Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k5-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39 *
40 * Last entry must be all 0s
41 *
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44 */
45 static struct pci_device_id e1000_pci_tbl[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
129 struct net_device *netdev);
130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
132 static int e1000_set_mac(struct net_device *netdev, void *p);
133 static irqreturn_t e1000_intr(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int *work_done, int work_to_do);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
144 struct e1000_rx_ring *rx_ring,
145 int cleaned_count);
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring,
148 int cleaned_count);
149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
151 int cmd);
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_tx_timeout(struct net_device *dev);
155 static void e1000_reset_task(struct work_struct *work);
156 static void e1000_smartspeed(struct e1000_adapter *adapter);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158 struct sk_buff *skb);
159
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
164
165 #ifdef CONFIG_PM
166 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
169 static void e1000_shutdown(struct pci_dev *pdev);
170
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device *netdev);
174 #endif
175
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
178 module_param(copybreak, uint, 0644);
179 MODULE_PARM_DESC(copybreak,
180 "Maximum size of packet that is copied to a new buffer on receive");
181
182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
183 pci_channel_state_t state);
184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
185 static void e1000_io_resume(struct pci_dev *pdev);
186
187 static struct pci_error_handlers e1000_err_handler = {
188 .error_detected = e1000_io_error_detected,
189 .slot_reset = e1000_io_slot_reset,
190 .resume = e1000_io_resume,
191 };
192
193 static struct pci_driver e1000_driver = {
194 .name = e1000_driver_name,
195 .id_table = e1000_pci_tbl,
196 .probe = e1000_probe,
197 .remove = __devexit_p(e1000_remove),
198 #ifdef CONFIG_PM
199 /* Power Managment Hooks */
200 .suspend = e1000_suspend,
201 .resume = e1000_resume,
202 #endif
203 .shutdown = e1000_shutdown,
204 .err_handler = &e1000_err_handler
205 };
206
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION);
211
212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
213 module_param(debug, int, 0);
214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
215
216 /**
217 * e1000_init_module - Driver Registration Routine
218 *
219 * e1000_init_module is the first routine called when the driver is
220 * loaded. All it does is register with the PCI subsystem.
221 **/
222
223 static int __init e1000_init_module(void)
224 {
225 int ret;
226 printk(KERN_INFO "%s - version %s\n",
227 e1000_driver_string, e1000_driver_version);
228
229 printk(KERN_INFO "%s\n", e1000_copyright);
230
231 ret = pci_register_driver(&e1000_driver);
232 if (copybreak != COPYBREAK_DEFAULT) {
233 if (copybreak == 0)
234 printk(KERN_INFO "e1000: copybreak disabled\n");
235 else
236 printk(KERN_INFO "e1000: copybreak enabled for "
237 "packets <= %u bytes\n", copybreak);
238 }
239 return ret;
240 }
241
242 module_init(e1000_init_module);
243
244 /**
245 * e1000_exit_module - Driver Exit Cleanup Routine
246 *
247 * e1000_exit_module is called just before the driver is removed
248 * from memory.
249 **/
250
251 static void __exit e1000_exit_module(void)
252 {
253 pci_unregister_driver(&e1000_driver);
254 }
255
256 module_exit(e1000_exit_module);
257
258 static int e1000_request_irq(struct e1000_adapter *adapter)
259 {
260 struct net_device *netdev = adapter->netdev;
261 irq_handler_t handler = e1000_intr;
262 int irq_flags = IRQF_SHARED;
263 int err;
264
265 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
266 netdev);
267 if (err) {
268 DPRINTK(PROBE, ERR,
269 "Unable to allocate interrupt Error: %d\n", err);
270 }
271
272 return err;
273 }
274
275 static void e1000_free_irq(struct e1000_adapter *adapter)
276 {
277 struct net_device *netdev = adapter->netdev;
278
279 free_irq(adapter->pdev->irq, netdev);
280 }
281
282 /**
283 * e1000_irq_disable - Mask off interrupt generation on the NIC
284 * @adapter: board private structure
285 **/
286
287 static void e1000_irq_disable(struct e1000_adapter *adapter)
288 {
289 struct e1000_hw *hw = &adapter->hw;
290
291 ew32(IMC, ~0);
292 E1000_WRITE_FLUSH();
293 synchronize_irq(adapter->pdev->irq);
294 }
295
296 /**
297 * e1000_irq_enable - Enable default interrupt generation settings
298 * @adapter: board private structure
299 **/
300
301 static void e1000_irq_enable(struct e1000_adapter *adapter)
302 {
303 struct e1000_hw *hw = &adapter->hw;
304
305 ew32(IMS, IMS_ENABLE_MASK);
306 E1000_WRITE_FLUSH();
307 }
308
309 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
310 {
311 struct e1000_hw *hw = &adapter->hw;
312 struct net_device *netdev = adapter->netdev;
313 u16 vid = hw->mng_cookie.vlan_id;
314 u16 old_vid = adapter->mng_vlan_id;
315 if (adapter->vlgrp) {
316 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
317 if (hw->mng_cookie.status &
318 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
319 e1000_vlan_rx_add_vid(netdev, vid);
320 adapter->mng_vlan_id = vid;
321 } else
322 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
323
324 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
325 (vid != old_vid) &&
326 !vlan_group_get_device(adapter->vlgrp, old_vid))
327 e1000_vlan_rx_kill_vid(netdev, old_vid);
328 } else
329 adapter->mng_vlan_id = vid;
330 }
331 }
332
333 static void e1000_init_manageability(struct e1000_adapter *adapter)
334 {
335 struct e1000_hw *hw = &adapter->hw;
336
337 if (adapter->en_mng_pt) {
338 u32 manc = er32(MANC);
339
340 /* disable hardware interception of ARP */
341 manc &= ~(E1000_MANC_ARP_EN);
342
343 ew32(MANC, manc);
344 }
345 }
346
347 static void e1000_release_manageability(struct e1000_adapter *adapter)
348 {
349 struct e1000_hw *hw = &adapter->hw;
350
351 if (adapter->en_mng_pt) {
352 u32 manc = er32(MANC);
353
354 /* re-enable hardware interception of ARP */
355 manc |= E1000_MANC_ARP_EN;
356
357 ew32(MANC, manc);
358 }
359 }
360
361 /**
362 * e1000_configure - configure the hardware for RX and TX
363 * @adapter = private board structure
364 **/
365 static void e1000_configure(struct e1000_adapter *adapter)
366 {
367 struct net_device *netdev = adapter->netdev;
368 int i;
369
370 e1000_set_rx_mode(netdev);
371
372 e1000_restore_vlan(adapter);
373 e1000_init_manageability(adapter);
374
375 e1000_configure_tx(adapter);
376 e1000_setup_rctl(adapter);
377 e1000_configure_rx(adapter);
378 /* call E1000_DESC_UNUSED which always leaves
379 * at least 1 descriptor unused to make sure
380 * next_to_use != next_to_clean */
381 for (i = 0; i < adapter->num_rx_queues; i++) {
382 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
383 adapter->alloc_rx_buf(adapter, ring,
384 E1000_DESC_UNUSED(ring));
385 }
386
387 adapter->tx_queue_len = netdev->tx_queue_len;
388 }
389
390 int e1000_up(struct e1000_adapter *adapter)
391 {
392 struct e1000_hw *hw = &adapter->hw;
393
394 /* hardware has been reset, we need to reload some things */
395 e1000_configure(adapter);
396
397 clear_bit(__E1000_DOWN, &adapter->flags);
398
399 napi_enable(&adapter->napi);
400
401 e1000_irq_enable(adapter);
402
403 netif_wake_queue(adapter->netdev);
404
405 /* fire a link change interrupt to start the watchdog */
406 ew32(ICS, E1000_ICS_LSC);
407 return 0;
408 }
409
410 /**
411 * e1000_power_up_phy - restore link in case the phy was powered down
412 * @adapter: address of board private structure
413 *
414 * The phy may be powered down to save power and turn off link when the
415 * driver is unloaded and wake on lan is not enabled (among others)
416 * *** this routine MUST be followed by a call to e1000_reset ***
417 *
418 **/
419
420 void e1000_power_up_phy(struct e1000_adapter *adapter)
421 {
422 struct e1000_hw *hw = &adapter->hw;
423 u16 mii_reg = 0;
424
425 /* Just clear the power down bit to wake the phy back up */
426 if (hw->media_type == e1000_media_type_copper) {
427 /* according to the manual, the phy will retain its
428 * settings across a power-down/up cycle */
429 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
430 mii_reg &= ~MII_CR_POWER_DOWN;
431 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
432 }
433 }
434
435 static void e1000_power_down_phy(struct e1000_adapter *adapter)
436 {
437 struct e1000_hw *hw = &adapter->hw;
438
439 /* Power down the PHY so no link is implied when interface is down *
440 * The PHY cannot be powered down if any of the following is true *
441 * (a) WoL is enabled
442 * (b) AMT is active
443 * (c) SoL/IDER session is active */
444 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
445 hw->media_type == e1000_media_type_copper) {
446 u16 mii_reg = 0;
447
448 switch (hw->mac_type) {
449 case e1000_82540:
450 case e1000_82545:
451 case e1000_82545_rev_3:
452 case e1000_82546:
453 case e1000_82546_rev_3:
454 case e1000_82541:
455 case e1000_82541_rev_2:
456 case e1000_82547:
457 case e1000_82547_rev_2:
458 if (er32(MANC) & E1000_MANC_SMBUS_EN)
459 goto out;
460 break;
461 default:
462 goto out;
463 }
464 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
465 mii_reg |= MII_CR_POWER_DOWN;
466 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
467 mdelay(1);
468 }
469 out:
470 return;
471 }
472
473 void e1000_down(struct e1000_adapter *adapter)
474 {
475 struct e1000_hw *hw = &adapter->hw;
476 struct net_device *netdev = adapter->netdev;
477 u32 rctl, tctl;
478
479 /* signal that we're down so the interrupt handler does not
480 * reschedule our watchdog timer */
481 set_bit(__E1000_DOWN, &adapter->flags);
482
483 /* disable receives in the hardware */
484 rctl = er32(RCTL);
485 ew32(RCTL, rctl & ~E1000_RCTL_EN);
486 /* flush and sleep below */
487
488 netif_tx_disable(netdev);
489
490 /* disable transmits in the hardware */
491 tctl = er32(TCTL);
492 tctl &= ~E1000_TCTL_EN;
493 ew32(TCTL, tctl);
494 /* flush both disables and wait for them to finish */
495 E1000_WRITE_FLUSH();
496 msleep(10);
497
498 napi_disable(&adapter->napi);
499
500 e1000_irq_disable(adapter);
501
502 del_timer_sync(&adapter->tx_fifo_stall_timer);
503 del_timer_sync(&adapter->watchdog_timer);
504 del_timer_sync(&adapter->phy_info_timer);
505
506 netdev->tx_queue_len = adapter->tx_queue_len;
507 adapter->link_speed = 0;
508 adapter->link_duplex = 0;
509 netif_carrier_off(netdev);
510
511 e1000_reset(adapter);
512 e1000_clean_all_tx_rings(adapter);
513 e1000_clean_all_rx_rings(adapter);
514 }
515
516 void e1000_reinit_locked(struct e1000_adapter *adapter)
517 {
518 WARN_ON(in_interrupt());
519 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
520 msleep(1);
521 e1000_down(adapter);
522 e1000_up(adapter);
523 clear_bit(__E1000_RESETTING, &adapter->flags);
524 }
525
526 void e1000_reset(struct e1000_adapter *adapter)
527 {
528 struct e1000_hw *hw = &adapter->hw;
529 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
530 bool legacy_pba_adjust = false;
531 u16 hwm;
532
533 /* Repartition Pba for greater than 9k mtu
534 * To take effect CTRL.RST is required.
535 */
536
537 switch (hw->mac_type) {
538 case e1000_82542_rev2_0:
539 case e1000_82542_rev2_1:
540 case e1000_82543:
541 case e1000_82544:
542 case e1000_82540:
543 case e1000_82541:
544 case e1000_82541_rev_2:
545 legacy_pba_adjust = true;
546 pba = E1000_PBA_48K;
547 break;
548 case e1000_82545:
549 case e1000_82545_rev_3:
550 case e1000_82546:
551 case e1000_82546_rev_3:
552 pba = E1000_PBA_48K;
553 break;
554 case e1000_82547:
555 case e1000_82547_rev_2:
556 legacy_pba_adjust = true;
557 pba = E1000_PBA_30K;
558 break;
559 case e1000_undefined:
560 case e1000_num_macs:
561 break;
562 }
563
564 if (legacy_pba_adjust) {
565 if (hw->max_frame_size > E1000_RXBUFFER_8192)
566 pba -= 8; /* allocate more FIFO for Tx */
567
568 if (hw->mac_type == e1000_82547) {
569 adapter->tx_fifo_head = 0;
570 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
571 adapter->tx_fifo_size =
572 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
573 atomic_set(&adapter->tx_fifo_stall, 0);
574 }
575 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
576 /* adjust PBA for jumbo frames */
577 ew32(PBA, pba);
578
579 /* To maintain wire speed transmits, the Tx FIFO should be
580 * large enough to accommodate two full transmit packets,
581 * rounded up to the next 1KB and expressed in KB. Likewise,
582 * the Rx FIFO should be large enough to accommodate at least
583 * one full receive packet and is similarly rounded up and
584 * expressed in KB. */
585 pba = er32(PBA);
586 /* upper 16 bits has Tx packet buffer allocation size in KB */
587 tx_space = pba >> 16;
588 /* lower 16 bits has Rx packet buffer allocation size in KB */
589 pba &= 0xffff;
590 /*
591 * the tx fifo also stores 16 bytes of information about the tx
592 * but don't include ethernet FCS because hardware appends it
593 */
594 min_tx_space = (hw->max_frame_size +
595 sizeof(struct e1000_tx_desc) -
596 ETH_FCS_LEN) * 2;
597 min_tx_space = ALIGN(min_tx_space, 1024);
598 min_tx_space >>= 10;
599 /* software strips receive CRC, so leave room for it */
600 min_rx_space = hw->max_frame_size;
601 min_rx_space = ALIGN(min_rx_space, 1024);
602 min_rx_space >>= 10;
603
604 /* If current Tx allocation is less than the min Tx FIFO size,
605 * and the min Tx FIFO size is less than the current Rx FIFO
606 * allocation, take space away from current Rx allocation */
607 if (tx_space < min_tx_space &&
608 ((min_tx_space - tx_space) < pba)) {
609 pba = pba - (min_tx_space - tx_space);
610
611 /* PCI/PCIx hardware has PBA alignment constraints */
612 switch (hw->mac_type) {
613 case e1000_82545 ... e1000_82546_rev_3:
614 pba &= ~(E1000_PBA_8K - 1);
615 break;
616 default:
617 break;
618 }
619
620 /* if short on rx space, rx wins and must trump tx
621 * adjustment or use Early Receive if available */
622 if (pba < min_rx_space)
623 pba = min_rx_space;
624 }
625 }
626
627 ew32(PBA, pba);
628
629 /*
630 * flow control settings:
631 * The high water mark must be low enough to fit one full frame
632 * (or the size used for early receive) above it in the Rx FIFO.
633 * Set it to the lower of:
634 * - 90% of the Rx FIFO size, and
635 * - the full Rx FIFO size minus the early receive size (for parts
636 * with ERT support assuming ERT set to E1000_ERT_2048), or
637 * - the full Rx FIFO size minus one full frame
638 */
639 hwm = min(((pba << 10) * 9 / 10),
640 ((pba << 10) - hw->max_frame_size));
641
642 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
643 hw->fc_low_water = hw->fc_high_water - 8;
644 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
645 hw->fc_send_xon = 1;
646 hw->fc = hw->original_fc;
647
648 /* Allow time for pending master requests to run */
649 e1000_reset_hw(hw);
650 if (hw->mac_type >= e1000_82544)
651 ew32(WUC, 0);
652
653 if (e1000_init_hw(hw))
654 DPRINTK(PROBE, ERR, "Hardware Error\n");
655 e1000_update_mng_vlan(adapter);
656
657 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
658 if (hw->mac_type >= e1000_82544 &&
659 hw->autoneg == 1 &&
660 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
661 u32 ctrl = er32(CTRL);
662 /* clear phy power management bit if we are in gig only mode,
663 * which if enabled will attempt negotiation to 100Mb, which
664 * can cause a loss of link at power off or driver unload */
665 ctrl &= ~E1000_CTRL_SWDPIN3;
666 ew32(CTRL, ctrl);
667 }
668
669 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
670 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
671
672 e1000_reset_adaptive(hw);
673 e1000_phy_get_info(hw, &adapter->phy_info);
674
675 e1000_release_manageability(adapter);
676 }
677
678 /**
679 * Dump the eeprom for users having checksum issues
680 **/
681 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
682 {
683 struct net_device *netdev = adapter->netdev;
684 struct ethtool_eeprom eeprom;
685 const struct ethtool_ops *ops = netdev->ethtool_ops;
686 u8 *data;
687 int i;
688 u16 csum_old, csum_new = 0;
689
690 eeprom.len = ops->get_eeprom_len(netdev);
691 eeprom.offset = 0;
692
693 data = kmalloc(eeprom.len, GFP_KERNEL);
694 if (!data) {
695 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
696 " data\n");
697 return;
698 }
699
700 ops->get_eeprom(netdev, &eeprom, data);
701
702 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
703 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
704 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
705 csum_new += data[i] + (data[i + 1] << 8);
706 csum_new = EEPROM_SUM - csum_new;
707
708 printk(KERN_ERR "/*********************/\n");
709 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
710 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
711
712 printk(KERN_ERR "Offset Values\n");
713 printk(KERN_ERR "======== ======\n");
714 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
715
716 printk(KERN_ERR "Include this output when contacting your support "
717 "provider.\n");
718 printk(KERN_ERR "This is not a software error! Something bad "
719 "happened to your hardware or\n");
720 printk(KERN_ERR "EEPROM image. Ignoring this "
721 "problem could result in further problems,\n");
722 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
723 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
724 "which is invalid\n");
725 printk(KERN_ERR "and requires you to set the proper MAC "
726 "address manually before continuing\n");
727 printk(KERN_ERR "to enable this network device.\n");
728 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
729 "to your hardware vendor\n");
730 printk(KERN_ERR "or Intel Customer Support.\n");
731 printk(KERN_ERR "/*********************/\n");
732
733 kfree(data);
734 }
735
736 /**
737 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
738 * @pdev: PCI device information struct
739 *
740 * Return true if an adapter needs ioport resources
741 **/
742 static int e1000_is_need_ioport(struct pci_dev *pdev)
743 {
744 switch (pdev->device) {
745 case E1000_DEV_ID_82540EM:
746 case E1000_DEV_ID_82540EM_LOM:
747 case E1000_DEV_ID_82540EP:
748 case E1000_DEV_ID_82540EP_LOM:
749 case E1000_DEV_ID_82540EP_LP:
750 case E1000_DEV_ID_82541EI:
751 case E1000_DEV_ID_82541EI_MOBILE:
752 case E1000_DEV_ID_82541ER:
753 case E1000_DEV_ID_82541ER_LOM:
754 case E1000_DEV_ID_82541GI:
755 case E1000_DEV_ID_82541GI_LF:
756 case E1000_DEV_ID_82541GI_MOBILE:
757 case E1000_DEV_ID_82544EI_COPPER:
758 case E1000_DEV_ID_82544EI_FIBER:
759 case E1000_DEV_ID_82544GC_COPPER:
760 case E1000_DEV_ID_82544GC_LOM:
761 case E1000_DEV_ID_82545EM_COPPER:
762 case E1000_DEV_ID_82545EM_FIBER:
763 case E1000_DEV_ID_82546EB_COPPER:
764 case E1000_DEV_ID_82546EB_FIBER:
765 case E1000_DEV_ID_82546EB_QUAD_COPPER:
766 return true;
767 default:
768 return false;
769 }
770 }
771
772 static const struct net_device_ops e1000_netdev_ops = {
773 .ndo_open = e1000_open,
774 .ndo_stop = e1000_close,
775 .ndo_start_xmit = e1000_xmit_frame,
776 .ndo_get_stats = e1000_get_stats,
777 .ndo_set_rx_mode = e1000_set_rx_mode,
778 .ndo_set_mac_address = e1000_set_mac,
779 .ndo_tx_timeout = e1000_tx_timeout,
780 .ndo_change_mtu = e1000_change_mtu,
781 .ndo_do_ioctl = e1000_ioctl,
782 .ndo_validate_addr = eth_validate_addr,
783
784 .ndo_vlan_rx_register = e1000_vlan_rx_register,
785 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
786 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
787 #ifdef CONFIG_NET_POLL_CONTROLLER
788 .ndo_poll_controller = e1000_netpoll,
789 #endif
790 };
791
792 /**
793 * e1000_probe - Device Initialization Routine
794 * @pdev: PCI device information struct
795 * @ent: entry in e1000_pci_tbl
796 *
797 * Returns 0 on success, negative on failure
798 *
799 * e1000_probe initializes an adapter identified by a pci_dev structure.
