Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 struct e1000_stats {
36 char stat_string[ETH_GSTRING_LEN];
37 int sizeof_stat;
38 int stat_offset;
39 };
40
41 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
42 offsetof(struct e1000_adapter, m)
43 static const struct e1000_stats e1000_gstrings_stats[] = {
44 { "rx_packets", E1000_STAT(net_stats.rx_packets) },
45 { "tx_packets", E1000_STAT(net_stats.tx_packets) },
46 { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
47 { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
48 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
49 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
50 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
51 { "multicast", E1000_STAT(net_stats.multicast) },
52 { "collisions", E1000_STAT(net_stats.collisions) },
53 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
54 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
55 { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
56 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
57 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
58 { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
59 { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
60 { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
61 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
62 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
63 { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
64 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
65 { "tx_deferred_ok", E1000_STAT(stats.dc) },
66 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
67 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
68 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
69 { "rx_long_length_errors", E1000_STAT(stats.roc) },
70 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
71 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
72 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
73 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
74 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
75 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
76 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
77 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
78 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
79 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
80 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
81 { "rx_header_split", E1000_STAT(rx_hdr_split) },
82 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
83 };
84
85 #define E1000_QUEUE_STATS_LEN 0
86 #define E1000_GLOBAL_STATS_LEN \
87 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
88 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
89 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
90 "Register test (offline)", "Eeprom test (offline)",
91 "Interrupt test (offline)", "Loopback test (offline)",
92 "Link test (on/offline)"
93 };
94 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
95
96 static int
97 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
98 {
99 struct e1000_adapter *adapter = netdev_priv(netdev);
100 struct e1000_hw *hw = &adapter->hw;
101
102 if (hw->media_type == e1000_media_type_copper) {
103
104 ecmd->supported = (SUPPORTED_10baseT_Half |
105 SUPPORTED_10baseT_Full |
106 SUPPORTED_100baseT_Half |
107 SUPPORTED_100baseT_Full |
108 SUPPORTED_1000baseT_Full|
109 SUPPORTED_Autoneg |
110 SUPPORTED_TP);
111
112 ecmd->advertising = ADVERTISED_TP;
113
114 if (hw->autoneg == 1) {
115 ecmd->advertising |= ADVERTISED_Autoneg;
116
117 /* the e1000 autoneg seems to match ethtool nicely */
118
119 ecmd->advertising |= hw->autoneg_advertised;
120 }
121
122 ecmd->port = PORT_TP;
123 ecmd->phy_address = hw->phy_addr;
124
125 if (hw->mac_type == e1000_82543)
126 ecmd->transceiver = XCVR_EXTERNAL;
127 else
128 ecmd->transceiver = XCVR_INTERNAL;
129
130 } else {
131 ecmd->supported = (SUPPORTED_1000baseT_Full |
132 SUPPORTED_FIBRE |
133 SUPPORTED_Autoneg);
134
135 ecmd->advertising = (ADVERTISED_1000baseT_Full |
136 ADVERTISED_FIBRE |
137 ADVERTISED_Autoneg);
138
139 ecmd->port = PORT_FIBRE;
140
141 if (hw->mac_type >= e1000_82545)
142 ecmd->transceiver = XCVR_INTERNAL;
143 else
144 ecmd->transceiver = XCVR_EXTERNAL;
145 }
146
147 if (netif_carrier_ok(adapter->netdev)) {
148
149 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
150 &adapter->link_duplex);
151 ecmd->speed = adapter->link_speed;
152
153 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
154 * and HALF_DUPLEX != DUPLEX_HALF */
155
156 if (adapter->link_duplex == FULL_DUPLEX)
157 ecmd->duplex = DUPLEX_FULL;
158 else
159 ecmd->duplex = DUPLEX_HALF;
160 } else {
161 ecmd->speed = -1;
162 ecmd->duplex = -1;
163 }
164
165 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
166 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
167 return 0;
168 }
169
170 static int
171 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
172 {
173 struct e1000_adapter *adapter = netdev_priv(netdev);
174 struct e1000_hw *hw = &adapter->hw;
175
176 /* When SoL/IDER sessions are active, autoneg/speed/duplex
177 * cannot be changed */
178 if (e1000_check_phy_reset_block(hw)) {
179 DPRINTK(DRV, ERR, "Cannot change link characteristics "
180 "when SoL/IDER is active.\n");
181 return -EINVAL;
182 }
183
184 if (ecmd->autoneg == AUTONEG_ENABLE) {
185 hw->autoneg = 1;
186 if (hw->media_type == e1000_media_type_fiber)
187 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
188 ADVERTISED_FIBRE |
189 ADVERTISED_Autoneg;
190 else
191 hw->autoneg_advertised = ADVERTISED_10baseT_Half |
192 ADVERTISED_10baseT_Full |
193 ADVERTISED_100baseT_Half |
194 ADVERTISED_100baseT_Full |
195 ADVERTISED_1000baseT_Full|
196 ADVERTISED_Autoneg |
197 ADVERTISED_TP;
198 ecmd->advertising = hw->autoneg_advertised;
199 } else
200 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
201 return -EINVAL;
202
203 /* reset the link */
204
205 if (netif_running(adapter->netdev)) {
206 e1000_down(adapter);
207 e1000_reset(adapter);
208 e1000_up(adapter);
209 } else
210 e1000_reset(adapter);
211
212 return 0;
213 }
214
215 static void
216 e1000_get_pauseparam(struct net_device *netdev,
217 struct ethtool_pauseparam *pause)
218 {
219 struct e1000_adapter *adapter = netdev_priv(netdev);
220 struct e1000_hw *hw = &adapter->hw;
221
222 pause->autoneg =
223 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
224
225 if (hw->fc == e1000_fc_rx_pause)
226 pause->rx_pause = 1;
227 else if (hw->fc == e1000_fc_tx_pause)
228 pause->tx_pause = 1;
229 else if (hw->fc == e1000_fc_full) {
230 pause->rx_pause = 1;
231 pause->tx_pause = 1;
232 }
233 }
234
235 static int
236 e1000_set_pauseparam(struct net_device *netdev,
237 struct ethtool_pauseparam *pause)
238 {
239 struct e1000_adapter *adapter = netdev_priv(netdev);
240 struct e1000_hw *hw = &adapter->hw;
241
242 adapter->fc_autoneg = pause->autoneg;
243
244 if (pause->rx_pause && pause->tx_pause)
245 hw->fc = e1000_fc_full;
246 else if (pause->rx_pause && !pause->tx_pause)
247 hw->fc = e1000_fc_rx_pause;
248 else if (!pause->rx_pause && pause->tx_pause)
249 hw->fc = e1000_fc_tx_pause;
250 else if (!pause->rx_pause && !pause->tx_pause)
251 hw->fc = e1000_fc_none;
252
253 hw->original_fc = hw->fc;
254
255 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
256 if (netif_running(adapter->netdev)) {
257 e1000_down(adapter);
258 e1000_up(adapter);
259 } else
260 e1000_reset(adapter);
261 } else
262 return ((hw->media_type == e1000_media_type_fiber) ?
