Merge branch 'x86/ptrace' into x86/tsc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.20-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39 *
40 * Last entry must be all 0s
41 *
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44 */
45 static struct pci_device_id e1000_pci_tbl[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145 int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152 struct sk_buff *skb);
153
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160 #ifdef CONFIG_PM
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
164
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
169
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174 "Maximum size of packet that is copied to a new buffer on receive");
175
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177 pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
180
181 static struct pci_error_handlers e1000_err_handler = {
182 .error_detected = e1000_io_error_detected,
183 .slot_reset = e1000_io_slot_reset,
184 .resume = e1000_io_resume,
185 };
186
187 static struct pci_driver e1000_driver = {
188 .name = e1000_driver_name,
189 .id_table = e1000_pci_tbl,
190 .probe = e1000_probe,
191 .remove = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193 /* Power Managment Hooks */
194 .suspend = e1000_suspend,
195 .resume = e1000_resume,
196 #endif
197 .shutdown = e1000_shutdown,
198 .err_handler = &e1000_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210 /**
211 * e1000_init_module - Driver Registration Routine
212 *
213 * e1000_init_module is the first routine called when the driver is
214 * loaded. All it does is register with the PCI subsystem.
215 **/
216
217 static int __init e1000_init_module(void)
218 {
219 int ret;
220 printk(KERN_INFO "%s - version %s\n",
221 e1000_driver_string, e1000_driver_version);
222
223 printk(KERN_INFO "%s\n", e1000_copyright);
224
225 ret = pci_register_driver(&e1000_driver);
226 if (copybreak != COPYBREAK_DEFAULT) {
227 if (copybreak == 0)
228 printk(KERN_INFO "e1000: copybreak disabled\n");
229 else
230 printk(KERN_INFO "e1000: copybreak enabled for "
231 "packets <= %u bytes\n", copybreak);
232 }
233 return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239 * e1000_exit_module - Driver Exit Cleanup Routine
240 *
241 * e1000_exit_module is called just before the driver is removed
242 * from memory.
243 **/
244
245 static void __exit e1000_exit_module(void)
246 {
247 pci_unregister_driver(&e1000_driver);
248 }
249
250 module_exit(e1000_exit_module);
251
252 static int e1000_request_irq(struct e1000_adapter *adapter)
253 {
254 struct e1000_hw *hw = &adapter->hw;
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
258 int err;
259
260 if (hw->mac_type >= e1000_82571) {
261 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262 if (adapter->have_msi) {
263 handler = e1000_intr_msi;
264 irq_flags = 0;
265 }
266 }
267
268 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269 netdev);
270 if (err) {
271 if (adapter->have_msi)
272 pci_disable_msi(adapter->pdev);
273 DPRINTK(PROBE, ERR,
274 "Unable to allocate interrupt Error: %d\n", err);
275 }
276
277 return err;
278 }
279
280 static void e1000_free_irq(struct e1000_adapter *adapter)
281 {
282 struct net_device *netdev = adapter->netdev;
283
284 free_irq(adapter->pdev->irq, netdev);
285
286 if (adapter->have_msi)
287 pci_disable_msi(adapter->pdev);
288 }
289
290 /**
291 * e1000_irq_disable - Mask off interrupt generation on the NIC
292 * @adapter: board private structure
293 **/
294
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297 struct e1000_hw *hw = &adapter->hw;
298
299 ew32(IMC, ~0);
300 E1000_WRITE_FLUSH();
301 synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305 * e1000_irq_enable - Enable default interrupt generation settings
306 * @adapter: board private structure
307 **/
308
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMS, IMS_ENABLE_MASK);
314 E1000_WRITE_FLUSH();
315 }
316
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318 {
319 struct e1000_hw *hw = &adapter->hw;
320 struct net_device *netdev = adapter->netdev;
321 u16 vid = hw->mng_cookie.vlan_id;
322 u16 old_vid = adapter->mng_vlan_id;
323 if (adapter->vlgrp) {
324 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325 if (hw->mng_cookie.status &
326 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327 e1000_vlan_rx_add_vid(netdev, vid);
328 adapter->mng_vlan_id = vid;
329 } else
330 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333 (vid != old_vid) &&
334 !vlan_group_get_device(adapter->vlgrp, old_vid))
335 e1000_vlan_rx_kill_vid(netdev, old_vid);
336 } else
337 adapter->mng_vlan_id = vid;
338 }
339 }
340
341 /**
342 * e1000_release_hw_control - release control of the h/w to f/w
343 * @adapter: address of board private structure
344 *
345 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346 * For ASF and Pass Through versions of f/w this means that the
347 * driver is no longer loaded. For AMT version (only with 82573) i
348 * of the f/w this means that the network i/f is closed.
349 *
350 **/
351
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
353 {
354 u32 ctrl_ext;
355 u32 swsm;
356 struct e1000_hw *hw = &adapter->hw;
357
358 /* Let firmware taken over control of h/w */
359 switch (hw->mac_type) {
360 case e1000_82573:
361 swsm = er32(SWSM);
362 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363 break;
364 case e1000_82571:
365 case e1000_82572:
366 case e1000_80003es2lan:
367 case e1000_ich8lan:
368 ctrl_ext = er32(CTRL_EXT);
369 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370 break;
371 default:
372 break;
373 }
374 }
375
376 /**
377 * e1000_get_hw_control - get control of the h/w from f/w
378 * @adapter: address of board private structure
379 *
380 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381 * For ASF and Pass Through versions of f/w this means that
382 * the driver is loaded. For AMT version (only with 82573)
383 * of the f/w this means that the network i/f is open.
384 *
385 **/
386
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
388 {
389 u32 ctrl_ext;
390 u32 swsm;
391 struct e1000_hw *hw = &adapter->hw;
392
393 /* Let firmware know the driver has taken over */
394 switch (hw->mac_type) {
395 case e1000_82573:
396 swsm = er32(SWSM);
397 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398 break;
399 case e1000_82571:
400 case e1000_82572:
401 case e1000_80003es2lan:
402 case e1000_ich8lan:
403 ctrl_ext = er32(CTRL_EXT);
404 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405 break;
406 default:
407 break;
408 }
409 }
410
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
412 {
413 struct e1000_hw *hw = &adapter->hw;
414
415 if (adapter->en_mng_pt) {
416 u32 manc = er32(MANC);
417
418 /* disable hardware interception of ARP */
419 manc &= ~(E1000_MANC_ARP_EN);
420
421 /* enable receiving management packets to the host */
422 /* this will probably generate destination unreachable messages
423 * from the host OS, but the packets will be handled on SMBUS */
424 if (hw->has_manc2h) {
425 u32 manc2h = er32(MANC2H);
426
427 manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430 manc2h |= E1000_MNG2HOST_PORT_623;
431 manc2h |= E1000_MNG2HOST_PORT_664;
432 ew32(MANC2H, manc2h);
433 }
434
435 ew32(MANC, manc);
436 }
437 }
438
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
440 {
441 struct e1000_hw *hw = &adapter->hw;
442
443 if (adapter->en_mng_pt) {
444 u32 manc = er32(MANC);
445
446 /* re-enable hardware interception of ARP */
447 manc |= E1000_MANC_ARP_EN;
448
449 if (hw->has_manc2h)
450 manc &= ~E1000_MANC_EN_MNG2HOST;
451
452 /* don't explicitly have to mess with MANC2H since
453 * MANC has an enable disable that gates MANC2H */
454
455 ew32(MANC, manc);
456 }
457 }
458
459 /**
460 * e1000_configure - configure the hardware for RX and TX
461 * @adapter = private board structure
462 **/
463 static void e1000_configure(struct e1000_adapter *adapter)
464 {
465 struct net_device *netdev = adapter->netdev;
466 int i;
467
468 e1000_set_rx_mode(netdev);
469
470 e1000_restore_vlan(adapter);
471 e1000_init_manageability(adapter);
472
473 e1000_configure_tx(adapter);
474 e1000_setup_rctl(adapter);
475 e1000_configure_rx(adapter);
476 /* call E1000_DESC_UNUSED which always leaves
477 * at least 1 descriptor unused to make sure
478 * next_to_use != next_to_clean */
479 for (i = 0; i < adapter->num_rx_queues; i++) {
480 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481 adapter->alloc_rx_buf(adapter, ring,
482 E1000_DESC_UNUSED(ring));
483 }
484
485 adapter->tx_queue_len = netdev->tx_queue_len;
486 }
487
488 int e1000_up(struct e1000_adapter *adapter)
489 {
490 struct e1000_hw *hw = &adapter->hw;
491
492 /* hardware has been reset, we need to reload some things */
493 e1000_configure(adapter);
494
495 clear_bit(__E1000_DOWN, &adapter->flags);
496
497 napi_enable(&adapter->napi);
498
499 e1000_irq_enable(adapter);
500
501 /* fire a link change interrupt to start the watchdog */
502 ew32(ICS, E1000_ICS_LSC);
503 return 0;
504 }
505
506 /**
507 * e1000_power_up_phy - restore link in case the phy was powered down
508 * @adapter: address of board private structure
509 *
510 * The phy may be powered down to save power and turn off link when the
511 * driver is unloaded and wake on lan is not enabled (among others)
512 * *** this routine MUST be followed by a call to e1000_reset ***
513 *
514 **/
515
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
517 {
518 struct e1000_hw *hw = &adapter->hw;
519 u16 mii_reg = 0;
520
521 /* Just clear the power down bit to wake the phy back up */
522 if (hw->media_type == e1000_media_type_copper) {
523 /* according to the manual, the phy will retain its
524 * settings across a power-down/up cycle */
525 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526 mii_reg &= ~MII_CR_POWER_DOWN;
527 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
528 }
529 }
530
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
532 {
533 struct e1000_hw *hw = &adapter->hw;
534
535 /* Power down the PHY so no link is implied when interface is down *
536 * The PHY cannot be powered down if any of the following is true *
537 * (a) WoL is enabled
538 * (b) AMT is active
539 * (c) SoL/IDER session is active */
540 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541 hw->media_type == e1000_media_type_copper) {
542 u16 mii_reg = 0;
543
544 switch (hw->mac_type) {
545 case e1000_82540:
546 case e1000_82545:
547 case e1000_82545_rev_3:
548 case e1000_82546:
549 case e1000_82546_rev_3:
550 case e1000_82541:
551 case e1000_82541_rev_2:
552 case e1000_82547:
553 case e1000_82547_rev_2:
554 if (er32(MANC) & E1000_MANC_SMBUS_EN)
555 goto out;
556 break;
557 case e1000_82571:
558 case e1000_82572:
559 case e1000_82573:
560 case e1000_80003es2lan:
561 case e1000_ich8lan:
562 if (e1000_check_mng_mode(hw) ||
563 e1000_check_phy_reset_block(hw))
564 goto out;
565 break;
566 default:
567 goto out;
568 }
569 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570 mii_reg |= MII_CR_POWER_DOWN;
571 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572 mdelay(1);
573 }
574 out:
575 return;
576 }
577
578 void e1000_down(struct e1000_adapter *adapter)
579 {
580 struct net_device *netdev = adapter->netdev;
581
582 /* signal that we're down so the interrupt handler does not
583 * reschedule our watchdog timer */
584 set_bit(__E1000_DOWN, &adapter->flags);
585
586 napi_disable(&adapter->napi);
587
588 e1000_irq_disable(adapter);
589
590 del_timer_sync(&adapter->tx_fifo_stall_timer);
591 del_timer_sync(&adapter->watchdog_timer);
592 del_timer_sync(&adapter->phy_info_timer);
593
594 netdev->tx_queue_len = adapter->tx_queue_len;
595 adapter->link_speed = 0;
596 adapter->link_duplex = 0;
597 netif_carrier_off(netdev);
598 netif_stop_queue(netdev);
599
600 e1000_reset(adapter);
601 e1000_clean_all_tx_rings(adapter);
602 e1000_clean_all_rx_rings(adapter);
603 }
604
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
606 {
607 WARN_ON(in_interrupt());
608 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609 msleep(1);
610 e1000_down(adapter);
611 e1000_up(adapter);
612 clear_bit(__E1000_RESETTING, &adapter->flags);
613 }
614
615 void e1000_reset(struct e1000_adapter *adapter)
616 {
617 struct e1000_hw *hw = &adapter->hw;
618 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619 u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620 bool legacy_pba_adjust = false;
621
622 /* Repartition Pba for greater than 9k mtu
623 * To take effect CTRL.RST is required.
624 */
625
626 switch (hw->mac_type) {
627 case e1000_82542_rev2_0:
628 case e1000_82542_rev2_1:
629 case e1000_82543:
630 case e1000_82544:
631 case e1000_82540:
632 case e1000_82541:
633 case e1000_82541_rev_2:
634 legacy_pba_adjust = true;
635 pba = E1000_PBA_48K;
636 break;
637 case e1000_82545:
638 case e1000_82545_rev_3:
639 case e1000_82546:
640 case e1000_82546_rev_3:
641 pba = E1000_PBA_48K;
642 break;
643 case e1000_82547:
644 case e1000_82547_rev_2:
645 legacy_pba_adjust = true;
646 pba = E1000_PBA_30K;
647 break;
648 case e1000_82571:
649 case e1000_82572:
650 case e1000_80003es2lan:
651 pba = E1000_PBA_38K;
652 break;
653 case e1000_82573:
654 pba = E1000_PBA_20K;
655 break;
656 case e1000_ich8lan:
657 pba = E1000_PBA_8K;
658 case e1000_undefined:
659 case e1000_num_macs:
660 break;
661 }
662
663 if (legacy_pba_adjust) {
664 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665 pba -= 8; /* allocate more FIFO for Tx */
666
667 if (hw->mac_type == e1000_82547) {
668 adapter->tx_fifo_head = 0;
669 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670 adapter->tx_fifo_size =
671 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672 atomic_set(&adapter->tx_fifo_stall, 0);
673 }
674 } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675 /* adjust PBA for jumbo frames */
676 ew32(PBA, pba);
677
678 /* To maintain wire speed transmits, the Tx FIFO should be
679 * large enough to accomodate two full transmit packets,
680 * rounded up to the next 1KB and expressed in KB. Likewise,
681 * the Rx FIFO should be large enough to accomodate at least
682 * one full receive packet and is similarly rounded up and
683 * expressed in KB. */
684 pba = er32(PBA);
685 /* upper 16 bits has Tx packet buffer allocation size in KB */
686 tx_space = pba >> 16;
687 /* lower 16 bits has Rx packet buffer allocation size in KB */
688 pba &= 0xffff;
689 /* don't include ethernet FCS because hardware appends/strips */
690 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691 VLAN_TAG_SIZE;
692 min_tx_space = min_rx_space;
693 min_tx_space *= 2;
694 min_tx_space = ALIGN(min_tx_space, 1024);
695 min_tx_space >>= 10;
696 min_rx_space = ALIGN(min_rx_space, 1024);
697 min_rx_space >>= 10;
698
699 /* If current Tx allocation is less than the min Tx FIFO size,
700 * and the min Tx FIFO size is less than the current Rx FIFO
701 * allocation, take space away from current Rx allocation */
702 if (tx_space < min_tx_space &&
703 ((min_tx_space - tx_space) < pba)) {
704 pba = pba - (min_tx_space - tx_space);
705
706 /* PCI/PCIx hardware has PBA alignment constraints */
707 switch (hw->mac_type) {
708 case e1000_82545 ... e1000_82546_rev_3:
709 pba &= ~(E1000_PBA_8K - 1);
710 break;
711 default:
712 break;
713 }
714
715 /* if short on rx space, rx wins and must trump tx
716 * adjustment or use Early Receive if available */
717 if (pba < min_rx_space) {
718 switch (hw->mac_type) {
719 case e1000_82573:
720 /* ERT enabled in e1000_configure_rx */
721 break;
722 default:
723 pba = min_rx_space;
724 break;
725 }
726 }
727 }
728 }
729
730 ew32(PBA, pba);
731
732 /* flow control settings */
733 /* Set the FC high water mark to 90% of the FIFO size.
734 * Required to clear last 3 LSB */
735 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736 /* We can't use 90% on small FIFOs because the remainder
737 * would be less than 1 full frame. In this case, we size
738 * it to allow at least a full frame above the high water
739 * mark. */
740 if (pba < E1000_PBA_16K)
741 fc_high_water_mark = (pba * 1024) - 1600;
742
743 hw->fc_high_water = fc_high_water_mark;
744 hw->fc_low_water = fc_high_water_mark - 8;
745 if (hw->mac_type == e1000_80003es2lan)
746 hw->fc_pause_time = 0xFFFF;
747 else
748 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749 hw->fc_send_xon = 1;
750 hw->fc = hw->original_fc;
751
752 /* Allow time for pending master requests to run */
753 e1000_reset_hw(hw);
754 if (hw->mac_type >= e1000_82544)
755 ew32(WUC, 0);
756
757 if (e1000_init_hw(hw))
758 DPRINTK(PROBE, ERR, "Hardware Error\n");
759 e1000_update_mng_vlan(adapter);
760
761 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762 if (hw->mac_type >= e1000_82544 &&
763 hw->mac_type <= e1000_82547_rev_2 &&
764 hw->autoneg == 1 &&
765 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766 u32 ctrl = er32(CTRL);
767 /* clear phy power management bit if we are in gig only mode,
768 * which if enabled will attempt negotiation to 100Mb, which
769 * can cause a loss of link at power off or driver unload */
770 ctrl &= ~E1000_CTRL_SWDPIN3;
771 ew32(CTRL, ctrl);
772 }
773
774 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
776
777 e1000_reset_adaptive(hw);
778 e1000_phy_get_info(hw, &adapter->phy_info);
779
780 if (!adapter->smart_power_down &&
781 (hw->mac_type == e1000_82571 ||
782 hw->mac_type == e1000_82572)) {
783 u16 phy_data = 0;
784 /* speed up time to link by disabling smart power down, ignore
785 * the return value of this function because there is nothing
786 * different we would do if it failed */
787 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788 &phy_data);
789 phy_data &= ~IGP02E1000_PM_SPD;
790 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791 phy_data);
792 }
793
794 e1000_release_manageability(adapter);
795 }
796
797 /**
798 * Dump the eeprom for users having checksum issues
799 **/
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
801 {
802 struct net_device *netdev = adapter->netdev;
803 struct ethtool_eeprom eeprom;
804 const struct ethtool_ops *ops = netdev->ethtool_ops;
805 u8 *data;
806 int i;
807 u16 csum_old, csum_new = 0;
808
809 eeprom.len = ops->get_eeprom_len(netdev);
810 eeprom.offset = 0;
811
812 data = kmalloc(eeprom.len, GFP_KERNEL);
813 if (!data) {
814 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815 " data\n");
816 return;
817 }
818
819 ops->get_eeprom(netdev, &eeprom, data);
820
821 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824 csum_new += data[i] + (data[i + 1] << 8);
825 csum_new = EEPROM_SUM - csum_new;
826
827 printk(KERN_ERR "/*********************/\n");
828 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
830
831 printk(KERN_ERR "Offset Values\n");
832 printk(KERN_ERR "======== ======\n");
833 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
834
835 printk(KERN_ERR "Include this output when contacting your support "
836 "provider.\n");
837 printk(KERN_ERR "This is not a software error! Something bad "
838 "happened to your hardware or\n");
839 printk(KERN_ERR "EEPROM image. Ignoring this "
840 "problem could result in further problems,\n");
841 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843 "which is invalid\n");
844 printk(KERN_ERR "and requires you to set the proper MAC "
845 "address manually before continuing\n");
846 printk(KERN_ERR "to enable this network device.\n");
847 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848 "to your hardware vendor\n");
849 printk(KERN_ERR "or Intel Customer Support.\n");
850 printk(KERN_ERR "/*********************/\n");
851
852 kfree(data);
853 }
854
855 /**
856 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857 * @pdev: PCI device information struct
858 *
859 * Return true if an adapter needs ioport resources
860 **/
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
862 {
863 switch (pdev->device) {
864 case E1000_DEV_ID_82540EM:
865 case E1000_DEV_ID_82540EM_LOM:
866 case E1000_DEV_ID_82540EP:
867 case E1000_DEV_ID_82540EP_LOM:
868 case E1000_DEV_ID_82540EP_LP:
869 case E1000_DEV_ID_82541EI:
870 case E1000_DEV_ID_82541EI_MOBILE:
871 case E1000_DEV_ID_82541ER:
872 case E1000_DEV_ID_82541ER_LOM:
873 case E1000_DEV_ID_82541GI:
874 case E1000_DEV_ID_82541GI_LF:
875 case E1000_DEV_ID_82541GI_MOBILE:
876 case E1000_DEV_ID_82544EI_COPPER:
877 case E1000_DEV_ID_82544EI_FIBER:
878 case E1000_DEV_ID_82544GC_COPPER:
879 case E1000_DEV_ID_82544GC_LOM:
880 case E1000_DEV_ID_82545EM_COPPER:
881 case E1000_DEV_ID_82545EM_FIBER:
882 case E1000_DEV_ID_82546EB_COPPER:
883 case E1000_DEV_ID_82546EB_FIBER:
884 case E1000_DEV_ID_82546EB_QUAD_COPPER:
885 return true;
886 default:
887 return false;
888 }
889 }
890
891 /**
892 * e1000_probe - Device Initialization Routine
893 * @pdev: PCI device information struct
894 * @ent: entry in e1000_pci_tbl
895 *
896 * Returns 0 on success, negative on failure
897 *
898 * e1000_probe initializes an adapter identified by a pci_dev structure.
