drivers/net: Kill now superfluous ->last_rx stores.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / cxgb3 / sge.c
1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include "common.h"
40 #include "regs.h"
41 #include "sge_defs.h"
42 #include "t3_cpl.h"
43 #include "firmware_exports.h"
44
45 #define USE_GTS 0
46
47 #define SGE_RX_SM_BUF_SIZE 1536
48
49 #define SGE_RX_COPY_THRES 256
50 #define SGE_RX_PULL_LEN 128
51
52 /*
53 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
54 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
55 * directly.
56 */
57 #define FL0_PG_CHUNK_SIZE 2048
58 #define FL0_PG_ORDER 0
59 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
60 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
61
62 #define SGE_RX_DROP_THRES 16
63
64 /*
65 * Period of the Tx buffer reclaim timer. This timer does not need to run
66 * frequently as Tx buffers are usually reclaimed by new Tx packets.
67 */
68 #define TX_RECLAIM_PERIOD (HZ / 4)
69
70 /* WR size in bytes */
71 #define WR_LEN (WR_FLITS * 8)
72
73 /*
74 * Types of Tx queues in each queue set. Order here matters, do not change.
75 */
76 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
77
78 /* Values for sge_txq.flags */
79 enum {
80 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
81 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
82 };
83
84 struct tx_desc {
85 __be64 flit[TX_DESC_FLITS];
86 };
87
88 struct rx_desc {
89 __be32 addr_lo;
90 __be32 len_gen;
91 __be32 gen2;
92 __be32 addr_hi;
93 };
94
95 struct tx_sw_desc { /* SW state per Tx descriptor */
96 struct sk_buff *skb;
97 u8 eop; /* set if last descriptor for packet */
98 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
99 u8 fragidx; /* first page fragment associated with descriptor */
100 s8 sflit; /* start flit of first SGL entry in descriptor */
101 };
102
103 struct rx_sw_desc { /* SW state per Rx descriptor */
104 union {
105 struct sk_buff *skb;
106 struct fl_pg_chunk pg_chunk;
107 };
108 DECLARE_PCI_UNMAP_ADDR(dma_addr);
109 };
110
111 struct rsp_desc { /* response queue descriptor */
112 struct rss_header rss_hdr;
113 __be32 flags;
114 __be32 len_cq;
115 u8 imm_data[47];
116 u8 intr_gen;
117 };
118
119 /*
120 * Holds unmapping information for Tx packets that need deferred unmapping.
121 * This structure lives at skb->head and must be allocated by callers.
122 */
123 struct deferred_unmap_info {
124 struct pci_dev *pdev;
125 dma_addr_t addr[MAX_SKB_FRAGS + 1];
126 };
127
128 /*
129 * Maps a number of flits to the number of Tx descriptors that can hold them.
130 * The formula is
131 *
132 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
133 *
134 * HW allows up to 4 descriptors to be combined into a WR.
135 */
136 static u8 flit_desc_map[] = {
137 0,
138 #if SGE_NUM_GENBITS == 1
139 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
140 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
141 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
142 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
143 #elif SGE_NUM_GENBITS == 2
144 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
145 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
146 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
147 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
148 #else
149 # error "SGE_NUM_GENBITS must be 1 or 2"
150 #endif
151 };
152
153 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
154 {
155 return container_of(q, struct sge_qset, fl[qidx]);
156 }
157
158 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
159 {
160 return container_of(q, struct sge_qset, rspq);
161 }
162
163 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
164 {
165 return container_of(q, struct sge_qset, txq[qidx]);
166 }
167
168 /**
169 * refill_rspq - replenish an SGE response queue
170 * @adapter: the adapter
171 * @q: the response queue to replenish
172 * @credits: how many new responses to make available
173 *
174 * Replenishes a response queue by making the supplied number of responses
175 * available to HW.
176 */
177 static inline void refill_rspq(struct adapter *adapter,
178 const struct sge_rspq *q, unsigned int credits)
179 {
180 rmb();
181 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
182 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
183 }
184
185 /**
186 * need_skb_unmap - does the platform need unmapping of sk_buffs?
187 *
188 * Returns true if the platfrom needs sk_buff unmapping. The compiler
189 * optimizes away unecessary code if this returns true.
190 */
191 static inline int need_skb_unmap(void)
192 {
193 /*
194 * This structure is used to tell if the platfrom needs buffer
195 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
196 */
197 struct dummy {
198 DECLARE_PCI_UNMAP_ADDR(addr);
199 };
200
201 return sizeof(struct dummy) != 0;
202 }
203
204 /**
205 * unmap_skb - unmap a packet main body and its page fragments
206 * @skb: the packet
207 * @q: the Tx queue containing Tx descriptors for the packet
208 * @cidx: index of Tx descriptor
209 * @pdev: the PCI device
210 *
211 * Unmap the main body of an sk_buff and its page fragments, if any.
212 * Because of the fairly complicated structure of our SGLs and the desire
213 * to conserve space for metadata, the information necessary to unmap an
214 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
215 * descriptors (the physical addresses of the various data buffers), and
216 * the SW descriptor state (assorted indices). The send functions
217 * initialize the indices for the first packet descriptor so we can unmap
218 * the buffers held in the first Tx descriptor here, and we have enough
219 * information at this point to set the state for the next Tx descriptor.
220 *
221 * Note that it is possible to clean up the first descriptor of a packet
222 * before the send routines have written the next descriptors, but this
223 * race does not cause any problem. We just end up writing the unmapping
224 * info for the descriptor first.
225 */
226 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
227 unsigned int cidx, struct pci_dev *pdev)
228 {
229 const struct sg_ent *sgp;
230 struct tx_sw_desc *d = &q->sdesc[cidx];
231 int nfrags, frag_idx, curflit, j = d->addr_idx;
232
233 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
234 frag_idx = d->fragidx;
235
236 if (frag_idx == 0 && skb_headlen(skb)) {
237 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
238 skb_headlen(skb), PCI_DMA_TODEVICE);
239 j = 1;
240 }
241
242 curflit = d->sflit + 1 + j;
243 nfrags = skb_shinfo(skb)->nr_frags;
244
245 while (frag_idx < nfrags && curflit < WR_FLITS) {
246 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
247 skb_shinfo(skb)->frags[frag_idx].size,
248 PCI_DMA_TODEVICE);
249 j ^= 1;
250 if (j == 0) {
251 sgp++;
252 curflit++;
253 }
254 curflit++;
255 frag_idx++;
256 }
257
258 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
259 d = cidx + 1 == q->size ? q->sdesc : d + 1;
260 d->fragidx = frag_idx;
261 d->addr_idx = j;
262 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
263 }
264 }
265
266 /**
267 * free_tx_desc - reclaims Tx descriptors and their buffers
268 * @adapter: the adapter
269 * @q: the Tx queue to reclaim descriptors from
270 * @n: the number of descriptors to reclaim
271 *
272 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
273 * Tx buffers. Called with the Tx queue lock held.
274 */
275 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
276 unsigned int n)
277 {
278 struct tx_sw_desc *d;
279 struct pci_dev *pdev = adapter->pdev;
280 unsigned int cidx = q->cidx;
281
282 const int need_unmap = need_skb_unmap() &&
283 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
284
285 d = &q->sdesc[cidx];
286 while (n--) {
287 if (d->skb) { /* an SGL is present */
288 if (need_unmap)
289 unmap_skb(d->skb, q, cidx, pdev);
290 if (d->eop)
291 kfree_skb(d->skb);
292 }
293 ++d;
294 if (++cidx == q->size) {
295 cidx = 0;
296 d = q->sdesc;
297 }
298 }
299 q->cidx = cidx;
300 }
301
302 /**
303 * reclaim_completed_tx - reclaims completed Tx descriptors
304 * @adapter: the adapter
305 * @q: the Tx queue to reclaim completed descriptors from
306 *
307 * Reclaims Tx descriptors that the SGE has indicated it has processed,
308 * and frees the associated buffers if possible. Called with the Tx
309 * queue's lock held.
310 */
311 static inline void reclaim_completed_tx(struct adapter *adapter,
312 struct sge_txq *q)
313 {
314 unsigned int reclaim = q->processed - q->cleaned;
315
316 if (reclaim) {
317 free_tx_desc(adapter, q, reclaim);
318 q->cleaned += reclaim;
319 q->in_use -= reclaim;
320 }
321 }
322
323 /**
324 * should_restart_tx - are there enough resources to restart a Tx queue?
325 * @q: the Tx queue
326 *
327 * Checks if there are enough descriptors to restart a suspended Tx queue.
328 */
329 static inline int should_restart_tx(const struct sge_txq *q)
330 {
331 unsigned int r = q->processed - q->cleaned;
332
333 return q->in_use - r < (q->size >> 1);
334 }
335
336 /**
337 * free_rx_bufs - free the Rx buffers on an SGE free list
338 * @pdev: the PCI device associated with the adapter
339 * @rxq: the SGE free list to clean up
340 *
341 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
342 * this queue should be stopped before calling this function.
343 */
344 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
345 {
346 unsigned int cidx = q->cidx;
347
348 while (q->credits--) {
349 struct rx_sw_desc *d = &q->sdesc[cidx];
350
351 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
352 q->buf_size, PCI_DMA_FROMDEVICE);
353 if (q->use_pages) {
354 if (d->pg_chunk.page)
355 put_page(d->pg_chunk.page);
356 d->pg_chunk.page = NULL;
357 } else {
358 kfree_skb(d->skb);
359 d->skb = NULL;
360 }
361 if (++cidx == q->size)
362 cidx = 0;
363 }
364
365 if (q->pg_chunk.page) {
366 __free_pages(q->pg_chunk.page, q->order);
367 q->pg_chunk.page = NULL;
368 }
369 }
370
371 /**
372 * add_one_rx_buf - add a packet buffer to a free-buffer list
373 * @va: buffer start VA
374 * @len: the buffer length
375 * @d: the HW Rx descriptor to write
376 * @sd: the SW Rx descriptor to write
377 * @gen: the generation bit value
378 * @pdev: the PCI device associated with the adapter
379 *
380 * Add a buffer of the given length to the supplied HW and SW Rx
381 * descriptors.
382 */
383 static inline int add_one_rx_buf(void *va, unsigned int len,
384 struct rx_desc *d, struct rx_sw_desc *sd,
385 unsigned int gen, struct pci_dev *pdev)
386 {
387 dma_addr_t mapping;
388
389 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
390 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
391 return -ENOMEM;
392
393 pci_unmap_addr_set(sd, dma_addr, mapping);
394
395 d->addr_lo = cpu_to_be32(mapping);
396 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
397 wmb();
398 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
399 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
400 return 0;
401 }
402
403 static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp,
404 unsigned int order)
405 {
406 if (!q->pg_chunk.page) {
407 q->pg_chunk.page = alloc_pages(gfp, order);
408 if (unlikely(!q->pg_chunk.page))
409 return -ENOMEM;
410 q->pg_chunk.va = page_address(q->pg_chunk.page);
411 q->pg_chunk.offset = 0;
412 }
413 sd->pg_chunk = q->pg_chunk;
414
415 q->pg_chunk.offset += q->buf_size;
416 if (q->pg_chunk.offset == (PAGE_SIZE << order))
417 q->pg_chunk.page = NULL;
418 else {
419 q->pg_chunk.va += q->buf_size;
420 get_page(q->pg_chunk.page);
421 }
422 return 0;
423 }
424
425 /**
426 * refill_fl - refill an SGE free-buffer list
427 * @adapter: the adapter
428 * @q: the free-list to refill
429 * @n: the number of new buffers to allocate
430 * @gfp: the gfp flags for allocating new buffers
431 *
432 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
433 * allocated with the supplied gfp flags. The caller must assure that
434 * @n does not exceed the queue's capacity.