263 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
264
265 return 0;
266 }
267
268 static uint32_t
269 e1000_get_rx_csum(struct net_device *netdev)
270 {
271 struct e1000_adapter *adapter = netdev_priv(netdev);
272 return adapter->rx_csum;
273 }
274
275 static int
276 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
277 {
278 struct e1000_adapter *adapter = netdev_priv(netdev);
279 adapter->rx_csum = data;
280
281 if (netif_running(netdev)) {
282 e1000_down(adapter);
283 e1000_up(adapter);
284 } else
285 e1000_reset(adapter);
286 return 0;
287 }
288
289 static uint32_t
290 e1000_get_tx_csum(struct net_device *netdev)
291 {
292 return (netdev->features & NETIF_F_HW_CSUM) != 0;
293 }
294
295 static int
296 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
297 {
298 struct e1000_adapter *adapter = netdev_priv(netdev);
299
300 if (adapter->hw.mac_type < e1000_82543) {
301 if (!data)
302 return -EINVAL;
303 return 0;
304 }
305
306 if (data)
307 netdev->features |= NETIF_F_HW_CSUM;
308 else
309 netdev->features &= ~NETIF_F_HW_CSUM;
310
311 return 0;
312 }
313
314 #ifdef NETIF_F_TSO
315 static int
316 e1000_set_tso(struct net_device *netdev, uint32_t data)
317 {
318 struct e1000_adapter *adapter = netdev_priv(netdev);
319 if ((adapter->hw.mac_type < e1000_82544) ||
320 (adapter->hw.mac_type == e1000_82547))
321 return data ? -EINVAL : 0;
322
323 if (data)
324 netdev->features |= NETIF_F_TSO;
325 else
326 netdev->features &= ~NETIF_F_TSO;
327
328 DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
329 adapter->tso_force = TRUE;
330 return 0;
331 }
332 #endif /* NETIF_F_TSO */
333
334 static uint32_t
335 e1000_get_msglevel(struct net_device *netdev)
336 {
337 struct e1000_adapter *adapter = netdev_priv(netdev);
338 return adapter->msg_enable;
339 }
340
341 static void
342 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
343 {
344 struct e1000_adapter *adapter = netdev_priv(netdev);
345 adapter->msg_enable = data;
346 }
347
348 static int
349 e1000_get_regs_len(struct net_device *netdev)
350 {
351 #define E1000_REGS_LEN 32
352 return E1000_REGS_LEN * sizeof(uint32_t);
353 }
354
355 static void
356 e1000_get_regs(struct net_device *netdev,
357 struct ethtool_regs *regs, void *p)
358 {
359 struct e1000_adapter *adapter = netdev_priv(netdev);
360 struct e1000_hw *hw = &adapter->hw;
361 uint32_t *regs_buff = p;
362 uint16_t phy_data;
363
364 memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
365
366 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
367
368 regs_buff[0] = E1000_READ_REG(hw, CTRL);
369 regs_buff[1] = E1000_READ_REG(hw, STATUS);
370
371 regs_buff[2] = E1000_READ_REG(hw, RCTL);
372 regs_buff[3] = E1000_READ_REG(hw, RDLEN);
373 regs_buff[4] = E1000_READ_REG(hw, RDH);
374 regs_buff[5] = E1000_READ_REG(hw, RDT);
375 regs_buff[6] = E1000_READ_REG(hw, RDTR);
376
377 regs_buff[7] = E1000_READ_REG(hw, TCTL);
378 regs_buff[8] = E1000_READ_REG(hw, TDLEN);
379 regs_buff[9] = E1000_READ_REG(hw, TDH);
380 regs_buff[10] = E1000_READ_REG(hw, TDT);
381 regs_buff[11] = E1000_READ_REG(hw, TIDV);
382
383 regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
384 if (hw->phy_type == e1000_phy_igp) {
385 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
386 IGP01E1000_PHY_AGC_A);
387 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
388 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
389 regs_buff[13] = (uint32_t)phy_data; /* cable length */
390 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
391 IGP01E1000_PHY_AGC_B);
392 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
393 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
394 regs_buff[14] = (uint32_t)phy_data; /* cable length */
395 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
396 IGP01E1000_PHY_AGC_C);
397 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
398 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
399 regs_buff[15] = (uint32_t)phy_data; /* cable length */
400 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
401 IGP01E1000_PHY_AGC_D);
402 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
403 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
404 regs_buff[16] = (uint32_t)phy_data; /* cable length */
405 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
406 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
407 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
408 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
409 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
410 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
411 IGP01E1000_PHY_PCS_INIT_REG);
412 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
413 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
415 regs_buff[20] = 0; /* polarity correction enabled (always) */
416 regs_buff[22] = 0; /* phy receive errors (unavailable) */
417 regs_buff[23] = regs_buff[18]; /* mdix mode */
418 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
419 } else {
420 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
421 regs_buff[13] = (uint32_t)phy_data; /* cable length */
422 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
423 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
424 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
425 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
426 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
427 regs_buff[18] = regs_buff[13]; /* cable polarity */
428 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
429 regs_buff[20] = regs_buff[17]; /* polarity correction */
430 /* phy receive errors */
431 regs_buff[22] = adapter->phy_stats.receive_errors;
432 regs_buff[23] = regs_buff[13]; /* mdix mode */
433 }
434 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
435 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
436 regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
437 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
438 if (hw->mac_type >= e1000_82540 &&
439 hw->media_type == e1000_media_type_copper) {
440 regs_buff[26] = E1000_READ_REG(hw, MANC);
441 }
442 }
443
444 static int
445 e1000_get_eeprom_len(struct net_device *netdev)
446 {
447 struct e1000_adapter *adapter = netdev_priv(netdev);
448 return adapter->hw.eeprom.word_size * 2;
449 }
450
451 static int
452 e1000_get_eeprom(struct net_device *netdev,
453 struct ethtool_eeprom *eeprom, uint8_t *bytes)
454 {
455 struct e1000_adapter *adapter = netdev_priv(netdev);
456 struct e1000_hw *hw = &adapter->hw;
457 uint16_t *eeprom_buff;
458 int first_word, last_word;
459 int ret_val = 0;
460 uint16_t i;
461
462 if (eeprom->len == 0)
463 return -EINVAL;
464
465 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
466
467 first_word = eeprom->offset >> 1;
468 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
469
470 eeprom_buff = kmalloc(sizeof(uint16_t) *
471 (last_word - first_word + 1), GFP_KERNEL);
472 if (!eeprom_buff)
473 return -ENOMEM;
474
475 if (hw->eeprom.type == e1000_eeprom_spi)
476 ret_val = e1000_read_eeprom(hw, first_word,
477 last_word - first_word + 1,
478 eeprom_buff);
479 else {
480 for (i = 0; i < last_word - first_word + 1; i++)
481 if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
482 &eeprom_buff[i])))
483 break;
484 }
485
486 /* Device's eeprom is always little-endian, word addressable */
487 for (i = 0; i < last_word - first_word + 1; i++)
488 le16_to_cpus(&eeprom_buff[i]);
489
490 memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
491 eeprom->len);
492 kfree(eeprom_buff);
493
494 return ret_val;
495 }
496
497 static int
498 e1000_set_eeprom(struct net_device *netdev,
499 struct ethtool_eeprom *eeprom, uint8_t *bytes)
500 {
501 struct e1000_adapter *adapter = netdev_priv(netdev);