899 * The OS initialization, configuring of the adapter private structure,
900 * and a hardware reset occur.
901 **/
902 static int __devinit e1000_probe(struct pci_dev *pdev,
903 const struct pci_device_id *ent)
904 {
905 struct net_device *netdev;
906 struct e1000_adapter *adapter;
907 struct e1000_hw *hw;
908
909 static int cards_found = 0;
910 static int global_quad_port_a = 0; /* global ksp3 port a indication */
911 int i, err, pci_using_dac;
912 u16 eeprom_data = 0;
913 u16 eeprom_apme_mask = E1000_EEPROM_APME;
914 int bars, need_ioport;
915 DECLARE_MAC_BUF(mac);
916
917 /* do not allocate ioport bars when not needed */
918 need_ioport = e1000_is_need_ioport(pdev);
919 if (need_ioport) {
920 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
921 err = pci_enable_device(pdev);
922 } else {
923 bars = pci_select_bars(pdev, IORESOURCE_MEM);
924 err = pci_enable_device(pdev);
925 }
926 if (err)
927 return err;
928
929 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
930 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
931 pci_using_dac = 1;
932 } else {
933 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
934 if (err) {
935 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
936 if (err) {
937 E1000_ERR("No usable DMA configuration, "
938 "aborting\n");
939 goto err_dma;
940 }
941 }
942 pci_using_dac = 0;
943 }
944
945 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
946 if (err)
947 goto err_pci_reg;
948
949 pci_set_master(pdev);
950
951 err = -ENOMEM;
952 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
953 if (!netdev)
954 goto err_alloc_etherdev;
955
956 SET_NETDEV_DEV(netdev, &pdev->dev);
957
958 pci_set_drvdata(pdev, netdev);
959 adapter = netdev_priv(netdev);
960 adapter->netdev = netdev;
961 adapter->pdev = pdev;
962 adapter->msg_enable = (1 << debug) - 1;
963 adapter->bars = bars;
964 adapter->need_ioport = need_ioport;
965
966 hw = &adapter->hw;
967 hw->back = adapter;
968
969 err = -EIO;
970 hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
971 pci_resource_len(pdev, BAR_0));
972 if (!hw->hw_addr)
973 goto err_ioremap;
974
975 if (adapter->need_ioport) {
976 for (i = BAR_1; i <= BAR_5; i++) {
977 if (pci_resource_len(pdev, i) == 0)
978 continue;
979 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
980 hw->io_base = pci_resource_start(pdev, i);
981 break;
982 }
983 }
984 }
985
986 netdev->open = &e1000_open;
987 netdev->stop = &e1000_close;
988 netdev->hard_start_xmit = &e1000_xmit_frame;
989 netdev->get_stats = &e1000_get_stats;
990 netdev->set_rx_mode = &e1000_set_rx_mode;
991 netdev->set_mac_address = &e1000_set_mac;
992 netdev->change_mtu = &e1000_change_mtu;
993 netdev->do_ioctl = &e1000_ioctl;
994 e1000_set_ethtool_ops(netdev);
995 netdev->tx_timeout = &e1000_tx_timeout;
996 netdev->watchdog_timeo = 5 * HZ;
997 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
998 netdev->vlan_rx_register = e1000_vlan_rx_register;
999 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
1000 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
1001 #ifdef CONFIG_NET_POLL_CONTROLLER
1002 netdev->poll_controller = e1000_netpoll;
1003 #endif
1004 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1005
1006 adapter->bd_number = cards_found;
1007
1008 /* setup the private structure */
1009
1010 err = e1000_sw_init(adapter);
1011 if (err)
1012 goto err_sw_init;
1013
1014 err = -EIO;
1015 /* Flash BAR mapping must happen after e1000_sw_init
1016 * because it depends on mac_type */
1017 if ((hw->mac_type == e1000_ich8lan) &&
1018 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1019 hw->flash_address =
1020 ioremap(pci_resource_start(pdev, 1),
1021 pci_resource_len(pdev, 1));
1022 if (!hw->flash_address)
1023 goto err_flashmap;
1024 }
1025
1026 if (e1000_check_phy_reset_block(hw))
1027 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1028
1029 if (hw->mac_type >= e1000_82543) {
1030 netdev->features = NETIF_F_SG |
1031 NETIF_F_HW_CSUM |
1032 NETIF_F_HW_VLAN_TX |
1033 NETIF_F_HW_VLAN_RX |
1034 NETIF_F_HW_VLAN_FILTER;
1035 if (hw->mac_type == e1000_ich8lan)
1036 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1037 }
1038
1039 if ((hw->mac_type >= e1000_82544) &&
1040 (hw->mac_type != e1000_82547))
1041 netdev->features |= NETIF_F_TSO;
1042
1043 if (hw->mac_type > e1000_82547_rev_2)
1044 netdev->features |= NETIF_F_TSO6;
1045 if (pci_using_dac)
1046 netdev->features |= NETIF_F_HIGHDMA;
1047
1048 netdev->features |= NETIF_F_LLTX;
1049
1050 netdev->vlan_features |= NETIF_F_TSO;
1051 netdev->vlan_features |= NETIF_F_TSO6;
1052 netdev->vlan_features |= NETIF_F_HW_CSUM;
1053 netdev->vlan_features |= NETIF_F_SG;
1054
1055 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1056
1057 /* initialize eeprom parameters */
1058 if (e1000_init_eeprom_params(hw)) {
1059 E1000_ERR("EEPROM initialization failed\n");
1060 goto err_eeprom;
1061 }
1062
1063 /* before reading the EEPROM, reset the controller to
1064 * put the device in a known good starting state */
1065
1066 e1000_reset_hw(hw);
1067
1068 /* make sure the EEPROM is good */
1069 if (e1000_validate_eeprom_checksum(hw) < 0) {
1070 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1071 e1000_dump_eeprom(adapter);
1072 /*
1073 * set MAC address to all zeroes to invalidate and temporary
1074 * disable this device for the user. This blocks regular
1075 * traffic while still permitting ethtool ioctls from reaching
1076 * the hardware as well as allowing the user to run the
1077 * interface after manually setting a hw addr using
1078 * `ip set address`
1079 */
1080 memset(hw->mac_addr, 0, netdev->addr_len);
1081 } else {
1082 /* copy the MAC address out of the EEPROM */
1083 if (e1000_read_mac_addr(hw))
1084 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1085 }
1086 /* don't block initalization here due to bad MAC address */
1087 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1088 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1089
1090 if (!is_valid_ether_addr(netdev->perm_addr))
1091 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1092
1093 e1000_get_bus_info(hw);
1094
1095 init_timer(&adapter->tx_fifo_stall_timer);
1096 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1097 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1098
1099 init_timer(&adapter->watchdog_timer);
1100 adapter->watchdog_timer.function = &e1000_watchdog;
1101 adapter->watchdog_timer.data = (unsigned long) adapter;
1102
1103 init_timer(&adapter->phy_info_timer);
1104 adapter->phy_info_timer.function = &e1000_update_phy_info;
1105 adapter->phy_info_timer.data = (unsigned long)adapter;
1106
1107 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1108
1109 e1000_check_options(adapter);
1110
1111 /* Initial Wake on LAN setting
1112 * If APM wake is enabled in the EEPROM,
1113 * enable the ACPI Magic Packet filter
1114 */
1115
1116 switch (hw->mac_type) {
1117 case e1000_82542_rev2_0:
1118 case e1000_82542_rev2_1:
1119 case e1000_82543:
1120 break;
1121 case e1000_82544:
1122 e1000_read_eeprom(hw,
1123 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1124 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1125 break;
1126 case e1000_ich8lan:
1127 e1000_read_eeprom(hw,
1128 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1129 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1130 break;
1131 case e1000_82546:
1132 case e1000_82546_rev_3:
1133 case e1000_82571:
1134 case e1000_80003es2lan:
1135 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1136 e1000_read_eeprom(hw,
1137 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1138 break;
1139 }
1140 /* Fall Through */
1141 default:
1142 e1000_read_eeprom(hw,
1143 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1144 break;
1145 }
1146 if (eeprom_data & eeprom_apme_mask)
1147 adapter->eeprom_wol |= E1000_WUFC_MAG;
1148
1149 /* now that we have the eeprom settings, apply the special cases
1150 * where the eeprom may be wrong or the board simply won't support
1151 * wake on lan on a particular port */
1152 switch (pdev->device) {
1153 case E1000_DEV_ID_82546GB_PCIE:
1154 adapter->eeprom_wol = 0;
1155 break;
1156 case E1000_DEV_ID_82546EB_FIBER:
1157 case E1000_DEV_ID_82546GB_FIBER:
1158 case E1000_DEV_ID_82571EB_FIBER:
1159 /* Wake events only supported on port A for dual fiber
1160 * regardless of eeprom setting */
1161 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1162 adapter->eeprom_wol = 0;
1163 break;
1164 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1165 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1166 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1167 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1168 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1169 /* if quad port adapter, disable WoL on all but port A */
1170 if (global_quad_port_a != 0)
1171 adapter->eeprom_wol = 0;
1172 else
1173 adapter->quad_port_a = 1;
1174 /* Reset for multiple quad port adapters */
1175 if (++global_quad_port_a == 4)
1176 global_quad_port_a = 0;
1177 break;
1178 }
1179
1180 /* initialize the wol settings based on the eeprom settings */
1181 adapter->wol = adapter->eeprom_wol;
1182 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1183
1184 /* print bus type/speed/width info */
1185 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1186 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1187 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1188 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1189 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1190 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1191 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1192 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1193 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1194 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1195 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1196 "32-bit"));
1197
1198 printk("%s\n", print_mac(mac, netdev->dev_addr));
1199
1200 if (hw->bus_type == e1000_bus_type_pci_express) {
1201 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1202 "longer be supported by this driver in the future.\n",
1203 pdev->vendor, pdev->device);
1204 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1205 "driver instead.\n");
1206 }
1207
1208 /* reset the hardware with the new settings */
1209 e1000_reset(adapter);
1210
1211 /* If the controller is 82573 and f/w is AMT, do not set
1212 * DRV_LOAD until the interface is up. For all other cases,
1213 * let the f/w know that the h/w is now under the control
1214 * of the driver. */
1215 if (hw->mac_type != e1000_82573 ||
1216 !e1000_check_mng_mode(hw))
1217 e1000_get_hw_control(adapter);
1218
1219 /* tell the stack to leave us alone until e1000_open() is called */
1220 netif_carrier_off(netdev);
1221 netif_stop_queue(netdev);
1222
1223 strcpy(netdev->name, "eth%d");
1224 err = register_netdev(netdev);
1225 if (err)
1226 goto err_register;
1227
1228 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1229
1230 cards_found++;
1231 return 0;
1232
1233 err_register:
1234 e1000_release_hw_control(adapter);
1235 err_eeprom:
1236 if (!e1000_check_phy_reset_block(hw))
1237 e1000_phy_hw_reset(hw);
1238
1239 if (hw->flash_address)
1240 iounmap(hw->flash_address);
1241 err_flashmap:
1242 for (i = 0; i < adapter->num_rx_queues; i++)
1243 dev_put(&adapter->polling_netdev[i]);
1244
1245 kfree(adapter->tx_ring);
1246 kfree(adapter->rx_ring);
1247 kfree(adapter->polling_netdev);
1248 err_sw_init:
1249 iounmap(hw->hw_addr);
1250 err_ioremap:
1251 free_netdev(netdev);
1252 err_alloc_etherdev:
1253 pci_release_selected_regions(pdev, bars);
1254 err_pci_reg:
1255 err_dma:
1256 pci_disable_device(pdev);
1257 return err;
1258 }
1259
1260 /**
1261 * e1000_remove - Device Removal Routine
1262 * @pdev: PCI device information struct
1263 *
1264 * e1000_remove is called by the PCI subsystem to alert the driver
1265 * that it should release a PCI device. The could be caused by a
1266 * Hot-Plug event, or because the driver is going to be removed from
1267 * memory.
1268 **/
1269
1270 static void __devexit e1000_remove(struct pci_dev *pdev)
1271 {
1272 struct net_device *netdev = pci_get_drvdata(pdev);
1273 struct e1000_adapter *adapter = netdev_priv(netdev);
1274 struct e1000_hw *hw = &adapter->hw;
1275 int i;
1276
1277 cancel_work_sync(&adapter->reset_task);
1278
1279 e1000_release_manageability(adapter);
1280
1281 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1282 * would have already happened in close and is redundant. */
1283 e1000_release_hw_control(adapter);
1284
1285 for (i = 0; i < adapter->num_rx_queues; i++)
1286 dev_put(&adapter->polling_netdev[i]);
1287
1288 unregister_netdev(netdev);
1289
1290 if (!e1000_check_phy_reset_block(hw))
1291 e1000_phy_hw_reset(hw);
1292
1293 kfree(adapter->tx_ring);
1294 kfree(adapter->rx_ring);
1295 kfree(adapter->polling_netdev);
1296
1297 iounmap(hw->hw_addr);
1298 if (hw->flash_address)
1299 iounmap(hw->flash_address);
1300 pci_release_selected_regions(pdev, adapter->bars);
1301
1302 free_netdev(netdev);
1303
1304 pci_disable_device(pdev);
1305 }
1306
1307 /**
1308 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1309 * @adapter: board private structure to initialize
1310 *
1311 * e1000_sw_init initializes the Adapter private data structure.
1312 * Fields are initialized based on PCI device information and
1313 * OS network device settings (MTU size).
1314 **/
1315
1316 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1317 {
1318 struct e1000_hw *hw = &adapter->hw;
1319 struct net_device *netdev = adapter->netdev;
1320 struct pci_dev *pdev = adapter->pdev;
1321 int i;
1322
1323 /* PCI config space info */
1324
1325 hw->vendor_id = pdev->vendor;
1326 hw->device_id = pdev->device;
1327 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1328 hw->subsystem_id = pdev->subsystem_device;
1329 hw->revision_id = pdev->revision;
1330
1331 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1332
1333 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1334 hw->max_frame_size = netdev->mtu +
1335 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1336 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1337
1338 /* identify the MAC */
1339
1340 if (e1000_set_mac_type(hw)) {
1341 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1342 return -EIO;
1343 }
1344
1345 switch (hw->mac_type) {
1346 default:
1347 break;
1348 case e1000_82541:
1349 case e1000_82547:
1350 case e1000_82541_rev_2:
1351 case e1000_82547_rev_2:
1352 hw->phy_init_script = 1;
1353 break;
1354 }
1355
1356 e1000_set_media_type(hw);
1357
1358 hw->wait_autoneg_complete = false;
1359 hw->tbi_compatibility_en = true;
1360 hw->adaptive_ifs = true;
1361
1362 /* Copper options */
1363
1364 if (hw->media_type == e1000_media_type_copper) {
1365 hw->mdix = AUTO_ALL_MODES;
1366 hw->disable_polarity_correction = false;
1367 hw->master_slave = E1000_MASTER_SLAVE;
1368 }
1369
1370 adapter->num_tx_queues = 1;
1371 adapter->num_rx_queues = 1;
1372
1373 if (e1000_alloc_queues(adapter)) {
1374 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1375 return -ENOMEM;
1376 }
1377
1378 for (i = 0; i < adapter->num_rx_queues; i++) {
1379 adapter->polling_netdev[i].priv = adapter;
1380 dev_hold(&adapter->polling_netdev[i]);
1381 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1382 }
1383 spin_lock_init(&adapter->tx_queue_lock);
1384
1385 /* Explicitly disable IRQ since the NIC can be in any state. */
1386 e1000_irq_disable(adapter);
1387
1388 spin_lock_init(&adapter->stats_lock);
1389
1390 set_bit(__E1000_DOWN, &adapter->flags);
1391
1392 return 0;
1393 }
1394
1395 /**
1396 * e1000_alloc_queues - Allocate memory for all rings
1397 * @adapter: board private structure to initialize
1398 *
1399 * We allocate one ring per queue at run-time since we don't know the
1400 * number of queues at compile-time. The polling_netdev array is
1401 * intended for Multiqueue, but should work fine with a single queue.