435 */
436 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
437 {
438 void *buf_start;
439 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
440 struct rx_desc *d = &q->desc[q->pidx];
441 unsigned int count = 0;
442
443 while (n--) {
444 int err;
445
446 if (q->use_pages) {
447 if (unlikely(alloc_pg_chunk(q, sd, gfp, q->order))) {
448 nomem: q->alloc_failed++;
449 break;
450 }
451 buf_start = sd->pg_chunk.va;
452 } else {
453 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
454
455 if (!skb)
456 goto nomem;
457
458 sd->skb = skb;
459 buf_start = skb->data;
460 }
461
462 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen,
463 adap->pdev);
464 if (unlikely(err)) {
465 if (!q->use_pages) {
466 kfree_skb(sd->skb);
467 sd->skb = NULL;
468 }
469 break;
470 }
471
472 d++;
473 sd++;
474 if (++q->pidx == q->size) {
475 q->pidx = 0;
476 q->gen ^= 1;
477 sd = q->sdesc;
478 d = q->desc;
479 }
480 q->credits++;
481 count++;
482 }
483 wmb();
484 if (likely(count))
485 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
486
487 return count;
488 }
489
490 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
491 {
492 refill_fl(adap, fl, min(16U, fl->size - fl->credits),
493 GFP_ATOMIC | __GFP_COMP);
494 }
495
496 /**
497 * recycle_rx_buf - recycle a receive buffer
498 * @adapter: the adapter
499 * @q: the SGE free list
500 * @idx: index of buffer to recycle
501 *
502 * Recycles the specified buffer on the given free list by adding it at
503 * the next available slot on the list.
504 */
505 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
506 unsigned int idx)
507 {
508 struct rx_desc *from = &q->desc[idx];
509 struct rx_desc *to = &q->desc[q->pidx];
510
511 q->sdesc[q->pidx] = q->sdesc[idx];
512 to->addr_lo = from->addr_lo; /* already big endian */
513 to->addr_hi = from->addr_hi; /* likewise */
514 wmb();
515 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
516 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
517 q->credits++;
518
519 if (++q->pidx == q->size) {
520 q->pidx = 0;
521 q->gen ^= 1;
522 }
523 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
524 }
525
526 /**
527 * alloc_ring - allocate resources for an SGE descriptor ring
528 * @pdev: the PCI device
529 * @nelem: the number of descriptors
530 * @elem_size: the size of each descriptor
531 * @sw_size: the size of the SW state associated with each ring element
532 * @phys: the physical address of the allocated ring
533 * @metadata: address of the array holding the SW state for the ring
534 *
535 * Allocates resources for an SGE descriptor ring, such as Tx queues,
536 * free buffer lists, or response queues. Each SGE ring requires
537 * space for its HW descriptors plus, optionally, space for the SW state
538 * associated with each HW entry (the metadata). The function returns
539 * three values: the virtual address for the HW ring (the return value
540 * of the function), the physical address of the HW ring, and the address
541 * of the SW ring.
542 */
543 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
544 size_t sw_size, dma_addr_t * phys, void *metadata)
545 {
546 size_t len = nelem * elem_size;
547 void *s = NULL;
548 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
549
550 if (!p)
551 return NULL;
552 if (sw_size) {
553 s = kcalloc(nelem, sw_size, GFP_KERNEL);
554
555 if (!s) {
556 dma_free_coherent(&pdev->dev, len, p, *phys);
557 return NULL;
558 }
559 }
560 if (metadata)
561 *(void **)metadata = s;
562 memset(p, 0, len);
563 return p;
564 }
565
566 /**
567 * t3_reset_qset - reset a sge qset
568 * @q: the queue set
569 *
570 * Reset the qset structure.
571 * the NAPI structure is preserved in the event of
572 * the qset's reincarnation, for example during EEH recovery.
573 */
574 static void t3_reset_qset(struct sge_qset *q)
575 {
576 if (q->adap &&
577 !(q->adap->flags & NAPI_INIT)) {
578 memset(q, 0, sizeof(*q));
579 return;
580 }
581
582 q->adap = NULL;
583 memset(&q->rspq, 0, sizeof(q->rspq));
584 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
585 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
586 q->txq_stopped = 0;
587 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
588 kfree(q->lro_frag_tbl);
589 q->lro_nfrags = q->lro_frag_len = 0;
590 }
591
592
593 /**
594 * free_qset - free the resources of an SGE queue set
595 * @adapter: the adapter owning the queue set
596 * @q: the queue set
597 *
598 * Release the HW and SW resources associated with an SGE queue set, such
599 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
600 * queue set must be quiesced prior to calling this.
601 */
602 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
603 {
604 int i;
605 struct pci_dev *pdev = adapter->pdev;
606
607 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
608 if (q->fl[i].desc) {
609 spin_lock_irq(&adapter->sge.reg_lock);
610 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
611 spin_unlock_irq(&adapter->sge.reg_lock);
612 free_rx_bufs(pdev, &q->fl[i]);
613 kfree(q->fl[i].sdesc);
614 dma_free_coherent(&pdev->dev,
615 q->fl[i].size *
616 sizeof(struct rx_desc), q->fl[i].desc,
617 q->fl[i].phys_addr);
618 }
619
620 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
621 if (q->txq[i].desc) {
622 spin_lock_irq(&adapter->sge.reg_lock);
623 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
624 spin_unlock_irq(&adapter->sge.reg_lock);
625 if (q->txq[i].sdesc) {
626 free_tx_desc(adapter, &q->txq[i],
627 q->txq[i].in_use);
628 kfree(q->txq[i].sdesc);
629 }
630 dma_free_coherent(&pdev->dev,
631 q->txq[i].size *
632 sizeof(struct tx_desc),
633 q->txq[i].desc, q->txq[i].phys_addr);
634 __skb_queue_purge(&q->txq[i].sendq);
635 }
636
637 if (q->rspq.desc) {
638 spin_lock_irq(&adapter->sge.reg_lock);
639 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
640 spin_unlock_irq(&adapter->sge.reg_lock);
641 dma_free_coherent(&pdev->dev,
642 q->rspq.size * sizeof(struct rsp_desc),
643 q->rspq.desc, q->rspq.phys_addr);
644 }
645
646 t3_reset_qset(q);
647 }
648
649 /**
650 * init_qset_cntxt - initialize an SGE queue set context info
651 * @qs: the queue set
652 * @id: the queue set id
653 *
654 * Initializes the TIDs and context ids for the queues of a queue set.
655 */
656 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
657 {
658 qs->rspq.cntxt_id = id;
659 qs->fl[0].cntxt_id = 2 * id;
660 qs->fl[1].cntxt_id = 2 * id + 1;
661 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
662 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
663 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
664 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
665 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
666 }
667
668 /**
669 * sgl_len - calculates the size of an SGL of the given capacity
670 * @n: the number of SGL entries
671 *
672 * Calculates the number of flits needed for a scatter/gather list that
673 * can hold the given number of entries.
674 */
675 static inline unsigned int sgl_len(unsigned int n)
676 {
677 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
678 return (3 * n) / 2 + (n & 1);
679 }
680
681 /**
682 * flits_to_desc - returns the num of Tx descriptors for the given flits
683 * @n: the number of flits
684 *
685 * Calculates the number of Tx descriptors needed for the supplied number
686 * of flits.
687 */
688 static inline unsigned int flits_to_desc(unsigned int n)
689 {
690 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
691 return flit_desc_map[n];
692 }
693
694 /**
695 * get_packet - return the next ingress packet buffer from a free list
696 * @adap: the adapter that received the packet
697 * @fl: the SGE free list holding the packet
698 * @len: the packet length including any SGE padding
699 * @drop_thres: # of remaining buffers before we start dropping packets
700 *
701 * Get the next packet from a free list and complete setup of the
702 * sk_buff. If the packet is small we make a copy and recycle the
703 * original buffer, otherwise we use the original buffer itself. If a
704 * positive drop threshold is supplied packets are dropped and their
705 * buffers recycled if (a) the number of remaining buffers is under the
706 * threshold and the packet is too big to copy, or (b) the packet should
707 * be copied but there is no memory for the copy.
708 */
709 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
710 unsigned int len, unsigned int drop_thres)
711 {
712 struct sk_buff *skb = NULL;
713 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
714
715 prefetch(sd->skb->data);
716 fl->credits--;
717
718 if (len <= SGE_RX_COPY_THRES) {
719 skb = alloc_skb(len, GFP_ATOMIC);
720 if (likely(skb != NULL)) {
721 __skb_put(skb, len);
722 pci_dma_sync_single_for_cpu(adap->pdev,
723 pci_unmap_addr(sd, dma_addr), len,
724 PCI_DMA_FROMDEVICE);
725 memcpy(skb->data, sd->skb->data, len);
726 pci_dma_sync_single_for_device(adap->pdev,
727 pci_unmap_addr(sd, dma_addr), len,
728 PCI_DMA_FROMDEVICE);
729 } else if (!drop_thres)
730 goto use_orig_buf;
731 recycle:
732 recycle_rx_buf(adap, fl, fl->cidx);
733 return skb;
734 }
735
736 if (unlikely(fl->credits < drop_thres))
737 goto recycle;
738
739 use_orig_buf:
740 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
741 fl->buf_size, PCI_DMA_FROMDEVICE);
742 skb = sd->skb;
743 skb_put(skb, len);
744 __refill_fl(adap, fl);
745 return skb;
746 }
747
748 /**
749 * get_packet_pg - return the next ingress packet buffer from a free list
750 * @adap: the adapter that received the packet
751 * @fl: the SGE free list holding the packet
752 * @len: the packet length including any SGE padding
753 * @drop_thres: # of remaining buffers before we start dropping packets
754 *
755 * Get the next packet from a free list populated with page chunks.
756 * If the packet is small we make a copy and recycle the original buffer,
757 * otherwise we attach the original buffer as a page fragment to a fresh
758 * sk_buff. If a positive drop threshold is supplied packets are dropped
759 * and their buffers recycled if (a) the number of remaining buffers is
760 * under the threshold and the packet is too big to copy, or (b) there's
761 * no system memory.
762 *
763 * Note: this function is similar to @get_packet but deals with Rx buffers
764 * that are page chunks rather than sk_buffs.
765 */
766 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
767 struct sge_rspq *q, unsigned int len,
768 unsigned int drop_thres)
769 {
770 struct sk_buff *newskb, *skb;
771 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
772
773 newskb = skb = q->pg_skb;
774
775 if (!skb && (len <= SGE_RX_COPY_THRES)) {
776 newskb = alloc_skb(len, GFP_ATOMIC);
777 if (likely(newskb != NULL)) {
778 __skb_put(newskb, len);
779 pci_dma_sync_single_for_cpu(adap->pdev,
780 pci_unmap_addr(sd, dma_addr), len,
781 PCI_DMA_FROMDEVICE);
782 memcpy(newskb->data, sd->pg_chunk.va, len);
783 pci_dma_sync_single_for_device(adap->pdev,
784 pci_unmap_addr(sd, dma_addr), len,
785 PCI_DMA_FROMDEVICE);
786 } else if (!drop_thres)
787 return NULL;
788 recycle:
789 fl->credits--;
790 recycle_rx_buf(adap, fl, fl->cidx);
791 q->rx_recycle_buf++;
792 return newskb;
793 }
794
795 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
796 goto recycle;
797
798 if (!skb)
799 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
800 if (unlikely(!newskb)) {
801 if (!drop_thres)
802 return NULL;
803 goto recycle;
804 }
805
806 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
807 fl->buf_size, PCI_DMA_FROMDEVICE);
808 if (!skb) {
809 __skb_put(newskb, SGE_RX_PULL_LEN);
810 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
811 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
812 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
813 len - SGE_RX_PULL_LEN);
814 newskb->len = len;
815 newskb->data_len = len - SGE_RX_PULL_LEN;
816 } else {
817 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
818 sd->pg_chunk.page,
819 sd->pg_chunk.offset, len);
820 newskb->len += len;
821 newskb->data_len += len;
822 }
823 newskb->truesize += newskb->data_len;
824
825 fl->credits--;
826 /*
827 * We do not refill FLs here, we let the caller do it to overlap a
828 * prefetch.
829 */
830 return newskb;
831 }
832
833 /**
834 * get_imm_packet - return the next ingress packet buffer from a response
835 * @resp: the response descriptor containing the packet data
836 *
837 * Return a packet containing the immediate data of the given response.
838 */
839 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
840 {
841 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
842
843 if (skb) {
844 __skb_put(skb, IMMED_PKT_SIZE);
845 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
846 }
847 return skb;
848 }
849
850 /**
851 * calc_tx_descs - calculate the number of Tx descriptors for a packet
852 * @skb: the packet
853 *
854 * Returns the number of Tx descriptors needed for the given Ethernet
855 * packet. Ethernet packets require addition of WR and CPL headers.
