Merge branch 'for-2.6.21' of master.kernel.org:/pub/scm/linux/kernel/git/davej/agpgart
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / cxgb3 / sge.c
1 /*
2 * Copyright (c) 2005-2007 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include "common.h"
40 #include "regs.h"
41 #include "sge_defs.h"
42 #include "t3_cpl.h"
43 #include "firmware_exports.h"
44
45 #define USE_GTS 0
46
47 #define SGE_RX_SM_BUF_SIZE 1536
48
49 /*
50 * If USE_RX_PAGE is defined, the small freelist populated with (partial)
51 * pages instead of skbs. Pages are carved up into RX_PAGE_SIZE chunks (must
52 * be a multiple of the host page size).
53 */
54 #define USE_RX_PAGE
55 #define RX_PAGE_SIZE 2048
56
57 /*
58 * skb freelist packets are copied into a new skb (and the freelist one is
59 * reused) if their len is <=
60 */
61 #define SGE_RX_COPY_THRES 256
62
63 /*
64 * Minimum number of freelist entries before we start dropping TUNNEL frames.
65 */
66 #define SGE_RX_DROP_THRES 16
67
68 /*
69 * Period of the Tx buffer reclaim timer. This timer does not need to run
70 * frequently as Tx buffers are usually reclaimed by new Tx packets.
71 */
72 #define TX_RECLAIM_PERIOD (HZ / 4)
73
74 /* WR size in bytes */
75 #define WR_LEN (WR_FLITS * 8)
76
77 /*
78 * Types of Tx queues in each queue set. Order here matters, do not change.
79 */
80 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
81
82 /* Values for sge_txq.flags */
83 enum {
84 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
85 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
86 };
87
88 struct tx_desc {
89 u64 flit[TX_DESC_FLITS];
90 };
91
92 struct rx_desc {
93 __be32 addr_lo;
94 __be32 len_gen;
95 __be32 gen2;
96 __be32 addr_hi;
97 };
98
99 struct tx_sw_desc { /* SW state per Tx descriptor */
100 struct sk_buff *skb;
101 };
102
103 struct rx_sw_desc { /* SW state per Rx descriptor */
104 union {
105 struct sk_buff *skb;
106 struct sge_fl_page page;
107 } t;
108 DECLARE_PCI_UNMAP_ADDR(dma_addr);
109 };
110
111 struct rsp_desc { /* response queue descriptor */
112 struct rss_header rss_hdr;
113 __be32 flags;
114 __be32 len_cq;
115 u8 imm_data[47];
116 u8 intr_gen;
117 };
118
119 struct unmap_info { /* packet unmapping info, overlays skb->cb */
120 int sflit; /* start flit of first SGL entry in Tx descriptor */
121 u16 fragidx; /* first page fragment in current Tx descriptor */
122 u16 addr_idx; /* buffer index of first SGL entry in descriptor */
123 u32 len; /* mapped length of skb main body */
124 };
125
126 /*
127 * Holds unmapping information for Tx packets that need deferred unmapping.
128 * This structure lives at skb->head and must be allocated by callers.
129 */
130 struct deferred_unmap_info {
131 struct pci_dev *pdev;
132 dma_addr_t addr[MAX_SKB_FRAGS + 1];
133 };
134
135 /*
136 * Maps a number of flits to the number of Tx descriptors that can hold them.
137 * The formula is
138 *
139 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
140 *
141 * HW allows up to 4 descriptors to be combined into a WR.
142 */
143 static u8 flit_desc_map[] = {
144 0,
145 #if SGE_NUM_GENBITS == 1
146 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
147 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
148 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
149 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
150 #elif SGE_NUM_GENBITS == 2
151 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
152 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
153 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
154 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
155 #else
156 # error "SGE_NUM_GENBITS must be 1 or 2"
157 #endif
158 };
159
160 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
161 {
162 return container_of(q, struct sge_qset, fl[qidx]);
163 }
164
165 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
166 {
167 return container_of(q, struct sge_qset, rspq);
168 }
169
170 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
171 {
172 return container_of(q, struct sge_qset, txq[qidx]);
173 }
174
175 /**
176 * refill_rspq - replenish an SGE response queue
177 * @adapter: the adapter
178 * @q: the response queue to replenish
179 * @credits: how many new responses to make available
180 *
181 * Replenishes a response queue by making the supplied number of responses
182 * available to HW.
183 */
184 static inline void refill_rspq(struct adapter *adapter,
185 const struct sge_rspq *q, unsigned int credits)
186 {
187 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
188 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
189 }
190
191 /**
192 * need_skb_unmap - does the platform need unmapping of sk_buffs?
193 *
194 * Returns true if the platfrom needs sk_buff unmapping. The compiler
195 * optimizes away unecessary code if this returns true.
196 */
197 static inline int need_skb_unmap(void)
198 {
199 /*
200 * This structure is used to tell if the platfrom needs buffer
201 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
202 */
203 struct dummy {
204 DECLARE_PCI_UNMAP_ADDR(addr);
205 };
206
207 return sizeof(struct dummy) != 0;
208 }
209
210 /**
211 * unmap_skb - unmap a packet main body and its page fragments
212 * @skb: the packet
213 * @q: the Tx queue containing Tx descriptors for the packet
214 * @cidx: index of Tx descriptor
215 * @pdev: the PCI device
216 *
217 * Unmap the main body of an sk_buff and its page fragments, if any.
218 * Because of the fairly complicated structure of our SGLs and the desire
219 * to conserve space for metadata, we keep the information necessary to
220 * unmap an sk_buff partly in the sk_buff itself (in its cb), and partly
221 * in the Tx descriptors (the physical addresses of the various data
222 * buffers). The send functions initialize the state in skb->cb so we
223 * can unmap the buffers held in the first Tx descriptor here, and we
224 * have enough information at this point to update the state for the next
225 * Tx descriptor.
226 */
227 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
228 unsigned int cidx, struct pci_dev *pdev)
229 {
230 const struct sg_ent *sgp;
231 struct unmap_info *ui = (struct unmap_info *)skb->cb;
232 int nfrags, frag_idx, curflit, j = ui->addr_idx;
233
234 sgp = (struct sg_ent *)&q->desc[cidx].flit[ui->sflit];
235
236 if (ui->len) {
237 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]), ui->len,
238 PCI_DMA_TODEVICE);
239 ui->len = 0; /* so we know for next descriptor for this skb */
240 j = 1;
241 }
242
243 frag_idx = ui->fragidx;
244 curflit = ui->sflit + 1 + j;
245 nfrags = skb_shinfo(skb)->nr_frags;
246
247 while (frag_idx < nfrags && curflit < WR_FLITS) {
248 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
249 skb_shinfo(skb)->frags[frag_idx].size,
250 PCI_DMA_TODEVICE);
251 j ^= 1;
252 if (j == 0) {
253 sgp++;
254 curflit++;
255 }
256 curflit++;
257 frag_idx++;
258 }
259
260 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
261 ui->fragidx = frag_idx;
262 ui->addr_idx = j;
263 ui->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
264 }
265 }
266
267 /**
268 * free_tx_desc - reclaims Tx descriptors and their buffers
269 * @adapter: the adapter
270 * @q: the Tx queue to reclaim descriptors from
271 * @n: the number of descriptors to reclaim
272 *
273 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
274 * Tx buffers. Called with the Tx queue lock held.
275 */
276 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
277 unsigned int n)
278 {
279 struct tx_sw_desc *d;
280 struct pci_dev *pdev = adapter->pdev;
281 unsigned int cidx = q->cidx;
282
283 const int need_unmap = need_skb_unmap() &&
284 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
285
286 d = &q->sdesc[cidx];
287 while (n--) {
288 if (d->skb) { /* an SGL is present */
289 if (need_unmap)
290 unmap_skb(d->skb, q, cidx, pdev);
291 if (d->skb->priority == cidx)
292 kfree_skb(d->skb);
293 }
294 ++d;
295 if (++cidx == q->size) {
296 cidx = 0;
297 d = q->sdesc;
298 }
299 }
300 q->cidx = cidx;
301 }
302
303 /**
304 * reclaim_completed_tx - reclaims completed Tx descriptors
305 * @adapter: the adapter
306 * @q: the Tx queue to reclaim completed descriptors from
307 *
308 * Reclaims Tx descriptors that the SGE has indicated it has processed,
309 * and frees the associated buffers if possible. Called with the Tx
310 * queue's lock held.
311 */
312 static inline void reclaim_completed_tx(struct adapter *adapter,
313 struct sge_txq *q)
314 {
315 unsigned int reclaim = q->processed - q->cleaned;
316
317 if (reclaim) {
318 free_tx_desc(adapter, q, reclaim);
319 q->cleaned += reclaim;
320 q->in_use -= reclaim;
321 }
322 }
323
324 /**
325 * should_restart_tx - are there enough resources to restart a Tx queue?
326 * @q: the Tx queue
327 *
328 * Checks if there are enough descriptors to restart a suspended Tx queue.
329 */
330 static inline int should_restart_tx(const struct sge_txq *q)
331 {
332 unsigned int r = q->processed - q->cleaned;
333
334 return q->in_use - r < (q->size >> 1);
335 }
336
337 /**
338 * free_rx_bufs - free the Rx buffers on an SGE free list
339 * @pdev: the PCI device associated with the adapter
340 * @rxq: the SGE free list to clean up
341 *
342 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
343 * this queue should be stopped before calling this function.
344 */
345 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
346 {
347 unsigned int cidx = q->cidx;
348
349 while (q->credits--) {
350 struct rx_sw_desc *d = &q->sdesc[cidx];
351
352 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
353 q->buf_size, PCI_DMA_FROMDEVICE);
354
355 if (q->buf_size != RX_PAGE_SIZE) {
356 kfree_skb(d->t.skb);
357 d->t.skb = NULL;
358 } else {
359 if (d->t.page.frag.page)
360 put_page(d->t.page.frag.page);
361 d->t.page.frag.page = NULL;
362 }
363 if (++cidx == q->size)
364 cidx = 0;
365 }
366
367 if (q->page.frag.page)
368 put_page(q->page.frag.page);
369 q->page.frag.page = NULL;
370 }
371
372 /**
373 * add_one_rx_buf - add a packet buffer to a free-buffer list
374 * @va: va of the buffer to add
375 * @len: the buffer length
376 * @d: the HW Rx descriptor to write
377 * @sd: the SW Rx descriptor to write
378 * @gen: the generation bit value
379 * @pdev: the PCI device associated with the adapter
380 *
381 * Add a buffer of the given length to the supplied HW and SW Rx
382 * descriptors.
383 */
384 static inline void add_one_rx_buf(unsigned char *va, unsigned int len,
385 struct rx_desc *d, struct rx_sw_desc *sd,
386 unsigned int gen, struct pci_dev *pdev)
387 {
388 dma_addr_t mapping;
389
390 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
391 pci_unmap_addr_set(sd, dma_addr, mapping);
392
393 d->addr_lo = cpu_to_be32(mapping);
394 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
395 wmb();
396 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
397 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
398 }
399
400 /**
401 * refill_fl - refill an SGE free-buffer list
402 * @adapter: the adapter
403 * @q: the free-list to refill
404 * @n: the number of new buffers to allocate
405 * @gfp: the gfp flags for allocating new buffers
406 *
407 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
408 * allocated with the supplied gfp flags. The caller must assure that
409 * @n does not exceed the queue's capacity.