1402 **/
1403
1404 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1405 {
1406 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1407 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1408 if (!adapter->tx_ring)
1409 return -ENOMEM;
1410
1411 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1412 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1413 if (!adapter->rx_ring) {
1414 kfree(adapter->tx_ring);
1415 return -ENOMEM;
1416 }
1417
1418 adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1419 sizeof(struct net_device),
1420 GFP_KERNEL);
1421 if (!adapter->polling_netdev) {
1422 kfree(adapter->tx_ring);
1423 kfree(adapter->rx_ring);
1424 return -ENOMEM;
1425 }
1426
1427 return E1000_SUCCESS;
1428 }
1429
1430 /**
1431 * e1000_open - Called when a network interface is made active
1432 * @netdev: network interface device structure
1433 *
1434 * Returns 0 on success, negative value on failure
1435 *
1436 * The open entry point is called when a network interface is made
1437 * active by the system (IFF_UP). At this point all resources needed
1438 * for transmit and receive operations are allocated, the interrupt
1439 * handler is registered with the OS, the watchdog timer is started,
1440 * and the stack is notified that the interface is ready.
1441 **/
1442
1443 static int e1000_open(struct net_device *netdev)
1444 {
1445 struct e1000_adapter *adapter = netdev_priv(netdev);
1446 struct e1000_hw *hw = &adapter->hw;
1447 int err;
1448
1449 /* disallow open during test */
1450 if (test_bit(__E1000_TESTING, &adapter->flags))
1451 return -EBUSY;
1452
1453 /* allocate transmit descriptors */
1454 err = e1000_setup_all_tx_resources(adapter);
1455 if (err)
1456 goto err_setup_tx;
1457
1458 /* allocate receive descriptors */
1459 err = e1000_setup_all_rx_resources(adapter);
1460 if (err)
1461 goto err_setup_rx;
1462
1463 e1000_power_up_phy(adapter);
1464
1465 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1466 if ((hw->mng_cookie.status &
1467 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1468 e1000_update_mng_vlan(adapter);
1469 }
1470
1471 /* If AMT is enabled, let the firmware know that the network
1472 * interface is now open */
1473 if (hw->mac_type == e1000_82573 &&
1474 e1000_check_mng_mode(hw))
1475 e1000_get_hw_control(adapter);
1476
1477 /* before we allocate an interrupt, we must be ready to handle it.
1478 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1479 * as soon as we call pci_request_irq, so we have to setup our
1480 * clean_rx handler before we do so. */
1481 e1000_configure(adapter);
1482
1483 err = e1000_request_irq(adapter);
1484 if (err)
1485 goto err_req_irq;
1486
1487 /* From here on the code is the same as e1000_up() */
1488 clear_bit(__E1000_DOWN, &adapter->flags);
1489
1490 napi_enable(&adapter->napi);
1491
1492 e1000_irq_enable(adapter);
1493
1494 netif_start_queue(netdev);
1495
1496 /* fire a link status change interrupt to start the watchdog */
1497 ew32(ICS, E1000_ICS_LSC);
1498
1499 return E1000_SUCCESS;
1500
1501 err_req_irq:
1502 e1000_release_hw_control(adapter);
1503 e1000_power_down_phy(adapter);
1504 e1000_free_all_rx_resources(adapter);
1505 err_setup_rx:
1506 e1000_free_all_tx_resources(adapter);
1507 err_setup_tx:
1508 e1000_reset(adapter);
1509
1510 return err;
1511 }
1512
1513 /**
1514 * e1000_close - Disables a network interface
1515 * @netdev: network interface device structure
1516 *
1517 * Returns 0, this is not allowed to fail
1518 *
1519 * The close entry point is called when an interface is de-activated
1520 * by the OS. The hardware is still under the drivers control, but
1521 * needs to be disabled. A global MAC reset is issued to stop the
1522 * hardware, and all transmit and receive resources are freed.
1523 **/
1524
1525 static int e1000_close(struct net_device *netdev)
1526 {
1527 struct e1000_adapter *adapter = netdev_priv(netdev);
1528 struct e1000_hw *hw = &adapter->hw;
1529
1530 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1531 e1000_down(adapter);
1532 e1000_power_down_phy(adapter);
1533 e1000_free_irq(adapter);
1534
1535 e1000_free_all_tx_resources(adapter);
1536 e1000_free_all_rx_resources(adapter);
1537
1538 /* kill manageability vlan ID if supported, but not if a vlan with
1539 * the same ID is registered on the host OS (let 8021q kill it) */
1540 if ((hw->mng_cookie.status &
1541 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1542 !(adapter->vlgrp &&
1543 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1544 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1545 }
1546
1547 /* If AMT is enabled, let the firmware know that the network
1548 * interface is now closed */
1549 if (hw->mac_type == e1000_82573 &&
1550 e1000_check_mng_mode(hw))
1551 e1000_release_hw_control(adapter);
1552
1553 return 0;
1554 }
1555
1556 /**
1557 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1558 * @adapter: address of board private structure
1559 * @start: address of beginning of memory
1560 * @len: length of memory
1561 **/
1562 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1563 unsigned long len)
1564 {
1565 struct e1000_hw *hw = &adapter->hw;
1566 unsigned long begin = (unsigned long)start;
1567 unsigned long end = begin + len;
1568
1569 /* First rev 82545 and 82546 need to not allow any memory
1570 * write location to cross 64k boundary due to errata 23 */
1571 if (hw->mac_type == e1000_82545 ||
1572 hw->mac_type == e1000_82546) {
1573 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1574 }
1575
1576 return true;
1577 }
1578
1579 /**
1580 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1581 * @adapter: board private structure
1582 * @txdr: tx descriptor ring (for a specific queue) to setup
1583 *
1584 * Return 0 on success, negative on failure
1585 **/
1586
1587 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1588 struct e1000_tx_ring *txdr)
1589 {
1590 struct pci_dev *pdev = adapter->pdev;
1591 int size;
1592
1593 size = sizeof(struct e1000_buffer) * txdr->count;
1594 txdr->buffer_info = vmalloc(size);
1595 if (!txdr->buffer_info) {
1596 DPRINTK(PROBE, ERR,
1597 "Unable to allocate memory for the transmit descriptor ring\n");
1598 return -ENOMEM;
1599 }
1600 memset(txdr->buffer_info, 0, size);
1601
1602 /* round up to nearest 4K */
1603
1604 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1605 txdr->size = ALIGN(txdr->size, 4096);
1606
1607 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1608 if (!txdr->desc) {
1609 setup_tx_desc_die:
1610 vfree(txdr->buffer_info);
1611 DPRINTK(PROBE, ERR,
1612 "Unable to allocate memory for the transmit descriptor ring\n");
1613 return -ENOMEM;
1614 }
1615
1616 /* Fix for errata 23, can't cross 64kB boundary */
1617 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1618 void *olddesc = txdr->desc;
1619 dma_addr_t olddma = txdr->dma;
1620 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1621 "at %p\n", txdr->size, txdr->desc);
1622 /* Try again, without freeing the previous */
1623 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1624 /* Failed allocation, critical failure */
1625 if (!txdr->desc) {
1626 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1627 goto setup_tx_desc_die;
1628 }
1629
1630 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1631 /* give up */
1632 pci_free_consistent(pdev, txdr->size, txdr->desc,
1633 txdr->dma);
1634 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1635 DPRINTK(PROBE, ERR,
1636 "Unable to allocate aligned memory "
1637 "for the transmit descriptor ring\n");
1638 vfree(txdr->buffer_info);
1639 return -ENOMEM;
1640 } else {
1641 /* Free old allocation, new allocation was successful */
1642 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1643 }
1644 }
1645 memset(txdr->desc, 0, txdr->size);
1646
1647 txdr->next_to_use = 0;
1648 txdr->next_to_clean = 0;
1649 spin_lock_init(&txdr->tx_lock);
1650
1651 return 0;
1652 }
1653
1654 /**
1655 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1656 * (Descriptors) for all queues
1657 * @adapter: board private structure
1658 *
1659 * Return 0 on success, negative on failure
1660 **/
1661
1662 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1663 {
1664 int i, err = 0;
1665
1666 for (i = 0; i < adapter->num_tx_queues; i++) {
1667 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1668 if (err) {
1669 DPRINTK(PROBE, ERR,
1670 "Allocation for Tx Queue %u failed\n", i);
1671 for (i-- ; i >= 0; i--)
1672 e1000_free_tx_resources(adapter,
1673 &adapter->tx_ring[i]);
1674 break;
1675 }
1676 }
1677
1678 return err;
1679 }
1680
1681 /**
1682 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1683 * @adapter: board private structure
1684 *
1685 * Configure the Tx unit of the MAC after a reset.
1686 **/
1687
1688 static void e1000_configure_tx(struct e1000_adapter *adapter)
1689 {
1690 u64 tdba;
1691 struct e1000_hw *hw = &adapter->hw;
1692 u32 tdlen, tctl, tipg, tarc;
1693 u32 ipgr1, ipgr2;
1694
1695 /* Setup the HW Tx Head and Tail descriptor pointers */
1696
1697 switch (adapter->num_tx_queues) {
1698 case 1:
1699 default:
1700 tdba = adapter->tx_ring[0].dma;
1701 tdlen = adapter->tx_ring[0].count *
1702 sizeof(struct e1000_tx_desc);
1703 ew32(TDLEN, tdlen);
1704 ew32(TDBAH, (tdba >> 32));
1705 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1706 ew32(TDT, 0);
1707 ew32(TDH, 0);
1708 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1709 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1710 break;
1711 }
1712
1713 /* Set the default values for the Tx Inter Packet Gap timer */
1714 if (hw->mac_type <= e1000_82547_rev_2 &&
1715 (hw->media_type == e1000_media_type_fiber ||
1716 hw->media_type == e1000_media_type_internal_serdes))
1717 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1718 else
1719 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1720
1721 switch (hw->mac_type) {
1722 case e1000_82542_rev2_0:
1723 case e1000_82542_rev2_1:
1724 tipg = DEFAULT_82542_TIPG_IPGT;
1725 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1726 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1727 break;
1728 case e1000_80003es2lan:
1729 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1730 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1731 break;
1732 default:
1733 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1734 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1735 break;
1736 }
1737 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1738 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1739 ew32(TIPG, tipg);
1740
1741 /* Set the Tx Interrupt Delay register */
1742
1743 ew32(TIDV, adapter->tx_int_delay);
1744 if (hw->mac_type >= e1000_82540)
1745 ew32(TADV, adapter->tx_abs_int_delay);
1746
1747 /* Program the Transmit Control Register */
1748
1749 tctl = er32(TCTL);
1750 tctl &= ~E1000_TCTL_CT;
1751 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1752 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1753
1754 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1755 tarc = er32(TARC0);
1756 /* set the speed mode bit, we'll clear it if we're not at
1757 * gigabit link later */
1758 tarc |= (1 << 21);
1759 ew32(TARC0, tarc);
1760 } else if (hw->mac_type == e1000_80003es2lan) {
1761 tarc = er32(TARC0);
1762 tarc |= 1;
1763 ew32(TARC0, tarc);
1764 tarc = er32(TARC1);
1765 tarc |= 1;
1766 ew32(TARC1, tarc);
1767 }
1768
1769 e1000_config_collision_dist(hw);
1770
1771 /* Setup Transmit Descriptor Settings for eop descriptor */
1772 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1773
1774 /* only set IDE if we are delaying interrupts using the timers */
1775 if (adapter->tx_int_delay)
1776 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1777
1778 if (hw->mac_type < e1000_82543)
1779 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1780 else
1781 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1782
1783 /* Cache if we're 82544 running in PCI-X because we'll
1784 * need this to apply a workaround later in the send path. */
1785 if (hw->mac_type == e1000_82544 &&
1786 hw->bus_type == e1000_bus_type_pcix)
1787 adapter->pcix_82544 = 1;
1788
1789 ew32(TCTL, tctl);
1790
1791 }
1792
1793 /**
1794 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1795 * @adapter: board private structure
1796 * @rxdr: rx descriptor ring (for a specific queue) to setup
1797 *
1798 * Returns 0 on success, negative on failure
1799 **/
1800
1801 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1802 struct e1000_rx_ring *rxdr)
1803 {
1804 struct e1000_hw *hw = &adapter->hw;
1805 struct pci_dev *pdev = adapter->pdev;
1806 int size, desc_len;
1807
1808 size = sizeof(struct e1000_buffer) * rxdr->count;
1809 rxdr->buffer_info = vmalloc(size);
1810 if (!rxdr->buffer_info) {
1811 DPRINTK(PROBE, ERR,
1812 "Unable to allocate memory for the receive descriptor ring\n");
1813 return -ENOMEM;
1814 }
1815 memset(rxdr->buffer_info, 0, size);
1816
1817 if (hw->mac_type <= e1000_82547_rev_2)
1818 desc_len = sizeof(struct e1000_rx_desc);
1819 else
1820 desc_len = sizeof(union e1000_rx_desc_packet_split);
1821
1822 /* Round up to nearest 4K */
1823
1824 rxdr->size = rxdr->count * desc_len;
1825 rxdr->size = ALIGN(rxdr->size, 4096);
1826
1827 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1828
1829 if (!rxdr->desc) {
1830 DPRINTK(PROBE, ERR,
1831 "Unable to allocate memory for the receive descriptor ring\n");
1832 setup_rx_desc_die:
1833 vfree(rxdr->buffer_info);
1834 return -ENOMEM;
1835 }
1836
1837 /* Fix for errata 23, can't cross 64kB boundary */
1838 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1839 void *olddesc = rxdr->desc;
1840 dma_addr_t olddma = rxdr->dma;
1841 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1842 "at %p\n", rxdr->size, rxdr->desc);
1843 /* Try again, without freeing the previous */
1844 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1845 /* Failed allocation, critical failure */
1846 if (!rxdr->desc) {
1847 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1848 DPRINTK(PROBE, ERR,
1849 "Unable to allocate memory "
1850 "for the receive descriptor ring\n");
1851 goto setup_rx_desc_die;
1852 }
1853
1854 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1855 /* give up */
1856 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1857 rxdr->dma);
1858 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1859 DPRINTK(PROBE, ERR,
1860 "Unable to allocate aligned memory "
1861 "for the receive descriptor ring\n");
1862 goto setup_rx_desc_die;
1863 } else {
1864 /* Free old allocation, new allocation was successful */
1865 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1866 }
1867 }
1868 memset(rxdr->desc, 0, rxdr->size);
1869
1870 rxdr->next_to_clean = 0;
1871 rxdr->next_to_use = 0;
1872
1873 return 0;
1874 }
1875
1876 /**
1877 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1878 * (Descriptors) for all queues
1879 * @adapter: board private structure
1880 *
1881 * Return 0 on success, negative on failure
1882 **/
1883
1884 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1885 {
1886 int i, err = 0;
1887
1888 for (i = 0; i < adapter->num_rx_queues; i++) {
1889 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1890 if (err) {
1891 DPRINTK(PROBE, ERR,
1892 "Allocation for Rx Queue %u failed\n", i);
1893 for (i-- ; i >= 0; i--)
1894 e1000_free_rx_resources(adapter,
1895 &adapter->rx_ring[i]);
1896 break;
1897 }
1898 }
1899
1900 return err;
1901 }
1902
1903 /**
1904 * e1000_setup_rctl - configure the receive control registers
1905 * @adapter: Board private structure
1906 **/
1907 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1908 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1909 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1910 {
1911 struct e1000_hw *hw = &adapter->hw;
1912 u32 rctl;
1913
1914 rctl = er32(RCTL);
1915
1916 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1917
1918 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1919 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1920 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1921
1922 if (hw->tbi_compatibility_on == 1)
1923 rctl |= E1000_RCTL_SBP;
1924 else
1925 rctl &= ~E1000_RCTL_SBP;
1926
1927 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1928 rctl &= ~E1000_RCTL_LPE;
1929 else
1930 rctl |= E1000_RCTL_LPE;
1931
1932 /* Setup buffer sizes */
1933 rctl &= ~E1000_RCTL_SZ_4096;
1934 rctl |= E1000_RCTL_BSEX;
1935 switch (adapter->rx_buffer_len) {
1936 case E1000_RXBUFFER_256:
1937 rctl |= E1000_RCTL_SZ_256;
1938 rctl &= ~E1000_RCTL_BSEX;
1939 break;
1940 case E1000_RXBUFFER_512:
1941 rctl |= E1000_RCTL_SZ_512;
1942 rctl &= ~E1000_RCTL_BSEX;
1943 break;
1944 case E1000_RXBUFFER_1024:
1945 rctl |= E1000_RCTL_SZ_1024;
1946 rctl &= ~E1000_RCTL_BSEX;
1947 break;
1948 case E1000_RXBUFFER_2048:
1949 default:
1950 rctl |= E1000_RCTL_SZ_2048;
1951 rctl &= ~E1000_RCTL_BSEX;
1952 break;
1953 case E1000_RXBUFFER_4096:
1954 rctl |= E1000_RCTL_SZ_4096;
1955 break;
1956 case E1000_RXBUFFER_8192:
1957 rctl |= E1000_RCTL_SZ_8192;
1958 break;
1959 case E1000_RXBUFFER_16384:
1960 rctl |= E1000_RCTL_SZ_16384;
1961 break;
1962 }
1963
1964 ew32(RCTL, rctl);
1965 }
1966
1967 /**
1968 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1969 * @adapter: board private structure
1970 *
1971 * Configure the Rx unit of the MAC after a reset.
