PCI: Change all drivers to use pci_device->revision
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / dl2k.c
1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11 */
12
13 #define DRV_NAME "D-Link DL2000-based linux driver"
14 #define DRV_VERSION "v1.18"
15 #define DRV_RELDATE "2006/06/27"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18
19 static char version[] __devinitdata =
20 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
21 #define MAX_UNITS 8
22 static int mtu[MAX_UNITS];
23 static int vlan[MAX_UNITS];
24 static int jumbo[MAX_UNITS];
25 static char *media[MAX_UNITS];
26 static int tx_flow=-1;
27 static int rx_flow=-1;
28 static int copy_thresh;
29 static int rx_coalesce=10; /* Rx frame count each interrupt */
30 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
32
33
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu, int, NULL, 0);
38 module_param_array(media, charp, NULL, 0);
39 module_param_array(vlan, int, NULL, 0);
40 module_param_array(jumbo, int, NULL, 0);
41 module_param(tx_flow, int, 0);
42 module_param(rx_flow, int, 0);
43 module_param(copy_thresh, int, 0);
44 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
47
48
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
52 #define EnableInt() \
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
54
55 static const int max_intrloop = 50;
56 static const int multicast_filter_limit = 0x40;
57
58 static int rio_open (struct net_device *dev);
59 static void rio_timer (unsigned long data);
60 static void rio_tx_timeout (struct net_device *dev);
61 static void alloc_list (struct net_device *dev);
62 static int start_xmit (struct sk_buff *skb, struct net_device *dev);
63 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
64 static void rio_free_tx (struct net_device *dev, int irq);
65 static void tx_error (struct net_device *dev, int tx_status);
66 static int receive_packet (struct net_device *dev);
67 static void rio_error (struct net_device *dev, int int_status);
68 static int change_mtu (struct net_device *dev, int new_mtu);
69 static void set_multicast (struct net_device *dev);
70 static struct net_device_stats *get_stats (struct net_device *dev);
71 static int clear_stats (struct net_device *dev);
72 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
73 static int rio_close (struct net_device *dev);
74 static int find_miiphy (struct net_device *dev);
75 static int parse_eeprom (struct net_device *dev);
76 static int read_eeprom (long ioaddr, int eep_addr);
77 static int mii_wait_link (struct net_device *dev, int wait);
78 static int mii_set_media (struct net_device *dev);
79 static int mii_get_media (struct net_device *dev);
80 static int mii_set_media_pcs (struct net_device *dev);
81 static int mii_get_media_pcs (struct net_device *dev);
82 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
83 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
84 u16 data);
85
86 static const struct ethtool_ops ethtool_ops;
87
88 static int __devinit
89 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
90 {
91 struct net_device *dev;
92 struct netdev_private *np;
93 static int card_idx;
94 int chip_idx = ent->driver_data;
95 int err, irq;
96 long ioaddr;
97 static int version_printed;
98 void *ring_space;
99 dma_addr_t ring_dma;
100
101 if (!version_printed++)
102 printk ("%s", version);
103
104 err = pci_enable_device (pdev);
105 if (err)
106 return err;
107
108 irq = pdev->irq;
109 err = pci_request_regions (pdev, "dl2k");
110 if (err)
111 goto err_out_disable;
112
113 pci_set_master (pdev);
114 dev = alloc_etherdev (sizeof (*np));
115 if (!dev) {
116 err = -ENOMEM;
117 goto err_out_res;
118 }
119 SET_MODULE_OWNER (dev);
120 SET_NETDEV_DEV(dev, &pdev->dev);
121
122 #ifdef MEM_MAPPING
123 ioaddr = pci_resource_start (pdev, 1);
124 ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
125 if (!ioaddr) {
126 err = -ENOMEM;
127 goto err_out_dev;
128 }
129 #else
130 ioaddr = pci_resource_start (pdev, 0);
131 #endif
132 dev->base_addr = ioaddr;
133 dev->irq = irq;
134 np = netdev_priv(dev);
135 np->chip_id = chip_idx;
136 np->pdev = pdev;
137 spin_lock_init (&np->tx_lock);
138 spin_lock_init (&np->rx_lock);
139
140 /* Parse manual configuration */
141 np->an_enable = 1;
142 np->tx_coalesce = 1;
143 if (card_idx < MAX_UNITS) {
144 if (media[card_idx] != NULL) {
145 np->an_enable = 0;
146 if (strcmp (media[card_idx], "auto") == 0 ||
147 strcmp (media[card_idx], "autosense") == 0 ||
148 strcmp (media[card_idx], "0") == 0 ) {
149 np->an_enable = 2;
150 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
151 strcmp (media[card_idx], "4") == 0) {
152 np->speed = 100;
153 np->full_duplex = 1;
154 } else if (strcmp (media[card_idx], "100mbps_hd") == 0
155 || strcmp (media[card_idx], "3") == 0) {
156 np->speed = 100;
157 np->full_duplex = 0;
158 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
159 strcmp (media[card_idx], "2") == 0) {
160 np->speed = 10;
161 np->full_duplex = 1;
162 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
163 strcmp (media[card_idx], "1") == 0) {
164 np->speed = 10;
165 np->full_duplex = 0;
166 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
167 strcmp (media[card_idx], "6") == 0) {
168 np->speed=1000;
169 np->full_duplex=1;
170 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
171 strcmp (media[card_idx], "5") == 0) {
172 np->speed = 1000;
173 np->full_duplex = 0;
174 } else {
175 np->an_enable = 1;
176 }
177 }
178 if (jumbo[card_idx] != 0) {
179 np->jumbo = 1;
180 dev->mtu = MAX_JUMBO;
181 } else {
182 np->jumbo = 0;
183 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
184 dev->mtu = mtu[card_idx];
185 }
186 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
187 vlan[card_idx] : 0;
188 if (rx_coalesce > 0 && rx_timeout > 0) {
189 np->rx_coalesce = rx_coalesce;
190 np->rx_timeout = rx_timeout;
191 np->coalesce = 1;
192 }
193 np->tx_flow = (tx_flow == 0) ? 0 : 1;
194 np->rx_flow = (rx_flow == 0) ? 0 : 1;
195
196 if (tx_coalesce < 1)
197 tx_coalesce = 1;
198 else if (tx_coalesce > TX_RING_SIZE-1)
199 tx_coalesce = TX_RING_SIZE - 1;
200 }
201 dev->open = &rio_open;
202 dev->hard_start_xmit = &start_xmit;
203 dev->stop = &rio_close;
204 dev->get_stats = &get_stats;
205 dev->set_multicast_list = &set_multicast;
206 dev->do_ioctl = &rio_ioctl;
207 dev->tx_timeout = &rio_tx_timeout;
208 dev->watchdog_timeo = TX_TIMEOUT;
209 dev->change_mtu = &change_mtu;
210 SET_ETHTOOL_OPS(dev, &ethtool_ops);
211 #if 0
212 dev->features = NETIF_F_IP_CSUM;
213 #endif
214 pci_set_drvdata (pdev, dev);
215
216 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
217 if (!ring_space)
218 goto err_out_iounmap;
219 np->tx_ring = (struct netdev_desc *) ring_space;
220 np->tx_ring_dma = ring_dma;
221
