IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / defxx.c
1 /*
2 * File Name:
3 * defxx.c
4 *
5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
7 *
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 * A Linux device driver supporting the Digital Equipment Corporation
13 * FDDI EISA and PCI controller families. Supported adapters include:
14 *
15 * DEC FDDIcontroller/EISA (DEFEA)
16 * DEC FDDIcontroller/PCI (DEFPA)
17 *
18 * The original author:
19 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
20 *
21 * Maintainers:
22 * macro Maciej W. Rozycki <macro@linux-mips.org>
23 *
24 * Credits:
25 * I'd like to thank Patricia Cross for helping me get started with
26 * Linux, David Davies for a lot of help upgrading and configuring
27 * my development system and for answering many OS and driver
28 * development questions, and Alan Cox for recommendations and
29 * integration help on getting FDDI support into Linux. LVS
30 *
31 * Driver Architecture:
32 * The driver architecture is largely based on previous driver work
33 * for other operating systems. The upper edge interface and
34 * functions were largely taken from existing Linux device drivers
35 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
36 * driver.
37 *
38 * Adapter Probe -
39 * The driver scans for supported EISA adapters by reading the
40 * SLOT ID register for each EISA slot and making a match
41 * against the expected value.
42 *
43 * Bus-Specific Initialization -
44 * This driver currently supports both EISA and PCI controller
45 * families. While the custom DMA chip and FDDI logic is similar
46 * or identical, the bus logic is very different. After
47 * initialization, the only bus-specific differences is in how the
48 * driver enables and disables interrupts. Other than that, the
49 * run-time critical code behaves the same on both families.
50 * It's important to note that both adapter families are configured
51 * to I/O map, rather than memory map, the adapter registers.
52 *
53 * Driver Open/Close -
54 * In the driver open routine, the driver ISR (interrupt service
55 * routine) is registered and the adapter is brought to an
56 * operational state. In the driver close routine, the opposite
57 * occurs; the driver ISR is deregistered and the adapter is
58 * brought to a safe, but closed state. Users may use consecutive
59 * commands to bring the adapter up and down as in the following
60 * example:
61 * ifconfig fddi0 up
62 * ifconfig fddi0 down
63 * ifconfig fddi0 up
64 *
65 * Driver Shutdown -
66 * Apparently, there is no shutdown or halt routine support under
67 * Linux. This routine would be called during "reboot" or
68 * "shutdown" to allow the driver to place the adapter in a safe
69 * state before a warm reboot occurs. To be really safe, the user
70 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
71 * to ensure that the adapter DMA engine is taken off-line. However,
72 * the current driver code anticipates this problem and always issues
73 * a soft reset of the adapter at the beginning of driver initialization.
74 * A future driver enhancement in this area may occur in 2.1.X where
75 * Alan indicated that a shutdown handler may be implemented.
76 *
77 * Interrupt Service Routine -
78 * The driver supports shared interrupts, so the ISR is registered for
79 * each board with the appropriate flag and the pointer to that board's
80 * device structure. This provides the context during interrupt
81 * processing to support shared interrupts and multiple boards.
82 *
83 * Interrupt enabling/disabling can occur at many levels. At the host
84 * end, you can disable system interrupts, or disable interrupts at the
85 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
86 * have a bus-logic chip interrupt enable/disable as well as a DMA
87 * controller interrupt enable/disable.
88 *
89 * The driver currently enables and disables adapter interrupts at the
90 * bus-logic chip and assumes that Linux will take care of clearing or
91 * acknowledging any host-based interrupt chips.
92 *
93 * Control Functions -
94 * Control functions are those used to support functions such as adding
95 * or deleting multicast addresses, enabling or disabling packet
96 * reception filters, or other custom/proprietary commands. Presently,
97 * the driver supports the "get statistics", "set multicast list", and
98 * "set mac address" functions defined by Linux. A list of possible
99 * enhancements include:
100 *
101 * - Custom ioctl interface for executing port interface commands
102 * - Custom ioctl interface for adding unicast addresses to
103 * adapter CAM (to support bridge functions).
104 * - Custom ioctl interface for supporting firmware upgrades.
105 *
106 * Hardware (port interface) Support Routines -
107 * The driver function names that start with "dfx_hw_" represent
108 * low-level port interface routines that are called frequently. They
109 * include issuing a DMA or port control command to the adapter,
110 * resetting the adapter, or reading the adapter state. Since the
111 * driver initialization and run-time code must make calls into the
112 * port interface, these routines were written to be as generic and
113 * usable as possible.
114 *
115 * Receive Path -
116 * The adapter DMA engine supports a 256 entry receive descriptor block
117 * of which up to 255 entries can be used at any given time. The
118 * architecture is a standard producer, consumer, completion model in
119 * which the driver "produces" receive buffers to the adapter, the
120 * adapter "consumes" the receive buffers by DMAing incoming packet data,
121 * and the driver "completes" the receive buffers by servicing the
122 * incoming packet, then "produces" a new buffer and starts the cycle
123 * again. Receive buffers can be fragmented in up to 16 fragments
124 * (descriptor entries). For simplicity, this driver posts
125 * single-fragment receive buffers of 4608 bytes, then allocates a
126 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
127 * utilization, a better approach would be to pass up the receive
128 * buffer (no extra copy) then allocate and post a replacement buffer.
129 * This is a performance enhancement that should be looked into at
130 * some point.
131 *
132 * Transmit Path -
133 * Like the receive path, the adapter DMA engine supports a 256 entry
134 * transmit descriptor block of which up to 255 entries can be used at
135 * any given time. Transmit buffers can be fragmented in up to 255
136 * fragments (descriptor entries). This driver always posts one
137 * fragment per transmit packet request.
138 *
139 * The fragment contains the entire packet from FC to end of data.
140 * Before posting the buffer to the adapter, the driver sets a three-byte
141 * packet request header (PRH) which is required by the Motorola MAC chip
142 * used on the adapters. The PRH tells the MAC the type of token to
143 * receive/send, whether or not to generate and append the CRC, whether
144 * synchronous or asynchronous framing is used, etc. Since the PRH
145 * definition is not necessarily consistent across all FDDI chipsets,
146 * the driver, rather than the common FDDI packet handler routines,
147 * sets these bytes.
148 *
149 * To reduce the amount of descriptor fetches needed per transmit request,
150 * the driver takes advantage of the fact that there are at least three
151 * bytes available before the skb->data field on the outgoing transmit
152 * request. This is guaranteed by having fddi_setup() in net_init.c set
153 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
154 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
155 * bytes which we'll use to store the PRH.
156 *
157 * There's a subtle advantage to adding these pad bytes to the
158 * hard_header_len, it ensures that the data portion of the packet for
159 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
160 * implementations may not need the extra padding and can start copying
161 * or DMAing directly from the FC byte which starts at skb->data. Should
162 * another driver implementation need ADDITIONAL padding, the net_init.c
163 * module should be updated and dev->hard_header_len should be increased.
164 * NOTE: To maintain the alignment on the data portion of the packet,
165 * dev->hard_header_len should always be evenly divisible by 4 and at
166 * least 24 bytes in size.
167 *
168 * Modification History:
169 * Date Name Description
170 * 16-Aug-96 LVS Created.
171 * 20-Aug-96 LVS Updated dfx_probe so that version information
172 * string is only displayed if 1 or more cards are
173 * found. Changed dfx_rcv_queue_process to copy
174 * 3 NULL bytes before FC to ensure that data is
175 * longword aligned in receive buffer.
176 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
177 * LLC group promiscuous mode if multicast list
178 * is too large. LLC individual/group promiscuous
179 * mode is now disabled if IFF_PROMISC flag not set.
180 * dfx_xmt_queue_pkt no longer checks for NULL skb
181 * on Alan Cox recommendation. Added node address
182 * override support.
183 * 12-Sep-96 LVS Reset current address to factory address during
184 * device open. Updated transmit path to post a
185 * single fragment which includes PRH->end of data.
186 * Mar 2000 AC Did various cleanups for 2.3.x
187 * Jun 2000 jgarzik PCI and resource alloc cleanups
188 * Jul 2000 tjeerd Much cleanup and some bug fixes
189 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
190 * Feb 2001 Skb allocation fixes
191 * Feb 2001 davej PCI enable cleanups.
192 * 04 Aug 2003 macro Converted to the DMA API.
193 * 14 Aug 2004 macro Fix device names reported.
194 * 14 Jun 2005 macro Use irqreturn_t.
195 */
196
197 /* Include files */
198
199 #include <linux/module.h>
200 #include <linux/kernel.h>
201 #include <linux/string.h>
202 #include <linux/errno.h>
203 #include <linux/ioport.h>
204 #include <linux/slab.h>
205 #include <linux/interrupt.h>
206 #include <linux/pci.h>
207 #include <linux/delay.h>
208 #include <linux/init.h>
209 #include <linux/netdevice.h>
210 #include <linux/fddidevice.h>
211 #include <linux/skbuff.h>
212 #include <linux/bitops.h>
213
214 #include <asm/byteorder.h>
215 #include <asm/io.h>
216
217 #include "defxx.h"
218
219 /* Version information string should be updated prior to each new release! */
220 #define DRV_NAME "defxx"
221 #define DRV_VERSION "v1.08"
222 #define DRV_RELDATE "2005/06/14"
223
224 static char version[] __devinitdata =
225 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
226 " Lawrence V. Stefani and others\n";
227
228 #define DYNAMIC_BUFFERS 1
229
230 #define SKBUFF_RX_COPYBREAK 200
231 /*
232 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
233 * alignment for compatibility with old EISA boards.
234 */
235 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
236
237 /* Define module-wide (static) routines */
238
239 static void dfx_bus_init(struct net_device *dev);
240 static void dfx_bus_config_check(DFX_board_t *bp);
241
242 static int dfx_driver_init(struct net_device *dev, const char *print_name);
243 static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
244
245 static int dfx_open(struct net_device *dev);
246 static int dfx_close(struct net_device *dev);
247
248 static void dfx_int_pr_halt_id(DFX_board_t *bp);
249 static void dfx_int_type_0_process(DFX_board_t *bp);
250 static void dfx_int_common(struct net_device *dev);
251 static irqreturn_t dfx_interrupt(int irq, void *dev_id);
252
253 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
254 static void dfx_ctl_set_multicast_list(struct net_device *dev);
255 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
256 static int dfx_ctl_update_cam(DFX_board_t *bp);
257 static int dfx_ctl_update_filters(DFX_board_t *bp);
258
259 static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
260 static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
261 static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
262 static int dfx_hw_adap_state_rd(DFX_board_t *bp);
263 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
264
265 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
266 static void dfx_rcv_queue_process(DFX_board_t *bp);
267 static void dfx_rcv_flush(DFX_board_t *bp);
268
269 static int dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev);
270 static int dfx_xmt_done(DFX_board_t *bp);
271 static void dfx_xmt_flush(DFX_board_t *bp);
272
273 /* Define module-wide (static) variables */
274
275 static struct net_device *root_dfx_eisa_dev;
276
277
278 /*
279 * =======================
280 * = dfx_port_write_byte =
281 * = dfx_port_read_byte =
282 * = dfx_port_write_long =
283 * = dfx_port_read_long =
284 * =======================
285 *
286 * Overview:
287 * Routines for reading and writing values from/to adapter
288 *
289 * Returns:
290 * None
291 *
292 * Arguments:
293 * bp - pointer to board information
294 * offset - register offset from base I/O address
295 * data - for dfx_port_write_byte and dfx_port_write_long, this
296 * is a value to write.
297 * for dfx_port_read_byte and dfx_port_read_byte, this
298 * is a pointer to store the read value.
299 *
300 * Functional Description:
301 * These routines perform the correct operation to read or write
302 * the adapter register.
303 *
304 * EISA port block base addresses are based on the slot number in which the
305 * controller is installed. For example, if the EISA controller is installed
306 * in slot 4, the port block base address is 0x4000. If the controller is
307 * installed in slot 2, the port block base address is 0x2000, and so on.
308 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
309 * registers using the register offsets defined in DEFXX.H.
310 *
311 * PCI port block base addresses are assigned by the PCI BIOS or system
312 * firmware. There is one 128 byte port block which can be accessed. It
313 * allows for I/O mapping of both PDQ and PFI registers using the register
314 * offsets defined in DEFXX.H.
315 *
316 * Return Codes:
317 * None
318 *
319 * Assumptions:
320 * bp->base_addr is a valid base I/O address for this adapter.
321 * offset is a valid register offset for this adapter.
322 *
323 * Side Effects:
324 * Rather than produce macros for these functions, these routines
325 * are defined using "inline" to ensure that the compiler will
326 * generate inline code and not waste a procedure call and return.