800 * The OS initialization, configuring of the adapter private structure,
801 * and a hardware reset occur.
802 **/
803 static int __devinit e1000_probe(struct pci_dev *pdev,
804 const struct pci_device_id *ent)
805 {
806 struct net_device *netdev;
807 struct e1000_adapter *adapter;
808 struct e1000_hw *hw;
809
810 static int cards_found = 0;
811 static int global_quad_port_a = 0; /* global ksp3 port a indication */
812 int i, err, pci_using_dac;
813 u16 eeprom_data = 0;
814 u16 eeprom_apme_mask = E1000_EEPROM_APME;
815 int bars, need_ioport;
816
817 /* do not allocate ioport bars when not needed */
818 need_ioport = e1000_is_need_ioport(pdev);
819 if (need_ioport) {
820 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
821 err = pci_enable_device(pdev);
822 } else {
823 bars = pci_select_bars(pdev, IORESOURCE_MEM);
824 err = pci_enable_device_mem(pdev);
825 }
826 if (err)
827 return err;
828
829 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
830 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
831 pci_using_dac = 1;
832 } else {
833 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
834 if (err) {
835 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
836 if (err) {
837 E1000_ERR("No usable DMA configuration, "
838 "aborting\n");
839 goto err_dma;
840 }
841 }
842 pci_using_dac = 0;
843 }
844
845 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
846 if (err)
847 goto err_pci_reg;
848
849 pci_set_master(pdev);
850
851 err = -ENOMEM;
852 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
853 if (!netdev)
854 goto err_alloc_etherdev;
855
856 SET_NETDEV_DEV(netdev, &pdev->dev);
857
858 pci_set_drvdata(pdev, netdev);
859 adapter = netdev_priv(netdev);
860 adapter->netdev = netdev;
861 adapter->pdev = pdev;
862 adapter->msg_enable = (1 << debug) - 1;
863 adapter->bars = bars;
864 adapter->need_ioport = need_ioport;
865
866 hw = &adapter->hw;
867 hw->back = adapter;
868
869 err = -EIO;
870 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
871 if (!hw->hw_addr)
872 goto err_ioremap;
873
874 if (adapter->need_ioport) {
875 for (i = BAR_1; i <= BAR_5; i++) {
876 if (pci_resource_len(pdev, i) == 0)
877 continue;
878 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
879 hw->io_base = pci_resource_start(pdev, i);
880 break;
881 }
882 }
883 }
884
885 netdev->netdev_ops = &e1000_netdev_ops;
886 e1000_set_ethtool_ops(netdev);
887 netdev->watchdog_timeo = 5 * HZ;
888 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
889
890 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
891
892 adapter->bd_number = cards_found;
893
894 /* setup the private structure */
895
896 err = e1000_sw_init(adapter);
897 if (err)
898 goto err_sw_init;
899
900 err = -EIO;
901
902 if (hw->mac_type >= e1000_82543) {
903 netdev->features = NETIF_F_SG |
904 NETIF_F_HW_CSUM |
905 NETIF_F_HW_VLAN_TX |
906 NETIF_F_HW_VLAN_RX |
907 NETIF_F_HW_VLAN_FILTER;
908 }
909
910 if ((hw->mac_type >= e1000_82544) &&
911 (hw->mac_type != e1000_82547))
912 netdev->features |= NETIF_F_TSO;
913
914 if (pci_using_dac)
915 netdev->features |= NETIF_F_HIGHDMA;
916
917 netdev->vlan_features |= NETIF_F_TSO;
918 netdev->vlan_features |= NETIF_F_HW_CSUM;
919 netdev->vlan_features |= NETIF_F_SG;
920
921 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
922
923 /* initialize eeprom parameters */
924 if (e1000_init_eeprom_params(hw)) {
925 E1000_ERR("EEPROM initialization failed\n");
926 goto err_eeprom;
927 }
928
929 /* before reading the EEPROM, reset the controller to
930 * put the device in a known good starting state */
931
932 e1000_reset_hw(hw);
933
934 /* make sure the EEPROM is good */
935 if (e1000_validate_eeprom_checksum(hw) < 0) {
936 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
937 e1000_dump_eeprom(adapter);
938 /*
939 * set MAC address to all zeroes to invalidate and temporary
940 * disable this device for the user. This blocks regular
941 * traffic while still permitting ethtool ioctls from reaching
942 * the hardware as well as allowing the user to run the
943 * interface after manually setting a hw addr using
944 * `ip set address`
945 */
946 memset(hw->mac_addr, 0, netdev->addr_len);
947 } else {
948 /* copy the MAC address out of the EEPROM */
949 if (e1000_read_mac_addr(hw))
950 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
951 }
952 /* don't block initalization here due to bad MAC address */
953 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
954 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
955
956 if (!is_valid_ether_addr(netdev->perm_addr))
957 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
958
959 e1000_get_bus_info(hw);
960
961 init_timer(&adapter->tx_fifo_stall_timer);
962 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
963 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
964
965 init_timer(&adapter->watchdog_timer);
966 adapter->watchdog_timer.function = &e1000_watchdog;
967 adapter->watchdog_timer.data = (unsigned long) adapter;
968
969 init_timer(&adapter->phy_info_timer);
970 adapter->phy_info_timer.function = &e1000_update_phy_info;
971 adapter->phy_info_timer.data = (unsigned long)adapter;
972
973 INIT_WORK(&adapter->reset_task, e1000_reset_task);
974
975 e1000_check_options(adapter);
976
977 /* Initial Wake on LAN setting
978 * If APM wake is enabled in the EEPROM,
979 * enable the ACPI Magic Packet filter
980 */
981
982 switch (hw->mac_type) {
983 case e1000_82542_rev2_0:
984 case e1000_82542_rev2_1:
985 case e1000_82543:
986 break;
987 case e1000_82544:
988 e1000_read_eeprom(hw,
989 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
990 eeprom_apme_mask = E1000_EEPROM_82544_APM;
991 break;
992 case e1000_82546:
993 case e1000_82546_rev_3:
994 if (er32(STATUS) & E1000_STATUS_FUNC_1){
995 e1000_read_eeprom(hw,
996 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
997 break;
998 }
999 /* Fall Through */
1000 default:
1001 e1000_read_eeprom(hw,
1002 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1003 break;
1004 }
1005 if (eeprom_data & eeprom_apme_mask)
1006 adapter->eeprom_wol |= E1000_WUFC_MAG;
1007
1008 /* now that we have the eeprom settings, apply the special cases
1009 * where the eeprom may be wrong or the board simply won't support
1010 * wake on lan on a particular port */
1011 switch (pdev->device) {
1012 case E1000_DEV_ID_82546GB_PCIE:
1013 adapter->eeprom_wol = 0;
1014 break;
1015 case E1000_DEV_ID_82546EB_FIBER:
1016 case E1000_DEV_ID_82546GB_FIBER:
1017 /* Wake events only supported on port A for dual fiber
1018 * regardless of eeprom setting */
1019 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1020 adapter->eeprom_wol = 0;
1021 break;
1022 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1023 /* if quad port adapter, disable WoL on all but port A */
1024 if (global_quad_port_a != 0)
1025 adapter->eeprom_wol = 0;
1026 else
1027 adapter->quad_port_a = 1;
1028 /* Reset for multiple quad port adapters */
1029 if (++global_quad_port_a == 4)
1030 global_quad_port_a = 0;
1031 break;
1032 }
1033
1034 /* initialize the wol settings based on the eeprom settings */
1035 adapter->wol = adapter->eeprom_wol;
1036 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1037
1038 /* print bus type/speed/width info */
1039 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1040 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1041 ((hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1042 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1043 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1044 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1045 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : "32-bit"));
1046
1047 printk("%pM\n", netdev->dev_addr);
1048
1049 /* reset the hardware with the new settings */
1050 e1000_reset(adapter);
1051
1052 strcpy(netdev->name, "eth%d");
1053 err = register_netdev(netdev);
1054 if (err)
1055 goto err_register;
1056
1057 /* carrier off reporting is important to ethtool even BEFORE open */
1058 netif_carrier_off(netdev);
1059
1060 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1061
1062 cards_found++;
1063 return 0;
1064
1065 err_register:
1066 err_eeprom:
1067 e1000_phy_hw_reset(hw);
1068
1069 if (hw->flash_address)
1070 iounmap(hw->flash_address);
1071 kfree(adapter->tx_ring);
1072 kfree(adapter->rx_ring);
1073 err_sw_init:
1074 iounmap(hw->hw_addr);
1075 err_ioremap:
1076 free_netdev(netdev);
1077 err_alloc_etherdev:
1078 pci_release_selected_regions(pdev, bars);
1079 err_pci_reg:
1080 err_dma:
1081 pci_disable_device(pdev);
1082 return err;
1083 }
1084
1085 /**
1086 * e1000_remove - Device Removal Routine
1087 * @pdev: PCI device information struct
1088 *
1089 * e1000_remove is called by the PCI subsystem to alert the driver
1090 * that it should release a PCI device. The could be caused by a
1091 * Hot-Plug event, or because the driver is going to be removed from
1092 * memory.
1093 **/
1094
1095 static void __devexit e1000_remove(struct pci_dev *pdev)
1096 {
1097 struct net_device *netdev = pci_get_drvdata(pdev);
1098 struct e1000_adapter *adapter = netdev_priv(netdev);
1099 struct e1000_hw *hw = &adapter->hw;
1100
1101 set_bit(__E1000_DOWN, &adapter->flags);
1102 del_timer_sync(&adapter->tx_fifo_stall_timer);
1103 del_timer_sync(&adapter->watchdog_timer);
1104 del_timer_sync(&adapter->phy_info_timer);
1105
1106 cancel_work_sync(&adapter->reset_task);
1107
1108 e1000_release_manageability(adapter);
1109
1110 unregister_netdev(netdev);
1111
1112 e1000_phy_hw_reset(hw);
1113
1114 kfree(adapter->tx_ring);
1115 kfree(adapter->rx_ring);
1116
1117 iounmap(hw->hw_addr);
1118 if (hw->flash_address)
1119 iounmap(hw->flash_address);
1120 pci_release_selected_regions(pdev, adapter->bars);
1121
1122 free_netdev(netdev);
1123
1124 pci_disable_device(pdev);
1125 }
1126
1127 /**
1128 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129 * @adapter: board private structure to initialize
1130 *
1131 * e1000_sw_init initializes the Adapter private data structure.
1132 * Fields are initialized based on PCI device information and
1133 * OS network device settings (MTU size).
1134 **/
1135
1136 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1137 {
1138 struct e1000_hw *hw = &adapter->hw;
1139 struct net_device *netdev = adapter->netdev;
1140 struct pci_dev *pdev = adapter->pdev;
1141
1142 /* PCI config space info */
1143
1144 hw->vendor_id = pdev->vendor;
1145 hw->device_id = pdev->device;
1146 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1147 hw->subsystem_id = pdev->subsystem_device;
1148 hw->revision_id = pdev->revision;
1149
1150 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1151
1152 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1153 hw->max_frame_size = netdev->mtu +
1154 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1155 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1156
1157 /* identify the MAC */
1158
1159 if (e1000_set_mac_type(hw)) {
1160 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1161 return -EIO;
1162 }
1163
1164 switch (hw->mac_type) {
1165 default:
1166 break;
1167 case e1000_82541:
1168 case e1000_82547:
1169 case e1000_82541_rev_2:
1170 case e1000_82547_rev_2:
1171 hw->phy_init_script = 1;
1172 break;
1173 }
1174
1175 e1000_set_media_type(hw);
1176
1177 hw->wait_autoneg_complete = false;
1178 hw->tbi_compatibility_en = true;
1179 hw->adaptive_ifs = true;
1180
1181 /* Copper options */
1182
1183 if (hw->media_type == e1000_media_type_copper) {
1184 hw->mdix = AUTO_ALL_MODES;
1185 hw->disable_polarity_correction = false;
1186 hw->master_slave = E1000_MASTER_SLAVE;
1187 }
1188
1189 adapter->num_tx_queues = 1;
1190 adapter->num_rx_queues = 1;
1191
1192 if (e1000_alloc_queues(adapter)) {
1193 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1194 return -ENOMEM;
1195 }
1196
1197 /* Explicitly disable IRQ since the NIC can be in any state. */
1198 e1000_irq_disable(adapter);
1199
1200 spin_lock_init(&adapter->stats_lock);
1201
1202 set_bit(__E1000_DOWN, &adapter->flags);
1203
1204 return 0;
1205 }
1206
1207 /**
1208 * e1000_alloc_queues - Allocate memory for all rings
1209 * @adapter: board private structure to initialize
1210 *
1211 * We allocate one ring per queue at run-time since we don't know the
1212 * number of queues at compile-time.
1213 **/
1214
1215 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1216 {
1217 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1218 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1219 if (!adapter->tx_ring)
1220 return -ENOMEM;
1221
1222 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1223 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1224 if (!adapter->rx_ring) {
1225 kfree(adapter->tx_ring);
1226 return -ENOMEM;
1227 }
1228
1229 return E1000_SUCCESS;
1230 }
1231
1232 /**
1233 * e1000_open - Called when a network interface is made active
1234 * @netdev: network interface device structure
1235 *
1236 * Returns 0 on success, negative value on failure
1237 *
1238 * The open entry point is called when a network interface is made
1239 * active by the system (IFF_UP). At this point all resources needed
1240 * for transmit and receive operations are allocated, the interrupt
1241 * handler is registered with the OS, the watchdog timer is started,
1242 * and the stack is notified that the interface is ready.
1243 **/
1244
1245 static int e1000_open(struct net_device *netdev)
1246 {
1247 struct e1000_adapter *adapter = netdev_priv(netdev);
1248 struct e1000_hw *hw = &adapter->hw;
1249 int err;
1250
1251 /* disallow open during test */
1252 if (test_bit(__E1000_TESTING, &adapter->flags))
1253 return -EBUSY;
1254
1255 netif_carrier_off(netdev);
1256
1257 /* allocate transmit descriptors */
1258 err = e1000_setup_all_tx_resources(adapter);
1259 if (err)
1260 goto err_setup_tx;
1261
1262 /* allocate receive descriptors */
1263 err = e1000_setup_all_rx_resources(adapter);
1264 if (err)
1265 goto err_setup_rx;
1266
1267 e1000_power_up_phy(adapter);
1268
1269 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1270 if ((hw->mng_cookie.status &
1271 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1272 e1000_update_mng_vlan(adapter);
1273 }
1274
1275 /* before we allocate an interrupt, we must be ready to handle it.
1276 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1277 * as soon as we call pci_request_irq, so we have to setup our
1278 * clean_rx handler before we do so. */
1279 e1000_configure(adapter);
1280
1281 err = e1000_request_irq(adapter);
1282 if (err)
1283 goto err_req_irq;
1284
1285 /* From here on the code is the same as e1000_up() */
1286 clear_bit(__E1000_DOWN, &adapter->flags);
1287
1288 napi_enable(&adapter->napi);
1289
1290 e1000_irq_enable(adapter);
1291
1292 netif_start_queue(netdev);
1293
1294 /* fire a link status change interrupt to start the watchdog */
1295 ew32(ICS, E1000_ICS_LSC);
1296
1297 return E1000_SUCCESS;
1298
1299 err_req_irq:
1300 e1000_power_down_phy(adapter);
1301 e1000_free_all_rx_resources(adapter);
1302 err_setup_rx:
1303 e1000_free_all_tx_resources(adapter);
1304 err_setup_tx:
1305 e1000_reset(adapter);
1306
1307 return err;
1308 }
1309
1310 /**
1311 * e1000_close - Disables a network interface
1312 * @netdev: network interface device structure
1313 *
1314 * Returns 0, this is not allowed to fail
1315 *
1316 * The close entry point is called when an interface is de-activated
1317 * by the OS. The hardware is still under the drivers control, but
1318 * needs to be disabled. A global MAC reset is issued to stop the
1319 * hardware, and all transmit and receive resources are freed.