856 */
857 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
858 {
859 unsigned int flits;
860
861 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
862 return 1;
863
864 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
865 if (skb_shinfo(skb)->gso_size)
866 flits++;
867 return flits_to_desc(flits);
868 }
869
870 /**
871 * make_sgl - populate a scatter/gather list for a packet
872 * @skb: the packet
873 * @sgp: the SGL to populate
874 * @start: start address of skb main body data to include in the SGL
875 * @len: length of skb main body data to include in the SGL
876 * @pdev: the PCI device
877 *
878 * Generates a scatter/gather list for the buffers that make up a packet
879 * and returns the SGL size in 8-byte words. The caller must size the SGL
880 * appropriately.
881 */
882 static inline unsigned int make_sgl(const struct sk_buff *skb,
883 struct sg_ent *sgp, unsigned char *start,
884 unsigned int len, struct pci_dev *pdev)
885 {
886 dma_addr_t mapping;
887 unsigned int i, j = 0, nfrags;
888
889 if (len) {
890 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
891 sgp->len[0] = cpu_to_be32(len);
892 sgp->addr[0] = cpu_to_be64(mapping);
893 j = 1;
894 }
895
896 nfrags = skb_shinfo(skb)->nr_frags;
897 for (i = 0; i < nfrags; i++) {
898 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
899
900 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
901 frag->size, PCI_DMA_TODEVICE);
902 sgp->len[j] = cpu_to_be32(frag->size);
903 sgp->addr[j] = cpu_to_be64(mapping);
904 j ^= 1;
905 if (j == 0)
906 ++sgp;
907 }
908 if (j)
909 sgp->len[j] = 0;
910 return ((nfrags + (len != 0)) * 3) / 2 + j;
911 }
912
913 /**
914 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
915 * @adap: the adapter
916 * @q: the Tx queue
917 *
918 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
919 * where the HW is going to sleep just after we checked, however,
920 * then the interrupt handler will detect the outstanding TX packet
921 * and ring the doorbell for us.
922 *
923 * When GTS is disabled we unconditionally ring the doorbell.
924 */
925 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
926 {
927 #if USE_GTS
928 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
929 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
930 set_bit(TXQ_LAST_PKT_DB, &q->flags);
931 t3_write_reg(adap, A_SG_KDOORBELL,
932 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
933 }
934 #else
935 wmb(); /* write descriptors before telling HW */
936 t3_write_reg(adap, A_SG_KDOORBELL,
937 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
938 #endif
939 }
940
941 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
942 {
943 #if SGE_NUM_GENBITS == 2
944 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
945 #endif
946 }
947
948 /**
949 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
950 * @ndesc: number of Tx descriptors spanned by the SGL
951 * @skb: the packet corresponding to the WR
952 * @d: first Tx descriptor to be written
953 * @pidx: index of above descriptors
954 * @q: the SGE Tx queue
955 * @sgl: the SGL
956 * @flits: number of flits to the start of the SGL in the first descriptor
957 * @sgl_flits: the SGL size in flits
958 * @gen: the Tx descriptor generation
959 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
960 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
961 *
962 * Write a work request header and an associated SGL. If the SGL is
963 * small enough to fit into one Tx descriptor it has already been written
964 * and we just need to write the WR header. Otherwise we distribute the
965 * SGL across the number of descriptors it spans.
966 */
967 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
968 struct tx_desc *d, unsigned int pidx,
969 const struct sge_txq *q,
970 const struct sg_ent *sgl,
971 unsigned int flits, unsigned int sgl_flits,
972 unsigned int gen, __be32 wr_hi,
973 __be32 wr_lo)
974 {
975 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
976 struct tx_sw_desc *sd = &q->sdesc[pidx];
977
978 sd->skb = skb;
979 if (need_skb_unmap()) {
980 sd->fragidx = 0;
981 sd->addr_idx = 0;
982 sd->sflit = flits;
983 }
984
985 if (likely(ndesc == 1)) {
986 sd->eop = 1;
987 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
988 V_WR_SGLSFLT(flits)) | wr_hi;
989 wmb();
990 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
991 V_WR_GEN(gen)) | wr_lo;
992 wr_gen2(d, gen);
993 } else {
994 unsigned int ogen = gen;
995 const u64 *fp = (const u64 *)sgl;
996 struct work_request_hdr *wp = wrp;
997
998 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
999 V_WR_SGLSFLT(flits)) | wr_hi;
1000
1001 while (sgl_flits) {
1002 unsigned int avail = WR_FLITS - flits;
1003
1004 if (avail > sgl_flits)
1005 avail = sgl_flits;
1006 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1007 sgl_flits -= avail;
1008 ndesc--;
1009 if (!sgl_flits)
1010 break;
1011
1012 fp += avail;
1013 d++;
1014 sd->eop = 0;
1015 sd++;
1016 if (++pidx == q->size) {
1017 pidx = 0;
1018 gen ^= 1;
1019 d = q->desc;
1020 sd = q->sdesc;
1021 }
1022
1023 sd->skb = skb;
1024 wrp = (struct work_request_hdr *)d;
1025 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1026 V_WR_SGLSFLT(1)) | wr_hi;
1027 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1028 sgl_flits + 1)) |
1029 V_WR_GEN(gen)) | wr_lo;
1030 wr_gen2(d, gen);
1031 flits = 1;
1032 }
1033 sd->eop = 1;
1034 wrp->wr_hi |= htonl(F_WR_EOP);
1035 wmb();
1036 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1037 wr_gen2((struct tx_desc *)wp, ogen);
1038 WARN_ON(ndesc != 0);
1039 }
1040 }
1041
1042 /**
1043 * write_tx_pkt_wr - write a TX_PKT work request
1044 * @adap: the adapter
1045 * @skb: the packet to send
1046 * @pi: the egress interface
1047 * @pidx: index of the first Tx descriptor to write
1048 * @gen: the generation value to use
1049 * @q: the Tx queue
1050 * @ndesc: number of descriptors the packet will occupy
1051 * @compl: the value of the COMPL bit to use
1052 *
1053 * Generate a TX_PKT work request to send the supplied packet.
1054 */
1055 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1056 const struct port_info *pi,
1057 unsigned int pidx, unsigned int gen,
1058 struct sge_txq *q, unsigned int ndesc,
1059 unsigned int compl)
1060 {
1061 unsigned int flits, sgl_flits, cntrl, tso_info;
1062 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1063 struct tx_desc *d = &q->desc[pidx];
1064 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1065
1066 cpl->len = htonl(skb->len | 0x80000000);
1067 cntrl = V_TXPKT_INTF(pi->port_id);
1068
1069 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1070 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1071
1072 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1073 if (tso_info) {
1074 int eth_type;
1075 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1076
1077 d->flit[2] = 0;
1078 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1079 hdr->cntrl = htonl(cntrl);
1080 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1081 CPL_ETH_II : CPL_ETH_II_VLAN;
1082 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1083 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1084 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1085 hdr->lso_info = htonl(tso_info);
1086 flits = 3;
1087 } else {
1088 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1089 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1090 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1091 cpl->cntrl = htonl(cntrl);
1092
1093 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1094 q->sdesc[pidx].skb = NULL;
1095 if (!skb->data_len)
1096 skb_copy_from_linear_data(skb, &d->flit[2],
1097 skb->len);
1098 else
1099 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1100
1101 flits = (skb->len + 7) / 8 + 2;
1102 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1103 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1104 | F_WR_SOP | F_WR_EOP | compl);
1105 wmb();
1106 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1107 V_WR_TID(q->token));
1108 wr_gen2(d, gen);
1109 kfree_skb(skb);
1110 return;
1111 }
1112
1113 flits = 2;
1114 }
1115
1116 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1117 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1118
1119 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1120 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1121 htonl(V_WR_TID(q->token)));
1122 }
1123
1124 static inline void t3_stop_queue(struct net_device *dev, struct sge_qset *qs,
1125 struct sge_txq *q)
1126 {
1127 netif_stop_queue(dev);
1128 set_bit(TXQ_ETH, &qs->txq_stopped);
1129 q->stops++;
1130 }
1131
1132 /**
1133 * eth_xmit - add a packet to the Ethernet Tx queue
1134 * @skb: the packet
1135 * @dev: the egress net device
1136 *
1137 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1138 */
1139 int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1140 {
1141 unsigned int ndesc, pidx, credits, gen, compl;
1142 const struct port_info *pi = netdev_priv(dev);
1143 struct adapter *adap = pi->adapter;
1144 struct sge_qset *qs = pi->qs;
1145 struct sge_txq *q = &qs->txq[TXQ_ETH];
1146
1147 /*
1148 * The chip min packet length is 9 octets but play safe and reject
1149 * anything shorter than an Ethernet header.
1150 */
1151 if (unlikely(skb->len < ETH_HLEN)) {
1152 dev_kfree_skb(skb);
1153 return NETDEV_TX_OK;
1154 }
1155
1156 spin_lock(&q->lock);
1157 reclaim_completed_tx(adap, q);
1158
1159 credits = q->size - q->in_use;
1160 ndesc = calc_tx_descs(skb);
1161
1162 if (unlikely(credits < ndesc)) {
1163 t3_stop_queue(dev, qs, q);
1164 dev_err(&adap->pdev->dev,
1165 "%s: Tx ring %u full while queue awake!\n",
1166 dev->name, q->cntxt_id & 7);
1167 spin_unlock(&q->lock);
1168 return NETDEV_TX_BUSY;
1169 }
1170
1171 q->in_use += ndesc;
1172 if (unlikely(credits - ndesc < q->stop_thres)) {
1173 t3_stop_queue(dev, qs, q);
1174
1175 if (should_restart_tx(q) &&
1176 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1177 q->restarts++;
1178 netif_wake_queue(dev);
1179 }
1180 }
1181
1182 gen = q->gen;
1183 q->unacked += ndesc;
1184 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1185 q->unacked &= 7;
1186 pidx = q->pidx;
1187 q->pidx += ndesc;
1188 if (q->pidx >= q->size) {
1189 q->pidx -= q->size;
1190 q->gen ^= 1;
1191 }
1192
1193 /* update port statistics */
1194 if (skb->ip_summed == CHECKSUM_COMPLETE)
1195 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1196 if (skb_shinfo(skb)->gso_size)
1197 qs->port_stats[SGE_PSTAT_TSO]++;
1198 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1199 qs->port_stats[SGE_PSTAT_VLANINS]++;
1200
1201 dev->trans_start = jiffies;
1202 spin_unlock(&q->lock);
1203
1204 /*
1205 * We do not use Tx completion interrupts to free DMAd Tx packets.
1206 * This is good for performamce but means that we rely on new Tx
1207 * packets arriving to run the destructors of completed packets,
1208 * which open up space in their sockets' send queues. Sometimes
1209 * we do not get such new packets causing Tx to stall. A single
1210 * UDP transmitter is a good example of this situation. We have
1211 * a clean up timer that periodically reclaims completed packets
1212 * but it doesn't run often enough (nor do we want it to) to prevent
1213 * lengthy stalls. A solution to this problem is to run the
1214 * destructor early, after the packet is queued but before it's DMAd.
1215 * A cons is that we lie to socket memory accounting, but the amount
1216 * of extra memory is reasonable (limited by the number of Tx
1217 * descriptors), the packets do actually get freed quickly by new
1218 * packets almost always, and for protocols like TCP that wait for
1219 * acks to really free up the data the extra memory is even less.
1220 * On the positive side we run the destructors on the sending CPU
1221 * rather than on a potentially different completing CPU, usually a
1222 * good thing. We also run them without holding our Tx queue lock,
1223 * unlike what reclaim_completed_tx() would otherwise do.
1224 *
1225 * Run the destructor before telling the DMA engine about the packet
1226 * to make sure it doesn't complete and get freed prematurely.
1227 */
1228 if (likely(!skb_shared(skb)))
1229 skb_orphan(skb);
1230
1231 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1232 check_ring_tx_db(adap, q);
1233 return NETDEV_TX_OK;
1234 }
1235
1236 /**
1237 * write_imm - write a packet into a Tx descriptor as immediate data
1238 * @d: the Tx descriptor to write
1239 * @skb: the packet
1240 * @len: the length of packet data to write as immediate data
1241 * @gen: the generation bit value to write
1242 *
1243 * Writes a packet as immediate data into a Tx descriptor. The packet
1244 * contains a work request at its beginning. We must write the packet
1245 * carefully so the SGE doesn't read it accidentally before it's written
1246 * in its entirety.