410 */
411 static void refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
412 {
413 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
414 struct rx_desc *d = &q->desc[q->pidx];
415 struct sge_fl_page *p = &q->page;
416
417 while (n--) {
418 unsigned char *va;
419
420 if (unlikely(q->buf_size != RX_PAGE_SIZE)) {
421 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
422
423 if (!skb) {
424 q->alloc_failed++;
425 break;
426 }
427 va = skb->data;
428 sd->t.skb = skb;
429 } else {
430 if (!p->frag.page) {
431 p->frag.page = alloc_pages(gfp, 0);
432 if (unlikely(!p->frag.page)) {
433 q->alloc_failed++;
434 break;
435 } else {
436 p->frag.size = RX_PAGE_SIZE;
437 p->frag.page_offset = 0;
438 p->va = page_address(p->frag.page);
439 }
440 }
441
442 memcpy(&sd->t, p, sizeof(*p));
443 va = p->va;
444
445 p->frag.page_offset += RX_PAGE_SIZE;
446 BUG_ON(p->frag.page_offset > PAGE_SIZE);
447 p->va += RX_PAGE_SIZE;
448 if (p->frag.page_offset == PAGE_SIZE)
449 p->frag.page = NULL;
450 else
451 get_page(p->frag.page);
452 }
453
454 add_one_rx_buf(va, q->buf_size, d, sd, q->gen, adap->pdev);
455
456 d++;
457 sd++;
458 if (++q->pidx == q->size) {
459 q->pidx = 0;
460 q->gen ^= 1;
461 sd = q->sdesc;
462 d = q->desc;
463 }
464 q->credits++;
465 }
466
467 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
468 }
469
470 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
471 {
472 refill_fl(adap, fl, min(16U, fl->size - fl->credits), GFP_ATOMIC);
473 }
474
475 /**
476 * recycle_rx_buf - recycle a receive buffer
477 * @adapter: the adapter
478 * @q: the SGE free list
479 * @idx: index of buffer to recycle
480 *
481 * Recycles the specified buffer on the given free list by adding it at
482 * the next available slot on the list.
483 */
484 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
485 unsigned int idx)
486 {
487 struct rx_desc *from = &q->desc[idx];
488 struct rx_desc *to = &q->desc[q->pidx];
489
490 memcpy(&q->sdesc[q->pidx], &q->sdesc[idx], sizeof(struct rx_sw_desc));
491 to->addr_lo = from->addr_lo; /* already big endian */
492 to->addr_hi = from->addr_hi; /* likewise */
493 wmb();
494 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
495 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
496 q->credits++;
497
498 if (++q->pidx == q->size) {
499 q->pidx = 0;
500 q->gen ^= 1;
501 }
502 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
503 }
504
505 /**
506 * alloc_ring - allocate resources for an SGE descriptor ring
507 * @pdev: the PCI device
508 * @nelem: the number of descriptors
509 * @elem_size: the size of each descriptor
510 * @sw_size: the size of the SW state associated with each ring element
511 * @phys: the physical address of the allocated ring
512 * @metadata: address of the array holding the SW state for the ring
513 *
514 * Allocates resources for an SGE descriptor ring, such as Tx queues,
515 * free buffer lists, or response queues. Each SGE ring requires
516 * space for its HW descriptors plus, optionally, space for the SW state
517 * associated with each HW entry (the metadata). The function returns
518 * three values: the virtual address for the HW ring (the return value
519 * of the function), the physical address of the HW ring, and the address
520 * of the SW ring.
521 */
522 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
523 size_t sw_size, dma_addr_t * phys, void *metadata)
524 {
525 size_t len = nelem * elem_size;
526 void *s = NULL;
527 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
528
529 if (!p)
530 return NULL;
531 if (sw_size) {
532 s = kcalloc(nelem, sw_size, GFP_KERNEL);
533
534 if (!s) {
535 dma_free_coherent(&pdev->dev, len, p, *phys);
536 return NULL;
537 }
538 }
539 if (metadata)
540 *(void **)metadata = s;
541 memset(p, 0, len);
542 return p;
543 }
544
545 /**
546 * free_qset - free the resources of an SGE queue set
547 * @adapter: the adapter owning the queue set
548 * @q: the queue set
549 *
550 * Release the HW and SW resources associated with an SGE queue set, such
551 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
552 * queue set must be quiesced prior to calling this.
553 */
554 void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
555 {
556 int i;
557 struct pci_dev *pdev = adapter->pdev;
558
559 if (q->tx_reclaim_timer.function)
560 del_timer_sync(&q->tx_reclaim_timer);
561
562 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
563 if (q->fl[i].desc) {
564 spin_lock(&adapter->sge.reg_lock);
565 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
566 spin_unlock(&adapter->sge.reg_lock);
567 free_rx_bufs(pdev, &q->fl[i]);
568 kfree(q->fl[i].sdesc);
569 dma_free_coherent(&pdev->dev,
570 q->fl[i].size *
571 sizeof(struct rx_desc), q->fl[i].desc,
572 q->fl[i].phys_addr);
573 }
574
575 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
576 if (q->txq[i].desc) {
577 spin_lock(&adapter->sge.reg_lock);
578 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
579 spin_unlock(&adapter->sge.reg_lock);
580 if (q->txq[i].sdesc) {
581 free_tx_desc(adapter, &q->txq[i],
582 q->txq[i].in_use);
583 kfree(q->txq[i].sdesc);
584 }
585 dma_free_coherent(&pdev->dev,
586 q->txq[i].size *
587 sizeof(struct tx_desc),
588 q->txq[i].desc, q->txq[i].phys_addr);
589 __skb_queue_purge(&q->txq[i].sendq);
590 }
591
592 if (q->rspq.desc) {
593 spin_lock(&adapter->sge.reg_lock);
594 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
595 spin_unlock(&adapter->sge.reg_lock);
596 dma_free_coherent(&pdev->dev,
597 q->rspq.size * sizeof(struct rsp_desc),
598 q->rspq.desc, q->rspq.phys_addr);
599 }
600
601 if (q->netdev)
602 q->netdev->atalk_ptr = NULL;
603
604 memset(q, 0, sizeof(*q));
605 }
606
607 /**
608 * init_qset_cntxt - initialize an SGE queue set context info
609 * @qs: the queue set
610 * @id: the queue set id
611 *
612 * Initializes the TIDs and context ids for the queues of a queue set.
613 */
614 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
615 {
616 qs->rspq.cntxt_id = id;
617 qs->fl[0].cntxt_id = 2 * id;
618 qs->fl[1].cntxt_id = 2 * id + 1;
619 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
620 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
621 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
622 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
623 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
624 }
625
626 /**
627 * sgl_len - calculates the size of an SGL of the given capacity
628 * @n: the number of SGL entries
629 *
630 * Calculates the number of flits needed for a scatter/gather list that
631 * can hold the given number of entries.
632 */
633 static inline unsigned int sgl_len(unsigned int n)
634 {
635 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
636 return (3 * n) / 2 + (n & 1);
637 }
638
639 /**
640 * flits_to_desc - returns the num of Tx descriptors for the given flits
641 * @n: the number of flits
642 *
643 * Calculates the number of Tx descriptors needed for the supplied number
644 * of flits.
645 */
646 static inline unsigned int flits_to_desc(unsigned int n)
647 {
648 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
649 return flit_desc_map[n];
650 }
651
652 /**
653 * get_imm_packet - return the next ingress packet buffer from a response
654 * @resp: the response descriptor containing the packet data
655 *
656 * Return a packet containing the immediate data of the given response.
657 */
658 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
659 {
660 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
661
662 if (skb) {
663 __skb_put(skb, IMMED_PKT_SIZE);
664 memcpy(skb->data, resp->imm_data, IMMED_PKT_SIZE);
665 }
666 return skb;
667 }
668
669 /**
670 * calc_tx_descs - calculate the number of Tx descriptors for a packet
671 * @skb: the packet
672 *
673 * Returns the number of Tx descriptors needed for the given Ethernet
674 * packet. Ethernet packets require addition of WR and CPL headers.
675 */
676 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
677 {
678 unsigned int flits;
679
680 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
681 return 1;
682
683 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
684 if (skb_shinfo(skb)->gso_size)
685 flits++;
686 return flits_to_desc(flits);
687 }
688
689 /**
690 * make_sgl - populate a scatter/gather list for a packet
691 * @skb: the packet
692 * @sgp: the SGL to populate
693 * @start: start address of skb main body data to include in the SGL
694 * @len: length of skb main body data to include in the SGL
695 * @pdev: the PCI device
696 *
697 * Generates a scatter/gather list for the buffers that make up a packet
698 * and returns the SGL size in 8-byte words. The caller must size the SGL
699 * appropriately.
700 */
701 static inline unsigned int make_sgl(const struct sk_buff *skb,
702 struct sg_ent *sgp, unsigned char *start,
703 unsigned int len, struct pci_dev *pdev)
704 {
705 dma_addr_t mapping;
706 unsigned int i, j = 0, nfrags;
707
708 if (len) {
709 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
710 sgp->len[0] = cpu_to_be32(len);
711 sgp->addr[0] = cpu_to_be64(mapping);
712 j = 1;
713 }
714
715 nfrags = skb_shinfo(skb)->nr_frags;
716 for (i = 0; i < nfrags; i++) {
717 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
718
719 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
720 frag->size, PCI_DMA_TODEVICE);
721 sgp->len[j] = cpu_to_be32(frag->size);
722 sgp->addr[j] = cpu_to_be64(mapping);
723 j ^= 1;
724 if (j == 0)
725 ++sgp;
726 }
727 if (j)
728 sgp->len[j] = 0;
729 return ((nfrags + (len != 0)) * 3) / 2 + j;
730 }
731
732 /**
733 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
734 * @adap: the adapter
735 * @q: the Tx queue
736 *
737 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
738 * where the HW is going to sleep just after we checked, however,
739 * then the interrupt handler will detect the outstanding TX packet
740 * and ring the doorbell for us.
741 *
742 * When GTS is disabled we unconditionally ring the doorbell.
743 */
744 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
745 {
746 #if USE_GTS
747 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
748 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
749 set_bit(TXQ_LAST_PKT_DB, &q->flags);
750 t3_write_reg(adap, A_SG_KDOORBELL,
751 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
752 }
753 #else
754 wmb(); /* write descriptors before telling HW */
755 t3_write_reg(adap, A_SG_KDOORBELL,
756 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
757 #endif
758 }
759
760 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
761 {
762 #if SGE_NUM_GENBITS == 2
763 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
764 #endif
765 }
766
767 /**
768 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
769 * @ndesc: number of Tx descriptors spanned by the SGL
770 * @skb: the packet corresponding to the WR
771 * @d: first Tx descriptor to be written
772 * @pidx: index of above descriptors
773 * @q: the SGE Tx queue
774 * @sgl: the SGL
775 * @flits: number of flits to the start of the SGL in the first descriptor
776 * @sgl_flits: the SGL size in flits
777 * @gen: the Tx descriptor generation
778 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
779 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
780 *
781 * Write a work request header and an associated SGL. If the SGL is
782 * small enough to fit into one Tx descriptor it has already been written
783 * and we just need to write the WR header. Otherwise we distribute the
784 * SGL across the number of descriptors it spans.