1320 **/
1321
1322 static int e1000_close(struct net_device *netdev)
1323 {
1324 struct e1000_adapter *adapter = netdev_priv(netdev);
1325 struct e1000_hw *hw = &adapter->hw;
1326
1327 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1328 e1000_down(adapter);
1329 e1000_power_down_phy(adapter);
1330 e1000_free_irq(adapter);
1331
1332 e1000_free_all_tx_resources(adapter);
1333 e1000_free_all_rx_resources(adapter);
1334
1335 /* kill manageability vlan ID if supported, but not if a vlan with
1336 * the same ID is registered on the host OS (let 8021q kill it) */
1337 if ((hw->mng_cookie.status &
1338 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1339 !(adapter->vlgrp &&
1340 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1341 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1342 }
1343
1344 return 0;
1345 }
1346
1347 /**
1348 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1349 * @adapter: address of board private structure
1350 * @start: address of beginning of memory
1351 * @len: length of memory
1352 **/
1353 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1354 unsigned long len)
1355 {
1356 struct e1000_hw *hw = &adapter->hw;
1357 unsigned long begin = (unsigned long)start;
1358 unsigned long end = begin + len;
1359
1360 /* First rev 82545 and 82546 need to not allow any memory
1361 * write location to cross 64k boundary due to errata 23 */
1362 if (hw->mac_type == e1000_82545 ||
1363 hw->mac_type == e1000_82546) {
1364 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1365 }
1366
1367 return true;
1368 }
1369
1370 /**
1371 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1372 * @adapter: board private structure
1373 * @txdr: tx descriptor ring (for a specific queue) to setup
1374 *
1375 * Return 0 on success, negative on failure
1376 **/
1377
1378 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1379 struct e1000_tx_ring *txdr)
1380 {
1381 struct pci_dev *pdev = adapter->pdev;
1382 int size;
1383
1384 size = sizeof(struct e1000_buffer) * txdr->count;
1385 txdr->buffer_info = vmalloc(size);
1386 if (!txdr->buffer_info) {
1387 DPRINTK(PROBE, ERR,
1388 "Unable to allocate memory for the transmit descriptor ring\n");
1389 return -ENOMEM;
1390 }
1391 memset(txdr->buffer_info, 0, size);
1392
1393 /* round up to nearest 4K */
1394
1395 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1396 txdr->size = ALIGN(txdr->size, 4096);
1397
1398 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1399 if (!txdr->desc) {
1400 setup_tx_desc_die:
1401 vfree(txdr->buffer_info);
1402 DPRINTK(PROBE, ERR,
1403 "Unable to allocate memory for the transmit descriptor ring\n");
1404 return -ENOMEM;
1405 }
1406
1407 /* Fix for errata 23, can't cross 64kB boundary */
1408 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1409 void *olddesc = txdr->desc;
1410 dma_addr_t olddma = txdr->dma;
1411 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1412 "at %p\n", txdr->size, txdr->desc);
1413 /* Try again, without freeing the previous */
1414 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1415 /* Failed allocation, critical failure */
1416 if (!txdr->desc) {
1417 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1418 goto setup_tx_desc_die;
1419 }
1420
1421 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1422 /* give up */
1423 pci_free_consistent(pdev, txdr->size, txdr->desc,
1424 txdr->dma);
1425 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1426 DPRINTK(PROBE, ERR,
1427 "Unable to allocate aligned memory "
1428 "for the transmit descriptor ring\n");
1429 vfree(txdr->buffer_info);
1430 return -ENOMEM;
1431 } else {
1432 /* Free old allocation, new allocation was successful */
1433 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1434 }
1435 }
1436 memset(txdr->desc, 0, txdr->size);
1437
1438 txdr->next_to_use = 0;
1439 txdr->next_to_clean = 0;
1440
1441 return 0;
1442 }
1443
1444 /**
1445 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1446 * (Descriptors) for all queues
1447 * @adapter: board private structure
1448 *
1449 * Return 0 on success, negative on failure
1450 **/
1451
1452 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1453 {
1454 int i, err = 0;
1455
1456 for (i = 0; i < adapter->num_tx_queues; i++) {
1457 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1458 if (err) {
1459 DPRINTK(PROBE, ERR,
1460 "Allocation for Tx Queue %u failed\n", i);
1461 for (i-- ; i >= 0; i--)
1462 e1000_free_tx_resources(adapter,
1463 &adapter->tx_ring[i]);
1464 break;
1465 }
1466 }
1467
1468 return err;
1469 }
1470
1471 /**
1472 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1473 * @adapter: board private structure
1474 *
1475 * Configure the Tx unit of the MAC after a reset.
1476 **/
1477
1478 static void e1000_configure_tx(struct e1000_adapter *adapter)
1479 {
1480 u64 tdba;
1481 struct e1000_hw *hw = &adapter->hw;
1482 u32 tdlen, tctl, tipg;
1483 u32 ipgr1, ipgr2;
1484
1485 /* Setup the HW Tx Head and Tail descriptor pointers */
1486
1487 switch (adapter->num_tx_queues) {
1488 case 1:
1489 default:
1490 tdba = adapter->tx_ring[0].dma;
1491 tdlen = adapter->tx_ring[0].count *
1492 sizeof(struct e1000_tx_desc);
1493 ew32(TDLEN, tdlen);
1494 ew32(TDBAH, (tdba >> 32));
1495 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1496 ew32(TDT, 0);
1497 ew32(TDH, 0);
1498 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1499 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1500 break;
1501 }
1502
1503 /* Set the default values for the Tx Inter Packet Gap timer */
1504 if ((hw->media_type == e1000_media_type_fiber ||
1505 hw->media_type == e1000_media_type_internal_serdes))
1506 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1507 else
1508 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1509
1510 switch (hw->mac_type) {
1511 case e1000_82542_rev2_0:
1512 case e1000_82542_rev2_1:
1513 tipg = DEFAULT_82542_TIPG_IPGT;
1514 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1515 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1516 break;
1517 default:
1518 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1519 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1520 break;
1521 }
1522 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1523 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1524 ew32(TIPG, tipg);
1525
1526 /* Set the Tx Interrupt Delay register */
1527
1528 ew32(TIDV, adapter->tx_int_delay);
1529 if (hw->mac_type >= e1000_82540)
1530 ew32(TADV, adapter->tx_abs_int_delay);
1531
1532 /* Program the Transmit Control Register */
1533
1534 tctl = er32(TCTL);
1535 tctl &= ~E1000_TCTL_CT;
1536 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1537 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1538
1539 e1000_config_collision_dist(hw);
1540
1541 /* Setup Transmit Descriptor Settings for eop descriptor */
1542 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1543
1544 /* only set IDE if we are delaying interrupts using the timers */
1545 if (adapter->tx_int_delay)
1546 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1547
1548 if (hw->mac_type < e1000_82543)
1549 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1550 else
1551 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1552
1553 /* Cache if we're 82544 running in PCI-X because we'll
1554 * need this to apply a workaround later in the send path. */
1555 if (hw->mac_type == e1000_82544 &&
1556 hw->bus_type == e1000_bus_type_pcix)
1557 adapter->pcix_82544 = 1;
1558
1559 ew32(TCTL, tctl);
1560
1561 }
1562
1563 /**
1564 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1565 * @adapter: board private structure
1566 * @rxdr: rx descriptor ring (for a specific queue) to setup
1567 *
1568 * Returns 0 on success, negative on failure
1569 **/
1570
1571 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1572 struct e1000_rx_ring *rxdr)
1573 {
1574 struct pci_dev *pdev = adapter->pdev;
1575 int size, desc_len;
1576
1577 size = sizeof(struct e1000_buffer) * rxdr->count;
1578 rxdr->buffer_info = vmalloc(size);
1579 if (!rxdr->buffer_info) {
1580 DPRINTK(PROBE, ERR,
1581 "Unable to allocate memory for the receive descriptor ring\n");
1582 return -ENOMEM;
1583 }
1584 memset(rxdr->buffer_info, 0, size);
1585
1586 desc_len = sizeof(struct e1000_rx_desc);
1587
1588 /* Round up to nearest 4K */
1589
1590 rxdr->size = rxdr->count * desc_len;
1591 rxdr->size = ALIGN(rxdr->size, 4096);
1592
1593 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1594
1595 if (!rxdr->desc) {
1596 DPRINTK(PROBE, ERR,
1597 "Unable to allocate memory for the receive descriptor ring\n");
1598 setup_rx_desc_die:
1599 vfree(rxdr->buffer_info);
1600 return -ENOMEM;
1601 }
1602
1603 /* Fix for errata 23, can't cross 64kB boundary */
1604 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1605 void *olddesc = rxdr->desc;
1606 dma_addr_t olddma = rxdr->dma;
1607 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1608 "at %p\n", rxdr->size, rxdr->desc);
1609 /* Try again, without freeing the previous */
1610 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1611 /* Failed allocation, critical failure */
1612 if (!rxdr->desc) {
1613 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1614 DPRINTK(PROBE, ERR,
1615 "Unable to allocate memory "
1616 "for the receive descriptor ring\n");
1617 goto setup_rx_desc_die;
1618 }
1619
1620 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1621 /* give up */
1622 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1623 rxdr->dma);
1624 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1625 DPRINTK(PROBE, ERR,
1626 "Unable to allocate aligned memory "
1627 "for the receive descriptor ring\n");
1628 goto setup_rx_desc_die;
1629 } else {
1630 /* Free old allocation, new allocation was successful */
1631 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1632 }
1633 }
1634 memset(rxdr->desc, 0, rxdr->size);
1635
1636 rxdr->next_to_clean = 0;
1637 rxdr->next_to_use = 0;
1638 rxdr->rx_skb_top = NULL;
1639
1640 return 0;
1641 }
1642
1643 /**
1644 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1645 * (Descriptors) for all queues
1646 * @adapter: board private structure
1647 *
1648 * Return 0 on success, negative on failure
1649 **/
1650
1651 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1652 {
1653 int i, err = 0;
1654
1655 for (i = 0; i < adapter->num_rx_queues; i++) {
1656 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1657 if (err) {
1658 DPRINTK(PROBE, ERR,
1659 "Allocation for Rx Queue %u failed\n", i);
1660 for (i-- ; i >= 0; i--)
1661 e1000_free_rx_resources(adapter,
1662 &adapter->rx_ring[i]);
1663 break;
1664 }
1665 }
1666
1667 return err;
1668 }
1669
1670 /**
1671 * e1000_setup_rctl - configure the receive control registers
1672 * @adapter: Board private structure
1673 **/
1674 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1675 {
1676 struct e1000_hw *hw = &adapter->hw;
1677 u32 rctl;
1678
1679 rctl = er32(RCTL);
1680
1681 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1682
1683 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1684 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1685 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1686
1687 if (hw->tbi_compatibility_on == 1)
1688 rctl |= E1000_RCTL_SBP;
1689 else
1690 rctl &= ~E1000_RCTL_SBP;
1691
1692 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1693 rctl &= ~E1000_RCTL_LPE;
1694 else
1695 rctl |= E1000_RCTL_LPE;
1696
1697 /* Setup buffer sizes */
1698 rctl &= ~E1000_RCTL_SZ_4096;
1699 rctl |= E1000_RCTL_BSEX;
1700 switch (adapter->rx_buffer_len) {
1701 case E1000_RXBUFFER_256:
1702 rctl |= E1000_RCTL_SZ_256;
1703 rctl &= ~E1000_RCTL_BSEX;
1704 break;
1705 case E1000_RXBUFFER_512:
1706 rctl |= E1000_RCTL_SZ_512;
1707 rctl &= ~E1000_RCTL_BSEX;
1708 break;
1709 case E1000_RXBUFFER_1024:
1710 rctl |= E1000_RCTL_SZ_1024;
1711 rctl &= ~E1000_RCTL_BSEX;
1712 break;
1713 case E1000_RXBUFFER_2048:
1714 default:
1715 rctl |= E1000_RCTL_SZ_2048;
1716 rctl &= ~E1000_RCTL_BSEX;
1717 break;
1718 case E1000_RXBUFFER_4096:
1719 rctl |= E1000_RCTL_SZ_4096;
1720 break;
1721 case E1000_RXBUFFER_8192:
1722 rctl |= E1000_RCTL_SZ_8192;
1723 break;
1724 case E1000_RXBUFFER_16384:
1725 rctl |= E1000_RCTL_SZ_16384;
1726 break;
1727 }
1728
1729 ew32(RCTL, rctl);
1730 }
1731
1732 /**
1733 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1734 * @adapter: board private structure
1735 *
1736 * Configure the Rx unit of the MAC after a reset.
1737 **/
1738
1739 static void e1000_configure_rx(struct e1000_adapter *adapter)
1740 {
1741 u64 rdba;
1742 struct e1000_hw *hw = &adapter->hw;
1743 u32 rdlen, rctl, rxcsum;
1744
1745 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1746 rdlen = adapter->rx_ring[0].count *
1747 sizeof(struct e1000_rx_desc);
1748 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1749 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1750 } else {
1751 rdlen = adapter->rx_ring[0].count *
1752 sizeof(struct e1000_rx_desc);
1753 adapter->clean_rx = e1000_clean_rx_irq;
1754 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1755 }
1756
1757 /* disable receives while setting up the descriptors */
1758 rctl = er32(RCTL);
1759 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1760
1761 /* set the Receive Delay Timer Register */
1762 ew32(RDTR, adapter->rx_int_delay);
1763
1764 if (hw->mac_type >= e1000_82540) {
1765 ew32(RADV, adapter->rx_abs_int_delay);
1766 if (adapter->itr_setting != 0)
1767 ew32(ITR, 1000000000 / (adapter->itr * 256));
1768 }
1769
1770 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1771 * the Base and Length of the Rx Descriptor Ring */
1772 switch (adapter->num_rx_queues) {
1773 case 1:
1774 default:
1775 rdba = adapter->rx_ring[0].dma;
1776 ew32(RDLEN, rdlen);
1777 ew32(RDBAH, (rdba >> 32));
1778 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1779 ew32(RDT, 0);
1780 ew32(RDH, 0);
1781 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1782 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1783 break;
1784 }
1785
1786 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1787 if (hw->mac_type >= e1000_82543) {
1788 rxcsum = er32(RXCSUM);
1789 if (adapter->rx_csum)
1790 rxcsum |= E1000_RXCSUM_TUOFL;
1791 else
1792 /* don't need to clear IPPCSE as it defaults to 0 */
1793 rxcsum &= ~E1000_RXCSUM_TUOFL;
1794 ew32(RXCSUM, rxcsum);
1795 }
1796
1797 /* Enable Receives */
1798 ew32(RCTL, rctl);
1799 }
1800
1801 /**
1802 * e1000_free_tx_resources - Free Tx Resources per Queue
1803 * @adapter: board private structure
1804 * @tx_ring: Tx descriptor ring for a specific queue
1805 *
1806 * Free all transmit software resources
1807 **/
1808
1809 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1810 struct e1000_tx_ring *tx_ring)
1811 {
1812 struct pci_dev *pdev = adapter->pdev;
1813
1814 e1000_clean_tx_ring(adapter, tx_ring);
1815
1816 vfree(tx_ring->buffer_info);
1817 tx_ring->buffer_info = NULL;
1818
1819 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1820
1821 tx_ring->desc = NULL;
1822 }
1823
1824 /**
1825 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1826 * @adapter: board private structure
1827 *
1828 * Free all transmit software resources
1829 **/
1830
1831 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1832 {
1833 int i;
1834
1835 for (i = 0; i < adapter->num_tx_queues; i++)
1836 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1837 }
1838
1839 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1840 struct e1000_buffer *buffer_info)
1841 {
1842 buffer_info->dma = 0;
1843 if (buffer_info->skb) {
1844 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
1845 DMA_TO_DEVICE);
1846 dev_kfree_skb_any(buffer_info->skb);
1847 buffer_info->skb = NULL;
1848 }
1849 buffer_info->time_stamp = 0;
1850 /* buffer_info must be completely set up in the transmit path */
1851 }
1852
1853 /**
1854 * e1000_clean_tx_ring - Free Tx Buffers
1855 * @adapter: board private structure
1856 * @tx_ring: ring to be cleaned
1857 **/
1858
1859 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1860 struct e1000_tx_ring *tx_ring)
1861 {
1862 struct e1000_hw *hw = &adapter->hw;
1863 struct e1000_buffer *buffer_info;
1864 unsigned long size;
1865 unsigned int i;
1866
1867 /* Free all the Tx ring sk_buffs */
1868
1869 for (i = 0; i < tx_ring->count; i++) {
1870 buffer_info = &tx_ring->buffer_info[i];
1871 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1872 }
1873
1874 size = sizeof(struct e1000_buffer) * tx_ring->count;
1875 memset(tx_ring->buffer_info, 0, size);
1876
1877 /* Zero out the descriptor ring */
1878
1879 memset(tx_ring->desc, 0, tx_ring->size);
1880
1881 tx_ring->next_to_use = 0;
1882 tx_ring->next_to_clean = 0;
1883 tx_ring->last_tx_tso = 0;
1884
1885 writel(0, hw->hw_addr + tx_ring->tdh);
1886 writel(0, hw->hw_addr + tx_ring->tdt);
1887 }
1888
1889 /**
1890 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1891 * @adapter: board private structure
1892 **/
1893
1894 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1895 {
1896 int i;
1897
1898 for (i = 0; i < adapter->num_tx_queues; i++)
1899 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1900 }
1901
1902 /**
1903 * e1000_free_rx_resources - Free Rx Resources
1904 * @adapter: board private structure
1905 * @rx_ring: ring to clean the resources from
1906 *
1907 * Free all receive software resources
1908 **/
1909
1910 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1911 struct e1000_rx_ring *rx_ring)
1912 {
1913 struct pci_dev *pdev = adapter->pdev;
1914
1915 e1000_clean_rx_ring(adapter, rx_ring);
1916
1917 vfree(rx_ring->buffer_info);
1918 rx_ring->buffer_info = NULL;
1919
1920 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1921
1922 rx_ring->desc = NULL;
1923 }
1924
1925 /**
1926 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1927 * @adapter: board private structure
1928 *
1929 * Free all receive software resources
1930 **/
1931
1932 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1933 {
1934 int i;
1935
1936 for (i = 0; i < adapter->num_rx_queues; i++)
1937 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1938 }
1939
1940 /**
1941 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1942 * @adapter: board private structure
1943 * @rx_ring: ring to free buffers from
1944 **/
1945
1946 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1947 struct e1000_rx_ring *rx_ring)
1948 {
1949 struct e1000_hw *hw = &adapter->hw;
1950 struct e1000_buffer *buffer_info;
1951 struct pci_dev *pdev = adapter->pdev;
1952 unsigned long size;
1953 unsigned int i;
1954
1955 /* Free all the Rx ring sk_buffs */
1956 for (i = 0; i < rx_ring->count; i++) {
1957 buffer_info = &rx_ring->buffer_info[i];
1958 if (buffer_info->dma &&
1959 adapter->clean_rx == e1000_clean_rx_irq) {
1960 pci_unmap_single(pdev, buffer_info->dma,
1961 buffer_info->length,
1962 PCI_DMA_FROMDEVICE);
1963 } else if (buffer_info->dma &&
1964 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
1965 pci_unmap_page(pdev, buffer_info->dma,
1966 buffer_info->length,
1967 PCI_DMA_FROMDEVICE);
1968 }
1969
1970 buffer_info->dma = 0;
1971 if (buffer_info->page) {
1972 put_page(buffer_info->page);
1973 buffer_info->page = NULL;
1974 }
1975 if (buffer_info->skb) {
1976 dev_kfree_skb(buffer_info->skb);
1977 buffer_info->skb = NULL;
1978 }
1979 }
1980
1981 /* there also may be some cached data from a chained receive */
1982 if (rx_ring->rx_skb_top) {
1983 dev_kfree_skb(rx_ring->rx_skb_top);
1984 rx_ring->rx_skb_top = NULL;
1985 }
1986
1987 size = sizeof(struct e1000_buffer) * rx_ring->count;
1988 memset(rx_ring->buffer_info, 0, size);
1989
1990 /* Zero out the descriptor ring */
1991 memset(rx_ring->desc, 0, rx_ring->size);
1992
1993 rx_ring->next_to_clean = 0;
1994 rx_ring->next_to_use = 0;
1995
1996 writel(0, hw->hw_addr + rx_ring->rdh);
1997 writel(0, hw->hw_addr + rx_ring->rdt);
1998 }
1999
2000 /**
2001 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2002 * @adapter: board private structure
2003 **/
2004
2005 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2006 {
2007 int i;
2008
2009 for (i = 0; i < adapter->num_rx_queues; i++)
2010 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2011 }
2012
2013 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2014 * and memory write and invalidate disabled for certain operations
2015 */
2016 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2017 {
2018 struct e1000_hw *hw = &adapter->hw;
2019 struct net_device *netdev = adapter->netdev;
2020 u32 rctl;
2021
2022 e1000_pci_clear_mwi(hw);
2023
2024 rctl = er32(RCTL);
2025 rctl |= E1000_RCTL_RST;
2026 ew32(RCTL, rctl);
2027 E1000_WRITE_FLUSH();
2028 mdelay(5);
2029
2030 if (netif_running(netdev))
2031 e1000_clean_all_rx_rings(adapter);
2032 }
2033
2034 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2035 {
2036 struct e1000_hw *hw = &adapter->hw;
2037 struct net_device *netdev = adapter->netdev;
2038 u32 rctl;
2039
2040 rctl = er32(RCTL);
2041 rctl &= ~E1000_RCTL_RST;
2042 ew32(RCTL, rctl);
2043 E1000_WRITE_FLUSH();
2044 mdelay(5);
2045
2046 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2047 e1000_pci_set_mwi(hw);
2048
2049 if (netif_running(netdev)) {
2050 /* No need to loop, because 82542 supports only 1 queue */
2051 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2052 e1000_configure_rx(adapter);
2053 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2054 }
2055 }
2056
2057 /**
2058 * e1000_set_mac - Change the Ethernet Address of the NIC
2059 * @netdev: network interface device structure
2060 * @p: pointer to an address structure
2061 *
2062 * Returns 0 on success, negative on failure
2063 **/
2064
2065 static int e1000_set_mac(struct net_device *netdev, void *p)
2066 {
2067 struct e1000_adapter *adapter = netdev_priv(netdev);
2068 struct e1000_hw *hw = &adapter->hw;
2069 struct sockaddr *addr = p;
2070
2071 if (!is_valid_ether_addr(addr->sa_data))
2072 return -EADDRNOTAVAIL;
2073
2074 /* 82542 2.0 needs to be in reset to write receive address registers */
2075
2076 if (hw->mac_type == e1000_82542_rev2_0)
2077 e1000_enter_82542_rst(adapter);
2078
2079 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2080 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2081
2082 e1000_rar_set(hw, hw->mac_addr, 0);
2083
2084 if (hw->mac_type == e1000_82542_rev2_0)
2085 e1000_leave_82542_rst(adapter);
2086
2087 return 0;
2088 }
2089
2090 /**
2091 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2092 * @netdev: network interface device structure
2093 *
2094 * The set_rx_mode entry point is called whenever the unicast or multicast
2095 * address lists or the network interface flags are updated. This routine is
2096 * responsible for configuring the hardware for proper unicast, multicast,
2097 * promiscuous mode, and all-multi behavior.
