e1000: do not modify tx_queue_len on link speed change
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k5-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39 *
40 * Last entry must be all 0s
41 *
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44 */
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
129 struct net_device *netdev);
130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
132 static int e1000_set_mac(struct net_device *netdev, void *p);
133 static irqreturn_t e1000_intr(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int *work_done, int work_to_do);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
144 struct e1000_rx_ring *rx_ring,
145 int cleaned_count);
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring,
148 int cleaned_count);
149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
151 int cmd);
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_tx_timeout(struct net_device *dev);
155 static void e1000_reset_task(struct work_struct *work);
156 static void e1000_smartspeed(struct e1000_adapter *adapter);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158 struct sk_buff *skb);
159
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
164
165 #ifdef CONFIG_PM
166 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
169 static void e1000_shutdown(struct pci_dev *pdev);
170
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device *netdev);
174 #endif
175
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
178 module_param(copybreak, uint, 0644);
179 MODULE_PARM_DESC(copybreak,
180 "Maximum size of packet that is copied to a new buffer on receive");
181
182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
183 pci_channel_state_t state);
184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
185 static void e1000_io_resume(struct pci_dev *pdev);
186
187 static struct pci_error_handlers e1000_err_handler = {
188 .error_detected = e1000_io_error_detected,
189 .slot_reset = e1000_io_slot_reset,
190 .resume = e1000_io_resume,
191 };
192
193 static struct pci_driver e1000_driver = {
194 .name = e1000_driver_name,
195 .id_table = e1000_pci_tbl,
196 .probe = e1000_probe,
197 .remove = __devexit_p(e1000_remove),
198 #ifdef CONFIG_PM
199 /* Power Managment Hooks */
200 .suspend = e1000_suspend,
201 .resume = e1000_resume,
202 #endif
203 .shutdown = e1000_shutdown,
204 .err_handler = &e1000_err_handler
205 };
206
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION);
211
212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
213 module_param(debug, int, 0);
214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
215
216 /**
217 * e1000_init_module - Driver Registration Routine
218 *
219 * e1000_init_module is the first routine called when the driver is
220 * loaded. All it does is register with the PCI subsystem.
221 **/
222
223 static int __init e1000_init_module(void)
224 {
225 int ret;
226 printk(KERN_INFO "%s - version %s\n",
227 e1000_driver_string, e1000_driver_version);
228
229 printk(KERN_INFO "%s\n", e1000_copyright);
230
231 ret = pci_register_driver(&e1000_driver);
232 if (copybreak != COPYBREAK_DEFAULT) {
233 if (copybreak == 0)
234 printk(KERN_INFO "e1000: copybreak disabled\n");
235 else
236 printk(KERN_INFO "e1000: copybreak enabled for "
237 "packets <= %u bytes\n", copybreak);
238 }
239 return ret;
240 }
241
242 module_init(e1000_init_module);
243
244 /**
245 * e1000_exit_module - Driver Exit Cleanup Routine
246 *
247 * e1000_exit_module is called just before the driver is removed
248 * from memory.
249 **/
250
251 static void __exit e1000_exit_module(void)
252 {
253 pci_unregister_driver(&e1000_driver);
254 }
255
256 module_exit(e1000_exit_module);
257
258 static int e1000_request_irq(struct e1000_adapter *adapter)
259 {
260 struct net_device *netdev = adapter->netdev;
261 irq_handler_t handler = e1000_intr;
262 int irq_flags = IRQF_SHARED;
263 int err;
264
265 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
266 netdev);
267 if (err) {
268 DPRINTK(PROBE, ERR,
269 "Unable to allocate interrupt Error: %d\n", err);
270 }
271
272 return err;
273 }
274
275 static void e1000_free_irq(struct e1000_adapter *adapter)
276 {
277 struct net_device *netdev = adapter->netdev;
278
279 free_irq(adapter->pdev->irq, netdev);
280 }
281
282 /**
283 * e1000_irq_disable - Mask off interrupt generation on the NIC
284 * @adapter: board private structure
285 **/
286
287 static void e1000_irq_disable(struct e1000_adapter *adapter)
288 {
289 struct e1000_hw *hw = &adapter->hw;
290
291 ew32(IMC, ~0);
292 E1000_WRITE_FLUSH();
293 synchronize_irq(adapter->pdev->irq);
294 }
295
296 /**
297 * e1000_irq_enable - Enable default interrupt generation settings
298 * @adapter: board private structure
299 **/
300
301 static void e1000_irq_enable(struct e1000_adapter *adapter)
302 {
303 struct e1000_hw *hw = &adapter->hw;
304
305 ew32(IMS, IMS_ENABLE_MASK);
306 E1000_WRITE_FLUSH();
307 }
308
309 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
310 {
311 struct e1000_hw *hw = &adapter->hw;
312 struct net_device *netdev = adapter->netdev;
313 u16 vid = hw->mng_cookie.vlan_id;
314 u16 old_vid = adapter->mng_vlan_id;
315 if (adapter->vlgrp) {
316 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
317 if (hw->mng_cookie.status &
318 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
319 e1000_vlan_rx_add_vid(netdev, vid);
320 adapter->mng_vlan_id = vid;
321 } else
322 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
323
324 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
325 (vid != old_vid) &&
326 !vlan_group_get_device(adapter->vlgrp, old_vid))
327 e1000_vlan_rx_kill_vid(netdev, old_vid);
328 } else
329 adapter->mng_vlan_id = vid;
330 }
331 }
332
333 static void e1000_init_manageability(struct e1000_adapter *adapter)
334 {
335 struct e1000_hw *hw = &adapter->hw;
336
337 if (adapter->en_mng_pt) {
338 u32 manc = er32(MANC);
339
340 /* disable hardware interception of ARP */
341 manc &= ~(E1000_MANC_ARP_EN);
342
343 ew32(MANC, manc);
344 }
345 }
346
347 static void e1000_release_manageability(struct e1000_adapter *adapter)
348 {
349 struct e1000_hw *hw = &adapter->hw;
350
351 if (adapter->en_mng_pt) {
352 u32 manc = er32(MANC);
353
354 /* re-enable hardware interception of ARP */
355 manc |= E1000_MANC_ARP_EN;
356
357 ew32(MANC, manc);
358 }
359 }
360
361 /**
362 * e1000_configure - configure the hardware for RX and TX
363 * @adapter = private board structure
364 **/
365 static void e1000_configure(struct e1000_adapter *adapter)
366 {
367 struct net_device *netdev = adapter->netdev;
368 int i;
369
370 e1000_set_rx_mode(netdev);
371
372 e1000_restore_vlan(adapter);
373 e1000_init_manageability(adapter);
374
375 e1000_configure_tx(adapter);
376 e1000_setup_rctl(adapter);
377 e1000_configure_rx(adapter);
378 /* call E1000_DESC_UNUSED which always leaves
379 * at least 1 descriptor unused to make sure
380 * next_to_use != next_to_clean */
381 for (i = 0; i < adapter->num_rx_queues; i++) {
382 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
383 adapter->alloc_rx_buf(adapter, ring,
384 E1000_DESC_UNUSED(ring));
385 }
386 }
387
388 int e1000_up(struct e1000_adapter *adapter)
389 {
390 struct e1000_hw *hw = &adapter->hw;
391
392 /* hardware has been reset, we need to reload some things */
393 e1000_configure(adapter);
394
395 clear_bit(__E1000_DOWN, &adapter->flags);
396
397 napi_enable(&adapter->napi);
398
399 e1000_irq_enable(adapter);
400
401 netif_wake_queue(adapter->netdev);
402
403 /* fire a link change interrupt to start the watchdog */
404 ew32(ICS, E1000_ICS_LSC);
405 return 0;
406 }
407
408 /**
409 * e1000_power_up_phy - restore link in case the phy was powered down
410 * @adapter: address of board private structure
411 *
412 * The phy may be powered down to save power and turn off link when the
413 * driver is unloaded and wake on lan is not enabled (among others)
414 * *** this routine MUST be followed by a call to e1000_reset ***
415 *
416 **/
417
418 void e1000_power_up_phy(struct e1000_adapter *adapter)
419 {
420 struct e1000_hw *hw = &adapter->hw;
421 u16 mii_reg = 0;
422
423 /* Just clear the power down bit to wake the phy back up */
424 if (hw->media_type == e1000_media_type_copper) {
425 /* according to the manual, the phy will retain its
426 * settings across a power-down/up cycle */
427 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
428 mii_reg &= ~MII_CR_POWER_DOWN;
429 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
430 }
431 }
432
433 static void e1000_power_down_phy(struct e1000_adapter *adapter)
434 {
435 struct e1000_hw *hw = &adapter->hw;
436
437 /* Power down the PHY so no link is implied when interface is down *
438 * The PHY cannot be powered down if any of the following is true *
439 * (a) WoL is enabled
440 * (b) AMT is active
441 * (c) SoL/IDER session is active */
442 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
443 hw->media_type == e1000_media_type_copper) {
444 u16 mii_reg = 0;
445
446 switch (hw->mac_type) {
447 case e1000_82540:
448 case e1000_82545:
449 case e1000_82545_rev_3:
450 case e1000_82546:
451 case e1000_82546_rev_3:
452 case e1000_82541:
453 case e1000_82541_rev_2:
454 case e1000_82547:
455 case e1000_82547_rev_2:
456 if (er32(MANC) & E1000_MANC_SMBUS_EN)
457 goto out;
458 break;
459 default:
460 goto out;
461 }
462 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
463 mii_reg |= MII_CR_POWER_DOWN;
464 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
465 mdelay(1);
466 }
467 out:
468 return;
469 }
470
471 void e1000_down(struct e1000_adapter *adapter)
472 {
473 struct e1000_hw *hw = &adapter->hw;
474 struct net_device *netdev = adapter->netdev;
475 u32 rctl, tctl;
476
477 /* signal that we're down so the interrupt handler does not
478 * reschedule our watchdog timer */
479 set_bit(__E1000_DOWN, &adapter->flags);
480
481 /* disable receives in the hardware */
482 rctl = er32(RCTL);
483 ew32(RCTL, rctl & ~E1000_RCTL_EN);
484 /* flush and sleep below */
485
486 netif_tx_disable(netdev);
487
488 /* disable transmits in the hardware */
489 tctl = er32(TCTL);
490 tctl &= ~E1000_TCTL_EN;
491 ew32(TCTL, tctl);
492 /* flush both disables and wait for them to finish */
493 E1000_WRITE_FLUSH();
494 msleep(10);
495
496 napi_disable(&adapter->napi);
497
498 e1000_irq_disable(adapter);
499
500 del_timer_sync(&adapter->tx_fifo_stall_timer);
501 del_timer_sync(&adapter->watchdog_timer);
502 del_timer_sync(&adapter->phy_info_timer);
503
504 adapter->link_speed = 0;
505 adapter->link_duplex = 0;
506 netif_carrier_off(netdev);
507
508 e1000_reset(adapter);
509 e1000_clean_all_tx_rings(adapter);
510 e1000_clean_all_rx_rings(adapter);
511 }
512
513 void e1000_reinit_locked(struct e1000_adapter *adapter)
514 {
515 WARN_ON(in_interrupt());
516 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
517 msleep(1);
518 e1000_down(adapter);
519 e1000_up(adapter);
520 clear_bit(__E1000_RESETTING, &adapter->flags);
521 }
522
523 void e1000_reset(struct e1000_adapter *adapter)
524 {
525 struct e1000_hw *hw = &adapter->hw;
526 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
527 bool legacy_pba_adjust = false;
528 u16 hwm;
529
530 /* Repartition Pba for greater than 9k mtu
531 * To take effect CTRL.RST is required.
532 */
533
534 switch (hw->mac_type) {
535 case e1000_82542_rev2_0:
536 case e1000_82542_rev2_1:
537 case e1000_82543:
538 case e1000_82544:
539 case e1000_82540:
540 case e1000_82541:
541 case e1000_82541_rev_2:
542 legacy_pba_adjust = true;
543 pba = E1000_PBA_48K;
544 break;
545 case e1000_82545:
546 case e1000_82545_rev_3:
547 case e1000_82546:
548 case e1000_82546_rev_3:
549 pba = E1000_PBA_48K;
550 break;
551 case e1000_82547:
552 case e1000_82547_rev_2:
553 legacy_pba_adjust = true;
554 pba = E1000_PBA_30K;
555 break;
556 case e1000_undefined:
557 case e1000_num_macs:
558 break;
559 }
560
561 if (legacy_pba_adjust) {
562 if (hw->max_frame_size > E1000_RXBUFFER_8192)
563 pba -= 8; /* allocate more FIFO for Tx */
564
565 if (hw->mac_type == e1000_82547) {
566 adapter->tx_fifo_head = 0;
567 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
568 adapter->tx_fifo_size =
569 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
570 atomic_set(&adapter->tx_fifo_stall, 0);
571 }
572 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
573 /* adjust PBA for jumbo frames */
574 ew32(PBA, pba);
575
576 /* To maintain wire speed transmits, the Tx FIFO should be
577 * large enough to accommodate two full transmit packets,
578 * rounded up to the next 1KB and expressed in KB. Likewise,
579 * the Rx FIFO should be large enough to accommodate at least
580 * one full receive packet and is similarly rounded up and
581 * expressed in KB. */
582 pba = er32(PBA);
583 /* upper 16 bits has Tx packet buffer allocation size in KB */
584 tx_space = pba >> 16;
585 /* lower 16 bits has Rx packet buffer allocation size in KB */
586 pba &= 0xffff;
587 /*
588 * the tx fifo also stores 16 bytes of information about the tx
589 * but don't include ethernet FCS because hardware appends it
590 */
591 min_tx_space = (hw->max_frame_size +
592 sizeof(struct e1000_tx_desc) -
593 ETH_FCS_LEN) * 2;
594 min_tx_space = ALIGN(min_tx_space, 1024);
595 min_tx_space >>= 10;
596 /* software strips receive CRC, so leave room for it */
597 min_rx_space = hw->max_frame_size;
598 min_rx_space = ALIGN(min_rx_space, 1024);
599 min_rx_space >>= 10;
600
601 /* If current Tx allocation is less than the min Tx FIFO size,
602 * and the min Tx FIFO size is less than the current Rx FIFO
603 * allocation, take space away from current Rx allocation */
604 if (tx_space < min_tx_space &&
605 ((min_tx_space - tx_space) < pba)) {
606 pba = pba - (min_tx_space - tx_space);
607
608 /* PCI/PCIx hardware has PBA alignment constraints */
609 switch (hw->mac_type) {
610 case e1000_82545 ... e1000_82546_rev_3:
611 pba &= ~(E1000_PBA_8K - 1);
612 break;
613 default:
614 break;
615 }
616
617 /* if short on rx space, rx wins and must trump tx
618 * adjustment or use Early Receive if available */
619 if (pba < min_rx_space)
620 pba = min_rx_space;
621 }
622 }
623
624 ew32(PBA, pba);
625
626 /*
627 * flow control settings:
628 * The high water mark must be low enough to fit one full frame
629 * (or the size used for early receive) above it in the Rx FIFO.
630 * Set it to the lower of:
631 * - 90% of the Rx FIFO size, and
632 * - the full Rx FIFO size minus the early receive size (for parts
633 * with ERT support assuming ERT set to E1000_ERT_2048), or
634 * - the full Rx FIFO size minus one full frame
635 */
636 hwm = min(((pba << 10) * 9 / 10),
637 ((pba << 10) - hw->max_frame_size));
638
639 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
640 hw->fc_low_water = hw->fc_high_water - 8;
641 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
642 hw->fc_send_xon = 1;
643 hw->fc = hw->original_fc;
644
645 /* Allow time for pending master requests to run */
646 e1000_reset_hw(hw);
647 if (hw->mac_type >= e1000_82544)
648 ew32(WUC, 0);
649
650 if (e1000_init_hw(hw))
651 DPRINTK(PROBE, ERR, "Hardware Error\n");
652 e1000_update_mng_vlan(adapter);
653
654 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
655 if (hw->mac_type >= e1000_82544 &&
656 hw->autoneg == 1 &&
657 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
658 u32 ctrl = er32(CTRL);
659 /* clear phy power management bit if we are in gig only mode,
660 * which if enabled will attempt negotiation to 100Mb, which
661 * can cause a loss of link at power off or driver unload */
662 ctrl &= ~E1000_CTRL_SWDPIN3;
663 ew32(CTRL, ctrl);
664 }
665
666 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
667 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
668
669 e1000_reset_adaptive(hw);
670 e1000_phy_get_info(hw, &adapter->phy_info);
671
672 e1000_release_manageability(adapter);
673 }
674
675 /**
676 * Dump the eeprom for users having checksum issues
677 **/
678 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
679 {
680 struct net_device *netdev = adapter->netdev;
681 struct ethtool_eeprom eeprom;
682 const struct ethtool_ops *ops = netdev->ethtool_ops;
683 u8 *data;
684 int i;
685 u16 csum_old, csum_new = 0;
686
687 eeprom.len = ops->get_eeprom_len(netdev);
688 eeprom.offset = 0;
689
690 data = kmalloc(eeprom.len, GFP_KERNEL);
691 if (!data) {
692 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
693 " data\n");
694 return;
695 }
696
697 ops->get_eeprom(netdev, &eeprom, data);
698
699 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
700 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
701 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
702 csum_new += data[i] + (data[i + 1] << 8);
703 csum_new = EEPROM_SUM - csum_new;
704
705 printk(KERN_ERR "/*********************/\n");
706 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
707 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
708
709 printk(KERN_ERR "Offset Values\n");
710 printk(KERN_ERR "======== ======\n");
711 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
712
713 printk(KERN_ERR "Include this output when contacting your support "
714 "provider.\n");
715 printk(KERN_ERR "This is not a software error! Something bad "
716 "happened to your hardware or\n");
717 printk(KERN_ERR "EEPROM image. Ignoring this "
718 "problem could result in further problems,\n");
719 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
720 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
721 "which is invalid\n");
722 printk(KERN_ERR "and requires you to set the proper MAC "
723 "address manually before continuing\n");
724 printk(KERN_ERR "to enable this network device.\n");
725 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
726 "to your hardware vendor\n");
727 printk(KERN_ERR "or Intel Customer Support.\n");
728 printk(KERN_ERR "/*********************/\n");
729
730 kfree(data);
731 }
732
733 /**
734 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
735 * @pdev: PCI device information struct
736 *
737 * Return true if an adapter needs ioport resources
738 **/
739 static int e1000_is_need_ioport(struct pci_dev *pdev)
740 {
741 switch (pdev->device) {
742 case E1000_DEV_ID_82540EM:
743 case E1000_DEV_ID_82540EM_LOM:
744 case E1000_DEV_ID_82540EP:
745 case E1000_DEV_ID_82540EP_LOM:
746 case E1000_DEV_ID_82540EP_LP:
747 case E1000_DEV_ID_82541EI:
748 case E1000_DEV_ID_82541EI_MOBILE:
749 case E1000_DEV_ID_82541ER:
750 case E1000_DEV_ID_82541ER_LOM:
751 case E1000_DEV_ID_82541GI:
752 case E1000_DEV_ID_82541GI_LF:
753 case E1000_DEV_ID_82541GI_MOBILE:
754 case E1000_DEV_ID_82544EI_COPPER:
755 case E1000_DEV_ID_82544EI_FIBER:
756 case E1000_DEV_ID_82544GC_COPPER:
757 case E1000_DEV_ID_82544GC_LOM:
758 case E1000_DEV_ID_82545EM_COPPER:
759 case E1000_DEV_ID_82545EM_FIBER:
760 case E1000_DEV_ID_82546EB_COPPER:
761 case E1000_DEV_ID_82546EB_FIBER:
762 case E1000_DEV_ID_82546EB_QUAD_COPPER:
763 return true;
764 default:
765 return false;
766 }
767 }
768
769 static const struct net_device_ops e1000_netdev_ops = {
770 .ndo_open = e1000_open,
771 .ndo_stop = e1000_close,
772 .ndo_start_xmit = e1000_xmit_frame,
773 .ndo_get_stats = e1000_get_stats,
774 .ndo_set_rx_mode = e1000_set_rx_mode,
775 .ndo_set_mac_address = e1000_set_mac,
776 .ndo_tx_timeout = e1000_tx_timeout,
777 .ndo_change_mtu = e1000_change_mtu,
778 .ndo_do_ioctl = e1000_ioctl,
779 .ndo_validate_addr = eth_validate_addr,
780
781 .ndo_vlan_rx_register = e1000_vlan_rx_register,
782 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
783 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
784 #ifdef CONFIG_NET_POLL_CONTROLLER
785 .ndo_poll_controller = e1000_netpoll,
786 #endif
787 };
788
789 /**
790 * e1000_probe - Device Initialization Routine
791 * @pdev: PCI device information struct
792 * @ent: entry in e1000_pci_tbl
793 *
794 * Returns 0 on success, negative on failure
795 *
796 * e1000_probe initializes an adapter identified by a pci_dev structure.