327 * This provides all the benefits of macros, but with the
328 * advantage of strict data type checking.
329 */
330
331 static inline void dfx_port_write_byte(
332 DFX_board_t *bp,
333 int offset,
334 u8 data
335 )
336
337 {
338 u16 port = bp->base_addr + offset;
339
340 outb(data, port);
341 }
342
343 static inline void dfx_port_read_byte(
344 DFX_board_t *bp,
345 int offset,
346 u8 *data
347 )
348
349 {
350 u16 port = bp->base_addr + offset;
351
352 *data = inb(port);
353 }
354
355 static inline void dfx_port_write_long(
356 DFX_board_t *bp,
357 int offset,
358 u32 data
359 )
360
361 {
362 u16 port = bp->base_addr + offset;
363
364 outl(data, port);
365 }
366
367 static inline void dfx_port_read_long(
368 DFX_board_t *bp,
369 int offset,
370 u32 *data
371 )
372
373 {
374 u16 port = bp->base_addr + offset;
375
376 *data = inl(port);
377 }
378
379
380 /*
381 * =============
382 * = dfx_init_one_pci_or_eisa =
383 * =============
384 *
385 * Overview:
386 * Initializes a supported FDDI EISA or PCI controller
387 *
388 * Returns:
389 * Condition code
390 *
391 * Arguments:
392 * pdev - pointer to pci device information (NULL for EISA)
393 * ioaddr - pointer to port (NULL for PCI)
394 *
395 * Functional Description:
396 *
397 * Return Codes:
398 * 0 - This device (fddi0, fddi1, etc) configured successfully
399 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
400 *
401 * Assumptions:
402 * It compiles so it should work :-( (PCI cards do :-)
403 *
404 * Side Effects:
405 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
406 * initialized and the board resources are read and stored in
407 * the device structure.
408 */
409 static int __devinit dfx_init_one_pci_or_eisa(struct pci_dev *pdev, long ioaddr)
410 {
411 static int version_disp;
412 char *print_name = DRV_NAME;
413 struct net_device *dev;
414 DFX_board_t *bp; /* board pointer */
415 int alloc_size; /* total buffer size used */
416 int err;
417
418 if (!version_disp) { /* display version info if adapter is found */
419 version_disp = 1; /* set display flag to TRUE so that */
420 printk(version); /* we only display this string ONCE */
421 }
422
423 if (pdev != NULL)
424 print_name = pci_name(pdev);
425
426 dev = alloc_fddidev(sizeof(*bp));
427 if (!dev) {
428 printk(KERN_ERR "%s: unable to allocate fddidev, aborting\n",
429 print_name);
430 return -ENOMEM;
431 }
432
433 /* Enable PCI device. */
434 if (pdev != NULL) {
435 err = pci_enable_device (pdev);
436 if (err) goto err_out;
437 ioaddr = pci_resource_start (pdev, 1);
438 }
439
440 SET_MODULE_OWNER(dev);
441 if (pdev != NULL)
442 SET_NETDEV_DEV(dev, &pdev->dev);
443
444 bp = dev->priv;
445
446 if (!request_region(ioaddr,
447 pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN,
448 print_name)) {
449 printk(KERN_ERR "%s: Cannot reserve I/O resource "
450 "0x%x @ 0x%lx, aborting\n", print_name,
451 pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN, ioaddr);
452 err = -EBUSY;
453 goto err_out;
454 }
455
456 /* Initialize new device structure */
457
458 dev->base_addr = ioaddr; /* save port (I/O) base address */
459
460 dev->get_stats = dfx_ctl_get_stats;
461 dev->open = dfx_open;
462 dev->stop = dfx_close;
463 dev->hard_start_xmit = dfx_xmt_queue_pkt;
464 dev->set_multicast_list = dfx_ctl_set_multicast_list;
465 dev->set_mac_address = dfx_ctl_set_mac_address;
466
467 if (pdev == NULL) {
468 /* EISA board */
469 bp->bus_type = DFX_BUS_TYPE_EISA;
470 bp->next = root_dfx_eisa_dev;
471 root_dfx_eisa_dev = dev;
472 } else {
473 /* PCI board */
474 bp->bus_type = DFX_BUS_TYPE_PCI;
475 bp->pci_dev = pdev;
476 pci_set_drvdata (pdev, dev);
477 pci_set_master (pdev);
478 }
479
480 if (dfx_driver_init(dev, print_name) != DFX_K_SUCCESS) {
481 err = -ENODEV;
482 goto err_out_region;
483 }
484
485 err = register_netdev(dev);
486 if (err)
487 goto err_out_kfree;
488
489 printk("%s: registered as %s\n", print_name, dev->name);
490 return 0;
491
492 err_out_kfree:
493 alloc_size = sizeof(PI_DESCR_BLOCK) +
494 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
495 #ifndef DYNAMIC_BUFFERS
496 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
497 #endif
498 sizeof(PI_CONSUMER_BLOCK) +
499 (PI_ALIGN_K_DESC_BLK - 1);
500 if (bp->kmalloced)
501 pci_free_consistent(pdev, alloc_size,
502 bp->kmalloced, bp->kmalloced_dma);
503 err_out_region:
504 release_region(ioaddr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN);
505 err_out:
506 free_netdev(dev);
507 return err;
508 }
509
510 static int __devinit dfx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
511 {
512 return dfx_init_one_pci_or_eisa(pdev, 0);
513 }
514
515 static int __init dfx_eisa_init(void)
516 {
517 int rc = -ENODEV;
518 int i; /* used in for loops */
519 u16 port; /* temporary I/O (port) address */
520 u32 slot_id; /* EISA hardware (slot) ID read from adapter */
521
522 DBG_printk("In dfx_eisa_init...\n");
523
524 /* Scan for FDDI EISA controllers */
525
526 for (i=0; i < DFX_MAX_EISA_SLOTS; i++) /* only scan for up to 16 EISA slots */
527 {
528 port = (i << 12) + PI_ESIC_K_SLOT_ID; /* port = I/O address for reading slot ID */
529 slot_id = inl(port); /* read EISA HW (slot) ID */
530 if ((slot_id & 0xF0FFFFFF) == DEFEA_PRODUCT_ID)
531 {
532 port = (i << 12); /* recalc base addr */
533
534 if (dfx_init_one_pci_or_eisa(NULL, port) == 0) rc = 0;
535 }
536 }
537 return rc;
538 }
539
540 /*
541 * ================
542 * = dfx_bus_init =
543 * ================
544 *
545 * Overview:
546 * Initializes EISA and PCI controller bus-specific logic.
547 *
548 * Returns:
549 * None
550 *
551 * Arguments:
552 * dev - pointer to device information
553 *
554 * Functional Description:
555 * Determine and save adapter IRQ in device table,
556 * then perform bus-specific logic initialization.
557 *
558 * Return Codes:
559 * None
560 *
561 * Assumptions:
562 * dev->base_addr has already been set with the proper
563 * base I/O address for this device.
564 *
565 * Side Effects:
566 * Interrupts are enabled at the adapter bus-specific logic.
567 * Note: Interrupts at the DMA engine (PDQ chip) are not
568 * enabled yet.
569 */
570
571 static void __devinit dfx_bus_init(struct net_device *dev)
572 {
573 DFX_board_t *bp = dev->priv;
574 u8 val; /* used for I/O read/writes */
575
576 DBG_printk("In dfx_bus_init...\n");
577
578 /*
579 * Initialize base I/O address field in bp structure
580 *
581 * Note: bp->base_addr is the same as dev->base_addr.
582 * It's useful because often we'll need to read
583 * or write registers where we already have the
584 * bp pointer instead of the dev pointer. Having
585 * the base address in the bp structure will
586 * save a pointer dereference.
587 *
588 * IMPORTANT!! This field must be defined before
589 * any of the dfx_port_* inline functions are
590 * called.
591 */
592
593 bp->base_addr = dev->base_addr;
594
595 /* And a pointer back to the net_device struct */
596 bp->dev = dev;
597
598 /* Initialize adapter based on bus type */
599
600 if (bp->bus_type == DFX_BUS_TYPE_EISA)
601 {
602 /* Get the interrupt level from the ESIC chip */
603
604 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
605 switch ((val & PI_CONFIG_STAT_0_M_IRQ) >> PI_CONFIG_STAT_0_V_IRQ)
606 {
607 case PI_CONFIG_STAT_0_IRQ_K_9:
608 dev->irq = 9;
609 break;
610
611 case PI_CONFIG_STAT_0_IRQ_K_10:
612 dev->irq = 10;
613 break;
614
615 case PI_CONFIG_STAT_0_IRQ_K_11:
616 dev->irq = 11;
617 break;
618
619 case PI_CONFIG_STAT_0_IRQ_K_15:
620 dev->irq = 15;
621 break;
622 }
623
624 /* Enable access to I/O on the board by writing 0x03 to Function Control Register */
625
626 dfx_port_write_byte(bp, PI_ESIC_K_FUNCTION_CNTRL, PI_ESIC_K_FUNCTION_CNTRL_IO_ENB);
627
628 /* Set the I/O decode range of the board */
629
630 val = ((dev->base_addr >> 12) << PI_IO_CMP_V_SLOT);
631 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_0_1, val);
632 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_1_1, val);
633
634 /* Enable access to rest of module (including PDQ and packet memory) */
635
636 dfx_port_write_byte(bp, PI_ESIC_K_SLOT_CNTRL, PI_SLOT_CNTRL_M_ENB);
637
638 /*
639 * Map PDQ registers into I/O space. This is done by clearing a bit
640 * in Burst Holdoff register.
641 */
642
643 dfx_port_read_byte(bp, PI_ESIC_K_BURST_HOLDOFF, &val);
644 dfx_port_write_byte(bp, PI_ESIC_K_BURST_HOLDOFF, (val & ~PI_BURST_HOLDOFF_M_MEM_MAP));
645
646 /* Enable interrupts at EISA bus interface chip (ESIC) */
647
648 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
649 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, (val | PI_CONFIG_STAT_0_M_INT_ENB));
650 }
651 else
652 {
653 struct pci_dev *pdev = bp->pci_dev;
654
655 /* Get the interrupt level from the PCI Configuration Table */
656
657 dev->irq = pdev->irq;
658
659 /* Check Latency Timer and set if less than minimal */
660
661 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
662 if (val < PFI_K_LAT_TIMER_MIN) /* if less than min, override with default */
663 {
664 val = PFI_K_LAT_TIMER_DEF;
665 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
666 }
667
668 /* Enable interrupts at PCI bus interface chip (PFI) */
669
670 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, (PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB));
671 }
672 }
673
674
675 /*
676 * ========================
677 * = dfx_bus_config_check =
678 * ========================
679 *
680 * Overview:
681 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
682 * are illegal, then this routine will set new defaults.
683 *
684 * Returns:
685 * None
686 *
687 * Arguments:
688 * bp - pointer to board information
689 *
690 * Functional Description:
691 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
692 * PDQ, and all FDDI PCI controllers, all values are legal.
693 *
694 * Return Codes:
695 * None
696 *
697 * Assumptions:
698 * dfx_adap_init has NOT been called yet so burst size and other items have
699 * not been set.
700 *
701 * Side Effects:
702 * None
703 */
704
705 static void __devinit dfx_bus_config_check(DFX_board_t *bp)
706 {
707 int status; /* return code from adapter port control call */
708 u32 slot_id; /* EISA-bus hardware id (DEC3001, DEC3002,...) */
709 u32 host_data; /* LW data returned from port control call */
710
711 DBG_printk("In dfx_bus_config_check...\n");
712
713 /* Configuration check only valid for EISA adapter */
714
715 if (bp->bus_type == DFX_BUS_TYPE_EISA)
716 {
717 dfx_port_read_long(bp, PI_ESIC_K_SLOT_ID, &slot_id);
718
719 /*
720 * First check if revision 2 EISA controller. Rev. 1 cards used
721 * PDQ revision B, so no workaround needed in this case. Rev. 3
722 * cards used PDQ revision E, so no workaround needed in this
723 * case, either. Only Rev. 2 cards used either Rev. D or E
724 * chips, so we must verify the chip revision on Rev. 2 cards.
725 */
726
727 if (slot_id == DEFEA_PROD_ID_2)
728 {
729 /*
730 * Revision 2 FDDI EISA controller found, so let's check PDQ
731 * revision of adapter.
732 */
733
734 status = dfx_hw_port_ctrl_req(bp,
735 PI_PCTRL_M_SUB_CMD,
736 PI_SUB_CMD_K_PDQ_REV_GET,
737 0,
738 &host_data);
739 if ((status != DFX_K_SUCCESS) || (host_data == 2))
740 {
741 /*
742 * Either we couldn't determine the PDQ revision, or
743 * we determined that it is at revision D. In either case,
744 * we need to implement the workaround.