785 */
786 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
787 struct tx_desc *d, unsigned int pidx,
788 const struct sge_txq *q,
789 const struct sg_ent *sgl,
790 unsigned int flits, unsigned int sgl_flits,
791 unsigned int gen, unsigned int wr_hi,
792 unsigned int wr_lo)
793 {
794 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
795 struct tx_sw_desc *sd = &q->sdesc[pidx];
796
797 sd->skb = skb;
798 if (need_skb_unmap()) {
799 struct unmap_info *ui = (struct unmap_info *)skb->cb;
800
801 ui->fragidx = 0;
802 ui->addr_idx = 0;
803 ui->sflit = flits;
804 }
805
806 if (likely(ndesc == 1)) {
807 skb->priority = pidx;
808 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
809 V_WR_SGLSFLT(flits)) | wr_hi;
810 wmb();
811 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
812 V_WR_GEN(gen)) | wr_lo;
813 wr_gen2(d, gen);
814 } else {
815 unsigned int ogen = gen;
816 const u64 *fp = (const u64 *)sgl;
817 struct work_request_hdr *wp = wrp;
818
819 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
820 V_WR_SGLSFLT(flits)) | wr_hi;
821
822 while (sgl_flits) {
823 unsigned int avail = WR_FLITS - flits;
824
825 if (avail > sgl_flits)
826 avail = sgl_flits;
827 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
828 sgl_flits -= avail;
829 ndesc--;
830 if (!sgl_flits)
831 break;
832
833 fp += avail;
834 d++;
835 sd++;
836 if (++pidx == q->size) {
837 pidx = 0;
838 gen ^= 1;
839 d = q->desc;
840 sd = q->sdesc;
841 }
842
843 sd->skb = skb;
844 wrp = (struct work_request_hdr *)d;
845 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
846 V_WR_SGLSFLT(1)) | wr_hi;
847 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
848 sgl_flits + 1)) |
849 V_WR_GEN(gen)) | wr_lo;
850 wr_gen2(d, gen);
851 flits = 1;
852 }
853 skb->priority = pidx;
854 wrp->wr_hi |= htonl(F_WR_EOP);
855 wmb();
856 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
857 wr_gen2((struct tx_desc *)wp, ogen);
858 WARN_ON(ndesc != 0);
859 }
860 }
861
862 /**
863 * write_tx_pkt_wr - write a TX_PKT work request
864 * @adap: the adapter
865 * @skb: the packet to send
866 * @pi: the egress interface
867 * @pidx: index of the first Tx descriptor to write
868 * @gen: the generation value to use
869 * @q: the Tx queue
870 * @ndesc: number of descriptors the packet will occupy
871 * @compl: the value of the COMPL bit to use
872 *
873 * Generate a TX_PKT work request to send the supplied packet.
874 */
875 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
876 const struct port_info *pi,
877 unsigned int pidx, unsigned int gen,
878 struct sge_txq *q, unsigned int ndesc,
879 unsigned int compl)
880 {
881 unsigned int flits, sgl_flits, cntrl, tso_info;
882 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
883 struct tx_desc *d = &q->desc[pidx];
884 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
885
886 cpl->len = htonl(skb->len | 0x80000000);
887 cntrl = V_TXPKT_INTF(pi->port_id);
888
889 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
890 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
891
892 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
893 if (tso_info) {
894 int eth_type;
895 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
896
897 d->flit[2] = 0;
898 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
899 hdr->cntrl = htonl(cntrl);
900 eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
901 CPL_ETH_II : CPL_ETH_II_VLAN;
902 tso_info |= V_LSO_ETH_TYPE(eth_type) |
903 V_LSO_IPHDR_WORDS(skb->nh.iph->ihl) |
904 V_LSO_TCPHDR_WORDS(skb->h.th->doff);
905 hdr->lso_info = htonl(tso_info);
906 flits = 3;
907 } else {
908 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
909 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
910 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
911 cpl->cntrl = htonl(cntrl);
912
913 if (skb->len <= WR_LEN - sizeof(*cpl)) {
914 q->sdesc[pidx].skb = NULL;
915 if (!skb->data_len)
916 memcpy(&d->flit[2], skb->data, skb->len);
917 else
918 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
919
920 flits = (skb->len + 7) / 8 + 2;
921 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
922 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
923 | F_WR_SOP | F_WR_EOP | compl);
924 wmb();
925 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
926 V_WR_TID(q->token));
927 wr_gen2(d, gen);
928 kfree_skb(skb);
929 return;
930 }
931
932 flits = 2;
933 }
934
935 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
936 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
937 if (need_skb_unmap())
938 ((struct unmap_info *)skb->cb)->len = skb_headlen(skb);
939
940 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
941 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
942 htonl(V_WR_TID(q->token)));
943 }
944
945 /**
946 * eth_xmit - add a packet to the Ethernet Tx queue
947 * @skb: the packet
948 * @dev: the egress net device
949 *
950 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
951 */
952 int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
953 {
954 unsigned int ndesc, pidx, credits, gen, compl;
955 const struct port_info *pi = netdev_priv(dev);
956 struct adapter *adap = dev->priv;
957 struct sge_qset *qs = dev2qset(dev);
958 struct sge_txq *q = &qs->txq[TXQ_ETH];
959
960 /*
961 * The chip min packet length is 9 octets but play safe and reject
962 * anything shorter than an Ethernet header.
963 */
964 if (unlikely(skb->len < ETH_HLEN)) {
965 dev_kfree_skb(skb);
966 return NETDEV_TX_OK;
967 }
968
969 spin_lock(&q->lock);
970 reclaim_completed_tx(adap, q);
971
972 credits = q->size - q->in_use;
973 ndesc = calc_tx_descs(skb);
974
975 if (unlikely(credits < ndesc)) {
976 if (!netif_queue_stopped(dev)) {
977 netif_stop_queue(dev);
978 set_bit(TXQ_ETH, &qs->txq_stopped);
979 q->stops++;
980 dev_err(&adap->pdev->dev,
981 "%s: Tx ring %u full while queue awake!\n",
982 dev->name, q->cntxt_id & 7);
983 }
984 spin_unlock(&q->lock);
985 return NETDEV_TX_BUSY;
986 }
987
988 q->in_use += ndesc;
989 if (unlikely(credits - ndesc < q->stop_thres)) {
990 q->stops++;
991 netif_stop_queue(dev);
992 set_bit(TXQ_ETH, &qs->txq_stopped);
993 #if !USE_GTS
994 if (should_restart_tx(q) &&
995 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
996 q->restarts++;
997 netif_wake_queue(dev);
998 }
999 #endif
1000 }
1001
1002 gen = q->gen;
1003 q->unacked += ndesc;
1004 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1005 q->unacked &= 7;
1006 pidx = q->pidx;
1007 q->pidx += ndesc;
1008 if (q->pidx >= q->size) {
1009 q->pidx -= q->size;
1010 q->gen ^= 1;
1011 }
1012
1013 /* update port statistics */
1014 if (skb->ip_summed == CHECKSUM_COMPLETE)
1015 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1016 if (skb_shinfo(skb)->gso_size)
1017 qs->port_stats[SGE_PSTAT_TSO]++;
1018 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1019 qs->port_stats[SGE_PSTAT_VLANINS]++;
1020
1021 dev->trans_start = jiffies;
1022 spin_unlock(&q->lock);
1023
1024 /*
1025 * We do not use Tx completion interrupts to free DMAd Tx packets.
1026 * This is good for performamce but means that we rely on new Tx
1027 * packets arriving to run the destructors of completed packets,
1028 * which open up space in their sockets' send queues. Sometimes
1029 * we do not get such new packets causing Tx to stall. A single
1030 * UDP transmitter is a good example of this situation. We have
1031 * a clean up timer that periodically reclaims completed packets
1032 * but it doesn't run often enough (nor do we want it to) to prevent
1033 * lengthy stalls. A solution to this problem is to run the
1034 * destructor early, after the packet is queued but before it's DMAd.
1035 * A cons is that we lie to socket memory accounting, but the amount
1036 * of extra memory is reasonable (limited by the number of Tx
1037 * descriptors), the packets do actually get freed quickly by new
1038 * packets almost always, and for protocols like TCP that wait for
1039 * acks to really free up the data the extra memory is even less.
1040 * On the positive side we run the destructors on the sending CPU
1041 * rather than on a potentially different completing CPU, usually a
1042 * good thing. We also run them without holding our Tx queue lock,
1043 * unlike what reclaim_completed_tx() would otherwise do.
1044 *
1045 * Run the destructor before telling the DMA engine about the packet
1046 * to make sure it doesn't complete and get freed prematurely.
1047 */
1048 if (likely(!skb_shared(skb)))
1049 skb_orphan(skb);
1050
1051 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1052 check_ring_tx_db(adap, q);
1053 return NETDEV_TX_OK;
1054 }
1055
1056 /**
1057 * write_imm - write a packet into a Tx descriptor as immediate data
1058 * @d: the Tx descriptor to write
1059 * @skb: the packet
1060 * @len: the length of packet data to write as immediate data
1061 * @gen: the generation bit value to write
1062 *
1063 * Writes a packet as immediate data into a Tx descriptor. The packet
1064 * contains a work request at its beginning. We must write the packet
1065 * carefully so the SGE doesn't read accidentally before it's written in
1066 * its entirety.
1067 */
1068 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1069 unsigned int len, unsigned int gen)
1070 {
1071 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1072 struct work_request_hdr *to = (struct work_request_hdr *)d;
1073
1074 memcpy(&to[1], &from[1], len - sizeof(*from));
1075 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1076 V_WR_BCNTLFLT(len & 7));
1077 wmb();
1078 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1079 V_WR_LEN((len + 7) / 8));
1080 wr_gen2(d, gen);
1081 kfree_skb(skb);
1082 }
1083
1084 /**
1085 * check_desc_avail - check descriptor availability on a send queue
1086 * @adap: the adapter
1087 * @q: the send queue
1088 * @skb: the packet needing the descriptors
1089 * @ndesc: the number of Tx descriptors needed
1090 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1091 *
1092 * Checks if the requested number of Tx descriptors is available on an
1093 * SGE send queue. If the queue is already suspended or not enough
1094 * descriptors are available the packet is queued for later transmission.
1095 * Must be called with the Tx queue locked.
1096 *
1097 * Returns 0 if enough descriptors are available, 1 if there aren't
1098 * enough descriptors and the packet has been queued, and 2 if the caller
1099 * needs to retry because there weren't enough descriptors at the
1100 * beginning of the call but some freed up in the mean time.
1101 */
1102 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1103 struct sk_buff *skb, unsigned int ndesc,
1104 unsigned int qid)
1105 {
1106 if (unlikely(!skb_queue_empty(&q->sendq))) {
1107 addq_exit:__skb_queue_tail(&q->sendq, skb);
1108 return 1;
1109 }
1110 if (unlikely(q->size - q->in_use < ndesc)) {
1111 struct sge_qset *qs = txq_to_qset(q, qid);
1112
1113 set_bit(qid, &qs->txq_stopped);
1114 smp_mb__after_clear_bit();
1115
1116 if (should_restart_tx(q) &&
1117 test_and_clear_bit(qid, &qs->txq_stopped))
1118 return 2;
1119
1120 q->stops++;
1121 goto addq_exit;
1122 }
1123 return 0;
1124 }
1125
1126 /**
1127 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1128 * @q: the SGE control Tx queue
1129 *
1130 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1131 * that send only immediate data (presently just the control queues) and
1132 * thus do not have any sk_buffs to release.