797 * The OS initialization, configuring of the adapter private structure,
798 * and a hardware reset occur.
799 **/
800 static int __devinit e1000_probe(struct pci_dev *pdev,
801 const struct pci_device_id *ent)
802 {
803 struct net_device *netdev;
804 struct e1000_adapter *adapter;
805 struct e1000_hw *hw;
806
807 static int cards_found = 0;
808 static int global_quad_port_a = 0; /* global ksp3 port a indication */
809 int i, err, pci_using_dac;
810 u16 eeprom_data = 0;
811 u16 eeprom_apme_mask = E1000_EEPROM_APME;
812 int bars, need_ioport;
813
814 /* do not allocate ioport bars when not needed */
815 need_ioport = e1000_is_need_ioport(pdev);
816 if (need_ioport) {
817 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
818 err = pci_enable_device(pdev);
819 } else {
820 bars = pci_select_bars(pdev, IORESOURCE_MEM);
821 err = pci_enable_device_mem(pdev);
822 }
823 if (err)
824 return err;
825
826 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
827 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
828 pci_using_dac = 1;
829 } else {
830 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
831 if (err) {
832 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
833 if (err) {
834 E1000_ERR("No usable DMA configuration, "
835 "aborting\n");
836 goto err_dma;
837 }
838 }
839 pci_using_dac = 0;
840 }
841
842 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
843 if (err)
844 goto err_pci_reg;
845
846 pci_set_master(pdev);
847 err = pci_save_state(pdev);
848 if (err)
849 goto err_alloc_etherdev;
850
851 err = -ENOMEM;
852 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
853 if (!netdev)
854 goto err_alloc_etherdev;
855
856 SET_NETDEV_DEV(netdev, &pdev->dev);
857
858 pci_set_drvdata(pdev, netdev);
859 adapter = netdev_priv(netdev);
860 adapter->netdev = netdev;
861 adapter->pdev = pdev;
862 adapter->msg_enable = (1 << debug) - 1;
863 adapter->bars = bars;
864 adapter->need_ioport = need_ioport;
865
866 hw = &adapter->hw;
867 hw->back = adapter;
868
869 err = -EIO;
870 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
871 if (!hw->hw_addr)
872 goto err_ioremap;
873
874 if (adapter->need_ioport) {
875 for (i = BAR_1; i <= BAR_5; i++) {
876 if (pci_resource_len(pdev, i) == 0)
877 continue;
878 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
879 hw->io_base = pci_resource_start(pdev, i);
880 break;
881 }
882 }
883 }
884
885 netdev->netdev_ops = &e1000_netdev_ops;
886 e1000_set_ethtool_ops(netdev);
887 netdev->watchdog_timeo = 5 * HZ;
888 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
889
890 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
891
892 adapter->bd_number = cards_found;
893
894 /* setup the private structure */
895
896 err = e1000_sw_init(adapter);
897 if (err)
898 goto err_sw_init;
899
900 err = -EIO;
901
902 if (hw->mac_type >= e1000_82543) {
903 netdev->features = NETIF_F_SG |
904 NETIF_F_HW_CSUM |
905 NETIF_F_HW_VLAN_TX |
906 NETIF_F_HW_VLAN_RX |
907 NETIF_F_HW_VLAN_FILTER;
908 }
909
910 if ((hw->mac_type >= e1000_82544) &&
911 (hw->mac_type != e1000_82547))
912 netdev->features |= NETIF_F_TSO;
913
914 if (pci_using_dac)
915 netdev->features |= NETIF_F_HIGHDMA;
916
917 netdev->vlan_features |= NETIF_F_TSO;
918 netdev->vlan_features |= NETIF_F_HW_CSUM;
919 netdev->vlan_features |= NETIF_F_SG;
920
921 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
922
923 /* initialize eeprom parameters */
924 if (e1000_init_eeprom_params(hw)) {
925 E1000_ERR("EEPROM initialization failed\n");
926 goto err_eeprom;
927 }
928
929 /* before reading the EEPROM, reset the controller to
930 * put the device in a known good starting state */
931
932 e1000_reset_hw(hw);
933
934 /* make sure the EEPROM is good */
935 if (e1000_validate_eeprom_checksum(hw) < 0) {
936 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
937 e1000_dump_eeprom(adapter);
938 /*
939 * set MAC address to all zeroes to invalidate and temporary
940 * disable this device for the user. This blocks regular
941 * traffic while still permitting ethtool ioctls from reaching
942 * the hardware as well as allowing the user to run the
943 * interface after manually setting a hw addr using
944 * `ip set address`
945 */
946 memset(hw->mac_addr, 0, netdev->addr_len);
947 } else {
948 /* copy the MAC address out of the EEPROM */
949 if (e1000_read_mac_addr(hw))
950 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
951 }
952 /* don't block initalization here due to bad MAC address */
953 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
954 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
955
956 if (!is_valid_ether_addr(netdev->perm_addr))
957 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
958
959 e1000_get_bus_info(hw);
960
961 init_timer(&adapter->tx_fifo_stall_timer);
962 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
963 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
964
965 init_timer(&adapter->watchdog_timer);
966 adapter->watchdog_timer.function = &e1000_watchdog;
967 adapter->watchdog_timer.data = (unsigned long) adapter;
968
969 init_timer(&adapter->phy_info_timer);
970 adapter->phy_info_timer.function = &e1000_update_phy_info;
971 adapter->phy_info_timer.data = (unsigned long)adapter;
972
973 INIT_WORK(&adapter->reset_task, e1000_reset_task);
974
975 e1000_check_options(adapter);
976
977 /* Initial Wake on LAN setting
978 * If APM wake is enabled in the EEPROM,
979 * enable the ACPI Magic Packet filter
980 */
981
982 switch (hw->mac_type) {
983 case e1000_82542_rev2_0:
984 case e1000_82542_rev2_1:
985 case e1000_82543:
986 break;
987 case e1000_82544:
988 e1000_read_eeprom(hw,
989 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
990 eeprom_apme_mask = E1000_EEPROM_82544_APM;
991 break;
992 case e1000_82546:
993 case e1000_82546_rev_3:
994 if (er32(STATUS) & E1000_STATUS_FUNC_1){
995 e1000_read_eeprom(hw,
996 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
997 break;
998 }
999 /* Fall Through */
1000 default:
1001 e1000_read_eeprom(hw,
1002 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1003 break;
1004 }
1005 if (eeprom_data & eeprom_apme_mask)
1006 adapter->eeprom_wol |= E1000_WUFC_MAG;
1007
1008 /* now that we have the eeprom settings, apply the special cases
1009 * where the eeprom may be wrong or the board simply won't support
1010 * wake on lan on a particular port */
1011 switch (pdev->device) {
1012 case E1000_DEV_ID_82546GB_PCIE:
1013 adapter->eeprom_wol = 0;
1014 break;
1015 case E1000_DEV_ID_82546EB_FIBER:
1016 case E1000_DEV_ID_82546GB_FIBER:
1017 /* Wake events only supported on port A for dual fiber
1018 * regardless of eeprom setting */
1019 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1020 adapter->eeprom_wol = 0;
1021 break;
1022 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1023 /* if quad port adapter, disable WoL on all but port A */
1024 if (global_quad_port_a != 0)
1025 adapter->eeprom_wol = 0;
1026 else
1027 adapter->quad_port_a = 1;
1028 /* Reset for multiple quad port adapters */
1029 if (++global_quad_port_a == 4)
1030 global_quad_port_a = 0;
1031 break;
1032 }
1033
1034 /* initialize the wol settings based on the eeprom settings */
1035 adapter->wol = adapter->eeprom_wol;
1036 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1037
1038 /* print bus type/speed/width info */
1039 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1040 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1041 ((hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1042 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1043 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1044 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1045 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : "32-bit"));
1046
1047 printk("%pM\n", netdev->dev_addr);
1048
1049 /* reset the hardware with the new settings */
1050 e1000_reset(adapter);
1051
1052 strcpy(netdev->name, "eth%d");
1053 err = register_netdev(netdev);
1054 if (err)
1055 goto err_register;
1056
1057 /* carrier off reporting is important to ethtool even BEFORE open */
1058 netif_carrier_off(netdev);
1059
1060 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1061
1062 cards_found++;
1063 return 0;
1064
1065 err_register:
1066 err_eeprom:
1067 e1000_phy_hw_reset(hw);
1068
1069 if (hw->flash_address)
1070 iounmap(hw->flash_address);
1071 kfree(adapter->tx_ring);
1072 kfree(adapter->rx_ring);
1073 err_sw_init:
1074 iounmap(hw->hw_addr);
1075 err_ioremap:
1076 free_netdev(netdev);
1077 err_alloc_etherdev:
1078 pci_release_selected_regions(pdev, bars);
1079 err_pci_reg:
1080 err_dma:
1081 pci_disable_device(pdev);
1082 return err;
1083 }
1084
1085 /**
1086 * e1000_remove - Device Removal Routine
1087 * @pdev: PCI device information struct
1088 *
1089 * e1000_remove is called by the PCI subsystem to alert the driver
1090 * that it should release a PCI device. The could be caused by a
1091 * Hot-Plug event, or because the driver is going to be removed from
1092 * memory.
1093 **/
1094
1095 static void __devexit e1000_remove(struct pci_dev *pdev)
1096 {
1097 struct net_device *netdev = pci_get_drvdata(pdev);
1098 struct e1000_adapter *adapter = netdev_priv(netdev);
1099 struct e1000_hw *hw = &adapter->hw;
1100
1101 set_bit(__E1000_DOWN, &adapter->flags);
1102 del_timer_sync(&adapter->tx_fifo_stall_timer);
1103 del_timer_sync(&adapter->watchdog_timer);
1104 del_timer_sync(&adapter->phy_info_timer);
1105
1106 cancel_work_sync(&adapter->reset_task);
1107
1108 e1000_release_manageability(adapter);
1109
1110 unregister_netdev(netdev);
1111
1112 e1000_phy_hw_reset(hw);
1113
1114 kfree(adapter->tx_ring);
1115 kfree(adapter->rx_ring);
1116
1117 iounmap(hw->hw_addr);
1118 if (hw->flash_address)
1119 iounmap(hw->flash_address);
1120 pci_release_selected_regions(pdev, adapter->bars);
1121
1122 free_netdev(netdev);
1123
1124 pci_disable_device(pdev);
1125 }
1126
1127 /**
1128 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129 * @adapter: board private structure to initialize
1130 *
1131 * e1000_sw_init initializes the Adapter private data structure.
1132 * Fields are initialized based on PCI device information and
1133 * OS network device settings (MTU size).
1134 **/
1135
1136 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1137 {
1138 struct e1000_hw *hw = &adapter->hw;
1139 struct net_device *netdev = adapter->netdev;
1140 struct pci_dev *pdev = adapter->pdev;
1141
1142 /* PCI config space info */
1143
1144 hw->vendor_id = pdev->vendor;
1145 hw->device_id = pdev->device;
1146 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1147 hw->subsystem_id = pdev->subsystem_device;
1148 hw->revision_id = pdev->revision;
1149
1150 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1151
1152 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1153 hw->max_frame_size = netdev->mtu +
1154 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1155 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1156
1157 /* identify the MAC */
1158
1159 if (e1000_set_mac_type(hw)) {
1160 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1161 return -EIO;
1162 }
1163
1164 switch (hw->mac_type) {
1165 default:
1166 break;
1167 case e1000_82541:
1168 case e1000_82547:
1169 case e1000_82541_rev_2:
1170 case e1000_82547_rev_2:
1171 hw->phy_init_script = 1;
1172 break;
1173 }
1174
1175 e1000_set_media_type(hw);
1176
1177 hw->wait_autoneg_complete = false;
1178 hw->tbi_compatibility_en = true;
1179 hw->adaptive_ifs = true;
1180
1181 /* Copper options */
1182
1183 if (hw->media_type == e1000_media_type_copper) {
1184 hw->mdix = AUTO_ALL_MODES;
1185 hw->disable_polarity_correction = false;
1186 hw->master_slave = E1000_MASTER_SLAVE;
1187 }
1188
1189 adapter->num_tx_queues = 1;
1190 adapter->num_rx_queues = 1;
1191
1192 if (e1000_alloc_queues(adapter)) {
1193 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1194 return -ENOMEM;
1195 }
1196
1197 /* Explicitly disable IRQ since the NIC can be in any state. */
1198 e1000_irq_disable(adapter);
1199
1200 spin_lock_init(&adapter->stats_lock);
1201
1202 set_bit(__E1000_DOWN, &adapter->flags);
1203
1204 return 0;
1205 }
1206
1207 /**
1208 * e1000_alloc_queues - Allocate memory for all rings
1209 * @adapter: board private structure to initialize
1210 *
1211 * We allocate one ring per queue at run-time since we don't know the
1212 * number of queues at compile-time.
1213 **/
1214
1215 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1216 {
1217 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1218 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1219 if (!adapter->tx_ring)
1220 return -ENOMEM;
1221
1222 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1223 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1224 if (!adapter->rx_ring) {
1225 kfree(adapter->tx_ring);
1226 return -ENOMEM;
1227 }
1228
1229 return E1000_SUCCESS;
1230 }
1231
1232 /**
1233 * e1000_open - Called when a network interface is made active
1234 * @netdev: network interface device structure
1235 *
1236 * Returns 0 on success, negative value on failure
1237 *
1238 * The open entry point is called when a network interface is made
1239 * active by the system (IFF_UP). At this point all resources needed
1240 * for transmit and receive operations are allocated, the interrupt
1241 * handler is registered with the OS, the watchdog timer is started,
1242 * and the stack is notified that the interface is ready.
1243 **/
1244
1245 static int e1000_open(struct net_device *netdev)
1246 {
1247 struct e1000_adapter *adapter = netdev_priv(netdev);
1248 struct e1000_hw *hw = &adapter->hw;
1249 int err;
1250
1251 /* disallow open during test */
1252 if (test_bit(__E1000_TESTING, &adapter->flags))
1253 return -EBUSY;
1254
1255 netif_carrier_off(netdev);
1256
1257 /* allocate transmit descriptors */
1258 err = e1000_setup_all_tx_resources(adapter);
1259 if (err)
1260 goto err_setup_tx;
1261
1262 /* allocate receive descriptors */
1263 err = e1000_setup_all_rx_resources(adapter);
1264 if (err)
1265 goto err_setup_rx;
1266
1267 e1000_power_up_phy(adapter);
1268
1269 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1270 if ((hw->mng_cookie.status &
1271 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1272 e1000_update_mng_vlan(adapter);
1273 }
1274
1275 /* before we allocate an interrupt, we must be ready to handle it.
1276 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1277 * as soon as we call pci_request_irq, so we have to setup our
1278 * clean_rx handler before we do so. */
1279 e1000_configure(adapter);
1280
1281 err = e1000_request_irq(adapter);
1282 if (err)
1283 goto err_req_irq;
1284
1285 /* From here on the code is the same as e1000_up() */
1286 clear_bit(__E1000_DOWN, &adapter->flags);
1287
1288 napi_enable(&adapter->napi);
1289
1290 e1000_irq_enable(adapter);
1291
1292 netif_start_queue(netdev);
1293
1294 /* fire a link status change interrupt to start the watchdog */
1295 ew32(ICS, E1000_ICS_LSC);
1296
1297 return E1000_SUCCESS;
1298
1299 err_req_irq:
1300 e1000_power_down_phy(adapter);
1301 e1000_free_all_rx_resources(adapter);
1302 err_setup_rx:
1303 e1000_free_all_tx_resources(adapter);
1304 err_setup_tx:
1305 e1000_reset(adapter);
1306
1307 return err;
1308 }
1309
1310 /**
1311 * e1000_close - Disables a network interface
1312 * @netdev: network interface device structure
1313 *
1314 * Returns 0, this is not allowed to fail
1315 *
1316 * The close entry point is called when an interface is de-activated
1317 * by the OS. The hardware is still under the drivers control, but
1318 * needs to be disabled. A global MAC reset is issued to stop the
1319 * hardware, and all transmit and receive resources are freed.