745 */
746
747 /* Ensure that the burst size is set to 8 longwords or less */
748
749 switch (bp->burst_size)
750 {
751 case PI_PDATA_B_DMA_BURST_SIZE_32:
752 case PI_PDATA_B_DMA_BURST_SIZE_16:
753 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
754 break;
755
756 default:
757 break;
758 }
759
760 /* Ensure that full-duplex mode is not enabled */
761
762 bp->full_duplex_enb = PI_SNMP_K_FALSE;
763 }
764 }
765 }
766 }
767
768
769 /*
770 * ===================
771 * = dfx_driver_init =
772 * ===================
773 *
774 * Overview:
775 * Initializes remaining adapter board structure information
776 * and makes sure adapter is in a safe state prior to dfx_open().
777 *
778 * Returns:
779 * Condition code
780 *
781 * Arguments:
782 * dev - pointer to device information
783 * print_name - printable device name
784 *
785 * Functional Description:
786 * This function allocates additional resources such as the host memory
787 * blocks needed by the adapter (eg. descriptor and consumer blocks).
788 * Remaining bus initialization steps are also completed. The adapter
789 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
790 * must call dfx_open() to open the adapter and bring it on-line.
791 *
792 * Return Codes:
793 * DFX_K_SUCCESS - initialization succeeded
794 * DFX_K_FAILURE - initialization failed - could not allocate memory
795 * or read adapter MAC address
796 *
797 * Assumptions:
798 * Memory allocated from pci_alloc_consistent() call is physically
799 * contiguous, locked memory.
800 *
801 * Side Effects:
802 * Adapter is reset and should be in DMA_UNAVAILABLE state before
803 * returning from this routine.
804 */
805
806 static int __devinit dfx_driver_init(struct net_device *dev,
807 const char *print_name)
808 {
809 DFX_board_t *bp = dev->priv;
810 int alloc_size; /* total buffer size needed */
811 char *top_v, *curr_v; /* virtual addrs into memory block */
812 dma_addr_t top_p, curr_p; /* physical addrs into memory block */
813 u32 data; /* host data register value */
814
815 DBG_printk("In dfx_driver_init...\n");
816
817 /* Initialize bus-specific hardware registers */
818
819 dfx_bus_init(dev);
820
821 /*
822 * Initialize default values for configurable parameters
823 *
824 * Note: All of these parameters are ones that a user may
825 * want to customize. It'd be nice to break these
826 * out into Space.c or someplace else that's more
827 * accessible/understandable than this file.
828 */
829
830 bp->full_duplex_enb = PI_SNMP_K_FALSE;
831 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
832 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
833 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
834
835 /*
836 * Ensure that HW configuration is OK
837 *
838 * Note: Depending on the hardware revision, we may need to modify
839 * some of the configurable parameters to workaround hardware
840 * limitations. We'll perform this configuration check AFTER
841 * setting the parameters to their default values.
842 */
843
844 dfx_bus_config_check(bp);
845
846 /* Disable PDQ interrupts first */
847
848 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
849
850 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
851
852 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
853
854 /* Read the factory MAC address from the adapter then save it */
855
856 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
857 &data) != DFX_K_SUCCESS) {
858 printk("%s: Could not read adapter factory MAC address!\n",
859 print_name);
860 return(DFX_K_FAILURE);
861 }
862 memcpy(&bp->factory_mac_addr[0], &data, sizeof(u32));
863
864 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
865 &data) != DFX_K_SUCCESS) {
866 printk("%s: Could not read adapter factory MAC address!\n",
867 print_name);
868 return(DFX_K_FAILURE);
869 }
870 memcpy(&bp->factory_mac_addr[4], &data, sizeof(u16));
871
872 /*
873 * Set current address to factory address
874 *
875 * Note: Node address override support is handled through
876 * dfx_ctl_set_mac_address.
877 */
878
879 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
880 if (bp->bus_type == DFX_BUS_TYPE_EISA)
881 printk("%s: DEFEA at I/O addr = 0x%lX, IRQ = %d, "
882 "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
883 print_name, dev->base_addr, dev->irq,
884 dev->dev_addr[0], dev->dev_addr[1],
885 dev->dev_addr[2], dev->dev_addr[3],
886 dev->dev_addr[4], dev->dev_addr[5]);
887 else
888 printk("%s: DEFPA at I/O addr = 0x%lX, IRQ = %d, "
889 "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
890 print_name, dev->base_addr, dev->irq,
891 dev->dev_addr[0], dev->dev_addr[1],
892 dev->dev_addr[2], dev->dev_addr[3],
893 dev->dev_addr[4], dev->dev_addr[5]);
894
895 /*
896 * Get memory for descriptor block, consumer block, and other buffers
897 * that need to be DMA read or written to by the adapter.
898 */
899
900 alloc_size = sizeof(PI_DESCR_BLOCK) +
901 PI_CMD_REQ_K_SIZE_MAX +
902 PI_CMD_RSP_K_SIZE_MAX +
903 #ifndef DYNAMIC_BUFFERS
904 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
905 #endif
906 sizeof(PI_CONSUMER_BLOCK) +
907 (PI_ALIGN_K_DESC_BLK - 1);
908 bp->kmalloced = top_v = pci_alloc_consistent(bp->pci_dev, alloc_size,
909 &bp->kmalloced_dma);
910 if (top_v == NULL) {
911 printk("%s: Could not allocate memory for host buffers "
912 "and structures!\n", print_name);
913 return(DFX_K_FAILURE);
914 }
915 memset(top_v, 0, alloc_size); /* zero out memory before continuing */
916 top_p = bp->kmalloced_dma; /* get physical address of buffer */
917
918 /*
919 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
920 * plus the amount of memory needed was allocated. The physical address
921 * is now 8K aligned. By carving up the memory in a specific order,
922 * we'll guarantee the alignment requirements for all other structures.
923 *
924 * Note: If the assumptions change regarding the non-paged, non-cached,
925 * physically contiguous nature of the memory block or the address
926 * alignments, then we'll need to implement a different algorithm
927 * for allocating the needed memory.
928 */
929
930 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
931 curr_v = top_v + (curr_p - top_p);
932
933 /* Reserve space for descriptor block */
934
935 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
936 bp->descr_block_phys = curr_p;
937 curr_v += sizeof(PI_DESCR_BLOCK);
938 curr_p += sizeof(PI_DESCR_BLOCK);
939
940 /* Reserve space for command request buffer */
941
942 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
943 bp->cmd_req_phys = curr_p;
944 curr_v += PI_CMD_REQ_K_SIZE_MAX;
945 curr_p += PI_CMD_REQ_K_SIZE_MAX;
946
947 /* Reserve space for command response buffer */
948
949 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
950 bp->cmd_rsp_phys = curr_p;
951 curr_v += PI_CMD_RSP_K_SIZE_MAX;
952 curr_p += PI_CMD_RSP_K_SIZE_MAX;
953
954 /* Reserve space for the LLC host receive queue buffers */
955
956 bp->rcv_block_virt = curr_v;
957 bp->rcv_block_phys = curr_p;
958
959 #ifndef DYNAMIC_BUFFERS
960 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
961 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
962 #endif
963
964 /* Reserve space for the consumer block */
965
966 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
967 bp->cons_block_phys = curr_p;
968
969 /* Display virtual and physical addresses if debug driver */
970
971 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
972 print_name,
973 (long)bp->descr_block_virt, bp->descr_block_phys);
974 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
975 print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
976 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
977 print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
978 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
979 print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
980 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
981 print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
982
983 return(DFX_K_SUCCESS);
984 }
985
986
987 /*
988 * =================
989 * = dfx_adap_init =
990 * =================
991 *
992 * Overview:
993 * Brings the adapter to the link avail/link unavailable state.
994 *
995 * Returns:
996 * Condition code
997 *
998 * Arguments:
999 * bp - pointer to board information
1000 * get_buffers - non-zero if buffers to be allocated
1001 *
1002 * Functional Description:
1003 * Issues the low-level firmware/hardware calls necessary to bring
1004 * the adapter up, or to properly reset and restore adapter during
1005 * run-time.
1006 *
1007 * Return Codes:
1008 * DFX_K_SUCCESS - Adapter brought up successfully
1009 * DFX_K_FAILURE - Adapter initialization failed
1010 *
1011 * Assumptions:
1012 * bp->reset_type should be set to a valid reset type value before
1013 * calling this routine.
1014 *
1015 * Side Effects:
1016 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1017 * upon a successful return of this routine.
1018 */
1019
1020 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1021 {
1022 DBG_printk("In dfx_adap_init...\n");
1023
1024 /* Disable PDQ interrupts first */
1025
1026 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1027
1028 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1029
1030 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1031 {
1032 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1033 return(DFX_K_FAILURE);
1034 }
1035
1036 /*
1037 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1038 * so we'll acknowledge all Type 0 interrupts now before continuing.
1039 */
1040
1041 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1042
1043 /*
1044 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1045 *
1046 * Note: We only need to clear host copies of these registers. The PDQ reset
1047 * takes care of the on-board register values.
1048 */
1049
1050 bp->cmd_req_reg.lword = 0;
1051 bp->cmd_rsp_reg.lword = 0;
1052 bp->rcv_xmt_reg.lword = 0;
1053
1054 /* Clear consumer block before going to DMA_AVAILABLE state */
1055
1056 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1057
1058 /* Initialize the DMA Burst Size */
1059
1060 if (dfx_hw_port_ctrl_req(bp,
1061 PI_PCTRL_M_SUB_CMD,
1062 PI_SUB_CMD_K_BURST_SIZE_SET,
1063 bp->burst_size,
1064 NULL) != DFX_K_SUCCESS)
1065 {
1066 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1067 return(DFX_K_FAILURE);
1068 }
1069
1070 /*
1071 * Set base address of Consumer Block
1072 *
1073 * Assumption: 32-bit physical address of consumer block is 64 byte
1074 * aligned. That is, bits 0-5 of the address must be zero.
1075 */
1076
1077 if (dfx_hw_port_ctrl_req(bp,
1078 PI_PCTRL_M_CONS_BLOCK,
1079 bp->cons_block_phys,
1080 0,
1081 NULL) != DFX_K_SUCCESS)
1082 {
1083 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1084 return(DFX_K_FAILURE);
1085 }
1086
1087 /*
1088 * Set base address of Descriptor Block and bring adapter to DMA_AVAILABLE state
1089 *
1090 * Note: We also set the literal and data swapping requirements in this
1091 * command. Since this driver presently runs on Intel platforms
1092 * which are Little Endian, we'll tell the adapter to byte swap
1093 * data only. This code will need to change when we support
1094 * Big Endian systems (eg. PowerPC).
1095 *
1096 * Assumption: 32-bit physical address of descriptor block is 8Kbyte
1097 * aligned. That is, bits 0-12 of the address must be zero.
1098 */
1099
1100 if (dfx_hw_port_ctrl_req(bp,
1101 PI_PCTRL_M_INIT,
1102 (u32) (bp->descr_block_phys | PI_PDATA_A_INIT_M_BSWAP_DATA),
1103 0,
1104 NULL) != DFX_K_SUCCESS)
1105 {
1106 printk("%s: Could not set descriptor block address!\n", bp->dev->name);
1107 return(DFX_K_FAILURE);
1108 }
1109
1110 /* Set transmit flush timeout value */
1111
1112 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1113 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1114 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1115 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1116 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1117 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1118 {
1119 printk("%s: DMA command request failed!\n", bp->dev->name);
1120 return(DFX_K_FAILURE);
1121 }
1122
1123 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1124
1125 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1126 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1127 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1128 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1129 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1130 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1131 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1132 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1133 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1134 {
1135 printk("%s: DMA command request failed!\n", bp->dev->name);
1136 return(DFX_K_FAILURE);
1137 }
1138
1139 /* Initialize adapter CAM */
1140
1141 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1142 {
1143 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1144 return(DFX_K_FAILURE);
1145 }
1146
1147 /* Initialize adapter filters */
1148
1149 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1150 {
1151 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1152 return(DFX_K_FAILURE);
1153 }
1154
1155 /*
1156 * Remove any existing dynamic buffers (i.e. if the adapter is being
1157 * reinitialized)
1158 */
1159
1160 if (get_buffers)
1161 dfx_rcv_flush(bp);
1162
1163 /* Initialize receive descriptor block and produce buffers */
1164
1165 if (dfx_rcv_init(bp, get_buffers))
1166 {
1167 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1168 if (get_buffers)
1169 dfx_rcv_flush(bp);
1170 return(DFX_K_FAILURE);
1171 }
1172
1173 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1174
1175 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1176 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1177 {
1178 printk("%s: Start command failed\n", bp->dev->name);
1179 if (get_buffers)
1180 dfx_rcv_flush(bp);
1181 return(DFX_K_FAILURE);
1182 }
1183
1184 /* Initialization succeeded, reenable PDQ interrupts */
1185
1186 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1187 return(DFX_K_SUCCESS);
1188 }
1189
1190
1191 /*
1192 * ============
1193 * = dfx_open =
1194 * ============
1195 *
1196 * Overview:
1197 * Opens the adapter
1198 *
1199 * Returns:
1200 * Condition code
1201 *
1202 * Arguments:
1203 * dev - pointer to device information
1204 *
1205 * Functional Description:
1206 * This function brings the adapter to an operational state.