1247 */
1248 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1249 unsigned int len, unsigned int gen)
1250 {
1251 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1252 struct work_request_hdr *to = (struct work_request_hdr *)d;
1253
1254 if (likely(!skb->data_len))
1255 memcpy(&to[1], &from[1], len - sizeof(*from));
1256 else
1257 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1258
1259 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1260 V_WR_BCNTLFLT(len & 7));
1261 wmb();
1262 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1263 V_WR_LEN((len + 7) / 8));
1264 wr_gen2(d, gen);
1265 kfree_skb(skb);
1266 }
1267
1268 /**
1269 * check_desc_avail - check descriptor availability on a send queue
1270 * @adap: the adapter
1271 * @q: the send queue
1272 * @skb: the packet needing the descriptors
1273 * @ndesc: the number of Tx descriptors needed
1274 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1275 *
1276 * Checks if the requested number of Tx descriptors is available on an
1277 * SGE send queue. If the queue is already suspended or not enough
1278 * descriptors are available the packet is queued for later transmission.
1279 * Must be called with the Tx queue locked.
1280 *
1281 * Returns 0 if enough descriptors are available, 1 if there aren't
1282 * enough descriptors and the packet has been queued, and 2 if the caller
1283 * needs to retry because there weren't enough descriptors at the
1284 * beginning of the call but some freed up in the mean time.
1285 */
1286 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1287 struct sk_buff *skb, unsigned int ndesc,
1288 unsigned int qid)
1289 {
1290 if (unlikely(!skb_queue_empty(&q->sendq))) {
1291 addq_exit:__skb_queue_tail(&q->sendq, skb);
1292 return 1;
1293 }
1294 if (unlikely(q->size - q->in_use < ndesc)) {
1295 struct sge_qset *qs = txq_to_qset(q, qid);
1296
1297 set_bit(qid, &qs->txq_stopped);
1298 smp_mb__after_clear_bit();
1299
1300 if (should_restart_tx(q) &&
1301 test_and_clear_bit(qid, &qs->txq_stopped))
1302 return 2;
1303
1304 q->stops++;
1305 goto addq_exit;
1306 }
1307 return 0;
1308 }
1309
1310 /**
1311 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1312 * @q: the SGE control Tx queue
1313 *
1314 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1315 * that send only immediate data (presently just the control queues) and
1316 * thus do not have any sk_buffs to release.
1317 */
1318 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1319 {
1320 unsigned int reclaim = q->processed - q->cleaned;
1321
1322 q->in_use -= reclaim;
1323 q->cleaned += reclaim;
1324 }
1325
1326 static inline int immediate(const struct sk_buff *skb)
1327 {
1328 return skb->len <= WR_LEN;
1329 }
1330
1331 /**
1332 * ctrl_xmit - send a packet through an SGE control Tx queue
1333 * @adap: the adapter
1334 * @q: the control queue
1335 * @skb: the packet
1336 *
1337 * Send a packet through an SGE control Tx queue. Packets sent through
1338 * a control queue must fit entirely as immediate data in a single Tx
1339 * descriptor and have no page fragments.
1340 */
1341 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1342 struct sk_buff *skb)
1343 {
1344 int ret;
1345 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1346
1347 if (unlikely(!immediate(skb))) {
1348 WARN_ON(1);
1349 dev_kfree_skb(skb);
1350 return NET_XMIT_SUCCESS;
1351 }
1352
1353 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1354 wrp->wr_lo = htonl(V_WR_TID(q->token));
1355
1356 spin_lock(&q->lock);
1357 again:reclaim_completed_tx_imm(q);
1358
1359 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1360 if (unlikely(ret)) {
1361 if (ret == 1) {
1362 spin_unlock(&q->lock);
1363 return NET_XMIT_CN;
1364 }
1365 goto again;
1366 }
1367
1368 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1369
1370 q->in_use++;
1371 if (++q->pidx >= q->size) {
1372 q->pidx = 0;
1373 q->gen ^= 1;
1374 }
1375 spin_unlock(&q->lock);
1376 wmb();
1377 t3_write_reg(adap, A_SG_KDOORBELL,
1378 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1379 return NET_XMIT_SUCCESS;
1380 }
1381
1382 /**
1383 * restart_ctrlq - restart a suspended control queue
1384 * @qs: the queue set cotaining the control queue
1385 *
1386 * Resumes transmission on a suspended Tx control queue.
1387 */
1388 static void restart_ctrlq(unsigned long data)
1389 {
1390 struct sk_buff *skb;
1391 struct sge_qset *qs = (struct sge_qset *)data;
1392 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1393
1394 spin_lock(&q->lock);
1395 again:reclaim_completed_tx_imm(q);
1396
1397 while (q->in_use < q->size &&
1398 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1399
1400 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1401
1402 if (++q->pidx >= q->size) {
1403 q->pidx = 0;
1404 q->gen ^= 1;
1405 }
1406 q->in_use++;
1407 }
1408
1409 if (!skb_queue_empty(&q->sendq)) {
1410 set_bit(TXQ_CTRL, &qs->txq_stopped);
1411 smp_mb__after_clear_bit();
1412
1413 if (should_restart_tx(q) &&
1414 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1415 goto again;
1416 q->stops++;
1417 }
1418
1419 spin_unlock(&q->lock);
1420 wmb();
1421 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1422 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1423 }
1424
1425 /*
1426 * Send a management message through control queue 0
1427 */
1428 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1429 {
1430 int ret;
1431 local_bh_disable();
1432 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1433 local_bh_enable();
1434
1435 return ret;
1436 }
1437
1438 /**
1439 * deferred_unmap_destructor - unmap a packet when it is freed
1440 * @skb: the packet
1441 *
1442 * This is the packet destructor used for Tx packets that need to remain
1443 * mapped until they are freed rather than until their Tx descriptors are
1444 * freed.
1445 */
1446 static void deferred_unmap_destructor(struct sk_buff *skb)
1447 {
1448 int i;
1449 const dma_addr_t *p;
1450 const struct skb_shared_info *si;
1451 const struct deferred_unmap_info *dui;
1452
1453 dui = (struct deferred_unmap_info *)skb->head;
1454 p = dui->addr;
1455
1456 if (skb->tail - skb->transport_header)
1457 pci_unmap_single(dui->pdev, *p++,
1458 skb->tail - skb->transport_header,
1459 PCI_DMA_TODEVICE);
1460
1461 si = skb_shinfo(skb);
1462 for (i = 0; i < si->nr_frags; i++)
1463 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1464 PCI_DMA_TODEVICE);
1465 }
1466
1467 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1468 const struct sg_ent *sgl, int sgl_flits)
1469 {
1470 dma_addr_t *p;
1471 struct deferred_unmap_info *dui;
1472
1473 dui = (struct deferred_unmap_info *)skb->head;
1474 dui->pdev = pdev;
1475 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1476 *p++ = be64_to_cpu(sgl->addr[0]);
1477 *p++ = be64_to_cpu(sgl->addr[1]);
1478 }
1479 if (sgl_flits)
1480 *p = be64_to_cpu(sgl->addr[0]);
1481 }
1482
1483 /**
1484 * write_ofld_wr - write an offload work request
1485 * @adap: the adapter
1486 * @skb: the packet to send
1487 * @q: the Tx queue
1488 * @pidx: index of the first Tx descriptor to write
1489 * @gen: the generation value to use
1490 * @ndesc: number of descriptors the packet will occupy
1491 *
1492 * Write an offload work request to send the supplied packet. The packet
1493 * data already carry the work request with most fields populated.
1494 */
1495 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1496 struct sge_txq *q, unsigned int pidx,
1497 unsigned int gen, unsigned int ndesc)
1498 {
1499 unsigned int sgl_flits, flits;
1500 struct work_request_hdr *from;
1501 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1502 struct tx_desc *d = &q->desc[pidx];
1503
1504 if (immediate(skb)) {
1505 q->sdesc[pidx].skb = NULL;
1506 write_imm(d, skb, skb->len, gen);
1507 return;
1508 }
1509
1510 /* Only TX_DATA builds SGLs */
1511
1512 from = (struct work_request_hdr *)skb->data;
1513 memcpy(&d->flit[1], &from[1],
1514 skb_transport_offset(skb) - sizeof(*from));
1515
1516 flits = skb_transport_offset(skb) / 8;
1517 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1518 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1519 skb->tail - skb->transport_header,
1520 adap->pdev);
1521 if (need_skb_unmap()) {
1522 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1523 skb->destructor = deferred_unmap_destructor;
1524 }
1525
1526 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1527 gen, from->wr_hi, from->wr_lo);
1528 }
1529
1530 /**
1531 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1532 * @skb: the packet
1533 *
1534 * Returns the number of Tx descriptors needed for the given offload
1535 * packet. These packets are already fully constructed.
1536 */
1537 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1538 {
1539 unsigned int flits, cnt;
1540
1541 if (skb->len <= WR_LEN)
1542 return 1; /* packet fits as immediate data */
1543
1544 flits = skb_transport_offset(skb) / 8; /* headers */
1545 cnt = skb_shinfo(skb)->nr_frags;
1546 if (skb->tail != skb->transport_header)
1547 cnt++;
1548 return flits_to_desc(flits + sgl_len(cnt));
1549 }
1550
1551 /**
1552 * ofld_xmit - send a packet through an offload queue
1553 * @adap: the adapter
1554 * @q: the Tx offload queue
1555 * @skb: the packet
1556 *
1557 * Send an offload packet through an SGE offload queue.
1558 */
1559 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1560 struct sk_buff *skb)
1561 {
1562 int ret;
1563 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1564
1565 spin_lock(&q->lock);
1566 again:reclaim_completed_tx(adap, q);
1567
1568 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1569 if (unlikely(ret)) {
1570 if (ret == 1) {
1571 skb->priority = ndesc; /* save for restart */
1572 spin_unlock(&q->lock);
1573 return NET_XMIT_CN;
1574 }
1575 goto again;
1576 }
1577
1578 gen = q->gen;
1579 q->in_use += ndesc;
1580 pidx = q->pidx;
1581 q->pidx += ndesc;
1582 if (q->pidx >= q->size) {
1583 q->pidx -= q->size;
1584 q->gen ^= 1;
1585 }
1586 spin_unlock(&q->lock);
1587
1588 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1589 check_ring_tx_db(adap, q);
1590 return NET_XMIT_SUCCESS;
1591 }
1592
1593 /**
1594 * restart_offloadq - restart a suspended offload queue
1595 * @qs: the queue set cotaining the offload queue
1596 *
1597 * Resumes transmission on a suspended Tx offload queue.
1598 */
1599 static void restart_offloadq(unsigned long data)
1600 {
1601 struct sk_buff *skb;
1602 struct sge_qset *qs = (struct sge_qset *)data;
1603 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1604 const struct port_info *pi = netdev_priv(qs->netdev);
1605 struct adapter *adap = pi->adapter;
1606
1607 spin_lock(&q->lock);
1608 again:reclaim_completed_tx(adap, q);
1609
1610 while ((skb = skb_peek(&q->sendq)) != NULL) {
1611 unsigned int gen, pidx;
1612 unsigned int ndesc = skb->priority;
1613
1614 if (unlikely(q->size - q->in_use < ndesc)) {
1615 set_bit(TXQ_OFLD, &qs->txq_stopped);
1616 smp_mb__after_clear_bit();
1617
1618 if (should_restart_tx(q) &&
1619 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1620 goto again;
1621 q->stops++;
1622 break;
1623 }
1624
1625 gen = q->gen;
1626 q->in_use += ndesc;
1627 pidx = q->pidx;
1628 q->pidx += ndesc;
1629 if (q->pidx >= q->size) {
1630 q->pidx -= q->size;
1631 q->gen ^= 1;
1632 }
1633 __skb_unlink(skb, &q->sendq);
1634 spin_unlock(&q->lock);
1635
1636 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1637 spin_lock(&q->lock);
1638 }
1639 spin_unlock(&q->lock);
1640
1641 #if USE_GTS
1642 set_bit(TXQ_RUNNING, &q->flags);
1643 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1644 #endif
1645 wmb();
1646 t3_write_reg(adap, A_SG_KDOORBELL,
1647 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1648 }
1649
1650 /**
1651 * queue_set - return the queue set a packet should use
1652 * @skb: the packet
1653 *
1654 * Maps a packet to the SGE queue set it should use. The desired queue
1655 * set is carried in bits 1-3 in the packet's priority.