1320 **/
1321
1322 static int e1000_close(struct net_device *netdev)
1323 {
1324 struct e1000_adapter *adapter = netdev_priv(netdev);
1325 struct e1000_hw *hw = &adapter->hw;
1326
1327 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1328 e1000_down(adapter);
1329 e1000_power_down_phy(adapter);
1330 e1000_free_irq(adapter);
1331
1332 e1000_free_all_tx_resources(adapter);
1333 e1000_free_all_rx_resources(adapter);
1334
1335 /* kill manageability vlan ID if supported, but not if a vlan with
1336 * the same ID is registered on the host OS (let 8021q kill it) */
1337 if ((hw->mng_cookie.status &
1338 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1339 !(adapter->vlgrp &&
1340 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1341 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1342 }
1343
1344 return 0;
1345 }
1346
1347 /**
1348 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1349 * @adapter: address of board private structure
1350 * @start: address of beginning of memory
1351 * @len: length of memory
1352 **/
1353 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1354 unsigned long len)
1355 {
1356 struct e1000_hw *hw = &adapter->hw;
1357 unsigned long begin = (unsigned long)start;
1358 unsigned long end = begin + len;
1359
1360 /* First rev 82545 and 82546 need to not allow any memory
1361 * write location to cross 64k boundary due to errata 23 */
1362 if (hw->mac_type == e1000_82545 ||
1363 hw->mac_type == e1000_82546) {
1364 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1365 }
1366
1367 return true;
1368 }
1369
1370 /**
1371 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1372 * @adapter: board private structure
1373 * @txdr: tx descriptor ring (for a specific queue) to setup
1374 *
1375 * Return 0 on success, negative on failure
1376 **/
1377
1378 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1379 struct e1000_tx_ring *txdr)
1380 {
1381 struct pci_dev *pdev = adapter->pdev;
1382 int size;
1383
1384 size = sizeof(struct e1000_buffer) * txdr->count;
1385 txdr->buffer_info = vmalloc(size);
1386 if (!txdr->buffer_info) {
1387 DPRINTK(PROBE, ERR,
1388 "Unable to allocate memory for the transmit descriptor ring\n");
1389 return -ENOMEM;
1390 }
1391 memset(txdr->buffer_info, 0, size);
1392
1393 /* round up to nearest 4K */
1394
1395 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1396 txdr->size = ALIGN(txdr->size, 4096);
1397
1398 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1399 if (!txdr->desc) {
1400 setup_tx_desc_die:
1401 vfree(txdr->buffer_info);
1402 DPRINTK(PROBE, ERR,
1403 "Unable to allocate memory for the transmit descriptor ring\n");
1404 return -ENOMEM;
1405 }
1406
1407 /* Fix for errata 23, can't cross 64kB boundary */
1408 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1409 void *olddesc = txdr->desc;
1410 dma_addr_t olddma = txdr->dma;
1411 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1412 "at %p\n", txdr->size, txdr->desc);
1413 /* Try again, without freeing the previous */
1414 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1415 /* Failed allocation, critical failure */
1416 if (!txdr->desc) {
1417 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1418 goto setup_tx_desc_die;
1419 }
1420
1421 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1422 /* give up */
1423 pci_free_consistent(pdev, txdr->size, txdr->desc,
1424 txdr->dma);
1425 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1426 DPRINTK(PROBE, ERR,
1427 "Unable to allocate aligned memory "
1428 "for the transmit descriptor ring\n");
1429 vfree(txdr->buffer_info);
1430 return -ENOMEM;
1431 } else {
1432 /* Free old allocation, new allocation was successful */
1433 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1434 }
1435 }
1436 memset(txdr->desc, 0, txdr->size);
1437
1438 txdr->next_to_use = 0;
1439 txdr->next_to_clean = 0;
1440
1441 return 0;
1442 }
1443
1444 /**
1445 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1446 * (Descriptors) for all queues
1447 * @adapter: board private structure
1448 *
1449 * Return 0 on success, negative on failure
1450 **/
1451
1452 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1453 {
1454 int i, err = 0;
1455
1456 for (i = 0; i < adapter->num_tx_queues; i++) {
1457 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1458 if (err) {
1459 DPRINTK(PROBE, ERR,
1460 "Allocation for Tx Queue %u failed\n", i);
1461 for (i-- ; i >= 0; i--)
1462 e1000_free_tx_resources(adapter,
1463 &adapter->tx_ring[i]);
1464 break;
1465 }
1466 }
1467
1468 return err;
1469 }
1470
1471 /**
1472 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1473 * @adapter: board private structure
1474 *
1475 * Configure the Tx unit of the MAC after a reset.
1476 **/
1477
1478 static void e1000_configure_tx(struct e1000_adapter *adapter)
1479 {
1480 u64 tdba;
1481 struct e1000_hw *hw = &adapter->hw;
1482 u32 tdlen, tctl, tipg;
1483 u32 ipgr1, ipgr2;
1484
1485 /* Setup the HW Tx Head and Tail descriptor pointers */
1486
1487 switch (adapter->num_tx_queues) {
1488 case 1:
1489 default:
1490 tdba = adapter->tx_ring[0].dma;
1491 tdlen = adapter->tx_ring[0].count *
1492 sizeof(struct e1000_tx_desc);
1493 ew32(TDLEN, tdlen);
1494 ew32(TDBAH, (tdba >> 32));
1495 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1496 ew32(TDT, 0);
1497 ew32(TDH, 0);
1498 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1499 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1500 break;
1501 }
1502
1503 /* Set the default values for the Tx Inter Packet Gap timer */
1504 if ((hw->media_type == e1000_media_type_fiber ||
1505 hw->media_type == e1000_media_type_internal_serdes))
1506 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1507 else
1508 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1509
1510 switch (hw->mac_type) {
1511 case e1000_82542_rev2_0:
1512 case e1000_82542_rev2_1:
1513 tipg = DEFAULT_82542_TIPG_IPGT;
1514 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1515 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1516 break;
1517 default:
1518 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1519 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1520 break;
1521 }
1522 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1523 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1524 ew32(TIPG, tipg);
1525
1526 /* Set the Tx Interrupt Delay register */
1527
1528 ew32(TIDV, adapter->tx_int_delay);
1529 if (hw->mac_type >= e1000_82540)
1530 ew32(TADV, adapter->tx_abs_int_delay);
1531
1532 /* Program the Transmit Control Register */
1533
1534 tctl = er32(TCTL);
1535 tctl &= ~E1000_TCTL_CT;
1536 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1537 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1538
1539 e1000_config_collision_dist(hw);
1540
1541 /* Setup Transmit Descriptor Settings for eop descriptor */
1542 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1543
1544 /* only set IDE if we are delaying interrupts using the timers */
1545 if (adapter->tx_int_delay)
1546 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1547
1548 if (hw->mac_type < e1000_82543)
1549 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1550 else
1551 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1552
1553 /* Cache if we're 82544 running in PCI-X because we'll
1554 * need this to apply a workaround later in the send path. */
1555 if (hw->mac_type == e1000_82544 &&
1556 hw->bus_type == e1000_bus_type_pcix)
1557 adapter->pcix_82544 = 1;
1558
1559 ew32(TCTL, tctl);
1560
1561 }
1562
1563 /**
1564 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1565 * @adapter: board private structure
1566 * @rxdr: rx descriptor ring (for a specific queue) to setup
1567 *
1568 * Returns 0 on success, negative on failure
1569 **/
1570
1571 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1572 struct e1000_rx_ring *rxdr)
1573 {
1574 struct pci_dev *pdev = adapter->pdev;
1575 int size, desc_len;
1576
1577 size = sizeof(struct e1000_buffer) * rxdr->count;
1578 rxdr->buffer_info = vmalloc(size);
1579 if (!rxdr->buffer_info) {
1580 DPRINTK(PROBE, ERR,
1581 "Unable to allocate memory for the receive descriptor ring\n");
1582 return -ENOMEM;
1583 }
1584 memset(rxdr->buffer_info, 0, size);
1585
1586 desc_len = sizeof(struct e1000_rx_desc);
1587
1588 /* Round up to nearest 4K */
1589
1590 rxdr->size = rxdr->count * desc_len;
1591 rxdr->size = ALIGN(rxdr->size, 4096);
1592
1593 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1594
1595 if (!rxdr->desc) {
1596 DPRINTK(PROBE, ERR,
1597 "Unable to allocate memory for the receive descriptor ring\n");
1598 setup_rx_desc_die:
1599 vfree(rxdr->buffer_info);
1600 return -ENOMEM;
1601 }
1602
1603 /* Fix for errata 23, can't cross 64kB boundary */
1604 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1605 void *olddesc = rxdr->desc;
1606 dma_addr_t olddma = rxdr->dma;
1607 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1608 "at %p\n", rxdr->size, rxdr->desc);
1609 /* Try again, without freeing the previous */
1610 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1611 /* Failed allocation, critical failure */
1612 if (!rxdr->desc) {
1613 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1614 DPRINTK(PROBE, ERR,
1615 "Unable to allocate memory "
1616 "for the receive descriptor ring\n");
1617 goto setup_rx_desc_die;
1618 }
1619
1620 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1621 /* give up */
1622 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1623 rxdr->dma);
1624 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1625 DPRINTK(PROBE, ERR,
1626 "Unable to allocate aligned memory "
1627 "for the receive descriptor ring\n");
1628 goto setup_rx_desc_die;
1629 } else {
1630 /* Free old allocation, new allocation was successful */
1631 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1632 }
1633 }
1634 memset(rxdr->desc, 0, rxdr->size);
1635
1636 rxdr->next_to_clean = 0;
1637 rxdr->next_to_use = 0;
1638 rxdr->rx_skb_top = NULL;
1639
1640 return 0;
1641 }
1642
1643 /**
1644 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1645 * (Descriptors) for all queues
1646 * @adapter: board private structure
1647 *
1648 * Return 0 on success, negative on failure
1649 **/
1650
1651 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1652 {
1653 int i, err = 0;
1654
1655 for (i = 0; i < adapter->num_rx_queues; i++) {
1656 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1657 if (err) {
1658 DPRINTK(PROBE, ERR,
1659 "Allocation for Rx Queue %u failed\n", i);
1660 for (i-- ; i >= 0; i--)
1661 e1000_free_rx_resources(adapter,
1662 &adapter->rx_ring[i]);
1663 break;
1664 }
1665 }
1666
1667 return err;
1668 }
1669
1670 /**
1671 * e1000_setup_rctl - configure the receive control registers
1672 * @adapter: Board private structure
1673 **/
1674 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1675 {
1676 struct e1000_hw *hw = &adapter->hw;
1677 u32 rctl;
1678
1679 rctl = er32(RCTL);
1680
1681 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1682
1683 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1684 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1685 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1686
1687 if (hw->tbi_compatibility_on == 1)
1688 rctl |= E1000_RCTL_SBP;
1689 else
1690 rctl &= ~E1000_RCTL_SBP;
1691
1692 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1693 rctl &= ~E1000_RCTL_LPE;
1694 else
1695 rctl |= E1000_RCTL_LPE;
1696
1697 /* Setup buffer sizes */
1698 rctl &= ~E1000_RCTL_SZ_4096;
1699 rctl |= E1000_RCTL_BSEX;
1700 switch (adapter->rx_buffer_len) {
1701 case E1000_RXBUFFER_2048:
1702 default:
1703 rctl |= E1000_RCTL_SZ_2048;
1704 rctl &= ~E1000_RCTL_BSEX;
1705 break;
1706 case E1000_RXBUFFER_4096:
1707 rctl |= E1000_RCTL_SZ_4096;
1708 break;
1709 case E1000_RXBUFFER_8192:
1710 rctl |= E1000_RCTL_SZ_8192;
1711 break;
1712 case E1000_RXBUFFER_16384:
1713 rctl |= E1000_RCTL_SZ_16384;
1714 break;
1715 }
1716
1717 ew32(RCTL, rctl);
1718 }
1719
1720 /**
1721 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1722 * @adapter: board private structure
1723 *
1724 * Configure the Rx unit of the MAC after a reset.
1725 **/
1726
1727 static void e1000_configure_rx(struct e1000_adapter *adapter)
1728 {
1729 u64 rdba;
1730 struct e1000_hw *hw = &adapter->hw;
1731 u32 rdlen, rctl, rxcsum;
1732
1733 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1734 rdlen = adapter->rx_ring[0].count *
1735 sizeof(struct e1000_rx_desc);
1736 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1737 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1738 } else {
1739 rdlen = adapter->rx_ring[0].count *
1740 sizeof(struct e1000_rx_desc);
1741 adapter->clean_rx = e1000_clean_rx_irq;
1742 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1743 }
1744
1745 /* disable receives while setting up the descriptors */
1746 rctl = er32(RCTL);
1747 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1748
1749 /* set the Receive Delay Timer Register */
1750 ew32(RDTR, adapter->rx_int_delay);
1751
1752 if (hw->mac_type >= e1000_82540) {
1753 ew32(RADV, adapter->rx_abs_int_delay);
1754 if (adapter->itr_setting != 0)
1755 ew32(ITR, 1000000000 / (adapter->itr * 256));
1756 }
1757
1758 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1759 * the Base and Length of the Rx Descriptor Ring */
1760 switch (adapter->num_rx_queues) {
1761 case 1:
1762 default:
1763 rdba = adapter->rx_ring[0].dma;
1764 ew32(RDLEN, rdlen);
1765 ew32(RDBAH, (rdba >> 32));
1766 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1767 ew32(RDT, 0);
1768 ew32(RDH, 0);
1769 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1770 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1771 break;
1772 }
1773
1774 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1775 if (hw->mac_type >= e1000_82543) {
1776 rxcsum = er32(RXCSUM);
1777 if (adapter->rx_csum)
1778 rxcsum |= E1000_RXCSUM_TUOFL;
1779 else
1780 /* don't need to clear IPPCSE as it defaults to 0 */
1781 rxcsum &= ~E1000_RXCSUM_TUOFL;
1782 ew32(RXCSUM, rxcsum);
1783 }
1784
1785 /* Enable Receives */
1786 ew32(RCTL, rctl);
1787 }
1788
1789 /**
1790 * e1000_free_tx_resources - Free Tx Resources per Queue
1791 * @adapter: board private structure
1792 * @tx_ring: Tx descriptor ring for a specific queue
1793 *
1794 * Free all transmit software resources
1795 **/
1796
1797 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1798 struct e1000_tx_ring *tx_ring)
1799 {
1800 struct pci_dev *pdev = adapter->pdev;
1801
1802 e1000_clean_tx_ring(adapter, tx_ring);
1803
1804 vfree(tx_ring->buffer_info);
1805 tx_ring->buffer_info = NULL;
1806
1807 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1808
1809 tx_ring->desc = NULL;
1810 }
1811
1812 /**
1813 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1814 * @adapter: board private structure
1815 *
1816 * Free all transmit software resources
1817 **/
1818
1819 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1820 {
1821 int i;
1822
1823 for (i = 0; i < adapter->num_tx_queues; i++)
1824 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1825 }
1826
1827 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1828 struct e1000_buffer *buffer_info)
1829 {
1830 if (buffer_info->dma) {
1831 if (buffer_info->mapped_as_page)
1832 pci_unmap_page(adapter->pdev, buffer_info->dma,
1833 buffer_info->length, PCI_DMA_TODEVICE);
1834 else
1835 pci_unmap_single(adapter->pdev, buffer_info->dma,
1836 buffer_info->length,
1837 PCI_DMA_TODEVICE);
1838 buffer_info->dma = 0;
1839 }
1840 if (buffer_info->skb) {
1841 dev_kfree_skb_any(buffer_info->skb);
1842 buffer_info->skb = NULL;
1843 }
1844 buffer_info->time_stamp = 0;
1845 /* buffer_info must be completely set up in the transmit path */
1846 }
1847
1848 /**
1849 * e1000_clean_tx_ring - Free Tx Buffers
1850 * @adapter: board private structure
1851 * @tx_ring: ring to be cleaned
1852 **/
1853
1854 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1855 struct e1000_tx_ring *tx_ring)
1856 {
1857 struct e1000_hw *hw = &adapter->hw;
1858 struct e1000_buffer *buffer_info;
1859 unsigned long size;
1860 unsigned int i;
1861
1862 /* Free all the Tx ring sk_buffs */
1863
1864 for (i = 0; i < tx_ring->count; i++) {
1865 buffer_info = &tx_ring->buffer_info[i];
1866 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1867 }
1868
1869 size = sizeof(struct e1000_buffer) * tx_ring->count;
1870 memset(tx_ring->buffer_info, 0, size);
1871
1872 /* Zero out the descriptor ring */
1873
1874 memset(tx_ring->desc, 0, tx_ring->size);
1875
1876 tx_ring->next_to_use = 0;
1877 tx_ring->next_to_clean = 0;
1878 tx_ring->last_tx_tso = 0;
1879
1880 writel(0, hw->hw_addr + tx_ring->tdh);
1881 writel(0, hw->hw_addr + tx_ring->tdt);
1882 }
1883
1884 /**
1885 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1886 * @adapter: board private structure
1887 **/
1888
1889 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1890 {
1891 int i;
1892
1893 for (i = 0; i < adapter->num_tx_queues; i++)
1894 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1895 }
1896
1897 /**
1898 * e1000_free_rx_resources - Free Rx Resources
1899 * @adapter: board private structure
1900 * @rx_ring: ring to clean the resources from
1901 *
1902 * Free all receive software resources
1903 **/
1904
1905 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1906 struct e1000_rx_ring *rx_ring)
1907 {
1908 struct pci_dev *pdev = adapter->pdev;
1909
1910 e1000_clean_rx_ring(adapter, rx_ring);
1911
1912 vfree(rx_ring->buffer_info);
1913 rx_ring->buffer_info = NULL;
1914
1915 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1916
1917 rx_ring->desc = NULL;
1918 }
1919
1920 /**
1921 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1922 * @adapter: board private structure
1923 *
1924 * Free all receive software resources
1925 **/
1926
1927 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1928 {
1929 int i;
1930
1931 for (i = 0; i < adapter->num_rx_queues; i++)
1932 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1933 }
1934
1935 /**
1936 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1937 * @adapter: board private structure
1938 * @rx_ring: ring to free buffers from
1939 **/
1940
1941 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1942 struct e1000_rx_ring *rx_ring)
1943 {
1944 struct e1000_hw *hw = &adapter->hw;
1945 struct e1000_buffer *buffer_info;
1946 struct pci_dev *pdev = adapter->pdev;
1947 unsigned long size;
1948 unsigned int i;
1949
1950 /* Free all the Rx ring sk_buffs */
1951 for (i = 0; i < rx_ring->count; i++) {
1952 buffer_info = &rx_ring->buffer_info[i];
1953 if (buffer_info->dma &&
1954 adapter->clean_rx == e1000_clean_rx_irq) {
1955 pci_unmap_single(pdev, buffer_info->dma,
1956 buffer_info->length,
1957 PCI_DMA_FROMDEVICE);
1958 } else if (buffer_info->dma &&
1959 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
1960 pci_unmap_page(pdev, buffer_info->dma,
1961 buffer_info->length,
1962 PCI_DMA_FROMDEVICE);
1963 }
1964
1965 buffer_info->dma = 0;
1966 if (buffer_info->page) {
1967 put_page(buffer_info->page);
1968 buffer_info->page = NULL;
1969 }
1970 if (buffer_info->skb) {
1971 dev_kfree_skb(buffer_info->skb);
1972 buffer_info->skb = NULL;
1973 }
1974 }
1975
1976 /* there also may be some cached data from a chained receive */
1977 if (rx_ring->rx_skb_top) {
1978 dev_kfree_skb(rx_ring->rx_skb_top);
1979 rx_ring->rx_skb_top = NULL;
1980 }
1981
1982 size = sizeof(struct e1000_buffer) * rx_ring->count;
1983 memset(rx_ring->buffer_info, 0, size);
1984
1985 /* Zero out the descriptor ring */
1986 memset(rx_ring->desc, 0, rx_ring->size);
1987
1988 rx_ring->next_to_clean = 0;
1989 rx_ring->next_to_use = 0;
1990
1991 writel(0, hw->hw_addr + rx_ring->rdh);
1992 writel(0, hw->hw_addr + rx_ring->rdt);
1993 }
1994
1995 /**
1996 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1997 * @adapter: board private structure
1998 **/
1999
2000 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2001 {
2002 int i;
2003
2004 for (i = 0; i < adapter->num_rx_queues; i++)
2005 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2006 }
2007
2008 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2009 * and memory write and invalidate disabled for certain operations
2010 */
2011 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2012 {
2013 struct e1000_hw *hw = &adapter->hw;
2014 struct net_device *netdev = adapter->netdev;
2015 u32 rctl;
2016
2017 e1000_pci_clear_mwi(hw);
2018
2019 rctl = er32(RCTL);
2020 rctl |= E1000_RCTL_RST;
2021 ew32(RCTL, rctl);
2022 E1000_WRITE_FLUSH();
2023 mdelay(5);
2024
2025 if (netif_running(netdev))
2026 e1000_clean_all_rx_rings(adapter);
2027 }
2028
2029 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2030 {
2031 struct e1000_hw *hw = &adapter->hw;
2032 struct net_device *netdev = adapter->netdev;
2033 u32 rctl;
2034
2035 rctl = er32(RCTL);
2036 rctl &= ~E1000_RCTL_RST;
2037 ew32(RCTL, rctl);
2038 E1000_WRITE_FLUSH();
2039 mdelay(5);
2040
2041 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2042 e1000_pci_set_mwi(hw);
2043
2044 if (netif_running(netdev)) {
2045 /* No need to loop, because 82542 supports only 1 queue */
2046 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2047 e1000_configure_rx(adapter);
2048 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2049 }
2050 }
2051
2052 /**
2053 * e1000_set_mac - Change the Ethernet Address of the NIC
2054 * @netdev: network interface device structure
2055 * @p: pointer to an address structure
2056 *
2057 * Returns 0 on success, negative on failure
2058 **/
2059
2060 static int e1000_set_mac(struct net_device *netdev, void *p)
2061 {
2062 struct e1000_adapter *adapter = netdev_priv(netdev);
2063 struct e1000_hw *hw = &adapter->hw;
2064 struct sockaddr *addr = p;
2065
2066 if (!is_valid_ether_addr(addr->sa_data))
2067 return -EADDRNOTAVAIL;
2068
2069 /* 82542 2.0 needs to be in reset to write receive address registers */
2070
2071 if (hw->mac_type == e1000_82542_rev2_0)
2072 e1000_enter_82542_rst(adapter);
2073
2074 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2075 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2076
2077 e1000_rar_set(hw, hw->mac_addr, 0);
2078
2079 if (hw->mac_type == e1000_82542_rev2_0)
2080 e1000_leave_82542_rst(adapter);
2081
2082 return 0;
2083 }
2084
2085 /**
2086 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2087 * @netdev: network interface device structure
2088 *
2089 * The set_rx_mode entry point is called whenever the unicast or multicast
2090 * address lists or the network interface flags are updated. This routine is
2091 * responsible for configuring the hardware for proper unicast, multicast,
2092 * promiscuous mode, and all-multi behavior.