1972 **/
1973
1974 static void e1000_configure_rx(struct e1000_adapter *adapter)
1975 {
1976 u64 rdba;
1977 struct e1000_hw *hw = &adapter->hw;
1978 u32 rdlen, rctl, rxcsum, ctrl_ext;
1979
1980 rdlen = adapter->rx_ring[0].count *
1981 sizeof(struct e1000_rx_desc);
1982 adapter->clean_rx = e1000_clean_rx_irq;
1983 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1984
1985 /* disable receives while setting up the descriptors */
1986 rctl = er32(RCTL);
1987 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1988
1989 /* set the Receive Delay Timer Register */
1990 ew32(RDTR, adapter->rx_int_delay);
1991
1992 if (hw->mac_type >= e1000_82540) {
1993 ew32(RADV, adapter->rx_abs_int_delay);
1994 if (adapter->itr_setting != 0)
1995 ew32(ITR, 1000000000 / (adapter->itr * 256));
1996 }
1997
1998 if (hw->mac_type >= e1000_82571) {
1999 ctrl_ext = er32(CTRL_EXT);
2000 /* Reset delay timers after every interrupt */
2001 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2002 /* Auto-Mask interrupts upon ICR access */
2003 ctrl_ext |= E1000_CTRL_EXT_IAME;
2004 ew32(IAM, 0xffffffff);
2005 ew32(CTRL_EXT, ctrl_ext);
2006 E1000_WRITE_FLUSH();
2007 }
2008
2009 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2010 * the Base and Length of the Rx Descriptor Ring */
2011 switch (adapter->num_rx_queues) {
2012 case 1:
2013 default:
2014 rdba = adapter->rx_ring[0].dma;
2015 ew32(RDLEN, rdlen);
2016 ew32(RDBAH, (rdba >> 32));
2017 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2018 ew32(RDT, 0);
2019 ew32(RDH, 0);
2020 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2021 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2022 break;
2023 }
2024
2025 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2026 if (hw->mac_type >= e1000_82543) {
2027 rxcsum = er32(RXCSUM);
2028 if (adapter->rx_csum)
2029 rxcsum |= E1000_RXCSUM_TUOFL;
2030 else
2031 /* don't need to clear IPPCSE as it defaults to 0 */
2032 rxcsum &= ~E1000_RXCSUM_TUOFL;
2033 ew32(RXCSUM, rxcsum);
2034 }
2035
2036 /* Enable Receives */
2037 ew32(RCTL, rctl);
2038 }
2039
2040 /**
2041 * e1000_free_tx_resources - Free Tx Resources per Queue
2042 * @adapter: board private structure
2043 * @tx_ring: Tx descriptor ring for a specific queue
2044 *
2045 * Free all transmit software resources
2046 **/
2047
2048 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2049 struct e1000_tx_ring *tx_ring)
2050 {
2051 struct pci_dev *pdev = adapter->pdev;
2052
2053 e1000_clean_tx_ring(adapter, tx_ring);
2054
2055 vfree(tx_ring->buffer_info);
2056 tx_ring->buffer_info = NULL;
2057
2058 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2059
2060 tx_ring->desc = NULL;
2061 }
2062
2063 /**
2064 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2065 * @adapter: board private structure
2066 *
2067 * Free all transmit software resources
2068 **/
2069
2070 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2071 {
2072 int i;
2073
2074 for (i = 0; i < adapter->num_tx_queues; i++)
2075 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2076 }
2077
2078 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2079 struct e1000_buffer *buffer_info)
2080 {
2081 if (buffer_info->dma) {
2082 pci_unmap_page(adapter->pdev,
2083 buffer_info->dma,
2084 buffer_info->length,
2085 PCI_DMA_TODEVICE);
2086 buffer_info->dma = 0;
2087 }
2088 if (buffer_info->skb) {
2089 dev_kfree_skb_any(buffer_info->skb);
2090 buffer_info->skb = NULL;
2091 }
2092 /* buffer_info must be completely set up in the transmit path */
2093 }
2094
2095 /**
2096 * e1000_clean_tx_ring - Free Tx Buffers
2097 * @adapter: board private structure
2098 * @tx_ring: ring to be cleaned
2099 **/
2100
2101 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2102 struct e1000_tx_ring *tx_ring)
2103 {
2104 struct e1000_hw *hw = &adapter->hw;
2105 struct e1000_buffer *buffer_info;
2106 unsigned long size;
2107 unsigned int i;
2108
2109 /* Free all the Tx ring sk_buffs */
2110
2111 for (i = 0; i < tx_ring->count; i++) {
2112 buffer_info = &tx_ring->buffer_info[i];
2113 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2114 }
2115
2116 size = sizeof(struct e1000_buffer) * tx_ring->count;
2117 memset(tx_ring->buffer_info, 0, size);
2118
2119 /* Zero out the descriptor ring */
2120
2121 memset(tx_ring->desc, 0, tx_ring->size);
2122
2123 tx_ring->next_to_use = 0;
2124 tx_ring->next_to_clean = 0;
2125 tx_ring->last_tx_tso = 0;
2126
2127 writel(0, hw->hw_addr + tx_ring->tdh);
2128 writel(0, hw->hw_addr + tx_ring->tdt);
2129 }
2130
2131 /**
2132 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2133 * @adapter: board private structure
2134 **/
2135
2136 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2137 {
2138 int i;
2139
2140 for (i = 0; i < adapter->num_tx_queues; i++)
2141 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2142 }
2143
2144 /**
2145 * e1000_free_rx_resources - Free Rx Resources
2146 * @adapter: board private structure
2147 * @rx_ring: ring to clean the resources from
2148 *
2149 * Free all receive software resources
2150 **/
2151
2152 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2153 struct e1000_rx_ring *rx_ring)
2154 {
2155 struct pci_dev *pdev = adapter->pdev;
2156
2157 e1000_clean_rx_ring(adapter, rx_ring);
2158
2159 vfree(rx_ring->buffer_info);
2160 rx_ring->buffer_info = NULL;
2161
2162 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2163
2164 rx_ring->desc = NULL;
2165 }
2166
2167 /**
2168 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2169 * @adapter: board private structure
2170 *
2171 * Free all receive software resources
2172 **/
2173
2174 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2175 {
2176 int i;
2177
2178 for (i = 0; i < adapter->num_rx_queues; i++)
2179 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2180 }
2181
2182 /**
2183 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2184 * @adapter: board private structure
2185 * @rx_ring: ring to free buffers from
2186 **/
2187
2188 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2189 struct e1000_rx_ring *rx_ring)
2190 {
2191 struct e1000_hw *hw = &adapter->hw;
2192 struct e1000_buffer *buffer_info;
2193 struct pci_dev *pdev = adapter->pdev;
2194 unsigned long size;
2195 unsigned int i;
2196
2197 /* Free all the Rx ring sk_buffs */
2198 for (i = 0; i < rx_ring->count; i++) {
2199 buffer_info = &rx_ring->buffer_info[i];
2200 if (buffer_info->skb) {
2201 pci_unmap_single(pdev,
2202 buffer_info->dma,
2203 buffer_info->length,
2204 PCI_DMA_FROMDEVICE);
2205
2206 dev_kfree_skb(buffer_info->skb);
2207 buffer_info->skb = NULL;
2208 }
2209 }
2210
2211 size = sizeof(struct e1000_buffer) * rx_ring->count;
2212 memset(rx_ring->buffer_info, 0, size);
2213
2214 /* Zero out the descriptor ring */
2215
2216 memset(rx_ring->desc, 0, rx_ring->size);
2217
2218 rx_ring->next_to_clean = 0;
2219 rx_ring->next_to_use = 0;
2220
2221 writel(0, hw->hw_addr + rx_ring->rdh);
2222 writel(0, hw->hw_addr + rx_ring->rdt);
2223 }
2224
2225 /**
2226 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2227 * @adapter: board private structure
2228 **/
2229
2230 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2231 {
2232 int i;
2233
2234 for (i = 0; i < adapter->num_rx_queues; i++)
2235 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2236 }
2237
2238 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2239 * and memory write and invalidate disabled for certain operations
2240 */
2241 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2242 {
2243 struct e1000_hw *hw = &adapter->hw;
2244 struct net_device *netdev = adapter->netdev;
2245 u32 rctl;
2246
2247 e1000_pci_clear_mwi(hw);
2248
2249 rctl = er32(RCTL);
2250 rctl |= E1000_RCTL_RST;
2251 ew32(RCTL, rctl);
2252 E1000_WRITE_FLUSH();
2253 mdelay(5);
2254
2255 if (netif_running(netdev))
2256 e1000_clean_all_rx_rings(adapter);
2257 }
2258
2259 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2260 {
2261 struct e1000_hw *hw = &adapter->hw;
2262 struct net_device *netdev = adapter->netdev;
2263 u32 rctl;
2264
2265 rctl = er32(RCTL);
2266 rctl &= ~E1000_RCTL_RST;
2267 ew32(RCTL, rctl);
2268 E1000_WRITE_FLUSH();
2269 mdelay(5);
2270
2271 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2272 e1000_pci_set_mwi(hw);
2273
2274 if (netif_running(netdev)) {
2275 /* No need to loop, because 82542 supports only 1 queue */
2276 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2277 e1000_configure_rx(adapter);
2278 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2279 }
2280 }
2281
2282 /**
2283 * e1000_set_mac - Change the Ethernet Address of the NIC
2284 * @netdev: network interface device structure
2285 * @p: pointer to an address structure
2286 *
2287 * Returns 0 on success, negative on failure
2288 **/
2289
2290 static int e1000_set_mac(struct net_device *netdev, void *p)
2291 {
2292 struct e1000_adapter *adapter = netdev_priv(netdev);
2293 struct e1000_hw *hw = &adapter->hw;
2294 struct sockaddr *addr = p;
2295
2296 if (!is_valid_ether_addr(addr->sa_data))
2297 return -EADDRNOTAVAIL;
2298
2299 /* 82542 2.0 needs to be in reset to write receive address registers */
2300
2301 if (hw->mac_type == e1000_82542_rev2_0)
2302 e1000_enter_82542_rst(adapter);
2303
2304 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2305 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2306
2307 e1000_rar_set(hw, hw->mac_addr, 0);
2308
2309 /* With 82571 controllers, LAA may be overwritten (with the default)
2310 * due to controller reset from the other port. */
2311 if (hw->mac_type == e1000_82571) {
2312 /* activate the work around */
2313 hw->laa_is_present = 1;
2314
2315 /* Hold a copy of the LAA in RAR[14] This is done so that
2316 * between the time RAR[0] gets clobbered and the time it
2317 * gets fixed (in e1000_watchdog), the actual LAA is in one
2318 * of the RARs and no incoming packets directed to this port
2319 * are dropped. Eventaully the LAA will be in RAR[0] and
2320 * RAR[14] */
2321 e1000_rar_set(hw, hw->mac_addr,
2322 E1000_RAR_ENTRIES - 1);
2323 }
2324
2325 if (hw->mac_type == e1000_82542_rev2_0)
2326 e1000_leave_82542_rst(adapter);
2327
2328 return 0;
2329 }
2330
2331 /**
2332 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2333 * @netdev: network interface device structure
2334 *
2335 * The set_rx_mode entry point is called whenever the unicast or multicast
2336 * address lists or the network interface flags are updated. This routine is
2337 * responsible for configuring the hardware for proper unicast, multicast,
2338 * promiscuous mode, and all-multi behavior.
2339 **/
2340
2341 static void e1000_set_rx_mode(struct net_device *netdev)
2342 {
2343 struct e1000_adapter *adapter = netdev_priv(netdev);
2344 struct e1000_hw *hw = &adapter->hw;
2345 struct dev_addr_list *uc_ptr;
2346 struct dev_addr_list *mc_ptr;
2347 u32 rctl;
2348 u32 hash_value;
2349 int i, rar_entries = E1000_RAR_ENTRIES;
2350 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2351 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2352 E1000_NUM_MTA_REGISTERS;
2353
2354 if (hw->mac_type == e1000_ich8lan)
2355 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2356
2357 /* reserve RAR[14] for LAA over-write work-around */
2358 if (hw->mac_type == e1000_82571)
2359 rar_entries--;
2360
2361 /* Check for Promiscuous and All Multicast modes */
2362
2363 rctl = er32(RCTL);
2364
2365 if (netdev->flags & IFF_PROMISC) {
2366 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2367 rctl &= ~E1000_RCTL_VFE;
2368 } else {
2369 if (netdev->flags & IFF_ALLMULTI) {
2370 rctl |= E1000_RCTL_MPE;
2371 } else {
2372 rctl &= ~E1000_RCTL_MPE;
2373 }
2374 if (adapter->hw.mac_type != e1000_ich8lan)
2375 rctl |= E1000_RCTL_VFE;
2376 }
2377
2378 uc_ptr = NULL;
2379 if (netdev->uc_count > rar_entries - 1) {
2380 rctl |= E1000_RCTL_UPE;
2381 } else if (!(netdev->flags & IFF_PROMISC)) {
2382 rctl &= ~E1000_RCTL_UPE;
2383 uc_ptr = netdev->uc_list;
2384 }
2385
2386 ew32(RCTL, rctl);
2387
2388 /* 82542 2.0 needs to be in reset to write receive address registers */
2389
2390 if (hw->mac_type == e1000_82542_rev2_0)
2391 e1000_enter_82542_rst(adapter);
2392
2393 /* load the first 14 addresses into the exact filters 1-14. Unicast
2394 * addresses take precedence to avoid disabling unicast filtering
2395 * when possible.
2396 *
2397 * RAR 0 is used for the station MAC adddress
2398 * if there are not 14 addresses, go ahead and clear the filters
2399 * -- with 82571 controllers only 0-13 entries are filled here
2400 */
2401 mc_ptr = netdev->mc_list;
2402
2403 for (i = 1; i < rar_entries; i++) {
2404 if (uc_ptr) {
2405 e1000_rar_set(hw, uc_ptr->da_addr, i);
2406 uc_ptr = uc_ptr->next;
2407 } else if (mc_ptr) {
2408 e1000_rar_set(hw, mc_ptr->da_addr, i);
2409 mc_ptr = mc_ptr->next;
2410 } else {
2411 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2412 E1000_WRITE_FLUSH();
2413 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2414 E1000_WRITE_FLUSH();
2415 }
2416 }
2417 WARN_ON(uc_ptr != NULL);
2418
2419 /* clear the old settings from the multicast hash table */
2420
2421 for (i = 0; i < mta_reg_count; i++) {
2422 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2423 E1000_WRITE_FLUSH();
2424 }
2425
2426 /* load any remaining addresses into the hash table */
2427
2428 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2429 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2430 e1000_mta_set(hw, hash_value);
2431 }
2432
2433 if (hw->mac_type == e1000_82542_rev2_0)
2434 e1000_leave_82542_rst(adapter);
2435 }
2436
2437 /* Need to wait a few seconds after link up to get diagnostic information from
2438 * the phy */
2439
2440 static void e1000_update_phy_info(unsigned long data)
2441 {
2442 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2443 struct e1000_hw *hw = &adapter->hw;
2444 e1000_phy_get_info(hw, &adapter->phy_info);
2445 }
2446
2447 /**
2448 * e1000_82547_tx_fifo_stall - Timer Call-back
2449 * @data: pointer to adapter cast into an unsigned long
2450 **/
2451
2452 static void e1000_82547_tx_fifo_stall(unsigned long data)
2453 {
2454 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2455 struct e1000_hw *hw = &adapter->hw;
2456 struct net_device *netdev = adapter->netdev;
2457 u32 tctl;
2458
2459 if (atomic_read(&adapter->tx_fifo_stall)) {
2460 if ((er32(TDT) == er32(TDH)) &&
2461 (er32(TDFT) == er32(TDFH)) &&
2462 (er32(TDFTS) == er32(TDFHS))) {
2463 tctl = er32(TCTL);
2464 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2465 ew32(TDFT, adapter->tx_head_addr);
2466 ew32(TDFH, adapter->tx_head_addr);
2467 ew32(TDFTS, adapter->tx_head_addr);
2468 ew32(TDFHS, adapter->tx_head_addr);
2469 ew32(TCTL, tctl);
2470 E1000_WRITE_FLUSH();
2471
2472 adapter->tx_fifo_head = 0;
2473 atomic_set(&adapter->tx_fifo_stall, 0);
2474 netif_wake_queue(netdev);
2475 } else {
2476 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2477 }
2478 }
2479 }
2480
2481 /**
2482 * e1000_watchdog - Timer Call-back
2483 * @data: pointer to adapter cast into an unsigned long
2484 **/
2485 static void e1000_watchdog(unsigned long data)
2486 {
2487 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2488 struct e1000_hw *hw = &adapter->hw;
2489 struct net_device *netdev = adapter->netdev;
2490 struct e1000_tx_ring *txdr = adapter->tx_ring;
2491 u32 link, tctl;
2492 s32 ret_val;
2493
2494 ret_val = e1000_check_for_link(hw);
2495 if ((ret_val == E1000_ERR_PHY) &&
2496 (hw->phy_type == e1000_phy_igp_3) &&
2497 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2498 /* See e1000_kumeran_lock_loss_workaround() */
2499 DPRINTK(LINK, INFO,
2500 "Gigabit has been disabled, downgrading speed\n");
2501 }
2502
2503 if (hw->mac_type == e1000_82573) {
2504 e1000_enable_tx_pkt_filtering(hw);
2505 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2506 e1000_update_mng_vlan(adapter);
2507 }
2508
2509 if ((hw->media_type == e1000_media_type_internal_serdes) &&
2510 !(er32(TXCW) & E1000_TXCW_ANE))
2511 link = !hw->serdes_link_down;
2512 else
2513 link = er32(STATUS) & E1000_STATUS_LU;
2514
2515 if (link) {
2516 if (!netif_carrier_ok(netdev)) {
2517 u32 ctrl;
2518 bool txb2b = true;
2519 e1000_get_speed_and_duplex(hw,
2520 &adapter->link_speed,
2521 &adapter->link_duplex);
2522
2523 ctrl = er32(CTRL);
2524 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2525 "Flow Control: %s\n",
2526 adapter->link_speed,
2527 adapter->link_duplex == FULL_DUPLEX ?
2528 "Full Duplex" : "Half Duplex",
2529 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2530 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2531 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2532 E1000_CTRL_TFCE) ? "TX" : "None" )));
2533
2534 /* tweak tx_queue_len according to speed/duplex
2535 * and adjust the timeout factor */
2536 netdev->tx_queue_len = adapter->tx_queue_len;
2537 adapter->tx_timeout_factor = 1;
2538 switch (adapter->link_speed) {
2539 case SPEED_10:
2540 txb2b = false;
2541 netdev->tx_queue_len = 10;
2542 adapter->tx_timeout_factor = 8;
2543 break;
2544 case SPEED_100:
2545 txb2b = false;
2546 netdev->tx_queue_len = 100;
2547 /* maybe add some timeout factor ? */
2548 break;
2549 }
2550
2551 if ((hw->mac_type == e1000_82571 ||
2552 hw->mac_type == e1000_82572) &&
2553 !txb2b) {
2554 u32 tarc0;
2555 tarc0 = er32(TARC0);
2556 tarc0 &= ~(1 << 21);
2557 ew32(TARC0, tarc0);
2558 }
2559
2560 /* disable TSO for pcie and 10/100 speeds, to avoid
2561 * some hardware issues */
2562 if (!adapter->tso_force &&
2563 hw->bus_type == e1000_bus_type_pci_express){
2564 switch (adapter->link_speed) {
2565 case SPEED_10:
2566 case SPEED_100:
2567 DPRINTK(PROBE,INFO,
2568 "10/100 speed: disabling TSO\n");
2569 netdev->features &= ~NETIF_F_TSO;
2570 netdev->features &= ~NETIF_F_TSO6;
2571 break;
2572 case SPEED_1000:
2573 netdev->features |= NETIF_F_TSO;
2574 netdev->features |= NETIF_F_TSO6;
2575 break;
2576 default:
2577 /* oops */
2578 break;
2579 }
2580 }
2581
2582 /* enable transmits in the hardware, need to do this
2583 * after setting TARC0 */
2584 tctl = er32(TCTL);
2585 tctl |= E1000_TCTL_EN;
2586 ew32(TCTL, tctl);
2587
2588 netif_carrier_on(netdev);
2589 netif_wake_queue(netdev);
2590 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2591 adapter->smartspeed = 0;
2592 } else {
2593 /* make sure the receive unit is started */
2594 if (hw->rx_needs_kicking) {
2595 u32 rctl = er32(RCTL);
2596 ew32(RCTL, rctl | E1000_RCTL_EN);
2597 }
2598 }
2599 } else {
2600 if (netif_carrier_ok(netdev)) {
2601 adapter->link_speed = 0;
2602 adapter->link_duplex = 0;
2603 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2604 netif_carrier_off(netdev);
2605 netif_stop_queue(netdev);
2606 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2607
2608 /* 80003ES2LAN workaround--
2609 * For packet buffer work-around on link down event;
2610 * disable receives in the ISR and
2611 * reset device here in the watchdog
2612 */
2613 if (hw->mac_type == e1000_80003es2lan)
2614 /* reset device */
2615 schedule_work(&adapter->reset_task);
2616 }
2617
2618 e1000_smartspeed(adapter);
2619 }
2620
2621 e1000_update_stats(adapter);
2622
2623 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2624 adapter->tpt_old = adapter->stats.tpt;
2625 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2626 adapter->colc_old = adapter->stats.colc;
2627
2628 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2629 adapter->gorcl_old = adapter->stats.gorcl;
2630 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2631 adapter->gotcl_old = adapter->stats.gotcl;
2632
2633 e1000_update_adaptive(hw);
2634
2635 if (!netif_carrier_ok(netdev)) {
2636 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2637 /* We've lost link, so the controller stops DMA,
2638 * but we've got queued Tx work that's never going
2639 * to get done, so reset controller to flush Tx.