1656 */
1657 static inline int queue_set(const struct sk_buff *skb)
1658 {
1659 return skb->priority >> 1;
1660 }
1661
1662 /**
1663 * is_ctrl_pkt - return whether an offload packet is a control packet
1664 * @skb: the packet
1665 *
1666 * Determines whether an offload packet should use an OFLD or a CTRL
1667 * Tx queue. This is indicated by bit 0 in the packet's priority.
1668 */
1669 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1670 {
1671 return skb->priority & 1;
1672 }
1673
1674 /**
1675 * t3_offload_tx - send an offload packet
1676 * @tdev: the offload device to send to
1677 * @skb: the packet
1678 *
1679 * Sends an offload packet. We use the packet priority to select the
1680 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1681 * should be sent as regular or control, bits 1-3 select the queue set.
1682 */
1683 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1684 {
1685 struct adapter *adap = tdev2adap(tdev);
1686 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1687
1688 if (unlikely(is_ctrl_pkt(skb)))
1689 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1690
1691 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1692 }
1693
1694 /**
1695 * offload_enqueue - add an offload packet to an SGE offload receive queue
1696 * @q: the SGE response queue
1697 * @skb: the packet
1698 *
1699 * Add a new offload packet to an SGE response queue's offload packet
1700 * queue. If the packet is the first on the queue it schedules the RX
1701 * softirq to process the queue.
1702 */
1703 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1704 {
1705 int was_empty = skb_queue_empty(&q->rx_queue);
1706
1707 __skb_queue_tail(&q->rx_queue, skb);
1708
1709 if (was_empty) {
1710 struct sge_qset *qs = rspq_to_qset(q);
1711
1712 napi_schedule(&qs->napi);
1713 }
1714 }
1715
1716 /**
1717 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1718 * @tdev: the offload device that will be receiving the packets
1719 * @q: the SGE response queue that assembled the bundle
1720 * @skbs: the partial bundle
1721 * @n: the number of packets in the bundle
1722 *
1723 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1724 */
1725 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1726 struct sge_rspq *q,
1727 struct sk_buff *skbs[], int n)
1728 {
1729 if (n) {
1730 q->offload_bundles++;
1731 tdev->recv(tdev, skbs, n);
1732 }
1733 }
1734
1735 /**
1736 * ofld_poll - NAPI handler for offload packets in interrupt mode
1737 * @dev: the network device doing the polling
1738 * @budget: polling budget
1739 *
1740 * The NAPI handler for offload packets when a response queue is serviced
1741 * by the hard interrupt handler, i.e., when it's operating in non-polling
1742 * mode. Creates small packet batches and sends them through the offload
1743 * receive handler. Batches need to be of modest size as we do prefetches
1744 * on the packets in each.
1745 */
1746 static int ofld_poll(struct napi_struct *napi, int budget)
1747 {
1748 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1749 struct sge_rspq *q = &qs->rspq;
1750 struct adapter *adapter = qs->adap;
1751 int work_done = 0;
1752
1753 while (work_done < budget) {
1754 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1755 struct sk_buff_head queue;
1756 int ngathered;
1757
1758 spin_lock_irq(&q->lock);
1759 __skb_queue_head_init(&queue);
1760 skb_queue_splice_init(&q->rx_queue, &queue);
1761 if (skb_queue_empty(&queue)) {
1762 napi_complete(napi);
1763 spin_unlock_irq(&q->lock);
1764 return work_done;
1765 }
1766 spin_unlock_irq(&q->lock);
1767
1768 ngathered = 0;
1769 skb_queue_walk_safe(&queue, skb, tmp) {
1770 if (work_done >= budget)
1771 break;
1772 work_done++;
1773
1774 __skb_unlink(skb, &queue);
1775 prefetch(skb->data);
1776 skbs[ngathered] = skb;
1777 if (++ngathered == RX_BUNDLE_SIZE) {
1778 q->offload_bundles++;
1779 adapter->tdev.recv(&adapter->tdev, skbs,
1780 ngathered);
1781 ngathered = 0;
1782 }
1783 }
1784 if (!skb_queue_empty(&queue)) {
1785 /* splice remaining packets back onto Rx queue */
1786 spin_lock_irq(&q->lock);
1787 skb_queue_splice(&queue, &q->rx_queue);
1788 spin_unlock_irq(&q->lock);
1789 }
1790 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1791 }
1792
1793 return work_done;
1794 }
1795
1796 /**
1797 * rx_offload - process a received offload packet
1798 * @tdev: the offload device receiving the packet
1799 * @rq: the response queue that received the packet
1800 * @skb: the packet
1801 * @rx_gather: a gather list of packets if we are building a bundle
1802 * @gather_idx: index of the next available slot in the bundle
1803 *
1804 * Process an ingress offload pakcet and add it to the offload ingress
1805 * queue. Returns the index of the next available slot in the bundle.
1806 */
1807 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1808 struct sk_buff *skb, struct sk_buff *rx_gather[],
1809 unsigned int gather_idx)
1810 {
1811 skb_reset_mac_header(skb);
1812 skb_reset_network_header(skb);
1813 skb_reset_transport_header(skb);
1814
1815 if (rq->polling) {
1816 rx_gather[gather_idx++] = skb;
1817 if (gather_idx == RX_BUNDLE_SIZE) {
1818 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1819 gather_idx = 0;
1820 rq->offload_bundles++;
1821 }
1822 } else
1823 offload_enqueue(rq, skb);
1824
1825 return gather_idx;
1826 }
1827
1828 /**
1829 * restart_tx - check whether to restart suspended Tx queues
1830 * @qs: the queue set to resume
1831 *
1832 * Restarts suspended Tx queues of an SGE queue set if they have enough
1833 * free resources to resume operation.
1834 */
1835 static void restart_tx(struct sge_qset *qs)
1836 {
1837 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1838 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1839 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1840 qs->txq[TXQ_ETH].restarts++;
1841 if (netif_running(qs->netdev))
1842 netif_wake_queue(qs->netdev);
1843 }
1844
1845 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1846 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1847 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1848 qs->txq[TXQ_OFLD].restarts++;
1849 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1850 }
1851 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1852 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1853 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1854 qs->txq[TXQ_CTRL].restarts++;
1855 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1856 }
1857 }
1858
1859 /**
1860 * rx_eth - process an ingress ethernet packet
1861 * @adap: the adapter
1862 * @rq: the response queue that received the packet
1863 * @skb: the packet
1864 * @pad: amount of padding at the start of the buffer
1865 *
1866 * Process an ingress ethernet pakcet and deliver it to the stack.
1867 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1868 * if it was immediate data in a response.
1869 */
1870 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
1871 struct sk_buff *skb, int pad, int lro)
1872 {
1873 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
1874 struct sge_qset *qs = rspq_to_qset(rq);
1875 struct port_info *pi;
1876
1877 skb_pull(skb, sizeof(*p) + pad);
1878 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
1879 pi = netdev_priv(skb->dev);
1880 if (pi->rx_csum_offload && p->csum_valid && p->csum == htons(0xffff) &&
1881 !p->fragment) {
1882 rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1883 skb->ip_summed = CHECKSUM_UNNECESSARY;
1884 } else
1885 skb->ip_summed = CHECKSUM_NONE;
1886
1887 if (unlikely(p->vlan_valid)) {
1888 struct vlan_group *grp = pi->vlan_grp;
1889
1890 qs->port_stats[SGE_PSTAT_VLANEX]++;
1891 if (likely(grp))
1892 if (lro)
1893 lro_vlan_hwaccel_receive_skb(&qs->lro_mgr, skb,
1894 grp,
1895 ntohs(p->vlan),
1896 p);
1897 else
1898 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1899 rq->polling);
1900 else
1901 dev_kfree_skb_any(skb);
1902 } else if (rq->polling) {
1903 if (lro)
1904 lro_receive_skb(&qs->lro_mgr, skb, p);
1905 else
1906 netif_receive_skb(skb);
1907 } else
1908 netif_rx(skb);
1909 }
1910
1911 static inline int is_eth_tcp(u32 rss)
1912 {
1913 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
1914 }
1915
1916 /**
1917 * lro_frame_ok - check if an ingress packet is eligible for LRO
1918 * @p: the CPL header of the packet
1919 *
1920 * Returns true if a received packet is eligible for LRO.
1921 * The following conditions must be true:
1922 * - packet is TCP/IP Ethernet II (checked elsewhere)
1923 * - not an IP fragment
1924 * - no IP options
1925 * - TCP/IP checksums are correct
1926 * - the packet is for this host
1927 */
1928 static inline int lro_frame_ok(const struct cpl_rx_pkt *p)
1929 {
1930 const struct ethhdr *eh = (struct ethhdr *)(p + 1);
1931 const struct iphdr *ih = (struct iphdr *)(eh + 1);
1932
1933 return (*((u8 *)p + 1) & 0x90) == 0x10 && p->csum == htons(0xffff) &&
1934 eh->h_proto == htons(ETH_P_IP) && ih->ihl == (sizeof(*ih) >> 2);
1935 }
1936
1937 static int t3_get_lro_header(void **eh, void **iph, void **tcph,
1938 u64 *hdr_flags, void *priv)
1939 {
1940 const struct cpl_rx_pkt *cpl = priv;
1941
1942 if (!lro_frame_ok(cpl))
1943 return -1;
1944
1945 *eh = (struct ethhdr *)(cpl + 1);
1946 *iph = (struct iphdr *)((struct ethhdr *)*eh + 1);
1947 *tcph = (struct tcphdr *)((struct iphdr *)*iph + 1);
1948
1949 *hdr_flags = LRO_IPV4 | LRO_TCP;
1950 return 0;
1951 }
1952
1953 static int t3_get_skb_header(struct sk_buff *skb,
1954 void **iph, void **tcph, u64 *hdr_flags,
1955 void *priv)
1956 {
1957 void *eh;
1958
1959 return t3_get_lro_header(&eh, iph, tcph, hdr_flags, priv);
1960 }
1961
1962 static int t3_get_frag_header(struct skb_frag_struct *frag, void **eh,
1963 void **iph, void **tcph, u64 *hdr_flags,
1964 void *priv)
1965 {
1966 return t3_get_lro_header(eh, iph, tcph, hdr_flags, priv);
1967 }
1968
1969 /**
1970 * lro_add_page - add a page chunk to an LRO session
1971 * @adap: the adapter
1972 * @qs: the associated queue set
1973 * @fl: the free list containing the page chunk to add
1974 * @len: packet length
1975 * @complete: Indicates the last fragment of a frame
1976 *
1977 * Add a received packet contained in a page chunk to an existing LRO
1978 * session.