2098 **/
2099
2100 static void e1000_set_rx_mode(struct net_device *netdev)
2101 {
2102 struct e1000_adapter *adapter = netdev_priv(netdev);
2103 struct e1000_hw *hw = &adapter->hw;
2104 struct netdev_hw_addr *ha;
2105 bool use_uc = false;
2106 struct dev_addr_list *mc_ptr;
2107 u32 rctl;
2108 u32 hash_value;
2109 int i, rar_entries = E1000_RAR_ENTRIES;
2110 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2111 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2112
2113 if (!mcarray) {
2114 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2115 return;
2116 }
2117
2118 /* Check for Promiscuous and All Multicast modes */
2119
2120 rctl = er32(RCTL);
2121
2122 if (netdev->flags & IFF_PROMISC) {
2123 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2124 rctl &= ~E1000_RCTL_VFE;
2125 } else {
2126 if (netdev->flags & IFF_ALLMULTI)
2127 rctl |= E1000_RCTL_MPE;
2128 else
2129 rctl &= ~E1000_RCTL_MPE;
2130 /* Enable VLAN filter if there is a VLAN */
2131 if (adapter->vlgrp)
2132 rctl |= E1000_RCTL_VFE;
2133 }
2134
2135 if (netdev->uc.count > rar_entries - 1) {
2136 rctl |= E1000_RCTL_UPE;
2137 } else if (!(netdev->flags & IFF_PROMISC)) {
2138 rctl &= ~E1000_RCTL_UPE;
2139 use_uc = true;
2140 }
2141
2142 ew32(RCTL, rctl);
2143
2144 /* 82542 2.0 needs to be in reset to write receive address registers */
2145
2146 if (hw->mac_type == e1000_82542_rev2_0)
2147 e1000_enter_82542_rst(adapter);
2148
2149 /* load the first 14 addresses into the exact filters 1-14. Unicast
2150 * addresses take precedence to avoid disabling unicast filtering
2151 * when possible.
2152 *
2153 * RAR 0 is used for the station MAC adddress
2154 * if there are not 14 addresses, go ahead and clear the filters
2155 */
2156 i = 1;
2157 if (use_uc)
2158 list_for_each_entry(ha, &netdev->uc.list, list) {
2159 if (i == rar_entries)
2160 break;
2161 e1000_rar_set(hw, ha->addr, i++);
2162 }
2163
2164 WARN_ON(i == rar_entries);
2165
2166 mc_ptr = netdev->mc_list;
2167
2168 for (; i < rar_entries; i++) {
2169 if (mc_ptr) {
2170 e1000_rar_set(hw, mc_ptr->da_addr, i);
2171 mc_ptr = mc_ptr->next;
2172 } else {
2173 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2174 E1000_WRITE_FLUSH();
2175 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2176 E1000_WRITE_FLUSH();
2177 }
2178 }
2179
2180 /* load any remaining addresses into the hash table */
2181
2182 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2183 u32 hash_reg, hash_bit, mta;
2184 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2185 hash_reg = (hash_value >> 5) & 0x7F;
2186 hash_bit = hash_value & 0x1F;
2187 mta = (1 << hash_bit);
2188 mcarray[hash_reg] |= mta;
2189 }
2190
2191 /* write the hash table completely, write from bottom to avoid
2192 * both stupid write combining chipsets, and flushing each write */
2193 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2194 /*
2195 * If we are on an 82544 has an errata where writing odd
2196 * offsets overwrites the previous even offset, but writing
2197 * backwards over the range solves the issue by always
2198 * writing the odd offset first
2199 */
2200 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2201 }
2202 E1000_WRITE_FLUSH();
2203
2204 if (hw->mac_type == e1000_82542_rev2_0)
2205 e1000_leave_82542_rst(adapter);
2206
2207 kfree(mcarray);
2208 }
2209
2210 /* Need to wait a few seconds after link up to get diagnostic information from
2211 * the phy */
2212
2213 static void e1000_update_phy_info(unsigned long data)
2214 {
2215 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2216 struct e1000_hw *hw = &adapter->hw;
2217 e1000_phy_get_info(hw, &adapter->phy_info);
2218 }
2219
2220 /**
2221 * e1000_82547_tx_fifo_stall - Timer Call-back
2222 * @data: pointer to adapter cast into an unsigned long
2223 **/
2224
2225 static void e1000_82547_tx_fifo_stall(unsigned long data)
2226 {
2227 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2228 struct e1000_hw *hw = &adapter->hw;
2229 struct net_device *netdev = adapter->netdev;
2230 u32 tctl;
2231
2232 if (atomic_read(&adapter->tx_fifo_stall)) {
2233 if ((er32(TDT) == er32(TDH)) &&
2234 (er32(TDFT) == er32(TDFH)) &&
2235 (er32(TDFTS) == er32(TDFHS))) {
2236 tctl = er32(TCTL);
2237 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2238 ew32(TDFT, adapter->tx_head_addr);
2239 ew32(TDFH, adapter->tx_head_addr);
2240 ew32(TDFTS, adapter->tx_head_addr);
2241 ew32(TDFHS, adapter->tx_head_addr);
2242 ew32(TCTL, tctl);
2243 E1000_WRITE_FLUSH();
2244
2245 adapter->tx_fifo_head = 0;
2246 atomic_set(&adapter->tx_fifo_stall, 0);
2247 netif_wake_queue(netdev);
2248 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2249 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2250 }
2251 }
2252 }
2253
2254 static bool e1000_has_link(struct e1000_adapter *adapter)
2255 {
2256 struct e1000_hw *hw = &adapter->hw;
2257 bool link_active = false;
2258
2259 /* get_link_status is set on LSC (link status) interrupt or
2260 * rx sequence error interrupt. get_link_status will stay
2261 * false until the e1000_check_for_link establishes link
2262 * for copper adapters ONLY
2263 */
2264 switch (hw->media_type) {
2265 case e1000_media_type_copper:
2266 if (hw->get_link_status) {
2267 e1000_check_for_link(hw);
2268 link_active = !hw->get_link_status;
2269 } else {
2270 link_active = true;
2271 }
2272 break;
2273 case e1000_media_type_fiber:
2274 e1000_check_for_link(hw);
2275 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2276 break;
2277 case e1000_media_type_internal_serdes:
2278 e1000_check_for_link(hw);
2279 link_active = hw->serdes_has_link;
2280 break;
2281 default:
2282 break;
2283 }
2284
2285 return link_active;
2286 }
2287
2288 /**
2289 * e1000_watchdog - Timer Call-back
2290 * @data: pointer to adapter cast into an unsigned long
2291 **/
2292 static void e1000_watchdog(unsigned long data)
2293 {
2294 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2295 struct e1000_hw *hw = &adapter->hw;
2296 struct net_device *netdev = adapter->netdev;
2297 struct e1000_tx_ring *txdr = adapter->tx_ring;
2298 u32 link, tctl;
2299
2300 link = e1000_has_link(adapter);
2301 if ((netif_carrier_ok(netdev)) && link)
2302 goto link_up;
2303
2304 if (link) {
2305 if (!netif_carrier_ok(netdev)) {
2306 u32 ctrl;
2307 bool txb2b = true;
2308 /* update snapshot of PHY registers on LSC */
2309 e1000_get_speed_and_duplex(hw,
2310 &adapter->link_speed,
2311 &adapter->link_duplex);
2312
2313 ctrl = er32(CTRL);
2314 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2315 "Flow Control: %s\n",
2316 netdev->name,
2317 adapter->link_speed,
2318 adapter->link_duplex == FULL_DUPLEX ?
2319 "Full Duplex" : "Half Duplex",
2320 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2321 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2322 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2323 E1000_CTRL_TFCE) ? "TX" : "None" )));
2324
2325 /* tweak tx_queue_len according to speed/duplex
2326 * and adjust the timeout factor */
2327 netdev->tx_queue_len = adapter->tx_queue_len;
2328 adapter->tx_timeout_factor = 1;
2329 switch (adapter->link_speed) {
2330 case SPEED_10:
2331 txb2b = false;
2332 netdev->tx_queue_len = 10;
2333 adapter->tx_timeout_factor = 16;
2334 break;
2335 case SPEED_100:
2336 txb2b = false;
2337 netdev->tx_queue_len = 100;
2338 /* maybe add some timeout factor ? */
2339 break;
2340 }
2341
2342 /* enable transmits in the hardware */
2343 tctl = er32(TCTL);
2344 tctl |= E1000_TCTL_EN;
2345 ew32(TCTL, tctl);
2346
2347 netif_carrier_on(netdev);
2348 if (!test_bit(__E1000_DOWN, &adapter->flags))
2349 mod_timer(&adapter->phy_info_timer,
2350 round_jiffies(jiffies + 2 * HZ));
2351 adapter->smartspeed = 0;
2352 }
2353 } else {
2354 if (netif_carrier_ok(netdev)) {
2355 adapter->link_speed = 0;
2356 adapter->link_duplex = 0;
2357 printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2358 netdev->name);
2359 netif_carrier_off(netdev);
2360
2361 if (!test_bit(__E1000_DOWN, &adapter->flags))
2362 mod_timer(&adapter->phy_info_timer,
2363 round_jiffies(jiffies + 2 * HZ));
2364 }
2365
2366 e1000_smartspeed(adapter);
2367 }
2368
2369 link_up:
2370 e1000_update_stats(adapter);
2371
2372 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2373 adapter->tpt_old = adapter->stats.tpt;
2374 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2375 adapter->colc_old = adapter->stats.colc;
2376
2377 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2378 adapter->gorcl_old = adapter->stats.gorcl;
2379 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2380 adapter->gotcl_old = adapter->stats.gotcl;
2381
2382 e1000_update_adaptive(hw);
2383
2384 if (!netif_carrier_ok(netdev)) {
2385 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2386 /* We've lost link, so the controller stops DMA,
2387 * but we've got queued Tx work that's never going
2388 * to get done, so reset controller to flush Tx.
2389 * (Do the reset outside of interrupt context). */
2390 adapter->tx_timeout_count++;
2391 schedule_work(&adapter->reset_task);
2392 /* return immediately since reset is imminent */
2393 return;
2394 }
2395 }
2396
2397 /* Cause software interrupt to ensure rx ring is cleaned */
2398 ew32(ICS, E1000_ICS_RXDMT0);
2399
2400 /* Force detection of hung controller every watchdog period */
2401 adapter->detect_tx_hung = true;
2402
2403 /* Reset the timer */
2404 if (!test_bit(__E1000_DOWN, &adapter->flags))
2405 mod_timer(&adapter->watchdog_timer,
2406 round_jiffies(jiffies + 2 * HZ));
2407 }
2408
2409 enum latency_range {
2410 lowest_latency = 0,
2411 low_latency = 1,
2412 bulk_latency = 2,
2413 latency_invalid = 255
2414 };
2415
2416 /**
2417 * e1000_update_itr - update the dynamic ITR value based on statistics
2418 * @adapter: pointer to adapter
2419 * @itr_setting: current adapter->itr
2420 * @packets: the number of packets during this measurement interval
2421 * @bytes: the number of bytes during this measurement interval
2422 *
2423 * Stores a new ITR value based on packets and byte
2424 * counts during the last interrupt. The advantage of per interrupt
2425 * computation is faster updates and more accurate ITR for the current
2426 * traffic pattern. Constants in this function were computed
2427 * based on theoretical maximum wire speed and thresholds were set based
2428 * on testing data as well as attempting to minimize response time
2429 * while increasing bulk throughput.
2430 * this functionality is controlled by the InterruptThrottleRate module
2431 * parameter (see e1000_param.c)
2432 **/
2433 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2434 u16 itr_setting, int packets, int bytes)
2435 {
2436 unsigned int retval = itr_setting;
2437 struct e1000_hw *hw = &adapter->hw;
2438
2439 if (unlikely(hw->mac_type < e1000_82540))
2440 goto update_itr_done;
2441
2442 if (packets == 0)
2443 goto update_itr_done;
2444
2445 switch (itr_setting) {
2446 case lowest_latency:
2447 /* jumbo frames get bulk treatment*/
2448 if (bytes/packets > 8000)
2449 retval = bulk_latency;
2450 else if ((packets < 5) && (bytes > 512))
2451 retval = low_latency;
2452 break;
2453 case low_latency: /* 50 usec aka 20000 ints/s */
2454 if (bytes > 10000) {
2455 /* jumbo frames need bulk latency setting */
2456 if (bytes/packets > 8000)
2457 retval = bulk_latency;
2458 else if ((packets < 10) || ((bytes/packets) > 1200))
2459 retval = bulk_latency;
2460 else if ((packets > 35))
2461 retval = lowest_latency;
2462 } else if (bytes/packets > 2000)
2463 retval = bulk_latency;
2464 else if (packets <= 2 && bytes < 512)
2465 retval = lowest_latency;
2466 break;
2467 case bulk_latency: /* 250 usec aka 4000 ints/s */
2468 if (bytes > 25000) {
2469 if (packets > 35)
2470 retval = low_latency;
2471 } else if (bytes < 6000) {
2472 retval = low_latency;
2473 }
2474 break;
2475 }
2476
2477 update_itr_done:
2478 return retval;
2479 }
2480
2481 static void e1000_set_itr(struct e1000_adapter *adapter)
2482 {
2483 struct e1000_hw *hw = &adapter->hw;
2484 u16 current_itr;
2485 u32 new_itr = adapter->itr;
2486
2487 if (unlikely(hw->mac_type < e1000_82540))
2488 return;
2489
2490 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2491 if (unlikely(adapter->link_speed != SPEED_1000)) {
2492 current_itr = 0;
2493 new_itr = 4000;
2494 goto set_itr_now;
2495 }
2496
2497 adapter->tx_itr = e1000_update_itr(adapter,
2498 adapter->tx_itr,
2499 adapter->total_tx_packets,
2500 adapter->total_tx_bytes);
2501 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2502 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2503 adapter->tx_itr = low_latency;
2504
2505 adapter->rx_itr = e1000_update_itr(adapter,
2506 adapter->rx_itr,
2507 adapter->total_rx_packets,
2508 adapter->total_rx_bytes);
2509 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2510 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2511 adapter->rx_itr = low_latency;
2512
2513 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2514
2515 switch (current_itr) {
2516 /* counts and packets in update_itr are dependent on these numbers */
2517 case lowest_latency:
2518 new_itr = 70000;
2519 break;
2520 case low_latency:
2521 new_itr = 20000; /* aka hwitr = ~200 */
2522 break;
2523 case bulk_latency:
2524 new_itr = 4000;
2525 break;
2526 default:
2527 break;
2528 }
2529
2530 set_itr_now:
2531 if (new_itr != adapter->itr) {
2532 /* this attempts to bias the interrupt rate towards Bulk
2533 * by adding intermediate steps when interrupt rate is
2534 * increasing */
2535 new_itr = new_itr > adapter->itr ?