2093 **/
2094
2095 static void e1000_set_rx_mode(struct net_device *netdev)
2096 {
2097 struct e1000_adapter *adapter = netdev_priv(netdev);
2098 struct e1000_hw *hw = &adapter->hw;
2099 struct netdev_hw_addr *ha;
2100 bool use_uc = false;
2101 struct dev_addr_list *mc_ptr;
2102 u32 rctl;
2103 u32 hash_value;
2104 int i, rar_entries = E1000_RAR_ENTRIES;
2105 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2106 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2107
2108 if (!mcarray) {
2109 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2110 return;
2111 }
2112
2113 /* Check for Promiscuous and All Multicast modes */
2114
2115 rctl = er32(RCTL);
2116
2117 if (netdev->flags & IFF_PROMISC) {
2118 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2119 rctl &= ~E1000_RCTL_VFE;
2120 } else {
2121 if (netdev->flags & IFF_ALLMULTI)
2122 rctl |= E1000_RCTL_MPE;
2123 else
2124 rctl &= ~E1000_RCTL_MPE;
2125 /* Enable VLAN filter if there is a VLAN */
2126 if (adapter->vlgrp)
2127 rctl |= E1000_RCTL_VFE;
2128 }
2129
2130 if (netdev_uc_count(netdev) > rar_entries - 1) {
2131 rctl |= E1000_RCTL_UPE;
2132 } else if (!(netdev->flags & IFF_PROMISC)) {
2133 rctl &= ~E1000_RCTL_UPE;
2134 use_uc = true;
2135 }
2136
2137 ew32(RCTL, rctl);
2138
2139 /* 82542 2.0 needs to be in reset to write receive address registers */
2140
2141 if (hw->mac_type == e1000_82542_rev2_0)
2142 e1000_enter_82542_rst(adapter);
2143
2144 /* load the first 14 addresses into the exact filters 1-14. Unicast
2145 * addresses take precedence to avoid disabling unicast filtering
2146 * when possible.
2147 *
2148 * RAR 0 is used for the station MAC adddress
2149 * if there are not 14 addresses, go ahead and clear the filters
2150 */
2151 i = 1;
2152 if (use_uc)
2153 netdev_for_each_uc_addr(ha, netdev) {
2154 if (i == rar_entries)
2155 break;
2156 e1000_rar_set(hw, ha->addr, i++);
2157 }
2158
2159 WARN_ON(i == rar_entries);
2160
2161 netdev_for_each_mc_addr(mc_ptr, netdev) {
2162 if (i == rar_entries) {
2163 /* load any remaining addresses into the hash table */
2164 u32 hash_reg, hash_bit, mta;
2165 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2166 hash_reg = (hash_value >> 5) & 0x7F;
2167 hash_bit = hash_value & 0x1F;
2168 mta = (1 << hash_bit);
2169 mcarray[hash_reg] |= mta;
2170 } else {
2171 e1000_rar_set(hw, mc_ptr->da_addr, i++);
2172 }
2173 }
2174
2175 for (; i < rar_entries; i++) {
2176 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2177 E1000_WRITE_FLUSH();
2178 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2179 E1000_WRITE_FLUSH();
2180 }
2181
2182 /* write the hash table completely, write from bottom to avoid
2183 * both stupid write combining chipsets, and flushing each write */
2184 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2185 /*
2186 * If we are on an 82544 has an errata where writing odd
2187 * offsets overwrites the previous even offset, but writing
2188 * backwards over the range solves the issue by always
2189 * writing the odd offset first
2190 */
2191 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2192 }
2193 E1000_WRITE_FLUSH();
2194
2195 if (hw->mac_type == e1000_82542_rev2_0)
2196 e1000_leave_82542_rst(adapter);
2197
2198 kfree(mcarray);
2199 }
2200
2201 /* Need to wait a few seconds after link up to get diagnostic information from
2202 * the phy */
2203
2204 static void e1000_update_phy_info(unsigned long data)
2205 {
2206 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2207 struct e1000_hw *hw = &adapter->hw;
2208 e1000_phy_get_info(hw, &adapter->phy_info);
2209 }
2210
2211 /**
2212 * e1000_82547_tx_fifo_stall - Timer Call-back
2213 * @data: pointer to adapter cast into an unsigned long
2214 **/
2215
2216 static void e1000_82547_tx_fifo_stall(unsigned long data)
2217 {
2218 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2219 struct e1000_hw *hw = &adapter->hw;
2220 struct net_device *netdev = adapter->netdev;
2221 u32 tctl;
2222
2223 if (atomic_read(&adapter->tx_fifo_stall)) {
2224 if ((er32(TDT) == er32(TDH)) &&
2225 (er32(TDFT) == er32(TDFH)) &&
2226 (er32(TDFTS) == er32(TDFHS))) {
2227 tctl = er32(TCTL);
2228 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2229 ew32(TDFT, adapter->tx_head_addr);
2230 ew32(TDFH, adapter->tx_head_addr);
2231 ew32(TDFTS, adapter->tx_head_addr);
2232 ew32(TDFHS, adapter->tx_head_addr);
2233 ew32(TCTL, tctl);
2234 E1000_WRITE_FLUSH();
2235
2236 adapter->tx_fifo_head = 0;
2237 atomic_set(&adapter->tx_fifo_stall, 0);
2238 netif_wake_queue(netdev);
2239 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2240 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2241 }
2242 }
2243 }
2244
2245 bool e1000_has_link(struct e1000_adapter *adapter)
2246 {
2247 struct e1000_hw *hw = &adapter->hw;
2248 bool link_active = false;
2249
2250 /* get_link_status is set on LSC (link status) interrupt or
2251 * rx sequence error interrupt. get_link_status will stay
2252 * false until the e1000_check_for_link establishes link
2253 * for copper adapters ONLY
2254 */
2255 switch (hw->media_type) {
2256 case e1000_media_type_copper:
2257 if (hw->get_link_status) {
2258 e1000_check_for_link(hw);
2259 link_active = !hw->get_link_status;
2260 } else {
2261 link_active = true;
2262 }
2263 break;
2264 case e1000_media_type_fiber:
2265 e1000_check_for_link(hw);
2266 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2267 break;
2268 case e1000_media_type_internal_serdes:
2269 e1000_check_for_link(hw);
2270 link_active = hw->serdes_has_link;
2271 break;
2272 default:
2273 break;
2274 }
2275
2276 return link_active;
2277 }
2278
2279 /**
2280 * e1000_watchdog - Timer Call-back
2281 * @data: pointer to adapter cast into an unsigned long
2282 **/
2283 static void e1000_watchdog(unsigned long data)
2284 {
2285 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2286 struct e1000_hw *hw = &adapter->hw;
2287 struct net_device *netdev = adapter->netdev;
2288 struct e1000_tx_ring *txdr = adapter->tx_ring;
2289 u32 link, tctl;
2290
2291 link = e1000_has_link(adapter);
2292 if ((netif_carrier_ok(netdev)) && link)
2293 goto link_up;
2294
2295 if (link) {
2296 if (!netif_carrier_ok(netdev)) {
2297 u32 ctrl;
2298 bool txb2b = true;
2299 /* update snapshot of PHY registers on LSC */
2300 e1000_get_speed_and_duplex(hw,
2301 &adapter->link_speed,
2302 &adapter->link_duplex);
2303
2304 ctrl = er32(CTRL);
2305 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2306 "Flow Control: %s\n",
2307 netdev->name,
2308 adapter->link_speed,
2309 adapter->link_duplex == FULL_DUPLEX ?
2310 "Full Duplex" : "Half Duplex",
2311 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2312 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2313 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2314 E1000_CTRL_TFCE) ? "TX" : "None" )));
2315
2316 /* adjust timeout factor according to speed/duplex */
2317 adapter->tx_timeout_factor = 1;
2318 switch (adapter->link_speed) {
2319 case SPEED_10:
2320 txb2b = false;
2321 adapter->tx_timeout_factor = 16;
2322 break;
2323 case SPEED_100:
2324 txb2b = false;
2325 /* maybe add some timeout factor ? */
2326 break;
2327 }
2328
2329 /* enable transmits in the hardware */
2330 tctl = er32(TCTL);
2331 tctl |= E1000_TCTL_EN;
2332 ew32(TCTL, tctl);
2333
2334 netif_carrier_on(netdev);
2335 if (!test_bit(__E1000_DOWN, &adapter->flags))
2336 mod_timer(&adapter->phy_info_timer,
2337 round_jiffies(jiffies + 2 * HZ));
2338 adapter->smartspeed = 0;
2339 }
2340 } else {
2341 if (netif_carrier_ok(netdev)) {
2342 adapter->link_speed = 0;
2343 adapter->link_duplex = 0;
2344 printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2345 netdev->name);
2346 netif_carrier_off(netdev);
2347
2348 if (!test_bit(__E1000_DOWN, &adapter->flags))
2349 mod_timer(&adapter->phy_info_timer,
2350 round_jiffies(jiffies + 2 * HZ));
2351 }
2352
2353 e1000_smartspeed(adapter);
2354 }
2355
2356 link_up:
2357 e1000_update_stats(adapter);
2358
2359 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2360 adapter->tpt_old = adapter->stats.tpt;
2361 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2362 adapter->colc_old = adapter->stats.colc;
2363
2364 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2365 adapter->gorcl_old = adapter->stats.gorcl;
2366 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2367 adapter->gotcl_old = adapter->stats.gotcl;
2368
2369 e1000_update_adaptive(hw);
2370
2371 if (!netif_carrier_ok(netdev)) {
2372 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2373 /* We've lost link, so the controller stops DMA,
2374 * but we've got queued Tx work that's never going
2375 * to get done, so reset controller to flush Tx.
2376 * (Do the reset outside of interrupt context). */
2377 adapter->tx_timeout_count++;
2378 schedule_work(&adapter->reset_task);
2379 /* return immediately since reset is imminent */
2380 return;
2381 }
2382 }
2383
2384 /* Cause software interrupt to ensure rx ring is cleaned */
2385 ew32(ICS, E1000_ICS_RXDMT0);
2386
2387 /* Force detection of hung controller every watchdog period */
2388 adapter->detect_tx_hung = true;
2389
2390 /* Reset the timer */
2391 if (!test_bit(__E1000_DOWN, &adapter->flags))
2392 mod_timer(&adapter->watchdog_timer,
2393 round_jiffies(jiffies + 2 * HZ));
2394 }
2395
2396 enum latency_range {
2397 lowest_latency = 0,
2398 low_latency = 1,
2399 bulk_latency = 2,
2400 latency_invalid = 255
2401 };
2402
2403 /**
2404 * e1000_update_itr - update the dynamic ITR value based on statistics
2405 * @adapter: pointer to adapter
2406 * @itr_setting: current adapter->itr
2407 * @packets: the number of packets during this measurement interval
2408 * @bytes: the number of bytes during this measurement interval
2409 *
2410 * Stores a new ITR value based on packets and byte
2411 * counts during the last interrupt. The advantage of per interrupt
2412 * computation is faster updates and more accurate ITR for the current
2413 * traffic pattern. Constants in this function were computed
2414 * based on theoretical maximum wire speed and thresholds were set based
2415 * on testing data as well as attempting to minimize response time
2416 * while increasing bulk throughput.
2417 * this functionality is controlled by the InterruptThrottleRate module
2418 * parameter (see e1000_param.c)
2419 **/
2420 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2421 u16 itr_setting, int packets, int bytes)
2422 {
2423 unsigned int retval = itr_setting;
2424 struct e1000_hw *hw = &adapter->hw;
2425
2426 if (unlikely(hw->mac_type < e1000_82540))
2427 goto update_itr_done;
2428
2429 if (packets == 0)
2430 goto update_itr_done;
2431
2432 switch (itr_setting) {
2433 case lowest_latency:
2434 /* jumbo frames get bulk treatment*/
2435 if (bytes/packets > 8000)
2436 retval = bulk_latency;
2437 else if ((packets < 5) && (bytes > 512))
2438 retval = low_latency;
2439 break;
2440 case low_latency: /* 50 usec aka 20000 ints/s */
2441 if (bytes > 10000) {
2442 /* jumbo frames need bulk latency setting */
2443 if (bytes/packets > 8000)
2444 retval = bulk_latency;
2445 else if ((packets < 10) || ((bytes/packets) > 1200))
2446 retval = bulk_latency;
2447 else if ((packets > 35))
2448 retval = lowest_latency;
2449 } else if (bytes/packets > 2000)
2450 retval = bulk_latency;
2451 else if (packets <= 2 && bytes < 512)
2452 retval = lowest_latency;
2453 break;
2454 case bulk_latency: /* 250 usec aka 4000 ints/s */
2455 if (bytes > 25000) {
2456 if (packets > 35)
2457 retval = low_latency;
2458 } else if (bytes < 6000) {
2459 retval = low_latency;
2460 }
2461 break;
2462 }
2463
2464 update_itr_done:
2465 return retval;
2466 }
2467
2468 static void e1000_set_itr(struct e1000_adapter *adapter)
2469 {
2470 struct e1000_hw *hw = &adapter->hw;
2471 u16 current_itr;
2472 u32 new_itr = adapter->itr;
2473
2474 if (unlikely(hw->mac_type < e1000_82540))
2475 return;
2476
2477 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2478 if (unlikely(adapter->link_speed != SPEED_1000)) {
2479 current_itr = 0;
2480 new_itr = 4000;
2481 goto set_itr_now;
2482 }
2483
2484 adapter->tx_itr = e1000_update_itr(adapter,
2485 adapter->tx_itr,
2486 adapter->total_tx_packets,
2487 adapter->total_tx_bytes);
2488 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2489 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2490 adapter->tx_itr = low_latency;
2491
2492 adapter->rx_itr = e1000_update_itr(adapter,
2493 adapter->rx_itr,
2494 adapter->total_rx_packets,
2495 adapter->total_rx_bytes);
2496 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2497 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2498 adapter->rx_itr = low_latency;
2499
2500 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2501
2502 switch (current_itr) {
2503 /* counts and packets in update_itr are dependent on these numbers */
2504 case lowest_latency:
2505 new_itr = 70000;
2506 break;
2507 case low_latency:
2508 new_itr = 20000; /* aka hwitr = ~200 */
2509 break;
2510 case bulk_latency:
2511 new_itr = 4000;
2512 break;
2513 default:
2514 break;
2515 }
2516
2517 set_itr_now:
2518 if (new_itr != adapter->itr) {
2519 /* this attempts to bias the interrupt rate towards Bulk
2520 * by adding intermediate steps when interrupt rate is
2521 * increasing */
2522 new_itr = new_itr > adapter->itr ?