1979 */
1980 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
1981 struct sge_fl *fl, int len, int complete)
1982 {
1983 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
1984 struct cpl_rx_pkt *cpl;
1985 struct skb_frag_struct *rx_frag = qs->lro_frag_tbl;
1986 int nr_frags = qs->lro_nfrags, frag_len = qs->lro_frag_len;
1987 int offset = 0;
1988
1989 if (!nr_frags) {
1990 offset = 2 + sizeof(struct cpl_rx_pkt);
1991 qs->lro_va = cpl = sd->pg_chunk.va + 2;
1992 }
1993
1994 fl->credits--;
1995
1996 len -= offset;
1997 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
1998 fl->buf_size, PCI_DMA_FROMDEVICE);
1999
2000 rx_frag += nr_frags;
2001 rx_frag->page = sd->pg_chunk.page;
2002 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2003 rx_frag->size = len;
2004 frag_len += len;
2005 qs->lro_nfrags++;
2006 qs->lro_frag_len = frag_len;
2007
2008 if (!complete)
2009 return;
2010
2011 qs->lro_nfrags = qs->lro_frag_len = 0;
2012 cpl = qs->lro_va;
2013
2014 if (unlikely(cpl->vlan_valid)) {
2015 struct net_device *dev = qs->netdev;
2016 struct port_info *pi = netdev_priv(dev);
2017 struct vlan_group *grp = pi->vlan_grp;
2018
2019 if (likely(grp != NULL)) {
2020 lro_vlan_hwaccel_receive_frags(&qs->lro_mgr,
2021 qs->lro_frag_tbl,
2022 frag_len, frag_len,
2023 grp, ntohs(cpl->vlan),
2024 cpl, 0);
2025 return;
2026 }
2027 }
2028 lro_receive_frags(&qs->lro_mgr, qs->lro_frag_tbl,
2029 frag_len, frag_len, cpl, 0);
2030 }
2031
2032 /**
2033 * init_lro_mgr - initialize a LRO manager object
2034 * @lro_mgr: the LRO manager object
2035 */
2036 static void init_lro_mgr(struct sge_qset *qs, struct net_lro_mgr *lro_mgr)
2037 {
2038 lro_mgr->dev = qs->netdev;
2039 lro_mgr->features = LRO_F_NAPI;
2040 lro_mgr->ip_summed = CHECKSUM_UNNECESSARY;
2041 lro_mgr->ip_summed_aggr = CHECKSUM_UNNECESSARY;
2042 lro_mgr->max_desc = T3_MAX_LRO_SES;
2043 lro_mgr->lro_arr = qs->lro_desc;
2044 lro_mgr->get_frag_header = t3_get_frag_header;
2045 lro_mgr->get_skb_header = t3_get_skb_header;
2046 lro_mgr->max_aggr = T3_MAX_LRO_MAX_PKTS;
2047 if (lro_mgr->max_aggr > MAX_SKB_FRAGS)
2048 lro_mgr->max_aggr = MAX_SKB_FRAGS;
2049 }
2050
2051 /**
2052 * handle_rsp_cntrl_info - handles control information in a response
2053 * @qs: the queue set corresponding to the response
2054 * @flags: the response control flags
2055 *
2056 * Handles the control information of an SGE response, such as GTS
2057 * indications and completion credits for the queue set's Tx queues.
2058 * HW coalesces credits, we don't do any extra SW coalescing.
2059 */
2060 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2061 {
2062 unsigned int credits;
2063
2064 #if USE_GTS
2065 if (flags & F_RSPD_TXQ0_GTS)
2066 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2067 #endif
2068
2069 credits = G_RSPD_TXQ0_CR(flags);
2070 if (credits)
2071 qs->txq[TXQ_ETH].processed += credits;
2072
2073 credits = G_RSPD_TXQ2_CR(flags);
2074 if (credits)
2075 qs->txq[TXQ_CTRL].processed += credits;
2076
2077 # if USE_GTS
2078 if (flags & F_RSPD_TXQ1_GTS)
2079 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2080 # endif
2081 credits = G_RSPD_TXQ1_CR(flags);
2082 if (credits)
2083 qs->txq[TXQ_OFLD].processed += credits;
2084 }
2085
2086 /**
2087 * check_ring_db - check if we need to ring any doorbells
2088 * @adapter: the adapter
2089 * @qs: the queue set whose Tx queues are to be examined
2090 * @sleeping: indicates which Tx queue sent GTS
2091 *
2092 * Checks if some of a queue set's Tx queues need to ring their doorbells
2093 * to resume transmission after idling while they still have unprocessed
2094 * descriptors.
2095 */
2096 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2097 unsigned int sleeping)
2098 {
2099 if (sleeping & F_RSPD_TXQ0_GTS) {
2100 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2101
2102 if (txq->cleaned + txq->in_use != txq->processed &&
2103 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2104 set_bit(TXQ_RUNNING, &txq->flags);
2105 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2106 V_EGRCNTX(txq->cntxt_id));
2107 }
2108 }
2109
2110 if (sleeping & F_RSPD_TXQ1_GTS) {
2111 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2112
2113 if (txq->cleaned + txq->in_use != txq->processed &&
2114 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2115 set_bit(TXQ_RUNNING, &txq->flags);
2116 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2117 V_EGRCNTX(txq->cntxt_id));
2118 }
2119 }
2120 }
2121
2122 /**
2123 * is_new_response - check if a response is newly written
2124 * @r: the response descriptor
2125 * @q: the response queue
2126 *
2127 * Returns true if a response descriptor contains a yet unprocessed
2128 * response.
2129 */
2130 static inline int is_new_response(const struct rsp_desc *r,
2131 const struct sge_rspq *q)
2132 {
2133 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2134 }
2135
2136 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2137 {
2138 q->pg_skb = NULL;
2139 q->rx_recycle_buf = 0;
2140 }
2141
2142 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2143 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2144 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2145 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2146 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2147
2148 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2149 #define NOMEM_INTR_DELAY 2500
2150
2151 /**
2152 * process_responses - process responses from an SGE response queue
2153 * @adap: the adapter
2154 * @qs: the queue set to which the response queue belongs
2155 * @budget: how many responses can be processed in this round
2156 *
2157 * Process responses from an SGE response queue up to the supplied budget.
2158 * Responses include received packets as well as credits and other events
2159 * for the queues that belong to the response queue's queue set.
2160 * A negative budget is effectively unlimited.
2161 *
2162 * Additionally choose the interrupt holdoff time for the next interrupt
2163 * on this queue. If the system is under memory shortage use a fairly
2164 * long delay to help recovery.
2165 */
2166 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2167 int budget)
2168 {
2169 struct sge_rspq *q = &qs->rspq;
2170 struct rsp_desc *r = &q->desc[q->cidx];
2171 int budget_left = budget;
2172 unsigned int sleeping = 0;
2173 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2174 int ngathered = 0;
2175
2176 q->next_holdoff = q->holdoff_tmr;
2177
2178 while (likely(budget_left && is_new_response(r, q))) {
2179 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
2180 struct sk_buff *skb = NULL;
2181 u32 len, flags = ntohl(r->flags);
2182 __be32 rss_hi = *(const __be32 *)r,
2183 rss_lo = r->rss_hdr.rss_hash_val;
2184
2185 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2186
2187 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2188 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2189 if (!skb)
2190 goto no_mem;
2191
2192 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2193 skb->data[0] = CPL_ASYNC_NOTIF;
2194 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2195 q->async_notif++;
2196 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2197 skb = get_imm_packet(r);
2198 if (unlikely(!skb)) {
2199 no_mem:
2200 q->next_holdoff = NOMEM_INTR_DELAY;
2201 q->nomem++;
2202 /* consume one credit since we tried */
2203 budget_left--;
2204 break;
2205 }
2206 q->imm_data++;
2207 ethpad = 0;
2208 } else if ((len = ntohl(r->len_cq)) != 0) {
2209 struct sge_fl *fl;
2210
2211 if (eth)
2212 lro = qs->lro_enabled && is_eth_tcp(rss_hi);
2213
2214 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2215 if (fl->use_pages) {
2216 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2217
2218 prefetch(addr);
2219 #if L1_CACHE_BYTES < 128
2220 prefetch(addr + L1_CACHE_BYTES);
2221 #endif
2222 __refill_fl(adap, fl);
2223 if (lro > 0) {
2224 lro_add_page(adap, qs, fl,
2225 G_RSPD_LEN(len),
2226 flags & F_RSPD_EOP);
2227 goto next_fl;
2228 }
2229
2230 skb = get_packet_pg(adap, fl, q,
2231 G_RSPD_LEN(len),
2232 eth ?
2233 SGE_RX_DROP_THRES : 0);
2234 q->pg_skb = skb;
2235 } else
2236 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2237 eth ? SGE_RX_DROP_THRES : 0);
2238 if (unlikely(!skb)) {
2239 if (!eth)
2240 goto no_mem;
2241 q->rx_drops++;
2242 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2243 __skb_pull(skb, 2);
2244 next_fl:
2245 if (++fl->cidx == fl->size)
2246 fl->cidx = 0;
2247 } else
2248 q->pure_rsps++;
2249
2250 if (flags & RSPD_CTRL_MASK) {
2251 sleeping |= flags & RSPD_GTS_MASK;
2252 handle_rsp_cntrl_info(qs, flags);
2253 }
2254
2255 r++;
2256 if (unlikely(++q->cidx == q->size)) {
2257 q->cidx = 0;
2258 q->gen ^= 1;
2259 r = q->desc;
2260 }
2261 prefetch(r);
2262
2263 if (++q->credits >= (q->size / 4)) {
2264 refill_rspq(adap, q, q->credits);
2265 q->credits = 0;
2266 }
2267
2268 packet_complete = flags &
2269 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2270 F_RSPD_ASYNC_NOTIF);
2271
2272 if (skb != NULL && packet_complete) {
2273 if (eth)
2274 rx_eth(adap, q, skb, ethpad, lro);
2275 else {
2276 q->offload_pkts++;
2277 /* Preserve the RSS info in csum & priority */
2278 skb->csum = rss_hi;
2279 skb->priority = rss_lo;
2280 ngathered = rx_offload(&adap->tdev, q, skb,
2281 offload_skbs,
2282 ngathered);
2283 }
2284
2285 if (flags & F_RSPD_EOP)
2286 clear_rspq_bufstate(q);
2287 }
2288 --budget_left;
2289 }
2290
2291 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2292 lro_flush_all(&qs->lro_mgr);
2293 qs->port_stats[SGE_PSTAT_LRO_AGGR] = qs->lro_mgr.stats.aggregated;
2294 qs->port_stats[SGE_PSTAT_LRO_FLUSHED] = qs->lro_mgr.stats.flushed;
2295 qs->port_stats[SGE_PSTAT_LRO_NO_DESC] = qs->lro_mgr.stats.no_desc;
2296
2297 if (sleeping)
2298 check_ring_db(adap, qs, sleeping);
2299
2300 smp_mb(); /* commit Tx queue .processed updates */
2301 if (unlikely(qs->txq_stopped != 0))
2302 restart_tx(qs);
2303
2304 budget -= budget_left;
2305 return budget;
2306 }
2307
2308 static inline int is_pure_response(const struct rsp_desc *r)
2309 {
2310 u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2311
2312 return (n | r->len_cq) == 0;
2313 }
2314
2315 /**
2316 * napi_rx_handler - the NAPI handler for Rx processing
2317 * @napi: the napi instance
2318 * @budget: how many packets we can process in this round
2319 *
2320 * Handler for new data events when using NAPI.
2321 */
2322 static int napi_rx_handler(struct napi_struct *napi, int budget)
2323 {
2324 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2325 struct adapter *adap = qs->adap;
2326 int work_done = process_responses(adap, qs, budget);
2327
2328 if (likely(work_done < budget)) {
2329 napi_complete(napi);
2330
2331 /*
2332 * Because we don't atomically flush the following
2333 * write it is possible that in very rare cases it can
2334 * reach the device in a way that races with a new
2335 * response being written plus an error interrupt
2336 * causing the NAPI interrupt handler below to return
2337 * unhandled status to the OS. To protect against
2338 * this would require flushing the write and doing
2339 * both the write and the flush with interrupts off.
2340 * Way too expensive and unjustifiable given the
2341 * rarity of the race.
2342 *
2343 * The race cannot happen at all with MSI-X.
2344 */
2345 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2346 V_NEWTIMER(qs->rspq.next_holdoff) |
2347 V_NEWINDEX(qs->rspq.cidx));
2348 }
2349 return work_done;
2350 }
2351
2352 /*
2353 * Returns true if the device is already scheduled for polling.
2354 */
2355 static inline int napi_is_scheduled(struct napi_struct *napi)
2356 {
2357 return test_bit(NAPI_STATE_SCHED, &napi->state);
2358 }
2359
2360 /**
2361 * process_pure_responses - process pure responses from a response queue
2362 * @adap: the adapter
2363 * @qs: the queue set owning the response queue
2364 * @r: the first pure response to process
2365 *
2366 * A simpler version of process_responses() that handles only pure (i.e.,
2367 * non data-carrying) responses. Such respones are too light-weight to
2368 * justify calling a softirq under NAPI, so we handle them specially in
2369 * the interrupt handler. The function is called with a pointer to a
2370 * response, which the caller must ensure is a valid pure response.
