911 e1000_irq_disable(adapter);
4912 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4913 if (!test_bit(__E1000_DOWN, &adapter->flags))
4914 e1000_irq_enable(adapter);
4915
4916 if ((hw->mng_cookie.status &
4917 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4918 (vid == adapter->mng_vlan_id)) {
4919 /* release control to f/w */
4920 e1000_release_hw_control(adapter);
4921 return;
4922 }
4923
4924 /* remove VID from filter table */
4925 index = (vid >> 5) & 0x7F;
4926 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4927 vfta &= ~(1 << (vid & 0x1F));
4928 e1000_write_vfta(hw, index, vfta);
4929 }
4930
4931 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4932 {
4933 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4934
4935 if (adapter->vlgrp) {
4936 u16 vid;
4937 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4938 if (!vlan_group_get_device(adapter->vlgrp, vid))
4939 continue;
4940 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4941 }
4942 }
4943 }
4944
4945 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4946 {
4947 struct e1000_hw *hw = &adapter->hw;
4948
4949 hw->autoneg = 0;
4950
4951 /* Fiber NICs only allow 1000 gbps Full duplex */
4952 if ((hw->media_type == e1000_media_type_fiber) &&
4953 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4954 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4955 return -EINVAL;
4956 }
4957
4958 switch (spddplx) {
4959 case SPEED_10 + DUPLEX_HALF:
4960 hw->forced_speed_duplex = e1000_10_half;
4961 break;
4962 case SPEED_10 + DUPLEX_FULL:
4963 hw->forced_speed_duplex = e1000_10_full;
4964 break;
4965 case SPEED_100 + DUPLEX_HALF:
4966 hw->forced_speed_duplex = e1000_100_half;
4967 break;
4968 case SPEED_100 + DUPLEX_FULL:
4969 hw->forced_speed_duplex = e1000_100_full;
4970 break;
4971 case SPEED_1000 + DUPLEX_FULL:
4972 hw->autoneg = 1;
4973 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4974 break;
4975 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4976 default:
4977 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4978 return -EINVAL;
4979 }
4980 return 0;
4981 }
4982
4983 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4984 {
4985 struct net_device *netdev = pci_get_drvdata(pdev);
4986 struct e1000_adapter *adapter = netdev_priv(netdev);
4987 struct e1000_hw *hw = &adapter->hw;
4988 u32 ctrl, ctrl_ext, rctl, status;
4989 u32 wufc = adapter->wol;
4990 #ifdef CONFIG_PM
4991 int retval = 0;
4992 #endif
4993
4994 netif_device_detach(netdev);
4995
4996 if (netif_running(netdev)) {
4997 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4998 e1000_down(adapter);
4999 }
5000
5001 #ifdef CONFIG_PM
5002 retval = pci_save_state(pdev);
5003 if (retval)
5004 return retval;
5005 #endif
5006
5007 status = er32(STATUS);
5008 if (status & E1000_STATUS_LU)
5009 wufc &= ~E1000_WUFC_LNKC;
5010
5011 if (wufc) {
5012 e1000_setup_rctl(adapter);
5013 e1000_set_rx_mode(netdev);
5014
5015 /* turn on all-multi mode if wake on multicast is enabled */
5016 if (wufc & E1000_WUFC_MC) {
5017 rctl = er32(RCTL);
5018 rctl |= E1000_RCTL_MPE;
5019 ew32(RCTL, rctl);
5020 }
5021
5022 if (hw->mac_type >= e1000_82540) {
5023 ctrl = er32(CTRL);
5024 /* advertise wake from D3Cold */
5025 #define E1000_CTRL_ADVD3WUC 0x00100000
5026 /* phy power management enable */
5027 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5028 ctrl |= E1000_CTRL_ADVD3WUC |