502 struct e1000_hw *hw = &adapter->hw;
503 uint16_t *eeprom_buff;
504 void *ptr;
505 int max_len, first_word, last_word, ret_val = 0;
506 uint16_t i;
507
508 if (eeprom->len == 0)
509 return -EOPNOTSUPP;
510
511 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
512 return -EFAULT;
513
514 max_len = hw->eeprom.word_size * 2;
515
516 first_word = eeprom->offset >> 1;
517 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
518 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
519 if (!eeprom_buff)
520 return -ENOMEM;
521
522 ptr = (void *)eeprom_buff;
523
524 if (eeprom->offset & 1) {
525 /* need read/modify/write of first changed EEPROM word */
526 /* only the second byte of the word is being modified */
527 ret_val = e1000_read_eeprom(hw, first_word, 1,
528 &eeprom_buff[0]);
529 ptr++;
530 }
531 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
532 /* need read/modify/write of last changed EEPROM word */
533 /* only the first byte of the word is being modified */
534 ret_val = e1000_read_eeprom(hw, last_word, 1,
535 &eeprom_buff[last_word - first_word]);
536 }
537
538 /* Device's eeprom is always little-endian, word addressable */
539 for (i = 0; i < last_word - first_word + 1; i++)
540 le16_to_cpus(&eeprom_buff[i]);
541
542 memcpy(ptr, bytes, eeprom->len);
543
544 for (i = 0; i < last_word - first_word + 1; i++)
545 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
546
547 ret_val = e1000_write_eeprom(hw, first_word,
548 last_word - first_word + 1, eeprom_buff);
549
550 /* Update the checksum over the first part of the EEPROM if needed
551 * and flush shadow RAM for 82573 conrollers */
552 if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
553 (hw->mac_type == e1000_82573)))
554 e1000_update_eeprom_checksum(hw);
555
556 kfree(eeprom_buff);
557 return ret_val;
558 }
559
560 static void
561 e1000_get_drvinfo(struct net_device *netdev,
562 struct ethtool_drvinfo *drvinfo)
563 {
564 struct e1000_adapter *adapter = netdev_priv(netdev);
565 char firmware_version[32];
566 uint16_t eeprom_data;
567
568 strncpy(drvinfo->driver, e1000_driver_name, 32);
569 strncpy(drvinfo->version, e1000_driver_version, 32);
570
571 /* EEPROM image version # is reported as firmware version # for
572 * 8257{1|2|3} controllers */
573 e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
574 switch (adapter->hw.mac_type) {
575 case e1000_82571:
576 case e1000_82572:
577 case e1000_82573:
578 case e1000_80003es2lan:
579 sprintf(firmware_version, "%d.%d-%d",
580 (eeprom_data & 0xF000) >> 12,
581 (eeprom_data & 0x0FF0) >> 4,
582 eeprom_data & 0x000F);
583 break;
584 default:
585 sprintf(firmware_version, "N/A");
586 }
587
588 strncpy(drvinfo->fw_version, firmware_version, 32);
589 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
590 drvinfo->n_stats = E1000_STATS_LEN;
591 drvinfo->testinfo_len = E1000_TEST_LEN;
592 drvinfo->regdump_len = e1000_get_regs_len(netdev);
593 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
594 }
595
596 static void
597 e1000_get_ringparam(struct net_device *netdev,
598 struct ethtool_ringparam *ring)
599 {
600 struct e1000_adapter *adapter = netdev_priv(netdev);
601 e1000_mac_type mac_type = adapter->hw.mac_type;
602 struct e1000_tx_ring *txdr = adapter->tx_ring;
603 struct e1000_rx_ring *rxdr = adapter->rx_ring;
604
605 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
606 E1000_MAX_82544_RXD;
607 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
608 E1000_MAX_82544_TXD;
609 ring->rx_mini_max_pending = 0;
610 ring->rx_jumbo_max_pending = 0;
611 ring->rx_pending = rxdr->count;
612 ring->tx_pending = txdr->count;
613 ring->rx_mini_pending = 0;
614 ring->rx_jumbo_pending = 0;
615 }
616
617 static int
618 e1000_set_ringparam(struct net_device *netdev,
619 struct ethtool_ringparam *ring)
620 {
621 struct e1000_adapter *adapter = netdev_priv(netdev);
622 e1000_mac_type mac_type = adapter->hw.mac_type;
623 struct e1000_tx_ring *txdr, *tx_old, *tx_new;
624 struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
625 int i, err, tx_ring_size, rx_ring_size;
626
627 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
628 return -EINVAL;
629
630 tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
631 rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
632
633 if (netif_running(adapter->netdev))
634 e1000_down(adapter);
635
636 tx_old = adapter->tx_ring;
637 rx_old = adapter->rx_ring;
638
639 adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
640 if (!adapter->tx_ring) {
641 err = -ENOMEM;
642 goto err_setup_rx;
643 }
644 memset(adapter->tx_ring, 0, tx_ring_size);
645
646 adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
647 if (!adapter->rx_ring) {
648 kfree(adapter->tx_ring);
649 err = -ENOMEM;
650 goto err_setup_rx;
651 }
652 memset(adapter->rx_ring, 0, rx_ring_size);
653
654 txdr = adapter->tx_ring;
655 rxdr = adapter->rx_ring;
656
657 rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
658 rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
659 E1000_MAX_RXD : E1000_MAX_82544_RXD));
660 E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
661
662 txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
663 txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
664 E1000_MAX_TXD : E1000_MAX_82544_TXD));
665 E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
666
667 for (i = 0; i < adapter->num_tx_queues; i++)
668 txdr[i].count = txdr->count;
669 for (i = 0; i < adapter->num_rx_queues; i++)
670 rxdr[i].count = rxdr->count;
671
672 if (netif_running(adapter->netdev)) {
673 /* Try to get new resources before deleting old */
674 if ((err = e1000_setup_all_rx_resources(adapter)))
675 goto err_setup_rx;
676 if ((err = e1000_setup_all_tx_resources(adapter)))
677 goto err_setup_tx;
678
679 /* save the new, restore the old in order to free it,
680 * then restore the new back again */
681
682 rx_new = adapter->rx_ring;
683 tx_new = adapter->tx_ring;
684 adapter->rx_ring = rx_old;
685 adapter->tx_ring = tx_old;
686 e1000_free_all_rx_resources(adapter);
687 e1000_free_all_tx_resources(adapter);
688 kfree(tx_old);
689 kfree(rx_old);
690 adapter->rx_ring = rx_new;
691 adapter->tx_ring = tx_new;
692 if ((err = e1000_up(adapter)))
693 return err;
694 }
695
696 return 0;
697 err_setup_tx:
698 e1000_free_all_rx_resources(adapter);
699 err_setup_rx:
700 adapter->rx_ring = rx_old;
701 adapter->tx_ring = tx_old;
702 e1000_up(adapter);
703 return err;
704 }
705
706 #define REG_PATTERN_TEST(R, M, W) \
707 { \
708 uint32_t pat, value; \
709 uint32_t test[] = \
710 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
711 for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
712 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
713 value = E1000_READ_REG(&adapter->hw, R); \
714 if (value != (test[pat] & W & M)) { \
715 DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
716 "0x%08X expected 0x%08X\n", \
717 E1000_##R, value, (test[pat] & W & M)); \
718 *data = (adapter->hw.mac_type < e1000_82543) ? \
719 E1000_82542_##R : E1000_##R; \
720 return 1; \
721 } \
722 } \
723 }
724
725 #define REG_SET_AND_CHECK(R, M, W) \
726 { \
727 uint32_t value; \
728 E1000_WRITE_REG(&adapter->hw, R, W & M); \
729 value = E1000_READ_REG(&adapter->hw, R); \
730 if ((W & M) != (value & M)) { \
731 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
732 "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
733 *data = (adapter->hw.mac_type < e1000_82543) ? \
734 E1000_82542_##R : E1000_##R; \
735 return 1; \
736 } \
737 }
738
739 static int
740 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
741 {
742 uint32_t value, before, after;
743 uint32_t i, toggle;
744
745 /* The status register is Read Only, so a write should fail.