2371 *
2372 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2373 */
2374 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2375 struct rsp_desc *r)
2376 {
2377 struct sge_rspq *q = &qs->rspq;
2378 unsigned int sleeping = 0;
2379
2380 do {
2381 u32 flags = ntohl(r->flags);
2382
2383 r++;
2384 if (unlikely(++q->cidx == q->size)) {
2385 q->cidx = 0;
2386 q->gen ^= 1;
2387 r = q->desc;
2388 }
2389 prefetch(r);
2390
2391 if (flags & RSPD_CTRL_MASK) {
2392 sleeping |= flags & RSPD_GTS_MASK;
2393 handle_rsp_cntrl_info(qs, flags);
2394 }
2395
2396 q->pure_rsps++;
2397 if (++q->credits >= (q->size / 4)) {
2398 refill_rspq(adap, q, q->credits);
2399 q->credits = 0;
2400 }
2401 } while (is_new_response(r, q) && is_pure_response(r));
2402
2403 if (sleeping)
2404 check_ring_db(adap, qs, sleeping);
2405
2406 smp_mb(); /* commit Tx queue .processed updates */
2407 if (unlikely(qs->txq_stopped != 0))
2408 restart_tx(qs);
2409
2410 return is_new_response(r, q);
2411 }
2412
2413 /**
2414 * handle_responses - decide what to do with new responses in NAPI mode
2415 * @adap: the adapter
2416 * @q: the response queue
2417 *
2418 * This is used by the NAPI interrupt handlers to decide what to do with
2419 * new SGE responses. If there are no new responses it returns -1. If
2420 * there are new responses and they are pure (i.e., non-data carrying)
2421 * it handles them straight in hard interrupt context as they are very
2422 * cheap and don't deliver any packets. Finally, if there are any data
2423 * signaling responses it schedules the NAPI handler. Returns 1 if it
2424 * schedules NAPI, 0 if all new responses were pure.
2425 *
2426 * The caller must ascertain NAPI is not already running.
2427 */
2428 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2429 {
2430 struct sge_qset *qs = rspq_to_qset(q);
2431 struct rsp_desc *r = &q->desc[q->cidx];
2432
2433 if (!is_new_response(r, q))
2434 return -1;
2435 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2436 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2437 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2438 return 0;
2439 }
2440 napi_schedule(&qs->napi);
2441 return 1;
2442 }
2443
2444 /*
2445 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2446 * (i.e., response queue serviced in hard interrupt).
2447 */
2448 irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2449 {
2450 struct sge_qset *qs = cookie;
2451 struct adapter *adap = qs->adap;
2452 struct sge_rspq *q = &qs->rspq;
2453
2454 spin_lock(&q->lock);
2455 if (process_responses(adap, qs, -1) == 0)
2456 q->unhandled_irqs++;
2457 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2458 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2459 spin_unlock(&q->lock);
2460 return IRQ_HANDLED;
2461 }
2462
2463 /*
2464 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2465 * (i.e., response queue serviced by NAPI polling).
2466 */
2467 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2468 {
2469 struct sge_qset *qs = cookie;
2470 struct sge_rspq *q = &qs->rspq;
2471
2472 spin_lock(&q->lock);
2473
2474 if (handle_responses(qs->adap, q) < 0)
2475 q->unhandled_irqs++;
2476 spin_unlock(&q->lock);
2477 return IRQ_HANDLED;
2478 }
2479
2480 /*
2481 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2482 * SGE response queues as well as error and other async events as they all use
2483 * the same MSI vector. We use one SGE response queue per port in this mode
2484 * and protect all response queues with queue 0's lock.
2485 */
2486 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2487 {
2488 int new_packets = 0;
2489 struct adapter *adap = cookie;
2490 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2491
2492 spin_lock(&q->lock);
2493
2494 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2495 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2496 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2497 new_packets = 1;
2498 }
2499
2500 if (adap->params.nports == 2 &&
2501 process_responses(adap, &adap->sge.qs[1], -1)) {
2502 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2503
2504 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2505 V_NEWTIMER(q1->next_holdoff) |
2506 V_NEWINDEX(q1->cidx));
2507 new_packets = 1;
2508 }
2509
2510 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2511 q->unhandled_irqs++;
2512
2513 spin_unlock(&q->lock);
2514 return IRQ_HANDLED;
2515 }
2516
2517 static int rspq_check_napi(struct sge_qset *qs)
2518 {
2519 struct sge_rspq *q = &qs->rspq;
2520
2521 if (!napi_is_scheduled(&qs->napi) &&
2522 is_new_response(&q->desc[q->cidx], q)) {
2523 napi_schedule(&qs->napi);
2524 return 1;
2525 }
2526 return 0;
2527 }
2528
2529 /*
2530 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2531 * by NAPI polling). Handles data events from SGE response queues as well as
2532 * error and other async events as they all use the same MSI vector. We use
2533 * one SGE response queue per port in this mode and protect all response
2534 * queues with queue 0's lock.
2535 */
2536 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2537 {
2538 int new_packets;
2539 struct adapter *adap = cookie;
2540 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2541
2542 spin_lock(&q->lock);
2543
2544 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2545 if (adap->params.nports == 2)
2546 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2547 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2548 q->unhandled_irqs++;
2549
2550 spin_unlock(&q->lock);
2551 return IRQ_HANDLED;
2552 }
2553
2554 /*
2555 * A helper function that processes responses and issues GTS.
2556 */
2557 static inline int process_responses_gts(struct adapter *adap,
2558 struct sge_rspq *rq)
2559 {
2560 int work;
2561
2562 work = process_responses(adap, rspq_to_qset(rq), -1);
2563 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2564 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2565 return work;
2566 }
2567
2568 /*
2569 * The legacy INTx interrupt handler. This needs to handle data events from
2570 * SGE response queues as well as error and other async events as they all use
2571 * the same interrupt pin. We use one SGE response queue per port in this mode
2572 * and protect all response queues with queue 0's lock.
2573 */
2574 static irqreturn_t t3_intr(int irq, void *cookie)
2575 {
2576 int work_done, w0, w1;
2577 struct adapter *adap = cookie;
2578 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2579 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2580
2581 spin_lock(&q0->lock);
2582
2583 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2584 w1 = adap->params.nports == 2 &&
2585 is_new_response(&q1->desc[q1->cidx], q1);
2586
2587 if (likely(w0 | w1)) {
2588 t3_write_reg(adap, A_PL_CLI, 0);
2589 t3_read_reg(adap, A_PL_CLI); /* flush */
2590
2591 if (likely(w0))
2592 process_responses_gts(adap, q0);
2593
2594 if (w1)
2595 process_responses_gts(adap, q1);
2596
2597 work_done = w0 | w1;
2598 } else
2599 work_done = t3_slow_intr_handler(adap);
2600
2601 spin_unlock(&q0->lock);
2602 return IRQ_RETVAL(work_done != 0);
2603 }
2604
2605 /*
2606 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2607 * Handles data events from SGE response queues as well as error and other
2608 * async events as they all use the same interrupt pin. We use one SGE
2609 * response queue per port in this mode and protect all response queues with
2610 * queue 0's lock.
2611 */
2612 static irqreturn_t t3b_intr(int irq, void *cookie)
2613 {
2614 u32 map;
2615 struct adapter *adap = cookie;
2616 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2617
2618 t3_write_reg(adap, A_PL_CLI, 0);
2619 map = t3_read_reg(adap, A_SG_DATA_INTR);
2620
2621 if (unlikely(!map)) /* shared interrupt, most likely */
2622 return IRQ_NONE;
2623
2624 spin_lock(&q0->lock);
2625
2626 if (unlikely(map & F_ERRINTR))
2627 t3_slow_intr_handler(adap);
2628
2629 if (likely(map & 1))
2630 process_responses_gts(adap, q0);
2631
2632 if (map & 2)
2633 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2634
2635 spin_unlock(&q0->lock);
2636 return IRQ_HANDLED;
2637 }
2638
2639 /*
2640 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2641 * Handles data events from SGE response queues as well as error and other
2642 * async events as they all use the same interrupt pin. We use one SGE
2643 * response queue per port in this mode and protect all response queues with
2644 * queue 0's lock.
2645 */
2646 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2647 {
2648 u32 map;
2649 struct adapter *adap = cookie;
2650 struct sge_qset *qs0 = &adap->sge.qs[0];
2651 struct sge_rspq *q0 = &qs0->rspq;
2652
2653 t3_write_reg(adap, A_PL_CLI, 0);
2654 map = t3_read_reg(adap, A_SG_DATA_INTR);
2655
2656 if (unlikely(!map)) /* shared interrupt, most likely */
2657 return IRQ_NONE;
2658
2659 spin_lock(&q0->lock);
2660
2661 if (unlikely(map & F_ERRINTR))
2662 t3_slow_intr_handler(adap);
2663
2664 if (likely(map & 1))
2665 napi_schedule(&qs0->napi);
2666
2667 if (map & 2)
2668 napi_schedule(&adap->sge.qs[1].napi);
2669
2670 spin_unlock(&q0->lock);
2671 return IRQ_HANDLED;
2672 }
2673
2674 /**
2675 * t3_intr_handler - select the top-level interrupt handler
2676 * @adap: the adapter
2677 * @polling: whether using NAPI to service response queues
2678 *
2679 * Selects the top-level interrupt handler based on the type of interrupts
2680 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2681 * response queues.
2682 */
2683 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2684 {
2685 if (adap->flags & USING_MSIX)
2686 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2687 if (adap->flags & USING_MSI)
2688 return polling ? t3_intr_msi_napi : t3_intr_msi;
2689 if (adap->params.rev > 0)
2690 return polling ? t3b_intr_napi : t3b_intr;
2691 return t3_intr;
2692 }
2693
2694 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2695 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2696 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2697 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2698 F_HIRCQPARITYERROR)
2699 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2700 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2701 F_RSPQDISABLED)
2702
2703 /**
2704 * t3_sge_err_intr_handler - SGE async event interrupt handler
2705 * @adapter: the adapter
2706 *
2707 * Interrupt handler for SGE asynchronous (non-data) events.
2708 */
2709 void t3_sge_err_intr_handler(struct adapter *adapter)
2710 {
2711 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2712
2713 if (status & SGE_PARERR)
2714 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2715 status & SGE_PARERR);
2716 if (status & SGE_FRAMINGERR)
2717 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2718 status & SGE_FRAMINGERR);
2719
2720 if (status & F_RSPQCREDITOVERFOW)
2721 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2722
2723 if (status & F_RSPQDISABLED) {
2724 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2725
2726 CH_ALERT(adapter,
2727 "packet delivered to disabled response queue "
2728 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2729 }
2730
2731 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2732 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2733 status & F_HIPIODRBDROPERR ? "high" : "lo");
2734
2735 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2736 if (status & SGE_FATALERR)
2737 t3_fatal_err(adapter);
2738 }
2739
2740 /**
2741 * sge_timer_cb - perform periodic maintenance of an SGE qset
2742 * @data: the SGE queue set to maintain
2743 *
2744 * Runs periodically from a timer to perform maintenance of an SGE queue
2745 * set. It performs two tasks:
2746 *
2747 * a) Cleans up any completed Tx descriptors that may still be pending.
2748 * Normal descriptor cleanup happens when new packets are added to a Tx
2749 * queue so this timer is relatively infrequent and does any cleanup only
2750 * if the Tx queue has not seen any new packets in a while. We make a
2751 * best effort attempt to reclaim descriptors, in that we don't wait
2752 * around if we cannot get a queue's lock (which most likely is because
2753 * someone else is queueing new packets and so will also handle the clean
2754 * up). Since control queues use immediate data exclusively we don't
2755 * bother cleaning them up here.
2756 *
2757 * b) Replenishes Rx queues that have run out due to memory shortage.
2758 * Normally new Rx buffers are added when existing ones are consumed but
2759 * when out of memory a queue can become empty. We try to add only a few
2760 * buffers here, the queue will be replenished fully as these new buffers
2761 * are used up if memory shortage has subsided.