2640 * (Do the reset outside of interrupt context). */
2641 adapter->tx_timeout_count++;
2642 schedule_work(&adapter->reset_task);
2643 }
2644 }
2645
2646 /* Cause software interrupt to ensure rx ring is cleaned */
2647 ew32(ICS, E1000_ICS_RXDMT0);
2648
2649 /* Force detection of hung controller every watchdog period */
2650 adapter->detect_tx_hung = true;
2651
2652 /* With 82571 controllers, LAA may be overwritten due to controller
2653 * reset from the other port. Set the appropriate LAA in RAR[0] */
2654 if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2655 e1000_rar_set(hw, hw->mac_addr, 0);
2656
2657 /* Reset the timer */
2658 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2659 }
2660
2661 enum latency_range {
2662 lowest_latency = 0,
2663 low_latency = 1,
2664 bulk_latency = 2,
2665 latency_invalid = 255
2666 };
2667
2668 /**
2669 * e1000_update_itr - update the dynamic ITR value based on statistics
2670 * Stores a new ITR value based on packets and byte
2671 * counts during the last interrupt. The advantage of per interrupt
2672 * computation is faster updates and more accurate ITR for the current
2673 * traffic pattern. Constants in this function were computed
2674 * based on theoretical maximum wire speed and thresholds were set based
2675 * on testing data as well as attempting to minimize response time
2676 * while increasing bulk throughput.
2677 * this functionality is controlled by the InterruptThrottleRate module
2678 * parameter (see e1000_param.c)
2679 * @adapter: pointer to adapter
2680 * @itr_setting: current adapter->itr
2681 * @packets: the number of packets during this measurement interval
2682 * @bytes: the number of bytes during this measurement interval
2683 **/
2684 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2685 u16 itr_setting, int packets, int bytes)
2686 {
2687 unsigned int retval = itr_setting;
2688 struct e1000_hw *hw = &adapter->hw;
2689
2690 if (unlikely(hw->mac_type < e1000_82540))
2691 goto update_itr_done;
2692
2693 if (packets == 0)
2694 goto update_itr_done;
2695
2696 switch (itr_setting) {
2697 case lowest_latency:
2698 /* jumbo frames get bulk treatment*/
2699 if (bytes/packets > 8000)
2700 retval = bulk_latency;
2701 else if ((packets < 5) && (bytes > 512))
2702 retval = low_latency;
2703 break;
2704 case low_latency: /* 50 usec aka 20000 ints/s */
2705 if (bytes > 10000) {
2706 /* jumbo frames need bulk latency setting */
2707 if (bytes/packets > 8000)
2708 retval = bulk_latency;
2709 else if ((packets < 10) || ((bytes/packets) > 1200))
2710 retval = bulk_latency;
2711 else if ((packets > 35))
2712 retval = lowest_latency;
2713 } else if (bytes/packets > 2000)
2714 retval = bulk_latency;
2715 else if (packets <= 2 && bytes < 512)
2716 retval = lowest_latency;
2717 break;
2718 case bulk_latency: /* 250 usec aka 4000 ints/s */
2719 if (bytes > 25000) {
2720 if (packets > 35)
2721 retval = low_latency;
2722 } else if (bytes < 6000) {
2723 retval = low_latency;
2724 }
2725 break;
2726 }
2727
2728 update_itr_done:
2729 return retval;
2730 }
2731
2732 static void e1000_set_itr(struct e1000_adapter *adapter)
2733 {
2734 struct e1000_hw *hw = &adapter->hw;
2735 u16 current_itr;
2736 u32 new_itr = adapter->itr;
2737
2738 if (unlikely(hw->mac_type < e1000_82540))
2739 return;
2740
2741 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2742 if (unlikely(adapter->link_speed != SPEED_1000)) {
2743 current_itr = 0;
2744 new_itr = 4000;
2745 goto set_itr_now;
2746 }
2747
2748 adapter->tx_itr = e1000_update_itr(adapter,
2749 adapter->tx_itr,
2750 adapter->total_tx_packets,
2751 adapter->total_tx_bytes);
2752 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2753 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2754 adapter->tx_itr = low_latency;
2755
2756 adapter->rx_itr = e1000_update_itr(adapter,
2757 adapter->rx_itr,
2758 adapter->total_rx_packets,
2759 adapter->total_rx_bytes);
2760 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2761 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2762 adapter->rx_itr = low_latency;
2763
2764 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2765
2766 switch (current_itr) {
2767 /* counts and packets in update_itr are dependent on these numbers */
2768 case lowest_latency:
2769 new_itr = 70000;
2770 break;
2771 case low_latency:
2772 new_itr = 20000; /* aka hwitr = ~200 */
2773 break;
2774 case bulk_latency:
2775 new_itr = 4000;
2776 break;
2777 default:
2778 break;
2779 }
2780
2781 set_itr_now:
2782 if (new_itr != adapter->itr) {
2783 /* this attempts to bias the interrupt rate towards Bulk
2784 * by adding intermediate steps when interrupt rate is
2785 * increasing */
2786 new_itr = new_itr > adapter->itr ?
2787 min(adapter->itr + (new_itr >> 2), new_itr) :
2788 new_itr;
2789 adapter->itr = new_itr;
2790 ew32(ITR, 1000000000 / (new_itr * 256));
2791 }
2792
2793 return;
2794 }
2795
2796 #define E1000_TX_FLAGS_CSUM 0x00000001
2797 #define E1000_TX_FLAGS_VLAN 0x00000002
2798 #define E1000_TX_FLAGS_TSO 0x00000004
2799 #define E1000_TX_FLAGS_IPV4 0x00000008
2800 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2801 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2802
2803 static int e1000_tso(struct e1000_adapter *adapter,
2804 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2805 {
2806 struct e1000_context_desc *context_desc;
2807 struct e1000_buffer *buffer_info;
2808 unsigned int i;
2809 u32 cmd_length = 0;
2810 u16 ipcse = 0, tucse, mss;
2811 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2812 int err;
2813
2814 if (skb_is_gso(skb)) {
2815 if (skb_header_cloned(skb)) {
2816 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2817 if (err)
2818 return err;
2819 }
2820
2821 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2822 mss = skb_shinfo(skb)->gso_size;
2823 if (skb->protocol == htons(ETH_P_IP)) {
2824 struct iphdr *iph = ip_hdr(skb);
2825 iph->tot_len = 0;
2826 iph->check = 0;
2827 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2828 iph->daddr, 0,
2829 IPPROTO_TCP,
2830 0);
2831 cmd_length = E1000_TXD_CMD_IP;
2832 ipcse = skb_transport_offset(skb) - 1;
2833 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2834 ipv6_hdr(skb)->payload_len = 0;
2835 tcp_hdr(skb)->check =
2836 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2837 &ipv6_hdr(skb)->daddr,
2838 0, IPPROTO_TCP, 0);
2839 ipcse = 0;
2840 }
2841 ipcss = skb_network_offset(skb);
2842 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2843 tucss = skb_transport_offset(skb);
2844 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2845 tucse = 0;
2846
2847 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2848 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2849
2850 i = tx_ring->next_to_use;
2851 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2852 buffer_info = &tx_ring->buffer_info[i];
2853
2854 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2855 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2856 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2857 context_desc->upper_setup.tcp_fields.tucss = tucss;
2858 context_desc->upper_setup.tcp_fields.tucso = tucso;
2859 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2860 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2861 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2862 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2863
2864 buffer_info->time_stamp = jiffies;
2865 buffer_info->next_to_watch = i;
2866
2867 if (++i == tx_ring->count) i = 0;
2868 tx_ring->next_to_use = i;
2869
2870 return true;
2871 }
2872 return false;
2873 }
2874
2875 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2876 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2877 {
2878 struct e1000_context_desc *context_desc;
2879 struct e1000_buffer *buffer_info;
2880 unsigned int i;
2881 u8 css;
2882 u32 cmd_len = E1000_TXD_CMD_DEXT;
2883
2884 if (skb->ip_summed != CHECKSUM_PARTIAL)
2885 return false;
2886
2887 switch (skb->protocol) {
2888 case __constant_htons(ETH_P_IP):
2889 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2890 cmd_len |= E1000_TXD_CMD_TCP;
2891 break;
2892 case __constant_htons(ETH_P_IPV6):
2893 /* XXX not handling all IPV6 headers */
2894 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2895 cmd_len |= E1000_TXD_CMD_TCP;
2896 break;
2897 default:
2898 if (unlikely(net_ratelimit()))
2899 DPRINTK(DRV, WARNING,
2900 "checksum_partial proto=%x!\n", skb->protocol);
2901 break;
2902 }
2903
2904 css = skb_transport_offset(skb);
2905
2906 i = tx_ring->next_to_use;
2907 buffer_info = &tx_ring->buffer_info[i];
2908 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2909
2910 context_desc->lower_setup.ip_config = 0;
2911 context_desc->upper_setup.tcp_fields.tucss = css;
2912 context_desc->upper_setup.tcp_fields.tucso =
2913 css + skb->csum_offset;
2914 context_desc->upper_setup.tcp_fields.tucse = 0;
2915 context_desc->tcp_seg_setup.data = 0;
2916 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2917
2918 buffer_info->time_stamp = jiffies;
2919 buffer_info->next_to_watch = i;
2920
2921 if (unlikely(++i == tx_ring->count)) i = 0;
2922 tx_ring->next_to_use = i;
2923
2924 return true;
2925 }
2926
2927 #define E1000_MAX_TXD_PWR 12
2928 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2929
2930 static int e1000_tx_map(struct e1000_adapter *adapter,
2931 struct e1000_tx_ring *tx_ring,
2932 struct sk_buff *skb, unsigned int first,
2933 unsigned int max_per_txd, unsigned int nr_frags,
2934 unsigned int mss)
2935 {
2936 struct e1000_hw *hw = &adapter->hw;
2937 struct e1000_buffer *buffer_info;
2938 unsigned int len = skb->len;
2939 unsigned int offset = 0, size, count = 0, i;
2940 unsigned int f;
2941 len -= skb->data_len;
2942
2943 i = tx_ring->next_to_use;
2944
2945 while (len) {
2946 buffer_info = &tx_ring->buffer_info[i];
2947 size = min(len, max_per_txd);
2948 /* Workaround for Controller erratum --
2949 * descriptor for non-tso packet in a linear SKB that follows a
2950 * tso gets written back prematurely before the data is fully
2951 * DMA'd to the controller */
2952 if (!skb->data_len && tx_ring->last_tx_tso &&
2953 !skb_is_gso(skb)) {
2954 tx_ring->last_tx_tso = 0;
2955 size -= 4;
2956 }
2957
2958 /* Workaround for premature desc write-backs
2959 * in TSO mode. Append 4-byte sentinel desc */
2960 if (unlikely(mss && !nr_frags && size == len && size > 8))
2961 size -= 4;
2962 /* work-around for errata 10 and it applies
2963 * to all controllers in PCI-X mode
2964 * The fix is to make sure that the first descriptor of a
2965 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2966 */
2967 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2968 (size > 2015) && count == 0))
2969 size = 2015;
2970
2971 /* Workaround for potential 82544 hang in PCI-X. Avoid
2972 * terminating buffers within evenly-aligned dwords. */
2973 if (unlikely(adapter->pcix_82544 &&
2974 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2975 size > 4))
2976 size -= 4;
2977
2978 buffer_info->length = size;
2979 buffer_info->dma =
2980 pci_map_single(adapter->pdev,
2981 skb->data + offset,
2982 size,
2983 PCI_DMA_TODEVICE);
2984 buffer_info->time_stamp = jiffies;
2985 buffer_info->next_to_watch = i;
2986
2987 len -= size;
2988 offset += size;
2989 count++;
2990 if (unlikely(++i == tx_ring->count)) i = 0;
2991 }
2992
2993 for (f = 0; f < nr_frags; f++) {
2994 struct skb_frag_struct *frag;
2995
2996 frag = &skb_shinfo(skb)->frags[f];
2997 len = frag->size;
2998 offset = frag->page_offset;
2999
3000 while (len) {
3001 buffer_info = &tx_ring->buffer_info[i];
3002 size = min(len, max_per_txd);
3003 /* Workaround for premature desc write-backs
3004 * in TSO mode. Append 4-byte sentinel desc */
3005 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3006 size -= 4;
3007 /* Workaround for potential 82544 hang in PCI-X.
3008 * Avoid terminating buffers within evenly-aligned
3009 * dwords. */
3010 if (unlikely(adapter->pcix_82544 &&
3011 !((unsigned long)(frag->page+offset+size-1) & 4) &&
3012 size > 4))
3013 size -= 4;
3014
3015 buffer_info->length = size;
3016 buffer_info->dma =
3017 pci_map_page(adapter->pdev,
3018 frag->page,
3019 offset,
3020 size,
3021 PCI_DMA_TODEVICE);
3022 buffer_info->time_stamp = jiffies;
3023 buffer_info->next_to_watch = i;
3024
3025 len -= size;
3026 offset += size;
3027 count++;
3028 if (unlikely(++i == tx_ring->count)) i = 0;
3029 }
3030 }
3031
3032 i = (i == 0) ? tx_ring->count - 1 : i - 1;
3033 tx_ring->buffer_info[i].skb = skb;
3034 tx_ring->buffer_info[first].next_to_watch = i;
3035
3036 return count;
3037 }
3038
3039 static void e1000_tx_queue(struct e1000_adapter *adapter,
3040 struct e1000_tx_ring *tx_ring, int tx_flags,
3041 int count)
3042 {
3043 struct e1000_hw *hw = &adapter->hw;
3044 struct e1000_tx_desc *tx_desc = NULL;
3045 struct e1000_buffer *buffer_info;
3046 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3047 unsigned int i;
3048
3049 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3050 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3051 E1000_TXD_CMD_TSE;
3052 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3053
3054 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3055 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3056 }
3057
3058 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3059 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3060 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3061 }
3062
3063 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3064 txd_lower |= E1000_TXD_CMD_VLE;
3065 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3066 }
3067
3068 i = tx_ring->next_to_use;
3069
3070 while (count--) {
3071 buffer_info = &tx_ring->buffer_info[i];
3072 tx_desc = E1000_TX_DESC(*tx_ring, i);
3073 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3074 tx_desc->lower.data =
3075 cpu_to_le32(txd_lower | buffer_info->length);
3076 tx_desc->upper.data = cpu_to_le32(txd_upper);
3077 if (unlikely(++i == tx_ring->count)) i = 0;
3078 }
3079
3080 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3081
3082 /* Force memory writes to complete before letting h/w
3083 * know there are new descriptors to fetch. (Only
3084 * applicable for weak-ordered memory model archs,
3085 * such as IA-64). */
3086 wmb();
3087
3088 tx_ring->next_to_use = i;
3089 writel(i, hw->hw_addr + tx_ring->tdt);
3090 /* we need this if more than one processor can write to our tail
3091 * at a time, it syncronizes IO on IA64/Altix systems */
3092 mmiowb();
3093 }
3094
3095 /**
3096 * 82547 workaround to avoid controller hang in half-duplex environment.
3097 * The workaround is to avoid queuing a large packet that would span
3098 * the internal Tx FIFO ring boundary by notifying the stack to resend
3099 * the packet at a later time. This gives the Tx FIFO an opportunity to
3100 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3101 * to the beginning of the Tx FIFO.