1207 *
1208 * Return Codes:
1209 * 0 - Adapter was successfully opened
1210 * -EAGAIN - Could not register IRQ or adapter initialization failed
1211 *
1212 * Assumptions:
1213 * This routine should only be called for a device that was
1214 * initialized successfully.
1215 *
1216 * Side Effects:
1217 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1218 * if the open is successful.
1219 */
1220
1221 static int dfx_open(struct net_device *dev)
1222 {
1223 int ret;
1224 DFX_board_t *bp = dev->priv;
1225
1226 DBG_printk("In dfx_open...\n");
1227
1228 /* Register IRQ - support shared interrupts by passing device ptr */
1229
1230 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name, dev);
1231 if (ret) {
1232 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1233 return ret;
1234 }
1235
1236 /*
1237 * Set current address to factory MAC address
1238 *
1239 * Note: We've already done this step in dfx_driver_init.
1240 * However, it's possible that a user has set a node
1241 * address override, then closed and reopened the
1242 * adapter. Unless we reset the device address field
1243 * now, we'll continue to use the existing modified
1244 * address.
1245 */
1246
1247 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1248
1249 /* Clear local unicast/multicast address tables and counts */
1250
1251 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1252 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1253 bp->uc_count = 0;
1254 bp->mc_count = 0;
1255
1256 /* Disable promiscuous filter settings */
1257
1258 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1259 bp->group_prom = PI_FSTATE_K_BLOCK;
1260
1261 spin_lock_init(&bp->lock);
1262
1263 /* Reset and initialize adapter */
1264
1265 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1266 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1267 {
1268 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1269 free_irq(dev->irq, dev);
1270 return -EAGAIN;
1271 }
1272
1273 /* Set device structure info */
1274 netif_start_queue(dev);
1275 return(0);
1276 }
1277
1278
1279 /*
1280 * =============
1281 * = dfx_close =
1282 * =============
1283 *
1284 * Overview:
1285 * Closes the device/module.
1286 *
1287 * Returns:
1288 * Condition code
1289 *
1290 * Arguments:
1291 * dev - pointer to device information
1292 *
1293 * Functional Description:
1294 * This routine closes the adapter and brings it to a safe state.
1295 * The interrupt service routine is deregistered with the OS.
1296 * The adapter can be opened again with another call to dfx_open().
1297 *
1298 * Return Codes:
1299 * Always return 0.
1300 *
1301 * Assumptions:
1302 * No further requests for this adapter are made after this routine is
1303 * called. dfx_open() can be called to reset and reinitialize the
1304 * adapter.
1305 *
1306 * Side Effects:
1307 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1308 * routine.
1309 */
1310
1311 static int dfx_close(struct net_device *dev)
1312 {
1313 DFX_board_t *bp = dev->priv;
1314
1315 DBG_printk("In dfx_close...\n");
1316
1317 /* Disable PDQ interrupts first */
1318
1319 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1320
1321 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1322
1323 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1324
1325 /*
1326 * Flush any pending transmit buffers
1327 *
1328 * Note: It's important that we flush the transmit buffers
1329 * BEFORE we clear our copy of the Type 2 register.
1330 * Otherwise, we'll have no idea how many buffers
1331 * we need to free.
1332 */
1333
1334 dfx_xmt_flush(bp);
1335
1336 /*
1337 * Clear Type 1 and Type 2 registers after adapter reset
1338 *
1339 * Note: Even though we're closing the adapter, it's
1340 * possible that an interrupt will occur after
1341 * dfx_close is called. Without some assurance to
1342 * the contrary we want to make sure that we don't
1343 * process receive and transmit LLC frames and update
1344 * the Type 2 register with bad information.
1345 */
1346
1347 bp->cmd_req_reg.lword = 0;
1348 bp->cmd_rsp_reg.lword = 0;
1349 bp->rcv_xmt_reg.lword = 0;
1350
1351 /* Clear consumer block for the same reason given above */
1352
1353 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1354
1355 /* Release all dynamically allocate skb in the receive ring. */
1356
1357 dfx_rcv_flush(bp);
1358
1359 /* Clear device structure flags */
1360
1361 netif_stop_queue(dev);
1362
1363 /* Deregister (free) IRQ */
1364
1365 free_irq(dev->irq, dev);
1366
1367 return(0);
1368 }
1369
1370
1371 /*
1372 * ======================
1373 * = dfx_int_pr_halt_id =
1374 * ======================
1375 *
1376 * Overview:
1377 * Displays halt id's in string form.
1378 *
1379 * Returns:
1380 * None
1381 *
1382 * Arguments:
1383 * bp - pointer to board information
1384 *
1385 * Functional Description:
1386 * Determine current halt id and display appropriate string.
1387 *
1388 * Return Codes:
1389 * None
1390 *
1391 * Assumptions:
1392 * None
1393 *
1394 * Side Effects:
1395 * None
1396 */
1397
1398 static void dfx_int_pr_halt_id(DFX_board_t *bp)
1399 {
1400 PI_UINT32 port_status; /* PDQ port status register value */
1401 PI_UINT32 halt_id; /* PDQ port status halt ID */
1402
1403 /* Read the latest port status */
1404
1405 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1406
1407 /* Display halt state transition information */
1408
1409 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1410 switch (halt_id)
1411 {
1412 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1413 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1414 break;
1415
1416 case PI_HALT_ID_K_PARITY_ERROR:
1417 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1418 break;
1419
1420 case PI_HALT_ID_K_HOST_DIR_HALT:
1421 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1422 break;
1423
1424 case PI_HALT_ID_K_SW_FAULT:
1425 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1426 break;
1427
1428 case PI_HALT_ID_K_HW_FAULT:
1429 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1430 break;
1431
1432 case PI_HALT_ID_K_PC_TRACE:
1433 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1434 break;
1435
1436 case PI_HALT_ID_K_DMA_ERROR:
1437 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1438 break;
1439
1440 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1441 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1442 break;
1443
1444 case PI_HALT_ID_K_BUS_EXCEPTION:
1445 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1446 break;
1447
1448 default:
1449 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1450 break;
1451 }
1452 }
1453
1454
1455 /*
1456 * ==========================
1457 * = dfx_int_type_0_process =
1458 * ==========================
1459 *
1460 * Overview:
1461 * Processes Type 0 interrupts.
1462 *
1463 * Returns:
1464 * None
1465 *
1466 * Arguments:
1467 * bp - pointer to board information
1468 *
1469 * Functional Description:
1470 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1471 * is a serious fault on the adapter, then an error message is displayed
1472 * and the adapter is reset.
1473 *
1474 * One tricky potential timing window is the rapid succession of "link avail"
1475 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1476 * interrupt must be done before reading the state from the Port Status
1477 * register. This is true because a state change could occur after reading
1478 * the data, but before acknowledging the interrupt. If this state change
1479 * does happen, it would be lost because the driver is using the old state,
1480 * and it will never know about the new state because it subsequently
1481 * acknowledges the state change interrupt.
1482 *
1483 * INCORRECT CORRECT
1484 * read type 0 int reasons read type 0 int reasons
1485 * read adapter state ack type 0 interrupts
1486 * ack type 0 interrupts read adapter state
1487 * ... process interrupt ... ... process interrupt ...
1488 *
1489 * Return Codes:
1490 * None
1491 *
1492 * Assumptions:
1493 * None
1494 *
1495 * Side Effects:
1496 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1497 * or if the port status indicates that the adapter is halted. The driver
1498 * is responsible for reinitializing the adapter with the current CAM
1499 * contents and adapter filter settings.
1500 */
1501
1502 static void dfx_int_type_0_process(DFX_board_t *bp)
1503
1504 {
1505 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1506 PI_UINT32 state; /* current adap state (from port status) */
1507
1508 /*
1509 * Read host interrupt Type 0 register to determine which Type 0
1510 * interrupts are pending. Immediately write it back out to clear
1511 * those interrupts.
1512 */
1513
1514 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1515 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1516
1517 /* Check for Type 0 error interrupts */
1518
1519 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1520 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1521 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1522 {
1523 /* Check for Non-Existent Memory error */
1524
1525 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1526 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1527
1528 /* Check for Packet Memory Parity error */
1529
1530 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1531 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1532
1533 /* Check for Host Bus Parity error */
1534
1535 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1536 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1537
1538 /* Reset adapter and bring it back on-line */
1539
1540 bp->link_available = PI_K_FALSE; /* link is no longer available */
1541 bp->reset_type = 0; /* rerun on-board diagnostics */
1542 printk("%s: Resetting adapter...\n", bp->dev->name);
1543 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1544 {
1545 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1546 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1547 return;
1548 }
1549 printk("%s: Adapter reset successful!\n", bp->dev->name);
1550 return;
1551 }
1552
1553 /* Check for transmit flush interrupt */
1554
1555 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1556 {
1557 /* Flush any pending xmt's and acknowledge the flush interrupt */
1558
1559 bp->link_available = PI_K_FALSE; /* link is no longer available */
1560 dfx_xmt_flush(bp); /* flush any outstanding packets */
1561 (void) dfx_hw_port_ctrl_req(bp,
1562 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1563 0,
1564 0,
1565 NULL);
1566 }
1567
1568 /* Check for adapter state change */
1569
1570 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1571 {
1572 /* Get latest adapter state */
1573
1574 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1575 if (state == PI_STATE_K_HALTED)
1576 {
1577 /*
1578 * Adapter has transitioned to HALTED state, try to reset
1579 * adapter to bring it back on-line. If reset fails,
1580 * leave the adapter in the broken state.
1581 */
1582
1583 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1584 dfx_int_pr_halt_id(bp); /* display halt id as string */
1585
1586 /* Reset adapter and bring it back on-line */
1587
1588 bp->link_available = PI_K_FALSE; /* link is no longer available */
1589 bp->reset_type = 0; /* rerun on-board diagnostics */
1590 printk("%s: Resetting adapter...\n", bp->dev->name);
1591 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1592 {
1593 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1594 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1595 return;
1596 }
1597 printk("%s: Adapter reset successful!\n", bp->dev->name);
1598 }
1599 else if (state == PI_STATE_K_LINK_AVAIL)
1600 {
1601 bp->link_available = PI_K_TRUE; /* set link available flag */
1602 }
1603 }
1604 }
1605
1606
1607 /*
1608 * ==================
1609 * = dfx_int_common =
1610 * ==================
1611 *
1612 * Overview:
1613 * Interrupt service routine (ISR)
1614 *
1615 * Returns:
1616 * None
1617 *
1618 * Arguments:
1619 * bp - pointer to board information
1620 *
1621 * Functional Description:
1622 * This is the ISR which processes incoming adapter interrupts.
1623 *
1624 * Return Codes:
1625 * None
1626 *
1627 * Assumptions:
1628 * This routine assumes PDQ interrupts have not been disabled.
1629 * When interrupts are disabled at the PDQ, the Port Status register
1630 * is automatically cleared. This routine uses the Port Status
1631 * register value to determine whether a Type 0 interrupt occurred,
1632 * so it's important that adapter interrupts are not normally
1633 * enabled/disabled at the PDQ.
1634 *
1635 * It's vital that this routine is NOT reentered for the
1636 * same board and that the OS is not in another section of
1637 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1638 * different thread.
1639 *
1640 * Side Effects:
1641 * Pending interrupts are serviced. Depending on the type of
1642 * interrupt, acknowledging and clearing the interrupt at the
1643 * PDQ involves writing a register to clear the interrupt bit
1644 * or updating completion indices.