2536 min(adapter->itr + (new_itr >> 2), new_itr) :
2537 new_itr;
2538 adapter->itr = new_itr;
2539 ew32(ITR, 1000000000 / (new_itr * 256));
2540 }
2541
2542 return;
2543 }
2544
2545 #define E1000_TX_FLAGS_CSUM 0x00000001
2546 #define E1000_TX_FLAGS_VLAN 0x00000002
2547 #define E1000_TX_FLAGS_TSO 0x00000004
2548 #define E1000_TX_FLAGS_IPV4 0x00000008
2549 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2550 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2551
2552 static int e1000_tso(struct e1000_adapter *adapter,
2553 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2554 {
2555 struct e1000_context_desc *context_desc;
2556 struct e1000_buffer *buffer_info;
2557 unsigned int i;
2558 u32 cmd_length = 0;
2559 u16 ipcse = 0, tucse, mss;
2560 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2561 int err;
2562
2563 if (skb_is_gso(skb)) {
2564 if (skb_header_cloned(skb)) {
2565 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2566 if (err)
2567 return err;
2568 }
2569
2570 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2571 mss = skb_shinfo(skb)->gso_size;
2572 if (skb->protocol == htons(ETH_P_IP)) {
2573 struct iphdr *iph = ip_hdr(skb);
2574 iph->tot_len = 0;
2575 iph->check = 0;
2576 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2577 iph->daddr, 0,
2578 IPPROTO_TCP,
2579 0);
2580 cmd_length = E1000_TXD_CMD_IP;
2581 ipcse = skb_transport_offset(skb) - 1;
2582 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2583 ipv6_hdr(skb)->payload_len = 0;
2584 tcp_hdr(skb)->check =
2585 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2586 &ipv6_hdr(skb)->daddr,
2587 0, IPPROTO_TCP, 0);
2588 ipcse = 0;
2589 }
2590 ipcss = skb_network_offset(skb);
2591 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2592 tucss = skb_transport_offset(skb);
2593 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2594 tucse = 0;
2595
2596 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2597 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2598
2599 i = tx_ring->next_to_use;
2600 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2601 buffer_info = &tx_ring->buffer_info[i];
2602
2603 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2604 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2605 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2606 context_desc->upper_setup.tcp_fields.tucss = tucss;
2607 context_desc->upper_setup.tcp_fields.tucso = tucso;
2608 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2609 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2610 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2611 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2612
2613 buffer_info->time_stamp = jiffies;
2614 buffer_info->next_to_watch = i;
2615
2616 if (++i == tx_ring->count) i = 0;
2617 tx_ring->next_to_use = i;
2618
2619 return true;
2620 }
2621 return false;
2622 }
2623
2624 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2625 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2626 {
2627 struct e1000_context_desc *context_desc;
2628 struct e1000_buffer *buffer_info;
2629 unsigned int i;
2630 u8 css;
2631 u32 cmd_len = E1000_TXD_CMD_DEXT;
2632
2633 if (skb->ip_summed != CHECKSUM_PARTIAL)
2634 return false;
2635
2636 switch (skb->protocol) {
2637 case cpu_to_be16(ETH_P_IP):
2638 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2639 cmd_len |= E1000_TXD_CMD_TCP;
2640 break;
2641 case cpu_to_be16(ETH_P_IPV6):
2642 /* XXX not handling all IPV6 headers */
2643 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2644 cmd_len |= E1000_TXD_CMD_TCP;
2645 break;
2646 default:
2647 if (unlikely(net_ratelimit()))
2648 DPRINTK(DRV, WARNING,
2649 "checksum_partial proto=%x!\n", skb->protocol);
2650 break;
2651 }
2652
2653 css = skb_transport_offset(skb);
2654
2655 i = tx_ring->next_to_use;
2656 buffer_info = &tx_ring->buffer_info[i];
2657 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2658
2659 context_desc->lower_setup.ip_config = 0;
2660 context_desc->upper_setup.tcp_fields.tucss = css;
2661 context_desc->upper_setup.tcp_fields.tucso =
2662 css + skb->csum_offset;
2663 context_desc->upper_setup.tcp_fields.tucse = 0;
2664 context_desc->tcp_seg_setup.data = 0;
2665 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2666
2667 buffer_info->time_stamp = jiffies;
2668 buffer_info->next_to_watch = i;
2669
2670 if (unlikely(++i == tx_ring->count)) i = 0;
2671 tx_ring->next_to_use = i;
2672
2673 return true;
2674 }
2675
2676 #define E1000_MAX_TXD_PWR 12
2677 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2678
2679 static int e1000_tx_map(struct e1000_adapter *adapter,
2680 struct e1000_tx_ring *tx_ring,
2681 struct sk_buff *skb, unsigned int first,
2682 unsigned int max_per_txd, unsigned int nr_frags,
2683 unsigned int mss)
2684 {
2685 struct e1000_hw *hw = &adapter->hw;
2686 struct e1000_buffer *buffer_info;
2687 unsigned int len = skb_headlen(skb);
2688 unsigned int offset, size, count = 0, i;
2689 unsigned int f;
2690 dma_addr_t *map;
2691
2692 i = tx_ring->next_to_use;
2693
2694 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2695 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2696 return 0;
2697 }
2698
2699 map = skb_shinfo(skb)->dma_maps;
2700 offset = 0;
2701
2702 while (len) {
2703 buffer_info = &tx_ring->buffer_info[i];
2704 size = min(len, max_per_txd);
2705 /* Workaround for Controller erratum --
2706 * descriptor for non-tso packet in a linear SKB that follows a
2707 * tso gets written back prematurely before the data is fully
2708 * DMA'd to the controller */
2709 if (!skb->data_len && tx_ring->last_tx_tso &&
2710 !skb_is_gso(skb)) {
2711 tx_ring->last_tx_tso = 0;
2712 size -= 4;
2713 }
2714
2715 /* Workaround for premature desc write-backs
2716 * in TSO mode. Append 4-byte sentinel desc */
2717 if (unlikely(mss && !nr_frags && size == len && size > 8))
2718 size -= 4;
2719 /* work-around for errata 10 and it applies
2720 * to all controllers in PCI-X mode
2721 * The fix is to make sure that the first descriptor of a
2722 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2723 */
2724 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2725 (size > 2015) && count == 0))
2726 size = 2015;
2727
2728 /* Workaround for potential 82544 hang in PCI-X. Avoid
2729 * terminating buffers within evenly-aligned dwords. */
2730 if (unlikely(adapter->pcix_82544 &&
2731 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2732 size > 4))
2733 size -= 4;
2734
2735 buffer_info->length = size;
2736 /* set time_stamp *before* dma to help avoid a possible race */
2737 buffer_info->time_stamp = jiffies;
2738 buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
2739 buffer_info->next_to_watch = i;
2740
2741 len -= size;
2742 offset += size;
2743 count++;
2744 if (len) {
2745 i++;
2746 if (unlikely(i == tx_ring->count))
2747 i = 0;
2748 }
2749 }
2750
2751 for (f = 0; f < nr_frags; f++) {
2752 struct skb_frag_struct *frag;
2753
2754 frag = &skb_shinfo(skb)->frags[f];
2755 len = frag->size;
2756 offset = 0;
2757
2758 while (len) {
2759 i++;
2760 if (unlikely(i == tx_ring->count))
2761 i = 0;
2762
2763 buffer_info = &tx_ring->buffer_info[i];
2764 size = min(len, max_per_txd);
2765 /* Workaround for premature desc write-backs
2766 * in TSO mode. Append 4-byte sentinel desc */
2767 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2768 size -= 4;
2769 /* Workaround for potential 82544 hang in PCI-X.
2770 * Avoid terminating buffers within evenly-aligned
2771 * dwords. */
2772 if (unlikely(adapter->pcix_82544 &&
2773 !((unsigned long)(page_to_phys(frag->page) + offset
2774 + size - 1) & 4) &&
2775 size > 4))
2776 size -= 4;
2777
2778 buffer_info->length = size;
2779 buffer_info->time_stamp = jiffies;
2780 buffer_info->dma = map[f] + offset;
2781 buffer_info->next_to_watch = i;
2782
2783 len -= size;
2784 offset += size;
2785 count++;
2786 }
2787 }
2788
2789 tx_ring->buffer_info[i].skb = skb;
2790 tx_ring->buffer_info[first].next_to_watch = i;
2791
2792 return count;
2793 }
2794
2795 static void e1000_tx_queue(struct e1000_adapter *adapter,
2796 struct e1000_tx_ring *tx_ring, int tx_flags,
2797 int count)
2798 {
2799 struct e1000_hw *hw = &adapter->hw;
2800 struct e1000_tx_desc *tx_desc = NULL;
2801 struct e1000_buffer *buffer_info;
2802 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2803 unsigned int i;
2804
2805 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2806 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2807 E1000_TXD_CMD_TSE;
2808 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2809
2810 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2811 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2812 }
2813
2814 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2815 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2816 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2817 }
2818
2819 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2820 txd_lower |= E1000_TXD_CMD_VLE;
2821 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2822 }
2823
2824 i = tx_ring->next_to_use;
2825
2826 while (count--) {
2827 buffer_info = &tx_ring->buffer_info[i];
2828 tx_desc = E1000_TX_DESC(*tx_ring, i);
2829 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2830 tx_desc->lower.data =
2831 cpu_to_le32(txd_lower | buffer_info->length);
2832 tx_desc->upper.data = cpu_to_le32(txd_upper);
2833 if (unlikely(++i == tx_ring->count)) i = 0;
2834 }
2835
2836 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2837
2838 /* Force memory writes to complete before letting h/w
2839 * know there are new descriptors to fetch. (Only
2840 * applicable for weak-ordered memory model archs,
2841 * such as IA-64). */
2842 wmb();
2843
2844 tx_ring->next_to_use = i;
2845 writel(i, hw->hw_addr + tx_ring->tdt);
2846 /* we need this if more than one processor can write to our tail
2847 * at a time, it syncronizes IO on IA64/Altix systems */
2848 mmiowb();
2849 }
2850
2851 /**
2852 * 82547 workaround to avoid controller hang in half-duplex environment.
2853 * The workaround is to avoid queuing a large packet that would span
2854 * the internal Tx FIFO ring boundary by notifying the stack to resend
2855 * the packet at a later time. This gives the Tx FIFO an opportunity to
2856 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2857 * to the beginning of the Tx FIFO.
2858 **/
2859
2860 #define E1000_FIFO_HDR 0x10
2861 #define E1000_82547_PAD_LEN 0x3E0
2862
2863 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2864 struct sk_buff *skb)
2865 {
2866 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2867 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2868
2869 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2870
2871 if (adapter->link_duplex != HALF_DUPLEX)
2872 goto no_fifo_stall_required;
2873
2874 if (atomic_read(&adapter->tx_fifo_stall))
2875 return 1;
2876
2877 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2878 atomic_set(&adapter->tx_fifo_stall, 1);
2879 return 1;
2880 }
2881
2882 no_fifo_stall_required:
2883 adapter->tx_fifo_head += skb_fifo_len;
2884 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2885 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2886 return 0;
2887 }
2888
2889 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2890 {
2891 struct e1000_adapter *adapter = netdev_priv(netdev);
2892 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2893
2894 netif_stop_queue(netdev);
2895 /* Herbert's original patch had:
2896 * smp_mb__after_netif_stop_queue();
2897 * but since that doesn't exist yet, just open code it. */
2898 smp_mb();
2899
2900 /* We need to check again in a case another CPU has just
2901 * made room available. */
2902 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2903 return -EBUSY;
2904
2905 /* A reprieve! */
2906 netif_start_queue(netdev);
2907 ++adapter->restart_queue;
2908 return 0;
2909 }
2910
2911 static int e1000_maybe_stop_tx(struct net_device *netdev,
2912 struct e1000_tx_ring *tx_ring, int size)
2913 {
2914 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2915 return 0;
2916 return __e1000_maybe_stop_tx(netdev, size);
2917 }
2918
2919 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2920 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
2921 struct net_device *netdev)
2922 {
2923 struct e1000_adapter *adapter = netdev_priv(netdev);
2924 struct e1000_hw *hw = &adapter->hw;
2925 struct e1000_tx_ring *tx_ring;
2926 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2927 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2928 unsigned int tx_flags = 0;
2929 unsigned int len = skb->len - skb->data_len;
2930 unsigned int nr_frags;
2931 unsigned int mss;
2932 int count = 0;
2933 int tso;
2934 unsigned int f;
2935
2936 /* This goes back to the question of how to logically map a tx queue
2937 * to a flow. Right now, performance is impacted slightly negatively
2938 * if using multiple tx queues. If the stack breaks away from a
2939 * single qdisc implementation, we can look at this again. */
2940 tx_ring = adapter->tx_ring;
2941
2942 if (unlikely(skb->len <= 0)) {
2943 dev_kfree_skb_any(skb);
2944 return NETDEV_TX_OK;
2945 }
2946
2947 mss = skb_shinfo(skb)->gso_size;
2948 /* The controller does a simple calculation to
2949 * make sure there is enough room in the FIFO before
2950 * initiating the DMA for each buffer. The calc is:
2951 * 4 = ceil(buffer len/mss). To make sure we don't
2952 * overrun the FIFO, adjust the max buffer len if mss
2953 * drops. */
2954 if (mss) {
2955 u8 hdr_len;
2956 max_per_txd = min(mss << 2, max_per_txd);
2957 max_txd_pwr = fls(max_per_txd) - 1;
2958
2959 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2960 if (skb->data_len && hdr_len == len) {
2961 switch (hw->mac_type) {
2962 unsigned int pull_size;
2963 case e1000_82544:
2964 /* Make sure we have room to chop off 4 bytes,
2965 * and that the end alignment will work out to
2966 * this hardware's requirements
2967 * NOTE: this is a TSO only workaround
2968 * if end byte alignment not correct move us
2969 * into the next dword */
2970 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
2971 break;
2972 /* fall through */
2973 pull_size = min((unsigned int)4, skb->data_len);
2974 if (!__pskb_pull_tail(skb, pull_size)) {
2975 DPRINTK(DRV, ERR,
2976 "__pskb_pull_tail failed.\n");
2977 dev_kfree_skb_any(skb);
2978 return NETDEV_TX_OK;
2979 }
2980 len = skb->len - skb->data_len;
2981 break;
2982 default:
2983 /* do nothing */
2984 break;
2985 }
2986 }
2987 }
2988
2989 /* reserve a descriptor for the offload context */
2990 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
2991 count++;
2992 count++;
2993
2994 /* Controller Erratum workaround */
2995 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2996 count++;
2997
2998 count += TXD_USE_COUNT(len, max_txd_pwr);
2999
3000 if (adapter->pcix_82544)
3001 count++;
3002
3003 /* work-around for errata 10 and it applies to all controllers
3004 * in PCI-X mode, so add one more descriptor to the count
3005 */
3006 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3007 (len > 2015)))
3008 count++;
3009
3010 nr_frags = skb_shinfo(skb)->nr_frags;
3011 for (f = 0; f < nr_frags; f++)
3012 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3013 max_txd_pwr);
3014 if (adapter->pcix_82544)
3015 count += nr_frags;
3016
3017 /* need: count + 2 desc gap to keep tail from touching
3018 * head, otherwise try next time */
3019 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3020 return NETDEV_TX_BUSY;
3021
3022 if (unlikely(hw->mac_type == e1000_82547)) {
3023 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3024 netif_stop_queue(netdev);
3025 if (!test_bit(__E1000_DOWN, &adapter->flags))
3026 mod_timer(&adapter->tx_fifo_stall_timer,
3027 jiffies + 1);
3028 return NETDEV_TX_BUSY;
3029 }
3030 }
3031
3032 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3033 tx_flags |= E1000_TX_FLAGS_VLAN;
3034 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3035 }
3036
3037 first = tx_ring->next_to_use;
3038
3039 tso = e1000_tso(adapter, tx_ring, skb);
3040 if (tso < 0) {
3041 dev_kfree_skb_any(skb);
3042 return NETDEV_TX_OK;
3043 }
3044
3045 if (likely(tso)) {
3046 if (likely(hw->mac_type != e1000_82544))
3047 tx_ring->last_tx_tso = 1;
3048 tx_flags |= E1000_TX_FLAGS_TSO;
3049 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3050 tx_flags |= E1000_TX_FLAGS_CSUM;
3051
3052 if (likely(skb->protocol == htons(ETH_P_IP)))
3053 tx_flags |= E1000_TX_FLAGS_IPV4;
3054
3055 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3056 nr_frags, mss);
3057
3058 if (count) {
3059 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3060 /* Make sure there is space in the ring for the next send. */
3061 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3062
3063 } else {
3064 dev_kfree_skb_any(skb);
3065 tx_ring->buffer_info[first].time_stamp = 0;
3066 tx_ring->next_to_use = first;
3067 }
3068
3069 return NETDEV_TX_OK;
3070 }
3071
3072 /**
3073 * e1000_tx_timeout - Respond to a Tx Hang
3074 * @netdev: network interface device structure
3075 **/
3076
3077 static void e1000_tx_timeout(struct net_device *netdev)
3078 {
3079 struct e1000_adapter *adapter = netdev_priv(netdev);
3080
3081 /* Do the reset outside of interrupt context */
3082 adapter->tx_timeout_count++;
3083 schedule_work(&adapter->reset_task);
3084 }
3085
3086 static void e1000_reset_task(struct work_struct *work)
3087 {
3088 struct e1000_adapter *adapter =
3089 container_of(work, struct e1000_adapter, reset_task);
3090
3091 e1000_reinit_locked(adapter);
3092 }
3093
3094 /**
3095 * e1000_get_stats - Get System Network Statistics
3096 * @netdev: network interface device structure
3097 *
3098 * Returns the address of the device statistics structure.