2762 */
2763 static void sge_timer_cb(unsigned long data)
2764 {
2765 spinlock_t *lock;
2766 struct sge_qset *qs = (struct sge_qset *)data;
2767 struct adapter *adap = qs->adap;
2768
2769 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2770 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2771 spin_unlock(&qs->txq[TXQ_ETH].lock);
2772 }
2773 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2774 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2775 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2776 }
2777 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
2778 &adap->sge.qs[0].rspq.lock;
2779 if (spin_trylock_irq(lock)) {
2780 if (!napi_is_scheduled(&qs->napi)) {
2781 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2782
2783 if (qs->fl[0].credits < qs->fl[0].size)
2784 __refill_fl(adap, &qs->fl[0]);
2785 if (qs->fl[1].credits < qs->fl[1].size)
2786 __refill_fl(adap, &qs->fl[1]);
2787
2788 if (status & (1 << qs->rspq.cntxt_id)) {
2789 qs->rspq.starved++;
2790 if (qs->rspq.credits) {
2791 refill_rspq(adap, &qs->rspq, 1);
2792 qs->rspq.credits--;
2793 qs->rspq.restarted++;
2794 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2795 1 << qs->rspq.cntxt_id);
2796 }
2797 }
2798 }
2799 spin_unlock_irq(lock);
2800 }
2801 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2802 }
2803
2804 /**
2805 * t3_update_qset_coalesce - update coalescing settings for a queue set
2806 * @qs: the SGE queue set
2807 * @p: new queue set parameters
2808 *
2809 * Update the coalescing settings for an SGE queue set. Nothing is done
2810 * if the queue set is not initialized yet.
2811 */
2812 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2813 {
2814 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2815 qs->rspq.polling = p->polling;
2816 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2817 }
2818
2819 /**
2820 * t3_sge_alloc_qset - initialize an SGE queue set
2821 * @adapter: the adapter
2822 * @id: the queue set id
2823 * @nports: how many Ethernet ports will be using this queue set
2824 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2825 * @p: configuration parameters for this queue set
2826 * @ntxq: number of Tx queues for the queue set
2827 * @netdev: net device associated with this queue set
2828 *
2829 * Allocate resources and initialize an SGE queue set. A queue set
2830 * comprises a response queue, two Rx free-buffer queues, and up to 3
2831 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2832 * queue, offload queue, and control queue.
2833 */
2834 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2835 int irq_vec_idx, const struct qset_params *p,
2836 int ntxq, struct net_device *dev)
2837 {
2838 int i, avail, ret = -ENOMEM;
2839 struct sge_qset *q = &adapter->sge.qs[id];
2840 struct net_lro_mgr *lro_mgr = &q->lro_mgr;
2841
2842 init_qset_cntxt(q, id);
2843 setup_timer(&q->tx_reclaim_timer, sge_timer_cb, (unsigned long)q);
2844
2845 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2846 sizeof(struct rx_desc),
2847 sizeof(struct rx_sw_desc),
2848 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2849 if (!q->fl[0].desc)
2850 goto err;
2851
2852 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2853 sizeof(struct rx_desc),
2854 sizeof(struct rx_sw_desc),
2855 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2856 if (!q->fl[1].desc)
2857 goto err;
2858
2859 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2860 sizeof(struct rsp_desc), 0,
2861 &q->rspq.phys_addr, NULL);
2862 if (!q->rspq.desc)
2863 goto err;
2864
2865 for (i = 0; i < ntxq; ++i) {
2866 /*
2867 * The control queue always uses immediate data so does not
2868 * need to keep track of any sk_buffs.
2869 */
2870 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2871
2872 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2873 sizeof(struct tx_desc), sz,
2874 &q->txq[i].phys_addr,
2875 &q->txq[i].sdesc);
2876 if (!q->txq[i].desc)
2877 goto err;
2878
2879 q->txq[i].gen = 1;
2880 q->txq[i].size = p->txq_size[i];
2881 spin_lock_init(&q->txq[i].lock);
2882 skb_queue_head_init(&q->txq[i].sendq);
2883 }
2884
2885 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2886 (unsigned long)q);
2887 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2888 (unsigned long)q);
2889
2890 q->fl[0].gen = q->fl[1].gen = 1;
2891 q->fl[0].size = p->fl_size;
2892 q->fl[1].size = p->jumbo_size;
2893
2894 q->rspq.gen = 1;
2895 q->rspq.size = p->rspq_size;
2896 spin_lock_init(&q->rspq.lock);
2897 skb_queue_head_init(&q->rspq.rx_queue);
2898
2899 q->txq[TXQ_ETH].stop_thres = nports *
2900 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2901
2902 #if FL0_PG_CHUNK_SIZE > 0
2903 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
2904 #else
2905 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
2906 #endif
2907 #if FL1_PG_CHUNK_SIZE > 0
2908 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
2909 #else
2910 q->fl[1].buf_size = is_offload(adapter) ?
2911 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
2912 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
2913 #endif
2914
2915 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
2916 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
2917 q->fl[0].order = FL0_PG_ORDER;
2918 q->fl[1].order = FL1_PG_ORDER;
2919
2920 q->lro_frag_tbl = kcalloc(MAX_FRAME_SIZE / FL1_PG_CHUNK_SIZE + 1,
2921 sizeof(struct skb_frag_struct),
2922 GFP_KERNEL);
2923 q->lro_nfrags = q->lro_frag_len = 0;
2924 spin_lock_irq(&adapter->sge.reg_lock);
2925
2926 /* FL threshold comparison uses < */
2927 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2928 q->rspq.phys_addr, q->rspq.size,
2929 q->fl[0].buf_size, 1, 0);
2930 if (ret)
2931 goto err_unlock;
2932
2933 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2934 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2935 q->fl[i].phys_addr, q->fl[i].size,
2936 q->fl[i].buf_size, p->cong_thres, 1,
2937 0);
2938 if (ret)
2939 goto err_unlock;
2940 }
2941
2942 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2943 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2944 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2945 1, 0);
2946 if (ret)
2947 goto err_unlock;
2948
2949 if (ntxq > 1) {
2950 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2951 USE_GTS, SGE_CNTXT_OFLD, id,
2952 q->txq[TXQ_OFLD].phys_addr,
2953 q->txq[TXQ_OFLD].size, 0, 1, 0);
2954 if (ret)
2955 goto err_unlock;
2956 }
2957
2958 if (ntxq > 2) {
2959 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
2960 SGE_CNTXT_CTRL, id,
2961 q->txq[TXQ_CTRL].phys_addr,
2962 q->txq[TXQ_CTRL].size,
2963 q->txq[TXQ_CTRL].token, 1, 0);
2964 if (ret)
2965 goto err_unlock;
2966 }
2967
2968 spin_unlock_irq(&adapter->sge.reg_lock);
2969
2970 q->adap = adapter;
2971 q->netdev = dev;
2972 t3_update_qset_coalesce(q, p);
2973
2974 init_lro_mgr(q, lro_mgr);
2975
2976 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
2977 GFP_KERNEL | __GFP_COMP);
2978 if (!avail) {
2979 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
2980 goto err;
2981 }
2982 if (avail < q->fl[0].size)
2983 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
2984 avail);
2985
2986 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
2987 GFP_KERNEL | __GFP_COMP);
2988 if (avail < q->fl[1].size)
2989 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
2990 avail);
2991 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
2992
2993 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2994 V_NEWTIMER(q->rspq.holdoff_tmr));
2995
2996 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2997 return 0;
2998
2999 err_unlock:
3000 spin_unlock_irq(&adapter->sge.reg_lock);
3001 err:
3002 t3_free_qset(adapter, q);
3003 return ret;
3004 }
3005
3006 /**
3007 * t3_stop_sge_timers - stop SGE timer call backs
3008 * @adap: the adapter
3009 *
3010 * Stops each SGE queue set's timer call back
3011 */
3012 void t3_stop_sge_timers(struct adapter *adap)
3013 {
3014 int i;
3015
3016 for (i = 0; i < SGE_QSETS; ++i) {
3017 struct sge_qset *q = &adap->sge.qs[i];
3018
3019 if (q->tx_reclaim_timer.function)
3020 del_timer_sync(&q->tx_reclaim_timer);
3021 }
3022 }
3023
3024 /**
3025 * t3_free_sge_resources - free SGE resources
3026 * @adap: the adapter
3027 *
3028 * Frees resources used by the SGE queue sets.
3029 */
3030 void t3_free_sge_resources(struct adapter *adap)
3031 {
3032 int i;
3033
3034 for (i = 0; i < SGE_QSETS; ++i)
3035 t3_free_qset(adap, &adap->sge.qs[i]);
3036 }
3037
3038 /**
3039 * t3_sge_start - enable SGE
3040 * @adap: the adapter
3041 *
3042 * Enables the SGE for DMAs. This is the last step in starting packet
3043 * transfers.
3044 */
3045 void t3_sge_start(struct adapter *adap)
3046 {
3047 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3048 }
3049
3050 /**
3051 * t3_sge_stop - disable SGE operation
3052 * @adap: the adapter
3053 *
3054 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3055 * from error interrupts) or from normal process context. In the latter
3056 * case it also disables any pending queue restart tasklets. Note that
3057 * if it is called in interrupt context it cannot disable the restart
3058 * tasklets as it cannot wait, however the tasklets will have no effect
3059 * since the doorbells are disabled and the driver will call this again
3060 * later from process context, at which time the tasklets will be stopped
3061 * if they are still running.
3062 */
3063 void t3_sge_stop(struct adapter *adap)
3064 {
3065 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3066 if (!in_interrupt()) {
3067 int i;
3068
3069 for (i = 0; i < SGE_QSETS; ++i) {
3070 struct sge_qset *qs = &adap->sge.qs[i];
3071
3072 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3073 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3074 }
3075 }
3076 }
3077
3078 /**
3079 * t3_sge_init - initialize SGE
3080 * @adap: the adapter
3081 * @p: the SGE parameters
3082 *
3083 * Performs SGE initialization needed every time after a chip reset.
3084 * We do not initialize any of the queue sets here, instead the driver
3085 * top-level must request those individually. We also do not enable DMA
3086 * here, that should be done after the queues have been set up.
3087 */
3088 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3089 {
3090 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3091
3092 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3093 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3094 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3095 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3096 #if SGE_NUM_GENBITS == 1
3097 ctrl |= F_EGRGENCTRL;
3098 #endif
3099 if (adap->params.rev > 0) {
3100 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3101 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3102 }
3103 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3104 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3105 V_LORCQDRBTHRSH(512));
3106 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3107 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3108 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3109 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3110 adap->params.rev < T3_REV_C ? 1000 : 500);
3111 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3112 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3113 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3114 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3115 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3116 }
3117
3118 /**
3119 * t3_sge_prep - one-time SGE initialization
3120 * @adap: the associated adapter
3121 * @p: SGE parameters
3122 *
3123 * Performs one-time initialization of SGE SW state. Includes determining
3124 * defaults for the assorted SGE parameters, which admins can change until
3125 * they are used to initialize the SGE.
3126 */
3127 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3128 {
3129 int i;
3130
3131 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3132 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3133
3134 for (i = 0; i < SGE_QSETS; ++i) {
3135 struct qset_params *q = p->qset + i;
3136
3137 q->polling = adap->params.rev > 0;
3138 q->coalesce_usecs = 5;
3139 q->rspq_size = 1024;
3140 q->fl_size = 1024;
3141 q->jumbo_size = 512;
3142 q->txq_size[TXQ_ETH] = 1024;
3143 q->txq_size[TXQ_OFLD] = 1024;
3144 q->txq_size[TXQ_CTRL] = 256;
3145 q->cong_thres = 0;
3146 }
3147
3148 spin_lock_init(&adap->sge.reg_lock);
3149 }
3150
3151 /**
3152 * t3_get_desc - dump an SGE descriptor for debugging purposes
3153 * @qs: the queue set
3154 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3155 * @idx: the descriptor index in the queue
3156 * @data: where to dump the descriptor contents
3157 *
3158 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3159 * size of the descriptor.
3160 */
3161 int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3162 unsigned char *data)
3163 {
3164 if (qnum >= 6)
3165 return -EINVAL;
3166
3167 if (qnum < 3) {
3168 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3169 return -EINVAL;
3170 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3171 return sizeof(struct tx_desc);
3172 }
3173
3174 if (qnum == 3) {
3175 if (!qs->rspq.desc || idx >= qs->rspq.size)
3176 return -EINVAL;
3177 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3178 return sizeof(struct rsp_desc);
3179 }
3180
3181 qnum -= 4;
3182 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3183 return -EINVAL;
3184 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3185 return sizeof(struct rx_desc);
3186 }