1645 */
1646
1647 static void dfx_int_common(struct net_device *dev)
1648 {
1649 DFX_board_t *bp = dev->priv;
1650 PI_UINT32 port_status; /* Port Status register */
1651
1652 /* Process xmt interrupts - frequent case, so always call this routine */
1653
1654 if(dfx_xmt_done(bp)) /* free consumed xmt packets */
1655 netif_wake_queue(dev);
1656
1657 /* Process rcv interrupts - frequent case, so always call this routine */
1658
1659 dfx_rcv_queue_process(bp); /* service received LLC frames */
1660
1661 /*
1662 * Transmit and receive producer and completion indices are updated on the
1663 * adapter by writing to the Type 2 Producer register. Since the frequent
1664 * case is that we'll be processing either LLC transmit or receive buffers,
1665 * we'll optimize I/O writes by doing a single register write here.
1666 */
1667
1668 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1669
1670 /* Read PDQ Port Status register to find out which interrupts need processing */
1671
1672 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1673
1674 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1675
1676 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1677 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1678 }
1679
1680
1681 /*
1682 * =================
1683 * = dfx_interrupt =
1684 * =================
1685 *
1686 * Overview:
1687 * Interrupt processing routine
1688 *
1689 * Returns:
1690 * Whether a valid interrupt was seen.
1691 *
1692 * Arguments:
1693 * irq - interrupt vector
1694 * dev_id - pointer to device information
1695 *
1696 * Functional Description:
1697 * This routine calls the interrupt processing routine for this adapter. It
1698 * disables and reenables adapter interrupts, as appropriate. We can support
1699 * shared interrupts since the incoming dev_id pointer provides our device
1700 * structure context.
1701 *
1702 * Return Codes:
1703 * IRQ_HANDLED - an IRQ was handled.
1704 * IRQ_NONE - no IRQ was handled.
1705 *
1706 * Assumptions:
1707 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1708 * on Intel-based systems) is done by the operating system outside this
1709 * routine.
1710 *
1711 * System interrupts are enabled through this call.
1712 *
1713 * Side Effects:
1714 * Interrupts are disabled, then reenabled at the adapter.
1715 */
1716
1717 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1718 {
1719 struct net_device *dev = dev_id;
1720 DFX_board_t *bp; /* private board structure pointer */
1721
1722 /* Get board pointer only if device structure is valid */
1723
1724 bp = dev->priv;
1725
1726 /* See if we're already servicing an interrupt */
1727
1728 /* Service adapter interrupts */
1729
1730 if (bp->bus_type == DFX_BUS_TYPE_PCI) {
1731 u32 status;
1732
1733 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1734 if (!(status & PFI_STATUS_M_PDQ_INT))
1735 return IRQ_NONE;
1736
1737 spin_lock(&bp->lock);
1738
1739 /* Disable PDQ-PFI interrupts at PFI */
1740 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1741 PFI_MODE_M_DMA_ENB);
1742
1743 /* Call interrupt service routine for this adapter */
1744 dfx_int_common(dev);
1745
1746 /* Clear PDQ interrupt status bit and reenable interrupts */
1747 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1748 PFI_STATUS_M_PDQ_INT);
1749 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1750 (PFI_MODE_M_PDQ_INT_ENB |
1751 PFI_MODE_M_DMA_ENB));
1752
1753 spin_unlock(&bp->lock);
1754 } else {
1755 u8 status;
1756
1757 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &status);
1758 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1759 return IRQ_NONE;
1760
1761 spin_lock(&bp->lock);
1762
1763 /* Disable interrupts at the ESIC */
1764 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1765 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, status);
1766
1767 /* Call interrupt service routine for this adapter */
1768 dfx_int_common(dev);
1769
1770 /* Reenable interrupts at the ESIC */
1771 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &status);
1772 status |= PI_CONFIG_STAT_0_M_INT_ENB;
1773 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, status);
1774
1775 spin_unlock(&bp->lock);
1776 }
1777
1778 return IRQ_HANDLED;
1779 }
1780
1781
1782 /*
1783 * =====================
1784 * = dfx_ctl_get_stats =
1785 * =====================
1786 *
1787 * Overview:
1788 * Get statistics for FDDI adapter
1789 *
1790 * Returns:
1791 * Pointer to FDDI statistics structure
1792 *
1793 * Arguments:
1794 * dev - pointer to device information
1795 *
1796 * Functional Description:
1797 * Gets current MIB objects from adapter, then
1798 * returns FDDI statistics structure as defined
1799 * in if_fddi.h.
1800 *
1801 * Note: Since the FDDI statistics structure is
1802 * still new and the device structure doesn't
1803 * have an FDDI-specific get statistics handler,
1804 * we'll return the FDDI statistics structure as
1805 * a pointer to an Ethernet statistics structure.
1806 * That way, at least the first part of the statistics
1807 * structure can be decoded properly, and it allows
1808 * "smart" applications to perform a second cast to
1809 * decode the FDDI-specific statistics.
1810 *
1811 * We'll have to pay attention to this routine as the
1812 * device structure becomes more mature and LAN media
1813 * independent.
1814 *
1815 * Return Codes:
1816 * None
1817 *
1818 * Assumptions:
1819 * None
1820 *
1821 * Side Effects:
1822 * None
1823 */
1824
1825 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
1826 {
1827 DFX_board_t *bp = dev->priv;
1828
1829 /* Fill the bp->stats structure with driver-maintained counters */
1830
1831 bp->stats.gen.rx_packets = bp->rcv_total_frames;
1832 bp->stats.gen.tx_packets = bp->xmt_total_frames;
1833 bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
1834 bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
1835 bp->stats.gen.rx_errors = bp->rcv_crc_errors +
1836 bp->rcv_frame_status_errors +
1837 bp->rcv_length_errors;
1838 bp->stats.gen.tx_errors = bp->xmt_length_errors;
1839 bp->stats.gen.rx_dropped = bp->rcv_discards;
1840 bp->stats.gen.tx_dropped = bp->xmt_discards;
1841 bp->stats.gen.multicast = bp->rcv_multicast_frames;
1842 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
1843
1844 /* Get FDDI SMT MIB objects */
1845
1846 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
1847 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1848 return((struct net_device_stats *) &bp->stats);
1849
1850 /* Fill the bp->stats structure with the SMT MIB object values */
1851
1852 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
1853 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
1854 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
1855 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
1856 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
1857 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
1858 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
1859 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
1860 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
1861 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
1862 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
1863 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
1864 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
1865 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
1866 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
1867 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
1868 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
1869 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
1870 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
1871 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
1872 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
1873 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
1874 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
1875 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
1876 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
1877 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
1878 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
1879 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
1880 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
1881 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
1882 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
1883 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
1884 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
1885 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
1886 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
1887 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
1888 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
1889 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
1890 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
1891 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
1892 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
1893 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
1894 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
1895 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
1896 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
1897 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
1898 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
1899 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
1900 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
1901 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
1902 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
1903 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
1904 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
1905 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
1906 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
1907 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
1908 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
1909 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
1910 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
1911 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
1912 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
1913 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
1914 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
1915 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
1916 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
1917 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
1918 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
1919 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
1920 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
1921 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
1922 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
1923 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
1924 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
1925 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
1926 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
1927 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
1928 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
1929 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
1930 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
1931 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
1932 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
1933 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
1934 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
1935 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
1936 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
1937 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
1938 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
1939 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
1940 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
1941 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
1942 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
1943 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
1944
1945 /* Get FDDI counters */
1946
1947 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
1948 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1949 return((struct net_device_stats *) &bp->stats);
1950
1951 /* Fill the bp->stats structure with the FDDI counter values */
1952
1953 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
1954 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
1955 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
1956 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
1957 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
1958 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
1959 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
1960 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
1961 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
1962 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
1963 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
1964
1965 return((struct net_device_stats *) &bp->stats);
1966 }
1967
1968
1969 /*
1970 * ==============================
1971 * = dfx_ctl_set_multicast_list =
1972 * ==============================
1973 *
1974 * Overview:
1975 * Enable/Disable LLC frame promiscuous mode reception
1976 * on the adapter and/or update multicast address table.
1977 *
1978 * Returns:
1979 * None
1980 *
1981 * Arguments:
1982 * dev - pointer to device information
1983 *
1984 * Functional Description:
1985 * This routine follows a fairly simple algorithm for setting the
1986 * adapter filters and CAM:
1987 *
1988 * if IFF_PROMISC flag is set
1989 * enable LLC individual/group promiscuous mode
1990 * else
1991 * disable LLC individual/group promiscuous mode
1992 * if number of incoming multicast addresses >
1993 * (CAM max size - number of unicast addresses in CAM)
1994 * enable LLC group promiscuous mode
1995 * set driver-maintained multicast address count to zero
1996 * else
1997 * disable LLC group promiscuous mode
1998 * set driver-maintained multicast address count to incoming count
1999 * update adapter CAM
2000 * update adapter filters
2001 *
2002 * Return Codes:
2003 * None
2004 *
2005 * Assumptions:
2006 * Multicast addresses are presented in canonical (LSB) format.
2007 *
2008 * Side Effects:
2009 * On-board adapter CAM and filters are updated.
2010 */
2011
2012 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2013 {
2014 DFX_board_t *bp = dev->priv;
2015 int i; /* used as index in for loop */
2016 struct dev_mc_list *dmi; /* ptr to multicast addr entry */
2017
2018 /* Enable LLC frame promiscuous mode, if necessary */
2019
2020 if (dev->flags & IFF_PROMISC)
2021 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
2022
2023 /* Else, update multicast address table */
2024
2025 else
2026 {
2027 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
2028 /*
2029 * Check whether incoming multicast address count exceeds table size
2030 *
2031 * Note: The adapters utilize an on-board 64 entry CAM for
2032 * supporting perfect filtering of multicast packets
2033 * and bridge functions when adding unicast addresses.
2034 * There is no hash function available. To support
2035 * additional multicast addresses, the all multicast
2036 * filter (LLC group promiscuous mode) must be enabled.
2037 *
2038 * The firmware reserves two CAM entries for SMT-related
2039 * multicast addresses, which leaves 62 entries available.
2040 * The following code ensures that we're not being asked
2041 * to add more than 62 addresses to the CAM. If we are,
2042 * the driver will enable the all multicast filter.
2043 * Should the number of multicast addresses drop below
2044 * the high water mark, the filter will be disabled and
2045 * perfect filtering will be used.
2046 */
2047
2048 if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2049 {
2050 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2051 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2052 }
2053 else
2054 {
2055 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
2056 bp->mc_count = dev->mc_count; /* Add mc addrs to CAM */
2057 }
2058
2059 /* Copy addresses to multicast address table, then update adapter CAM */
2060
2061 dmi = dev->mc_list; /* point to first multicast addr */
2062 for (i=0; i < bp->mc_count; i++)
2063 {
2064 memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN);
2065 dmi = dmi->next; /* point to next multicast addr */
2066 }
2067 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2068 {
2069 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2070 }
2071 else
2072 {
2073 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2074 }
2075 }
2076
2077 /* Update adapter filters */
2078
2079 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2080 {
2081 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2082 }
2083 else
2084 {
2085 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2086 }
2087 }
2088
2089
2090 /*
2091 * ===========================
2092 * = dfx_ctl_set_mac_address =
2093 * ===========================
2094 *
2095 * Overview:
2096 * Add node address override (unicast address) to adapter
2097 * CAM and update dev_addr field in device table.
2098 *
2099 * Returns:
2100 * None
2101 *
2102 * Arguments:
2103 * dev - pointer to device information
2104 * addr - pointer to sockaddr structure containing unicast address to add
2105 *
2106 * Functional Description:
2107 * The adapter supports node address overrides by adding one or more
2108 * unicast addresses to the adapter CAM. This is similar to adding
2109 * multicast addresses. In this routine we'll update the driver and
2110 * device structures with the new address, then update the adapter CAM
2111 * to ensure that the adapter will copy and strip frames destined and
2112 * sourced by that address.
2113 *
2114 * Return Codes:
2115 * Always returns zero.
2116 *
2117 * Assumptions:
2118 * The address pointed to by addr->sa_data is a valid unicast
2119 * address and is presented in canonical (LSB) format.
2120 *
2121 * Side Effects:
2122 * On-board adapter CAM is updated. On-board adapter filters
2123 * may be updated.
2124 */
2125
2126 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2127 {
2128 DFX_board_t *bp = dev->priv;
2129 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2130
2131 /* Copy unicast address to driver-maintained structs and update count */
2132
2133 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2134 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2135 bp->uc_count = 1;
2136
2137 /*
2138 * Verify we're not exceeding the CAM size by adding unicast address
2139 *
2140 * Note: It's possible that before entering this routine we've
2141 * already filled the CAM with 62 multicast addresses.
2142 * Since we need to place the node address override into
2143 * the CAM, we have to check to see that we're not
2144 * exceeding the CAM size. If we are, we have to enable
2145 * the LLC group (multicast) promiscuous mode filter as
2146 * in dfx_ctl_set_multicast_list.