1133 */
1134 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1135 {
1136 unsigned int reclaim = q->processed - q->cleaned;
1137
1138 q->in_use -= reclaim;
1139 q->cleaned += reclaim;
1140 }
1141
1142 static inline int immediate(const struct sk_buff *skb)
1143 {
1144 return skb->len <= WR_LEN && !skb->data_len;
1145 }
1146
1147 /**
1148 * ctrl_xmit - send a packet through an SGE control Tx queue
1149 * @adap: the adapter
1150 * @q: the control queue
1151 * @skb: the packet
1152 *
1153 * Send a packet through an SGE control Tx queue. Packets sent through
1154 * a control queue must fit entirely as immediate data in a single Tx
1155 * descriptor and have no page fragments.
1156 */
1157 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1158 struct sk_buff *skb)
1159 {
1160 int ret;
1161 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1162
1163 if (unlikely(!immediate(skb))) {
1164 WARN_ON(1);
1165 dev_kfree_skb(skb);
1166 return NET_XMIT_SUCCESS;
1167 }
1168
1169 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1170 wrp->wr_lo = htonl(V_WR_TID(q->token));
1171
1172 spin_lock(&q->lock);
1173 again:reclaim_completed_tx_imm(q);
1174
1175 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1176 if (unlikely(ret)) {
1177 if (ret == 1) {
1178 spin_unlock(&q->lock);
1179 return NET_XMIT_CN;
1180 }
1181 goto again;
1182 }
1183
1184 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1185
1186 q->in_use++;
1187 if (++q->pidx >= q->size) {
1188 q->pidx = 0;
1189 q->gen ^= 1;
1190 }
1191 spin_unlock(&q->lock);
1192 wmb();
1193 t3_write_reg(adap, A_SG_KDOORBELL,
1194 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1195 return NET_XMIT_SUCCESS;
1196 }
1197
1198 /**
1199 * restart_ctrlq - restart a suspended control queue
1200 * @qs: the queue set cotaining the control queue
1201 *
1202 * Resumes transmission on a suspended Tx control queue.
1203 */
1204 static void restart_ctrlq(unsigned long data)
1205 {
1206 struct sk_buff *skb;
1207 struct sge_qset *qs = (struct sge_qset *)data;
1208 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1209 struct adapter *adap = qs->netdev->priv;
1210
1211 spin_lock(&q->lock);
1212 again:reclaim_completed_tx_imm(q);
1213
1214 while (q->in_use < q->size && (skb = __skb_dequeue(&q->sendq)) != NULL) {
1215
1216 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1217
1218 if (++q->pidx >= q->size) {
1219 q->pidx = 0;
1220 q->gen ^= 1;
1221 }
1222 q->in_use++;
1223 }
1224
1225 if (!skb_queue_empty(&q->sendq)) {
1226 set_bit(TXQ_CTRL, &qs->txq_stopped);
1227 smp_mb__after_clear_bit();
1228
1229 if (should_restart_tx(q) &&
1230 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1231 goto again;
1232 q->stops++;
1233 }
1234
1235 spin_unlock(&q->lock);
1236 t3_write_reg(adap, A_SG_KDOORBELL,
1237 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1238 }
1239
1240 /*
1241 * Send a management message through control queue 0
1242 */
1243 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1244 {
1245 return ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1246 }
1247
1248 /**
1249 * deferred_unmap_destructor - unmap a packet when it is freed
1250 * @skb: the packet
1251 *
1252 * This is the packet destructor used for Tx packets that need to remain
1253 * mapped until they are freed rather than until their Tx descriptors are
1254 * freed.
1255 */
1256 static void deferred_unmap_destructor(struct sk_buff *skb)
1257 {
1258 int i;
1259 const dma_addr_t *p;
1260 const struct skb_shared_info *si;
1261 const struct deferred_unmap_info *dui;
1262 const struct unmap_info *ui = (struct unmap_info *)skb->cb;
1263
1264 dui = (struct deferred_unmap_info *)skb->head;
1265 p = dui->addr;
1266
1267 if (ui->len)
1268 pci_unmap_single(dui->pdev, *p++, ui->len, PCI_DMA_TODEVICE);
1269
1270 si = skb_shinfo(skb);
1271 for (i = 0; i < si->nr_frags; i++)
1272 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1273 PCI_DMA_TODEVICE);
1274 }
1275
1276 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1277 const struct sg_ent *sgl, int sgl_flits)
1278 {
1279 dma_addr_t *p;
1280 struct deferred_unmap_info *dui;
1281
1282 dui = (struct deferred_unmap_info *)skb->head;
1283 dui->pdev = pdev;
1284 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1285 *p++ = be64_to_cpu(sgl->addr[0]);
1286 *p++ = be64_to_cpu(sgl->addr[1]);
1287 }
1288 if (sgl_flits)
1289 *p = be64_to_cpu(sgl->addr[0]);
1290 }
1291
1292 /**
1293 * write_ofld_wr - write an offload work request
1294 * @adap: the adapter
1295 * @skb: the packet to send
1296 * @q: the Tx queue
1297 * @pidx: index of the first Tx descriptor to write
1298 * @gen: the generation value to use
1299 * @ndesc: number of descriptors the packet will occupy
1300 *
1301 * Write an offload work request to send the supplied packet. The packet
1302 * data already carry the work request with most fields populated.
1303 */
1304 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1305 struct sge_txq *q, unsigned int pidx,
1306 unsigned int gen, unsigned int ndesc)
1307 {
1308 unsigned int sgl_flits, flits;
1309 struct work_request_hdr *from;
1310 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1311 struct tx_desc *d = &q->desc[pidx];
1312
1313 if (immediate(skb)) {
1314 q->sdesc[pidx].skb = NULL;
1315 write_imm(d, skb, skb->len, gen);
1316 return;
1317 }
1318
1319 /* Only TX_DATA builds SGLs */
1320
1321 from = (struct work_request_hdr *)skb->data;
1322 memcpy(&d->flit[1], &from[1], skb->h.raw - skb->data - sizeof(*from));
1323
1324 flits = (skb->h.raw - skb->data) / 8;
1325 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1326 sgl_flits = make_sgl(skb, sgp, skb->h.raw, skb->tail - skb->h.raw,
1327 adap->pdev);
1328 if (need_skb_unmap()) {
1329 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1330 skb->destructor = deferred_unmap_destructor;
1331 ((struct unmap_info *)skb->cb)->len = skb->tail - skb->h.raw;
1332 }
1333
1334 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1335 gen, from->wr_hi, from->wr_lo);
1336 }
1337
1338 /**
1339 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1340 * @skb: the packet
1341 *
1342 * Returns the number of Tx descriptors needed for the given offload
1343 * packet. These packets are already fully constructed.
1344 */
1345 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1346 {
1347 unsigned int flits, cnt = skb_shinfo(skb)->nr_frags;
1348
1349 if (skb->len <= WR_LEN && cnt == 0)
1350 return 1; /* packet fits as immediate data */
1351
1352 flits = (skb->h.raw - skb->data) / 8; /* headers */
1353 if (skb->tail != skb->h.raw)
1354 cnt++;
1355 return flits_to_desc(flits + sgl_len(cnt));
1356 }
1357
1358 /**
1359 * ofld_xmit - send a packet through an offload queue
1360 * @adap: the adapter
1361 * @q: the Tx offload queue
1362 * @skb: the packet
1363 *
1364 * Send an offload packet through an SGE offload queue.
1365 */
1366 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1367 struct sk_buff *skb)
1368 {
1369 int ret;
1370 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1371
1372 spin_lock(&q->lock);
1373 again:reclaim_completed_tx(adap, q);
1374
1375 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1376 if (unlikely(ret)) {
1377 if (ret == 1) {
1378 skb->priority = ndesc; /* save for restart */
1379 spin_unlock(&q->lock);
1380 return NET_XMIT_CN;
1381 }
1382 goto again;
1383 }
1384
1385 gen = q->gen;
1386 q->in_use += ndesc;
1387 pidx = q->pidx;
1388 q->pidx += ndesc;
1389 if (q->pidx >= q->size) {
1390 q->pidx -= q->size;
1391 q->gen ^= 1;
1392 }
1393 spin_unlock(&q->lock);
1394
1395 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1396 check_ring_tx_db(adap, q);
1397 return NET_XMIT_SUCCESS;
1398 }
1399
1400 /**
1401 * restart_offloadq - restart a suspended offload queue
1402 * @qs: the queue set cotaining the offload queue
1403 *
1404 * Resumes transmission on a suspended Tx offload queue.
1405 */
1406 static void restart_offloadq(unsigned long data)
1407 {
1408 struct sk_buff *skb;
1409 struct sge_qset *qs = (struct sge_qset *)data;
1410 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1411 struct adapter *adap = qs->netdev->priv;
1412
1413 spin_lock(&q->lock);
1414 again:reclaim_completed_tx(adap, q);
1415
1416 while ((skb = skb_peek(&q->sendq)) != NULL) {
1417 unsigned int gen, pidx;
1418 unsigned int ndesc = skb->priority;
1419
1420 if (unlikely(q->size - q->in_use < ndesc)) {
1421 set_bit(TXQ_OFLD, &qs->txq_stopped);
1422 smp_mb__after_clear_bit();
1423
1424 if (should_restart_tx(q) &&
1425 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1426 goto again;
1427 q->stops++;
1428 break;
1429 }
1430
1431 gen = q->gen;
1432 q->in_use += ndesc;
1433 pidx = q->pidx;
1434 q->pidx += ndesc;
1435 if (q->pidx >= q->size) {
1436 q->pidx -= q->size;
1437 q->gen ^= 1;
1438 }
1439 __skb_unlink(skb, &q->sendq);
1440 spin_unlock(&q->lock);
1441
1442 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1443 spin_lock(&q->lock);
1444 }
1445 spin_unlock(&q->lock);
1446
1447 #if USE_GTS
1448 set_bit(TXQ_RUNNING, &q->flags);
1449 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1450 #endif
1451 t3_write_reg(adap, A_SG_KDOORBELL,
1452 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1453 }
1454
1455 /**
1456 * queue_set - return the queue set a packet should use
1457 * @skb: the packet
1458 *
1459 * Maps a packet to the SGE queue set it should use. The desired queue
1460 * set is carried in bits 1-3 in the packet's priority.
1461 */
1462 static inline int queue_set(const struct sk_buff *skb)
1463 {
1464 return skb->priority >> 1;
1465 }
1466
1467 /**
1468 * is_ctrl_pkt - return whether an offload packet is a control packet
1469 * @skb: the packet
1470 *
1471 * Determines whether an offload packet should use an OFLD or a CTRL
1472 * Tx queue. This is indicated by bit 0 in the packet's priority.
1473 */
1474 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1475 {
1476 return skb->priority & 1;
1477 }
1478
1479 /**
1480 * t3_offload_tx - send an offload packet
1481 * @tdev: the offload device to send to
1482 * @skb: the packet
1483 *
1484 * Sends an offload packet. We use the packet priority to select the
1485 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1486 * should be sent as regular or control, bits 1-3 select the queue set.
1487 */
1488 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1489 {
1490 struct adapter *adap = tdev2adap(tdev);
1491 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1492
1493 if (unlikely(is_ctrl_pkt(skb)))
1494 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1495
1496 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1497 }
1498
1499 /**
1500 * offload_enqueue - add an offload packet to an SGE offload receive queue
1501 * @q: the SGE response queue
1502 * @skb: the packet
1503 *
1504 * Add a new offload packet to an SGE response queue's offload packet
1505 * queue. If the packet is the first on the queue it schedules the RX
1506 * softirq to process the queue.
