Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / cxgb3 / cxgb3_offload.c
1 /*
2 * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <net/neighbour.h>
36 #include <linux/notifier.h>
37 #include <asm/atomic.h>
38 #include <linux/proc_fs.h>
39 #include <linux/if_vlan.h>
40 #include <net/netevent.h>
41 #include <linux/highmem.h>
42 #include <linux/vmalloc.h>
43
44 #include "common.h"
45 #include "regs.h"
46 #include "cxgb3_ioctl.h"
47 #include "cxgb3_ctl_defs.h"
48 #include "cxgb3_defs.h"
49 #include "l2t.h"
50 #include "firmware_exports.h"
51 #include "cxgb3_offload.h"
52
53 static LIST_HEAD(client_list);
54 static LIST_HEAD(ofld_dev_list);
55 static DEFINE_MUTEX(cxgb3_db_lock);
56
57 static DEFINE_RWLOCK(adapter_list_lock);
58 static LIST_HEAD(adapter_list);
59
60 static const unsigned int MAX_ATIDS = 64 * 1024;
61 static const unsigned int ATID_BASE = 0x10000;
62
63 static void cxgb_neigh_update(struct neighbour *neigh);
64 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new);
65
66 static inline int offload_activated(struct t3cdev *tdev)
67 {
68 const struct adapter *adapter = tdev2adap(tdev);
69
70 return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
71 }
72
73 /**
74 * cxgb3_register_client - register an offload client
75 * @client: the client
76 *
77 * Add the client to the client list,
78 * and call backs the client for each activated offload device
79 */
80 void cxgb3_register_client(struct cxgb3_client *client)
81 {
82 struct t3cdev *tdev;
83
84 mutex_lock(&cxgb3_db_lock);
85 list_add_tail(&client->client_list, &client_list);
86
87 if (client->add) {
88 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
89 if (offload_activated(tdev))
90 client->add(tdev);
91 }
92 }
93 mutex_unlock(&cxgb3_db_lock);
94 }
95
96 EXPORT_SYMBOL(cxgb3_register_client);
97
98 /**
99 * cxgb3_unregister_client - unregister an offload client
100 * @client: the client
101 *
102 * Remove the client to the client list,
103 * and call backs the client for each activated offload device.
104 */
105 void cxgb3_unregister_client(struct cxgb3_client *client)
106 {
107 struct t3cdev *tdev;
108
109 mutex_lock(&cxgb3_db_lock);
110 list_del(&client->client_list);
111
112 if (client->remove) {
113 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
114 if (offload_activated(tdev))
115 client->remove(tdev);
116 }
117 }
118 mutex_unlock(&cxgb3_db_lock);
119 }
120
121 EXPORT_SYMBOL(cxgb3_unregister_client);
122
123 /**
124 * cxgb3_add_clients - activate registered clients for an offload device
125 * @tdev: the offload device
126 *
127 * Call backs all registered clients once a offload device is activated
128 */
129 void cxgb3_add_clients(struct t3cdev *tdev)
130 {
131 struct cxgb3_client *client;
132
133 mutex_lock(&cxgb3_db_lock);
134 list_for_each_entry(client, &client_list, client_list) {
135 if (client->add)
136 client->add(tdev);
137 }
138 mutex_unlock(&cxgb3_db_lock);
139 }
140
141 /**
142 * cxgb3_remove_clients - deactivates registered clients
143 * for an offload device
144 * @tdev: the offload device
145 *
146 * Call backs all registered clients once a offload device is deactivated
147 */
148 void cxgb3_remove_clients(struct t3cdev *tdev)
149 {
150 struct cxgb3_client *client;
151
152 mutex_lock(&cxgb3_db_lock);
153 list_for_each_entry(client, &client_list, client_list) {
154 if (client->remove)
155 client->remove(tdev);
156 }
157 mutex_unlock(&cxgb3_db_lock);
158 }
159
160 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
161 {
162 struct cxgb3_client *client;
163
164 mutex_lock(&cxgb3_db_lock);
165 list_for_each_entry(client, &client_list, client_list) {
166 if (client->event_handler)
167 client->event_handler(tdev, event, port);
168 }
169 mutex_unlock(&cxgb3_db_lock);
170 }
171
172 static struct net_device *get_iff_from_mac(struct adapter *adapter,
173 const unsigned char *mac,
174 unsigned int vlan)
175 {
176 int i;
177
178 for_each_port(adapter, i) {
179 struct vlan_group *grp;
180 struct net_device *dev = adapter->port[i];
181 const struct port_info *p = netdev_priv(dev);
182
183 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
184 if (vlan && vlan != VLAN_VID_MASK) {
185 grp = p->vlan_grp;
186 dev = NULL;
187 if (grp)
188 dev = vlan_group_get_device(grp, vlan);
189 } else if (netif_is_bond_slave(dev)) {
190 while (dev->master)
191 dev = dev->master;
192 }
193 return dev;
194 }
195 }
196 return NULL;
197 }
198
199 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
200 void *data)
201 {
202 int i;
203 int ret = 0;
204 unsigned int val = 0;
205 struct ulp_iscsi_info *uiip = data;
206
207 switch (req) {
208 case ULP_ISCSI_GET_PARAMS:
209 uiip->pdev = adapter->pdev;
210 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
211 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
212 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
213
214 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
215 for (i = 0; i < 4; i++, val >>= 8)
216 uiip->pgsz_factor[i] = val & 0xFF;
217
218 val = t3_read_reg(adapter, A_TP_PARA_REG7);
219 uiip->max_txsz =
220 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
221 (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
222 /*
223 * On tx, the iscsi pdu has to be <= tx page size and has to
224 * fit into the Tx PM FIFO.