2147 */
2148
2149 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2150 {
2151 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2152 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2153
2154 /* Update adapter filters */
2155
2156 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2157 {
2158 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2159 }
2160 else
2161 {
2162 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2163 }
2164 }
2165
2166 /* Update adapter CAM with new unicast address */
2167
2168 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2169 {
2170 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2171 }
2172 else
2173 {
2174 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2175 }
2176 return(0); /* always return zero */
2177 }
2178
2179
2180 /*
2181 * ======================
2182 * = dfx_ctl_update_cam =
2183 * ======================
2184 *
2185 * Overview:
2186 * Procedure to update adapter CAM (Content Addressable Memory)
2187 * with desired unicast and multicast address entries.
2188 *
2189 * Returns:
2190 * Condition code
2191 *
2192 * Arguments:
2193 * bp - pointer to board information
2194 *
2195 * Functional Description:
2196 * Updates adapter CAM with current contents of board structure
2197 * unicast and multicast address tables. Since there are only 62
2198 * free entries in CAM, this routine ensures that the command
2199 * request buffer is not overrun.
2200 *
2201 * Return Codes:
2202 * DFX_K_SUCCESS - Request succeeded
2203 * DFX_K_FAILURE - Request failed
2204 *
2205 * Assumptions:
2206 * All addresses being added (unicast and multicast) are in canonical
2207 * order.
2208 *
2209 * Side Effects:
2210 * On-board adapter CAM is updated.
2211 */
2212
2213 static int dfx_ctl_update_cam(DFX_board_t *bp)
2214 {
2215 int i; /* used as index */
2216 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2217
2218 /*
2219 * Fill in command request information
2220 *
2221 * Note: Even though both the unicast and multicast address
2222 * table entries are stored as contiguous 6 byte entries,
2223 * the firmware address filter set command expects each
2224 * entry to be two longwords (8 bytes total). We must be
2225 * careful to only copy the six bytes of each unicast and
2226 * multicast table entry into each command entry. This
2227 * is also why we must first clear the entire command
2228 * request buffer.
2229 */
2230
2231 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2232 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2233 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2234
2235 /* Now add unicast addresses to command request buffer, if any */
2236
2237 for (i=0; i < (int)bp->uc_count; i++)
2238 {
2239 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2240 {
2241 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2242 p_addr++; /* point to next command entry */
2243 }
2244 }
2245
2246 /* Now add multicast addresses to command request buffer, if any */
2247
2248 for (i=0; i < (int)bp->mc_count; i++)
2249 {
2250 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2251 {
2252 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2253 p_addr++; /* point to next command entry */
2254 }
2255 }
2256
2257 /* Issue command to update adapter CAM, then return */
2258
2259 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2260 return(DFX_K_FAILURE);
2261 return(DFX_K_SUCCESS);
2262 }
2263
2264
2265 /*
2266 * ==========================
2267 * = dfx_ctl_update_filters =
2268 * ==========================
2269 *
2270 * Overview:
2271 * Procedure to update adapter filters with desired
2272 * filter settings.
2273 *
2274 * Returns:
2275 * Condition code
2276 *
2277 * Arguments:
2278 * bp - pointer to board information
2279 *
2280 * Functional Description:
2281 * Enables or disables filter using current filter settings.
2282 *
2283 * Return Codes:
2284 * DFX_K_SUCCESS - Request succeeded.
2285 * DFX_K_FAILURE - Request failed.
2286 *
2287 * Assumptions:
2288 * We must always pass up packets destined to the broadcast
2289 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2290 * broadcast filter enabled.
2291 *
2292 * Side Effects:
2293 * On-board adapter filters are updated.
2294 */
2295
2296 static int dfx_ctl_update_filters(DFX_board_t *bp)
2297 {
2298 int i = 0; /* used as index */
2299
2300 /* Fill in command request information */
2301
2302 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2303
2304 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2305
2306 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2307 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2308
2309 /* Initialize LLC Individual/Group Promiscuous filter */
2310
2311 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2312 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2313
2314 /* Initialize LLC Group Promiscuous filter */
2315
2316 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2317 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2318
2319 /* Terminate the item code list */
2320
2321 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2322
2323 /* Issue command to update adapter filters, then return */
2324
2325 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2326 return(DFX_K_FAILURE);
2327 return(DFX_K_SUCCESS);
2328 }
2329
2330
2331 /*
2332 * ======================
2333 * = dfx_hw_dma_cmd_req =
2334 * ======================
2335 *
2336 * Overview:
2337 * Sends PDQ DMA command to adapter firmware
2338 *
2339 * Returns:
2340 * Condition code
2341 *
2342 * Arguments:
2343 * bp - pointer to board information
2344 *
2345 * Functional Description:
2346 * The command request and response buffers are posted to the adapter in the manner
2347 * described in the PDQ Port Specification:
2348 *
2349 * 1. Command Response Buffer is posted to adapter.
2350 * 2. Command Request Buffer is posted to adapter.
2351 * 3. Command Request consumer index is polled until it indicates that request
2352 * buffer has been DMA'd to adapter.
2353 * 4. Command Response consumer index is polled until it indicates that response
2354 * buffer has been DMA'd from adapter.
2355 *
2356 * This ordering ensures that a response buffer is already available for the firmware
2357 * to use once it's done processing the request buffer.
2358 *
2359 * Return Codes:
2360 * DFX_K_SUCCESS - DMA command succeeded
2361 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2362 * DFX_K_HW_TIMEOUT - DMA command timed out
2363 *
2364 * Assumptions:
2365 * Command request buffer has already been filled with desired DMA command.
2366 *
2367 * Side Effects:
2368 * None
2369 */
2370
2371 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2372 {
2373 int status; /* adapter status */
2374 int timeout_cnt; /* used in for loops */
2375
2376 /* Make sure the adapter is in a state that we can issue the DMA command in */
2377
2378 status = dfx_hw_adap_state_rd(bp);
2379 if ((status == PI_STATE_K_RESET) ||
2380 (status == PI_STATE_K_HALTED) ||
2381 (status == PI_STATE_K_DMA_UNAVAIL) ||
2382 (status == PI_STATE_K_UPGRADE))
2383 return(DFX_K_OUTSTATE);
2384
2385 /* Put response buffer on the command response queue */
2386
2387 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2388 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2389 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2390
2391 /* Bump (and wrap) the producer index and write out to register */
2392
2393 bp->cmd_rsp_reg.index.prod += 1;
2394 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2395 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2396
2397 /* Put request buffer on the command request queue */
2398
2399 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2400 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2401 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2402
2403 /* Bump (and wrap) the producer index and write out to register */
2404
2405 bp->cmd_req_reg.index.prod += 1;
2406 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2407 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2408
2409 /*
2410 * Here we wait for the command request consumer index to be equal
2411 * to the producer, indicating that the adapter has DMAed the request.
2412 */
2413
2414 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2415 {
2416 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2417 break;
2418 udelay(100); /* wait for 100 microseconds */
2419 }
2420 if (timeout_cnt == 0)
2421 return(DFX_K_HW_TIMEOUT);
2422
2423 /* Bump (and wrap) the completion index and write out to register */
2424
2425 bp->cmd_req_reg.index.comp += 1;
2426 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2427 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2428
2429 /*
2430 * Here we wait for the command response consumer index to be equal
2431 * to the producer, indicating that the adapter has DMAed the response.
2432 */
2433
2434 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2435 {
2436 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2437 break;
2438 udelay(100); /* wait for 100 microseconds */
2439 }
2440 if (timeout_cnt == 0)
2441 return(DFX_K_HW_TIMEOUT);
2442
2443 /* Bump (and wrap) the completion index and write out to register */
2444
2445 bp->cmd_rsp_reg.index.comp += 1;
2446 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2447 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2448 return(DFX_K_SUCCESS);
2449 }
2450
2451
2452 /*
2453 * ========================
2454 * = dfx_hw_port_ctrl_req =
2455 * ========================
2456 *
2457 * Overview:
2458 * Sends PDQ port control command to adapter firmware
2459 *
2460 * Returns:
2461 * Host data register value in host_data if ptr is not NULL
2462 *
2463 * Arguments:
2464 * bp - pointer to board information
2465 * command - port control command
2466 * data_a - port data A register value
2467 * data_b - port data B register value
2468 * host_data - ptr to host data register value
2469 *
2470 * Functional Description:
2471 * Send generic port control command to adapter by writing
2472 * to various PDQ port registers, then polling for completion.
2473 *
2474 * Return Codes:
2475 * DFX_K_SUCCESS - port control command succeeded
2476 * DFX_K_HW_TIMEOUT - port control command timed out
2477 *
2478 * Assumptions:
2479 * None
2480 *
2481 * Side Effects:
2482 * None
2483 */
2484
2485 static int dfx_hw_port_ctrl_req(
2486 DFX_board_t *bp,
2487 PI_UINT32 command,
2488 PI_UINT32 data_a,
2489 PI_UINT32 data_b,
2490 PI_UINT32 *host_data
2491 )
2492
2493 {
2494 PI_UINT32 port_cmd; /* Port Control command register value */
2495 int timeout_cnt; /* used in for loops */
2496
2497 /* Set Command Error bit in command longword */
2498
2499 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2500
2501 /* Issue port command to the adapter */
2502
2503 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2504 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2505 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2506
2507 /* Now wait for command to complete */
2508
2509 if (command == PI_PCTRL_M_BLAST_FLASH)
2510 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2511 else
2512 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2513
2514 for (; timeout_cnt > 0; timeout_cnt--)
2515 {
2516 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2517 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2518 break;
2519 udelay(100); /* wait for 100 microseconds */
2520 }
2521 if (timeout_cnt == 0)
2522 return(DFX_K_HW_TIMEOUT);
2523
2524 /*
2525 * If the address of host_data is non-zero, assume caller has supplied a
2526 * non NULL pointer, and return the contents of the HOST_DATA register in
2527 * it.
2528 */
2529
2530 if (host_data != NULL)
2531 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2532 return(DFX_K_SUCCESS);
2533 }
2534
2535
2536 /*
2537 * =====================
2538 * = dfx_hw_adap_reset =
2539 * =====================
2540 *
2541 * Overview:
2542 * Resets adapter
2543 *
2544 * Returns:
2545 * None
2546 *
2547 * Arguments:
2548 * bp - pointer to board information
2549 * type - type of reset to perform
2550 *
2551 * Functional Description:
2552 * Issue soft reset to adapter by writing to PDQ Port Reset
2553 * register. Use incoming reset type to tell adapter what
2554 * kind of reset operation to perform.
2555 *
2556 * Return Codes:
2557 * None
2558 *
2559 * Assumptions:
2560 * This routine merely issues a soft reset to the adapter.
2561 * It is expected that after this routine returns, the caller
2562 * will appropriately poll the Port Status register for the
2563 * adapter to enter the proper state.
2564 *
2565 * Side Effects:
2566 * Internal adapter registers are cleared.
2567 */
2568
2569 static void dfx_hw_adap_reset(
2570 DFX_board_t *bp,
2571 PI_UINT32 type
2572 )
2573
2574 {
2575 /* Set Reset type and assert reset */
2576
2577 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2578 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2579
2580 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2581
2582 udelay(20);
2583
2584 /* Deassert reset */
2585
2586 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2587 }
2588
2589
2590 /*
2591 * ========================
2592 * = dfx_hw_adap_state_rd =
2593 * ========================
2594 *
2595 * Overview:
2596 * Returns current adapter state
2597 *
2598 * Returns:
2599 * Adapter state per PDQ Port Specification
2600 *
2601 * Arguments:
2602 * bp - pointer to board information
2603 *
2604 * Functional Description:
2605 * Reads PDQ Port Status register and returns adapter state.
2606 *
2607 * Return Codes:
2608 * None
2609 *
2610 * Assumptions:
2611 * None
2612 *
2613 * Side Effects:
2614 * None
2615 */
2616
2617 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2618 {
2619 PI_UINT32 port_status; /* Port Status register value */
2620
2621 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2622 return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE);
2623 }
2624
2625
2626 /*
2627 * =====================
2628 * = dfx_hw_dma_uninit =
2629 * =====================
2630 *
2631 * Overview:
2632 * Brings adapter to DMA_UNAVAILABLE state
2633 *
2634 * Returns:
2635 * Condition code
2636 *
2637 * Arguments:
2638 * bp - pointer to board information
2639 * type - type of reset to perform
2640 *
2641 * Functional Description:
2642 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2643 * 1. Set reset type bit in Port Data A Register then reset adapter.
2644 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2645 *
2646 * Return Codes:
2647 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2648 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2649 *
2650 * Assumptions:
2651 * None
2652 *
2653 * Side Effects:
2654 * Internal adapter registers are cleared.