1507 */
1508 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1509 {
1510 skb->next = skb->prev = NULL;
1511 if (q->rx_tail)
1512 q->rx_tail->next = skb;
1513 else {
1514 struct sge_qset *qs = rspq_to_qset(q);
1515
1516 if (__netif_rx_schedule_prep(qs->netdev))
1517 __netif_rx_schedule(qs->netdev);
1518 q->rx_head = skb;
1519 }
1520 q->rx_tail = skb;
1521 }
1522
1523 /**
1524 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1525 * @tdev: the offload device that will be receiving the packets
1526 * @q: the SGE response queue that assembled the bundle
1527 * @skbs: the partial bundle
1528 * @n: the number of packets in the bundle
1529 *
1530 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1531 */
1532 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1533 struct sge_rspq *q,
1534 struct sk_buff *skbs[], int n)
1535 {
1536 if (n) {
1537 q->offload_bundles++;
1538 tdev->recv(tdev, skbs, n);
1539 }
1540 }
1541
1542 /**
1543 * ofld_poll - NAPI handler for offload packets in interrupt mode
1544 * @dev: the network device doing the polling
1545 * @budget: polling budget
1546 *
1547 * The NAPI handler for offload packets when a response queue is serviced
1548 * by the hard interrupt handler, i.e., when it's operating in non-polling
1549 * mode. Creates small packet batches and sends them through the offload
1550 * receive handler. Batches need to be of modest size as we do prefetches
1551 * on the packets in each.
1552 */
1553 static int ofld_poll(struct net_device *dev, int *budget)
1554 {
1555 struct adapter *adapter = dev->priv;
1556 struct sge_qset *qs = dev2qset(dev);
1557 struct sge_rspq *q = &qs->rspq;
1558 int work_done, limit = min(*budget, dev->quota), avail = limit;
1559
1560 while (avail) {
1561 struct sk_buff *head, *tail, *skbs[RX_BUNDLE_SIZE];
1562 int ngathered;
1563
1564 spin_lock_irq(&q->lock);
1565 head = q->rx_head;
1566 if (!head) {
1567 work_done = limit - avail;
1568 *budget -= work_done;
1569 dev->quota -= work_done;
1570 __netif_rx_complete(dev);
1571 spin_unlock_irq(&q->lock);
1572 return 0;
1573 }
1574
1575 tail = q->rx_tail;
1576 q->rx_head = q->rx_tail = NULL;
1577 spin_unlock_irq(&q->lock);
1578
1579 for (ngathered = 0; avail && head; avail--) {
1580 prefetch(head->data);
1581 skbs[ngathered] = head;
1582 head = head->next;
1583 skbs[ngathered]->next = NULL;
1584 if (++ngathered == RX_BUNDLE_SIZE) {
1585 q->offload_bundles++;
1586 adapter->tdev.recv(&adapter->tdev, skbs,
1587 ngathered);
1588 ngathered = 0;
1589 }
1590 }
1591 if (head) { /* splice remaining packets back onto Rx queue */
1592 spin_lock_irq(&q->lock);
1593 tail->next = q->rx_head;
1594 if (!q->rx_head)
1595 q->rx_tail = tail;
1596 q->rx_head = head;
1597 spin_unlock_irq(&q->lock);
1598 }
1599 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1600 }
1601 work_done = limit - avail;
1602 *budget -= work_done;
1603 dev->quota -= work_done;
1604 return 1;
1605 }
1606
1607 /**
1608 * rx_offload - process a received offload packet
1609 * @tdev: the offload device receiving the packet
1610 * @rq: the response queue that received the packet
1611 * @skb: the packet
1612 * @rx_gather: a gather list of packets if we are building a bundle
1613 * @gather_idx: index of the next available slot in the bundle
1614 *
1615 * Process an ingress offload pakcet and add it to the offload ingress
1616 * queue. Returns the index of the next available slot in the bundle.
1617 */
1618 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1619 struct sk_buff *skb, struct sk_buff *rx_gather[],
1620 unsigned int gather_idx)
1621 {
1622 rq->offload_pkts++;
1623 skb->mac.raw = skb->nh.raw = skb->h.raw = skb->data;
1624
1625 if (rq->polling) {
1626 rx_gather[gather_idx++] = skb;
1627 if (gather_idx == RX_BUNDLE_SIZE) {
1628 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1629 gather_idx = 0;
1630 rq->offload_bundles++;
1631 }
1632 } else
1633 offload_enqueue(rq, skb);
1634
1635 return gather_idx;
1636 }
1637
1638 /**
1639 * restart_tx - check whether to restart suspended Tx queues
1640 * @qs: the queue set to resume
1641 *
1642 * Restarts suspended Tx queues of an SGE queue set if they have enough
1643 * free resources to resume operation.
1644 */
1645 static void restart_tx(struct sge_qset *qs)
1646 {
1647 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1648 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1649 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1650 qs->txq[TXQ_ETH].restarts++;
1651 if (netif_running(qs->netdev))
1652 netif_wake_queue(qs->netdev);
1653 }
1654
1655 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1656 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1657 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1658 qs->txq[TXQ_OFLD].restarts++;
1659 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1660 }
1661 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1662 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1663 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1664 qs->txq[TXQ_CTRL].restarts++;
1665 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1666 }
1667 }
1668
1669 /**
1670 * rx_eth - process an ingress ethernet packet
1671 * @adap: the adapter
1672 * @rq: the response queue that received the packet
1673 * @skb: the packet
1674 * @pad: amount of padding at the start of the buffer
1675 *
1676 * Process an ingress ethernet pakcet and deliver it to the stack.
1677 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1678 * if it was immediate data in a response.
1679 */
1680 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
1681 struct sk_buff *skb, int pad)
1682 {
1683 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
1684 struct port_info *pi;
1685
1686 skb_pull(skb, sizeof(*p) + pad);
1687 skb->dev = adap->port[p->iff];
1688 skb->dev->last_rx = jiffies;
1689 skb->protocol = eth_type_trans(skb, skb->dev);
1690 pi = netdev_priv(skb->dev);
1691 if (pi->rx_csum_offload && p->csum_valid && p->csum == 0xffff &&
1692 !p->fragment) {
1693 rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1694 skb->ip_summed = CHECKSUM_UNNECESSARY;
1695 } else
1696 skb->ip_summed = CHECKSUM_NONE;
1697
1698 if (unlikely(p->vlan_valid)) {
1699 struct vlan_group *grp = pi->vlan_grp;
1700
1701 rspq_to_qset(rq)->port_stats[SGE_PSTAT_VLANEX]++;
1702 if (likely(grp))
1703 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1704 rq->polling);
1705 else
1706 dev_kfree_skb_any(skb);
1707 } else if (rq->polling)
1708 netif_receive_skb(skb);
1709 else
1710 netif_rx(skb);
1711 }
1712
1713 #define SKB_DATA_SIZE 128
1714
1715 static void skb_data_init(struct sk_buff *skb, struct sge_fl_page *p,
1716 unsigned int len)
1717 {
1718 skb->len = len;
1719 if (len <= SKB_DATA_SIZE) {
1720 memcpy(skb->data, p->va, len);
1721 skb->tail += len;
1722 put_page(p->frag.page);
1723 } else {
1724 memcpy(skb->data, p->va, SKB_DATA_SIZE);
1725 skb_shinfo(skb)->frags[0].page = p->frag.page;
1726 skb_shinfo(skb)->frags[0].page_offset =
1727 p->frag.page_offset + SKB_DATA_SIZE;
1728 skb_shinfo(skb)->frags[0].size = len - SKB_DATA_SIZE;
1729 skb_shinfo(skb)->nr_frags = 1;
1730 skb->data_len = len - SKB_DATA_SIZE;
1731 skb->tail += SKB_DATA_SIZE;
1732 skb->truesize += skb->data_len;
1733 }
1734 }
1735
1736 /**
1737 * get_packet - return the next ingress packet buffer from a free list
1738 * @adap: the adapter that received the packet
1739 * @fl: the SGE free list holding the packet
1740 * @len: the packet length including any SGE padding
1741 * @drop_thres: # of remaining buffers before we start dropping packets
1742 *
1743 * Get the next packet from a free list and complete setup of the
1744 * sk_buff. If the packet is small we make a copy and recycle the
1745 * original buffer, otherwise we use the original buffer itself. If a
1746 * positive drop threshold is supplied packets are dropped and their
1747 * buffers recycled if (a) the number of remaining buffers is under the
1748 * threshold and the packet is too big to copy, or (b) the packet should
1749 * be copied but there is no memory for the copy.
1750 */
1751 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
1752 unsigned int len, unsigned int drop_thres)
1753 {
1754 struct sk_buff *skb = NULL;
1755 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
1756
1757 prefetch(sd->t.skb->data);
1758
1759 if (len <= SGE_RX_COPY_THRES) {
1760 skb = alloc_skb(len, GFP_ATOMIC);
1761 if (likely(skb != NULL)) {
1762 struct rx_desc *d = &fl->desc[fl->cidx];
1763 dma_addr_t mapping =
1764 (dma_addr_t)((u64) be32_to_cpu(d->addr_hi) << 32 |
1765 be32_to_cpu(d->addr_lo));
1766
1767 __skb_put(skb, len);
1768 pci_dma_sync_single_for_cpu(adap->pdev, mapping, len,
1769 PCI_DMA_FROMDEVICE);
1770 memcpy(skb->data, sd->t.skb->data, len);
1771 pci_dma_sync_single_for_device(adap->pdev, mapping, len,
1772 PCI_DMA_FROMDEVICE);
1773 } else if (!drop_thres)
1774 goto use_orig_buf;
1775 recycle:
1776 recycle_rx_buf(adap, fl, fl->cidx);
1777 return skb;
1778 }
1779
1780 if (unlikely(fl->credits < drop_thres))
1781 goto recycle;
1782
1783 use_orig_buf:
1784 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
1785 fl->buf_size, PCI_DMA_FROMDEVICE);
1786 skb = sd->t.skb;
1787 skb_put(skb, len);
1788 __refill_fl(adap, fl);
1789 return skb;
1790 }
1791
1792 /**
1793 * handle_rsp_cntrl_info - handles control information in a response
1794 * @qs: the queue set corresponding to the response
1795 * @flags: the response control flags
1796 *
1797 * Handles the control information of an SGE response, such as GTS
1798 * indications and completion credits for the queue set's Tx queues.
1799 * HW coalesces credits, we don't do any extra SW coalescing.
1800 */
1801 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
1802 {
1803 unsigned int credits;
1804
1805 #if USE_GTS
1806 if (flags & F_RSPD_TXQ0_GTS)
1807 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
1808 #endif
1809
1810 credits = G_RSPD_TXQ0_CR(flags);
1811 if (credits)
1812 qs->txq[TXQ_ETH].processed += credits;
1813
1814 credits = G_RSPD_TXQ2_CR(flags);
1815 if (credits)
1816 qs->txq[TXQ_CTRL].processed += credits;
1817
1818 # if USE_GTS
1819 if (flags & F_RSPD_TXQ1_GTS)
1820 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
1821 # endif
1822 credits = G_RSPD_TXQ1_CR(flags);
1823 if (credits)
1824 qs->txq[TXQ_OFLD].processed += credits;
1825 }
1826
1827 /**
1828 * check_ring_db - check if we need to ring any doorbells
1829 * @adapter: the adapter
1830 * @qs: the queue set whose Tx queues are to be examined
1831 * @sleeping: indicates which Tx queue sent GTS
1832 *
1833 * Checks if some of a queue set's Tx queues need to ring their doorbells
1834 * to resume transmission after idling while they still have unprocessed
1835 * descriptors.