225 */
226 val = min(adapter->params.tp.tx_pg_size,
227 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
228 uiip->max_txsz = min(val, uiip->max_txsz);
229
230 /* set MaxRxData to 16224 */
231 val = t3_read_reg(adapter, A_TP_PARA_REG2);
232 if ((val >> S_MAXRXDATA) != 0x3f60) {
233 val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
234 val |= V_MAXRXDATA(0x3f60);
235 printk(KERN_INFO
236 "%s, iscsi set MaxRxData to 16224 (0x%x).\n",
237 adapter->name, val);
238 t3_write_reg(adapter, A_TP_PARA_REG2, val);
239 }
240
241 /*
242 * on rx, the iscsi pdu has to be < rx page size and the
243 * the max rx data length programmed in TP
244 */
245 val = min(adapter->params.tp.rx_pg_size,
246 ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
247 S_MAXRXDATA) & M_MAXRXDATA);
248 uiip->max_rxsz = min(val, uiip->max_rxsz);
249 break;
250 case ULP_ISCSI_SET_PARAMS:
251 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
252 /* program the ddp page sizes */
253 for (i = 0; i < 4; i++)
254 val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
255 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
256 printk(KERN_INFO
257 "%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
258 adapter->name, val, uiip->pgsz_factor[0],
259 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
260 uiip->pgsz_factor[3]);
261 t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
262 }
263 break;
264 default:
265 ret = -EOPNOTSUPP;
266 }
267 return ret;
268 }
269
270 /* Response queue used for RDMA events. */
271 #define ASYNC_NOTIF_RSPQ 0
272
273 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
274 {
275 int ret = 0;
276
277 switch (req) {
278 case RDMA_GET_PARAMS: {
279 struct rdma_info *rdma = data;
280 struct pci_dev *pdev = adapter->pdev;
281
282 rdma->udbell_physbase = pci_resource_start(pdev, 2);
283 rdma->udbell_len = pci_resource_len(pdev, 2);
284 rdma->tpt_base =
285 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
286 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
287 rdma->pbl_base =
288 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
289 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
290 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
291 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
292 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
293 rdma->pdev = pdev;
294 break;
295 }
296 case RDMA_CQ_OP:{
297 unsigned long flags;
298 struct rdma_cq_op *rdma = data;
299
300 /* may be called in any context */
301 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
302 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
303 rdma->credits);
304 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
305 break;
306 }
307 case RDMA_GET_MEM:{
308 struct ch_mem_range *t = data;
309 struct mc7 *mem;
310
311 if ((t->addr & 7) || (t->len & 7))
312 return -EINVAL;
313 if (t->mem_id == MEM_CM)
314 mem = &adapter->cm;
315 else if (t->mem_id == MEM_PMRX)
316 mem = &adapter->pmrx;
317 else if (t->mem_id == MEM_PMTX)
318 mem = &adapter->pmtx;
319 else
320 return -EINVAL;
321
322 ret =
323 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
324 (u64 *) t->buf);
325 if (ret)
326 return ret;
327 break;
328 }
329 case RDMA_CQ_SETUP:{
330 struct rdma_cq_setup *rdma = data;
331
332 spin_lock_irq(&adapter->sge.reg_lock);
333 ret =
334 t3_sge_init_cqcntxt(adapter, rdma->id,
335 rdma->base_addr, rdma->size,
336 ASYNC_NOTIF_RSPQ,
337 rdma->ovfl_mode, rdma->credits,
338 rdma->credit_thres);
339 spin_unlock_irq(&adapter->sge.reg_lock);
340 break;
341 }
342 case RDMA_CQ_DISABLE:
343 spin_lock_irq(&adapter->sge.reg_lock);
344 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
345 spin_unlock_irq(&adapter->sge.reg_lock);