222 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
223 if (!ring_space)
224 goto err_out_unmap_tx;
225 np->rx_ring = (struct netdev_desc *) ring_space;
226 np->rx_ring_dma = ring_dma;
227
228 /* Parse eeprom data */
229 parse_eeprom (dev);
230
231 /* Find PHY address */
232 err = find_miiphy (dev);
233 if (err)
234 goto err_out_unmap_rx;
235
236 /* Fiber device? */
237 np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
238 np->link_status = 0;
239 /* Set media and reset PHY */
240 if (np->phy_media) {
241 /* default Auto-Negotiation for fiber deivices */
242 if (np->an_enable == 2) {
243 np->an_enable = 1;
244 }
245 mii_set_media_pcs (dev);
246 } else {
247 /* Auto-Negotiation is mandatory for 1000BASE-T,
248 IEEE 802.3ab Annex 28D page 14 */
249 if (np->speed == 1000)
250 np->an_enable = 1;
251 mii_set_media (dev);
252 }
253
254 err = register_netdev (dev);
255 if (err)
256 goto err_out_unmap_rx;
257
258 card_idx++;
259
260 printk (KERN_INFO "%s: %s, %02x:%02x:%02x:%02x:%02x:%02x, IRQ %d\n",
261 dev->name, np->name,
262 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
263 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], irq);
264 if (tx_coalesce > 1)
265 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
266 tx_coalesce);
267 if (np->coalesce)
268 printk(KERN_INFO "rx_coalesce:\t%d packets\n"
269 KERN_INFO "rx_timeout: \t%d ns\n",
270 np->rx_coalesce, np->rx_timeout*640);
271 if (np->vlan)
272 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
273 return 0;
274
275 err_out_unmap_rx:
276 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
277 err_out_unmap_tx:
278 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
279 err_out_iounmap:
280 #ifdef MEM_MAPPING
281 iounmap ((void *) ioaddr);
282
283 err_out_dev:
284 #endif
285 free_netdev (dev);
286
287 err_out_res:
288 pci_release_regions (pdev);
289
290 err_out_disable:
291 pci_disable_device (pdev);
292 return err;
293 }
294
295 int
296 find_miiphy (struct net_device *dev)
297 {
298 int i, phy_found = 0;
299 struct netdev_private *np;
300 long ioaddr;
301 np = netdev_priv(dev);
302 ioaddr = dev->base_addr;
303 np->phy_addr = 1;
304
305 for (i = 31; i >= 0; i--) {
306 int mii_status = mii_read (dev, i, 1);
307 if (mii_status != 0xffff && mii_status != 0x0000) {
308 np->phy_addr = i;
309 phy_found++;
310 }
311 }
312 if (!phy_found) {
313 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
314 return -ENODEV;
315 }
316 return 0;
317 }
318
319 int
320 parse_eeprom (struct net_device *dev)
321 {
322 int i, j;
323 long ioaddr = dev->base_addr;
324 u8 sromdata[256];
325 u8 *psib;
326 u32 crc;
327 PSROM_t psrom = (PSROM_t) sromdata;
328 struct netdev_private *np = netdev_priv(dev);
329
330 int cid, next;
331
332 #ifdef MEM_MAPPING
333 ioaddr = pci_resource_start (np->pdev, 0);
334 #endif
335 /* Read eeprom */
336 for (i = 0; i < 128; i++) {
337 ((u16 *) sromdata)[i] = le16_to_cpu (read_eeprom (ioaddr, i));
338 }
339 #ifdef MEM_MAPPING
340 ioaddr = dev->base_addr;
341 #endif
342 /* Check CRC */
343 crc = ~ether_crc_le (256 - 4, sromdata);
344 if (psrom->crc != crc) {
345 printk (KERN_ERR "%s: EEPROM data CRC error.\n", dev->name);
346 return -1;
347 }
348
349 /* Set MAC address */
350 for (i = 0; i < 6; i++)
351 dev->dev_addr[i] = psrom->mac_addr[i];
352
353 /* Parse Software Information Block */
354 i = 0x30;
355 psib = (u8 *) sromdata;
356 do {
357 cid = psib[i++];
358 next = psib[i++];
359 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
360 printk (KERN_ERR "Cell data error\n");
361 return -1;
362 }
363 switch (cid) {
364 case 0: /* Format version */
365 break;
366 case 1: /* End of cell */
367 return 0;
368 case 2: /* Duplex Polarity */
369 np->duplex_polarity = psib[i];
370 writeb (readb (ioaddr + PhyCtrl) | psib[i],
371 ioaddr + PhyCtrl);
372 break;
373 case 3: /* Wake Polarity */
374 np->wake_polarity = psib[i];
375 break;
376 case 9: /* Adapter description */
377 j = (next - i > 255) ? 255 : next - i;
378 memcpy (np->name, &(psib[i]), j);
379 break;
380 case 4:
381 case 5:
382 case 6:
383 case 7:
384 case 8: /* Reversed */
385 break;
386 default: /* Unknown cell */
387 return -1;
388 }
389 i = next;
390 } while (1);
391
392 return 0;
393 }
394
395 static int
396 rio_open (struct net_device *dev)
397 {
398 struct netdev_private *np = netdev_priv(dev);
399 long ioaddr = dev->base_addr;
400 int i;
401 u16 macctrl;
402
403 i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
404 if (i)
405 return i;
406
407 /* Reset all logic functions */
408 writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
409 ioaddr + ASICCtrl + 2);
410 mdelay(10);
411
412 /* DebugCtrl bit 4, 5, 9 must set */
413 writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
414
415 /* Jumbo frame */
416 if (np->jumbo != 0)
417 writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
418
419 alloc_list (dev);
420
421 /* Get station address */
422 for (i = 0; i < 6; i++)
423 writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
424
425 set_multicast (dev);
426 if (np->coalesce) {
427 writel (np->rx_coalesce | np->rx_timeout << 16,
428 ioaddr + RxDMAIntCtrl);
429 }
430 /* Set RIO to poll every N*320nsec. */
431 writeb (0x20, ioaddr + RxDMAPollPeriod);
432 writeb (0xff, ioaddr + TxDMAPollPeriod);
433 writeb (0x30, ioaddr + RxDMABurstThresh);
434 writeb (0x30, ioaddr + RxDMAUrgentThresh);
435 writel (0x0007ffff, ioaddr + RmonStatMask);
436 /* clear statistics */
437 clear_stats (dev);
438
439 /* VLAN supported */
440 if (np->vlan) {
441 /* priority field in RxDMAIntCtrl */
442 writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
443 ioaddr + RxDMAIntCtrl);
444 /* VLANId */
445 writew (np->vlan, ioaddr + VLANId);
446 /* Length/Type should be 0x8100 */
447 writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
448 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
449 VLAN information tagged by TFC' VID, CFI fields. */
450 writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
451 ioaddr + MACCtrl);
452 }
453
454 init_timer (&np->timer);
455 np->timer.expires = jiffies + 1*HZ;
456 np->timer.data = (unsigned long) dev;
457 np->timer.function = &rio_timer;
458 add_timer (&np->timer);
459
460 /* Start Tx/Rx */
461 writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
462 ioaddr + MACCtrl);
463
464 macctrl = 0;
465 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
466 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
467 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
468 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
469 writew(macctrl, ioaddr + MACCtrl);
470
471 netif_start_queue (dev);
472
473 /* Enable default interrupts */
474 EnableInt ();
475 return 0;
476 }
477
478 static void
479 rio_timer (unsigned long data)
480 {
481 struct net_device *dev = (struct net_device *)data;