3099 * The statistics are actually updated from the timer callback.
3100 **/
3101
3102 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3103 {
3104 struct e1000_adapter *adapter = netdev_priv(netdev);
3105
3106 /* only return the current stats */
3107 return &adapter->net_stats;
3108 }
3109
3110 /**
3111 * e1000_change_mtu - Change the Maximum Transfer Unit
3112 * @netdev: network interface device structure
3113 * @new_mtu: new value for maximum frame size
3114 *
3115 * Returns 0 on success, negative on failure
3116 **/
3117
3118 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3119 {
3120 struct e1000_adapter *adapter = netdev_priv(netdev);
3121 struct e1000_hw *hw = &adapter->hw;
3122 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3123
3124 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3125 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3126 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3127 return -EINVAL;
3128 }
3129
3130 /* Adapter-specific max frame size limits. */
3131 switch (hw->mac_type) {
3132 case e1000_undefined ... e1000_82542_rev2_1:
3133 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3134 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3135 return -EINVAL;
3136 }
3137 break;
3138 default:
3139 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3140 break;
3141 }
3142
3143 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3144 msleep(1);
3145 /* e1000_down has a dependency on max_frame_size */
3146 hw->max_frame_size = max_frame;
3147 if (netif_running(netdev))
3148 e1000_down(adapter);
3149
3150 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3151 * means we reserve 2 more, this pushes us to allocate from the next
3152 * larger slab size.
3153 * i.e. RXBUFFER_2048 --> size-4096 slab
3154 * however with the new *_jumbo_rx* routines, jumbo receives will use
3155 * fragmented skbs */
3156
3157 if (max_frame <= E1000_RXBUFFER_256)
3158 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3159 else if (max_frame <= E1000_RXBUFFER_512)
3160 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3161 else if (max_frame <= E1000_RXBUFFER_1024)
3162 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3163 else if (max_frame <= E1000_RXBUFFER_2048)
3164 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3165 else
3166 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3167 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3168 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3169 adapter->rx_buffer_len = PAGE_SIZE;
3170 #endif
3171
3172 /* adjust allocation if LPE protects us, and we aren't using SBP */
3173 if (!hw->tbi_compatibility_on &&
3174 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3175 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3176 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3177
3178 printk(KERN_INFO "e1000: %s changing MTU from %d to %d\n",
3179 netdev->name, netdev->mtu, new_mtu);
3180 netdev->mtu = new_mtu;
3181
3182 if (netif_running(netdev))
3183 e1000_up(adapter);
3184 else
3185 e1000_reset(adapter);
3186
3187 clear_bit(__E1000_RESETTING, &adapter->flags);
3188
3189 return 0;
3190 }
3191
3192 /**
3193 * e1000_update_stats - Update the board statistics counters
3194 * @adapter: board private structure
3195 **/
3196
3197 void e1000_update_stats(struct e1000_adapter *adapter)
3198 {
3199 struct e1000_hw *hw = &adapter->hw;
3200 struct pci_dev *pdev = adapter->pdev;
3201 unsigned long flags;
3202 u16 phy_tmp;
3203
3204 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3205
3206 /*
3207 * Prevent stats update while adapter is being reset, or if the pci
3208 * connection is down.
3209 */
3210 if (adapter->link_speed == 0)
3211 return;
3212 if (pci_channel_offline(pdev))
3213 return;
3214
3215 spin_lock_irqsave(&adapter->stats_lock, flags);
3216
3217 /* these counters are modified from e1000_tbi_adjust_stats,
3218 * called from the interrupt context, so they must only
3219 * be written while holding adapter->stats_lock
3220 */
3221
3222 adapter->stats.crcerrs += er32(CRCERRS);
3223 adapter->stats.gprc += er32(GPRC);
3224 adapter->stats.gorcl += er32(GORCL);
3225 adapter->stats.gorch += er32(GORCH);
3226 adapter->stats.bprc += er32(BPRC);
3227 adapter->stats.mprc += er32(MPRC);
3228 adapter->stats.roc += er32(ROC);
3229
3230 adapter->stats.prc64 += er32(PRC64);
3231 adapter->stats.prc127 += er32(PRC127);
3232 adapter->stats.prc255 += er32(PRC255);
3233 adapter->stats.prc511 += er32(PRC511);
3234 adapter->stats.prc1023 += er32(PRC1023);
3235 adapter->stats.prc1522 += er32(PRC1522);
3236
3237 adapter->stats.symerrs += er32(SYMERRS);
3238 adapter->stats.mpc += er32(MPC);
3239 adapter->stats.scc += er32(SCC);
3240 adapter->stats.ecol += er32(ECOL);
3241 adapter->stats.mcc += er32(MCC);
3242 adapter->stats.latecol += er32(LATECOL);
3243 adapter->stats.dc += er32(DC);
3244 adapter->stats.sec += er32(SEC);
3245 adapter->stats.rlec += er32(RLEC);
3246 adapter->stats.xonrxc += er32(XONRXC);
3247 adapter->stats.xontxc += er32(XONTXC);
3248 adapter->stats.xoffrxc += er32(XOFFRXC);
3249 adapter->stats.xofftxc += er32(XOFFTXC);
3250 adapter->stats.fcruc += er32(FCRUC);
3251 adapter->stats.gptc += er32(GPTC);
3252 adapter->stats.gotcl += er32(GOTCL);
3253 adapter->stats.gotch += er32(GOTCH);
3254 adapter->stats.rnbc += er32(RNBC);
3255 adapter->stats.ruc += er32(RUC);
3256 adapter->stats.rfc += er32(RFC);
3257 adapter->stats.rjc += er32(RJC);
3258 adapter->stats.torl += er32(TORL);
3259 adapter->stats.torh += er32(TORH);
3260 adapter->stats.totl += er32(TOTL);
3261 adapter->stats.toth += er32(TOTH);
3262 adapter->stats.tpr += er32(TPR);
3263
3264 adapter->stats.ptc64 += er32(PTC64);
3265 adapter->stats.ptc127 += er32(PTC127);
3266 adapter->stats.ptc255 += er32(PTC255);
3267 adapter->stats.ptc511 += er32(PTC511);
3268 adapter->stats.ptc1023 += er32(PTC1023);
3269 adapter->stats.ptc1522 += er32(PTC1522);
3270
3271 adapter->stats.mptc += er32(MPTC);
3272 adapter->stats.bptc += er32(BPTC);
3273
3274 /* used for adaptive IFS */
3275
3276 hw->tx_packet_delta = er32(TPT);
3277 adapter->stats.tpt += hw->tx_packet_delta;
3278 hw->collision_delta = er32(COLC);
3279 adapter->stats.colc += hw->collision_delta;
3280
3281 if (hw->mac_type >= e1000_82543) {
3282 adapter->stats.algnerrc += er32(ALGNERRC);
3283 adapter->stats.rxerrc += er32(RXERRC);
3284 adapter->stats.tncrs += er32(TNCRS);
3285 adapter->stats.cexterr += er32(CEXTERR);
3286 adapter->stats.tsctc += er32(TSCTC);
3287 adapter->stats.tsctfc += er32(TSCTFC);
3288 }
3289
3290 /* Fill out the OS statistics structure */
3291 adapter->net_stats.multicast = adapter->stats.mprc;
3292 adapter->net_stats.collisions = adapter->stats.colc;
3293
3294 /* Rx Errors */
3295
3296 /* RLEC on some newer hardware can be incorrect so build
3297 * our own version based on RUC and ROC */
3298 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3299 adapter->stats.crcerrs + adapter->stats.algnerrc +
3300 adapter->stats.ruc + adapter->stats.roc +
3301 adapter->stats.cexterr;
3302 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3303 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3304 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3305 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3306 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3307
3308 /* Tx Errors */
3309 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3310 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3311 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3312 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3313 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3314 if (hw->bad_tx_carr_stats_fd &&
3315 adapter->link_duplex == FULL_DUPLEX) {
3316 adapter->net_stats.tx_carrier_errors = 0;
3317 adapter->stats.tncrs = 0;
3318 }
3319
3320 /* Tx Dropped needs to be maintained elsewhere */
3321
3322 /* Phy Stats */
3323 if (hw->media_type == e1000_media_type_copper) {
3324 if ((adapter->link_speed == SPEED_1000) &&
3325 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3326 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3327 adapter->phy_stats.idle_errors += phy_tmp;
3328 }
3329
3330 if ((hw->mac_type <= e1000_82546) &&
3331 (hw->phy_type == e1000_phy_m88) &&
3332 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3333 adapter->phy_stats.receive_errors += phy_tmp;
3334 }
3335
3336 /* Management Stats */
3337 if (hw->has_smbus) {
3338 adapter->stats.mgptc += er32(MGTPTC);
3339 adapter->stats.mgprc += er32(MGTPRC);
3340 adapter->stats.mgpdc += er32(MGTPDC);
3341 }
3342
3343 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3344 }
3345
3346 /**
3347 * e1000_intr - Interrupt Handler
3348 * @irq: interrupt number
3349 * @data: pointer to a network interface device structure
3350 **/
3351
3352 static irqreturn_t e1000_intr(int irq, void *data)
3353 {
3354 struct net_device *netdev = data;
3355 struct e1000_adapter *adapter = netdev_priv(netdev);
3356 struct e1000_hw *hw = &adapter->hw;
3357 u32 icr = er32(ICR);
3358
3359 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3360 return IRQ_NONE; /* Not our interrupt */
3361
3362 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3363 hw->get_link_status = 1;
3364 /* guard against interrupt when we're going down */
3365 if (!test_bit(__E1000_DOWN, &adapter->flags))
3366 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3367 }
3368
3369 /* disable interrupts, without the synchronize_irq bit */
3370 ew32(IMC, ~0);
3371 E1000_WRITE_FLUSH();
3372
3373 if (likely(napi_schedule_prep(&adapter->napi))) {
3374 adapter->total_tx_bytes = 0;
3375 adapter->total_tx_packets = 0;
3376 adapter->total_rx_bytes = 0;
3377 adapter->total_rx_packets = 0;
3378 __napi_schedule(&adapter->napi);
3379 } else {
3380 /* this really should not happen! if it does it is basically a
3381 * bug, but not a hard error, so enable ints and continue */
3382 if (!test_bit(__E1000_DOWN, &adapter->flags))
3383 e1000_irq_enable(adapter);
3384 }
3385
3386 return IRQ_HANDLED;
3387 }
3388
3389 /**
3390 * e1000_clean - NAPI Rx polling callback
3391 * @adapter: board private structure
3392 **/
3393 static int e1000_clean(struct napi_struct *napi, int budget)
3394 {
3395 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3396 int tx_clean_complete = 0, work_done = 0;
3397
3398 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3399
3400 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3401
3402 if (!tx_clean_complete)
3403 work_done = budget;
3404
3405 /* If budget not fully consumed, exit the polling mode */
3406 if (work_done < budget) {
3407 if (likely(adapter->itr_setting & 3))
3408 e1000_set_itr(adapter);
3409 napi_complete(napi);
3410 if (!test_bit(__E1000_DOWN, &adapter->flags))
3411 e1000_irq_enable(adapter);
3412 }
3413
3414 return work_done;
3415 }
3416
3417 /**
3418 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3419 * @adapter: board private structure
3420 **/
3421 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3422 struct e1000_tx_ring *tx_ring)
3423 {
3424 struct e1000_hw *hw = &adapter->hw;
3425 struct net_device *netdev = adapter->netdev;
3426 struct e1000_tx_desc *tx_desc, *eop_desc;
3427 struct e1000_buffer *buffer_info;
3428 unsigned int i, eop;
3429 unsigned int count = 0;
3430 unsigned int total_tx_bytes=0, total_tx_packets=0;
3431
3432 i = tx_ring->next_to_clean;
3433 eop = tx_ring->buffer_info[i].next_to_watch;
3434 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3435
3436 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3437 (count < tx_ring->count)) {
3438 bool cleaned = false;
3439 for ( ; !cleaned; count++) {
3440 tx_desc = E1000_TX_DESC(*tx_ring, i);
3441 buffer_info = &tx_ring->buffer_info[i];
3442 cleaned = (i == eop);
3443
3444 if (cleaned) {
3445 struct sk_buff *skb = buffer_info->skb;
3446 unsigned int segs, bytecount;
3447 segs = skb_shinfo(skb)->gso_segs ?: 1;
3448 /* multiply data chunks by size of headers */
3449 bytecount = ((segs - 1) * skb_headlen(skb)) +
3450 skb->len;
3451 total_tx_packets += segs;
3452 total_tx_bytes += bytecount;
3453 }
3454 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3455 tx_desc->upper.data = 0;
3456
3457 if (unlikely(++i == tx_ring->count)) i = 0;
3458 }
3459
3460 eop = tx_ring->buffer_info[i].next_to_watch;
3461 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3462 }
3463
3464 tx_ring->next_to_clean = i;
3465
3466 #define TX_WAKE_THRESHOLD 32
3467 if (unlikely(count && netif_carrier_ok(netdev) &&
3468 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3469 /* Make sure that anybody stopping the queue after this
3470 * sees the new next_to_clean.