2523 min(adapter->itr + (new_itr >> 2), new_itr) :
2524 new_itr;
2525 adapter->itr = new_itr;
2526 ew32(ITR, 1000000000 / (new_itr * 256));
2527 }
2528
2529 return;
2530 }
2531
2532 #define E1000_TX_FLAGS_CSUM 0x00000001
2533 #define E1000_TX_FLAGS_VLAN 0x00000002
2534 #define E1000_TX_FLAGS_TSO 0x00000004
2535 #define E1000_TX_FLAGS_IPV4 0x00000008
2536 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2537 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2538
2539 static int e1000_tso(struct e1000_adapter *adapter,
2540 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2541 {
2542 struct e1000_context_desc *context_desc;
2543 struct e1000_buffer *buffer_info;
2544 unsigned int i;
2545 u32 cmd_length = 0;
2546 u16 ipcse = 0, tucse, mss;
2547 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2548 int err;
2549
2550 if (skb_is_gso(skb)) {
2551 if (skb_header_cloned(skb)) {
2552 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2553 if (err)
2554 return err;
2555 }
2556
2557 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2558 mss = skb_shinfo(skb)->gso_size;
2559 if (skb->protocol == htons(ETH_P_IP)) {
2560 struct iphdr *iph = ip_hdr(skb);
2561 iph->tot_len = 0;
2562 iph->check = 0;
2563 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2564 iph->daddr, 0,
2565 IPPROTO_TCP,
2566 0);
2567 cmd_length = E1000_TXD_CMD_IP;
2568 ipcse = skb_transport_offset(skb) - 1;
2569 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2570 ipv6_hdr(skb)->payload_len = 0;
2571 tcp_hdr(skb)->check =
2572 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2573 &ipv6_hdr(skb)->daddr,
2574 0, IPPROTO_TCP, 0);
2575 ipcse = 0;
2576 }
2577 ipcss = skb_network_offset(skb);
2578 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2579 tucss = skb_transport_offset(skb);
2580 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2581 tucse = 0;
2582
2583 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2584 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2585
2586 i = tx_ring->next_to_use;
2587 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2588 buffer_info = &tx_ring->buffer_info[i];
2589
2590 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2591 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2592 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2593 context_desc->upper_setup.tcp_fields.tucss = tucss;
2594 context_desc->upper_setup.tcp_fields.tucso = tucso;
2595 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2596 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2597 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2598 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2599
2600 buffer_info->time_stamp = jiffies;
2601 buffer_info->next_to_watch = i;
2602
2603 if (++i == tx_ring->count) i = 0;
2604 tx_ring->next_to_use = i;
2605
2606 return true;
2607 }
2608 return false;
2609 }
2610
2611 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2612 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2613 {
2614 struct e1000_context_desc *context_desc;
2615 struct e1000_buffer *buffer_info;
2616 unsigned int i;
2617 u8 css;
2618 u32 cmd_len = E1000_TXD_CMD_DEXT;
2619
2620 if (skb->ip_summed != CHECKSUM_PARTIAL)
2621 return false;
2622
2623 switch (skb->protocol) {
2624 case cpu_to_be16(ETH_P_IP):
2625 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2626 cmd_len |= E1000_TXD_CMD_TCP;
2627 break;
2628 case cpu_to_be16(ETH_P_IPV6):
2629 /* XXX not handling all IPV6 headers */
2630 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2631 cmd_len |= E1000_TXD_CMD_TCP;
2632 break;
2633 default:
2634 if (unlikely(net_ratelimit()))
2635 DPRINTK(DRV, WARNING,
2636 "checksum_partial proto=%x!\n", skb->protocol);
2637 break;
2638 }
2639
2640 css = skb_transport_offset(skb);
2641
2642 i = tx_ring->next_to_use;
2643 buffer_info = &tx_ring->buffer_info[i];
2644 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2645
2646 context_desc->lower_setup.ip_config = 0;
2647 context_desc->upper_setup.tcp_fields.tucss = css;
2648 context_desc->upper_setup.tcp_fields.tucso =
2649 css + skb->csum_offset;
2650 context_desc->upper_setup.tcp_fields.tucse = 0;
2651 context_desc->tcp_seg_setup.data = 0;
2652 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2653
2654 buffer_info->time_stamp = jiffies;
2655 buffer_info->next_to_watch = i;
2656
2657 if (unlikely(++i == tx_ring->count)) i = 0;
2658 tx_ring->next_to_use = i;
2659
2660 return true;
2661 }
2662
2663 #define E1000_MAX_TXD_PWR 12
2664 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2665
2666 static int e1000_tx_map(struct e1000_adapter *adapter,
2667 struct e1000_tx_ring *tx_ring,
2668 struct sk_buff *skb, unsigned int first,
2669 unsigned int max_per_txd, unsigned int nr_frags,
2670 unsigned int mss)
2671 {
2672 struct e1000_hw *hw = &adapter->hw;
2673 struct pci_dev *pdev = adapter->pdev;
2674 struct e1000_buffer *buffer_info;
2675 unsigned int len = skb_headlen(skb);
2676 unsigned int offset = 0, size, count = 0, i;
2677 unsigned int f;
2678
2679 i = tx_ring->next_to_use;
2680
2681 while (len) {
2682 buffer_info = &tx_ring->buffer_info[i];
2683 size = min(len, max_per_txd);
2684 /* Workaround for Controller erratum --
2685 * descriptor for non-tso packet in a linear SKB that follows a
2686 * tso gets written back prematurely before the data is fully
2687 * DMA'd to the controller */
2688 if (!skb->data_len && tx_ring->last_tx_tso &&
2689 !skb_is_gso(skb)) {
2690 tx_ring->last_tx_tso = 0;
2691 size -= 4;
2692 }
2693
2694 /* Workaround for premature desc write-backs
2695 * in TSO mode. Append 4-byte sentinel desc */
2696 if (unlikely(mss && !nr_frags && size == len && size > 8))
2697 size -= 4;
2698 /* work-around for errata 10 and it applies
2699 * to all controllers in PCI-X mode
2700 * The fix is to make sure that the first descriptor of a
2701 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2702 */
2703 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2704 (size > 2015) && count == 0))
2705 size = 2015;
2706
2707 /* Workaround for potential 82544 hang in PCI-X. Avoid
2708 * terminating buffers within evenly-aligned dwords. */
2709 if (unlikely(adapter->pcix_82544 &&
2710 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2711 size > 4))
2712 size -= 4;
2713
2714 buffer_info->length = size;
2715 /* set time_stamp *before* dma to help avoid a possible race */
2716 buffer_info->time_stamp = jiffies;
2717 buffer_info->mapped_as_page = false;
2718 buffer_info->dma = pci_map_single(pdev, skb->data + offset,
2719 size, PCI_DMA_TODEVICE);
2720 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2721 goto dma_error;
2722 buffer_info->next_to_watch = i;
2723
2724 len -= size;
2725 offset += size;
2726 count++;
2727 if (len) {
2728 i++;
2729 if (unlikely(i == tx_ring->count))
2730 i = 0;
2731 }
2732 }
2733
2734 for (f = 0; f < nr_frags; f++) {
2735 struct skb_frag_struct *frag;
2736
2737 frag = &skb_shinfo(skb)->frags[f];
2738 len = frag->size;
2739 offset = frag->page_offset;
2740
2741 while (len) {
2742 i++;
2743 if (unlikely(i == tx_ring->count))
2744 i = 0;
2745
2746 buffer_info = &tx_ring->buffer_info[i];
2747 size = min(len, max_per_txd);
2748 /* Workaround for premature desc write-backs
2749 * in TSO mode. Append 4-byte sentinel desc */
2750 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2751 size -= 4;
2752 /* Workaround for potential 82544 hang in PCI-X.
2753 * Avoid terminating buffers within evenly-aligned
2754 * dwords. */
2755 if (unlikely(adapter->pcix_82544 &&
2756 !((unsigned long)(page_to_phys(frag->page) + offset
2757 + size - 1) & 4) &&
2758 size > 4))
2759 size -= 4;
2760
2761 buffer_info->length = size;
2762 buffer_info->time_stamp = jiffies;
2763 buffer_info->mapped_as_page = true;
2764 buffer_info->dma = pci_map_page(pdev, frag->page,
2765 offset, size,
2766 PCI_DMA_TODEVICE);
2767 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2768 goto dma_error;
2769 buffer_info->next_to_watch = i;
2770
2771 len -= size;
2772 offset += size;
2773 count++;
2774 }
2775 }
2776
2777 tx_ring->buffer_info[i].skb = skb;
2778 tx_ring->buffer_info[first].next_to_watch = i;
2779
2780 return count;
2781
2782 dma_error:
2783 dev_err(&pdev->dev, "TX DMA map failed\n");
2784 buffer_info->dma = 0;
2785 if (count)
2786 count--;
2787
2788 while (count--) {
2789 if (i==0)
2790 i += tx_ring->count;
2791 i--;
2792 buffer_info = &tx_ring->buffer_info[i];
2793 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2794 }
2795
2796 return 0;
2797 }
2798
2799 static void e1000_tx_queue(struct e1000_adapter *adapter,
2800 struct e1000_tx_ring *tx_ring, int tx_flags,
2801 int count)
2802 {
2803 struct e1000_hw *hw = &adapter->hw;
2804 struct e1000_tx_desc *tx_desc = NULL;
2805 struct e1000_buffer *buffer_info;
2806 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2807 unsigned int i;
2808
2809 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2810 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2811 E1000_TXD_CMD_TSE;
2812 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2813
2814 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2815 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2816 }
2817
2818 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2819 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2820 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2821 }
2822
2823 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2824 txd_lower |= E1000_TXD_CMD_VLE;
2825 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2826 }
2827
2828 i = tx_ring->next_to_use;
2829
2830 while (count--) {
2831 buffer_info = &tx_ring->buffer_info[i];
2832 tx_desc = E1000_TX_DESC(*tx_ring, i);
2833 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2834 tx_desc->lower.data =
2835 cpu_to_le32(txd_lower | buffer_info->length);
2836 tx_desc->upper.data = cpu_to_le32(txd_upper);
2837 if (unlikely(++i == tx_ring->count)) i = 0;
2838 }
2839
2840 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2841
2842 /* Force memory writes to complete before letting h/w
2843 * know there are new descriptors to fetch. (Only
2844 * applicable for weak-ordered memory model archs,
2845 * such as IA-64). */
2846 wmb();
2847
2848 tx_ring->next_to_use = i;
2849 writel(i, hw->hw_addr + tx_ring->tdt);
2850 /* we need this if more than one processor can write to our tail
2851 * at a time, it syncronizes IO on IA64/Altix systems */
2852 mmiowb();
2853 }
2854
2855 /**
2856 * 82547 workaround to avoid controller hang in half-duplex environment.
2857 * The workaround is to avoid queuing a large packet that would span
2858 * the internal Tx FIFO ring boundary by notifying the stack to resend
2859 * the packet at a later time. This gives the Tx FIFO an opportunity to
2860 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2861 * to the beginning of the Tx FIFO.
2862 **/
2863
2864 #define E1000_FIFO_HDR 0x10
2865 #define E1000_82547_PAD_LEN 0x3E0
2866
2867 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2868 struct sk_buff *skb)
2869 {
2870 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2871 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2872
2873 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2874
2875 if (adapter->link_duplex != HALF_DUPLEX)
2876 goto no_fifo_stall_required;
2877
2878 if (atomic_read(&adapter->tx_fifo_stall))
2879 return 1;
2880
2881 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2882 atomic_set(&adapter->tx_fifo_stall, 1);
2883 return 1;
2884 }
2885
2886 no_fifo_stall_required:
2887 adapter->tx_fifo_head += skb_fifo_len;
2888 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2889 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2890 return 0;
2891 }
2892
2893 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2894 {
2895 struct e1000_adapter *adapter = netdev_priv(netdev);
2896 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2897
2898 netif_stop_queue(netdev);
2899 /* Herbert's original patch had:
2900 * smp_mb__after_netif_stop_queue();
2901 * but since that doesn't exist yet, just open code it. */
2902 smp_mb();
2903
2904 /* We need to check again in a case another CPU has just
2905 * made room available. */
2906 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2907 return -EBUSY;
2908
2909 /* A reprieve! */
2910 netif_start_queue(netdev);
2911 ++adapter->restart_queue;
2912 return 0;
2913 }
2914
2915 static int e1000_maybe_stop_tx(struct net_device *netdev,
2916 struct e1000_tx_ring *tx_ring, int size)
2917 {
2918 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2919 return 0;
2920 return __e1000_maybe_stop_tx(netdev, size);
2921 }
2922
2923 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2924 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
2925 struct net_device *netdev)
2926 {
2927 struct e1000_adapter *adapter = netdev_priv(netdev);
2928 struct e1000_hw *hw = &adapter->hw;
2929 struct e1000_tx_ring *tx_ring;
2930 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2931 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2932 unsigned int tx_flags = 0;
2933 unsigned int len = skb->len - skb->data_len;
2934 unsigned int nr_frags;
2935 unsigned int mss;
2936 int count = 0;
2937 int tso;
2938 unsigned int f;
2939
2940 /* This goes back to the question of how to logically map a tx queue
2941 * to a flow. Right now, performance is impacted slightly negatively
2942 * if using multiple tx queues. If the stack breaks away from a
2943 * single qdisc implementation, we can look at this again. */
2944 tx_ring = adapter->tx_ring;
2945
2946 if (unlikely(skb->len <= 0)) {
2947 dev_kfree_skb_any(skb);
2948 return NETDEV_TX_OK;
2949 }
2950
2951 mss = skb_shinfo(skb)->gso_size;
2952 /* The controller does a simple calculation to
2953 * make sure there is enough room in the FIFO before
2954 * initiating the DMA for each buffer. The calc is:
2955 * 4 = ceil(buffer len/mss). To make sure we don't
2956 * overrun the FIFO, adjust the max buffer len if mss
2957 * drops. */
2958 if (mss) {
2959 u8 hdr_len;
2960 max_per_txd = min(mss << 2, max_per_txd);
2961 max_txd_pwr = fls(max_per_txd) - 1;
2962
2963 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2964 if (skb->data_len && hdr_len == len) {
2965 switch (hw->mac_type) {
2966 unsigned int pull_size;
2967 case e1000_82544:
2968 /* Make sure we have room to chop off 4 bytes,
2969 * and that the end alignment will work out to
2970 * this hardware's requirements
2971 * NOTE: this is a TSO only workaround
2972 * if end byte alignment not correct move us
2973 * into the next dword */
2974 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
2975 break;
2976 /* fall through */
2977 pull_size = min((unsigned int)4, skb->data_len);
2978 if (!__pskb_pull_tail(skb, pull_size)) {
2979 DPRINTK(DRV, ERR,
2980 "__pskb_pull_tail failed.\n");
2981 dev_kfree_skb_any(skb);
2982 return NETDEV_TX_OK;
2983 }
2984 len = skb->len - skb->data_len;
2985 break;
2986 default:
2987 /* do nothing */
2988 break;
2989 }
2990 }
2991 }
2992
2993 /* reserve a descriptor for the offload context */
2994 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
2995 count++;
2996 count++;
2997
2998 /* Controller Erratum workaround */
2999 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3000 count++;
3001
3002 count += TXD_USE_COUNT(len, max_txd_pwr);
3003
3004 if (adapter->pcix_82544)
3005 count++;
3006
3007 /* work-around for errata 10 and it applies to all controllers
3008 * in PCI-X mode, so add one more descriptor to the count
3009 */
3010 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3011 (len > 2015)))
3012 count++;
3013
3014 nr_frags = skb_shinfo(skb)->nr_frags;
3015 for (f = 0; f < nr_frags; f++)
3016 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3017 max_txd_pwr);
3018 if (adapter->pcix_82544)
3019 count += nr_frags;
3020
3021 /* need: count + 2 desc gap to keep tail from touching
3022 * head, otherwise try next time */
3023 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3024 return NETDEV_TX_BUSY;
3025
3026 if (unlikely(hw->mac_type == e1000_82547)) {
3027 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3028 netif_stop_queue(netdev);
3029 if (!test_bit(__E1000_DOWN, &adapter->flags))
3030 mod_timer(&adapter->tx_fifo_stall_timer,
3031 jiffies + 1);
3032 return NETDEV_TX_BUSY;
3033 }
3034 }
3035
3036 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3037 tx_flags |= E1000_TX_FLAGS_VLAN;
3038 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3039 }
3040
3041 first = tx_ring->next_to_use;
3042
3043 tso = e1000_tso(adapter, tx_ring, skb);
3044 if (tso < 0) {
3045 dev_kfree_skb_any(skb);
3046 return NETDEV_TX_OK;
3047 }
3048
3049 if (likely(tso)) {
3050 if (likely(hw->mac_type != e1000_82544))
3051 tx_ring->last_tx_tso = 1;
3052 tx_flags |= E1000_TX_FLAGS_TSO;
3053 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3054 tx_flags |= E1000_TX_FLAGS_CSUM;
3055
3056 if (likely(skb->protocol == htons(ETH_P_IP)))
3057 tx_flags |= E1000_TX_FLAGS_IPV4;
3058
3059 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3060 nr_frags, mss);
3061
3062 if (count) {
3063 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3064 /* Make sure there is space in the ring for the next send. */
3065 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3066
3067 } else {
3068 dev_kfree_skb_any(skb);
3069 tx_ring->buffer_info[first].time_stamp = 0;
3070 tx_ring->next_to_use = first;
3071 }
3072
3073 return NETDEV_TX_OK;
3074 }
3075
3076 /**
3077 * e1000_tx_timeout - Respond to a Tx Hang
3078 * @netdev: network interface device structure
3079 **/
3080
3081 static void e1000_tx_timeout(struct net_device *netdev)
3082 {
3083 struct e1000_adapter *adapter = netdev_priv(netdev);
3084
3085 /* Do the reset outside of interrupt context */
3086 adapter->tx_timeout_count++;
3087 schedule_work(&adapter->reset_task);
3088 }
3089
3090 static void e1000_reset_task(struct work_struct *work)
3091 {
3092 struct e1000_adapter *adapter =
3093 container_of(work, struct e1000_adapter, reset_task);
3094
3095 e1000_reinit_locked(adapter);
3096 }
3097
3098 /**
3099 * e1000_get_stats - Get System Network Statistics
3100 * @netdev: network interface device structure
3101 *
3102 * Returns the address of the device statistics structure.