3102 **/
3103
3104 #define E1000_FIFO_HDR 0x10
3105 #define E1000_82547_PAD_LEN 0x3E0
3106
3107 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3108 struct sk_buff *skb)
3109 {
3110 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3111 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3112
3113 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3114
3115 if (adapter->link_duplex != HALF_DUPLEX)
3116 goto no_fifo_stall_required;
3117
3118 if (atomic_read(&adapter->tx_fifo_stall))
3119 return 1;
3120
3121 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3122 atomic_set(&adapter->tx_fifo_stall, 1);
3123 return 1;
3124 }
3125
3126 no_fifo_stall_required:
3127 adapter->tx_fifo_head += skb_fifo_len;
3128 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3129 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3130 return 0;
3131 }
3132
3133 #define MINIMUM_DHCP_PACKET_SIZE 282
3134 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3135 struct sk_buff *skb)
3136 {
3137 struct e1000_hw *hw = &adapter->hw;
3138 u16 length, offset;
3139 if (vlan_tx_tag_present(skb)) {
3140 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3141 ( hw->mng_cookie.status &
3142 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3143 return 0;
3144 }
3145 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3146 struct ethhdr *eth = (struct ethhdr *)skb->data;
3147 if ((htons(ETH_P_IP) == eth->h_proto)) {
3148 const struct iphdr *ip =
3149 (struct iphdr *)((u8 *)skb->data+14);
3150 if (IPPROTO_UDP == ip->protocol) {
3151 struct udphdr *udp =
3152 (struct udphdr *)((u8 *)ip +
3153 (ip->ihl << 2));
3154 if (ntohs(udp->dest) == 67) {
3155 offset = (u8 *)udp + 8 - skb->data;
3156 length = skb->len - offset;
3157
3158 return e1000_mng_write_dhcp_info(hw,
3159 (u8 *)udp + 8,
3160 length);
3161 }
3162 }
3163 }
3164 }
3165 return 0;
3166 }
3167
3168 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3169 {
3170 struct e1000_adapter *adapter = netdev_priv(netdev);
3171 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3172
3173 netif_stop_queue(netdev);
3174 /* Herbert's original patch had:
3175 * smp_mb__after_netif_stop_queue();
3176 * but since that doesn't exist yet, just open code it. */
3177 smp_mb();
3178
3179 /* We need to check again in a case another CPU has just
3180 * made room available. */
3181 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3182 return -EBUSY;
3183
3184 /* A reprieve! */
3185 netif_start_queue(netdev);
3186 ++adapter->restart_queue;
3187 return 0;
3188 }
3189
3190 static int e1000_maybe_stop_tx(struct net_device *netdev,
3191 struct e1000_tx_ring *tx_ring, int size)
3192 {
3193 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3194 return 0;
3195 return __e1000_maybe_stop_tx(netdev, size);
3196 }
3197
3198 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3199 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3200 {
3201 struct e1000_adapter *adapter = netdev_priv(netdev);
3202 struct e1000_hw *hw = &adapter->hw;
3203 struct e1000_tx_ring *tx_ring;
3204 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3205 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3206 unsigned int tx_flags = 0;
3207 unsigned int len = skb->len - skb->data_len;
3208 unsigned long flags;
3209 unsigned int nr_frags;
3210 unsigned int mss;
3211 int count = 0;
3212 int tso;
3213 unsigned int f;
3214
3215 /* This goes back to the question of how to logically map a tx queue
3216 * to a flow. Right now, performance is impacted slightly negatively
3217 * if using multiple tx queues. If the stack breaks away from a
3218 * single qdisc implementation, we can look at this again. */
3219 tx_ring = adapter->tx_ring;
3220
3221 if (unlikely(skb->len <= 0)) {
3222 dev_kfree_skb_any(skb);
3223 return NETDEV_TX_OK;
3224 }
3225
3226 /* 82571 and newer doesn't need the workaround that limited descriptor
3227 * length to 4kB */
3228 if (hw->mac_type >= e1000_82571)
3229 max_per_txd = 8192;
3230
3231 mss = skb_shinfo(skb)->gso_size;
3232 /* The controller does a simple calculation to
3233 * make sure there is enough room in the FIFO before
3234 * initiating the DMA for each buffer. The calc is:
3235 * 4 = ceil(buffer len/mss). To make sure we don't
3236 * overrun the FIFO, adjust the max buffer len if mss
3237 * drops. */
3238 if (mss) {
3239 u8 hdr_len;
3240 max_per_txd = min(mss << 2, max_per_txd);
3241 max_txd_pwr = fls(max_per_txd) - 1;
3242
3243 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3244 * points to just header, pull a few bytes of payload from
3245 * frags into skb->data */
3246 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3247 if (skb->data_len && hdr_len == len) {
3248 switch (hw->mac_type) {
3249 unsigned int pull_size;
3250 case e1000_82544:
3251 /* Make sure we have room to chop off 4 bytes,
3252 * and that the end alignment will work out to
3253 * this hardware's requirements
3254 * NOTE: this is a TSO only workaround
3255 * if end byte alignment not correct move us
3256 * into the next dword */
3257 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3258 break;
3259 /* fall through */
3260 case e1000_82571:
3261 case e1000_82572:
3262 case e1000_82573:
3263 case e1000_ich8lan:
3264 pull_size = min((unsigned int)4, skb->data_len);
3265 if (!__pskb_pull_tail(skb, pull_size)) {
3266 DPRINTK(DRV, ERR,
3267 "__pskb_pull_tail failed.\n");
3268 dev_kfree_skb_any(skb);
3269 return NETDEV_TX_OK;
3270 }
3271 len = skb->len - skb->data_len;
3272 break;
3273 default:
3274 /* do nothing */
3275 break;
3276 }
3277 }
3278 }
3279
3280 /* reserve a descriptor for the offload context */
3281 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3282 count++;
3283 count++;
3284
3285 /* Controller Erratum workaround */
3286 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3287 count++;
3288
3289 count += TXD_USE_COUNT(len, max_txd_pwr);
3290
3291 if (adapter->pcix_82544)
3292 count++;
3293
3294 /* work-around for errata 10 and it applies to all controllers
3295 * in PCI-X mode, so add one more descriptor to the count
3296 */
3297 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3298 (len > 2015)))
3299 count++;
3300
3301 nr_frags = skb_shinfo(skb)->nr_frags;
3302 for (f = 0; f < nr_frags; f++)
3303 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3304 max_txd_pwr);
3305 if (adapter->pcix_82544)
3306 count += nr_frags;
3307
3308
3309 if (hw->tx_pkt_filtering &&
3310 (hw->mac_type == e1000_82573))
3311 e1000_transfer_dhcp_info(adapter, skb);
3312
3313 if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3314 /* Collision - tell upper layer to requeue */
3315 return NETDEV_TX_LOCKED;
3316
3317 /* need: count + 2 desc gap to keep tail from touching
3318 * head, otherwise try next time */
3319 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3320 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3321 return NETDEV_TX_BUSY;
3322 }
3323
3324 if (unlikely(hw->mac_type == e1000_82547)) {
3325 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3326 netif_stop_queue(netdev);
3327 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3328 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3329 return NETDEV_TX_BUSY;
3330 }
3331 }
3332
3333 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3334 tx_flags |= E1000_TX_FLAGS_VLAN;
3335 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3336 }
3337
3338 first = tx_ring->next_to_use;
3339
3340 tso = e1000_tso(adapter, tx_ring, skb);
3341 if (tso < 0) {
3342 dev_kfree_skb_any(skb);
3343 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3344 return NETDEV_TX_OK;
3345 }
3346
3347 if (likely(tso)) {
3348 tx_ring->last_tx_tso = 1;
3349 tx_flags |= E1000_TX_FLAGS_TSO;
3350 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3351 tx_flags |= E1000_TX_FLAGS_CSUM;
3352
3353 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3354 * 82571 hardware supports TSO capabilities for IPv6 as well...
3355 * no longer assume, we must. */
3356 if (likely(skb->protocol == htons(ETH_P_IP)))
3357 tx_flags |= E1000_TX_FLAGS_IPV4;
3358
3359 e1000_tx_queue(adapter, tx_ring, tx_flags,
3360 e1000_tx_map(adapter, tx_ring, skb, first,
3361 max_per_txd, nr_frags, mss));
3362
3363 netdev->trans_start = jiffies;
3364
3365 /* Make sure there is space in the ring for the next send. */
3366 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3367
3368 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3369 return NETDEV_TX_OK;
3370 }
3371
3372 /**
3373 * e1000_tx_timeout - Respond to a Tx Hang
3374 * @netdev: network interface device structure
3375 **/
3376
3377 static void e1000_tx_timeout(struct net_device *netdev)
3378 {
3379 struct e1000_adapter *adapter = netdev_priv(netdev);
3380
3381 /* Do the reset outside of interrupt context */
3382 adapter->tx_timeout_count++;
3383 schedule_work(&adapter->reset_task);
3384 }
3385
3386 static void e1000_reset_task(struct work_struct *work)
3387 {
3388 struct e1000_adapter *adapter =
3389 container_of(work, struct e1000_adapter, reset_task);
3390
3391 e1000_reinit_locked(adapter);
3392 }
3393
3394 /**
3395 * e1000_get_stats - Get System Network Statistics
3396 * @netdev: network interface device structure
3397 *
3398 * Returns the address of the device statistics structure.
3399 * The statistics are actually updated from the timer callback.
3400 **/
3401
3402 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3403 {
3404 struct e1000_adapter *adapter = netdev_priv(netdev);
3405
3406 /* only return the current stats */
3407 return &adapter->net_stats;
3408 }
3409
3410 /**
3411 * e1000_change_mtu - Change the Maximum Transfer Unit
3412 * @netdev: network interface device structure
3413 * @new_mtu: new value for maximum frame size
3414 *
3415 * Returns 0 on success, negative on failure
3416 **/
3417
3418 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3419 {
3420 struct e1000_adapter *adapter = netdev_priv(netdev);
3421 struct e1000_hw *hw = &adapter->hw;
3422 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3423 u16 eeprom_data = 0;
3424
3425 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3426 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3427 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3428 return -EINVAL;
3429 }
3430
3431 /* Adapter-specific max frame size limits. */
3432 switch (hw->mac_type) {
3433 case e1000_undefined ... e1000_82542_rev2_1:
3434 case e1000_ich8lan:
3435 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3436 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3437 return -EINVAL;
3438 }
3439 break;
3440 case e1000_82573:
3441 /* Jumbo Frames not supported if:
3442 * - this is not an 82573L device
3443 * - ASPM is enabled in any way (0x1A bits 3:2) */
3444 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3445 &eeprom_data);
3446 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3447 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3448 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3449 DPRINTK(PROBE, ERR,
3450 "Jumbo Frames not supported.\n");
3451 return -EINVAL;
3452 }
3453 break;
3454 }
3455 /* ERT will be enabled later to enable wire speed receives */
3456
3457 /* fall through to get support */
3458 case e1000_82571:
3459 case e1000_82572:
3460 case e1000_80003es2lan:
3461 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3462 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3463 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3464 return -EINVAL;
3465 }
3466 break;
3467 default:
3468 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3469 break;
3470 }
3471
3472 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3473 * means we reserve 2 more, this pushes us to allocate from the next
3474 * larger slab size
3475 * i.e. RXBUFFER_2048 --> size-4096 slab */
3476
3477 if (max_frame <= E1000_RXBUFFER_256)
3478 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3479 else if (max_frame <= E1000_RXBUFFER_512)
3480 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3481 else if (max_frame <= E1000_RXBUFFER_1024)
3482 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3483 else if (max_frame <= E1000_RXBUFFER_2048)
3484 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3485 else if (max_frame <= E1000_RXBUFFER_4096)
3486 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3487 else if (max_frame <= E1000_RXBUFFER_8192)
3488 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3489 else if (max_frame <= E1000_RXBUFFER_16384)
3490 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3491
3492 /* adjust allocation if LPE protects us, and we aren't using SBP */
3493 if (!hw->tbi_compatibility_on &&
3494 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3495 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3496 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3497
3498 netdev->mtu = new_mtu;
3499 hw->max_frame_size = max_frame;
3500
3501 if (netif_running(netdev))
3502 e1000_reinit_locked(adapter);
3503
3504 return 0;
3505 }
3506
3507 /**
3508 * e1000_update_stats - Update the board statistics counters
3509 * @adapter: board private structure
3510 **/
3511
3512 void e1000_update_stats(struct e1000_adapter *adapter)
3513 {
3514 struct e1000_hw *hw = &adapter->hw;
3515 struct pci_dev *pdev = adapter->pdev;
3516 unsigned long flags;
3517 u16 phy_tmp;
3518
3519 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3520
3521 /*
3522 * Prevent stats update while adapter is being reset, or if the pci
3523 * connection is down.
3524 */
3525 if (adapter->link_speed == 0)
3526 return;
3527 if (pci_channel_offline(pdev))
3528 return;
3529
3530 spin_lock_irqsave(&adapter->stats_lock, flags);
3531
3532 /* these counters are modified from e1000_tbi_adjust_stats,
3533 * called from the interrupt context, so they must only
3534 * be written while holding adapter->stats_lock
3535 */
3536
3537 adapter->stats.crcerrs += er32(CRCERRS);
3538 adapter->stats.gprc += er32(GPRC);
3539 adapter->stats.gorcl += er32(GORCL);
3540 adapter->stats.gorch += er32(GORCH);
3541 adapter->stats.bprc += er32(BPRC);
3542 adapter->stats.mprc += er32(MPRC);
3543 adapter->stats.roc += er32(ROC);
3544
3545 if (hw->mac_type != e1000_ich8lan) {
3546 adapter->stats.prc64 += er32(PRC64);
3547 adapter->stats.prc127 += er32(PRC127);
3548 adapter->stats.prc255 += er32(PRC255);
3549 adapter->stats.prc511 += er32(PRC511);
3550 adapter->stats.prc1023 += er32(PRC1023);
3551 adapter->stats.prc1522 += er32(PRC1522);
3552 }
3553
3554 adapter->stats.symerrs += er32(SYMERRS);
3555 adapter->stats.mpc += er32(MPC);
3556 adapter->stats.scc += er32(SCC);
3557 adapter->stats.ecol += er32(ECOL);
3558 adapter->stats.mcc += er32(MCC);
3559 adapter->stats.latecol += er32(LATECOL);
3560 adapter->stats.dc += er32(DC);
3561 adapter->stats.sec += er32(SEC);
3562 adapter->stats.rlec += er32(RLEC);
3563 adapter->stats.xonrxc += er32(XONRXC);
3564 adapter->stats.xontxc += er32(XONTXC);
3565 adapter->stats.xoffrxc += er32(XOFFRXC);
3566 adapter->stats.xofftxc += er32(XOFFTXC);
3567 adapter->stats.fcruc += er32(FCRUC);
3568 adapter->stats.gptc += er32(GPTC);
3569 adapter->stats.gotcl += er32(GOTCL);
3570 adapter->stats.gotch += er32(GOTCH);
3571 adapter->stats.rnbc += er32(RNBC);
3572 adapter->stats.ruc += er32(RUC);
3573 adapter->stats.rfc += er32(RFC);
3574 adapter->stats.rjc += er32(RJC);
3575 adapter->stats.torl += er32(TORL);
3576 adapter->stats.torh += er32(TORH);
3577 adapter->stats.totl += er32(TOTL);
3578 adapter->stats.toth += er32(TOTH);
3579 adapter->stats.tpr += er32(TPR);
3580
3581 if (hw->mac_type != e1000_ich8lan) {
3582 adapter->stats.ptc64 += er32(PTC64);
3583 adapter->stats.ptc127 += er32(PTC127);
3584 adapter->stats.ptc255 += er32(PTC255);
3585 adapter->stats.ptc511 += er32(PTC511);
3586 adapter->stats.ptc1023 += er32(PTC1023);
3587 adapter->stats.ptc1522 += er32(PTC1522);
3588 }
3589
3590 adapter->stats.mptc += er32(MPTC);
3591 adapter->stats.bptc += er32(BPTC);
3592
3593 /* used for adaptive IFS */
3594
3595 hw->tx_packet_delta = er32(TPT);
3596 adapter->stats.tpt += hw->tx_packet_delta;
3597 hw->collision_delta = er32(COLC);
3598 adapter->stats.colc += hw->collision_delta;
3599
3600 if (hw->mac_type >= e1000_82543) {
3601 adapter->stats.algnerrc += er32(ALGNERRC);
3602 adapter->stats.rxerrc += er32(RXERRC);
3603 adapter->stats.tncrs += er32(TNCRS);
3604 adapter->stats.cexterr += er32(CEXTERR);
3605 adapter->stats.tsctc += er32(TSCTC);
3606 adapter->stats.tsctfc += er32(TSCTFC);
3607 }
3608 if (hw->mac_type > e1000_82547_rev_2) {
3609 adapter->stats.iac += er32(IAC);
3610 adapter->stats.icrxoc += er32(ICRXOC);
3611
3612 if (hw->mac_type != e1000_ich8lan) {
3613 adapter->stats.icrxptc += er32(ICRXPTC);
3614 adapter->stats.icrxatc += er32(ICRXATC);
3615 adapter->stats.ictxptc += er32(ICTXPTC);
3616 adapter->stats.ictxatc += er32(ICTXATC);
3617 adapter->stats.ictxqec += er32(ICTXQEC);
3618 adapter->stats.ictxqmtc += er32(ICTXQMTC);
3619 adapter->stats.icrxdmtc += er32(ICRXDMTC);
3620 }
3621 }
3622
3623 /* Fill out the OS statistics structure */
3624 adapter->net_stats.multicast = adapter->stats.mprc;
3625 adapter->net_stats.collisions = adapter->stats.colc;
3626
3627 /* Rx Errors */
3628
3629 /* RLEC on some newer hardware can be incorrect so build
3630 * our own version based on RUC and ROC */
3631 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3632 adapter->stats.crcerrs + adapter->stats.algnerrc +
3633 adapter->stats.ruc + adapter->stats.roc +
3634 adapter->stats.cexterr;
3635 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3636 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3637 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3638 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3639 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3640
3641 /* Tx Errors */
3642 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3643 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3644 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3645 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3646 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3647 if (hw->bad_tx_carr_stats_fd &&
3648 adapter->link_duplex == FULL_DUPLEX) {
3649 adapter->net_stats.tx_carrier_errors = 0;
3650 adapter->stats.tncrs = 0;
3651 }
3652
3653 /* Tx Dropped needs to be maintained elsewhere */
3654
3655 /* Phy Stats */
3656 if (hw->media_type == e1000_media_type_copper) {
3657 if ((adapter->link_speed == SPEED_1000) &&
3658 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3659 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3660 adapter->phy_stats.idle_errors += phy_tmp;
3661 }
3662
3663 if ((hw->mac_type <= e1000_82546) &&
3664 (hw->phy_type == e1000_phy_m88) &&
3665 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3666 adapter->phy_stats.receive_errors += phy_tmp;
3667 }
3668
3669 /* Management Stats */
3670 if (hw->has_smbus) {
3671 adapter->stats.mgptc += er32(MGTPTC);
3672 adapter->stats.mgprc += er32(MGTPRC);
3673 adapter->stats.mgpdc += er32(MGTPDC);
3674 }
3675
3676 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3677 }
3678
3679 /**
3680 * e1000_intr_msi - Interrupt Handler
3681 * @irq: interrupt number
3682 * @data: pointer to a network interface device structure
3683 **/
3684
3685 static irqreturn_t e1000_intr_msi(int irq, void *data)
3686 {
3687 struct net_device *netdev = data;
3688 struct e1000_adapter *adapter = netdev_priv(netdev);
3689 struct e1000_hw *hw = &adapter->hw;
3690 u32 icr = er32(ICR);
3691
3692 /* in NAPI mode read ICR disables interrupts using IAM */
3693
3694 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3695 hw->get_link_status = 1;
3696 /* 80003ES2LAN workaround-- For packet buffer work-around on
3697 * link down event; disable receives here in the ISR and reset
3698 * adapter in watchdog */
3699 if (netif_carrier_ok(netdev) &&
3700 (hw->mac_type == e1000_80003es2lan)) {
3701 /* disable receives */
3702 u32 rctl = er32(RCTL);
3703 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3704 }
3705 /* guard against interrupt when we're going down */
3706 if (!test_bit(__E1000_DOWN, &adapter->flags))
3707 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3708 }
3709
3710 if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3711 adapter->total_tx_bytes = 0;
3712 adapter->total_tx_packets = 0;
3713 adapter->total_rx_bytes = 0;
3714 adapter->total_rx_packets = 0;
3715 __netif_rx_schedule(netdev, &adapter->napi);
3716 } else
3717 e1000_irq_enable(adapter);
3718
3719 return IRQ_HANDLED;
3720 }
3721
3722 /**
3723 * e1000_intr - Interrupt Handler
3724 * @irq: interrupt number
3725 * @data: pointer to a network interface device structure
3726 **/
3727
3728 static irqreturn_t e1000_intr(int irq, void *data)
3729 {
3730 struct net_device *netdev = data;
3731 struct e1000_adapter *adapter = netdev_priv(netdev);
3732 struct e1000_hw *hw = &adapter->hw;
3733 u32 rctl, icr = er32(ICR);
3734
3735 if (unlikely(!icr))
3736 return IRQ_NONE; /* Not our interrupt */
3737
3738 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3739 * not set, then the adapter didn't send an interrupt */
3740 if (unlikely(hw->mac_type >= e1000_82571 &&
3741 !(icr & E1000_ICR_INT_ASSERTED)))
3742 return IRQ_NONE;
3743
3744 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3745 * need for the IMC write */
3746
3747 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3748 hw->get_link_status = 1;
3749 /* 80003ES2LAN workaround--
3750 * For packet buffer work-around on link down event;
3751 * disable receives here in the ISR and
3752 * reset adapter in watchdog
3753 */
3754 if (netif_carrier_ok(netdev) &&
3755 (hw->mac_type == e1000_80003es2lan)) {
3756 /* disable receives */
3757 rctl = er32(RCTL);
3758 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3759 }
3760 /* guard against interrupt when we're going down */
3761 if (!test_bit(__E1000_DOWN, &adapter->flags))
3762 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3763 }
3764
3765 if (unlikely(hw->mac_type < e1000_82571)) {
3766 /* disable interrupts, without the synchronize_irq bit */
3767 ew32(IMC, ~0);
3768 E1000_WRITE_FLUSH();
3769 }
3770 if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3771 adapter->total_tx_bytes = 0;
3772 adapter->total_tx_packets = 0;
3773 adapter->total_rx_bytes = 0;
3774 adapter->total_rx_packets = 0;
3775 __netif_rx_schedule(netdev, &adapter->napi);
3776 } else
3777 /* this really should not happen! if it does it is basically a
3778 * bug, but not a hard error, so enable ints and continue */
3779 e1000_irq_enable(adapter);
3780
3781 return IRQ_HANDLED;
3782 }
3783
3784 /**
3785 * e1000_clean - NAPI Rx polling callback
3786 * @adapter: board private structure
3787 **/
3788 static int e1000_clean(struct napi_struct *napi, int budget)
3789 {
3790 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3791 struct net_device *poll_dev = adapter->netdev;
3792 int tx_cleaned = 0, work_done = 0;
3793
3794 /* Must NOT use netdev_priv macro here. */
3795 adapter = poll_dev->priv;
3796
3797 /* e1000_clean is called per-cpu. This lock protects
3798 * tx_ring[0] from being cleaned by multiple cpus
3799 * simultaneously. A failure obtaining the lock means
3800 * tx_ring[0] is currently being cleaned anyway. */
3801 if (spin_trylock(&adapter->tx_queue_lock)) {
3802 tx_cleaned = e1000_clean_tx_irq(adapter,
3803 &adapter->tx_ring[0]);
3804 spin_unlock(&adapter->tx_queue_lock);
3805 }
3806
3807 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3808 &work_done, budget);
3809
3810 if (tx_cleaned)
3811 work_done = budget;
3812
3813 /* If budget not fully consumed, exit the polling mode */
3814 if (work_done < budget) {
3815 if (likely(adapter->itr_setting & 3))
3816 e1000_set_itr(adapter);
3817 netif_rx_complete(poll_dev, napi);
3818 e1000_irq_enable(adapter);
3819 }
3820
3821 return work_done;
3822 }
3823
3824 /**
3825 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3826 * @adapter: board private structure
3827 **/
3828 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3829 struct e1000_tx_ring *tx_ring)
3830 {
3831 struct e1000_hw *hw = &adapter->hw;
3832 struct net_device *netdev = adapter->netdev;
3833 struct e1000_tx_desc *tx_desc, *eop_desc;
3834 struct e1000_buffer *buffer_info;
3835 unsigned int i, eop;
3836 unsigned int count = 0;
3837 bool cleaned = false;
3838 unsigned int total_tx_bytes=0, total_tx_packets=0;
3839
3840 i = tx_ring->next_to_clean;
3841 eop = tx_ring->buffer_info[i].next_to_watch;
3842 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3843
3844 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3845 for (cleaned = false; !cleaned; ) {
3846 tx_desc = E1000_TX_DESC(*tx_ring, i);
3847 buffer_info = &tx_ring->buffer_info[i];
3848 cleaned = (i == eop);
3849
3850 if (cleaned) {
3851 struct sk_buff *skb = buffer_info->skb;
3852 unsigned int segs, bytecount;
3853 segs = skb_shinfo(skb)->gso_segs ?: 1;
3854 /* multiply data chunks by size of headers */
3855 bytecount = ((segs - 1) * skb_headlen(skb)) +
3856 skb->len;
3857 total_tx_packets += segs;
3858 total_tx_bytes += bytecount;
3859 }
3860 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3861 tx_desc->upper.data = 0;
3862
3863 if (unlikely(++i == tx_ring->count)) i = 0;
3864 }
3865
3866 eop = tx_ring->buffer_info[i].next_to_watch;
3867 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3868 #define E1000_TX_WEIGHT 64
3869 /* weight of a sort for tx, to avoid endless transmit cleanup */
3870 if (count++ == E1000_TX_WEIGHT)
3871 break;
3872 }
3873
3874 tx_ring->next_to_clean = i;
3875
3876 #define TX_WAKE_THRESHOLD 32
3877 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3878 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3879 /* Make sure that anybody stopping the queue after this
3880 * sees the new next_to_clean.