746 * Some bits that get toggled are ignored.
747 */
748 switch (adapter->hw.mac_type) {
749 /* there are several bits on newer hardware that are r/w */
750 case e1000_82571:
751 case e1000_82572:
752 case e1000_80003es2lan:
753 toggle = 0x7FFFF3FF;
754 break;
755 case e1000_82573:
756 toggle = 0x7FFFF033;
757 break;
758 default:
759 toggle = 0xFFFFF833;
760 break;
761 }
762
763 before = E1000_READ_REG(&adapter->hw, STATUS);
764 value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
765 E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
766 after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
767 if (value != after) {
768 DPRINTK(DRV, ERR, "failed STATUS register test got: "
769 "0x%08X expected: 0x%08X\n", after, value);
770 *data = 1;
771 return 1;
772 }
773 /* restore previous status */
774 E1000_WRITE_REG(&adapter->hw, STATUS, before);
775
776 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
777 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
778 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
779 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
780 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
781 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
782 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
783 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
784 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
785 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
786 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
787 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
788 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
789 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
790
791 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
792 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
793 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
794
795 if (adapter->hw.mac_type >= e1000_82543) {
796
797 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
798 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
799 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
800 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
801 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
802
803 for (i = 0; i < E1000_RAR_ENTRIES; i++) {
804 REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
805 0xFFFFFFFF);
806 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
807 0xFFFFFFFF);
808 }
809
810 } else {
811
812 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
813 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
814 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
815 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
816
817 }
818
819 for (i = 0; i < E1000_MC_TBL_SIZE; i++)
820 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
821
822 *data = 0;
823 return 0;
824 }
825
826 static int
827 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
828 {
829 uint16_t temp;
830 uint16_t checksum = 0;
831 uint16_t i;
832
833 *data = 0;
834 /* Read and add up the contents of the EEPROM */
835 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
836 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
837 *data = 1;
838 break;
839 }
840 checksum += temp;
841 }
842
843 /* If Checksum is not Correct return error else test passed */
844 if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
845 *data = 2;
846
847 return *data;
848 }
849
850 static irqreturn_t
851 e1000_test_intr(int irq,
852 void *data,
853 struct pt_regs *regs)
854 {
855 struct net_device *netdev = (struct net_device *) data;
856 struct e1000_adapter *adapter = netdev_priv(netdev);
857
858 adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
859
860 return IRQ_HANDLED;
861 }
862
863 static int
864 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
865 {
866 struct net_device *netdev = adapter->netdev;
867 uint32_t mask, i=0, shared_int = TRUE;
868 uint32_t irq = adapter->pdev->irq;
869
870 *data = 0;
871
872 /* Hook up test interrupt handler just for this test */
873 if (!request_irq(irq, &e1000_test_intr, SA_PROBEIRQ, netdev->name,
874 netdev)) {
875 shared_int = FALSE;
876 } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
877 netdev->name, netdev)){
878 *data = 1;
879 return -1;
880 }
881 DPRINTK(PROBE,INFO, "testing %s interrupt\n",
882 (shared_int ? "shared" : "unshared"));
883
884 /* Disable all the interrupts */
885 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
886 msec_delay(10);
887
888 /* Test each interrupt */
889 for (; i < 10; i++) {
890
891 /* Interrupt to test */
892 mask = 1 << i;
893
894 if (!shared_int) {
895 /* Disable the interrupt to be reported in
896 * the cause register and then force the same
897 * interrupt and see if one gets posted. If
898 * an interrupt was posted to the bus, the
899 * test failed.
900 */
901 adapter->test_icr = 0;
902 E1000_WRITE_REG(&adapter->hw, IMC, mask);
903 E1000_WRITE_REG(&adapter->hw, ICS, mask);
904 msec_delay(10);
905
906 if (adapter->test_icr & mask) {
907 *data = 3;
908 break;
909 }
910 }
911
912 /* Enable the interrupt to be reported in
913 * the cause register and then force the same
914 * interrupt and see if one gets posted. If
915 * an interrupt was not posted to the bus, the
916 * test failed.
917 */
918 adapter->test_icr = 0;
919 E1000_WRITE_REG(&adapter->hw, IMS, mask);
920 E1000_WRITE_REG(&adapter->hw, ICS, mask);
921 msec_delay(10);
922
923 if (!(adapter->test_icr & mask)) {
924 *data = 4;
925 break;
926 }
927
928 if (!shared_int) {
929 /* Disable the other interrupts to be reported in
930 * the cause register and then force the other
931 * interrupts and see if any get posted. If
932 * an interrupt was posted to the bus, the
933 * test failed.