3103 * The statistics are actually updated from the timer callback.
3104 **/
3105
3106 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3107 {
3108 /* only return the current stats */
3109 return &netdev->stats;
3110 }
3111
3112 /**
3113 * e1000_change_mtu - Change the Maximum Transfer Unit
3114 * @netdev: network interface device structure
3115 * @new_mtu: new value for maximum frame size
3116 *
3117 * Returns 0 on success, negative on failure
3118 **/
3119
3120 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3121 {
3122 struct e1000_adapter *adapter = netdev_priv(netdev);
3123 struct e1000_hw *hw = &adapter->hw;
3124 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3125
3126 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3127 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3128 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3129 return -EINVAL;
3130 }
3131
3132 /* Adapter-specific max frame size limits. */
3133 switch (hw->mac_type) {
3134 case e1000_undefined ... e1000_82542_rev2_1:
3135 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3136 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3137 return -EINVAL;
3138 }
3139 break;
3140 default:
3141 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3142 break;
3143 }
3144
3145 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3146 msleep(1);
3147 /* e1000_down has a dependency on max_frame_size */
3148 hw->max_frame_size = max_frame;
3149 if (netif_running(netdev))
3150 e1000_down(adapter);
3151
3152 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3153 * means we reserve 2 more, this pushes us to allocate from the next
3154 * larger slab size.
3155 * i.e. RXBUFFER_2048 --> size-4096 slab
3156 * however with the new *_jumbo_rx* routines, jumbo receives will use
3157 * fragmented skbs */
3158
3159 if (max_frame <= E1000_RXBUFFER_2048)
3160 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3161 else
3162 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3163 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3164 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3165 adapter->rx_buffer_len = PAGE_SIZE;
3166 #endif
3167
3168 /* adjust allocation if LPE protects us, and we aren't using SBP */
3169 if (!hw->tbi_compatibility_on &&
3170 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3171 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3172 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3173
3174 printk(KERN_INFO "e1000: %s changing MTU from %d to %d\n",
3175 netdev->name, netdev->mtu, new_mtu);
3176 netdev->mtu = new_mtu;
3177
3178 if (netif_running(netdev))
3179 e1000_up(adapter);
3180 else
3181 e1000_reset(adapter);
3182
3183 clear_bit(__E1000_RESETTING, &adapter->flags);
3184
3185 return 0;
3186 }
3187
3188 /**
3189 * e1000_update_stats - Update the board statistics counters
3190 * @adapter: board private structure
3191 **/
3192
3193 void e1000_update_stats(struct e1000_adapter *adapter)
3194 {
3195 struct net_device *netdev = adapter->netdev;
3196 struct e1000_hw *hw = &adapter->hw;
3197 struct pci_dev *pdev = adapter->pdev;
3198 unsigned long flags;
3199 u16 phy_tmp;
3200
3201 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3202
3203 /*
3204 * Prevent stats update while adapter is being reset, or if the pci
3205 * connection is down.
3206 */
3207 if (adapter->link_speed == 0)
3208 return;
3209 if (pci_channel_offline(pdev))
3210 return;
3211
3212 spin_lock_irqsave(&adapter->stats_lock, flags);
3213
3214 /* these counters are modified from e1000_tbi_adjust_stats,
3215 * called from the interrupt context, so they must only
3216 * be written while holding adapter->stats_lock
3217 */
3218
3219 adapter->stats.crcerrs += er32(CRCERRS);
3220 adapter->stats.gprc += er32(GPRC);
3221 adapter->stats.gorcl += er32(GORCL);
3222 adapter->stats.gorch += er32(GORCH);
3223 adapter->stats.bprc += er32(BPRC);
3224 adapter->stats.mprc += er32(MPRC);
3225 adapter->stats.roc += er32(ROC);
3226
3227 adapter->stats.prc64 += er32(PRC64);
3228 adapter->stats.prc127 += er32(PRC127);
3229 adapter->stats.prc255 += er32(PRC255);
3230 adapter->stats.prc511 += er32(PRC511);
3231 adapter->stats.prc1023 += er32(PRC1023);
3232 adapter->stats.prc1522 += er32(PRC1522);
3233
3234 adapter->stats.symerrs += er32(SYMERRS);
3235 adapter->stats.mpc += er32(MPC);
3236 adapter->stats.scc += er32(SCC);
3237 adapter->stats.ecol += er32(ECOL);
3238 adapter->stats.mcc += er32(MCC);
3239 adapter->stats.latecol += er32(LATECOL);
3240 adapter->stats.dc += er32(DC);
3241 adapter->stats.sec += er32(SEC);
3242 adapter->stats.rlec += er32(RLEC);
3243 adapter->stats.xonrxc += er32(XONRXC);
3244 adapter->stats.xontxc += er32(XONTXC);
3245 adapter->stats.xoffrxc += er32(XOFFRXC);
3246 adapter->stats.xofftxc += er32(XOFFTXC);
3247 adapter->stats.fcruc += er32(FCRUC);
3248 adapter->stats.gptc += er32(GPTC);
3249 adapter->stats.gotcl += er32(GOTCL);
3250 adapter->stats.gotch += er32(GOTCH);
3251 adapter->stats.rnbc += er32(RNBC);
3252 adapter->stats.ruc += er32(RUC);
3253 adapter->stats.rfc += er32(RFC);
3254 adapter->stats.rjc += er32(RJC);
3255 adapter->stats.torl += er32(TORL);
3256 adapter->stats.torh += er32(TORH);
3257 adapter->stats.totl += er32(TOTL);
3258 adapter->stats.toth += er32(TOTH);
3259 adapter->stats.tpr += er32(TPR);
3260
3261 adapter->stats.ptc64 += er32(PTC64);
3262 adapter->stats.ptc127 += er32(PTC127);
3263 adapter->stats.ptc255 += er32(PTC255);
3264 adapter->stats.ptc511 += er32(PTC511);
3265 adapter->stats.ptc1023 += er32(PTC1023);
3266 adapter->stats.ptc1522 += er32(PTC1522);
3267
3268 adapter->stats.mptc += er32(MPTC);
3269 adapter->stats.bptc += er32(BPTC);
3270
3271 /* used for adaptive IFS */
3272
3273 hw->tx_packet_delta = er32(TPT);
3274 adapter->stats.tpt += hw->tx_packet_delta;
3275 hw->collision_delta = er32(COLC);
3276 adapter->stats.colc += hw->collision_delta;
3277
3278 if (hw->mac_type >= e1000_82543) {
3279 adapter->stats.algnerrc += er32(ALGNERRC);
3280 adapter->stats.rxerrc += er32(RXERRC);
3281 adapter->stats.tncrs += er32(TNCRS);
3282 adapter->stats.cexterr += er32(CEXTERR);
3283 adapter->stats.tsctc += er32(TSCTC);
3284 adapter->stats.tsctfc += er32(TSCTFC);
3285 }
3286
3287 /* Fill out the OS statistics structure */
3288 netdev->stats.multicast = adapter->stats.mprc;
3289 netdev->stats.collisions = adapter->stats.colc;
3290
3291 /* Rx Errors */
3292
3293 /* RLEC on some newer hardware can be incorrect so build
3294 * our own version based on RUC and ROC */
3295 netdev->stats.rx_errors = adapter->stats.rxerrc +
3296 adapter->stats.crcerrs + adapter->stats.algnerrc +
3297 adapter->stats.ruc + adapter->stats.roc +
3298 adapter->stats.cexterr;
3299 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3300 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3301 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3302 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3303 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3304
3305 /* Tx Errors */
3306 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3307 netdev->stats.tx_errors = adapter->stats.txerrc;
3308 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3309 netdev->stats.tx_window_errors = adapter->stats.latecol;
3310 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3311 if (hw->bad_tx_carr_stats_fd &&
3312 adapter->link_duplex == FULL_DUPLEX) {
3313 netdev->stats.tx_carrier_errors = 0;
3314 adapter->stats.tncrs = 0;
3315 }
3316
3317 /* Tx Dropped needs to be maintained elsewhere */
3318
3319 /* Phy Stats */
3320 if (hw->media_type == e1000_media_type_copper) {
3321 if ((adapter->link_speed == SPEED_1000) &&
3322 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3323 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3324 adapter->phy_stats.idle_errors += phy_tmp;
3325 }
3326
3327 if ((hw->mac_type <= e1000_82546) &&
3328 (hw->phy_type == e1000_phy_m88) &&
3329 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3330 adapter->phy_stats.receive_errors += phy_tmp;
3331 }
3332
3333 /* Management Stats */
3334 if (hw->has_smbus) {
3335 adapter->stats.mgptc += er32(MGTPTC);
3336 adapter->stats.mgprc += er32(MGTPRC);
3337 adapter->stats.mgpdc += er32(MGTPDC);
3338 }
3339
3340 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3341 }
3342
3343 /**
3344 * e1000_intr - Interrupt Handler
3345 * @irq: interrupt number
3346 * @data: pointer to a network interface device structure
3347 **/
3348
3349 static irqreturn_t e1000_intr(int irq, void *data)
3350 {
3351 struct net_device *netdev = data;
3352 struct e1000_adapter *adapter = netdev_priv(netdev);
3353 struct e1000_hw *hw = &adapter->hw;
3354 u32 icr = er32(ICR);
3355
3356 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3357 return IRQ_NONE; /* Not our interrupt */
3358
3359 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3360 hw->get_link_status = 1;
3361 /* guard against interrupt when we're going down */
3362 if (!test_bit(__E1000_DOWN, &adapter->flags))
3363 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3364 }
3365
3366 /* disable interrupts, without the synchronize_irq bit */
3367 ew32(IMC, ~0);
3368 E1000_WRITE_FLUSH();
3369
3370 if (likely(napi_schedule_prep(&adapter->napi))) {
3371 adapter->total_tx_bytes = 0;
3372 adapter->total_tx_packets = 0;
3373 adapter->total_rx_bytes = 0;
3374 adapter->total_rx_packets = 0;
3375 __napi_schedule(&adapter->napi);
3376 } else {
3377 /* this really should not happen! if it does it is basically a
3378 * bug, but not a hard error, so enable ints and continue */
3379 if (!test_bit(__E1000_DOWN, &adapter->flags))
3380 e1000_irq_enable(adapter);
3381 }
3382
3383 return IRQ_HANDLED;
3384 }
3385
3386 /**
3387 * e1000_clean - NAPI Rx polling callback
3388 * @adapter: board private structure
3389 **/
3390 static int e1000_clean(struct napi_struct *napi, int budget)
3391 {
3392 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3393 int tx_clean_complete = 0, work_done = 0;
3394
3395 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3396
3397 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3398
3399 if (!tx_clean_complete)
3400 work_done = budget;
3401
3402 /* If budget not fully consumed, exit the polling mode */
3403 if (work_done < budget) {
3404 if (likely(adapter->itr_setting & 3))
3405 e1000_set_itr(adapter);
3406 napi_complete(napi);
3407 if (!test_bit(__E1000_DOWN, &adapter->flags))
3408 e1000_irq_enable(adapter);
3409 }
3410
3411 return work_done;
3412 }
3413
3414 /**
3415 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3416 * @adapter: board private structure
3417 **/
3418 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3419 struct e1000_tx_ring *tx_ring)
3420 {
3421 struct e1000_hw *hw = &adapter->hw;
3422 struct net_device *netdev = adapter->netdev;
3423 struct e1000_tx_desc *tx_desc, *eop_desc;
3424 struct e1000_buffer *buffer_info;
3425 unsigned int i, eop;
3426 unsigned int count = 0;
3427 unsigned int total_tx_bytes=0, total_tx_packets=0;
3428
3429 i = tx_ring->next_to_clean;
3430 eop = tx_ring->buffer_info[i].next_to_watch;
3431 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3432
3433 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3434 (count < tx_ring->count)) {
3435 bool cleaned = false;
3436 for ( ; !cleaned; count++) {
3437 tx_desc = E1000_TX_DESC(*tx_ring, i);
3438 buffer_info = &tx_ring->buffer_info[i];
3439 cleaned = (i == eop);
3440
3441 if (cleaned) {
3442 struct sk_buff *skb = buffer_info->skb;
3443 unsigned int segs, bytecount;
3444 segs = skb_shinfo(skb)->gso_segs ?: 1;
3445 /* multiply data chunks by size of headers */
3446 bytecount = ((segs - 1) * skb_headlen(skb)) +
3447 skb->len;
3448 total_tx_packets += segs;
3449 total_tx_bytes += bytecount;
3450 }
3451 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3452 tx_desc->upper.data = 0;
3453
3454 if (unlikely(++i == tx_ring->count)) i = 0;
3455 }
3456
3457 eop = tx_ring->buffer_info[i].next_to_watch;
3458 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3459 }
3460
3461 tx_ring->next_to_clean = i;
3462
3463 #define TX_WAKE_THRESHOLD 32
3464 if (unlikely(count && netif_carrier_ok(netdev) &&
3465 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3466 /* Make sure that anybody stopping the queue after this
3467 * sees the new next_to_clean.