2655 */
2656
2657 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2658 {
2659 int timeout_cnt; /* used in for loops */
2660
2661 /* Set reset type bit and reset adapter */
2662
2663 dfx_hw_adap_reset(bp, type);
2664
2665 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2666
2667 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2668 {
2669 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2670 break;
2671 udelay(100); /* wait for 100 microseconds */
2672 }
2673 if (timeout_cnt == 0)
2674 return(DFX_K_HW_TIMEOUT);
2675 return(DFX_K_SUCCESS);
2676 }
2677
2678 /*
2679 * Align an sk_buff to a boundary power of 2
2680 *
2681 */
2682
2683 static void my_skb_align(struct sk_buff *skb, int n)
2684 {
2685 unsigned long x = (unsigned long)skb->data;
2686 unsigned long v;
2687
2688 v = ALIGN(x, n); /* Where we want to be */
2689
2690 skb_reserve(skb, v - x);
2691 }
2692
2693
2694 /*
2695 * ================
2696 * = dfx_rcv_init =
2697 * ================
2698 *
2699 * Overview:
2700 * Produces buffers to adapter LLC Host receive descriptor block
2701 *
2702 * Returns:
2703 * None
2704 *
2705 * Arguments:
2706 * bp - pointer to board information
2707 * get_buffers - non-zero if buffers to be allocated
2708 *
2709 * Functional Description:
2710 * This routine can be called during dfx_adap_init() or during an adapter
2711 * reset. It initializes the descriptor block and produces all allocated
2712 * LLC Host queue receive buffers.
2713 *
2714 * Return Codes:
2715 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2716 * dynamic buffer allocation). If the buffer allocation failed, the
2717 * already allocated buffers will not be released and the caller should do
2718 * this.
2719 *
2720 * Assumptions:
2721 * The PDQ has been reset and the adapter and driver maintained Type 2
2722 * register indices are cleared.
2723 *
2724 * Side Effects:
2725 * Receive buffers are posted to the adapter LLC queue and the adapter
2726 * is notified.
2727 */
2728
2729 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2730 {
2731 int i, j; /* used in for loop */
2732
2733 /*
2734 * Since each receive buffer is a single fragment of same length, initialize
2735 * first longword in each receive descriptor for entire LLC Host descriptor
2736 * block. Also initialize second longword in each receive descriptor with
2737 * physical address of receive buffer. We'll always allocate receive
2738 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2739 * block and produce new receive buffers by simply updating the receive
2740 * producer index.
2741 *
2742 * Assumptions:
2743 * To support all shipping versions of PDQ, the receive buffer size
2744 * must be mod 128 in length and the physical address must be 128 byte
2745 * aligned. In other words, bits 0-6 of the length and address must
2746 * be zero for the following descriptor field entries to be correct on
2747 * all PDQ-based boards. We guaranteed both requirements during
2748 * driver initialization when we allocated memory for the receive buffers.
2749 */
2750
2751 if (get_buffers) {
2752 #ifdef DYNAMIC_BUFFERS
2753 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2754 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2755 {
2756 struct sk_buff *newskb = __dev_alloc_skb(NEW_SKB_SIZE, GFP_NOIO);
2757 if (!newskb)
2758 return -ENOMEM;
2759 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2760 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2761 /*
2762 * align to 128 bytes for compatibility with
2763 * the old EISA boards.
2764 */
2765
2766 my_skb_align(newskb, 128);
2767 bp->descr_block_virt->rcv_data[i + j].long_1 =
2768 (u32)pci_map_single(bp->pci_dev, newskb->data,
2769 NEW_SKB_SIZE,
2770 PCI_DMA_FROMDEVICE);
2771 /*
2772 * p_rcv_buff_va is only used inside the
2773 * kernel so we put the skb pointer here.
2774 */
2775 bp->p_rcv_buff_va[i+j] = (char *) newskb;
2776 }
2777 #else
2778 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2779 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2780 {
2781 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2782 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2783 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2784 bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2785 }
2786 #endif
2787 }
2788
2789 /* Update receive producer and Type 2 register */
2790
2791 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2792 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2793 return 0;
2794 }
2795
2796
2797 /*
2798 * =========================
2799 * = dfx_rcv_queue_process =
2800 * =========================
2801 *
2802 * Overview:
2803 * Process received LLC frames.
2804 *
2805 * Returns:
2806 * None
2807 *
2808 * Arguments:
2809 * bp - pointer to board information
2810 *
2811 * Functional Description:
2812 * Received LLC frames are processed until there are no more consumed frames.
2813 * Once all frames are processed, the receive buffers are returned to the
2814 * adapter. Note that this algorithm fixes the length of time that can be spent
2815 * in this routine, because there are a fixed number of receive buffers to
2816 * process and buffers are not produced until this routine exits and returns
2817 * to the ISR.
2818 *
2819 * Return Codes:
2820 * None
2821 *
2822 * Assumptions:
2823 * None
2824 *
2825 * Side Effects:
2826 * None
2827 */
2828
2829 static void dfx_rcv_queue_process(
2830 DFX_board_t *bp
2831 )
2832
2833 {
2834 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
2835 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
2836 u32 descr, pkt_len; /* FMC descriptor field and packet length */
2837 struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
2838
2839 /* Service all consumed LLC receive frames */
2840
2841 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
2842 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
2843 {
2844 /* Process any errors */
2845
2846 int entry;
2847
2848 entry = bp->rcv_xmt_reg.index.rcv_comp;
2849 #ifdef DYNAMIC_BUFFERS
2850 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
2851 #else
2852 p_buff = (char *) bp->p_rcv_buff_va[entry];
2853 #endif
2854 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
2855
2856 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
2857 {
2858 if (descr & PI_FMC_DESCR_M_RCC_CRC)
2859 bp->rcv_crc_errors++;
2860 else
2861 bp->rcv_frame_status_errors++;
2862 }
2863 else
2864 {
2865 int rx_in_place = 0;
2866
2867 /* The frame was received without errors - verify packet length */
2868
2869 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
2870 pkt_len -= 4; /* subtract 4 byte CRC */
2871 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
2872 bp->rcv_length_errors++;
2873 else{
2874 #ifdef DYNAMIC_BUFFERS
2875 if (pkt_len > SKBUFF_RX_COPYBREAK) {
2876 struct sk_buff *newskb;
2877
2878 newskb = dev_alloc_skb(NEW_SKB_SIZE);
2879 if (newskb){
2880 rx_in_place = 1;
2881
2882 my_skb_align(newskb, 128);
2883 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
2884 pci_unmap_single(bp->pci_dev,
2885 bp->descr_block_virt->rcv_data[entry].long_1,
2886 NEW_SKB_SIZE,
2887 PCI_DMA_FROMDEVICE);
2888 skb_reserve(skb, RCV_BUFF_K_PADDING);
2889 bp->p_rcv_buff_va[entry] = (char *)newskb;
2890 bp->descr_block_virt->rcv_data[entry].long_1 =
2891 (u32)pci_map_single(bp->pci_dev,
2892 newskb->data,
2893 NEW_SKB_SIZE,
2894 PCI_DMA_FROMDEVICE);
2895 } else
2896 skb = NULL;
2897 } else
2898 #endif
2899 skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
2900 if (skb == NULL)
2901 {
2902 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
2903 bp->rcv_discards++;
2904 break;
2905 }
2906 else {
2907 #ifndef DYNAMIC_BUFFERS
2908 if (! rx_in_place)
2909 #endif
2910 {
2911 /* Receive buffer allocated, pass receive packet up */
2912
2913 memcpy(skb->data, p_buff + RCV_BUFF_K_PADDING, pkt_len+3);
2914 }
2915
2916 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
2917 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
2918 skb->dev = bp->dev; /* pass up device pointer */
2919
2920 skb->protocol = fddi_type_trans(skb, bp->dev);
2921 bp->rcv_total_bytes += skb->len;
2922 netif_rx(skb);
2923
2924 /* Update the rcv counters */
2925 bp->dev->last_rx = jiffies;
2926 bp->rcv_total_frames++;
2927 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
2928 bp->rcv_multicast_frames++;
2929 }
2930 }
2931 }
2932
2933 /*
2934 * Advance the producer (for recycling) and advance the completion
2935 * (for servicing received frames). Note that it is okay to
2936 * advance the producer without checking that it passes the
2937 * completion index because they are both advanced at the same
2938 * rate.
2939 */
2940
2941 bp->rcv_xmt_reg.index.rcv_prod += 1;
2942 bp->rcv_xmt_reg.index.rcv_comp += 1;
2943 }
2944 }
2945
2946
2947 /*
2948 * =====================
2949 * = dfx_xmt_queue_pkt =
2950 * =====================
2951 *
2952 * Overview:
2953 * Queues packets for transmission
2954 *
2955 * Returns:
2956 * Condition code
2957 *
2958 * Arguments:
2959 * skb - pointer to sk_buff to queue for transmission
2960 * dev - pointer to device information
2961 *
2962 * Functional Description:
2963 * Here we assume that an incoming skb transmit request
2964 * is contained in a single physically contiguous buffer
2965 * in which the virtual address of the start of packet
2966 * (skb->data) can be converted to a physical address
2967 * by using pci_map_single().
2968 *
2969 * Since the adapter architecture requires a three byte
2970 * packet request header to prepend the start of packet,
2971 * we'll write the three byte field immediately prior to
2972 * the FC byte. This assumption is valid because we've
2973 * ensured that dev->hard_header_len includes three pad
2974 * bytes. By posting a single fragment to the adapter,
2975 * we'll reduce the number of descriptor fetches and
2976 * bus traffic needed to send the request.
2977 *
2978 * Also, we can't free the skb until after it's been DMA'd
2979 * out by the adapter, so we'll queue it in the driver and
2980 * return it in dfx_xmt_done.
2981 *
2982 * Return Codes:
2983 * 0 - driver queued packet, link is unavailable, or skbuff was bad
2984 * 1 - caller should requeue the sk_buff for later transmission
2985 *
2986 * Assumptions:
2987 * First and foremost, we assume the incoming skb pointer
2988 * is NOT NULL and is pointing to a valid sk_buff structure.
2989 *
2990 * The outgoing packet is complete, starting with the
2991 * frame control byte including the last byte of data,
2992 * but NOT including the 4 byte CRC. We'll let the
2993 * adapter hardware generate and append the CRC.
2994 *
2995 * The entire packet is stored in one physically
2996 * contiguous buffer which is not cached and whose
2997 * 32-bit physical address can be determined.
2998 *
2999 * It's vital that this routine is NOT reentered for the
3000 * same board and that the OS is not in another section of
3001 * code (eg. dfx_int_common) for the same board on a
3002 * different thread.
3003 *
3004 * Side Effects:
3005 * None
3006 */
3007
3008 static int dfx_xmt_queue_pkt(
3009 struct sk_buff *skb,
3010 struct net_device *dev
3011 )
3012
3013 {
3014 DFX_board_t *bp = dev->priv;
3015 u8 prod; /* local transmit producer index */
3016 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
3017 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3018 unsigned long flags;
3019
3020 netif_stop_queue(dev);
3021
3022 /*
3023 * Verify that incoming transmit request is OK
3024 *
3025 * Note: The packet size check is consistent with other
3026 * Linux device drivers, although the correct packet
3027 * size should be verified before calling the
3028 * transmit routine.
3029 */
3030
3031 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3032 {
3033 printk("%s: Invalid packet length - %u bytes\n",
3034 dev->name, skb->len);
3035 bp->xmt_length_errors++; /* bump error counter */
3036 netif_wake_queue(dev);
3037 dev_kfree_skb(skb);
3038 return(0); /* return "success" */
3039 }
3040 /*
3041 * See if adapter link is available, if not, free buffer
3042 *
3043 * Note: If the link isn't available, free buffer and return 0
3044 * rather than tell the upper layer to requeue the packet.
3045 * The methodology here is that by the time the link
3046 * becomes available, the packet to be sent will be
3047 * fairly stale. By simply dropping the packet, the
3048 * higher layer protocols will eventually time out
3049 * waiting for response packets which it won't receive.
3050 */
3051
3052 if (bp->link_available == PI_K_FALSE)
3053 {
3054 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
3055 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
3056 else
3057 {
3058 bp->xmt_discards++; /* bump error counter */
3059 dev_kfree_skb(skb); /* free sk_buff now */
3060 netif_wake_queue(dev);
3061 return(0); /* return "success" */
3062 }
3063 }
3064
3065 spin_lock_irqsave(&bp->lock, flags);
3066
3067 /* Get the current producer and the next free xmt data descriptor */
3068
3069 prod = bp->rcv_xmt_reg.index.xmt_prod;
3070 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3071
3072 /*
3073 * Get pointer to auxiliary queue entry to contain information
3074 * for this packet.