934 */
935 adapter->test_icr = 0;
936 E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
937 E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
938 msec_delay(10);
939
940 if (adapter->test_icr) {
941 *data = 5;
942 break;
943 }
944 }
945 }
946
947 /* Disable all the interrupts */
948 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
949 msec_delay(10);
950
951 /* Unhook test interrupt handler */
952 free_irq(irq, netdev);
953
954 return *data;
955 }
956
957 static void
958 e1000_free_desc_rings(struct e1000_adapter *adapter)
959 {
960 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
961 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
962 struct pci_dev *pdev = adapter->pdev;
963 int i;
964
965 if (txdr->desc && txdr->buffer_info) {
966 for (i = 0; i < txdr->count; i++) {
967 if (txdr->buffer_info[i].dma)
968 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
969 txdr->buffer_info[i].length,
970 PCI_DMA_TODEVICE);
971 if (txdr->buffer_info[i].skb)
972 dev_kfree_skb(txdr->buffer_info[i].skb);
973 }
974 }
975
976 if (rxdr->desc && rxdr->buffer_info) {
977 for (i = 0; i < rxdr->count; i++) {
978 if (rxdr->buffer_info[i].dma)
979 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
980 rxdr->buffer_info[i].length,
981 PCI_DMA_FROMDEVICE);
982 if (rxdr->buffer_info[i].skb)
983 dev_kfree_skb(rxdr->buffer_info[i].skb);
984 }
985 }
986
987 if (txdr->desc) {
988 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
989 txdr->desc = NULL;
990 }
991 if (rxdr->desc) {
992 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
993 rxdr->desc = NULL;
994 }
995
996 kfree(txdr->buffer_info);
997 txdr->buffer_info = NULL;
998 kfree(rxdr->buffer_info);
999 rxdr->buffer_info = NULL;
1000
1001 return;
1002 }
1003
1004 static int
1005 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1006 {
1007 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1008 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1009 struct pci_dev *pdev = adapter->pdev;
1010 uint32_t rctl;
1011 int size, i, ret_val;
1012
1013 /* Setup Tx descriptor ring and Tx buffers */
1014
1015 if (!txdr->count)
1016 txdr->count = E1000_DEFAULT_TXD;
1017
1018 size = txdr->count * sizeof(struct e1000_buffer);
1019 if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1020 ret_val = 1;
1021 goto err_nomem;
1022 }
1023 memset(txdr->buffer_info, 0, size);
1024
1025 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1026 E1000_ROUNDUP(txdr->size, 4096);
1027 if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1028 ret_val = 2;
1029 goto err_nomem;
1030 }
1031 memset(txdr->desc, 0, txdr->size);
1032 txdr->next_to_use = txdr->next_to_clean = 0;
1033
1034 E1000_WRITE_REG(&adapter->hw, TDBAL,
1035 ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1036 E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1037 E1000_WRITE_REG(&adapter->hw, TDLEN,
1038 txdr->count * sizeof(struct e1000_tx_desc));
1039 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1040 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1041 E1000_WRITE_REG(&adapter->hw, TCTL,
1042 E1000_TCTL_PSP | E1000_TCTL_EN |
1043 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1044 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1045
1046 for (i = 0; i < txdr->count; i++) {
1047 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1048 struct sk_buff *skb;
1049 unsigned int size = 1024;
1050
1051 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1052 ret_val = 3;
1053 goto err_nomem;
1054 }
1055 skb_put(skb, size);
1056 txdr->buffer_info[i].skb = skb;
1057 txdr->buffer_info[i].length = skb->len;
1058 txdr->buffer_info[i].dma =
1059 pci_map_single(pdev, skb->data, skb->len,
1060 PCI_DMA_TODEVICE);
1061 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1062 tx_desc->lower.data = cpu_to_le32(skb->len);
1063 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1064 E1000_TXD_CMD_IFCS |
1065 E1000_TXD_CMD_RPS);
1066 tx_desc->upper.data = 0;
1067 }
1068
1069 /* Setup Rx descriptor ring and Rx buffers */
1070
1071 if (!rxdr->count)
1072 rxdr->count = E1000_DEFAULT_RXD;
1073
1074 size = rxdr->count * sizeof(struct e1000_buffer);
1075 if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1076 ret_val = 4;
1077 goto err_nomem;
1078 }
1079 memset(rxdr->buffer_info, 0, size);
1080
1081 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1082 if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1083 ret_val = 5;
1084 goto err_nomem;
1085 }
1086 memset(rxdr->desc, 0, rxdr->size);
1087 rxdr->next_to_use = rxdr->next_to_clean = 0;
1088
1089 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1090 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1091 E1000_WRITE_REG(&adapter->hw, RDBAL,
1092 ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1093 E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1094 E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1095 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1096 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1097 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1098 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1099 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1100 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1101
1102 for (i = 0; i < rxdr->count; i++) {
1103 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1104 struct sk_buff *skb;
1105
1106 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1107 GFP_KERNEL))) {
1108 ret_val = 6;
1109 goto err_nomem;
1110 }
1111 skb_reserve(skb, NET_IP_ALIGN);
1112 rxdr->buffer_info[i].skb = skb;
1113 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1114 rxdr->buffer_info[i].dma =
1115 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1116 PCI_DMA_FROMDEVICE);
1117 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1118 memset(skb->data, 0x00, skb->len);
1119 }
1120
1121 return 0;
1122
1123 err_nomem:
1124 e1000_free_desc_rings(adapter);
1125 return ret_val;
1126 }
1127
1128 static void
1129 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1130 {
1131 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1132 e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1133 e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1134 e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1135 e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1136 }
1137
1138 static void
1139 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1140 {
1141 uint16_t phy_reg;
1142
1143 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1144 * Extended PHY Specific Control Register to 25MHz clock. This
1145 * value defaults back to a 2.5MHz clock when the PHY is reset.
1146 */
1147 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1148 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1149 e1000_write_phy_reg(&adapter->hw,
1150 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1151
1152 /* In addition, because of the s/w reset above, we need to enable
1153 * CRS on TX. This must be set for both full and half duplex
1154 * operation.
1155 */
1156 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1157 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1158 e1000_write_phy_reg(&adapter->hw,
1159 M88E1000_PHY_SPEC_CTRL, phy_reg);
1160 }
1161
1162 static int
1163 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1164 {
1165 uint32_t ctrl_reg;
1166 uint16_t phy_reg;
1167
1168 /* Setup the Device Control Register for PHY loopback test. */
1169
1170 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1171 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1172 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1173 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1174 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1175 E1000_CTRL_FD); /* Force Duplex to FULL */
1176
1177 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1178
1179 /* Read the PHY Specific Control Register (0x10) */
1180 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1181
1182 /* Clear Auto-Crossover bits in PHY Specific Control Register
1183 * (bits 6:5).
1184 */
1185 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1186 e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1187
1188 /* Perform software reset on the PHY */
1189 e1000_phy_reset(&adapter->hw);
1190
1191 /* Have to setup TX_CLK and TX_CRS after software reset */
1192 e1000_phy_reset_clk_and_crs(adapter);
1193
1194 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1195
1196 /* Wait for reset to complete. */
1197 udelay(500);
1198
1199 /* Have to setup TX_CLK and TX_CRS after software reset */
1200 e1000_phy_reset_clk_and_crs(adapter);
1201
1202 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1203 e1000_phy_disable_receiver(adapter);
1204
1205 /* Set the loopback bit in the PHY control register. */
1206 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1207 phy_reg |= MII_CR_LOOPBACK;
1208 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1209
1210 /* Setup TX_CLK and TX_CRS one more time. */
1211 e1000_phy_reset_clk_and_crs(adapter);
1212
1213 /* Check Phy Configuration */
1214 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1215 if (phy_reg != 0x4100)
1216 return 9;
1217
1218 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1219 if (phy_reg != 0x0070)
1220 return 10;
1221
1222 e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1223 if (phy_reg != 0x001A)
1224 return 11;
1225
1226 return 0;
1227 }
1228
1229 static int
1230 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1231 {
1232 uint32_t ctrl_reg = 0;
1233 uint32_t stat_reg = 0;
1234
1235 adapter->hw.autoneg = FALSE;
1236
1237 if (adapter->hw.phy_type == e1000_phy_m88) {
1238 /* Auto-MDI/MDIX Off */
1239 e1000_write_phy_reg(&adapter->hw,
1240 M88E1000_PHY_SPEC_CTRL, 0x0808);
1241 /* reset to update Auto-MDI/MDIX */
1242 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1243 /* autoneg off */
1244 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1245 } else if (adapter->hw.phy_type == e1000_phy_gg82563) {
1246 e1000_write_phy_reg(&adapter->hw,
1247 GG82563_PHY_KMRN_MODE_CTRL,
1248 0x1CE);
1249 }
1250 /* force 1000, set loopback */
1251 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1252
1253 /* Now set up the MAC to the same speed/duplex as the PHY. */
1254 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1255 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1256 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1257 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1258 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1259 E1000_CTRL_FD); /* Force Duplex to FULL */
1260
1261 if (adapter->hw.media_type == e1000_media_type_copper &&
1262 adapter->hw.phy_type == e1000_phy_m88) {
1263 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1264 } else {
1265 /* Set the ILOS bit on the fiber Nic is half
1266 * duplex link is detected. */
1267 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1268 if ((stat_reg & E1000_STATUS_FD) == 0)
1269 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1270 }
1271
1272 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1273
1274 /* Disable the receiver on the PHY so when a cable is plugged in, the
1275 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1276 */
1277 if (adapter->hw.phy_type == e1000_phy_m88)
1278 e1000_phy_disable_receiver(adapter);
1279
1280 udelay(500);
1281
1282 return 0;
1283 }
1284
1285 static int
1286 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1287 {
1288 uint16_t phy_reg = 0;
1289 uint16_t count = 0;
1290
1291 switch (adapter->hw.mac_type) {
1292 case e1000_82543:
1293 if (adapter->hw.media_type == e1000_media_type_copper) {
1294 /* Attempt to setup Loopback mode on Non-integrated PHY.