5029 E1000_CTRL_EN_PHY_PWR_MGMT;
5030 ew32(CTRL, ctrl);
5031 }
5032
5033 if (hw->media_type == e1000_media_type_fiber ||
5034 hw->media_type == e1000_media_type_internal_serdes) {
5035 /* keep the laser running in D3 */
5036 ctrl_ext = er32(CTRL_EXT);
5037 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5038 ew32(CTRL_EXT, ctrl_ext);
5039 }
5040
5041 /* Allow time for pending master requests to run */
5042 e1000_disable_pciex_master(hw);
5043
5044 ew32(WUC, E1000_WUC_PME_EN);
5045 ew32(WUFC, wufc);
5046 } else {
5047 ew32(WUC, 0);
5048 ew32(WUFC, 0);
5049 }
5050
5051 e1000_release_manageability(adapter);
5052
5053 *enable_wake = !!wufc;
5054
5055 /* make sure adapter isn't asleep if manageability is enabled */
5056 if (adapter->en_mng_pt)
5057 *enable_wake = true;
5058
5059 if (hw->phy_type == e1000_phy_igp_3)
5060 e1000_phy_powerdown_workaround(hw);
5061
5062 if (netif_running(netdev))
5063 e1000_free_irq(adapter);
5064
5065 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5066 * would have already happened in close and is redundant. */
5067 e1000_release_hw_control(adapter);
5068
5069 pci_disable_device(pdev);
5070
5071 return 0;
5072 }
5073
5074 #ifdef CONFIG_PM
5075 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5076 {
5077 int retval;
5078 bool wake;
5079
5080 retval = __e1000_shutdown(pdev, &wake);
5081 if (retval)
5082 return retval;
5083
5084 if (wake) {
5085 pci_prepare_to_sleep(pdev);
5086 } else {
5087 pci_wake_from_d3(pdev, false);
5088 pci_set_power_state(pdev, PCI_D3hot);
5089 }
5090
5091 return 0;
5092 }
5093
5094 static int e1000_resume(struct pci_dev *pdev)
5095 {
5096 struct net_device *netdev = pci_get_drvdata(pdev);
5097 struct e1000_adapter *adapter = netdev_priv(netdev);
5098 struct e1000_hw *hw = &adapter->hw;
5099 u32 err;
5100
5101 pci_set_power_state(pdev, PCI_D0);
5102 pci_restore_state(pdev);
5103
5104 if (adapter->need_ioport)
5105 err = pci_enable_device(pdev);
5106 else
5107 err = pci_enable_device_mem(pdev);
5108 if (err) {
5109 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5110 return err;
5111 }
5112 pci_set_master(pdev);
5113
5114 pci_enable_wake(pdev, PCI_D3hot, 0);
5115 pci_enable_wake(pdev, PCI_D3cold, 0);
5116
5117 if (netif_running(netdev)) {
5118 err = e1000_request_irq(adapter);
5119 if (err)
5120 return err;
5121 }
5122
5123 e1000_power_up_phy(adapter);
5124 e1000_reset(adapter);
5125 ew32(WUS, ~0);
5126
5127 e1000_init_manageability(adapter);
5128
5129 if (netif_running(netdev))
5130 e1000_up(adapter);
5131
5132 netif_device_attach(netdev);
5133
5134 /* If the controller is 82573 and f/w is AMT, do not set
5135 * DRV_LOAD until the interface is up. For all other cases,
5136 * let the f/w know that the h/w is now under the control
5137 * of the driver. */
5138 if (hw->mac_type != e1000_82573 ||
5139 !e1000_check_mng_mode(hw))
5140 e1000_get_hw_control(adapter);
5141
5142 return 0;
5143 }
5144 #endif
5145
5146 static void e1000_shutdown(struct pci_dev *pdev)
5147 {
5148 bool wake;
5149
5150 __e1000_shutdown(pdev, &wake);
5151
5152 if (system_state == SYSTEM_POWER_OFF) {
5153 pci_wake_from_d3(pdev, wake);
5154 pci_set_power_state(pdev, PCI_D3hot);
5155 }
5156 }
5157
5158 #ifdef CONFIG_NET_POLL_CONTROLLER
5159 /*
5160 * Polling 'interrupt' - used by things like netconsole to send skbs
5161 * without having to re-enable interrupts. It's not called while
5162 * the interrupt routine is executing.