3075 *
3076 * Note: The current xmt producer index will become the
3077 * current xmt completion index when we complete this
3078 * packet later on. So, we'll get the pointer to the
3079 * next auxiliary queue entry now before we bump the
3080 * producer index.
3081 */
3082
3083 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3084
3085 /* Write the three PRH bytes immediately before the FC byte */
3086
3087 skb_push(skb,3);
3088 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3089 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3090 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3091
3092 /*
3093 * Write the descriptor with buffer info and bump producer
3094 *
3095 * Note: Since we need to start DMA from the packet request
3096 * header, we'll add 3 bytes to the DMA buffer length,
3097 * and we'll determine the physical address of the
3098 * buffer from the PRH, not skb->data.
3099 *
3100 * Assumptions:
3101 * 1. Packet starts with the frame control (FC) byte
3102 * at skb->data.
3103 * 2. The 4-byte CRC is not appended to the buffer or
3104 * included in the length.
3105 * 3. Packet length (skb->len) is from FC to end of
3106 * data, inclusive.
3107 * 4. The packet length does not exceed the maximum
3108 * FDDI LLC frame length of 4491 bytes.
3109 * 5. The entire packet is contained in a physically
3110 * contiguous, non-cached, locked memory space
3111 * comprised of a single buffer pointed to by
3112 * skb->data.
3113 * 6. The physical address of the start of packet
3114 * can be determined from the virtual address
3115 * by using pci_map_single() and is only 32-bits
3116 * wide.
3117 */
3118
3119 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3120 p_xmt_descr->long_1 = (u32)pci_map_single(bp->pci_dev, skb->data,
3121 skb->len, PCI_DMA_TODEVICE);
3122
3123 /*
3124 * Verify that descriptor is actually available
3125 *
3126 * Note: If descriptor isn't available, return 1 which tells
3127 * the upper layer to requeue the packet for later
3128 * transmission.
3129 *
3130 * We need to ensure that the producer never reaches the
3131 * completion, except to indicate that the queue is empty.
3132 */
3133
3134 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3135 {
3136 skb_pull(skb,3);
3137 spin_unlock_irqrestore(&bp->lock, flags);
3138 return(1); /* requeue packet for later */
3139 }
3140
3141 /*
3142 * Save info for this packet for xmt done indication routine
3143 *
3144 * Normally, we'd save the producer index in the p_xmt_drv_descr
3145 * structure so that we'd have it handy when we complete this
3146 * packet later (in dfx_xmt_done). However, since the current
3147 * transmit architecture guarantees a single fragment for the
3148 * entire packet, we can simply bump the completion index by
3149 * one (1) for each completed packet.
3150 *
3151 * Note: If this assumption changes and we're presented with
3152 * an inconsistent number of transmit fragments for packet
3153 * data, we'll need to modify this code to save the current
3154 * transmit producer index.
3155 */
3156
3157 p_xmt_drv_descr->p_skb = skb;
3158
3159 /* Update Type 2 register */
3160
3161 bp->rcv_xmt_reg.index.xmt_prod = prod;
3162 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3163 spin_unlock_irqrestore(&bp->lock, flags);
3164 netif_wake_queue(dev);
3165 return(0); /* packet queued to adapter */
3166 }
3167
3168
3169 /*
3170 * ================
3171 * = dfx_xmt_done =
3172 * ================
3173 *
3174 * Overview:
3175 * Processes all frames that have been transmitted.
3176 *
3177 * Returns:
3178 * None
3179 *
3180 * Arguments:
3181 * bp - pointer to board information
3182 *
3183 * Functional Description:
3184 * For all consumed transmit descriptors that have not
3185 * yet been completed, we'll free the skb we were holding
3186 * onto using dev_kfree_skb and bump the appropriate
3187 * counters.
3188 *
3189 * Return Codes:
3190 * None
3191 *
3192 * Assumptions:
3193 * The Type 2 register is not updated in this routine. It is
3194 * assumed that it will be updated in the ISR when dfx_xmt_done
3195 * returns.
3196 *
3197 * Side Effects:
3198 * None
3199 */
3200
3201 static int dfx_xmt_done(DFX_board_t *bp)
3202 {
3203 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3204 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3205 u8 comp; /* local transmit completion index */
3206 int freed = 0; /* buffers freed */
3207
3208 /* Service all consumed transmit frames */
3209
3210 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3211 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3212 {
3213 /* Get pointer to the transmit driver descriptor block information */
3214
3215 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3216
3217 /* Increment transmit counters */
3218
3219 bp->xmt_total_frames++;
3220 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3221
3222 /* Return skb to operating system */
3223 comp = bp->rcv_xmt_reg.index.xmt_comp;
3224 pci_unmap_single(bp->pci_dev,
3225 bp->descr_block_virt->xmt_data[comp].long_1,
3226 p_xmt_drv_descr->p_skb->len,
3227 PCI_DMA_TODEVICE);
3228 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3229
3230 /*
3231 * Move to start of next packet by updating completion index
3232 *
3233 * Here we assume that a transmit packet request is always
3234 * serviced by posting one fragment. We can therefore
3235 * simplify the completion code by incrementing the
3236 * completion index by one. This code will need to be
3237 * modified if this assumption changes. See comments
3238 * in dfx_xmt_queue_pkt for more details.
3239 */
3240
3241 bp->rcv_xmt_reg.index.xmt_comp += 1;
3242 freed++;
3243 }
3244 return freed;
3245 }
3246
3247
3248 /*
3249 * =================
3250 * = dfx_rcv_flush =
3251 * =================
3252 *
3253 * Overview:
3254 * Remove all skb's in the receive ring.
3255 *
3256 * Returns:
3257 * None
3258 *
3259 * Arguments:
3260 * bp - pointer to board information
3261 *
3262 * Functional Description:
3263 * Free's all the dynamically allocated skb's that are
3264 * currently attached to the device receive ring. This
3265 * function is typically only used when the device is
3266 * initialized or reinitialized.
3267 *
3268 * Return Codes:
3269 * None
3270 *
3271 * Side Effects:
3272 * None
3273 */
3274 #ifdef DYNAMIC_BUFFERS
3275 static void dfx_rcv_flush( DFX_board_t *bp )
3276 {
3277 int i, j;
3278
3279 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3280 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3281 {
3282 struct sk_buff *skb;
3283 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3284 if (skb)
3285 dev_kfree_skb(skb);
3286 bp->p_rcv_buff_va[i+j] = NULL;
3287 }
3288
3289 }
3290 #else
3291 static inline void dfx_rcv_flush( DFX_board_t *bp )
3292 {
3293 }
3294 #endif /* DYNAMIC_BUFFERS */
3295
3296 /*
3297 * =================
3298 * = dfx_xmt_flush =
3299 * =================
3300 *
3301 * Overview:
3302 * Processes all frames whether they've been transmitted
3303 * or not.
3304 *
3305 * Returns:
3306 * None
3307 *
3308 * Arguments:
3309 * bp - pointer to board information
3310 *
3311 * Functional Description:
3312 * For all produced transmit descriptors that have not
3313 * yet been completed, we'll free the skb we were holding
3314 * onto using dev_kfree_skb and bump the appropriate
3315 * counters. Of course, it's possible that some of
3316 * these transmit requests actually did go out, but we
3317 * won't make that distinction here. Finally, we'll
3318 * update the consumer index to match the producer.
3319 *
3320 * Return Codes:
3321 * None
3322 *
3323 * Assumptions:
3324 * This routine does NOT update the Type 2 register. It
3325 * is assumed that this routine is being called during a
3326 * transmit flush interrupt, or a shutdown or close routine.
3327 *
3328 * Side Effects:
3329 * None
3330 */
3331
3332 static void dfx_xmt_flush( DFX_board_t *bp )
3333 {
3334 u32 prod_cons; /* rcv/xmt consumer block longword */
3335 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3336 u8 comp; /* local transmit completion index */
3337
3338 /* Flush all outstanding transmit frames */
3339
3340 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3341 {
3342 /* Get pointer to the transmit driver descriptor block information */
3343
3344 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3345
3346 /* Return skb to operating system */
3347 comp = bp->rcv_xmt_reg.index.xmt_comp;
3348 pci_unmap_single(bp->pci_dev,
3349 bp->descr_block_virt->xmt_data[comp].long_1,
3350 p_xmt_drv_descr->p_skb->len,
3351 PCI_DMA_TODEVICE);
3352 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3353
3354 /* Increment transmit error counter */
3355
3356 bp->xmt_discards++;
3357
3358 /*
3359 * Move to start of next packet by updating completion index
3360 *
3361 * Here we assume that a transmit packet request is always
3362 * serviced by posting one fragment. We can therefore
3363 * simplify the completion code by incrementing the
3364 * completion index by one. This code will need to be
3365 * modified if this assumption changes. See comments
3366 * in dfx_xmt_queue_pkt for more details.
3367 */
3368
3369 bp->rcv_xmt_reg.index.xmt_comp += 1;
3370 }
3371
3372 /* Update the transmit consumer index in the consumer block */
3373
3374 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3375 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3376 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3377 }
3378
3379 static void __devexit dfx_remove_one_pci_or_eisa(struct pci_dev *pdev, struct net_device *dev)
3380 {
3381 DFX_board_t *bp = dev->priv;
3382 int alloc_size; /* total buffer size used */
3383
3384 unregister_netdev(dev);
3385 release_region(dev->base_addr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN );
3386
3387 alloc_size = sizeof(PI_DESCR_BLOCK) +
3388 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3389 #ifndef DYNAMIC_BUFFERS
3390 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3391 #endif
3392 sizeof(PI_CONSUMER_BLOCK) +
3393 (PI_ALIGN_K_DESC_BLK - 1);
3394 if (bp->kmalloced)
3395 pci_free_consistent(pdev, alloc_size, bp->kmalloced,
3396 bp->kmalloced_dma);
3397 free_netdev(dev);
3398 }
3399
3400 static void __devexit dfx_remove_one (struct pci_dev *pdev)
3401 {
3402 struct net_device *dev = pci_get_drvdata(pdev);
3403
3404 dfx_remove_one_pci_or_eisa(pdev, dev);
3405 pci_set_drvdata(pdev, NULL);
3406 }
3407
3408 static struct pci_device_id dfx_pci_tbl[] = {
3409 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI, PCI_ANY_ID, PCI_ANY_ID, },
3410 { 0, }
3411 };
3412 MODULE_DEVICE_TABLE(pci, dfx_pci_tbl);
3413
3414 static struct pci_driver dfx_driver = {
3415 .name = "defxx",
3416 .probe = dfx_init_one,
3417 .remove = __devexit_p(dfx_remove_one),
3418 .id_table = dfx_pci_tbl,
3419 };
3420
3421 static int dfx_have_pci;
3422 static int dfx_have_eisa;
3423
3424
3425 static void __exit dfx_eisa_cleanup(void)
3426 {
3427 struct net_device *dev = root_dfx_eisa_dev;
3428
3429 while (dev)
3430 {
3431 struct net_device *tmp;
3432 DFX_board_t *bp;
3433
3434 bp = (DFX_board_t*)dev->priv;
3435 tmp = bp->next;
3436 dfx_remove_one_pci_or_eisa(NULL, dev);
3437 dev = tmp;
3438 }
3439 }
3440
3441 static int __init dfx_init(void)
3442 {
3443 int rc_pci, rc_eisa;
3444
3445 rc_pci = pci_register_driver(&dfx_driver);
3446 if (rc_pci >= 0) dfx_have_pci = 1;
3447
3448 rc_eisa = dfx_eisa_init();
3449 if (rc_eisa >= 0) dfx_have_eisa = 1;
3450
3451 return ((rc_eisa < 0) ? 0 : rc_eisa) + ((rc_pci < 0) ? 0 : rc_pci);
3452 }
3453
3454 static void __exit dfx_cleanup(void)
3455 {
3456 if (dfx_have_pci)
3457 pci_unregister_driver(&dfx_driver);
3458 if (dfx_have_eisa)
3459 dfx_eisa_cleanup();
3460
3461 }
3462
3463 module_init(dfx_init);
3464 module_exit(dfx_cleanup);
3465 MODULE_AUTHOR("Lawrence V. Stefani");
3466 MODULE_DESCRIPTION("DEC FDDIcontroller EISA/PCI (DEFEA/DEFPA) driver "
3467 DRV_VERSION " " DRV_RELDATE);
3468 MODULE_LICENSE("GPL");
3469
3470
3471 /*
3472 * Local variables:
3473 * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c"
3474 * End:
3475 */