482 struct netdev_private *np = netdev_priv(dev);
483 unsigned int entry;
484 int next_tick = 1*HZ;
485 unsigned long flags;
486
487 spin_lock_irqsave(&np->rx_lock, flags);
488 /* Recover rx ring exhausted error */
489 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
490 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
491 /* Re-allocate skbuffs to fill the descriptor ring */
492 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
493 struct sk_buff *skb;
494 entry = np->old_rx % RX_RING_SIZE;
495 /* Dropped packets don't need to re-allocate */
496 if (np->rx_skbuff[entry] == NULL) {
497 skb = dev_alloc_skb (np->rx_buf_sz);
498 if (skb == NULL) {
499 np->rx_ring[entry].fraginfo = 0;
500 printk (KERN_INFO
501 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
502 dev->name, entry);
503 break;
504 }
505 np->rx_skbuff[entry] = skb;
506 /* 16 byte align the IP header */
507 skb_reserve (skb, 2);
508 np->rx_ring[entry].fraginfo =
509 cpu_to_le64 (pci_map_single
510 (np->pdev, skb->data, np->rx_buf_sz,
511 PCI_DMA_FROMDEVICE));
512 }
513 np->rx_ring[entry].fraginfo |=
514 cpu_to_le64 (np->rx_buf_sz) << 48;
515 np->rx_ring[entry].status = 0;
516 } /* end for */
517 } /* end if */
518 spin_unlock_irqrestore (&np->rx_lock, flags);
519 np->timer.expires = jiffies + next_tick;
520 add_timer(&np->timer);
521 }
522
523 static void
524 rio_tx_timeout (struct net_device *dev)
525 {
526 long ioaddr = dev->base_addr;
527
528 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
529 dev->name, readl (ioaddr + TxStatus));
530 rio_free_tx(dev, 0);
531 dev->if_port = 0;
532 dev->trans_start = jiffies;
533 }
534
535 /* allocate and initialize Tx and Rx descriptors */
536 static void
537 alloc_list (struct net_device *dev)
538 {
539 struct netdev_private *np = netdev_priv(dev);
540 int i;
541
542 np->cur_rx = np->cur_tx = 0;
543 np->old_rx = np->old_tx = 0;
544 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
545
546 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
547 for (i = 0; i < TX_RING_SIZE; i++) {
548 np->tx_skbuff[i] = NULL;
549 np->tx_ring[i].status = cpu_to_le64 (TFDDone);
550 np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
551 ((i+1)%TX_RING_SIZE) *
552 sizeof (struct netdev_desc));
553 }
554
555 /* Initialize Rx descriptors */
556 for (i = 0; i < RX_RING_SIZE; i++) {
557 np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
558 ((i + 1) % RX_RING_SIZE) *
559 sizeof (struct netdev_desc));
560 np->rx_ring[i].status = 0;
561 np->rx_ring[i].fraginfo = 0;
562 np->rx_skbuff[i] = NULL;
563 }
564
565 /* Allocate the rx buffers */
566 for (i = 0; i < RX_RING_SIZE; i++) {
567 /* Allocated fixed size of skbuff */
568 struct sk_buff *skb = dev_alloc_skb (np->rx_buf_sz);
569 np->rx_skbuff[i] = skb;
570 if (skb == NULL) {
571 printk (KERN_ERR
572 "%s: alloc_list: allocate Rx buffer error! ",
573 dev->name);
574 break;
575 }
576 skb_reserve (skb, 2); /* 16 byte align the IP header. */
577 /* Rubicon now supports 40 bits of addressing space. */
578 np->rx_ring[i].fraginfo =
579 cpu_to_le64 ( pci_map_single (
580 np->pdev, skb->data, np->rx_buf_sz,
581 PCI_DMA_FROMDEVICE));
582 np->rx_ring[i].fraginfo |= cpu_to_le64 (np->rx_buf_sz) << 48;
583 }
584
585 /* Set RFDListPtr */
586 writel (cpu_to_le32 (np->rx_ring_dma), dev->base_addr + RFDListPtr0);
587 writel (0, dev->base_addr + RFDListPtr1);
588
589 return;
590 }
591
592 static int
593 start_xmit (struct sk_buff *skb, struct net_device *dev)
594 {
595 struct netdev_private *np = netdev_priv(dev);
596 struct netdev_desc *txdesc;
597 unsigned entry;
598 u32 ioaddr;
599 u64 tfc_vlan_tag = 0;
600
601 if (np->link_status == 0) { /* Link Down */
602 dev_kfree_skb(skb);
603 return 0;
604 }
605 ioaddr = dev->base_addr;
606 entry = np->cur_tx % TX_RING_SIZE;
607 np->tx_skbuff[entry] = skb;
608 txdesc = &np->tx_ring[entry];
609
610 #if 0
611 if (skb->ip_summed == CHECKSUM_PARTIAL) {
612 txdesc->status |=
613 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
614 IPChecksumEnable);
615 }
616 #endif
617 if (np->vlan) {
618 tfc_vlan_tag =
619 cpu_to_le64 (VLANTagInsert) |
620 (cpu_to_le64 (np->vlan) << 32) |
621 (cpu_to_le64 (skb->priority) << 45);
622 }
623 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
624 skb->len,
625 PCI_DMA_TODEVICE));
626 txdesc->fraginfo |= cpu_to_le64 (skb->len) << 48;
627
628 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
629 * Work around: Always use 1 descriptor in 10Mbps mode */
630 if (entry % np->tx_coalesce == 0 || np->speed == 10)
631 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
632 WordAlignDisable |
633 TxDMAIndicate |
634 (1 << FragCountShift));
635 else
636 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
637 WordAlignDisable |
638 (1 << FragCountShift));
639
640 /* TxDMAPollNow */
641 writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
642 /* Schedule ISR */
643 writel(10000, ioaddr + CountDown);
644 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
645 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
646 < TX_QUEUE_LEN - 1 && np->speed != 10) {
647 /* do nothing */
648 } else if (!netif_queue_stopped(dev)) {
649 netif_stop_queue (dev);
650 }
651
652 /* The first TFDListPtr */
653 if (readl (dev->base_addr + TFDListPtr0) == 0) {
654 writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
655 dev->base_addr + TFDListPtr0);
656 writel (0, dev->base_addr + TFDListPtr1);
657 }
658
659 /* NETDEV WATCHDOG timer */
660 dev->trans_start = jiffies;
661 return 0;
662 }
663
664 static irqreturn_t
665 rio_interrupt (int irq, void *dev_instance)
666 {
667 struct net_device *dev = dev_instance;
668 struct netdev_private *np;
669 unsigned int_status;
670 long ioaddr;
671 int cnt = max_intrloop;
672 int handled = 0;
673
674 ioaddr = dev->base_addr;
675 np = netdev_priv(dev);
676 while (1) {
677 int_status = readw (ioaddr + IntStatus);
678 writew (int_status, ioaddr + IntStatus);
679 int_status &= DEFAULT_INTR;
680 if (int_status == 0 || --cnt < 0)
681 break;
682 handled = 1;
683 /* Processing received packets */
684 if (int_status & RxDMAComplete)
685 receive_packet (dev);
686 /* TxDMAComplete interrupt */
687 if ((int_status & (TxDMAComplete|IntRequested))) {
688 int tx_status;
689 tx_status = readl (ioaddr + TxStatus);
690 if (tx_status & 0x01)
691 tx_error (dev, tx_status);
692 /* Free used tx skbuffs */
693 rio_free_tx (dev, 1);
694 }
695
696 /* Handle uncommon events */
697 if (int_status &
698 (HostError | LinkEvent | UpdateStats))
699 rio_error (dev, int_status);
700 }
701 if (np->cur_tx != np->old_tx)
702 writel (100, ioaddr + CountDown);
703 return IRQ_RETVAL(handled);
704 }
705
706 static void
707 rio_free_tx (struct net_device *dev, int irq)
708 {
709 struct netdev_private *np = netdev_priv(dev);