3468 */
3469 smp_mb();
3470
3471 if (netif_queue_stopped(netdev) &&
3472 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3473 netif_wake_queue(netdev);
3474 ++adapter->restart_queue;
3475 }
3476 }
3477
3478 if (adapter->detect_tx_hung) {
3479 /* Detect a transmit hang in hardware, this serializes the
3480 * check with the clearing of time_stamp and movement of i */
3481 adapter->detect_tx_hung = false;
3482 if (tx_ring->buffer_info[eop].time_stamp &&
3483 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3484 (adapter->tx_timeout_factor * HZ)) &&
3485 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3486
3487 /* detected Tx unit hang */
3488 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3489 " Tx Queue <%lu>\n"
3490 " TDH <%x>\n"
3491 " TDT <%x>\n"
3492 " next_to_use <%x>\n"
3493 " next_to_clean <%x>\n"
3494 "buffer_info[next_to_clean]\n"
3495 " time_stamp <%lx>\n"
3496 " next_to_watch <%x>\n"
3497 " jiffies <%lx>\n"
3498 " next_to_watch.status <%x>\n",
3499 (unsigned long)((tx_ring - adapter->tx_ring) /
3500 sizeof(struct e1000_tx_ring)),
3501 readl(hw->hw_addr + tx_ring->tdh),
3502 readl(hw->hw_addr + tx_ring->tdt),
3503 tx_ring->next_to_use,
3504 tx_ring->next_to_clean,
3505 tx_ring->buffer_info[eop].time_stamp,
3506 eop,
3507 jiffies,
3508 eop_desc->upper.fields.status);
3509 netif_stop_queue(netdev);
3510 }
3511 }
3512 adapter->total_tx_bytes += total_tx_bytes;
3513 adapter->total_tx_packets += total_tx_packets;
3514 netdev->stats.tx_bytes += total_tx_bytes;
3515 netdev->stats.tx_packets += total_tx_packets;
3516 return (count < tx_ring->count);
3517 }
3518
3519 /**
3520 * e1000_rx_checksum - Receive Checksum Offload for 82543
3521 * @adapter: board private structure
3522 * @status_err: receive descriptor status and error fields
3523 * @csum: receive descriptor csum field
3524 * @sk_buff: socket buffer with received data
3525 **/
3526
3527 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3528 u32 csum, struct sk_buff *skb)
3529 {
3530 struct e1000_hw *hw = &adapter->hw;
3531 u16 status = (u16)status_err;
3532 u8 errors = (u8)(status_err >> 24);
3533 skb->ip_summed = CHECKSUM_NONE;
3534
3535 /* 82543 or newer only */
3536 if (unlikely(hw->mac_type < e1000_82543)) return;
3537 /* Ignore Checksum bit is set */
3538 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3539 /* TCP/UDP checksum error bit is set */
3540 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3541 /* let the stack verify checksum errors */
3542 adapter->hw_csum_err++;
3543 return;
3544 }
3545 /* TCP/UDP Checksum has not been calculated */
3546 if (!(status & E1000_RXD_STAT_TCPCS))
3547 return;
3548
3549 /* It must be a TCP or UDP packet with a valid checksum */
3550 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3551 /* TCP checksum is good */
3552 skb->ip_summed = CHECKSUM_UNNECESSARY;
3553 }
3554 adapter->hw_csum_good++;
3555 }
3556
3557 /**
3558 * e1000_consume_page - helper function
3559 **/
3560 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3561 u16 length)
3562 {
3563 bi->page = NULL;
3564 skb->len += length;
3565 skb->data_len += length;
3566 skb->truesize += length;
3567 }
3568
3569 /**
3570 * e1000_receive_skb - helper function to handle rx indications
3571 * @adapter: board private structure
3572 * @status: descriptor status field as written by hardware
3573 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3574 * @skb: pointer to sk_buff to be indicated to stack
3575 */
3576 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3577 __le16 vlan, struct sk_buff *skb)
3578 {
3579 if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
3580 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3581 le16_to_cpu(vlan) &
3582 E1000_RXD_SPC_VLAN_MASK);
3583 } else {
3584 netif_receive_skb(skb);
3585 }
3586 }
3587
3588 /**
3589 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3590 * @adapter: board private structure
3591 * @rx_ring: ring to clean
3592 * @work_done: amount of napi work completed this call
3593 * @work_to_do: max amount of work allowed for this call to do
3594 *
3595 * the return value indicates whether actual cleaning was done, there
3596 * is no guarantee that everything was cleaned
3597 */
3598 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3599 struct e1000_rx_ring *rx_ring,
3600 int *work_done, int work_to_do)
3601 {
3602 struct e1000_hw *hw = &adapter->hw;
3603 struct net_device *netdev = adapter->netdev;
3604 struct pci_dev *pdev = adapter->pdev;
3605 struct e1000_rx_desc *rx_desc, *next_rxd;
3606 struct e1000_buffer *buffer_info, *next_buffer;
3607 unsigned long irq_flags;
3608 u32 length;
3609 unsigned int i;
3610 int cleaned_count = 0;
3611 bool cleaned = false;
3612 unsigned int total_rx_bytes=0, total_rx_packets=0;
3613
3614 i = rx_ring->next_to_clean;
3615 rx_desc = E1000_RX_DESC(*rx_ring, i);
3616 buffer_info = &rx_ring->buffer_info[i];
3617
3618 while (rx_desc->status & E1000_RXD_STAT_DD) {
3619 struct sk_buff *skb;
3620 u8 status;
3621
3622 if (*work_done >= work_to_do)
3623 break;
3624 (*work_done)++;
3625
3626 status = rx_desc->status;
3627 skb = buffer_info->skb;
3628 buffer_info->skb = NULL;
3629
3630 if (++i == rx_ring->count) i = 0;
3631 next_rxd = E1000_RX_DESC(*rx_ring, i);
3632 prefetch(next_rxd);
3633
3634 next_buffer = &rx_ring->buffer_info[i];
3635
3636 cleaned = true;
3637 cleaned_count++;
3638 pci_unmap_page(pdev, buffer_info->dma, buffer_info->length,
3639 PCI_DMA_FROMDEVICE);
3640 buffer_info->dma = 0;
3641
3642 length = le16_to_cpu(rx_desc->length);
3643
3644 /* errors is only valid for DD + EOP descriptors */
3645 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3646 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3647 u8 last_byte = *(skb->data + length - 1);
3648 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3649 last_byte)) {
3650 spin_lock_irqsave(&adapter->stats_lock,
3651 irq_flags);
3652 e1000_tbi_adjust_stats(hw, &adapter->stats,
3653 length, skb->data);
3654 spin_unlock_irqrestore(&adapter->stats_lock,
3655 irq_flags);
3656 length--;
3657 } else {
3658 /* recycle both page and skb */
3659 buffer_info->skb = skb;
3660 /* an error means any chain goes out the window
3661 * too */
3662 if (rx_ring->rx_skb_top)
3663 dev_kfree_skb(rx_ring->rx_skb_top);
3664 rx_ring->rx_skb_top = NULL;
3665 goto next_desc;
3666 }
3667 }
3668
3669 #define rxtop rx_ring->rx_skb_top
3670 if (!(status & E1000_RXD_STAT_EOP)) {
3671 /* this descriptor is only the beginning (or middle) */
3672 if (!rxtop) {
3673 /* this is the beginning of a chain */
3674 rxtop = skb;
3675 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3676 0, length);
3677 } else {
3678 /* this is the middle of a chain */
3679 skb_fill_page_desc(rxtop,
3680 skb_shinfo(rxtop)->nr_frags,
3681 buffer_info->page, 0, length);
3682 /* re-use the skb, only consumed the page */
3683 buffer_info->skb = skb;
3684 }
3685 e1000_consume_page(buffer_info, rxtop, length);
3686 goto next_desc;
3687 } else {
3688 if (rxtop) {
3689 /* end of the chain */
3690 skb_fill_page_desc(rxtop,
3691 skb_shinfo(rxtop)->nr_frags,
3692 buffer_info->page, 0, length);
3693 /* re-use the current skb, we only consumed the
3694 * page */
3695 buffer_info->skb = skb;
3696 skb = rxtop;
3697 rxtop = NULL;
3698 e1000_consume_page(buffer_info, skb, length);
3699 } else {
3700 /* no chain, got EOP, this buf is the packet
3701 * copybreak to save the put_page/alloc_page */
3702 if (length <= copybreak &&
3703 skb_tailroom(skb) >= length) {
3704 u8 *vaddr;
3705 vaddr = kmap_atomic(buffer_info->page,
3706 KM_SKB_DATA_SOFTIRQ);
3707 memcpy(skb_tail_pointer(skb), vaddr, length);
3708 kunmap_atomic(vaddr,
3709 KM_SKB_DATA_SOFTIRQ);
3710 /* re-use the page, so don't erase
3711 * buffer_info->page */
3712 skb_put(skb, length);
3713 } else {
3714 skb_fill_page_desc(skb, 0,
3715 buffer_info->page, 0,
3716 length);
3717 e1000_consume_page(buffer_info, skb,
3718 length);
3719 }
3720 }
3721 }
3722
3723 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3724 e1000_rx_checksum(adapter,
3725 (u32)(status) |
3726 ((u32)(rx_desc->errors) << 24),
3727 le16_to_cpu(rx_desc->csum), skb);
3728
3729 pskb_trim(skb, skb->len - 4);
3730
3731 /* probably a little skewed due to removing CRC */
3732 total_rx_bytes += skb->len;
3733 total_rx_packets++;
3734
3735 /* eth type trans needs skb->data to point to something */
3736 if (!pskb_may_pull(skb, ETH_HLEN)) {
3737 DPRINTK(DRV, ERR, "pskb_may_pull failed.\n");
3738 dev_kfree_skb(skb);
3739 goto next_desc;
3740 }
3741
3742 skb->protocol = eth_type_trans(skb, netdev);
3743
3744 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3745
3746 next_desc:
3747 rx_desc->status = 0;
3748
3749 /* return some buffers to hardware, one at a time is too slow */
3750 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3751 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3752 cleaned_count = 0;
3753 }
3754
3755 /* use prefetched values */
3756 rx_desc = next_rxd;
3757 buffer_info = next_buffer;
3758 }
3759 rx_ring->next_to_clean = i;
3760
3761 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3762 if (cleaned_count)
3763 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3764
3765 adapter->total_rx_packets += total_rx_packets;
3766 adapter->total_rx_bytes += total_rx_bytes;
3767 netdev->stats.rx_bytes += total_rx_bytes;
3768 netdev->stats.rx_packets += total_rx_packets;
3769 return cleaned;
3770 }
3771
3772 /**
3773 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3774 * @adapter: board private structure
3775 * @rx_ring: ring to clean
3776 * @work_done: amount of napi work completed this call
3777 * @work_to_do: max amount of work allowed for this call to do
3778 */
3779 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3780 struct e1000_rx_ring *rx_ring,
3781 int *work_done, int work_to_do)
3782 {
3783 struct e1000_hw *hw = &adapter->hw;
3784 struct net_device *netdev = adapter->netdev;
3785 struct pci_dev *pdev = adapter->pdev;
3786 struct e1000_rx_desc *rx_desc, *next_rxd;
3787 struct e1000_buffer *buffer_info, *next_buffer;
3788 unsigned long flags;
3789 u32 length;
3790 unsigned int i;
3791 int cleaned_count = 0;
3792 bool cleaned = false;
3793 unsigned int total_rx_bytes=0, total_rx_packets=0;
3794
3795 i = rx_ring->next_to_clean;
3796 rx_desc = E1000_RX_DESC(*rx_ring, i);
3797 buffer_info = &rx_ring->buffer_info[i];
3798
3799 while (rx_desc->status & E1000_RXD_STAT_DD) {
3800 struct sk_buff *skb;
3801 u8 status;
3802
3803 if (*work_done >= work_to_do)
3804 break;
3805 (*work_done)++;
3806
3807 status = rx_desc->status;
3808 skb = buffer_info->skb;
3809 buffer_info->skb = NULL;
3810
3811 prefetch(skb->data - NET_IP_ALIGN);
3812
3813 if (++i == rx_ring->count) i = 0;
3814 next_rxd = E1000_RX_DESC(*rx_ring, i);
3815 prefetch(next_rxd);
3816
3817 next_buffer = &rx_ring->buffer_info[i];
3818
3819 cleaned = true;
3820 cleaned_count++;
3821 pci_unmap_single(pdev, buffer_info->dma, buffer_info->length,
3822 PCI_DMA_FROMDEVICE);
3823 buffer_info->dma = 0;
3824
3825 length = le16_to_cpu(rx_desc->length);
3826 /* !EOP means multiple descriptors were used to store a single
3827 * packet, if thats the case we need to toss it. In fact, we
3828 * to toss every packet with the EOP bit clear and the next
3829 * frame that _does_ have the EOP bit set, as it is by
3830 * definition only a frame fragment
3831 */
3832 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3833 adapter->discarding = true;
3834
3835 if (adapter->discarding) {
3836 /* All receives must fit into a single buffer */
3837 E1000_DBG("%s: Receive packet consumed multiple"
3838 " buffers\n", netdev->name);
3839 /* recycle */
3840 buffer_info->skb = skb;
3841 if (status & E1000_RXD_STAT_EOP)
3842 adapter->discarding = false;
3843 goto next_desc;
3844 }
3845
3846 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3847 u8 last_byte = *(skb->data + length - 1);
3848 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3849 last_byte)) {
3850 spin_lock_irqsave(&adapter->stats_lock, flags);
3851 e1000_tbi_adjust_stats(hw, &adapter->stats,
3852 length, skb->data);
3853 spin_unlock_irqrestore(&adapter->stats_lock,
3854 flags);
3855 length--;
3856 } else {
3857 /* recycle */
3858 buffer_info->skb = skb;
3859 goto next_desc;
3860 }
3861 }
3862
3863 /* adjust length to remove Ethernet CRC, this must be
3864 * done after the TBI_ACCEPT workaround above */
3865 length -= 4;
3866
3867 /* probably a little skewed due to removing CRC */
3868 total_rx_bytes += length;
3869 total_rx_packets++;
3870
3871 /* code added for copybreak, this should improve
3872 * performance for small packets with large amounts
3873 * of reassembly being done in the stack */
3874 if (length < copybreak) {
3875 struct sk_buff *new_skb =
3876 netdev_alloc_skb_ip_align(netdev, length);
3877 if (new_skb) {
3878 skb_copy_to_linear_data_offset(new_skb,
3879 -NET_IP_ALIGN,
3880 (skb->data -
3881 NET_IP_ALIGN),
3882 (length +
3883 NET_IP_ALIGN));
3884 /* save the skb in buffer_info as good */
3885 buffer_info->skb = skb;
3886 skb = new_skb;
3887 }
3888 /* else just continue with the old one */
3889 }
3890 /* end copybreak code */
3891 skb_put(skb, length);
3892
3893 /* Receive Checksum Offload */
3894 e1000_rx_checksum(adapter,
3895 (u32)(status) |
3896 ((u32)(rx_desc->errors) << 24),
3897 le16_to_cpu(rx_desc->csum), skb);
3898
3899 skb->protocol = eth_type_trans(skb, netdev);
3900
3901 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3902
3903 next_desc:
3904 rx_desc->status = 0;
3905
3906 /* return some buffers to hardware, one at a time is too slow */
3907 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3908 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3909 cleaned_count = 0;
3910 }
3911
3912 /* use prefetched values */
3913 rx_desc = next_rxd;
3914 buffer_info = next_buffer;
3915 }
3916 rx_ring->next_to_clean = i;
3917
3918 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3919 if (cleaned_count)
3920 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3921
3922 adapter->total_rx_packets += total_rx_packets;
3923 adapter->total_rx_bytes += total_rx_bytes;
3924 netdev->stats.rx_bytes += total_rx_bytes;
3925 netdev->stats.rx_packets += total_rx_packets;
3926 return cleaned;
3927 }
3928
3929 /**
3930 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3931 * @adapter: address of board private structure
3932 * @rx_ring: pointer to receive ring structure
3933 * @cleaned_count: number of buffers to allocate this pass
3934 **/
3935
3936 static void
3937 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
3938 struct e1000_rx_ring *rx_ring, int cleaned_count)
3939 {
3940 struct net_device *netdev = adapter->netdev;
3941 struct pci_dev *pdev = adapter->pdev;
3942 struct e1000_rx_desc *rx_desc;
3943 struct e1000_buffer *buffer_info;
3944 struct sk_buff *skb;
3945 unsigned int i;
3946 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
3947
3948 i = rx_ring->next_to_use;
3949 buffer_info = &rx_ring->buffer_info[i];
3950
3951 while (cleaned_count--) {
3952 skb = buffer_info->skb;
3953 if (skb) {
3954 skb_trim(skb, 0);
3955 goto check_page;
3956 }
3957
3958 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3959 if (unlikely(!skb)) {
3960 /* Better luck next round */
3961 adapter->alloc_rx_buff_failed++;
3962 break;
3963 }
3964
3965 /* Fix for errata 23, can't cross 64kB boundary */
3966 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3967 struct sk_buff *oldskb = skb;
3968 DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
3969 "at %p\n", bufsz, skb->data);
3970 /* Try again, without freeing the previous */
3971 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3972 /* Failed allocation, critical failure */
3973 if (!skb) {
3974 dev_kfree_skb(oldskb);
3975 adapter->alloc_rx_buff_failed++;
3976 break;
3977 }
3978
3979 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3980 /* give up */
3981 dev_kfree_skb(skb);
3982 dev_kfree_skb(oldskb);
3983 break; /* while (cleaned_count--) */
3984 }
3985
3986 /* Use new allocation */
3987 dev_kfree_skb(oldskb);
3988 }
3989 buffer_info->skb = skb;
3990 buffer_info->length = adapter->rx_buffer_len;
3991 check_page:
3992 /* allocate a new page if necessary */
3993 if (!buffer_info->page) {
3994 buffer_info->page = alloc_page(GFP_ATOMIC);
3995 if (unlikely(!buffer_info->page)) {
3996 adapter->alloc_rx_buff_failed++;
3997 break;
3998 }
3999 }
4000
4001 if (!buffer_info->dma) {
4002 buffer_info->dma = pci_map_page(pdev,
4003 buffer_info->page, 0,
4004 buffer_info->length,
4005 PCI_DMA_FROMDEVICE);
4006 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
4007 put_page(buffer_info->page);
4008 dev_kfree_skb(skb);
4009 buffer_info->page = NULL;
4010 buffer_info->skb = NULL;
4011 buffer_info->dma = 0;
4012 adapter->alloc_rx_buff_failed++;
4013 break; /* while !buffer_info->skb */
4014 }
4015 }
4016
4017 rx_desc = E1000_RX_DESC(*rx_ring, i);
4018 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4019
4020 if (unlikely(++i == rx_ring->count))
4021 i = 0;
4022 buffer_info = &rx_ring->buffer_info[i];
4023 }
4024
4025 if (likely(rx_ring->next_to_use != i)) {
4026 rx_ring->next_to_use = i;
4027 if (unlikely(i-- == 0))
4028 i = (rx_ring->count - 1);
4029
4030 /* Force memory writes to complete before letting h/w
4031 * know there are new descriptors to fetch. (Only
4032 * applicable for weak-ordered memory model archs,
4033 * such as IA-64). */
4034 wmb();
4035 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4036 }
4037 }
4038
4039 /**
4040 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4041 * @adapter: address of board private structure
4042 **/
4043
4044 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4045 struct e1000_rx_ring *rx_ring,
4046 int cleaned_count)
4047 {
4048 struct e1000_hw *hw = &adapter->hw;
4049 struct net_device *netdev = adapter->netdev;
4050 struct pci_dev *pdev = adapter->pdev;
4051 struct e1000_rx_desc *rx_desc;
4052 struct e1000_buffer *buffer_info;
4053 struct sk_buff *skb;
4054 unsigned int i;
4055 unsigned int bufsz = adapter->rx_buffer_len;
4056
4057 i = rx_ring->next_to_use;
4058 buffer_info = &rx_ring->buffer_info[i];
4059
4060 while (cleaned_count--) {
4061 skb = buffer_info->skb;
4062 if (skb) {
4063 skb_trim(skb, 0);
4064 goto map_skb;
4065 }
4066
4067 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4068 if (unlikely(!skb)) {
4069 /* Better luck next round */
4070 adapter->alloc_rx_buff_failed++;
4071 break;
4072 }
4073
4074 /* Fix for errata 23, can't cross 64kB boundary */
4075 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4076 struct sk_buff *oldskb = skb;
4077 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4078 "at %p\n", bufsz, skb->data);
4079 /* Try again, without freeing the previous */