3881 */
3882 smp_mb();
3883 if (netif_queue_stopped(netdev)) {
3884 netif_wake_queue(netdev);
3885 ++adapter->restart_queue;
3886 }
3887 }
3888
3889 if (adapter->detect_tx_hung) {
3890 /* Detect a transmit hang in hardware, this serializes the
3891 * check with the clearing of time_stamp and movement of i */
3892 adapter->detect_tx_hung = false;
3893 if (tx_ring->buffer_info[eop].dma &&
3894 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3895 (adapter->tx_timeout_factor * HZ))
3896 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3897
3898 /* detected Tx unit hang */
3899 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3900 " Tx Queue <%lu>\n"
3901 " TDH <%x>\n"
3902 " TDT <%x>\n"
3903 " next_to_use <%x>\n"
3904 " next_to_clean <%x>\n"
3905 "buffer_info[next_to_clean]\n"
3906 " time_stamp <%lx>\n"
3907 " next_to_watch <%x>\n"
3908 " jiffies <%lx>\n"
3909 " next_to_watch.status <%x>\n",
3910 (unsigned long)((tx_ring - adapter->tx_ring) /
3911 sizeof(struct e1000_tx_ring)),
3912 readl(hw->hw_addr + tx_ring->tdh),
3913 readl(hw->hw_addr + tx_ring->tdt),
3914 tx_ring->next_to_use,
3915 tx_ring->next_to_clean,
3916 tx_ring->buffer_info[eop].time_stamp,
3917 eop,
3918 jiffies,
3919 eop_desc->upper.fields.status);
3920 netif_stop_queue(netdev);
3921 }
3922 }
3923 adapter->total_tx_bytes += total_tx_bytes;
3924 adapter->total_tx_packets += total_tx_packets;
3925 adapter->net_stats.tx_bytes += total_tx_bytes;
3926 adapter->net_stats.tx_packets += total_tx_packets;
3927 return cleaned;
3928 }
3929
3930 /**
3931 * e1000_rx_checksum - Receive Checksum Offload for 82543
3932 * @adapter: board private structure
3933 * @status_err: receive descriptor status and error fields
3934 * @csum: receive descriptor csum field
3935 * @sk_buff: socket buffer with received data
3936 **/
3937
3938 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3939 u32 csum, struct sk_buff *skb)
3940 {
3941 struct e1000_hw *hw = &adapter->hw;
3942 u16 status = (u16)status_err;
3943 u8 errors = (u8)(status_err >> 24);
3944 skb->ip_summed = CHECKSUM_NONE;
3945
3946 /* 82543 or newer only */
3947 if (unlikely(hw->mac_type < e1000_82543)) return;
3948 /* Ignore Checksum bit is set */
3949 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3950 /* TCP/UDP checksum error bit is set */
3951 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3952 /* let the stack verify checksum errors */
3953 adapter->hw_csum_err++;
3954 return;
3955 }
3956 /* TCP/UDP Checksum has not been calculated */
3957 if (hw->mac_type <= e1000_82547_rev_2) {
3958 if (!(status & E1000_RXD_STAT_TCPCS))
3959 return;
3960 } else {
3961 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3962 return;
3963 }
3964 /* It must be a TCP or UDP packet with a valid checksum */
3965 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3966 /* TCP checksum is good */
3967 skb->ip_summed = CHECKSUM_UNNECESSARY;
3968 } else if (hw->mac_type > e1000_82547_rev_2) {
3969 /* IP fragment with UDP payload */
3970 /* Hardware complements the payload checksum, so we undo it
3971 * and then put the value in host order for further stack use.
3972 */
3973 __sum16 sum = (__force __sum16)htons(csum);
3974 skb->csum = csum_unfold(~sum);
3975 skb->ip_summed = CHECKSUM_COMPLETE;
3976 }
3977 adapter->hw_csum_good++;
3978 }
3979
3980 /**
3981 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3982 * @adapter: board private structure
3983 **/
3984 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3985 struct e1000_rx_ring *rx_ring,
3986 int *work_done, int work_to_do)
3987 {
3988 struct e1000_hw *hw = &adapter->hw;
3989 struct net_device *netdev = adapter->netdev;
3990 struct pci_dev *pdev = adapter->pdev;
3991 struct e1000_rx_desc *rx_desc, *next_rxd;
3992 struct e1000_buffer *buffer_info, *next_buffer;
3993 unsigned long flags;
3994 u32 length;
3995 u8 last_byte;
3996 unsigned int i;
3997 int cleaned_count = 0;
3998 bool cleaned = false;
3999 unsigned int total_rx_bytes=0, total_rx_packets=0;
4000
4001 i = rx_ring->next_to_clean;
4002 rx_desc = E1000_RX_DESC(*rx_ring, i);
4003 buffer_info = &rx_ring->buffer_info[i];
4004
4005 while (rx_desc->status & E1000_RXD_STAT_DD) {
4006 struct sk_buff *skb;
4007 u8 status;
4008
4009 if (*work_done >= work_to_do)
4010 break;
4011 (*work_done)++;
4012
4013 status = rx_desc->status;
4014 skb = buffer_info->skb;
4015 buffer_info->skb = NULL;
4016
4017 prefetch(skb->data - NET_IP_ALIGN);
4018
4019 if (++i == rx_ring->count) i = 0;
4020 next_rxd = E1000_RX_DESC(*rx_ring, i);
4021 prefetch(next_rxd);
4022
4023 next_buffer = &rx_ring->buffer_info[i];
4024
4025 cleaned = true;
4026 cleaned_count++;
4027 pci_unmap_single(pdev,
4028 buffer_info->dma,
4029 buffer_info->length,
4030 PCI_DMA_FROMDEVICE);
4031
4032 length = le16_to_cpu(rx_desc->length);
4033
4034 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4035 /* All receives must fit into a single buffer */
4036 E1000_DBG("%s: Receive packet consumed multiple"
4037 " buffers\n", netdev->name);
4038 /* recycle */
4039 buffer_info->skb = skb;
4040 goto next_desc;
4041 }
4042
4043 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4044 last_byte = *(skb->data + length - 1);
4045 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4046 last_byte)) {
4047 spin_lock_irqsave(&adapter->stats_lock, flags);
4048 e1000_tbi_adjust_stats(hw, &adapter->stats,
4049 length, skb->data);
4050 spin_unlock_irqrestore(&adapter->stats_lock,
4051 flags);
4052 length--;
4053 } else {
4054 /* recycle */
4055 buffer_info->skb = skb;
4056 goto next_desc;
4057 }
4058 }
4059
4060 /* adjust length to remove Ethernet CRC, this must be
4061 * done after the TBI_ACCEPT workaround above */
4062 length -= 4;
4063
4064 /* probably a little skewed due to removing CRC */
4065 total_rx_bytes += length;
4066 total_rx_packets++;
4067
4068 /* code added for copybreak, this should improve
4069 * performance for small packets with large amounts
4070 * of reassembly being done in the stack */
4071 if (length < copybreak) {
4072 struct sk_buff *new_skb =
4073 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4074 if (new_skb) {
4075 skb_reserve(new_skb, NET_IP_ALIGN);
4076 skb_copy_to_linear_data_offset(new_skb,
4077 -NET_IP_ALIGN,
4078 (skb->data -
4079 NET_IP_ALIGN),
4080 (length +
4081 NET_IP_ALIGN));
4082 /* save the skb in buffer_info as good */
4083 buffer_info->skb = skb;
4084 skb = new_skb;
4085 }
4086 /* else just continue with the old one */
4087 }
4088 /* end copybreak code */
4089 skb_put(skb, length);
4090
4091 /* Receive Checksum Offload */
4092 e1000_rx_checksum(adapter,
4093 (u32)(status) |
4094 ((u32)(rx_desc->errors) << 24),
4095 le16_to_cpu(rx_desc->csum), skb);
4096
4097 skb->protocol = eth_type_trans(skb, netdev);
4098
4099 if (unlikely(adapter->vlgrp &&
4100 (status & E1000_RXD_STAT_VP))) {
4101 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4102 le16_to_cpu(rx_desc->special));
4103 } else {
4104 netif_receive_skb(skb);
4105 }
4106
4107 netdev->last_rx = jiffies;
4108
4109 next_desc:
4110 rx_desc->status = 0;
4111
4112 /* return some buffers to hardware, one at a time is too slow */
4113 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4114 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4115 cleaned_count = 0;
4116 }
4117
4118 /* use prefetched values */
4119 rx_desc = next_rxd;
4120 buffer_info = next_buffer;
4121 }
4122 rx_ring->next_to_clean = i;
4123
4124 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4125 if (cleaned_count)
4126 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4127
4128 adapter->total_rx_packets += total_rx_packets;
4129 adapter->total_rx_bytes += total_rx_bytes;
4130 adapter->net_stats.rx_bytes += total_rx_bytes;
4131 adapter->net_stats.rx_packets += total_rx_packets;
4132 return cleaned;
4133 }
4134
4135 /**
4136 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4137 * @adapter: address of board private structure
4138 **/
4139
4140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4141 struct e1000_rx_ring *rx_ring,
4142 int cleaned_count)
4143 {
4144 struct e1000_hw *hw = &adapter->hw;
4145 struct net_device *netdev = adapter->netdev;
4146 struct pci_dev *pdev = adapter->pdev;
4147 struct e1000_rx_desc *rx_desc;
4148 struct e1000_buffer *buffer_info;
4149 struct sk_buff *skb;
4150 unsigned int i;
4151 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4152
4153 i = rx_ring->next_to_use;
4154 buffer_info = &rx_ring->buffer_info[i];
4155
4156 while (cleaned_count--) {
4157 skb = buffer_info->skb;
4158 if (skb) {
4159 skb_trim(skb, 0);
4160 goto map_skb;
4161 }
4162
4163 skb = netdev_alloc_skb(netdev, bufsz);
4164 if (unlikely(!skb)) {
4165 /* Better luck next round */
4166 adapter->alloc_rx_buff_failed++;
4167 break;
4168 }
4169
4170 /* Fix for errata 23, can't cross 64kB boundary */
4171 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4172 struct sk_buff *oldskb = skb;
4173 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4174 "at %p\n", bufsz, skb->data);
4175 /* Try again, without freeing the previous */
4176 skb = netdev_alloc_skb(netdev, bufsz);
4177 /* Failed allocation, critical failure */
4178 if (!skb) {
4179 dev_kfree_skb(oldskb);
4180 break;
4181 }
4182
4183 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4184 /* give up */
4185 dev_kfree_skb(skb);
4186 dev_kfree_skb(oldskb);
4187 break; /* while !buffer_info->skb */
4188 }
4189
4190 /* Use new allocation */
4191 dev_kfree_skb(oldskb);
4192 }
4193 /* Make buffer alignment 2 beyond a 16 byte boundary
4194 * this will result in a 16 byte aligned IP header after
4195 * the 14 byte MAC header is removed
4196 */
4197 skb_reserve(skb, NET_IP_ALIGN);
4198
4199 buffer_info->skb = skb;
4200 buffer_info->length = adapter->rx_buffer_len;
4201 map_skb:
4202 buffer_info->dma = pci_map_single(pdev,
4203 skb->data,
4204 adapter->rx_buffer_len,
4205 PCI_DMA_FROMDEVICE);
4206
4207 /* Fix for errata 23, can't cross 64kB boundary */
4208 if (!e1000_check_64k_bound(adapter,
4209 (void *)(unsigned long)buffer_info->dma,
4210 adapter->rx_buffer_len)) {
4211 DPRINTK(RX_ERR, ERR,
4212 "dma align check failed: %u bytes at %p\n",
4213 adapter->rx_buffer_len,
4214 (void *)(unsigned long)buffer_info->dma);
4215 dev_kfree_skb(skb);
4216 buffer_info->skb = NULL;
4217
4218 pci_unmap_single(pdev, buffer_info->dma,
4219 adapter->rx_buffer_len,
4220 PCI_DMA_FROMDEVICE);
4221
4222 break; /* while !buffer_info->skb */
4223 }
4224 rx_desc = E1000_RX_DESC(*rx_ring, i);
4225 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4226
4227 if (unlikely(++i == rx_ring->count))
4228 i = 0;
4229 buffer_info = &rx_ring->buffer_info[i];
4230 }
4231
4232 if (likely(rx_ring->next_to_use != i)) {
4233 rx_ring->next_to_use = i;
4234 if (unlikely(i-- == 0))
4235 i = (rx_ring->count - 1);
4236
4237 /* Force memory writes to complete before letting h/w
4238 * know there are new descriptors to fetch. (Only
4239 * applicable for weak-ordered memory model archs,
4240 * such as IA-64). */
4241 wmb();
4242 writel(i, hw->hw_addr + rx_ring->rdt);
4243 }
4244 }
4245
4246 /**
4247 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4248 * @adapter:
4249 **/
4250
4251 static void e1000_smartspeed(struct e1000_adapter *adapter)
4252 {
4253 struct e1000_hw *hw = &adapter->hw;
4254 u16 phy_status;
4255 u16 phy_ctrl;
4256
4257 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4258 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4259 return;
4260
4261 if (adapter->smartspeed == 0) {
4262 /* If Master/Slave config fault is asserted twice,
4263 * we assume back-to-back */
4264 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4265 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4266 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4267 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4268 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4269 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4270 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4271 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4272 phy_ctrl);
4273 adapter->smartspeed++;
4274 if (!e1000_phy_setup_autoneg(hw) &&
4275 !e1000_read_phy_reg(hw, PHY_CTRL,
4276 &phy_ctrl)) {
4277 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4278 MII_CR_RESTART_AUTO_NEG);
4279 e1000_write_phy_reg(hw, PHY_CTRL,
4280 phy_ctrl);
4281 }
4282 }
4283 return;
4284 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4285 /* If still no link, perhaps using 2/3 pair cable */
4286 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4287 phy_ctrl |= CR_1000T_MS_ENABLE;
4288 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4289 if (!e1000_phy_setup_autoneg(hw) &&
4290 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4291 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4292 MII_CR_RESTART_AUTO_NEG);
4293 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4294 }
4295 }
4296 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4297 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4298 adapter->smartspeed = 0;
4299 }
4300
4301 /**
4302 * e1000_ioctl -
4303 * @netdev:
4304 * @ifreq:
4305 * @cmd:
4306 **/
4307
4308 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4309 {
4310 switch (cmd) {
4311 case SIOCGMIIPHY:
4312 case SIOCGMIIREG:
4313 case SIOCSMIIREG:
4314 return e1000_mii_ioctl(netdev, ifr, cmd);
4315 default:
4316 return -EOPNOTSUPP;
4317 }
4318 }
4319
4320 /**
4321 * e1000_mii_ioctl -
4322 * @netdev:
4323 * @ifreq:
4324 * @cmd:
4325 **/
4326
4327 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4328 int cmd)
4329 {
4330 struct e1000_adapter *adapter = netdev_priv(netdev);
4331 struct e1000_hw *hw = &adapter->hw;
4332 struct mii_ioctl_data *data = if_mii(ifr);
4333 int retval;
4334 u16 mii_reg;
4335 u16 spddplx;
4336 unsigned long flags;
4337
4338 if (hw->media_type != e1000_media_type_copper)
4339 return -EOPNOTSUPP;
4340
4341 switch (cmd) {
4342 case SIOCGMIIPHY:
4343 data->phy_id = hw->phy_addr;
4344 break;
4345 case SIOCGMIIREG:
4346 if (!capable(CAP_NET_ADMIN))
4347 return -EPERM;
4348 spin_lock_irqsave(&adapter->stats_lock, flags);
4349 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4350 &data->val_out)) {
4351 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4352 return -EIO;
4353 }
4354 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4355 break;
4356 case SIOCSMIIREG:
4357 if (!capable(CAP_NET_ADMIN))
4358 return -EPERM;