1295 * Some PHY registers get corrupted at random, so
1296 * attempt this 10 times.
1297 */
1298 while (e1000_nonintegrated_phy_loopback(adapter) &&
1299 count++ < 10);
1300 if (count < 11)
1301 return 0;
1302 }
1303 break;
1304
1305 case e1000_82544:
1306 case e1000_82540:
1307 case e1000_82545:
1308 case e1000_82545_rev_3:
1309 case e1000_82546:
1310 case e1000_82546_rev_3:
1311 case e1000_82541:
1312 case e1000_82541_rev_2:
1313 case e1000_82547:
1314 case e1000_82547_rev_2:
1315 case e1000_82571:
1316 case e1000_82572:
1317 case e1000_82573:
1318 case e1000_80003es2lan:
1319 return e1000_integrated_phy_loopback(adapter);
1320 break;
1321
1322 default:
1323 /* Default PHY loopback work is to read the MII
1324 * control register and assert bit 14 (loopback mode).
1325 */
1326 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1327 phy_reg |= MII_CR_LOOPBACK;
1328 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1329 return 0;
1330 break;
1331 }
1332
1333 return 8;
1334 }
1335
1336 static int
1337 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1338 {
1339 struct e1000_hw *hw = &adapter->hw;
1340 uint32_t rctl;
1341
1342 if (hw->media_type == e1000_media_type_fiber ||
1343 hw->media_type == e1000_media_type_internal_serdes) {
1344 switch (hw->mac_type) {
1345 case e1000_82545:
1346 case e1000_82546:
1347 case e1000_82545_rev_3:
1348 case e1000_82546_rev_3:
1349 return e1000_set_phy_loopback(adapter);
1350 break;
1351 case e1000_82571:
1352 case e1000_82572:
1353 #define E1000_SERDES_LB_ON 0x410
1354 e1000_set_phy_loopback(adapter);
1355 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1356 msec_delay(10);
1357 return 0;
1358 break;
1359 default:
1360 rctl = E1000_READ_REG(hw, RCTL);
1361 rctl |= E1000_RCTL_LBM_TCVR;
1362 E1000_WRITE_REG(hw, RCTL, rctl);
1363 return 0;
1364 }
1365 } else if (hw->media_type == e1000_media_type_copper)
1366 return e1000_set_phy_loopback(adapter);
1367
1368 return 7;
1369 }
1370
1371 static void
1372 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1373 {
1374 struct e1000_hw *hw = &adapter->hw;
1375 uint32_t rctl;
1376 uint16_t phy_reg;
1377
1378 rctl = E1000_READ_REG(hw, RCTL);
1379 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1380 E1000_WRITE_REG(hw, RCTL, rctl);
1381
1382 switch (hw->mac_type) {
1383 case e1000_82571:
1384 case e1000_82572:
1385 if (hw->media_type == e1000_media_type_fiber ||
1386 hw->media_type == e1000_media_type_internal_serdes) {
1387 #define E1000_SERDES_LB_OFF 0x400
1388 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1389 msec_delay(10);
1390 break;
1391 }
1392 /* Fall Through */
1393 case e1000_82545:
1394 case e1000_82546:
1395 case e1000_82545_rev_3:
1396 case e1000_82546_rev_3:
1397 default:
1398 hw->autoneg = TRUE;
1399 if (hw->phy_type == e1000_phy_gg82563) {
1400 e1000_write_phy_reg(hw,
1401 GG82563_PHY_KMRN_MODE_CTRL,
1402 0x180);
1403 }
1404 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1405 if (phy_reg & MII_CR_LOOPBACK) {
1406 phy_reg &= ~MII_CR_LOOPBACK;
1407 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1408 e1000_phy_reset(hw);
1409 }
1410 break;
1411 }
1412 }
1413
1414 static void
1415 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1416 {
1417 memset(skb->data, 0xFF, frame_size);
1418 frame_size &= ~1;
1419 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1420 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1421 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1422 }
1423
1424 static int
1425 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1426 {
1427 frame_size &= ~1;
1428 if (*(skb->data + 3) == 0xFF) {
1429 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1430 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1431 return 0;
1432 }
1433 }
1434 return 13;
1435 }
1436
1437 static int
1438 e1000_run_loopback_test(struct e1000_adapter *adapter)
1439 {
1440 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1441 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1442 struct pci_dev *pdev = adapter->pdev;
1443 int i, j, k, l, lc, good_cnt, ret_val=0;
1444 unsigned long time;
1445
1446 E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1447
1448 /* Calculate the loop count based on the largest descriptor ring
1449 * The idea is to wrap the largest ring a number of times using 64
1450 * send/receive pairs during each loop
1451 */
1452
1453 if (rxdr->count <= txdr->count)
1454 lc = ((txdr->count / 64) * 2) + 1;
1455 else
1456 lc = ((rxdr->count / 64) * 2) + 1;
1457
1458 k = l = 0;
1459 for (j = 0; j <= lc; j++) { /* loop count loop */
1460 for (i = 0; i < 64; i++) { /* send the packets */
1461 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1462 1024);
1463 pci_dma_sync_single_for_device(pdev,
1464 txdr->buffer_info[k].dma,
1465 txdr->buffer_info[k].length,
1466 PCI_DMA_TODEVICE);
1467 if (unlikely(++k == txdr->count)) k = 0;
1468 }
1469 E1000_WRITE_REG(&adapter->hw, TDT, k);
1470 msec_delay(200);
1471 time = jiffies; /* set the start time for the receive */
1472 good_cnt = 0;
1473 do { /* receive the sent packets */
1474 pci_dma_sync_single_for_cpu(pdev,
1475 rxdr->buffer_info[l].dma,
1476 rxdr->buffer_info[l].length,
1477 PCI_DMA_FROMDEVICE);
1478
1479 ret_val = e1000_check_lbtest_frame(
1480 rxdr->buffer_info[l].skb,
1481 1024);
1482 if (!ret_val)
1483 good_cnt++;
1484 if (unlikely(++l == rxdr->count)) l = 0;
1485 /* time + 20 msecs (200 msecs on 2.4) is more than
1486 * enough time to complete the receives, if it's
1487 * exceeded, break and error off
1488 */
1489 } while (good_cnt < 64 && jiffies < (time + 20));
1490 if (good_cnt != 64) {
1491 ret_val = 13; /* ret_val is the same as mis-compare */
1492 break;
1493 }
1494 if (jiffies >= (time + 2)) {
1495 ret_val = 14; /* error code for time out error */
1496 break;
1497 }
1498 } /* end loop count loop */
1499 return ret_val;
1500 }
1501
1502 static int
1503 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1504 {
1505 /* PHY loopback cannot be performed if SoL/IDER
1506 * sessions are active */
1507 if (e1000_check_phy_reset_block(&adapter->hw)) {