346 break;
347 case RDMA_CTRL_QP_SETUP:{
348 struct rdma_ctrlqp_setup *rdma = data;
349
350 spin_lock_irq(&adapter->sge.reg_lock);
351 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
352 SGE_CNTXT_RDMA,
353 ASYNC_NOTIF_RSPQ,
354 rdma->base_addr, rdma->size,
355 FW_RI_TID_START, 1, 0);
356 spin_unlock_irq(&adapter->sge.reg_lock);
357 break;
358 }
359 case RDMA_GET_MIB: {
360 spin_lock(&adapter->stats_lock);
361 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
362 spin_unlock(&adapter->stats_lock);
363 break;
364 }
365 default:
366 ret = -EOPNOTSUPP;
367 }
368 return ret;
369 }
370
371 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
372 {
373 struct adapter *adapter = tdev2adap(tdev);
374 struct tid_range *tid;
375 struct mtutab *mtup;
376 struct iff_mac *iffmacp;
377 struct ddp_params *ddpp;
378 struct adap_ports *ports;
379 struct ofld_page_info *rx_page_info;
380 struct tp_params *tp = &adapter->params.tp;
381 int i;
382
383 switch (req) {
384 case GET_MAX_OUTSTANDING_WR:
385 *(unsigned int *)data = FW_WR_NUM;
386 break;
387 case GET_WR_LEN:
388 *(unsigned int *)data = WR_FLITS;
389 break;
390 case GET_TX_MAX_CHUNK:
391 *(unsigned int *)data = 1 << 20; /* 1MB */
392 break;
393 case GET_TID_RANGE:
394 tid = data;
395 tid->num = t3_mc5_size(&adapter->mc5) -
396 adapter->params.mc5.nroutes -
397 adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
398 tid->base = 0;
399 break;
400 case GET_STID_RANGE:
401 tid = data;
402 tid->num = adapter->params.mc5.nservers;
403 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
404 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
405 break;
406 case GET_L2T_CAPACITY:
407 *(unsigned int *)data = 2048;
408 break;
409 case GET_MTUS:
410 mtup = data;
411 mtup->size = NMTUS;
412 mtup->mtus = adapter->params.mtus;
413 break;
414 case GET_IFF_FROM_MAC:
415 iffmacp = data;
416 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
417 iffmacp->vlan_tag &
418 VLAN_VID_MASK);
419 break;
420 case GET_DDP_PARAMS:
421 ddpp = data;
422 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
423 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
424 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
425 break;
426 case GET_PORTS:
427 ports = data;
428 ports->nports = adapter->params.nports;
429 for_each_port(adapter, i)
430 ports->lldevs[i] = adapter->port[i];
431 break;
432 case ULP_ISCSI_GET_PARAMS:
433 case ULP_ISCSI_SET_PARAMS:
434 if (!offload_running(adapter))
435 return -EAGAIN;
436 return cxgb_ulp_iscsi_ctl(adapter, req, data);
437 case RDMA_GET_PARAMS:
438 case RDMA_CQ_OP:
439 case RDMA_CQ_SETUP:
440 case RDMA_CQ_DISABLE:
441 case RDMA_CTRL_QP_SETUP:
442 case RDMA_GET_MEM:
443 case RDMA_GET_MIB:
444 if (!offload_running(adapter))
445 return -EAGAIN;
446 return cxgb_rdma_ctl(adapter, req, data);
447 case GET_RX_PAGE_INFO:
448 rx_page_info = data;
449 rx_page_info->page_size = tp->rx_pg_size;
450 rx_page_info->num = tp->rx_num_pgs;
451 break;
452 case GET_ISCSI_IPV4ADDR: {
453 struct iscsi_ipv4addr *p = data;
454 struct port_info *pi = netdev_priv(p->dev);
455 p->ipv4addr = pi->iscsi_ipv4addr;
456 break;
457 }
458 case GET_EMBEDDED_INFO: {
459 struct ch_embedded_info *e = data;
460
461 spin_lock(&adapter->stats_lock);
462 t3_get_fw_version(adapter, &e->fw_vers);
463 t3_get_tp_version(adapter, &e->tp_vers);
464 spin_unlock(&adapter->stats_lock);
465 break;
466 }
467 default:
468 return -EOPNOTSUPP;
469 }
470 return 0;
471 }
472
473 /*
474 * Dummy handler for Rx offload packets in case we get an offload packet before
475 * proper processing is setup. This complains and drops the packet as it isn't
476 * normal to get offload packets at this stage.