1836 */
1837 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
1838 unsigned int sleeping)
1839 {
1840 if (sleeping & F_RSPD_TXQ0_GTS) {
1841 struct sge_txq *txq = &qs->txq[TXQ_ETH];
1842
1843 if (txq->cleaned + txq->in_use != txq->processed &&
1844 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1845 set_bit(TXQ_RUNNING, &txq->flags);
1846 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1847 V_EGRCNTX(txq->cntxt_id));
1848 }
1849 }
1850
1851 if (sleeping & F_RSPD_TXQ1_GTS) {
1852 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
1853
1854 if (txq->cleaned + txq->in_use != txq->processed &&
1855 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1856 set_bit(TXQ_RUNNING, &txq->flags);
1857 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1858 V_EGRCNTX(txq->cntxt_id));
1859 }
1860 }
1861 }
1862
1863 /**
1864 * is_new_response - check if a response is newly written
1865 * @r: the response descriptor
1866 * @q: the response queue
1867 *
1868 * Returns true if a response descriptor contains a yet unprocessed
1869 * response.
1870 */
1871 static inline int is_new_response(const struct rsp_desc *r,
1872 const struct sge_rspq *q)
1873 {
1874 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
1875 }
1876
1877 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
1878 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
1879 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
1880 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
1881 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
1882
1883 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
1884 #define NOMEM_INTR_DELAY 2500
1885
1886 /**
1887 * process_responses - process responses from an SGE response queue
1888 * @adap: the adapter
1889 * @qs: the queue set to which the response queue belongs
1890 * @budget: how many responses can be processed in this round
1891 *
1892 * Process responses from an SGE response queue up to the supplied budget.
1893 * Responses include received packets as well as credits and other events
1894 * for the queues that belong to the response queue's queue set.
1895 * A negative budget is effectively unlimited.
1896 *
1897 * Additionally choose the interrupt holdoff time for the next interrupt
1898 * on this queue. If the system is under memory shortage use a fairly
1899 * long delay to help recovery.
1900 */
1901 static int process_responses(struct adapter *adap, struct sge_qset *qs,
1902 int budget)
1903 {
1904 struct sge_rspq *q = &qs->rspq;
1905 struct rsp_desc *r = &q->desc[q->cidx];
1906 int budget_left = budget;
1907 unsigned int sleeping = 0;
1908 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
1909 int ngathered = 0;
1910
1911 q->next_holdoff = q->holdoff_tmr;
1912
1913 while (likely(budget_left && is_new_response(r, q))) {
1914 int eth, ethpad = 2;
1915 struct sk_buff *skb = NULL;
1916 u32 len, flags = ntohl(r->flags);
1917 u32 rss_hi = *(const u32 *)r, rss_lo = r->rss_hdr.rss_hash_val;
1918
1919 eth = r->rss_hdr.opcode == CPL_RX_PKT;
1920
1921 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
1922 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
1923 if (!skb)
1924 goto no_mem;
1925
1926 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
1927 skb->data[0] = CPL_ASYNC_NOTIF;
1928 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
1929 q->async_notif++;
1930 } else if (flags & F_RSPD_IMM_DATA_VALID) {
1931 skb = get_imm_packet(r);
1932 if (unlikely(!skb)) {
1933 no_mem:
1934 q->next_holdoff = NOMEM_INTR_DELAY;
1935 q->nomem++;
1936 /* consume one credit since we tried */
1937 budget_left--;
1938 break;
1939 }
1940 q->imm_data++;
1941 ethpad = 0;
1942 } else if ((len = ntohl(r->len_cq)) != 0) {
1943 struct sge_fl *fl =
1944 (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
1945
1946 if (fl->buf_size == RX_PAGE_SIZE) {
1947 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
1948 struct sge_fl_page *p = &sd->t.page;
1949
1950 prefetch(p->va);
1951 prefetch(p->va + L1_CACHE_BYTES);
1952
1953 __refill_fl(adap, fl);
1954
1955 pci_unmap_single(adap->pdev,
1956 pci_unmap_addr(sd, dma_addr),
1957 fl->buf_size,
1958 PCI_DMA_FROMDEVICE);
1959
1960 if (eth) {
1961 if (unlikely(fl->credits <
1962 SGE_RX_DROP_THRES))
1963 goto eth_recycle;
1964
1965 skb = alloc_skb(SKB_DATA_SIZE,
1966 GFP_ATOMIC);
1967 if (unlikely(!skb)) {
1968 eth_recycle:
1969 q->rx_drops++;
1970 recycle_rx_buf(adap, fl,
1971 fl->cidx);
1972 goto eth_done;
1973 }
1974 } else {
1975 skb = alloc_skb(SKB_DATA_SIZE,
1976 GFP_ATOMIC);
1977 if (unlikely(!skb))
1978 goto no_mem;
1979 }
1980
1981 skb_data_init(skb, p, G_RSPD_LEN(len));
1982 eth_done:
1983 fl->credits--;
1984 q->eth_pkts++;
1985 } else {
1986 fl->credits--;
1987 skb = get_packet(adap, fl, G_RSPD_LEN(len),
1988 eth ? SGE_RX_DROP_THRES : 0);
1989 }
1990
1991 if (++fl->cidx == fl->size)
1992 fl->cidx = 0;
1993 } else
1994 q->pure_rsps++;
1995
1996 if (flags & RSPD_CTRL_MASK) {
1997 sleeping |= flags & RSPD_GTS_MASK;
1998 handle_rsp_cntrl_info(qs, flags);
1999 }
2000
2001 r++;
2002 if (unlikely(++q->cidx == q->size)) {
2003 q->cidx = 0;
2004 q->gen ^= 1;
2005 r = q->desc;
2006 }
2007 prefetch(r);
2008
2009 if (++q->credits >= (q->size / 4)) {
2010 refill_rspq(adap, q, q->credits);
2011 q->credits = 0;
2012 }
2013
2014 if (skb) {
2015 /* Preserve the RSS info in csum & priority */
2016 skb->csum = rss_hi;
2017 skb->priority = rss_lo;
2018
2019 if (eth)
2020 rx_eth(adap, q, skb, ethpad);
2021 else {
2022 if (unlikely(r->rss_hdr.opcode ==
2023 CPL_TRACE_PKT))
2024 __skb_pull(skb, ethpad);
2025
2026 ngathered = rx_offload(&adap->tdev, q,
2027 skb, offload_skbs,
2028 ngathered);
2029 }
2030 }
2031 --budget_left;
2032 }
2033
2034 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2035 if (sleeping)
2036 check_ring_db(adap, qs, sleeping);
2037
2038 smp_mb(); /* commit Tx queue .processed updates */
2039 if (unlikely(qs->txq_stopped != 0))
2040 restart_tx(qs);
2041
2042 budget -= budget_left;
2043 return budget;
2044 }
2045
2046 static inline int is_pure_response(const struct rsp_desc *r)
2047 {
2048 u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2049
2050 return (n | r->len_cq) == 0;
2051 }
2052
2053 /**
2054 * napi_rx_handler - the NAPI handler for Rx processing
2055 * @dev: the net device
2056 * @budget: how many packets we can process in this round
2057 *
2058 * Handler for new data events when using NAPI.
2059 */
2060 static int napi_rx_handler(struct net_device *dev, int *budget)
2061 {
2062 struct adapter *adap = dev->priv;
2063 struct sge_qset *qs = dev2qset(dev);
2064 int effective_budget = min(*budget, dev->quota);
2065
2066 int work_done = process_responses(adap, qs, effective_budget);
2067 *budget -= work_done;
2068 dev->quota -= work_done;
2069
2070 if (work_done >= effective_budget)
2071 return 1;
2072
2073 netif_rx_complete(dev);
2074
2075 /*
2076 * Because we don't atomically flush the following write it is
2077 * possible that in very rare cases it can reach the device in a way
2078 * that races with a new response being written plus an error interrupt
2079 * causing the NAPI interrupt handler below to return unhandled status
2080 * to the OS. To protect against this would require flushing the write
2081 * and doing both the write and the flush with interrupts off. Way too
2082 * expensive and unjustifiable given the rarity of the race.
2083 *
2084 * The race cannot happen at all with MSI-X.
2085 */
2086 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2087 V_NEWTIMER(qs->rspq.next_holdoff) |
2088 V_NEWINDEX(qs->rspq.cidx));
2089 return 0;
2090 }
2091
2092 /*
2093 * Returns true if the device is already scheduled for polling.
2094 */
2095 static inline int napi_is_scheduled(struct net_device *dev)
2096 {
2097 return test_bit(__LINK_STATE_RX_SCHED, &dev->state);
2098 }
2099
2100 /**
2101 * process_pure_responses - process pure responses from a response queue
2102 * @adap: the adapter
2103 * @qs: the queue set owning the response queue
2104 * @r: the first pure response to process
2105 *
2106 * A simpler version of process_responses() that handles only pure (i.e.,
2107 * non data-carrying) responses. Such respones are too light-weight to
2108 * justify calling a softirq under NAPI, so we handle them specially in
2109 * the interrupt handler. The function is called with a pointer to a
2110 * response, which the caller must ensure is a valid pure response.
2111 *
2112 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2113 */
2114 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2115 struct rsp_desc *r)
2116 {
2117 struct sge_rspq *q = &qs->rspq;
2118 unsigned int sleeping = 0;
2119
2120 do {
2121 u32 flags = ntohl(r->flags);
2122
2123 r++;
2124 if (unlikely(++q->cidx == q->size)) {
2125 q->cidx = 0;
2126 q->gen ^= 1;
2127 r = q->desc;
2128 }
2129 prefetch(r);
2130
2131 if (flags & RSPD_CTRL_MASK) {
2132 sleeping |= flags & RSPD_GTS_MASK;
2133 handle_rsp_cntrl_info(qs, flags);
2134 }
2135
2136 q->pure_rsps++;
2137 if (++q->credits >= (q->size / 4)) {
2138 refill_rspq(adap, q, q->credits);
2139 q->credits = 0;
2140 }
2141 } while (is_new_response(r, q) && is_pure_response(r));
2142
2143 if (sleeping)
2144 check_ring_db(adap, qs, sleeping);
2145
2146 smp_mb(); /* commit Tx queue .processed updates */
2147 if (unlikely(qs->txq_stopped != 0))
2148 restart_tx(qs);
2149
2150 return is_new_response(r, q);
2151 }
2152
2153 /**
2154 * handle_responses - decide what to do with new responses in NAPI mode
2155 * @adap: the adapter
2156 * @q: the response queue
2157 *
2158 * This is used by the NAPI interrupt handlers to decide what to do with
2159 * new SGE responses. If there are no new responses it returns -1. If
2160 * there are new responses and they are pure (i.e., non-data carrying)
2161 * it handles them straight in hard interrupt context as they are very
2162 * cheap and don't deliver any packets. Finally, if there are any data
2163 * signaling responses it schedules the NAPI handler. Returns 1 if it
2164 * schedules NAPI, 0 if all new responses were pure.
2165 *
2166 * The caller must ascertain NAPI is not already running.