3471 */
3472 smp_mb();
3473
3474 if (netif_queue_stopped(netdev) &&
3475 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3476 netif_wake_queue(netdev);
3477 ++adapter->restart_queue;
3478 }
3479 }
3480
3481 if (adapter->detect_tx_hung) {
3482 /* Detect a transmit hang in hardware, this serializes the
3483 * check with the clearing of time_stamp and movement of i */
3484 adapter->detect_tx_hung = false;
3485 if (tx_ring->buffer_info[eop].time_stamp &&
3486 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3487 (adapter->tx_timeout_factor * HZ))
3488 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3489
3490 /* detected Tx unit hang */
3491 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3492 " Tx Queue <%lu>\n"
3493 " TDH <%x>\n"
3494 " TDT <%x>\n"
3495 " next_to_use <%x>\n"
3496 " next_to_clean <%x>\n"
3497 "buffer_info[next_to_clean]\n"
3498 " time_stamp <%lx>\n"
3499 " next_to_watch <%x>\n"
3500 " jiffies <%lx>\n"
3501 " next_to_watch.status <%x>\n",
3502 (unsigned long)((tx_ring - adapter->tx_ring) /
3503 sizeof(struct e1000_tx_ring)),
3504 readl(hw->hw_addr + tx_ring->tdh),
3505 readl(hw->hw_addr + tx_ring->tdt),
3506 tx_ring->next_to_use,
3507 tx_ring->next_to_clean,
3508 tx_ring->buffer_info[eop].time_stamp,
3509 eop,
3510 jiffies,
3511 eop_desc->upper.fields.status);
3512 netif_stop_queue(netdev);
3513 }
3514 }
3515 adapter->total_tx_bytes += total_tx_bytes;
3516 adapter->total_tx_packets += total_tx_packets;
3517 adapter->net_stats.tx_bytes += total_tx_bytes;
3518 adapter->net_stats.tx_packets += total_tx_packets;
3519 return (count < tx_ring->count);
3520 }
3521
3522 /**
3523 * e1000_rx_checksum - Receive Checksum Offload for 82543
3524 * @adapter: board private structure
3525 * @status_err: receive descriptor status and error fields
3526 * @csum: receive descriptor csum field
3527 * @sk_buff: socket buffer with received data
3528 **/
3529
3530 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3531 u32 csum, struct sk_buff *skb)
3532 {
3533 struct e1000_hw *hw = &adapter->hw;
3534 u16 status = (u16)status_err;
3535 u8 errors = (u8)(status_err >> 24);
3536 skb->ip_summed = CHECKSUM_NONE;
3537
3538 /* 82543 or newer only */
3539 if (unlikely(hw->mac_type < e1000_82543)) return;
3540 /* Ignore Checksum bit is set */
3541 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3542 /* TCP/UDP checksum error bit is set */
3543 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3544 /* let the stack verify checksum errors */
3545 adapter->hw_csum_err++;
3546 return;
3547 }
3548 /* TCP/UDP Checksum has not been calculated */
3549 if (!(status & E1000_RXD_STAT_TCPCS))
3550 return;
3551
3552 /* It must be a TCP or UDP packet with a valid checksum */
3553 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3554 /* TCP checksum is good */
3555 skb->ip_summed = CHECKSUM_UNNECESSARY;
3556 }
3557 adapter->hw_csum_good++;
3558 }
3559
3560 /**
3561 * e1000_consume_page - helper function
3562 **/
3563 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3564 u16 length)
3565 {
3566 bi->page = NULL;
3567 skb->len += length;
3568 skb->data_len += length;
3569 skb->truesize += length;
3570 }
3571
3572 /**
3573 * e1000_receive_skb - helper function to handle rx indications
3574 * @adapter: board private structure
3575 * @status: descriptor status field as written by hardware
3576 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3577 * @skb: pointer to sk_buff to be indicated to stack
3578 */
3579 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3580 __le16 vlan, struct sk_buff *skb)
3581 {
3582 if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
3583 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3584 le16_to_cpu(vlan) &
3585 E1000_RXD_SPC_VLAN_MASK);
3586 } else {
3587 netif_receive_skb(skb);
3588 }
3589 }
3590
3591 /**
3592 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3593 * @adapter: board private structure
3594 * @rx_ring: ring to clean
3595 * @work_done: amount of napi work completed this call
3596 * @work_to_do: max amount of work allowed for this call to do
3597 *
3598 * the return value indicates whether actual cleaning was done, there
3599 * is no guarantee that everything was cleaned
3600 */
3601 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3602 struct e1000_rx_ring *rx_ring,
3603 int *work_done, int work_to_do)
3604 {
3605 struct e1000_hw *hw = &adapter->hw;
3606 struct net_device *netdev = adapter->netdev;
3607 struct pci_dev *pdev = adapter->pdev;
3608 struct e1000_rx_desc *rx_desc, *next_rxd;
3609 struct e1000_buffer *buffer_info, *next_buffer;
3610 unsigned long irq_flags;
3611 u32 length;
3612 unsigned int i;
3613 int cleaned_count = 0;
3614 bool cleaned = false;
3615 unsigned int total_rx_bytes=0, total_rx_packets=0;
3616
3617 i = rx_ring->next_to_clean;
3618 rx_desc = E1000_RX_DESC(*rx_ring, i);
3619 buffer_info = &rx_ring->buffer_info[i];
3620
3621 while (rx_desc->status & E1000_RXD_STAT_DD) {
3622 struct sk_buff *skb;
3623 u8 status;
3624
3625 if (*work_done >= work_to_do)
3626 break;
3627 (*work_done)++;
3628
3629 status = rx_desc->status;
3630 skb = buffer_info->skb;
3631 buffer_info->skb = NULL;
3632
3633 if (++i == rx_ring->count) i = 0;
3634 next_rxd = E1000_RX_DESC(*rx_ring, i);
3635 prefetch(next_rxd);
3636
3637 next_buffer = &rx_ring->buffer_info[i];
3638
3639 cleaned = true;
3640 cleaned_count++;
3641 pci_unmap_page(pdev, buffer_info->dma, buffer_info->length,
3642 PCI_DMA_FROMDEVICE);
3643 buffer_info->dma = 0;
3644
3645 length = le16_to_cpu(rx_desc->length);
3646
3647 /* errors is only valid for DD + EOP descriptors */
3648 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3649 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3650 u8 last_byte = *(skb->data + length - 1);
3651 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3652 last_byte)) {
3653 spin_lock_irqsave(&adapter->stats_lock,
3654 irq_flags);
3655 e1000_tbi_adjust_stats(hw, &adapter->stats,
3656 length, skb->data);
3657 spin_unlock_irqrestore(&adapter->stats_lock,
3658 irq_flags);
3659 length--;
3660 } else {
3661 /* recycle both page and skb */
3662 buffer_info->skb = skb;
3663 /* an error means any chain goes out the window
3664 * too */
3665 if (rx_ring->rx_skb_top)
3666 dev_kfree_skb(rx_ring->rx_skb_top);
3667 rx_ring->rx_skb_top = NULL;
3668 goto next_desc;
3669 }
3670 }
3671
3672 #define rxtop rx_ring->rx_skb_top
3673 if (!(status & E1000_RXD_STAT_EOP)) {
3674 /* this descriptor is only the beginning (or middle) */
3675 if (!rxtop) {
3676 /* this is the beginning of a chain */
3677 rxtop = skb;
3678 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3679 0, length);
3680 } else {
3681 /* this is the middle of a chain */
3682 skb_fill_page_desc(rxtop,
3683 skb_shinfo(rxtop)->nr_frags,
3684 buffer_info->page, 0, length);
3685 /* re-use the skb, only consumed the page */
3686 buffer_info->skb = skb;
3687 }
3688 e1000_consume_page(buffer_info, rxtop, length);
3689 goto next_desc;
3690 } else {
3691 if (rxtop) {
3692 /* end of the chain */
3693 skb_fill_page_desc(rxtop,
3694 skb_shinfo(rxtop)->nr_frags,
3695 buffer_info->page, 0, length);
3696 /* re-use the current skb, we only consumed the
3697 * page */
3698 buffer_info->skb = skb;
3699 skb = rxtop;
3700 rxtop = NULL;
3701 e1000_consume_page(buffer_info, skb, length);
3702 } else {
3703 /* no chain, got EOP, this buf is the packet
3704 * copybreak to save the put_page/alloc_page */
3705 if (length <= copybreak &&
3706 skb_tailroom(skb) >= length) {
3707 u8 *vaddr;
3708 vaddr = kmap_atomic(buffer_info->page,
3709 KM_SKB_DATA_SOFTIRQ);
3710 memcpy(skb_tail_pointer(skb), vaddr, length);
3711 kunmap_atomic(vaddr,
3712 KM_SKB_DATA_SOFTIRQ);
3713 /* re-use the page, so don't erase
3714 * buffer_info->page */
3715 skb_put(skb, length);
3716 } else {
3717 skb_fill_page_desc(skb, 0,
3718 buffer_info->page, 0,
3719 length);
3720 e1000_consume_page(buffer_info, skb,
3721 length);
3722 }
3723 }
3724 }
3725
3726 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3727 e1000_rx_checksum(adapter,
3728 (u32)(status) |
3729 ((u32)(rx_desc->errors) << 24),
3730 le16_to_cpu(rx_desc->csum), skb);
3731
3732 pskb_trim(skb, skb->len - 4);
3733
3734 /* probably a little skewed due to removing CRC */
3735 total_rx_bytes += skb->len;
3736 total_rx_packets++;
3737
3738 /* eth type trans needs skb->data to point to something */
3739 if (!pskb_may_pull(skb, ETH_HLEN)) {
3740 DPRINTK(DRV, ERR, "pskb_may_pull failed.\n");
3741 dev_kfree_skb(skb);
3742 goto next_desc;
3743 }
3744
3745 skb->protocol = eth_type_trans(skb, netdev);
3746
3747 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3748
3749 next_desc:
3750 rx_desc->status = 0;
3751
3752 /* return some buffers to hardware, one at a time is too slow */
3753 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3754 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3755 cleaned_count = 0;
3756 }
3757
3758 /* use prefetched values */
3759 rx_desc = next_rxd;
3760 buffer_info = next_buffer;
3761 }
3762 rx_ring->next_to_clean = i;
3763
3764 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3765 if (cleaned_count)
3766 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3767
3768 adapter->total_rx_packets += total_rx_packets;
3769 adapter->total_rx_bytes += total_rx_bytes;
3770 adapter->net_stats.rx_bytes += total_rx_bytes;
3771 adapter->net_stats.rx_packets += total_rx_packets;
3772 return cleaned;
3773 }
3774
3775 /**
3776 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3777 * @adapter: board private structure
3778 * @rx_ring: ring to clean
3779 * @work_done: amount of napi work completed this call
3780 * @work_to_do: max amount of work allowed for this call to do
3781 */
3782 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3783 struct e1000_rx_ring *rx_ring,
3784 int *work_done, int work_to_do)
3785 {
3786 struct e1000_hw *hw = &adapter->hw;
3787 struct net_device *netdev = adapter->netdev;
3788 struct pci_dev *pdev = adapter->pdev;
3789 struct e1000_rx_desc *rx_desc, *next_rxd;
3790 struct e1000_buffer *buffer_info, *next_buffer;
3791 unsigned long flags;
3792 u32 length;
3793 unsigned int i;
3794 int cleaned_count = 0;
3795 bool cleaned = false;
3796 unsigned int total_rx_bytes=0, total_rx_packets=0;
3797
3798 i = rx_ring->next_to_clean;
3799 rx_desc = E1000_RX_DESC(*rx_ring, i);
3800 buffer_info = &rx_ring->buffer_info[i];
3801
3802 while (rx_desc->status & E1000_RXD_STAT_DD) {
3803 struct sk_buff *skb;
3804 u8 status;
3805
3806 if (*work_done >= work_to_do)
3807 break;
3808 (*work_done)++;
3809
3810 status = rx_desc->status;
3811 skb = buffer_info->skb;
3812 buffer_info->skb = NULL;
3813
3814 prefetch(skb->data - NET_IP_ALIGN);
3815
3816 if (++i == rx_ring->count) i = 0;
3817 next_rxd = E1000_RX_DESC(*rx_ring, i);
3818 prefetch(next_rxd);
3819
3820 next_buffer = &rx_ring->buffer_info[i];
3821
3822 cleaned = true;
3823 cleaned_count++;
3824 pci_unmap_single(pdev, buffer_info->dma, buffer_info->length,
3825 PCI_DMA_FROMDEVICE);
3826 buffer_info->dma = 0;
3827
3828 length = le16_to_cpu(rx_desc->length);
3829 /* !EOP means multiple descriptors were used to store a single
3830 * packet, also make sure the frame isn't just CRC only */
3831 if (unlikely(!(status & E1000_RXD_STAT_EOP) || (length <= 4))) {
3832 /* All receives must fit into a single buffer */
3833 E1000_DBG("%s: Receive packet consumed multiple"
3834 " buffers\n", netdev->name);
3835 /* recycle */
3836 buffer_info->skb = skb;
3837 goto next_desc;
3838 }
3839
3840 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3841 u8 last_byte = *(skb->data + length - 1);
3842 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3843 last_byte)) {
3844 spin_lock_irqsave(&adapter->stats_lock, flags);
3845 e1000_tbi_adjust_stats(hw, &adapter->stats,
3846 length, skb->data);
3847 spin_unlock_irqrestore(&adapter->stats_lock,
3848 flags);
3849 length--;
3850 } else {
3851 /* recycle */
3852 buffer_info->skb = skb;
3853 goto next_desc;
3854 }
3855 }
3856
3857 /* adjust length to remove Ethernet CRC, this must be
3858 * done after the TBI_ACCEPT workaround above */
3859 length -= 4;
3860
3861 /* probably a little skewed due to removing CRC */
3862 total_rx_bytes += length;
3863 total_rx_packets++;
3864
3865 /* code added for copybreak, this should improve
3866 * performance for small packets with large amounts
3867 * of reassembly being done in the stack */
3868 if (length < copybreak) {
3869 struct sk_buff *new_skb =
3870 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3871 if (new_skb) {
3872 skb_reserve(new_skb, NET_IP_ALIGN);
3873 skb_copy_to_linear_data_offset(new_skb,
3874 -NET_IP_ALIGN,
3875 (skb->data -
3876 NET_IP_ALIGN),
3877 (length +
3878 NET_IP_ALIGN));
3879 /* save the skb in buffer_info as good */
3880 buffer_info->skb = skb;
3881 skb = new_skb;
3882 }
3883 /* else just continue with the old one */
3884 }
3885 /* end copybreak code */
3886 skb_put(skb, length);
3887
3888 /* Receive Checksum Offload */
3889 e1000_rx_checksum(adapter,
3890 (u32)(status) |
3891 ((u32)(rx_desc->errors) << 24),
3892 le16_to_cpu(rx_desc->csum), skb);
3893
3894 skb->protocol = eth_type_trans(skb, netdev);
3895
3896 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3897
3898 next_desc:
3899 rx_desc->status = 0;
3900
3901 /* return some buffers to hardware, one at a time is too slow */
3902 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3903 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3904 cleaned_count = 0;
3905 }
3906
3907 /* use prefetched values */
3908 rx_desc = next_rxd;
3909 buffer_info = next_buffer;
3910 }
3911 rx_ring->next_to_clean = i;
3912
3913 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3914 if (cleaned_count)
3915 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3916
3917 adapter->total_rx_packets += total_rx_packets;
3918 adapter->total_rx_bytes += total_rx_bytes;
3919 adapter->net_stats.rx_bytes += total_rx_bytes;
3920 adapter->net_stats.rx_packets += total_rx_packets;
3921 return cleaned;
3922 }
3923
3924 /**
3925 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3926 * @adapter: address of board private structure
3927 * @rx_ring: pointer to receive ring structure
3928 * @cleaned_count: number of buffers to allocate this pass
3929 **/
3930
3931 static void
3932 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
3933 struct e1000_rx_ring *rx_ring, int cleaned_count)
3934 {
3935 struct net_device *netdev = adapter->netdev;
3936 struct pci_dev *pdev = adapter->pdev;
3937 struct e1000_rx_desc *rx_desc;
3938 struct e1000_buffer *buffer_info;
3939 struct sk_buff *skb;
3940 unsigned int i;
3941 unsigned int bufsz = 256 -
3942 16 /*for skb_reserve */ -
3943 NET_IP_ALIGN;
3944
3945 i = rx_ring->next_to_use;
3946 buffer_info = &rx_ring->buffer_info[i];
3947
3948 while (cleaned_count--) {
3949 skb = buffer_info->skb;
3950 if (skb) {
3951 skb_trim(skb, 0);
3952 goto check_page;
3953 }
3954
3955 skb = netdev_alloc_skb(netdev, bufsz);
3956 if (unlikely(!skb)) {
3957 /* Better luck next round */
3958 adapter->alloc_rx_buff_failed++;
3959 break;
3960 }
3961
3962 /* Fix for errata 23, can't cross 64kB boundary */
3963 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3964 struct sk_buff *oldskb = skb;
3965 DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
3966 "at %p\n", bufsz, skb->data);
3967 /* Try again, without freeing the previous */
3968 skb = netdev_alloc_skb(netdev, bufsz);
3969 /* Failed allocation, critical failure */
3970 if (!skb) {
3971 dev_kfree_skb(oldskb);
3972 adapter->alloc_rx_buff_failed++;
3973 break;
3974 }
3975
3976 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3977 /* give up */
3978 dev_kfree_skb(skb);
3979 dev_kfree_skb(oldskb);
3980 break; /* while (cleaned_count--) */
3981 }
3982
3983 /* Use new allocation */
3984 dev_kfree_skb(oldskb);
3985 }
3986 /* Make buffer alignment 2 beyond a 16 byte boundary
3987 * this will result in a 16 byte aligned IP header after
3988 * the 14 byte MAC header is removed
3989 */
3990 skb_reserve(skb, NET_IP_ALIGN);
3991
3992 buffer_info->skb = skb;
3993 buffer_info->length = adapter->rx_buffer_len;
3994 check_page:
3995 /* allocate a new page if necessary */
3996 if (!buffer_info->page) {
3997 buffer_info->page = alloc_page(GFP_ATOMIC);
3998 if (unlikely(!buffer_info->page)) {
3999 adapter->alloc_rx_buff_failed++;
4000 break;
4001 }
4002 }
4003
4004 if (!buffer_info->dma)
4005 buffer_info->dma = pci_map_page(pdev,
4006 buffer_info->page, 0,
4007 buffer_info->length,
4008 PCI_DMA_FROMDEVICE);
4009
4010 rx_desc = E1000_RX_DESC(*rx_ring, i);
4011 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4012
4013 if (unlikely(++i == rx_ring->count))
4014 i = 0;
4015 buffer_info = &rx_ring->buffer_info[i];
4016 }
4017
4018 if (likely(rx_ring->next_to_use != i)) {
4019 rx_ring->next_to_use = i;
4020 if (unlikely(i-- == 0))
4021 i = (rx_ring->count - 1);
4022
4023 /* Force memory writes to complete before letting h/w
4024 * know there are new descriptors to fetch. (Only
4025 * applicable for weak-ordered memory model archs,
4026 * such as IA-64). */
4027 wmb();
4028 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4029 }
4030 }
4031
4032 /**
4033 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4034 * @adapter: address of board private structure
4035 **/
4036
4037 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4038 struct e1000_rx_ring *rx_ring,
4039 int cleaned_count)
4040 {
4041 struct e1000_hw *hw = &adapter->hw;
4042 struct net_device *netdev = adapter->netdev;
4043 struct pci_dev *pdev = adapter->pdev;
4044 struct e1000_rx_desc *rx_desc;
4045 struct e1000_buffer *buffer_info;
4046 struct sk_buff *skb;
4047 unsigned int i;
4048 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4049
4050 i = rx_ring->next_to_use;
4051 buffer_info = &rx_ring->buffer_info[i];
4052
4053 while (cleaned_count--) {
4054 skb = buffer_info->skb;
4055 if (skb) {
4056 skb_trim(skb, 0);
4057 goto map_skb;
4058 }
4059
4060 skb = netdev_alloc_skb(netdev, bufsz);
4061 if (unlikely(!skb)) {
4062 /* Better luck next round */
4063 adapter->alloc_rx_buff_failed++;
4064 break;
4065 }
4066
4067 /* Fix for errata 23, can't cross 64kB boundary */
4068 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4069 struct sk_buff *oldskb = skb;
4070 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4071 "at %p\n", bufsz, skb->data);
4072 /* Try again, without freeing the previous */
4073 skb = netdev_alloc_skb(netdev, bufsz);
4074 /* Failed allocation, critical failure */
4075 if (!skb) {
4076 dev_kfree_skb(oldskb);