710 int entry = np->old_tx % TX_RING_SIZE;
711 int tx_use = 0;
712 unsigned long flag = 0;
713
714 if (irq)
715 spin_lock(&np->tx_lock);
716 else
717 spin_lock_irqsave(&np->tx_lock, flag);
718
719 /* Free used tx skbuffs */
720 while (entry != np->cur_tx) {
721 struct sk_buff *skb;
722
723 if (!(np->tx_ring[entry].status & TFDDone))
724 break;
725 skb = np->tx_skbuff[entry];
726 pci_unmap_single (np->pdev,
727 np->tx_ring[entry].fraginfo & DMA_48BIT_MASK,
728 skb->len, PCI_DMA_TODEVICE);
729 if (irq)
730 dev_kfree_skb_irq (skb);
731 else
732 dev_kfree_skb (skb);
733
734 np->tx_skbuff[entry] = NULL;
735 entry = (entry + 1) % TX_RING_SIZE;
736 tx_use++;
737 }
738 if (irq)
739 spin_unlock(&np->tx_lock);
740 else
741 spin_unlock_irqrestore(&np->tx_lock, flag);
742 np->old_tx = entry;
743
744 /* If the ring is no longer full, clear tx_full and
745 call netif_wake_queue() */
746
747 if (netif_queue_stopped(dev) &&
748 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
749 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
750 netif_wake_queue (dev);
751 }
752 }
753
754 static void
755 tx_error (struct net_device *dev, int tx_status)
756 {
757 struct netdev_private *np;
758 long ioaddr = dev->base_addr;
759 int frame_id;
760 int i;
761
762 np = netdev_priv(dev);
763
764 frame_id = (tx_status & 0xffff0000);
765 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
766 dev->name, tx_status, frame_id);
767 np->stats.tx_errors++;
768 /* Ttransmit Underrun */
769 if (tx_status & 0x10) {
770 np->stats.tx_fifo_errors++;
771 writew (readw (ioaddr + TxStartThresh) + 0x10,
772 ioaddr + TxStartThresh);
773 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
774 writew (TxReset | DMAReset | FIFOReset | NetworkReset,
775 ioaddr + ASICCtrl + 2);
776 /* Wait for ResetBusy bit clear */
777 for (i = 50; i > 0; i--) {
778 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
779 break;
780 mdelay (1);
781 }
782 rio_free_tx (dev, 1);
783 /* Reset TFDListPtr */
784 writel (np->tx_ring_dma +
785 np->old_tx * sizeof (struct netdev_desc),
786 dev->base_addr + TFDListPtr0);
787 writel (0, dev->base_addr + TFDListPtr1);
788
789 /* Let TxStartThresh stay default value */
790 }
791 /* Late Collision */
792 if (tx_status & 0x04) {
793 np->stats.tx_fifo_errors++;
794 /* TxReset and clear FIFO */
795 writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
796 /* Wait reset done */
797 for (i = 50; i > 0; i--) {
798 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
799 break;
800 mdelay (1);
801 }
802 /* Let TxStartThresh stay default value */
803 }
804 /* Maximum Collisions */
805 #ifdef ETHER_STATS
806 if (tx_status & 0x08)
807 np->stats.collisions16++;
808 #else
809 if (tx_status & 0x08)
810 np->stats.collisions++;
811 #endif
812 /* Restart the Tx */
813 writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
814 }
815
816 static int
817 receive_packet (struct net_device *dev)
818 {
819 struct netdev_private *np = netdev_priv(dev);
820 int entry = np->cur_rx % RX_RING_SIZE;
821 int cnt = 30;
822
823 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
824 while (1) {
825 struct netdev_desc *desc = &np->rx_ring[entry];
826 int pkt_len;
827 u64 frame_status;
828
829 if (!(desc->status & RFDDone) ||
830 !(desc->status & FrameStart) || !(desc->status & FrameEnd))
831 break;
832
833 /* Chip omits the CRC. */
834 pkt_len = le64_to_cpu (desc->status & 0xffff);
835 frame_status = le64_to_cpu (desc->status);
836 if (--cnt < 0)
837 break;
838 /* Update rx error statistics, drop packet. */
839 if (frame_status & RFS_Errors) {
840 np->stats.rx_errors++;
841 if (frame_status & (RxRuntFrame | RxLengthError))
842 np->stats.rx_length_errors++;
843 if (frame_status & RxFCSError)
844 np->stats.rx_crc_errors++;
845 if (frame_status & RxAlignmentError && np->speed != 1000)
846 np->stats.rx_frame_errors++;
847 if (frame_status & RxFIFOOverrun)
848 np->stats.rx_fifo_errors++;
849 } else {
850 struct sk_buff *skb;
851
852 /* Small skbuffs for short packets */
853 if (pkt_len > copy_thresh) {
854 pci_unmap_single (np->pdev,
855 desc->fraginfo & DMA_48BIT_MASK,
856 np->rx_buf_sz,
857 PCI_DMA_FROMDEVICE);
858 skb_put (skb = np->rx_skbuff[entry], pkt_len);
859 np->rx_skbuff[entry] = NULL;
860 } else if ((skb = dev_alloc_skb (pkt_len + 2)) != NULL) {
861 pci_dma_sync_single_for_cpu(np->pdev,
862 desc->fraginfo &
863 DMA_48BIT_MASK,
864 np->rx_buf_sz,
865 PCI_DMA_FROMDEVICE);
866 /* 16 byte align the IP header */
867 skb_reserve (skb, 2);
868 eth_copy_and_sum (skb,
869 np->rx_skbuff[entry]->data,
870 pkt_len, 0);
871 skb_put (skb, pkt_len);
872 pci_dma_sync_single_for_device(np->pdev,
873 desc->fraginfo &
874 DMA_48BIT_MASK,
875 np->rx_buf_sz,
876 PCI_DMA_FROMDEVICE);
877 }
878 skb->protocol = eth_type_trans (skb, dev);
879 #if 0
880 /* Checksum done by hw, but csum value unavailable. */
881 if (np->pdev->pci_rev_id >= 0x0c &&
882 !(frame_status & (TCPError | UDPError | IPError))) {
883 skb->ip_summed = CHECKSUM_UNNECESSARY;
884 }
885 #endif
886 netif_rx (skb);
887 dev->last_rx = jiffies;
888 }
889 entry = (entry + 1) % RX_RING_SIZE;
890 }
891 spin_lock(&np->rx_lock);
892 np->cur_rx = entry;
893 /* Re-allocate skbuffs to fill the descriptor ring */
894 entry = np->old_rx;
895 while (entry != np->cur_rx) {
896 struct sk_buff *skb;
897 /* Dropped packets don't need to re-allocate */
898 if (np->rx_skbuff[entry] == NULL) {
899 skb = dev_alloc_skb (np->rx_buf_sz);
900 if (skb == NULL) {
901 np->rx_ring[entry].fraginfo = 0;
902 printk (KERN_INFO
903 "%s: receive_packet: "
904 "Unable to re-allocate Rx skbuff.#%d\n",
905 dev->name, entry);
906 break;
907 }
908 np->rx_skbuff[entry] = skb;
909 /* 16 byte align the IP header */
910 skb_reserve (skb, 2);
911 np->rx_ring[entry].fraginfo =
912 cpu_to_le64 (pci_map_single
913 (np->pdev, skb->data, np->rx_buf_sz,
914 PCI_DMA_FROMDEVICE));
915 }
916 np->rx_ring[entry].fraginfo |=
917 cpu_to_le64 (np->rx_buf_sz) << 48;
918 np->rx_ring[entry].status = 0;
919 entry = (entry + 1) % RX_RING_SIZE;
920 }
921 np->old_rx = entry;
922 spin_unlock(&np->rx_lock);
923 return 0;
924 }
925
926 static void
927 rio_error (struct net_device *dev, int int_status)
928 {
929 long ioaddr = dev->base_addr;
930 struct netdev_private *np = netdev_priv(dev);
931 u16 macctrl;
932
933 /* Link change event */
934 if (int_status & LinkEvent) {
935 if (mii_wait_link (dev, 10) == 0) {
936 printk (KERN_INFO "%s: Link up\n", dev->name);
937 if (np->phy_media)
938 mii_get_media_pcs (dev);
939 else
940 mii_get_media (dev);
941 if (np->speed == 1000)
942 np->tx_coalesce = tx_coalesce;
943 else
944 np->tx_coalesce = 1;
945 macctrl = 0;
946 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
947 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
948 macctrl |= (np->tx_flow) ?