4359 if (data->reg_num & ~(0x1F))
4360 return -EFAULT;
4361 mii_reg = data->val_in;
4362 spin_lock_irqsave(&adapter->stats_lock, flags);
4363 if (e1000_write_phy_reg(hw, data->reg_num,
4364 mii_reg)) {
4365 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4366 return -EIO;
4367 }
4368 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4369 if (hw->media_type == e1000_media_type_copper) {
4370 switch (data->reg_num) {
4371 case PHY_CTRL:
4372 if (mii_reg & MII_CR_POWER_DOWN)
4373 break;
4374 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4375 hw->autoneg = 1;
4376 hw->autoneg_advertised = 0x2F;
4377 } else {
4378 if (mii_reg & 0x40)
4379 spddplx = SPEED_1000;
4380 else if (mii_reg & 0x2000)
4381 spddplx = SPEED_100;
4382 else
4383 spddplx = SPEED_10;
4384 spddplx += (mii_reg & 0x100)
4385 ? DUPLEX_FULL :
4386 DUPLEX_HALF;
4387 retval = e1000_set_spd_dplx(adapter,
4388 spddplx);
4389 if (retval)
4390 return retval;
4391 }
4392 if (netif_running(adapter->netdev))
4393 e1000_reinit_locked(adapter);
4394 else
4395 e1000_reset(adapter);
4396 break;
4397 case M88E1000_PHY_SPEC_CTRL:
4398 case M88E1000_EXT_PHY_SPEC_CTRL:
4399 if (e1000_phy_reset(hw))
4400 return -EIO;
4401 break;
4402 }
4403 } else {
4404 switch (data->reg_num) {
4405 case PHY_CTRL:
4406 if (mii_reg & MII_CR_POWER_DOWN)
4407 break;
4408 if (netif_running(adapter->netdev))
4409 e1000_reinit_locked(adapter);
4410 else
4411 e1000_reset(adapter);
4412 break;
4413 }
4414 }
4415 break;
4416 default:
4417 return -EOPNOTSUPP;
4418 }
4419 return E1000_SUCCESS;
4420 }
4421
4422 void e1000_pci_set_mwi(struct e1000_hw *hw)
4423 {
4424 struct e1000_adapter *adapter = hw->back;
4425 int ret_val = pci_set_mwi(adapter->pdev);
4426
4427 if (ret_val)
4428 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4429 }
4430
4431 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4432 {
4433 struct e1000_adapter *adapter = hw->back;
4434
4435 pci_clear_mwi(adapter->pdev);
4436 }
4437
4438 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4439 {
4440 struct e1000_adapter *adapter = hw->back;
4441 return pcix_get_mmrbc(adapter->pdev);
4442 }
4443
4444 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4445 {
4446 struct e1000_adapter *adapter = hw->back;
4447 pcix_set_mmrbc(adapter->pdev, mmrbc);
4448 }
4449
4450 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4451 {
4452 struct e1000_adapter *adapter = hw->back;
4453 u16 cap_offset;
4454
4455 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4456 if (!cap_offset)
4457 return -E1000_ERR_CONFIG;
4458
4459 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4460
4461 return E1000_SUCCESS;
4462 }
4463
4464 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4465 {
4466 outl(value, port);
4467 }
4468
4469 static void e1000_vlan_rx_register(struct net_device *netdev,
4470 struct vlan_group *grp)
4471 {
4472 struct e1000_adapter *adapter = netdev_priv(netdev);
4473 struct e1000_hw *hw = &adapter->hw;
4474 u32 ctrl, rctl;
4475
4476 if (!test_bit(__E1000_DOWN, &adapter->flags))
4477 e1000_irq_disable(adapter);
4478 adapter->vlgrp = grp;
4479
4480 if (grp) {
4481 /* enable VLAN tag insert/strip */
4482 ctrl = er32(CTRL);
4483 ctrl |= E1000_CTRL_VME;
4484 ew32(CTRL, ctrl);
4485
4486 if (adapter->hw.mac_type != e1000_ich8lan) {
4487 /* enable VLAN receive filtering */
4488 rctl = er32(RCTL);
4489 rctl &= ~E1000_RCTL_CFIEN;
4490 ew32(RCTL, rctl);
4491 e1000_update_mng_vlan(adapter);
4492 }
4493 } else {
4494 /* disable VLAN tag insert/strip */
4495 ctrl = er32(CTRL);
4496 ctrl &= ~E1000_CTRL_VME;
4497 ew32(CTRL, ctrl);
4498
4499 if (adapter->hw.mac_type != e1000_ich8lan) {
4500 if (adapter->mng_vlan_id !=
4501 (u16)E1000_MNG_VLAN_NONE) {
4502 e1000_vlan_rx_kill_vid(netdev,
4503 adapter->mng_vlan_id);
4504 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4505 }
4506 }
4507 }
4508
4509 if (!test_bit(__E1000_DOWN, &adapter->flags))
4510 e1000_irq_enable(adapter);
4511 }
4512
4513 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4514 {
4515 struct e1000_adapter *adapter = netdev_priv(netdev);
4516 struct e1000_hw *hw = &adapter->hw;
4517 u32 vfta, index;
4518
4519 if ((hw->mng_cookie.status &
4520 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4521 (vid == adapter->mng_vlan_id))
4522 return;
4523 /* add VID to filter table */
4524 index = (vid >> 5) & 0x7F;
4525 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4526 vfta |= (1 << (vid & 0x1F));
4527 e1000_write_vfta(hw, index, vfta);
4528 }
4529
4530 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4531 {
4532 struct e1000_adapter *adapter = netdev_priv(netdev);
4533 struct e1000_hw *hw = &adapter->hw;
4534 u32 vfta, index;
4535
4536 if (!test_bit(__E1000_DOWN, &adapter->flags))
4537 e1000_irq_disable(adapter);
4538 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4539 if (!test_bit(__E1000_DOWN, &adapter->flags))
4540 e1000_irq_enable(adapter);
4541
4542 if ((hw->mng_cookie.status &
4543 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4544 (vid == adapter->mng_vlan_id)) {
4545 /* release control to f/w */
4546 e1000_release_hw_control(adapter);
4547 return;
4548 }
4549
4550 /* remove VID from filter table */
4551 index = (vid >> 5) & 0x7F;
4552 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4553 vfta &= ~(1 << (vid & 0x1F));
4554 e1000_write_vfta(hw, index, vfta);
4555 }
4556
4557 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4558 {
4559 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4560
4561 if (adapter->vlgrp) {
4562 u16 vid;
4563 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4564 if (!vlan_group_get_device(adapter->vlgrp, vid))
4565 continue;
4566 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4567 }
4568 }
4569 }
4570
4571 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4572 {
4573 struct e1000_hw *hw = &adapter->hw;
4574
4575 hw->autoneg = 0;
4576
4577 /* Fiber NICs only allow 1000 gbps Full duplex */
4578 if ((hw->media_type == e1000_media_type_fiber) &&
4579 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4580 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4581 return -EINVAL;
4582 }
4583
4584 switch (spddplx) {
4585 case SPEED_10 + DUPLEX_HALF:
4586 hw->forced_speed_duplex = e1000_10_half;
4587 break;
4588 case SPEED_10 + DUPLEX_FULL:
4589 hw->forced_speed_duplex = e1000_10_full;
4590 break;
4591 case SPEED_100 + DUPLEX_HALF:
4592 hw->forced_speed_duplex = e1000_100_half;
4593 break;
4594 case SPEED_100 + DUPLEX_FULL:
4595 hw->forced_speed_duplex = e1000_100_full;
4596 break;
4597 case SPEED_1000 + DUPLEX_FULL:
4598 hw->autoneg = 1;
4599 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4600 break;
4601 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4602 default:
4603 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4604 return -EINVAL;
4605 }
4606 return 0;
4607 }
4608
4609 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4610 {
4611 struct net_device *netdev = pci_get_drvdata(pdev);
4612 struct e1000_adapter *adapter = netdev_priv(netdev);
4613 struct e1000_hw *hw = &adapter->hw;
4614 u32 ctrl, ctrl_ext, rctl, status;
4615 u32 wufc = adapter->wol;
4616 #ifdef CONFIG_PM
4617 int retval = 0;
4618 #endif
4619
4620 netif_device_detach(netdev);
4621
4622 if (netif_running(netdev)) {
4623 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4624 e1000_down(adapter);
4625 }
4626
4627 #ifdef CONFIG_PM
4628 retval = pci_save_state(pdev);
4629 if (retval)
4630 return retval;
4631 #endif
4632
4633 status = er32(STATUS);
4634 if (status & E1000_STATUS_LU)
4635 wufc &= ~E1000_WUFC_LNKC;
4636
4637 if (wufc) {
4638 e1000_setup_rctl(adapter);
4639 e1000_set_rx_mode(netdev);
4640
4641 /* turn on all-multi mode if wake on multicast is enabled */
4642 if (wufc & E1000_WUFC_MC) {
4643 rctl = er32(RCTL);
4644 rctl |= E1000_RCTL_MPE;
4645 ew32(RCTL, rctl);
4646 }
4647
4648 if (hw->mac_type >= e1000_82540) {
4649 ctrl = er32(CTRL);
4650 /* advertise wake from D3Cold */
4651 #define E1000_CTRL_ADVD3WUC 0x00100000
4652 /* phy power management enable */
4653 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4654 ctrl |= E1000_CTRL_ADVD3WUC |
4655 E1000_CTRL_EN_PHY_PWR_MGMT;
4656 ew32(CTRL, ctrl);
4657 }
4658
4659 if (hw->media_type == e1000_media_type_fiber ||
4660 hw->media_type == e1000_media_type_internal_serdes) {
4661 /* keep the laser running in D3 */
4662 ctrl_ext = er32(CTRL_EXT);
4663 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4664 ew32(CTRL_EXT, ctrl_ext);
4665 }
4666
4667 /* Allow time for pending master requests to run */
4668 e1000_disable_pciex_master(hw);
4669
4670 ew32(WUC, E1000_WUC_PME_EN);
4671 ew32(WUFC, wufc);
4672 pci_enable_wake(pdev, PCI_D3hot, 1);
4673 pci_enable_wake(pdev, PCI_D3cold, 1);
4674 } else {
4675 ew32(WUC, 0);
4676 ew32(WUFC, 0);
4677 pci_enable_wake(pdev, PCI_D3hot, 0);
4678 pci_enable_wake(pdev, PCI_D3cold, 0);
4679 }
4680
4681 e1000_release_manageability(adapter);
4682
4683 /* make sure adapter isn't asleep if manageability is enabled */
4684 if (adapter->en_mng_pt) {
4685 pci_enable_wake(pdev, PCI_D3hot, 1);
4686 pci_enable_wake(pdev, PCI_D3cold, 1);
4687 }
4688
4689 if (hw->phy_type == e1000_phy_igp_3)
4690 e1000_phy_powerdown_workaround(hw);
4691
4692 if (netif_running(netdev))
4693 e1000_free_irq(adapter);
4694
4695 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4696 * would have already happened in close and is redundant. */
4697 e1000_release_hw_control(adapter);
4698
4699 pci_disable_device(pdev);
4700
4701 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4702
4703 return 0;
4704 }
4705
4706 #ifdef CONFIG_PM
4707 static int e1000_resume(struct pci_dev *pdev)
4708 {
4709 struct net_device *netdev = pci_get_drvdata(pdev);
4710 struct e1000_adapter *adapter = netdev_priv(netdev);
4711 struct e1000_hw *hw = &adapter->hw;
4712 u32 err;
4713
4714 pci_set_power_state(pdev, PCI_D0);
4715 pci_restore_state(pdev);
4716
4717 if (adapter->need_ioport)
4718 err = pci_enable_device(pdev);
4719 else
4720 err = pci_enable_device_mem(pdev);
4721 if (err) {
4722 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4723 return err;
4724 }
4725 pci_set_master(pdev);
4726
4727 pci_enable_wake(pdev, PCI_D3hot, 0);
4728 pci_enable_wake(pdev, PCI_D3cold, 0);
4729
4730 if (netif_running(netdev)) {
4731 err = e1000_request_irq(adapter);
4732 if (err)
4733 return err;
4734 }
4735
4736 e1000_power_up_phy(adapter);
4737 e1000_reset(adapter);
4738 ew32(WUS, ~0);
4739
4740 e1000_init_manageability(adapter);
4741
4742 if (netif_running(netdev))
4743 e1000_up(adapter);
4744
4745 netif_device_attach(netdev);
4746
4747 /* If the controller is 82573 and f/w is AMT, do not set
4748 * DRV_LOAD until the interface is up. For all other cases,
4749 * let the f/w know that the h/w is now under the control
4750 * of the driver. */
4751 if (hw->mac_type != e1000_82573 ||
4752 !e1000_check_mng_mode(hw))
4753 e1000_get_hw_control(adapter);
4754
4755 return 0;
4756 }
4757 #endif
4758
4759 static void e1000_shutdown(struct pci_dev *pdev)
4760 {
4761 e1000_suspend(pdev, PMSG_SUSPEND);
4762 }
4763
4764 #ifdef CONFIG_NET_POLL_CONTROLLER
4765 /*
4766 * Polling 'interrupt' - used by things like netconsole to send skbs
4767 * without having to re-enable interrupts. It's not called while
4768 * the interrupt routine is executing.
4769 */
4770 static void e1000_netpoll(struct net_device *netdev)
4771 {
4772 struct e1000_adapter *adapter = netdev_priv(netdev);
4773
4774 disable_irq(adapter->pdev->irq);
4775 e1000_intr(adapter->pdev->irq, netdev);
4776 enable_irq(adapter->pdev->irq);
4777 }
4778 #endif
4779
4780 /**
4781 * e1000_io_error_detected - called when PCI error is detected
4782 * @pdev: Pointer to PCI device
4783 * @state: The current pci conneection state
4784 *
4785 * This function is called after a PCI bus error affecting
4786 * this device has been detected.
4787 */
4788 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4789 pci_channel_state_t state)
4790 {
4791 struct net_device *netdev = pci_get_drvdata(pdev);
4792 struct e1000_adapter *adapter = netdev->priv;
4793
4794 netif_device_detach(netdev);
4795
4796 if (netif_running(netdev))
4797 e1000_down(adapter);
4798 pci_disable_device(pdev);
4799
4800 /* Request a slot slot reset. */
4801 return PCI_ERS_RESULT_NEED_RESET;
4802 }
4803
4804 /**
4805 * e1000_io_slot_reset - called after the pci bus has been reset.
4806 * @pdev: Pointer to PCI device
4807 *
4808 * Restart the card from scratch, as if from a cold-boot. Implementation
4809 * resembles the first-half of the e1000_resume routine.
4810 */
4811 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4812 {
4813 struct net_device *netdev = pci_get_drvdata(pdev);
4814 struct e1000_adapter *adapter = netdev->priv;
4815 struct e1000_hw *hw = &adapter->hw;
4816 int err;
4817
4818 if (adapter->need_ioport)
4819 err = pci_enable_device(pdev);
4820 else
4821 err = pci_enable_device_mem(pdev);
4822 if (err) {
4823 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4824 return PCI_ERS_RESULT_DISCONNECT;
4825 }
4826 pci_set_master(pdev);
4827
4828 pci_enable_wake(pdev, PCI_D3hot, 0);
4829 pci_enable_wake(pdev, PCI_D3cold, 0);
4830
4831 e1000_reset(adapter);
4832 ew32(WUS, ~0);
4833
4834 return PCI_ERS_RESULT_RECOVERED;
4835 }
4836
4837 /**
4838 * e1000_io_resume - called when traffic can start flowing again.
4839 * @pdev: Pointer to PCI device
4840 *
4841 * This callback is called when the error recovery driver tells us that
4842 * its OK to resume normal operation. Implementation resembles the
4843 * second-half of the e1000_resume routine.
4844 */
4845 static void e1000_io_resume(struct pci_dev *pdev)
4846 {
4847 struct net_device *netdev = pci_get_drvdata(pdev);
4848 struct e1000_adapter *adapter = netdev->priv;
4849 struct e1000_hw *hw = &adapter->hw;
4850
4851 e1000_init_manageability(adapter);
4852
4853 if (netif_running(netdev)) {
4854 if (e1000_up(adapter)) {
4855 printk("e1000: can't bring device back up after reset\n");
4856 return;
4857 }
4858 }
4859
4860 netif_device_attach(netdev);
4861
4862 /* If the controller is 82573 and f/w is AMT, do not set
4863 * DRV_LOAD until the interface is up. For all other cases,
4864 * let the f/w know that the h/w is now under the control
4865 * of the driver. */
4866 if (hw->mac_type != e1000_82573 ||
4867 !e1000_check_mng_mode(hw))
4868 e1000_get_hw_control(adapter);
4869
4870 }
4871
4872 /* e1000_main.c */