2167 */
2168 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2169 {
2170 struct sge_qset *qs = rspq_to_qset(q);
2171 struct rsp_desc *r = &q->desc[q->cidx];
2172
2173 if (!is_new_response(r, q))
2174 return -1;
2175 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2176 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2177 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2178 return 0;
2179 }
2180 if (likely(__netif_rx_schedule_prep(qs->netdev)))
2181 __netif_rx_schedule(qs->netdev);
2182 return 1;
2183 }
2184
2185 /*
2186 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2187 * (i.e., response queue serviced in hard interrupt).
2188 */
2189 irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2190 {
2191 struct sge_qset *qs = cookie;
2192 struct adapter *adap = qs->netdev->priv;
2193 struct sge_rspq *q = &qs->rspq;
2194
2195 spin_lock(&q->lock);
2196 if (process_responses(adap, qs, -1) == 0)
2197 q->unhandled_irqs++;
2198 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2199 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2200 spin_unlock(&q->lock);
2201 return IRQ_HANDLED;
2202 }
2203
2204 /*
2205 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2206 * (i.e., response queue serviced by NAPI polling).
2207 */
2208 irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2209 {
2210 struct sge_qset *qs = cookie;
2211 struct adapter *adap = qs->netdev->priv;
2212 struct sge_rspq *q = &qs->rspq;
2213
2214 spin_lock(&q->lock);
2215 BUG_ON(napi_is_scheduled(qs->netdev));
2216
2217 if (handle_responses(adap, q) < 0)
2218 q->unhandled_irqs++;
2219 spin_unlock(&q->lock);
2220 return IRQ_HANDLED;
2221 }
2222
2223 /*
2224 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2225 * SGE response queues as well as error and other async events as they all use
2226 * the same MSI vector. We use one SGE response queue per port in this mode
2227 * and protect all response queues with queue 0's lock.
2228 */
2229 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2230 {
2231 int new_packets = 0;
2232 struct adapter *adap = cookie;
2233 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2234
2235 spin_lock(&q->lock);
2236
2237 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2238 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2239 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2240 new_packets = 1;
2241 }
2242
2243 if (adap->params.nports == 2 &&
2244 process_responses(adap, &adap->sge.qs[1], -1)) {
2245 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2246
2247 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2248 V_NEWTIMER(q1->next_holdoff) |
2249 V_NEWINDEX(q1->cidx));
2250 new_packets = 1;
2251 }
2252
2253 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2254 q->unhandled_irqs++;
2255
2256 spin_unlock(&q->lock);
2257 return IRQ_HANDLED;
2258 }
2259
2260 static int rspq_check_napi(struct net_device *dev, struct sge_rspq *q)
2261 {
2262 if (!napi_is_scheduled(dev) && is_new_response(&q->desc[q->cidx], q)) {
2263 if (likely(__netif_rx_schedule_prep(dev)))
2264 __netif_rx_schedule(dev);
2265 return 1;
2266 }
2267 return 0;
2268 }
2269
2270 /*
2271 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2272 * by NAPI polling). Handles data events from SGE response queues as well as
2273 * error and other async events as they all use the same MSI vector. We use
2274 * one SGE response queue per port in this mode and protect all response
2275 * queues with queue 0's lock.
2276 */
2277 irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2278 {
2279 int new_packets;
2280 struct adapter *adap = cookie;
2281 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2282
2283 spin_lock(&q->lock);
2284
2285 new_packets = rspq_check_napi(adap->sge.qs[0].netdev, q);
2286 if (adap->params.nports == 2)
2287 new_packets += rspq_check_napi(adap->sge.qs[1].netdev,
2288 &adap->sge.qs[1].rspq);
2289 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2290 q->unhandled_irqs++;
2291
2292 spin_unlock(&q->lock);
2293 return IRQ_HANDLED;
2294 }
2295
2296 /*
2297 * A helper function that processes responses and issues GTS.
2298 */
2299 static inline int process_responses_gts(struct adapter *adap,
2300 struct sge_rspq *rq)
2301 {
2302 int work;
2303
2304 work = process_responses(adap, rspq_to_qset(rq), -1);
2305 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2306 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2307 return work;
2308 }
2309
2310 /*
2311 * The legacy INTx interrupt handler. This needs to handle data events from
2312 * SGE response queues as well as error and other async events as they all use
2313 * the same interrupt pin. We use one SGE response queue per port in this mode
2314 * and protect all response queues with queue 0's lock.
2315 */
2316 static irqreturn_t t3_intr(int irq, void *cookie)
2317 {
2318 int work_done, w0, w1;
2319 struct adapter *adap = cookie;
2320 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2321 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2322
2323 spin_lock(&q0->lock);
2324
2325 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2326 w1 = adap->params.nports == 2 &&
2327 is_new_response(&q1->desc[q1->cidx], q1);
2328
2329 if (likely(w0 | w1)) {
2330 t3_write_reg(adap, A_PL_CLI, 0);
2331 t3_read_reg(adap, A_PL_CLI); /* flush */
2332
2333 if (likely(w0))
2334 process_responses_gts(adap, q0);
2335
2336 if (w1)
2337 process_responses_gts(adap, q1);
2338
2339 work_done = w0 | w1;
2340 } else
2341 work_done = t3_slow_intr_handler(adap);
2342
2343 spin_unlock(&q0->lock);
2344 return IRQ_RETVAL(work_done != 0);
2345 }
2346
2347 /*
2348 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2349 * Handles data events from SGE response queues as well as error and other
2350 * async events as they all use the same interrupt pin. We use one SGE
2351 * response queue per port in this mode and protect all response queues with
2352 * queue 0's lock.
2353 */
2354 static irqreturn_t t3b_intr(int irq, void *cookie)
2355 {
2356 u32 map;
2357 struct adapter *adap = cookie;
2358 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2359
2360 t3_write_reg(adap, A_PL_CLI, 0);
2361 map = t3_read_reg(adap, A_SG_DATA_INTR);
2362
2363 if (unlikely(!map)) /* shared interrupt, most likely */
2364 return IRQ_NONE;
2365
2366 spin_lock(&q0->lock);
2367
2368 if (unlikely(map & F_ERRINTR))
2369 t3_slow_intr_handler(adap);
2370
2371 if (likely(map & 1))
2372 process_responses_gts(adap, q0);
2373
2374 if (map & 2)
2375 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2376
2377 spin_unlock(&q0->lock);
2378 return IRQ_HANDLED;
2379 }
2380
2381 /*
2382 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2383 * Handles data events from SGE response queues as well as error and other
2384 * async events as they all use the same interrupt pin. We use one SGE
2385 * response queue per port in this mode and protect all response queues with
2386 * queue 0's lock.
2387 */
2388 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2389 {
2390 u32 map;
2391 struct net_device *dev;
2392 struct adapter *adap = cookie;
2393 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2394
2395 t3_write_reg(adap, A_PL_CLI, 0);
2396 map = t3_read_reg(adap, A_SG_DATA_INTR);
2397
2398 if (unlikely(!map)) /* shared interrupt, most likely */
2399 return IRQ_NONE;
2400
2401 spin_lock(&q0->lock);
2402
2403 if (unlikely(map & F_ERRINTR))
2404 t3_slow_intr_handler(adap);
2405
2406 if (likely(map & 1)) {
2407 dev = adap->sge.qs[0].netdev;
2408
2409 if (likely(__netif_rx_schedule_prep(dev)))
2410 __netif_rx_schedule(dev);
2411 }
2412 if (map & 2) {
2413 dev = adap->sge.qs[1].netdev;
2414
2415 if (likely(__netif_rx_schedule_prep(dev)))
2416 __netif_rx_schedule(dev);
2417 }
2418
2419 spin_unlock(&q0->lock);
2420 return IRQ_HANDLED;
2421 }
2422
2423 /**
2424 * t3_intr_handler - select the top-level interrupt handler
2425 * @adap: the adapter
2426 * @polling: whether using NAPI to service response queues
2427 *
2428 * Selects the top-level interrupt handler based on the type of interrupts
2429 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2430 * response queues.
2431 */
2432 intr_handler_t t3_intr_handler(struct adapter *adap, int polling)
2433 {
2434 if (adap->flags & USING_MSIX)
2435 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2436 if (adap->flags & USING_MSI)
2437 return polling ? t3_intr_msi_napi : t3_intr_msi;
2438 if (adap->params.rev > 0)
2439 return polling ? t3b_intr_napi : t3b_intr;
2440 return t3_intr;
2441 }
2442
2443 /**
2444 * t3_sge_err_intr_handler - SGE async event interrupt handler
2445 * @adapter: the adapter
2446 *
2447 * Interrupt handler for SGE asynchronous (non-data) events.
2448 */
2449 void t3_sge_err_intr_handler(struct adapter *adapter)
2450 {
2451 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2452
2453 if (status & F_RSPQCREDITOVERFOW)
2454 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2455
2456 if (status & F_RSPQDISABLED) {
2457 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2458
2459 CH_ALERT(adapter,
2460 "packet delivered to disabled response queue "
2461 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2462 }
2463
2464 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2465 if (status & (F_RSPQCREDITOVERFOW | F_RSPQDISABLED))
2466 t3_fatal_err(adapter);
2467 }
2468
2469 /**
2470 * sge_timer_cb - perform periodic maintenance of an SGE qset
2471 * @data: the SGE queue set to maintain
2472 *
2473 * Runs periodically from a timer to perform maintenance of an SGE queue
2474 * set. It performs two tasks:
2475 *
2476 * a) Cleans up any completed Tx descriptors that may still be pending.
2477 * Normal descriptor cleanup happens when new packets are added to a Tx
2478 * queue so this timer is relatively infrequent and does any cleanup only
2479 * if the Tx queue has not seen any new packets in a while. We make a
2480 * best effort attempt to reclaim descriptors, in that we don't wait
2481 * around if we cannot get a queue's lock (which most likely is because
2482 * someone else is queueing new packets and so will also handle the clean
2483 * up). Since control queues use immediate data exclusively we don't
2484 * bother cleaning them up here.
2485 *
2486 * b) Replenishes Rx queues that have run out due to memory shortage.
2487 * Normally new Rx buffers are added when existing ones are consumed but
2488 * when out of memory a queue can become empty. We try to add only a few
2489 * buffers here, the queue will be replenished fully as these new buffers
2490 * are used up if memory shortage has subsided.
2491 */
2492 static void sge_timer_cb(unsigned long data)
2493 {
2494 spinlock_t *lock;
2495 struct sge_qset *qs = (struct sge_qset *)data;
2496 struct adapter *adap = qs->netdev->priv;
2497
2498 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2499 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2500 spin_unlock(&qs->txq[TXQ_ETH].lock);
2501 }
2502 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2503 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2504 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2505 }
2506 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
2507 &adap->sge.qs[0].rspq.lock;
2508 if (spin_trylock_irq(lock)) {
2509 if (!napi_is_scheduled(qs->netdev)) {
2510 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2511
2512 if (qs->fl[0].credits < qs->fl[0].size)
2513 __refill_fl(adap, &qs->fl[0]);
2514 if (qs->fl[1].credits < qs->fl[1].size)
2515 __refill_fl(adap, &qs->fl[1]);
2516
2517 if (status & (1 << qs->rspq.cntxt_id)) {
2518 qs->rspq.starved++;
2519 if (qs->rspq.credits) {
2520 refill_rspq(adap, &qs->rspq, 1);
2521 qs->rspq.credits--;
2522 qs->rspq.restarted++;
2523 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2524 1 << qs->rspq.cntxt_id);
2525 }
2526 }
2527 }
2528 spin_unlock_irq(lock);
2529 }
2530 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2531 }
2532
2533 /**
2534 * t3_update_qset_coalesce - update coalescing settings for a queue set
2535 * @qs: the SGE queue set
2536 * @p: new queue set parameters
2537 *
2538 * Update the coalescing settings for an SGE queue set. Nothing is done
2539 * if the queue set is not initialized yet.