949 TxFlowControlEnable : 0;
950 macctrl |= (np->rx_flow) ?
951 RxFlowControlEnable : 0;
952 writew(macctrl, ioaddr + MACCtrl);
953 np->link_status = 1;
954 netif_carrier_on(dev);
955 } else {
956 printk (KERN_INFO "%s: Link off\n", dev->name);
957 np->link_status = 0;
958 netif_carrier_off(dev);
959 }
960 }
961
962 /* UpdateStats statistics registers */
963 if (int_status & UpdateStats) {
964 get_stats (dev);
965 }
966
967 /* PCI Error, a catastronphic error related to the bus interface
968 occurs, set GlobalReset and HostReset to reset. */
969 if (int_status & HostError) {
970 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
971 dev->name, int_status);
972 writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
973 mdelay (500);
974 }
975 }
976
977 static struct net_device_stats *
978 get_stats (struct net_device *dev)
979 {
980 long ioaddr = dev->base_addr;
981 struct netdev_private *np = netdev_priv(dev);
982 #ifdef MEM_MAPPING
983 int i;
984 #endif
985 unsigned int stat_reg;
986
987 /* All statistics registers need to be acknowledged,
988 else statistic overflow could cause problems */
989
990 np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
991 np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
992 np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
993 np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
994
995 np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
996 np->stats.collisions += readl (ioaddr + SingleColFrames)
997 + readl (ioaddr + MultiColFrames);
998
999 /* detailed tx errors */
1000 stat_reg = readw (ioaddr + FramesAbortXSColls);
1001 np->stats.tx_aborted_errors += stat_reg;
1002 np->stats.tx_errors += stat_reg;
1003
1004 stat_reg = readw (ioaddr + CarrierSenseErrors);
1005 np->stats.tx_carrier_errors += stat_reg;
1006 np->stats.tx_errors += stat_reg;
1007
1008 /* Clear all other statistic register. */
1009 readl (ioaddr + McstOctetXmtOk);
1010 readw (ioaddr + BcstFramesXmtdOk);
1011 readl (ioaddr + McstFramesXmtdOk);
1012 readw (ioaddr + BcstFramesRcvdOk);
1013 readw (ioaddr + MacControlFramesRcvd);
1014 readw (ioaddr + FrameTooLongErrors);
1015 readw (ioaddr + InRangeLengthErrors);
1016 readw (ioaddr + FramesCheckSeqErrors);
1017 readw (ioaddr + FramesLostRxErrors);
1018 readl (ioaddr + McstOctetXmtOk);
1019 readl (ioaddr + BcstOctetXmtOk);
1020 readl (ioaddr + McstFramesXmtdOk);
1021 readl (ioaddr + FramesWDeferredXmt);
1022 readl (ioaddr + LateCollisions);
1023 readw (ioaddr + BcstFramesXmtdOk);
1024 readw (ioaddr + MacControlFramesXmtd);
1025 readw (ioaddr + FramesWEXDeferal);
1026
1027 #ifdef MEM_MAPPING
1028 for (i = 0x100; i <= 0x150; i += 4)
1029 readl (ioaddr + i);
1030 #endif
1031 readw (ioaddr + TxJumboFrames);
1032 readw (ioaddr + RxJumboFrames);
1033 readw (ioaddr + TCPCheckSumErrors);
1034 readw (ioaddr + UDPCheckSumErrors);
1035 readw (ioaddr + IPCheckSumErrors);
1036 return &np->stats;
1037 }
1038
1039 static int
1040 clear_stats (struct net_device *dev)
1041 {
1042 long ioaddr = dev->base_addr;
1043 #ifdef MEM_MAPPING
1044 int i;
1045 #endif
1046
1047 /* All statistics registers need to be acknowledged,
1048 else statistic overflow could cause problems */
1049 readl (ioaddr + FramesRcvOk);
1050 readl (ioaddr + FramesXmtOk);
1051 readl (ioaddr + OctetRcvOk);
1052 readl (ioaddr + OctetXmtOk);
1053
1054 readl (ioaddr + McstFramesRcvdOk);
1055 readl (ioaddr + SingleColFrames);
1056 readl (ioaddr + MultiColFrames);
1057 readl (ioaddr + LateCollisions);
1058 /* detailed rx errors */
1059 readw (ioaddr + FrameTooLongErrors);
1060 readw (ioaddr + InRangeLengthErrors);
1061 readw (ioaddr + FramesCheckSeqErrors);
1062 readw (ioaddr + FramesLostRxErrors);
1063
1064 /* detailed tx errors */
1065 readw (ioaddr + FramesAbortXSColls);
1066 readw (ioaddr + CarrierSenseErrors);
1067
1068 /* Clear all other statistic register. */
1069 readl (ioaddr + McstOctetXmtOk);
1070 readw (ioaddr + BcstFramesXmtdOk);
1071 readl (ioaddr + McstFramesXmtdOk);
1072 readw (ioaddr + BcstFramesRcvdOk);
1073 readw (ioaddr + MacControlFramesRcvd);
1074 readl (ioaddr + McstOctetXmtOk);
1075 readl (ioaddr + BcstOctetXmtOk);
1076 readl (ioaddr + McstFramesXmtdOk);
1077 readl (ioaddr + FramesWDeferredXmt);
1078 readw (ioaddr + BcstFramesXmtdOk);
1079 readw (ioaddr + MacControlFramesXmtd);
1080 readw (ioaddr + FramesWEXDeferal);
1081 #ifdef MEM_MAPPING
1082 for (i = 0x100; i <= 0x150; i += 4)
1083 readl (ioaddr + i);
1084 #endif
1085 readw (ioaddr + TxJumboFrames);
1086 readw (ioaddr + RxJumboFrames);
1087 readw (ioaddr + TCPCheckSumErrors);
1088 readw (ioaddr + UDPCheckSumErrors);
1089 readw (ioaddr + IPCheckSumErrors);
1090 return 0;
1091 }
1092
1093
1094 int
1095 change_mtu (struct net_device *dev, int new_mtu)
1096 {
1097 struct netdev_private *np = netdev_priv(dev);
1098 int max = (np->jumbo) ? MAX_JUMBO : 1536;
1099
1100 if ((new_mtu < 68) || (new_mtu > max)) {
1101 return -EINVAL;
1102 }
1103
1104 dev->mtu = new_mtu;
1105
1106 return 0;
1107 }
1108
1109 static void
1110 set_multicast (struct net_device *dev)
1111 {
1112 long ioaddr = dev->base_addr;
1113 u32 hash_table[2];
1114 u16 rx_mode = 0;
1115 struct netdev_private *np = netdev_priv(dev);
1116
1117 hash_table[0] = hash_table[1] = 0;
1118 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1119 hash_table[1] |= cpu_to_le32(0x02000000);
1120 if (dev->flags & IFF_PROMISC) {
1121 /* Receive all frames promiscuously. */
1122 rx_mode = ReceiveAllFrames;
1123 } else if ((dev->flags & IFF_ALLMULTI) ||
1124 (dev->mc_count > multicast_filter_limit)) {
1125 /* Receive broadcast and multicast frames */
1126 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1127 } else if (dev->mc_count > 0) {
1128 int i;
1129 struct dev_mc_list *mclist;
1130 /* Receive broadcast frames and multicast frames filtering
1131 by Hashtable */
1132 rx_mode =
1133 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1134 for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1135 i++, mclist=mclist->next)
1136 {
1137 int bit, index = 0;
1138 int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1139 /* The inverted high significant 6 bits of CRC are
1140 used as an index to hashtable */
1141 for (bit = 0; bit < 6; bit++)
1142 if (crc & (1 << (31 - bit)))
1143 index |= (1 << bit);
1144 hash_table[index / 32] |= (1 << (index % 32));
1145 }
1146 } else {