4077 adapter->alloc_rx_buff_failed++;
4078 break;
4079 }
4080
4081 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4082 /* give up */
4083 dev_kfree_skb(skb);
4084 dev_kfree_skb(oldskb);
4085 adapter->alloc_rx_buff_failed++;
4086 break; /* while !buffer_info->skb */
4087 }
4088
4089 /* Use new allocation */
4090 dev_kfree_skb(oldskb);
4091 }
4092 /* Make buffer alignment 2 beyond a 16 byte boundary
4093 * this will result in a 16 byte aligned IP header after
4094 * the 14 byte MAC header is removed
4095 */
4096 skb_reserve(skb, NET_IP_ALIGN);
4097
4098 buffer_info->skb = skb;
4099 buffer_info->length = adapter->rx_buffer_len;
4100 map_skb:
4101 buffer_info->dma = pci_map_single(pdev,
4102 skb->data,
4103 buffer_info->length,
4104 PCI_DMA_FROMDEVICE);
4105
4106 /*
4107 * XXX if it was allocated cleanly it will never map to a
4108 * boundary crossing
4109 */
4110
4111 /* Fix for errata 23, can't cross 64kB boundary */
4112 if (!e1000_check_64k_bound(adapter,
4113 (void *)(unsigned long)buffer_info->dma,
4114 adapter->rx_buffer_len)) {
4115 DPRINTK(RX_ERR, ERR,
4116 "dma align check failed: %u bytes at %p\n",
4117 adapter->rx_buffer_len,
4118 (void *)(unsigned long)buffer_info->dma);
4119 dev_kfree_skb(skb);
4120 buffer_info->skb = NULL;
4121
4122 pci_unmap_single(pdev, buffer_info->dma,
4123 adapter->rx_buffer_len,
4124 PCI_DMA_FROMDEVICE);
4125 buffer_info->dma = 0;
4126
4127 adapter->alloc_rx_buff_failed++;
4128 break; /* while !buffer_info->skb */
4129 }
4130 rx_desc = E1000_RX_DESC(*rx_ring, i);
4131 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4132
4133 if (unlikely(++i == rx_ring->count))
4134 i = 0;
4135 buffer_info = &rx_ring->buffer_info[i];
4136 }
4137
4138 if (likely(rx_ring->next_to_use != i)) {
4139 rx_ring->next_to_use = i;
4140 if (unlikely(i-- == 0))
4141 i = (rx_ring->count - 1);
4142
4143 /* Force memory writes to complete before letting h/w
4144 * know there are new descriptors to fetch. (Only
4145 * applicable for weak-ordered memory model archs,
4146 * such as IA-64). */
4147 wmb();
4148 writel(i, hw->hw_addr + rx_ring->rdt);
4149 }
4150 }
4151
4152 /**
4153 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4154 * @adapter:
4155 **/
4156
4157 static void e1000_smartspeed(struct e1000_adapter *adapter)
4158 {
4159 struct e1000_hw *hw = &adapter->hw;
4160 u16 phy_status;
4161 u16 phy_ctrl;
4162
4163 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4164 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4165 return;
4166
4167 if (adapter->smartspeed == 0) {
4168 /* If Master/Slave config fault is asserted twice,
4169 * we assume back-to-back */
4170 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4171 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4172 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4173 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4174 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4175 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4176 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4177 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4178 phy_ctrl);
4179 adapter->smartspeed++;
4180 if (!e1000_phy_setup_autoneg(hw) &&
4181 !e1000_read_phy_reg(hw, PHY_CTRL,
4182 &phy_ctrl)) {
4183 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4184 MII_CR_RESTART_AUTO_NEG);
4185 e1000_write_phy_reg(hw, PHY_CTRL,
4186 phy_ctrl);
4187 }
4188 }
4189 return;
4190 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4191 /* If still no link, perhaps using 2/3 pair cable */
4192 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4193 phy_ctrl |= CR_1000T_MS_ENABLE;
4194 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4195 if (!e1000_phy_setup_autoneg(hw) &&
4196 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4197 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4198 MII_CR_RESTART_AUTO_NEG);
4199 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4200 }
4201 }
4202 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4203 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4204 adapter->smartspeed = 0;
4205 }
4206
4207 /**
4208 * e1000_ioctl -
4209 * @netdev:
4210 * @ifreq:
4211 * @cmd:
4212 **/
4213
4214 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4215 {
4216 switch (cmd) {
4217 case SIOCGMIIPHY:
4218 case SIOCGMIIREG:
4219 case SIOCSMIIREG:
4220 return e1000_mii_ioctl(netdev, ifr, cmd);
4221 default:
4222 return -EOPNOTSUPP;
4223 }
4224 }
4225
4226 /**
4227 * e1000_mii_ioctl -
4228 * @netdev:
4229 * @ifreq:
4230 * @cmd:
4231 **/
4232
4233 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4234 int cmd)
4235 {
4236 struct e1000_adapter *adapter = netdev_priv(netdev);
4237 struct e1000_hw *hw = &adapter->hw;
4238 struct mii_ioctl_data *data = if_mii(ifr);
4239 int retval;
4240 u16 mii_reg;
4241 u16 spddplx;
4242 unsigned long flags;
4243
4244 if (hw->media_type != e1000_media_type_copper)
4245 return -EOPNOTSUPP;
4246
4247 switch (cmd) {
4248 case SIOCGMIIPHY:
4249 data->phy_id = hw->phy_addr;
4250 break;
4251 case SIOCGMIIREG:
4252 spin_lock_irqsave(&adapter->stats_lock, flags);
4253 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4254 &data->val_out)) {
4255 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4256 return -EIO;
4257 }
4258 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4259 break;
4260 case SIOCSMIIREG:
4261 if (data->reg_num & ~(0x1F))
4262 return -EFAULT;
4263 mii_reg = data->val_in;
4264 spin_lock_irqsave(&adapter->stats_lock, flags);
4265 if (e1000_write_phy_reg(hw, data->reg_num,
4266 mii_reg)) {
4267 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4268 return -EIO;
4269 }
4270 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4271 if (hw->media_type == e1000_media_type_copper) {
4272 switch (data->reg_num) {
4273 case PHY_CTRL:
4274 if (mii_reg & MII_CR_POWER_DOWN)
4275 break;
4276 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4277 hw->autoneg = 1;
4278 hw->autoneg_advertised = 0x2F;
4279 } else {
4280 if (mii_reg & 0x40)
4281 spddplx = SPEED_1000;
4282 else if (mii_reg & 0x2000)
4283 spddplx = SPEED_100;
4284 else
4285 spddplx = SPEED_10;
4286 spddplx += (mii_reg & 0x100)
4287 ? DUPLEX_FULL :
4288 DUPLEX_HALF;
4289 retval = e1000_set_spd_dplx(adapter,
4290 spddplx);
4291 if (retval)
4292 return retval;
4293 }
4294 if (netif_running(adapter->netdev))
4295 e1000_reinit_locked(adapter);
4296 else
4297 e1000_reset(adapter);
4298 break;
4299 case M88E1000_PHY_SPEC_CTRL:
4300 case M88E1000_EXT_PHY_SPEC_CTRL:
4301 if (e1000_phy_reset(hw))
4302 return -EIO;
4303 break;
4304 }
4305 } else {
4306 switch (data->reg_num) {
4307 case PHY_CTRL:
4308 if (mii_reg & MII_CR_POWER_DOWN)
4309 break;
4310 if (netif_running(adapter->netdev))
4311 e1000_reinit_locked(adapter);
4312 else
4313 e1000_reset(adapter);
4314 break;
4315 }
4316 }
4317 break;
4318 default:
4319 return -EOPNOTSUPP;
4320 }
4321 return E1000_SUCCESS;
4322 }
4323
4324 void e1000_pci_set_mwi(struct e1000_hw *hw)
4325 {
4326 struct e1000_adapter *adapter = hw->back;
4327 int ret_val = pci_set_mwi(adapter->pdev);
4328
4329 if (ret_val)
4330 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4331 }
4332
4333 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4334 {
4335 struct e1000_adapter *adapter = hw->back;
4336
4337 pci_clear_mwi(adapter->pdev);
4338 }
4339
4340 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4341 {
4342 struct e1000_adapter *adapter = hw->back;
4343 return pcix_get_mmrbc(adapter->pdev);
4344 }
4345
4346 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4347 {
4348 struct e1000_adapter *adapter = hw->back;
4349 pcix_set_mmrbc(adapter->pdev, mmrbc);
4350 }
4351
4352 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4353 {
4354 outl(value, port);
4355 }
4356
4357 static void e1000_vlan_rx_register(struct net_device *netdev,
4358 struct vlan_group *grp)
4359 {
4360 struct e1000_adapter *adapter = netdev_priv(netdev);
4361 struct e1000_hw *hw = &adapter->hw;
4362 u32 ctrl, rctl;
4363
4364 if (!test_bit(__E1000_DOWN, &adapter->flags))
4365 e1000_irq_disable(adapter);
4366 adapter->vlgrp = grp;
4367
4368 if (grp) {
4369 /* enable VLAN tag insert/strip */
4370 ctrl = er32(CTRL);
4371 ctrl |= E1000_CTRL_VME;
4372 ew32(CTRL, ctrl);
4373
4374 /* enable VLAN receive filtering */
4375 rctl = er32(RCTL);
4376 rctl &= ~E1000_RCTL_CFIEN;
4377 if (!(netdev->flags & IFF_PROMISC))
4378 rctl |= E1000_RCTL_VFE;
4379 ew32(RCTL, rctl);
4380 e1000_update_mng_vlan(adapter);
4381 } else {
4382 /* disable VLAN tag insert/strip */
4383 ctrl = er32(CTRL);
4384 ctrl &= ~E1000_CTRL_VME;
4385 ew32(CTRL, ctrl);
4386
4387 /* disable VLAN receive filtering */
4388 rctl = er32(RCTL);
4389 rctl &= ~E1000_RCTL_VFE;
4390 ew32(RCTL, rctl);
4391
4392 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4393 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4394 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4395 }
4396 }
4397
4398 if (!test_bit(__E1000_DOWN, &adapter->flags))
4399 e1000_irq_enable(adapter);
4400 }
4401
4402 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4403 {
4404 struct e1000_adapter *adapter = netdev_priv(netdev);
4405 struct e1000_hw *hw = &adapter->hw;
4406 u32 vfta, index;
4407
4408 if ((hw->mng_cookie.status &
4409 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4410 (vid == adapter->mng_vlan_id))
4411 return;
4412 /* add VID to filter table */
4413 index = (vid >> 5) & 0x7F;
4414 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4415 vfta |= (1 << (vid & 0x1F));
4416 e1000_write_vfta(hw, index, vfta);
4417 }
4418
4419 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4420 {
4421 struct e1000_adapter *adapter = netdev_priv(netdev);
4422 struct e1000_hw *hw = &adapter->hw;
4423 u32 vfta, index;
4424
4425 if (!test_bit(__E1000_DOWN, &adapter->flags))
4426 e1000_irq_disable(adapter);
4427 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4428 if (!test_bit(__E1000_DOWN, &adapter->flags))
4429 e1000_irq_enable(adapter);
4430
4431 /* remove VID from filter table */
4432 index = (vid >> 5) & 0x7F;
4433 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4434 vfta &= ~(1 << (vid & 0x1F));
4435 e1000_write_vfta(hw, index, vfta);
4436 }
4437
4438 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4439 {
4440 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4441
4442 if (adapter->vlgrp) {
4443 u16 vid;
4444 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4445 if (!vlan_group_get_device(adapter->vlgrp, vid))
4446 continue;
4447 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4448 }
4449 }
4450 }
4451
4452 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4453 {
4454 struct e1000_hw *hw = &adapter->hw;
4455
4456 hw->autoneg = 0;
4457
4458 /* Fiber NICs only allow 1000 gbps Full duplex */
4459 if ((hw->media_type == e1000_media_type_fiber) &&
4460 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4461 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4462 return -EINVAL;
4463 }
4464
4465 switch (spddplx) {
4466 case SPEED_10 + DUPLEX_HALF:
4467 hw->forced_speed_duplex = e1000_10_half;
4468 break;
4469 case SPEED_10 + DUPLEX_FULL:
4470 hw->forced_speed_duplex = e1000_10_full;
4471 break;
4472 case SPEED_100 + DUPLEX_HALF:
4473 hw->forced_speed_duplex = e1000_100_half;
4474 break;
4475 case SPEED_100 + DUPLEX_FULL:
4476 hw->forced_speed_duplex = e1000_100_full;
4477 break;
4478 case SPEED_1000 + DUPLEX_FULL:
4479 hw->autoneg = 1;
4480 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4481 break;
4482 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4483 default:
4484 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4485 return -EINVAL;
4486 }
4487 return 0;
4488 }
4489
4490 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4491 {
4492 struct net_device *netdev = pci_get_drvdata(pdev);
4493 struct e1000_adapter *adapter = netdev_priv(netdev);
4494 struct e1000_hw *hw = &adapter->hw;
4495 u32 ctrl, ctrl_ext, rctl, status;
4496 u32 wufc = adapter->wol;
4497 #ifdef CONFIG_PM
4498 int retval = 0;
4499 #endif
4500
4501 netif_device_detach(netdev);
4502
4503 if (netif_running(netdev)) {
4504 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4505 e1000_down(adapter);
4506 }
4507
4508 #ifdef CONFIG_PM
4509 retval = pci_save_state(pdev);
4510 if (retval)
4511 return retval;
4512 #endif
4513
4514 status = er32(STATUS);
4515 if (status & E1000_STATUS_LU)
4516 wufc &= ~E1000_WUFC_LNKC;
4517
4518 if (wufc) {
4519 e1000_setup_rctl(adapter);
4520 e1000_set_rx_mode(netdev);
4521
4522 /* turn on all-multi mode if wake on multicast is enabled */
4523 if (wufc & E1000_WUFC_MC) {
4524 rctl = er32(RCTL);
4525 rctl |= E1000_RCTL_MPE;
4526 ew32(RCTL, rctl);
4527 }
4528
4529 if (hw->mac_type >= e1000_82540) {
4530 ctrl = er32(CTRL);
4531 /* advertise wake from D3Cold */
4532 #define E1000_CTRL_ADVD3WUC 0x00100000
4533 /* phy power management enable */
4534 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4535 ctrl |= E1000_CTRL_ADVD3WUC |
4536 E1000_CTRL_EN_PHY_PWR_MGMT;
4537 ew32(CTRL, ctrl);
4538 }
4539
4540 if (hw->media_type == e1000_media_type_fiber ||
4541 hw->media_type == e1000_media_type_internal_serdes) {
4542 /* keep the laser running in D3 */
4543 ctrl_ext = er32(CTRL_EXT);
4544 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4545 ew32(CTRL_EXT, ctrl_ext);
4546 }
4547
4548 ew32(WUC, E1000_WUC_PME_EN);
4549 ew32(WUFC, wufc);
4550 } else {
4551 ew32(WUC, 0);
4552 ew32(WUFC, 0);
4553 }
4554
4555 e1000_release_manageability(adapter);
4556
4557 *enable_wake = !!wufc;
4558
4559 /* make sure adapter isn't asleep if manageability is enabled */
4560 if (adapter->en_mng_pt)
4561 *enable_wake = true;
4562
4563 if (netif_running(netdev))
4564 e1000_free_irq(adapter);
4565
4566 pci_disable_device(pdev);
4567
4568 return 0;
4569 }
4570
4571 #ifdef CONFIG_PM
4572 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4573 {
4574 int retval;
4575 bool wake;
4576
4577 retval = __e1000_shutdown(pdev, &wake);
4578 if (retval)
4579 return retval;
4580
4581 if (wake) {
4582 pci_prepare_to_sleep(pdev);
4583 } else {
4584 pci_wake_from_d3(pdev, false);
4585 pci_set_power_state(pdev, PCI_D3hot);
4586 }
4587
4588 return 0;
4589 }
4590
4591 static int e1000_resume(struct pci_dev *pdev)
4592 {
4593 struct net_device *netdev = pci_get_drvdata(pdev);
4594 struct e1000_adapter *adapter = netdev_priv(netdev);
4595 struct e1000_hw *hw = &adapter->hw;
4596 u32 err;
4597
4598 pci_set_power_state(pdev, PCI_D0);
4599 pci_restore_state(pdev);
4600
4601 if (adapter->need_ioport)
4602 err = pci_enable_device(pdev);
4603 else
4604 err = pci_enable_device_mem(pdev);
4605 if (err) {
4606 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4607 return err;
4608 }
4609 pci_set_master(pdev);
4610
4611 pci_enable_wake(pdev, PCI_D3hot, 0);
4612 pci_enable_wake(pdev, PCI_D3cold, 0);
4613
4614 if (netif_running(netdev)) {
4615 err = e1000_request_irq(adapter);
4616 if (err)
4617 return err;
4618 }
4619
4620 e1000_power_up_phy(adapter);
4621 e1000_reset(adapter);
4622 ew32(WUS, ~0);
4623
4624 e1000_init_manageability(adapter);
4625
4626 if (netif_running(netdev))
4627 e1000_up(adapter);
4628
4629 netif_device_attach(netdev);
4630
4631 return 0;
4632 }
4633 #endif
4634
4635 static void e1000_shutdown(struct pci_dev *pdev)
4636 {
4637 bool wake;
4638
4639 __e1000_shutdown(pdev, &wake);
4640
4641 if (system_state == SYSTEM_POWER_OFF) {
4642 pci_wake_from_d3(pdev, wake);
4643 pci_set_power_state(pdev, PCI_D3hot);
4644 }
4645 }
4646
4647 #ifdef CONFIG_NET_POLL_CONTROLLER
4648 /*
4649 * Polling 'interrupt' - used by things like netconsole to send skbs
4650 * without having to re-enable interrupts. It's not called while
4651 * the interrupt routine is executing.
4652 */
4653 static void e1000_netpoll(struct net_device *netdev)
4654 {
4655 struct e1000_adapter *adapter = netdev_priv(netdev);
4656
4657 disable_irq(adapter->pdev->irq);
4658 e1000_intr(adapter->pdev->irq, netdev);
4659 enable_irq(adapter->pdev->irq);
4660 }
4661 #endif
4662
4663 /**
4664 * e1000_io_error_detected - called when PCI error is detected
4665 * @pdev: Pointer to PCI device
4666 * @state: The current pci connection state
4667 *
4668 * This function is called after a PCI bus error affecting
4669 * this device has been detected.
4670 */
4671 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4672 pci_channel_state_t state)
4673 {
4674 struct net_device *netdev = pci_get_drvdata(pdev);
4675 struct e1000_adapter *adapter = netdev_priv(netdev);
4676
4677 netif_device_detach(netdev);
4678
4679 if (state == pci_channel_io_perm_failure)
4680 return PCI_ERS_RESULT_DISCONNECT;
4681
4682 if (netif_running(netdev))
4683 e1000_down(adapter);
4684 pci_disable_device(pdev);
4685
4686 /* Request a slot slot reset. */
4687 return PCI_ERS_RESULT_NEED_RESET;
4688 }
4689
4690 /**
4691 * e1000_io_slot_reset - called after the pci bus has been reset.
4692 * @pdev: Pointer to PCI device
4693 *
4694 * Restart the card from scratch, as if from a cold-boot. Implementation
4695 * resembles the first-half of the e1000_resume routine.
4696 */
4697 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4698 {
4699 struct net_device *netdev = pci_get_drvdata(pdev);
4700 struct e1000_adapter *adapter = netdev_priv(netdev);
4701 struct e1000_hw *hw = &adapter->hw;
4702 int err;
4703
4704 if (adapter->need_ioport)
4705 err = pci_enable_device(pdev);
4706 else
4707 err = pci_enable_device_mem(pdev);
4708 if (err) {
4709 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4710 return PCI_ERS_RESULT_DISCONNECT;
4711 }
4712 pci_set_master(pdev);
4713
4714 pci_enable_wake(pdev, PCI_D3hot, 0);
4715 pci_enable_wake(pdev, PCI_D3cold, 0);
4716
4717 e1000_reset(adapter);
4718 ew32(WUS, ~0);
4719
4720 return PCI_ERS_RESULT_RECOVERED;
4721 }
4722
4723 /**
4724 * e1000_io_resume - called when traffic can start flowing again.
4725 * @pdev: Pointer to PCI device
4726 *
4727 * This callback is called when the error recovery driver tells us that
4728 * its OK to resume normal operation. Implementation resembles the
4729 * second-half of the e1000_resume routine.
4730 */
4731 static void e1000_io_resume(struct pci_dev *pdev)
4732 {
4733 struct net_device *netdev = pci_get_drvdata(pdev);
4734 struct e1000_adapter *adapter = netdev_priv(netdev);
4735
4736 e1000_init_manageability(adapter);
4737
4738 if (netif_running(netdev)) {
4739 if (e1000_up(adapter)) {
4740 printk("e1000: can't bring device back up after reset\n");
4741 return;
4742 }
4743 }
4744
4745 netif_device_attach(netdev);
4746 }
4747
4748 /* e1000_main.c */