1508 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1509 "when SoL/IDER is active.\n");
1510 *data = 0;
1511 goto out;
1512 }
1513
1514 if ((*data = e1000_setup_desc_rings(adapter)))
1515 goto out;
1516 if ((*data = e1000_setup_loopback_test(adapter)))
1517 goto err_loopback;
1518 *data = e1000_run_loopback_test(adapter);
1519 e1000_loopback_cleanup(adapter);
1520
1521 err_loopback:
1522 e1000_free_desc_rings(adapter);
1523 out:
1524 return *data;
1525 }
1526
1527 static int
1528 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1529 {
1530 *data = 0;
1531 if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1532 int i = 0;
1533 adapter->hw.serdes_link_down = TRUE;
1534
1535 /* On some blade server designs, link establishment
1536 * could take as long as 2-3 minutes */
1537 do {
1538 e1000_check_for_link(&adapter->hw);
1539 if (adapter->hw.serdes_link_down == FALSE)
1540 return *data;
1541 msec_delay(20);
1542 } while (i++ < 3750);
1543
1544 *data = 1;
1545 } else {
1546 e1000_check_for_link(&adapter->hw);
1547 if (adapter->hw.autoneg) /* if auto_neg is set wait for it */
1548 msec_delay(4000);
1549
1550 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1551 *data = 1;
1552 }
1553 }
1554 return *data;
1555 }
1556
1557 static int
1558 e1000_diag_test_count(struct net_device *netdev)
1559 {
1560 return E1000_TEST_LEN;
1561 }
1562
1563 static void
1564 e1000_diag_test(struct net_device *netdev,
1565 struct ethtool_test *eth_test, uint64_t *data)
1566 {
1567 struct e1000_adapter *adapter = netdev_priv(netdev);
1568 boolean_t if_running = netif_running(netdev);
1569
1570 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1571 /* Offline tests */
1572
1573 /* save speed, duplex, autoneg settings */
1574 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1575 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1576 uint8_t autoneg = adapter->hw.autoneg;
1577
1578 /* Link test performed before hardware reset so autoneg doesn't
1579 * interfere with test result */
1580 if (e1000_link_test(adapter, &data[4]))
1581 eth_test->flags |= ETH_TEST_FL_FAILED;
1582
1583 if (if_running)
1584 e1000_down(adapter);
1585 else
1586 e1000_reset(adapter);
1587
1588 if (e1000_reg_test(adapter, &data[0]))
1589 eth_test->flags |= ETH_TEST_FL_FAILED;
1590
1591 e1000_reset(adapter);
1592 if (e1000_eeprom_test(adapter, &data[1]))
1593 eth_test->flags |= ETH_TEST_FL_FAILED;
1594
1595 e1000_reset(adapter);
1596 if (e1000_intr_test(adapter, &data[2]))
1597 eth_test->flags |= ETH_TEST_FL_FAILED;
1598
1599 e1000_reset(adapter);
1600 if (e1000_loopback_test(adapter, &data[3]))
1601 eth_test->flags |= ETH_TEST_FL_FAILED;
1602
1603 /* restore speed, duplex, autoneg settings */
1604 adapter->hw.autoneg_advertised = autoneg_advertised;
1605 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1606 adapter->hw.autoneg = autoneg;
1607
1608 e1000_reset(adapter);
1609 if (if_running)
1610 e1000_up(adapter);
1611 } else {
1612 /* Online tests */
1613 if (e1000_link_test(adapter, &data[4]))
1614 eth_test->flags |= ETH_TEST_FL_FAILED;
1615
1616 /* Offline tests aren't run; pass by default */
1617 data[0] = 0;
1618 data[1] = 0;
1619 data[2] = 0;
1620 data[3] = 0;
1621 }
1622 msleep_interruptible(4 * 1000);
1623 }
1624
1625 static void
1626 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1627 {
1628 struct e1000_adapter *adapter = netdev_priv(netdev);
1629 struct e1000_hw *hw = &adapter->hw;
1630
1631 switch (adapter->hw.device_id) {
1632 case E1000_DEV_ID_82542:
1633 case E1000_DEV_ID_82543GC_FIBER:
1634 case E1000_DEV_ID_82543GC_COPPER:
1635 case E1000_DEV_ID_82544EI_FIBER:
1636 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1637 case E1000_DEV_ID_82545EM_FIBER:
1638 case E1000_DEV_ID_82545EM_COPPER:
1639 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1640 wol->supported = 0;
1641 wol->wolopts = 0;
1642 return;
1643
1644 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1645 /* device id 10B5 port-A supports wol */
1646 if (!adapter->ksp3_port_a) {
1647 wol->supported = 0;
1648 return;
1649 }
1650 /* KSP3 does not suppport UCAST wake-ups for any interface */
1651 wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1652
1653 if (adapter->wol & E1000_WUFC_EX)
1654 DPRINTK(DRV, ERR, "Interface does not support "
1655 "directed (unicast) frame wake-up packets\n");
1656 wol->wolopts = 0;
1657 goto do_defaults;
1658
1659 case E1000_DEV_ID_82546EB_FIBER:
1660 case E1000_DEV_ID_82546GB_FIBER:
1661 case E1000_DEV_ID_82571EB_FIBER:
1662 /* Wake events only supported on port A for dual fiber */
1663 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1664 wol->supported = 0;
1665 wol->wolopts = 0;
1666 return;
1667 }
1668 /* Fall Through */
1669
1670 default:
1671 wol->supported = WAKE_UCAST | WAKE_MCAST |
1672 WAKE_BCAST | WAKE_MAGIC;
1673 wol->wolopts = 0;
1674
1675 do_defaults:
1676 if (adapter->wol & E1000_WUFC_EX)
1677 wol->wolopts |= WAKE_UCAST;
1678 if (adapter->wol & E1000_WUFC_MC)
1679 wol->wolopts |= WAKE_MCAST;
1680 if (adapter->wol & E1000_WUFC_BC)
1681 wol->wolopts |= WAKE_BCAST;
1682 if (adapter->wol & E1000_WUFC_MAG)
1683 wol->wolopts |= WAKE_MAGIC;
1684 return;
1685 }
1686 }
1687
1688 static int
1689 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1690 {
1691 struct e1000_adapter *adapter = netdev_priv(netdev);
1692 struct e1000_hw *hw = &adapter->hw;
1693
1694 switch (adapter->hw.device_id) {
1695 case E1000_DEV_ID_82542:
1696 case E1000_DEV_ID_82543GC_FIBER:
1697 case E1000_DEV_ID_82543GC_COPPER:
1698 case E1000_DEV_ID_82544EI_FIBER:
1699 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1700 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1701 case E1000_DEV_ID_82545EM_FIBER:
1702 case E1000_DEV_ID_82545EM_COPPER:
1703 return wol->wolopts ? -EOPNOTSUPP : 0;
1704
1705 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1706 /* device id 10B5 port-A supports wol */
1707 if (!adapter->ksp3_port_a)
1708 return wol->wolopts ? -EOPNOTSUPP : 0;
1709
1710 if (wol->wolopts & WAKE_UCAST) {
1711 DPRINTK(DRV, ERR, "Interface does not support "