1147 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1148 }
1149 if (np->vlan) {
1150 /* ReceiveVLANMatch field in ReceiveMode */
1151 rx_mode |= ReceiveVLANMatch;
1152 }
1153
1154 writel (hash_table[0], ioaddr + HashTable0);
1155 writel (hash_table[1], ioaddr + HashTable1);
1156 writew (rx_mode, ioaddr + ReceiveMode);
1157 }
1158
1159 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1160 {
1161 struct netdev_private *np = netdev_priv(dev);
1162 strcpy(info->driver, "dl2k");
1163 strcpy(info->version, DRV_VERSION);
1164 strcpy(info->bus_info, pci_name(np->pdev));
1165 }
1166
1167 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1168 {
1169 struct netdev_private *np = netdev_priv(dev);
1170 if (np->phy_media) {
1171 /* fiber device */
1172 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1173 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1174 cmd->port = PORT_FIBRE;
1175 cmd->transceiver = XCVR_INTERNAL;
1176 } else {
1177 /* copper device */
1178 cmd->supported = SUPPORTED_10baseT_Half |
1179 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1180 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1181 SUPPORTED_Autoneg | SUPPORTED_MII;
1182 cmd->advertising = ADVERTISED_10baseT_Half |
1183 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1184 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1185 ADVERTISED_Autoneg | ADVERTISED_MII;
1186 cmd->port = PORT_MII;
1187 cmd->transceiver = XCVR_INTERNAL;
1188 }
1189 if ( np->link_status ) {
1190 cmd->speed = np->speed;
1191 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1192 } else {
1193 cmd->speed = -1;
1194 cmd->duplex = -1;
1195 }
1196 if ( np->an_enable)
1197 cmd->autoneg = AUTONEG_ENABLE;
1198 else
1199 cmd->autoneg = AUTONEG_DISABLE;
1200
1201 cmd->phy_address = np->phy_addr;
1202 return 0;
1203 }
1204
1205 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1206 {
1207 struct netdev_private *np = netdev_priv(dev);
1208 netif_carrier_off(dev);
1209 if (cmd->autoneg == AUTONEG_ENABLE) {
1210 if (np->an_enable)
1211 return 0;
1212 else {
1213 np->an_enable = 1;
1214 mii_set_media(dev);
1215 return 0;
1216 }
1217 } else {
1218 np->an_enable = 0;
1219 if (np->speed == 1000) {
1220 cmd->speed = SPEED_100;
1221 cmd->duplex = DUPLEX_FULL;
1222 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1223 }
1224 switch(cmd->speed + cmd->duplex) {
1225
1226 case SPEED_10 + DUPLEX_HALF:
1227 np->speed = 10;
1228 np->full_duplex = 0;
1229 break;
1230
1231 case SPEED_10 + DUPLEX_FULL:
1232 np->speed = 10;
1233 np->full_duplex = 1;
1234 break;
1235 case SPEED_100 + DUPLEX_HALF:
1236 np->speed = 100;
1237 np->full_duplex = 0;
1238 break;
1239 case SPEED_100 + DUPLEX_FULL:
1240 np->speed = 100;
1241 np->full_duplex = 1;
1242 break;
1243 case SPEED_1000 + DUPLEX_HALF:/* not supported */
1244 case SPEED_1000 + DUPLEX_FULL:/* not supported */
1245 default:
1246 return -EINVAL;
1247 }
1248 mii_set_media(dev);
1249 }
1250 return 0;
1251 }
1252
1253 static u32 rio_get_link(struct net_device *dev)
1254 {
1255 struct netdev_private *np = netdev_priv(dev);
1256 return np->link_status;
1257 }
1258
1259 static const struct ethtool_ops ethtool_ops = {
1260 .get_drvinfo = rio_get_drvinfo,
1261 .get_settings = rio_get_settings,
1262 .set_settings = rio_set_settings,
1263 .get_link = rio_get_link,
1264 };
1265
1266 static int
1267 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1268 {
1269 int phy_addr;
1270 struct netdev_private *np = netdev_priv(dev);
1271 struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1272
1273 struct netdev_desc *desc;
1274 int i;
1275
1276 phy_addr = np->phy_addr;
1277 switch (cmd) {
1278 case SIOCDEVPRIVATE:
1279 break;
1280
1281 case SIOCDEVPRIVATE + 1:
1282 miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1283 break;
1284 case SIOCDEVPRIVATE + 2:
1285 mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1286 break;
1287 case SIOCDEVPRIVATE + 3:
1288 break;
1289 case SIOCDEVPRIVATE + 4:
1290 break;
1291 case SIOCDEVPRIVATE + 5:
1292 netif_stop_queue (dev);
1293 break;
1294 case SIOCDEVPRIVATE + 6:
1295 netif_wake_queue (dev);
1296 break;
1297 case SIOCDEVPRIVATE + 7:
1298 printk
1299 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1300 netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1301 np->old_rx);
1302 break;
1303 case SIOCDEVPRIVATE + 8:
1304 printk("TX ring:\n");
1305 for (i = 0; i < TX_RING_SIZE; i++) {
1306 desc = &np->tx_ring[i];
1307 printk
1308 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1309 i,
1310 (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1311 (u32) desc->next_desc,
1312 (u32) desc->status, (u32) (desc->fraginfo >> 32),
1313 (u32) desc->fraginfo);
1314 printk ("\n");
1315 }
1316 printk ("\n");
1317 break;
1318
1319 default:
1320 return -EOPNOTSUPP;
1321 }
1322 return 0;
1323 }
1324
1325 #define EEP_READ 0x0200
1326 #define EEP_BUSY 0x8000
1327 /* Read the EEPROM word */
1328 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1329 int
1330 read_eeprom (long ioaddr, int eep_addr)
1331 {
1332 int i = 1000;
1333 outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1334 while (i-- > 0) {
1335 if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1336 return inw (ioaddr + EepromData);
1337 }
1338 }
1339 return 0;
1340 }
1341
1342 enum phy_ctrl_bits {
1343 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1344 MII_DUPLEX = 0x08,
1345 };
1346
1347 #define mii_delay() readb(ioaddr)
1348 static void
1349 mii_sendbit (struct net_device *dev, u32 data)
1350 {
1351 long ioaddr = dev->base_addr + PhyCtrl;
1352 data = (data) ? MII_DATA1 : 0;
1353 data |= MII_WRITE;
1354 data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1355 writeb (data, ioaddr);
1356 mii_delay ();
1357 writeb (data | MII_CLK, ioaddr);
1358 mii_delay ();
1359 }
1360
1361 static int
1362 mii_getbit (struct net_device *dev)
1363 {
1364 long ioaddr = dev->base_addr + PhyCtrl;
1365 u8 data;
1366
1367 data = (readb (ioaddr) & 0xf8) | MII_READ;
1368 writeb (data, ioaddr);
1369 mii_delay ();
1370 writeb (data | MII_CLK, ioaddr);
1371 mii_delay ();
1372 return ((readb (ioaddr) >> 1) & 1);
1373 }
1374
1375 static void
1376 mii_send_bits (struct net_device *dev, u32 data, int len)
1377 {
1378 int i;
1379 for (i = len - 1; i >= 0; i--) {
1380 mii_sendbit (dev, data & (1 << i));
1381 }
1382 }
1383
1384 static int