2540 */
2541 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2542 {
2543 if (!qs->netdev)
2544 return;
2545
2546 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2547 qs->rspq.polling = p->polling;
2548 qs->netdev->poll = p->polling ? napi_rx_handler : ofld_poll;
2549 }
2550
2551 /**
2552 * t3_sge_alloc_qset - initialize an SGE queue set
2553 * @adapter: the adapter
2554 * @id: the queue set id
2555 * @nports: how many Ethernet ports will be using this queue set
2556 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2557 * @p: configuration parameters for this queue set
2558 * @ntxq: number of Tx queues for the queue set
2559 * @netdev: net device associated with this queue set
2560 *
2561 * Allocate resources and initialize an SGE queue set. A queue set
2562 * comprises a response queue, two Rx free-buffer queues, and up to 3
2563 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2564 * queue, offload queue, and control queue.
2565 */
2566 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2567 int irq_vec_idx, const struct qset_params *p,
2568 int ntxq, struct net_device *netdev)
2569 {
2570 int i, ret = -ENOMEM;
2571 struct sge_qset *q = &adapter->sge.qs[id];
2572
2573 init_qset_cntxt(q, id);
2574 init_timer(&q->tx_reclaim_timer);
2575 q->tx_reclaim_timer.data = (unsigned long)q;
2576 q->tx_reclaim_timer.function = sge_timer_cb;
2577
2578 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2579 sizeof(struct rx_desc),
2580 sizeof(struct rx_sw_desc),
2581 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2582 if (!q->fl[0].desc)
2583 goto err;
2584
2585 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2586 sizeof(struct rx_desc),
2587 sizeof(struct rx_sw_desc),
2588 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2589 if (!q->fl[1].desc)
2590 goto err;
2591
2592 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2593 sizeof(struct rsp_desc), 0,
2594 &q->rspq.phys_addr, NULL);
2595 if (!q->rspq.desc)
2596 goto err;
2597
2598 for (i = 0; i < ntxq; ++i) {
2599 /*
2600 * The control queue always uses immediate data so does not
2601 * need to keep track of any sk_buffs.
2602 */
2603 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2604
2605 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2606 sizeof(struct tx_desc), sz,
2607 &q->txq[i].phys_addr,
2608 &q->txq[i].sdesc);
2609 if (!q->txq[i].desc)
2610 goto err;
2611
2612 q->txq[i].gen = 1;
2613 q->txq[i].size = p->txq_size[i];
2614 spin_lock_init(&q->txq[i].lock);
2615 skb_queue_head_init(&q->txq[i].sendq);
2616 }
2617
2618 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2619 (unsigned long)q);
2620 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2621 (unsigned long)q);
2622
2623 q->fl[0].gen = q->fl[1].gen = 1;
2624 q->fl[0].size = p->fl_size;
2625 q->fl[1].size = p->jumbo_size;
2626
2627 q->rspq.gen = 1;
2628 q->rspq.size = p->rspq_size;
2629 spin_lock_init(&q->rspq.lock);
2630
2631 q->txq[TXQ_ETH].stop_thres = nports *
2632 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2633
2634 if (!is_offload(adapter)) {
2635 #ifdef USE_RX_PAGE
2636 q->fl[0].buf_size = RX_PAGE_SIZE;
2637 #else
2638 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + 2 +
2639 sizeof(struct cpl_rx_pkt);
2640 #endif
2641 q->fl[1].buf_size = MAX_FRAME_SIZE + 2 +
2642 sizeof(struct cpl_rx_pkt);
2643 } else {
2644 #ifdef USE_RX_PAGE
2645 q->fl[0].buf_size = RX_PAGE_SIZE;
2646 #else
2647 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE +
2648 sizeof(struct cpl_rx_data);
2649 #endif
2650 q->fl[1].buf_size = (16 * 1024) -
2651 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2652 }
2653
2654 spin_lock(&adapter->sge.reg_lock);
2655
2656 /* FL threshold comparison uses < */
2657 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2658 q->rspq.phys_addr, q->rspq.size,
2659 q->fl[0].buf_size, 1, 0);
2660 if (ret)
2661 goto err_unlock;
2662
2663 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2664 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2665 q->fl[i].phys_addr, q->fl[i].size,
2666 q->fl[i].buf_size, p->cong_thres, 1,
2667 0);
2668 if (ret)
2669 goto err_unlock;
2670 }
2671
2672 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2673 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2674 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2675 1, 0);
2676 if (ret)
2677 goto err_unlock;
2678
2679 if (ntxq > 1) {
2680 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2681 USE_GTS, SGE_CNTXT_OFLD, id,
2682 q->txq[TXQ_OFLD].phys_addr,
2683 q->txq[TXQ_OFLD].size, 0, 1, 0);
2684 if (ret)
2685 goto err_unlock;
2686 }
2687
2688 if (ntxq > 2) {
2689 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
2690 SGE_CNTXT_CTRL, id,
2691 q->txq[TXQ_CTRL].phys_addr,
2692 q->txq[TXQ_CTRL].size,
2693 q->txq[TXQ_CTRL].token, 1, 0);
2694 if (ret)
2695 goto err_unlock;
2696 }
2697
2698 spin_unlock(&adapter->sge.reg_lock);
2699 q->netdev = netdev;
2700 t3_update_qset_coalesce(q, p);
2701
2702 /*
2703 * We use atalk_ptr as a backpointer to a qset. In case a device is
2704 * associated with multiple queue sets only the first one sets
2705 * atalk_ptr.
2706 */
2707 if (netdev->atalk_ptr == NULL)
2708 netdev->atalk_ptr = q;
2709
2710 refill_fl(adapter, &q->fl[0], q->fl[0].size, GFP_KERNEL);
2711 refill_fl(adapter, &q->fl[1], q->fl[1].size, GFP_KERNEL);
2712 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
2713
2714 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2715 V_NEWTIMER(q->rspq.holdoff_tmr));
2716
2717 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2718 return 0;
2719
2720 err_unlock:
2721 spin_unlock(&adapter->sge.reg_lock);
2722 err:
2723 t3_free_qset(adapter, q);
2724 return ret;
2725 }
2726
2727 /**
2728 * t3_free_sge_resources - free SGE resources
2729 * @adap: the adapter
2730 *
2731 * Frees resources used by the SGE queue sets.
2732 */
2733 void t3_free_sge_resources(struct adapter *adap)
2734 {
2735 int i;
2736
2737 for (i = 0; i < SGE_QSETS; ++i)
2738 t3_free_qset(adap, &adap->sge.qs[i]);
2739 }
2740
2741 /**
2742 * t3_sge_start - enable SGE
2743 * @adap: the adapter
2744 *
2745 * Enables the SGE for DMAs. This is the last step in starting packet
2746 * transfers.
2747 */
2748 void t3_sge_start(struct adapter *adap)
2749 {
2750 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
2751 }
2752
2753 /**
2754 * t3_sge_stop - disable SGE operation
2755 * @adap: the adapter
2756 *
2757 * Disables the DMA engine. This can be called in emeregencies (e.g.,
2758 * from error interrupts) or from normal process context. In the latter
2759 * case it also disables any pending queue restart tasklets. Note that
2760 * if it is called in interrupt context it cannot disable the restart
2761 * tasklets as it cannot wait, however the tasklets will have no effect
2762 * since the doorbells are disabled and the driver will call this again
2763 * later from process context, at which time the tasklets will be stopped
2764 * if they are still running.
2765 */
2766 void t3_sge_stop(struct adapter *adap)
2767 {
2768 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
2769 if (!in_interrupt()) {
2770 int i;
2771
2772 for (i = 0; i < SGE_QSETS; ++i) {
2773 struct sge_qset *qs = &adap->sge.qs[i];
2774
2775 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
2776 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
2777 }
2778 }
2779 }
2780
2781 /**
2782 * t3_sge_init - initialize SGE
2783 * @adap: the adapter
2784 * @p: the SGE parameters
2785 *
2786 * Performs SGE initialization needed every time after a chip reset.
2787 * We do not initialize any of the queue sets here, instead the driver
2788 * top-level must request those individually. We also do not enable DMA
2789 * here, that should be done after the queues have been set up.
2790 */
2791 void t3_sge_init(struct adapter *adap, struct sge_params *p)
2792 {
2793 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
2794
2795 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
2796 F_CQCRDTCTRL |
2797 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
2798 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
2799 #if SGE_NUM_GENBITS == 1
2800 ctrl |= F_EGRGENCTRL;
2801 #endif
2802 if (adap->params.rev > 0) {
2803 if (!(adap->flags & (USING_MSIX | USING_MSI)))
2804 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
2805 ctrl |= F_CQCRDTCTRL | F_AVOIDCQOVFL;
2806 }
2807 t3_write_reg(adap, A_SG_CONTROL, ctrl);
2808 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
2809 V_LORCQDRBTHRSH(512));
2810 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
2811 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
2812 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
2813 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 1000);
2814 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
2815 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
2816 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
2817 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
2818 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
2819 }
2820
2821 /**
2822 * t3_sge_prep - one-time SGE initialization
2823 * @adap: the associated adapter
2824 * @p: SGE parameters
2825 *
2826 * Performs one-time initialization of SGE SW state. Includes determining
2827 * defaults for the assorted SGE parameters, which admins can change until
2828 * they are used to initialize the SGE.
2829 */
2830 void __devinit t3_sge_prep(struct adapter *adap, struct sge_params *p)
2831 {
2832 int i;
2833
2834 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
2835 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2836
2837 for (i = 0; i < SGE_QSETS; ++i) {
2838 struct qset_params *q = p->qset + i;
2839
2840 q->polling = adap->params.rev > 0;
2841 q->coalesce_usecs = 5;
2842 q->rspq_size = 1024;
2843 q->fl_size = 1024;
2844 q->jumbo_size = 512;
2845 q->txq_size[TXQ_ETH] = 1024;
2846 q->txq_size[TXQ_OFLD] = 1024;
2847 q->txq_size[TXQ_CTRL] = 256;
2848 q->cong_thres = 0;
2849 }
2850
2851 spin_lock_init(&adap->sge.reg_lock);
2852 }
2853
2854 /**
2855 * t3_get_desc - dump an SGE descriptor for debugging purposes
2856 * @qs: the queue set
2857 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
2858 * @idx: the descriptor index in the queue
2859 * @data: where to dump the descriptor contents
2860 *
2861 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
2862 * size of the descriptor.
2863 */
2864 int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
2865 unsigned char *data)
2866 {
2867 if (qnum >= 6)
2868 return -EINVAL;
2869
2870 if (qnum < 3) {
2871 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
2872 return -EINVAL;
2873 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
2874 return sizeof(struct tx_desc);
2875 }
2876
2877 if (qnum == 3) {
2878 if (!qs->rspq.desc || idx >= qs->rspq.size)
2879 return -EINVAL;
2880 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
2881 return sizeof(struct rsp_desc);
2882 }
2883
2884 qnum -= 4;
2885 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
2886 return -EINVAL;
2887 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
2888 return sizeof(struct rx_desc);
2889 }