4080 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4081 /* Failed allocation, critical failure */
4082 if (!skb) {
4083 dev_kfree_skb(oldskb);
4084 adapter->alloc_rx_buff_failed++;
4085 break;
4086 }
4087
4088 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4089 /* give up */
4090 dev_kfree_skb(skb);
4091 dev_kfree_skb(oldskb);
4092 adapter->alloc_rx_buff_failed++;
4093 break; /* while !buffer_info->skb */
4094 }
4095
4096 /* Use new allocation */
4097 dev_kfree_skb(oldskb);
4098 }
4099 buffer_info->skb = skb;
4100 buffer_info->length = adapter->rx_buffer_len;
4101 map_skb:
4102 buffer_info->dma = pci_map_single(pdev,
4103 skb->data,
4104 buffer_info->length,
4105 PCI_DMA_FROMDEVICE);
4106 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
4107 dev_kfree_skb(skb);
4108 buffer_info->skb = NULL;
4109 buffer_info->dma = 0;
4110 adapter->alloc_rx_buff_failed++;
4111 break; /* while !buffer_info->skb */
4112 }
4113
4114 /*
4115 * XXX if it was allocated cleanly it will never map to a
4116 * boundary crossing
4117 */
4118
4119 /* Fix for errata 23, can't cross 64kB boundary */
4120 if (!e1000_check_64k_bound(adapter,
4121 (void *)(unsigned long)buffer_info->dma,
4122 adapter->rx_buffer_len)) {
4123 DPRINTK(RX_ERR, ERR,
4124 "dma align check failed: %u bytes at %p\n",
4125 adapter->rx_buffer_len,
4126 (void *)(unsigned long)buffer_info->dma);
4127 dev_kfree_skb(skb);
4128 buffer_info->skb = NULL;
4129
4130 pci_unmap_single(pdev, buffer_info->dma,
4131 adapter->rx_buffer_len,
4132 PCI_DMA_FROMDEVICE);
4133 buffer_info->dma = 0;
4134
4135 adapter->alloc_rx_buff_failed++;
4136 break; /* while !buffer_info->skb */
4137 }
4138 rx_desc = E1000_RX_DESC(*rx_ring, i);
4139 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4140
4141 if (unlikely(++i == rx_ring->count))
4142 i = 0;
4143 buffer_info = &rx_ring->buffer_info[i];
4144 }
4145
4146 if (likely(rx_ring->next_to_use != i)) {
4147 rx_ring->next_to_use = i;
4148 if (unlikely(i-- == 0))
4149 i = (rx_ring->count - 1);
4150
4151 /* Force memory writes to complete before letting h/w
4152 * know there are new descriptors to fetch. (Only
4153 * applicable for weak-ordered memory model archs,
4154 * such as IA-64). */
4155 wmb();
4156 writel(i, hw->hw_addr + rx_ring->rdt);
4157 }
4158 }
4159
4160 /**
4161 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4162 * @adapter:
4163 **/
4164
4165 static void e1000_smartspeed(struct e1000_adapter *adapter)
4166 {
4167 struct e1000_hw *hw = &adapter->hw;
4168 u16 phy_status;
4169 u16 phy_ctrl;
4170
4171 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4172 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4173 return;
4174
4175 if (adapter->smartspeed == 0) {
4176 /* If Master/Slave config fault is asserted twice,
4177 * we assume back-to-back */
4178 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4179 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4180 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4181 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4182 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4183 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4184 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4185 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4186 phy_ctrl);
4187 adapter->smartspeed++;
4188 if (!e1000_phy_setup_autoneg(hw) &&
4189 !e1000_read_phy_reg(hw, PHY_CTRL,
4190 &phy_ctrl)) {
4191 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4192 MII_CR_RESTART_AUTO_NEG);
4193 e1000_write_phy_reg(hw, PHY_CTRL,
4194 phy_ctrl);
4195 }
4196 }
4197 return;
4198 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4199 /* If still no link, perhaps using 2/3 pair cable */
4200 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4201 phy_ctrl |= CR_1000T_MS_ENABLE;
4202 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4203 if (!e1000_phy_setup_autoneg(hw) &&
4204 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4205 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4206 MII_CR_RESTART_AUTO_NEG);
4207 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4208 }
4209 }
4210 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4211 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4212 adapter->smartspeed = 0;
4213 }
4214
4215 /**
4216 * e1000_ioctl -
4217 * @netdev:
4218 * @ifreq:
4219 * @cmd:
4220 **/
4221
4222 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4223 {
4224 switch (cmd) {
4225 case SIOCGMIIPHY:
4226 case SIOCGMIIREG:
4227 case SIOCSMIIREG:
4228 return e1000_mii_ioctl(netdev, ifr, cmd);
4229 default:
4230 return -EOPNOTSUPP;
4231 }
4232 }
4233
4234 /**
4235 * e1000_mii_ioctl -
4236 * @netdev:
4237 * @ifreq:
4238 * @cmd:
4239 **/
4240
4241 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4242 int cmd)
4243 {
4244 struct e1000_adapter *adapter = netdev_priv(netdev);
4245 struct e1000_hw *hw = &adapter->hw;
4246 struct mii_ioctl_data *data = if_mii(ifr);
4247 int retval;
4248 u16 mii_reg;
4249 u16 spddplx;
4250 unsigned long flags;
4251
4252 if (hw->media_type != e1000_media_type_copper)
4253 return -EOPNOTSUPP;
4254
4255 switch (cmd) {
4256 case SIOCGMIIPHY:
4257 data->phy_id = hw->phy_addr;
4258 break;
4259 case SIOCGMIIREG:
4260 spin_lock_irqsave(&adapter->stats_lock, flags);
4261 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4262 &data->val_out)) {
4263 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4264 return -EIO;
4265 }
4266 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4267 break;
4268 case SIOCSMIIREG:
4269 if (data->reg_num & ~(0x1F))
4270 return -EFAULT;
4271 mii_reg = data->val_in;
4272 spin_lock_irqsave(&adapter->stats_lock, flags);
4273 if (e1000_write_phy_reg(hw, data->reg_num,
4274 mii_reg)) {
4275 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4276 return -EIO;
4277 }
4278 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4279 if (hw->media_type == e1000_media_type_copper) {
4280 switch (data->reg_num) {
4281 case PHY_CTRL:
4282 if (mii_reg & MII_CR_POWER_DOWN)
4283 break;
4284 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4285 hw->autoneg = 1;
4286 hw->autoneg_advertised = 0x2F;
4287 } else {
4288 if (mii_reg & 0x40)
4289 spddplx = SPEED_1000;
4290 else if (mii_reg & 0x2000)
4291 spddplx = SPEED_100;
4292 else
4293 spddplx = SPEED_10;
4294 spddplx += (mii_reg & 0x100)
4295 ? DUPLEX_FULL :
4296 DUPLEX_HALF;
4297 retval = e1000_set_spd_dplx(adapter,
4298 spddplx);
4299 if (retval)
4300 return retval;
4301 }
4302 if (netif_running(adapter->netdev))
4303 e1000_reinit_locked(adapter);
4304 else
4305 e1000_reset(adapter);
4306 break;
4307 case M88E1000_PHY_SPEC_CTRL:
4308 case M88E1000_EXT_PHY_SPEC_CTRL:
4309 if (e1000_phy_reset(hw))
4310 return -EIO;
4311 break;
4312 }
4313 } else {
4314 switch (data->reg_num) {
4315 case PHY_CTRL:
4316 if (mii_reg & MII_CR_POWER_DOWN)
4317 break;
4318 if (netif_running(adapter->netdev))
4319 e1000_reinit_locked(adapter);
4320 else
4321 e1000_reset(adapter);
4322 break;
4323 }
4324 }
4325 break;
4326 default:
4327 return -EOPNOTSUPP;
4328 }
4329 return E1000_SUCCESS;
4330 }
4331
4332 void e1000_pci_set_mwi(struct e1000_hw *hw)
4333 {
4334 struct e1000_adapter *adapter = hw->back;
4335 int ret_val = pci_set_mwi(adapter->pdev);
4336
4337 if (ret_val)
4338 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4339 }
4340
4341 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4342 {
4343 struct e1000_adapter *adapter = hw->back;
4344
4345 pci_clear_mwi(adapter->pdev);
4346 }
4347
4348 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4349 {
4350 struct e1000_adapter *adapter = hw->back;
4351 return pcix_get_mmrbc(adapter->pdev);
4352 }
4353
4354 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4355 {
4356 struct e1000_adapter *adapter = hw->back;
4357 pcix_set_mmrbc(adapter->pdev, mmrbc);
4358 }
4359
4360 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4361 {
4362 outl(value, port);
4363 }
4364
4365 static void e1000_vlan_rx_register(struct net_device *netdev,
4366 struct vlan_group *grp)
4367 {
4368 struct e1000_adapter *adapter = netdev_priv(netdev);
4369 struct e1000_hw *hw = &adapter->hw;
4370 u32 ctrl, rctl;
4371
4372 if (!test_bit(__E1000_DOWN, &adapter->flags))
4373 e1000_irq_disable(adapter);
4374 adapter->vlgrp = grp;
4375
4376 if (grp) {
4377 /* enable VLAN tag insert/strip */
4378 ctrl = er32(CTRL);
4379 ctrl |= E1000_CTRL_VME;
4380 ew32(CTRL, ctrl);
4381
4382 /* enable VLAN receive filtering */
4383 rctl = er32(RCTL);
4384 rctl &= ~E1000_RCTL_CFIEN;
4385 if (!(netdev->flags & IFF_PROMISC))
4386 rctl |= E1000_RCTL_VFE;
4387 ew32(RCTL, rctl);
4388 e1000_update_mng_vlan(adapter);
4389 } else {
4390 /* disable VLAN tag insert/strip */
4391 ctrl = er32(CTRL);
4392 ctrl &= ~E1000_CTRL_VME;
4393 ew32(CTRL, ctrl);
4394
4395 /* disable VLAN receive filtering */
4396 rctl = er32(RCTL);
4397 rctl &= ~E1000_RCTL_VFE;
4398 ew32(RCTL, rctl);
4399
4400 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4401 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4402 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4403 }
4404 }
4405
4406 if (!test_bit(__E1000_DOWN, &adapter->flags))
4407 e1000_irq_enable(adapter);
4408 }
4409
4410 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4411 {
4412 struct e1000_adapter *adapter = netdev_priv(netdev);
4413 struct e1000_hw *hw = &adapter->hw;
4414 u32 vfta, index;
4415
4416 if ((hw->mng_cookie.status &
4417 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4418 (vid == adapter->mng_vlan_id))
4419 return;
4420 /* add VID to filter table */
4421 index = (vid >> 5) & 0x7F;
4422 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4423 vfta |= (1 << (vid & 0x1F));
4424 e1000_write_vfta(hw, index, vfta);
4425 }
4426
4427 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4428 {
4429 struct e1000_adapter *adapter = netdev_priv(netdev);
4430 struct e1000_hw *hw = &adapter->hw;
4431 u32 vfta, index;
4432
4433 if (!test_bit(__E1000_DOWN, &adapter->flags))
4434 e1000_irq_disable(adapter);
4435 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4436 if (!test_bit(__E1000_DOWN, &adapter->flags))
4437 e1000_irq_enable(adapter);
4438
4439 /* remove VID from filter table */
4440 index = (vid >> 5) & 0x7F;
4441 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4442 vfta &= ~(1 << (vid & 0x1F));
4443 e1000_write_vfta(hw, index, vfta);
4444 }
4445
4446 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4447 {
4448 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4449
4450 if (adapter->vlgrp) {
4451 u16 vid;
4452 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4453 if (!vlan_group_get_device(adapter->vlgrp, vid))
4454 continue;
4455 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4456 }
4457 }
4458 }
4459
4460 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4461 {
4462 struct e1000_hw *hw = &adapter->hw;
4463
4464 hw->autoneg = 0;
4465
4466 /* Fiber NICs only allow 1000 gbps Full duplex */
4467 if ((hw->media_type == e1000_media_type_fiber) &&
4468 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4469 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4470 return -EINVAL;
4471 }
4472
4473 switch (spddplx) {
4474 case SPEED_10 + DUPLEX_HALF:
4475 hw->forced_speed_duplex = e1000_10_half;
4476 break;
4477 case SPEED_10 + DUPLEX_FULL:
4478 hw->forced_speed_duplex = e1000_10_full;
4479 break;
4480 case SPEED_100 + DUPLEX_HALF:
4481 hw->forced_speed_duplex = e1000_100_half;
4482 break;
4483 case SPEED_100 + DUPLEX_FULL:
4484 hw->forced_speed_duplex = e1000_100_full;
4485 break;
4486 case SPEED_1000 + DUPLEX_FULL:
4487 hw->autoneg = 1;
4488 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4489 break;
4490 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4491 default:
4492 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4493 return -EINVAL;
4494 }
4495 return 0;
4496 }
4497
4498 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4499 {
4500 struct net_device *netdev = pci_get_drvdata(pdev);
4501 struct e1000_adapter *adapter = netdev_priv(netdev);
4502 struct e1000_hw *hw = &adapter->hw;
4503 u32 ctrl, ctrl_ext, rctl, status;
4504 u32 wufc = adapter->wol;
4505 #ifdef CONFIG_PM
4506 int retval = 0;
4507 #endif
4508
4509 netif_device_detach(netdev);
4510
4511 if (netif_running(netdev)) {
4512 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4513 e1000_down(adapter);
4514 }
4515
4516 #ifdef CONFIG_PM
4517 retval = pci_save_state(pdev);
4518 if (retval)
4519 return retval;
4520 #endif
4521
4522 status = er32(STATUS);
4523 if (status & E1000_STATUS_LU)
4524 wufc &= ~E1000_WUFC_LNKC;
4525
4526 if (wufc) {
4527 e1000_setup_rctl(adapter);
4528 e1000_set_rx_mode(netdev);
4529
4530 /* turn on all-multi mode if wake on multicast is enabled */
4531 if (wufc & E1000_WUFC_MC) {
4532 rctl = er32(RCTL);
4533 rctl |= E1000_RCTL_MPE;
4534 ew32(RCTL, rctl);
4535 }
4536
4537 if (hw->mac_type >= e1000_82540) {
4538 ctrl = er32(CTRL);
4539 /* advertise wake from D3Cold */
4540 #define E1000_CTRL_ADVD3WUC 0x00100000
4541 /* phy power management enable */
4542 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4543 ctrl |= E1000_CTRL_ADVD3WUC |
4544 E1000_CTRL_EN_PHY_PWR_MGMT;
4545 ew32(CTRL, ctrl);
4546 }
4547
4548 if (hw->media_type == e1000_media_type_fiber ||
4549 hw->media_type == e1000_media_type_internal_serdes) {
4550 /* keep the laser running in D3 */
4551 ctrl_ext = er32(CTRL_EXT);
4552 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4553 ew32(CTRL_EXT, ctrl_ext);
4554 }
4555
4556 ew32(WUC, E1000_WUC_PME_EN);
4557 ew32(WUFC, wufc);
4558 } else {
4559 ew32(WUC, 0);
4560 ew32(WUFC, 0);
4561 }
4562
4563 e1000_release_manageability(adapter);
4564
4565 *enable_wake = !!wufc;
4566
4567 /* make sure adapter isn't asleep if manageability is enabled */
4568 if (adapter->en_mng_pt)
4569 *enable_wake = true;
4570
4571 if (netif_running(netdev))
4572 e1000_free_irq(adapter);
4573
4574 pci_disable_device(pdev);
4575
4576 return 0;
4577 }
4578
4579 #ifdef CONFIG_PM
4580 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4581 {
4582 int retval;
4583 bool wake;
4584
4585 retval = __e1000_shutdown(pdev, &wake);
4586 if (retval)
4587 return retval;
4588
4589 if (wake) {
4590 pci_prepare_to_sleep(pdev);
4591 } else {
4592 pci_wake_from_d3(pdev, false);
4593 pci_set_power_state(pdev, PCI_D3hot);
4594 }
4595
4596 return 0;
4597 }
4598
4599 static int e1000_resume(struct pci_dev *pdev)
4600 {
4601 struct net_device *netdev = pci_get_drvdata(pdev);
4602 struct e1000_adapter *adapter = netdev_priv(netdev);
4603 struct e1000_hw *hw = &adapter->hw;
4604 u32 err;
4605
4606 pci_set_power_state(pdev, PCI_D0);
4607 pci_restore_state(pdev);
4608 pci_save_state(pdev);
4609
4610 if (adapter->need_ioport)
4611 err = pci_enable_device(pdev);
4612 else
4613 err = pci_enable_device_mem(pdev);
4614 if (err) {
4615 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4616 return err;
4617 }
4618 pci_set_master(pdev);
4619
4620 pci_enable_wake(pdev, PCI_D3hot, 0);
4621 pci_enable_wake(pdev, PCI_D3cold, 0);
4622
4623 if (netif_running(netdev)) {
4624 err = e1000_request_irq(adapter);
4625 if (err)
4626 return err;
4627 }
4628
4629 e1000_power_up_phy(adapter);
4630 e1000_reset(adapter);
4631 ew32(WUS, ~0);
4632
4633 e1000_init_manageability(adapter);
4634
4635 if (netif_running(netdev))
4636 e1000_up(adapter);
4637
4638 netif_device_attach(netdev);
4639
4640 return 0;
4641 }
4642 #endif
4643
4644 static void e1000_shutdown(struct pci_dev *pdev)
4645 {
4646 bool wake;
4647
4648 __e1000_shutdown(pdev, &wake);
4649
4650 if (system_state == SYSTEM_POWER_OFF) {
4651 pci_wake_from_d3(pdev, wake);
4652 pci_set_power_state(pdev, PCI_D3hot);
4653 }
4654 }
4655
4656 #ifdef CONFIG_NET_POLL_CONTROLLER
4657 /*
4658 * Polling 'interrupt' - used by things like netconsole to send skbs
4659 * without having to re-enable interrupts. It's not called while
4660 * the interrupt routine is executing.
4661 */
4662 static void e1000_netpoll(struct net_device *netdev)
4663 {
4664 struct e1000_adapter *adapter = netdev_priv(netdev);
4665
4666 disable_irq(adapter->pdev->irq);
4667 e1000_intr(adapter->pdev->irq, netdev);
4668 enable_irq(adapter->pdev->irq);
4669 }
4670 #endif
4671
4672 /**
4673 * e1000_io_error_detected - called when PCI error is detected
4674 * @pdev: Pointer to PCI device
4675 * @state: The current pci connection state
4676 *
4677 * This function is called after a PCI bus error affecting
4678 * this device has been detected.
4679 */
4680 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4681 pci_channel_state_t state)
4682 {
4683 struct net_device *netdev = pci_get_drvdata(pdev);
4684 struct e1000_adapter *adapter = netdev_priv(netdev);
4685
4686 netif_device_detach(netdev);
4687
4688 if (state == pci_channel_io_perm_failure)
4689 return PCI_ERS_RESULT_DISCONNECT;
4690
4691 if (netif_running(netdev))
4692 e1000_down(adapter);
4693 pci_disable_device(pdev);
4694
4695 /* Request a slot slot reset. */
4696 return PCI_ERS_RESULT_NEED_RESET;
4697 }
4698
4699 /**
4700 * e1000_io_slot_reset - called after the pci bus has been reset.
4701 * @pdev: Pointer to PCI device
4702 *
4703 * Restart the card from scratch, as if from a cold-boot. Implementation
4704 * resembles the first-half of the e1000_resume routine.
4705 */
4706 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4707 {
4708 struct net_device *netdev = pci_get_drvdata(pdev);
4709 struct e1000_adapter *adapter = netdev_priv(netdev);
4710 struct e1000_hw *hw = &adapter->hw;
4711 int err;
4712
4713 if (adapter->need_ioport)
4714 err = pci_enable_device(pdev);
4715 else
4716 err = pci_enable_device_mem(pdev);
4717 if (err) {
4718 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4719 return PCI_ERS_RESULT_DISCONNECT;
4720 }
4721 pci_set_master(pdev);
4722
4723 pci_enable_wake(pdev, PCI_D3hot, 0);
4724 pci_enable_wake(pdev, PCI_D3cold, 0);
4725
4726 e1000_reset(adapter);
4727 ew32(WUS, ~0);
4728
4729 return PCI_ERS_RESULT_RECOVERED;
4730 }
4731
4732 /**
4733 * e1000_io_resume - called when traffic can start flowing again.
4734 * @pdev: Pointer to PCI device
4735 *
4736 * This callback is called when the error recovery driver tells us that
4737 * its OK to resume normal operation. Implementation resembles the
4738 * second-half of the e1000_resume routine.
4739 */
4740 static void e1000_io_resume(struct pci_dev *pdev)
4741 {
4742 struct net_device *netdev = pci_get_drvdata(pdev);
4743 struct e1000_adapter *adapter = netdev_priv(netdev);
4744
4745 e1000_init_manageability(adapter);
4746
4747 if (netif_running(netdev)) {
4748 if (e1000_up(adapter)) {
4749 printk("e1000: can't bring device back up after reset\n");
4750 return;
4751 }
4752 }
4753
4754 netif_device_attach(netdev);
4755 }
4756
4757 /* e1000_main.c */