1385 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1386 {
1387 u32 cmd;
1388 int i;
1389 u32 retval = 0;
1390
1391 /* Preamble */
1392 mii_send_bits (dev, 0xffffffff, 32);
1393 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1394 /* ST,OP = 0110'b for read operation */
1395 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1396 mii_send_bits (dev, cmd, 14);
1397 /* Turnaround */
1398 if (mii_getbit (dev))
1399 goto err_out;
1400 /* Read data */
1401 for (i = 0; i < 16; i++) {
1402 retval |= mii_getbit (dev);
1403 retval <<= 1;
1404 }
1405 /* End cycle */
1406 mii_getbit (dev);
1407 return (retval >> 1) & 0xffff;
1408
1409 err_out:
1410 return 0;
1411 }
1412 static int
1413 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1414 {
1415 u32 cmd;
1416
1417 /* Preamble */
1418 mii_send_bits (dev, 0xffffffff, 32);
1419 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1420 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1421 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1422 mii_send_bits (dev, cmd, 32);
1423 /* End cycle */
1424 mii_getbit (dev);
1425 return 0;
1426 }
1427 static int
1428 mii_wait_link (struct net_device *dev, int wait)
1429 {
1430 BMSR_t bmsr;
1431 int phy_addr;
1432 struct netdev_private *np;
1433
1434 np = netdev_priv(dev);
1435 phy_addr = np->phy_addr;
1436
1437 do {
1438 bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
1439 if (bmsr.bits.link_status)
1440 return 0;
1441 mdelay (1);
1442 } while (--wait > 0);
1443 return -1;
1444 }
1445 static int
1446 mii_get_media (struct net_device *dev)
1447 {
1448 ANAR_t negotiate;
1449 BMSR_t bmsr;
1450 BMCR_t bmcr;
1451 MSCR_t mscr;
1452 MSSR_t mssr;
1453 int phy_addr;
1454 struct netdev_private *np;
1455
1456 np = netdev_priv(dev);
1457 phy_addr = np->phy_addr;
1458
1459 bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
1460 if (np->an_enable) {
1461 if (!bmsr.bits.an_complete) {
1462 /* Auto-Negotiation not completed */
1463 return -1;
1464 }
1465 negotiate.image = mii_read (dev, phy_addr, MII_ANAR) &
1466 mii_read (dev, phy_addr, MII_ANLPAR);
1467 mscr.image = mii_read (dev, phy_addr, MII_MSCR);
1468 mssr.image = mii_read (dev, phy_addr, MII_MSSR);
1469 if (mscr.bits.media_1000BT_FD & mssr.bits.lp_1000BT_FD) {
1470 np->speed = 1000;
1471 np->full_duplex = 1;
1472 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1473 } else if (mscr.bits.media_1000BT_HD & mssr.bits.lp_1000BT_HD) {
1474 np->speed = 1000;
1475 np->full_duplex = 0;
1476 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1477 } else if (negotiate.bits.media_100BX_FD) {
1478 np->speed = 100;
1479 np->full_duplex = 1;
1480 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1481 } else if (negotiate.bits.media_100BX_HD) {
1482 np->speed = 100;
1483 np->full_duplex = 0;
1484 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1485 } else if (negotiate.bits.media_10BT_FD) {
1486 np->speed = 10;
1487 np->full_duplex = 1;
1488 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1489 } else if (negotiate.bits.media_10BT_HD) {
1490 np->speed = 10;
1491 np->full_duplex = 0;
1492 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1493 }
1494 if (negotiate.bits.pause) {
1495 np->tx_flow &= 1;
1496 np->rx_flow &= 1;
1497 } else if (negotiate.bits.asymmetric) {
1498 np->tx_flow = 0;
1499 np->rx_flow &= 1;
1500 }
1501 /* else tx_flow, rx_flow = user select */
1502 } else {
1503 bmcr.image = mii_read (dev, phy_addr, MII_BMCR);
1504 if (bmcr.bits.speed100 == 1 && bmcr.bits.speed1000 == 0) {
1505 printk (KERN_INFO "Operating at 100 Mbps, ");
1506 } else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 0) {
1507 printk (KERN_INFO "Operating at 10 Mbps, ");
1508 } else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 1) {
1509 printk (KERN_INFO "Operating at 1000 Mbps, ");
1510 }
1511 if (bmcr.bits.duplex_mode) {
1512 printk ("Full duplex\n");
1513 } else {
1514 printk ("Half duplex\n");
1515 }
1516 }
1517 if (np->tx_flow)
1518 printk(KERN_INFO "Enable Tx Flow Control\n");
1519 else
1520 printk(KERN_INFO "Disable Tx Flow Control\n");
1521 if (np->rx_flow)
1522 printk(KERN_INFO "Enable Rx Flow Control\n");
1523 else
1524 printk(KERN_INFO "Disable Rx Flow Control\n");
1525
1526 return 0;
1527 }
1528
1529 static int
1530 mii_set_media (struct net_device *dev)
1531 {
1532 PHY_SCR_t pscr;
1533 BMCR_t bmcr;
1534 BMSR_t bmsr;
1535 ANAR_t anar;
1536 int phy_addr;
1537 struct netdev_private *np;
1538 np = netdev_priv(dev);
1539 phy_addr = np->phy_addr;
1540
1541 /* Does user set speed? */
1542 if (np->an_enable) {
1543 /* Advertise capabilities */
1544 bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
1545 anar.image = mii_read (dev, phy_addr, MII_ANAR);
1546 anar.bits.media_100BX_FD = bmsr.bits.media_100BX_FD;
1547 anar.bits.media_100BX_HD = bmsr.bits.media_100BX_HD;
1548 anar.bits.media_100BT4 = bmsr.bits.media_100BT4;
1549 anar.bits.media_10BT_FD = bmsr.bits.media_10BT_FD;
1550 anar.bits.media_10BT_HD = bmsr.bits.media_10BT_HD;
1551 anar.bits.pause = 1;
1552 anar.bits.asymmetric = 1;
1553 mii_write (dev, phy_addr, MII_ANAR, anar.image);
1554
1555 /* Enable Auto crossover */
1556 pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR);
1557 pscr.bits.mdi_crossover_mode = 3; /* 11'b */
1558 mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image);
1559
1560 /* Soft reset PHY */
1561 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1562 bmcr.image = 0;
1563 bmcr.bits.an_enable = 1;
1564 bmcr.bits.restart_an = 1;
1565 bmcr.bits.reset = 1;
1566 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1567 mdelay(1);
1568 } else {
1569 /* Force speed setting */
1570 /* 1) Disable Auto crossover */
1571 pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR);
1572 pscr.bits.mdi_crossover_mode = 0;
1573 mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image);
1574
1575 /* 2) PHY Reset */
1576 bmcr.image = mii_read (dev, phy_addr, MII_BMCR);
1577 bmcr.bits.reset = 1;
1578 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1579
1580 /* 3) Power Down */
1581 bmcr.image = 0x1940; /* must be 0x1940 */
1582 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1583 mdelay (100); /* wait a certain time */
1584
1585 /* 4) Advertise nothing */
1586 mii_write (dev, phy_addr, MII_ANAR, 0);
1587
1588 /* 5) Set media and Power Up */
1589 bmcr.image = 0;
1590 bmcr.bits.power_down = 1;
1591 if (np->speed == 100) {