5163 */
5164 static void e1000_netpoll(struct net_device *netdev)
5165 {
5166 struct e1000_adapter *adapter = netdev_priv(netdev);
5167
5168 disable_irq(adapter->pdev->irq);
5169 e1000_intr(adapter->pdev->irq, netdev);
5170 enable_irq(adapter->pdev->irq);
5171 }
5172 #endif
5173
5174 /**
5175 * e1000_io_error_detected - called when PCI error is detected
5176 * @pdev: Pointer to PCI device
5177 * @state: The current pci conneection state
5178 *
5179 * This function is called after a PCI bus error affecting
5180 * this device has been detected.
5181 */
5182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5183 pci_channel_state_t state)
5184 {
5185 struct net_device *netdev = pci_get_drvdata(pdev);
5186 struct e1000_adapter *adapter = netdev_priv(netdev);
5187
5188 netif_device_detach(netdev);
5189
5190 if (state == pci_channel_io_perm_failure)
5191 return PCI_ERS_RESULT_DISCONNECT;
5192
5193 if (netif_running(netdev))
5194 e1000_down(adapter);
5195 pci_disable_device(pdev);
5196
5197 /* Request a slot slot reset. */
5198 return PCI_ERS_RESULT_NEED_RESET;
5199 }
5200
5201 /**
5202 * e1000_io_slot_reset - called after the pci bus has been reset.
5203 * @pdev: Pointer to PCI device
5204 *
5205 * Restart the card from scratch, as if from a cold-boot. Implementation
5206 * resembles the first-half of the e1000_resume routine.
5207 */
5208 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5209 {
5210 struct net_device *netdev = pci_get_drvdata(pdev);
5211 struct e1000_adapter *adapter = netdev_priv(netdev);
5212 struct e1000_hw *hw = &adapter->hw;
5213 int err;
5214
5215 if (adapter->need_ioport)
5216 err = pci_enable_device(pdev);
5217 else
5218 err = pci_enable_device_mem(pdev);
5219 if (err) {
5220 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5221 return PCI_ERS_RESULT_DISCONNECT;
5222 }
5223 pci_set_master(pdev);
5224
5225 pci_enable_wake(pdev, PCI_D3hot, 0);
5226 pci_enable_wake(pdev, PCI_D3cold, 0);
5227
5228 e1000_reset(adapter);
5229 ew32(WUS, ~0);
5230
5231 return PCI_ERS_RESULT_RECOVERED;
5232 }
5233
5234 /**
5235 * e1000_io_resume - called when traffic can start flowing again.
5236 * @pdev: Pointer to PCI device
5237 *
5238 * This callback is called when the error recovery driver tells us that
5239 * its OK to resume normal operation. Implementation resembles the
5240 * second-half of the e1000_resume routine.
5241 */
5242 static void e1000_io_resume(struct pci_dev *pdev)
5243 {
5244 struct net_device *netdev = pci_get_drvdata(pdev);
5245 struct e1000_adapter *adapter = netdev_priv(netdev);
5246 struct e1000_hw *hw = &adapter->hw;
5247
5248 e1000_init_manageability(adapter);
5249
5250 if (netif_running(netdev)) {
5251 if (e1000_up(adapter)) {
5252 printk("e1000: can't bring device back up after reset\n");
5253 return;
5254 }
5255 }
5256
5257 netif_device_attach(netdev);
5258
5259 /* If the controller is 82573 and f/w is AMT, do not set
5260 * DRV_LOAD until the interface is up. For all other cases,
5261 * let the f/w know that the h/w is now under the control
5262 * of the driver. */
5263 if (hw->mac_type != e1000_82573 ||
5264 !e1000_check_mng_mode(hw))
5265 e1000_get_hw_control(adapter);
5266
5267 }
5268
5269 /* e1000_main.c */