1712 "directed (unicast) frame wake-up packets\n");
1713 return -EOPNOTSUPP;
1714 }
1715
1716 case E1000_DEV_ID_82546EB_FIBER:
1717 case E1000_DEV_ID_82546GB_FIBER:
1718 case E1000_DEV_ID_82571EB_FIBER:
1719 /* Wake events only supported on port A for dual fiber */
1720 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1721 return wol->wolopts ? -EOPNOTSUPP : 0;
1722 /* Fall Through */
1723
1724 default:
1725 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1726 return -EOPNOTSUPP;
1727
1728 adapter->wol = 0;
1729
1730 if (wol->wolopts & WAKE_UCAST)
1731 adapter->wol |= E1000_WUFC_EX;
1732 if (wol->wolopts & WAKE_MCAST)
1733 adapter->wol |= E1000_WUFC_MC;
1734 if (wol->wolopts & WAKE_BCAST)
1735 adapter->wol |= E1000_WUFC_BC;
1736 if (wol->wolopts & WAKE_MAGIC)
1737 adapter->wol |= E1000_WUFC_MAG;
1738 }
1739
1740 return 0;
1741 }
1742
1743 /* toggle LED 4 times per second = 2 "blinks" per second */
1744 #define E1000_ID_INTERVAL (HZ/4)
1745
1746 /* bit defines for adapter->led_status */
1747 #define E1000_LED_ON 0
1748
1749 static void
1750 e1000_led_blink_callback(unsigned long data)
1751 {
1752 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1753
1754 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1755 e1000_led_off(&adapter->hw);
1756 else
1757 e1000_led_on(&adapter->hw);
1758
1759 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1760 }
1761
1762 static int
1763 e1000_phys_id(struct net_device *netdev, uint32_t data)
1764 {
1765 struct e1000_adapter *adapter = netdev_priv(netdev);
1766
1767 if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1768 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1769
1770 if (adapter->hw.mac_type < e1000_82571) {
1771 if (!adapter->blink_timer.function) {
1772 init_timer(&adapter->blink_timer);
1773 adapter->blink_timer.function = e1000_led_blink_callback;
1774 adapter->blink_timer.data = (unsigned long) adapter;
1775 }
1776 e1000_setup_led(&adapter->hw);
1777 mod_timer(&adapter->blink_timer, jiffies);
1778 msleep_interruptible(data * 1000);
1779 del_timer_sync(&adapter->blink_timer);
1780 } else if (adapter->hw.mac_type < e1000_82573) {
1781 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1782 (E1000_LEDCTL_LED2_BLINK_RATE |
1783 E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1784 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1785 (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1786 (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1787 msleep_interruptible(data * 1000);
1788 } else {
1789 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1790 (E1000_LEDCTL_LED2_BLINK_RATE |
1791 E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1792 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1793 (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1794 (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1795 msleep_interruptible(data * 1000);
1796 }
1797
1798 e1000_led_off(&adapter->hw);
1799 clear_bit(E1000_LED_ON, &adapter->led_status);
1800 e1000_cleanup_led(&adapter->hw);
1801
1802 return 0;
1803 }
1804
1805 static int
1806 e1000_nway_reset(struct net_device *netdev)
1807 {
1808 struct e1000_adapter *adapter = netdev_priv(netdev);
1809 if (netif_running(netdev)) {
1810 e1000_down(adapter);
1811 e1000_up(adapter);
1812 }
1813 return 0;
1814 }
1815
1816 static int
1817 e1000_get_stats_count(struct net_device *netdev)
1818 {
1819 return E1000_STATS_LEN;
1820 }
1821
1822 static void
1823 e1000_get_ethtool_stats(struct net_device *netdev,
1824 struct ethtool_stats *stats, uint64_t *data)
1825 {
1826 struct e1000_adapter *adapter = netdev_priv(netdev);
1827 int i;
1828
1829 e1000_update_stats(adapter);
1830 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1831 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1832 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1833 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1834 }
1835 /* BUG_ON(i != E1000_STATS_LEN); */
1836 }
1837
1838 static void
1839 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1840 {
1841 uint8_t *p = data;
1842 int i;
1843
1844 switch (stringset) {
1845 case ETH_SS_TEST:
1846 memcpy(data, *e1000_gstrings_test,
1847 E1000_TEST_LEN*ETH_GSTRING_LEN);
1848 break;
1849 case ETH_SS_STATS:
1850 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1851 memcpy(p, e1000_gstrings_stats[i].stat_string,
1852 ETH_GSTRING_LEN);
1853 p += ETH_GSTRING_LEN;
1854 }
1855 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1856 break;
1857 }
1858 }
1859
1860 static struct ethtool_ops e1000_ethtool_ops = {
1861 .get_settings = e1000_get_settings,
1862 .set_settings = e1000_set_settings,
1863 .get_drvinfo = e1000_get_drvinfo,
1864 .get_regs_len = e1000_get_regs_len,
1865 .get_regs = e1000_get_regs,
1866 .get_wol = e1000_get_wol,
1867 .set_wol = e1000_set_wol,
1868 .get_msglevel = e1000_get_msglevel,
1869 .set_msglevel = e1000_set_msglevel,
1870 .nway_reset = e1000_nway_reset,
1871 .get_link = ethtool_op_get_link,
1872 .get_eeprom_len = e1000_get_eeprom_len,
1873 .get_eeprom = e1000_get_eeprom,
1874 .set_eeprom = e1000_set_eeprom,
1875 .get_ringparam = e1000_get_ringparam,
1876 .set_ringparam = e1000_set_ringparam,
1877 .get_pauseparam = e1000_get_pauseparam,
1878 .set_pauseparam = e1000_set_pauseparam,
1879 .get_rx_csum = e1000_get_rx_csum,
1880 .set_rx_csum = e1000_set_rx_csum,
1881 .get_tx_csum = e1000_get_tx_csum,
1882 .set_tx_csum = e1000_set_tx_csum,
1883 .get_sg = ethtool_op_get_sg,
1884 .set_sg = ethtool_op_set_sg,
1885 #ifdef NETIF_F_TSO
1886 .get_tso = ethtool_op_get_tso,
1887 .set_tso = e1000_set_tso,
1888 #endif
1889 .self_test_count = e1000_diag_test_count,
1890 .self_test = e1000_diag_test,
1891 .get_strings = e1000_get_strings,
1892 .phys_id = e1000_phys_id,
1893 .get_stats_count = e1000_get_stats_count,
1894 .get_ethtool_stats = e1000_get_ethtool_stats,
1895 .get_perm_addr = ethtool_op_get_perm_addr,
1896 };
1897
1898 void e1000_set_ethtool_ops(struct net_device *netdev)
1899 {
1900 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1901 }