1592 bmcr.bits.speed100 = 1;
1593 bmcr.bits.speed1000 = 0;
1594 printk (KERN_INFO "Manual 100 Mbps, ");
1595 } else if (np->speed == 10) {
1596 bmcr.bits.speed100 = 0;
1597 bmcr.bits.speed1000 = 0;
1598 printk (KERN_INFO "Manual 10 Mbps, ");
1599 }
1600 if (np->full_duplex) {
1601 bmcr.bits.duplex_mode = 1;
1602 printk ("Full duplex\n");
1603 } else {
1604 bmcr.bits.duplex_mode = 0;
1605 printk ("Half duplex\n");
1606 }
1607 #if 0
1608 /* Set 1000BaseT Master/Slave setting */
1609 mscr.image = mii_read (dev, phy_addr, MII_MSCR);
1610 mscr.bits.cfg_enable = 1;
1611 mscr.bits.cfg_value = 0;
1612 #endif
1613 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1614 mdelay(10);
1615 }
1616 return 0;
1617 }
1618
1619 static int
1620 mii_get_media_pcs (struct net_device *dev)
1621 {
1622 ANAR_PCS_t negotiate;
1623 BMSR_t bmsr;
1624 BMCR_t bmcr;
1625 int phy_addr;
1626 struct netdev_private *np;
1627
1628 np = netdev_priv(dev);
1629 phy_addr = np->phy_addr;
1630
1631 bmsr.image = mii_read (dev, phy_addr, PCS_BMSR);
1632 if (np->an_enable) {
1633 if (!bmsr.bits.an_complete) {
1634 /* Auto-Negotiation not completed */
1635 return -1;
1636 }
1637 negotiate.image = mii_read (dev, phy_addr, PCS_ANAR) &
1638 mii_read (dev, phy_addr, PCS_ANLPAR);
1639 np->speed = 1000;
1640 if (negotiate.bits.full_duplex) {
1641 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1642 np->full_duplex = 1;
1643 } else {
1644 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1645 np->full_duplex = 0;
1646 }
1647 if (negotiate.bits.pause) {
1648 np->tx_flow &= 1;
1649 np->rx_flow &= 1;
1650 } else if (negotiate.bits.asymmetric) {
1651 np->tx_flow = 0;
1652 np->rx_flow &= 1;
1653 }
1654 /* else tx_flow, rx_flow = user select */
1655 } else {
1656 bmcr.image = mii_read (dev, phy_addr, PCS_BMCR);
1657 printk (KERN_INFO "Operating at 1000 Mbps, ");
1658 if (bmcr.bits.duplex_mode) {
1659 printk ("Full duplex\n");
1660 } else {
1661 printk ("Half duplex\n");
1662 }
1663 }
1664 if (np->tx_flow)
1665 printk(KERN_INFO "Enable Tx Flow Control\n");
1666 else
1667 printk(KERN_INFO "Disable Tx Flow Control\n");
1668 if (np->rx_flow)
1669 printk(KERN_INFO "Enable Rx Flow Control\n");
1670 else
1671 printk(KERN_INFO "Disable Rx Flow Control\n");
1672
1673 return 0;
1674 }
1675
1676 static int
1677 mii_set_media_pcs (struct net_device *dev)
1678 {
1679 BMCR_t bmcr;
1680 ESR_t esr;
1681 ANAR_PCS_t anar;
1682 int phy_addr;
1683 struct netdev_private *np;
1684 np = netdev_priv(dev);
1685 phy_addr = np->phy_addr;
1686
1687 /* Auto-Negotiation? */
1688 if (np->an_enable) {
1689 /* Advertise capabilities */
1690 esr.image = mii_read (dev, phy_addr, PCS_ESR);
1691 anar.image = mii_read (dev, phy_addr, MII_ANAR);
1692 anar.bits.half_duplex =
1693 esr.bits.media_1000BT_HD | esr.bits.media_1000BX_HD;
1694 anar.bits.full_duplex =
1695 esr.bits.media_1000BT_FD | esr.bits.media_1000BX_FD;
1696 anar.bits.pause = 1;
1697 anar.bits.asymmetric = 1;
1698 mii_write (dev, phy_addr, MII_ANAR, anar.image);
1699
1700 /* Soft reset PHY */
1701 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1702 bmcr.image = 0;
1703 bmcr.bits.an_enable = 1;
1704 bmcr.bits.restart_an = 1;
1705 bmcr.bits.reset = 1;
1706 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1707 mdelay(1);
1708 } else {
1709 /* Force speed setting */
1710 /* PHY Reset */
1711 bmcr.image = 0;
1712 bmcr.bits.reset = 1;
1713 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1714 mdelay(10);
1715 bmcr.image = 0;
1716 bmcr.bits.an_enable = 0;
1717 if (np->full_duplex) {
1718 bmcr.bits.duplex_mode = 1;
1719 printk (KERN_INFO "Manual full duplex\n");
1720 } else {
1721 bmcr.bits.duplex_mode = 0;
1722 printk (KERN_INFO "Manual half duplex\n");
1723 }
1724 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1725 mdelay(10);
1726
1727 /* Advertise nothing */
1728 mii_write (dev, phy_addr, MII_ANAR, 0);
1729 }
1730 return 0;
1731 }
1732
1733
1734 static int
1735 rio_close (struct net_device *dev)
1736 {
1737 long ioaddr = dev->base_addr;
1738 struct netdev_private *np = netdev_priv(dev);
1739 struct sk_buff *skb;
1740 int i;
1741
1742 netif_stop_queue (dev);
1743
1744 /* Disable interrupts */
1745 writew (0, ioaddr + IntEnable);
1746
1747 /* Stop Tx and Rx logics */
1748 writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1749 synchronize_irq (dev->irq);
1750 free_irq (dev->irq, dev);
1751 del_timer_sync (&np->timer);
1752
1753 /* Free all the skbuffs in the queue. */
1754 for (i = 0; i < RX_RING_SIZE; i++) {
1755 np->rx_ring[i].status = 0;
1756 np->rx_ring[i].fraginfo = 0;
1757 skb = np->rx_skbuff[i];
1758 if (skb) {
1759 pci_unmap_single(np->pdev,
1760 np->rx_ring[i].fraginfo & DMA_48BIT_MASK,
1761 skb->len, PCI_DMA_FROMDEVICE);
1762 dev_kfree_skb (skb);
1763 np->rx_skbuff[i] = NULL;
1764 }
1765 }
1766 for (i = 0; i < TX_RING_SIZE; i++) {
1767 skb = np->tx_skbuff[i];
1768 if (skb) {
1769 pci_unmap_single(np->pdev,
1770 np->tx_ring[i].fraginfo & DMA_48BIT_MASK,
1771 skb->len, PCI_DMA_TODEVICE);
1772 dev_kfree_skb (skb);
1773 np->tx_skbuff[i] = NULL;
1774 }
1775 }
1776
1777 return 0;
1778 }
1779
1780 static void __devexit
1781 rio_remove1 (struct pci_dev *pdev)
1782 {
1783 struct net_device *dev = pci_get_drvdata (pdev);
1784
1785 if (dev) {
1786 struct netdev_private *np = netdev_priv(dev);
1787
1788 unregister_netdev (dev);
1789 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1790 np->rx_ring_dma);
1791 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1792 np->tx_ring_dma);
1793 #ifdef MEM_MAPPING
1794 iounmap ((char *) (dev->base_addr));
1795 #endif
1796 free_netdev (dev);
1797 pci_release_regions (pdev);
1798 pci_disable_device (pdev);
1799 }
1800 pci_set_drvdata (pdev, NULL);
1801 }
1802
1803 static struct pci_driver rio_driver = {
1804 .name = "dl2k",
1805 .id_table = rio_pci_tbl,
1806 .probe = rio_probe1,
1807 .remove = __devexit_p(rio_remove1),
1808 };
1809
1810 static int __init
1811 rio_init (void)
1812 {
1813 return pci_register_driver(&rio_driver);
1814 }
1815
1816 static void __exit
1817 rio_exit (void)
1818 {
1819 pci_unregister_driver (&rio_driver);
1820 }
1821
1822 module_init (rio_init);
1823 module_exit (rio_exit);
1824
1825 /*
1826
1827 Compile command:
1828
1829 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1830
1831 Read Documentation/networking/dl2k.txt for details.
1832
1833 */
1834