477 */
478 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
479 int n)
480 {
481 while (n--)
482 dev_kfree_skb_any(skbs[n]);
483 return 0;
484 }
485
486 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
487 {
488 }
489
490 void cxgb3_set_dummy_ops(struct t3cdev *dev)
491 {
492 dev->recv = rx_offload_blackhole;
493 dev->neigh_update = dummy_neigh_update;
494 }
495
496 /*
497 * Free an active-open TID.
498 */
499 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
500 {
501 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
502 union active_open_entry *p = atid2entry(t, atid);
503 void *ctx = p->t3c_tid.ctx;
504
505 spin_lock_bh(&t->atid_lock);
506 p->next = t->afree;
507 t->afree = p;
508 t->atids_in_use--;
509 spin_unlock_bh(&t->atid_lock);
510
511 return ctx;
512 }
513
514 EXPORT_SYMBOL(cxgb3_free_atid);
515
516 /*
517 * Free a server TID and return it to the free pool.
518 */
519 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
520 {
521 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
522 union listen_entry *p = stid2entry(t, stid);
523
524 spin_lock_bh(&t->stid_lock);
525 p->next = t->sfree;
526 t->sfree = p;
527 t->stids_in_use--;
528 spin_unlock_bh(&t->stid_lock);
529 }
530
531 EXPORT_SYMBOL(cxgb3_free_stid);
532
533 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
534 void *ctx, unsigned int tid)
535 {
536 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
537
538 t->tid_tab[tid].client = client;
539 t->tid_tab[tid].ctx = ctx;
540 atomic_inc(&t->tids_in_use);
541 }
542
543 EXPORT_SYMBOL(cxgb3_insert_tid);
544
545 /*
546 * Populate a TID_RELEASE WR. The skb must be already propely sized.
547 */
548 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
549 {
550 struct cpl_tid_release *req;
551
552 skb->priority = CPL_PRIORITY_SETUP;
553 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
554 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
555 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
556 }
557
558 static void t3_process_tid_release_list(struct work_struct *work)
559 {
560 struct t3c_data *td = container_of(work, struct t3c_data,
561 tid_release_task);
562 struct sk_buff *skb;
563 struct t3cdev *tdev = td->dev;
564
565
566 spin_lock_bh(&td->tid_release_lock);
567 while (td->tid_release_list) {
568 struct t3c_tid_entry *p = td->tid_release_list;
569
570 td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
571 spin_unlock_bh(&td->tid_release_lock);
572
573 skb = alloc_skb(sizeof(struct cpl_tid_release),
574 GFP_KERNEL);
575 if (!skb)
576 skb = td->nofail_skb;
577 if (!skb) {
578 spin_lock_bh(&td->tid_release_lock);
579 p->ctx = (void *)td->tid_release_list;
580 td->tid_release_list = (struct t3c_tid_entry *)p;
581 break;
582 }
583 mk_tid_release(skb, p - td->tid_maps.tid_tab);
584 cxgb3_ofld_send(tdev, skb);
585 p->ctx = NULL;
586 if (skb == td->nofail_skb)
587 td->nofail_skb =
588 alloc_skb(sizeof(struct cpl_tid_release),
589 GFP_KERNEL);
590 spin_lock_bh(&td->tid_release_lock);
591 }
592 td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
593 spin_unlock_bh(&td->tid_release_lock);
594
595 if (!td->nofail_skb)
596 td->nofail_skb =
597 alloc_skb(sizeof(struct cpl_tid_release),
598 GFP_KERNEL);
599 }
600
601 /* use ctx as a next pointer in the tid release list */
602 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
603 {
604 struct t3c_data *td = T3C_DATA(tdev);
605 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
606
607 spin_lock_bh(&td->tid_release_lock);
608 p->ctx = (void *)td->tid_release_list;
609 p->client = NULL;
610 td->tid_release_list = p;
611 if (!p->ctx || td->release_list_incomplete)
612 schedule_work(&td->tid_release_task);
613 spin_unlock_bh(&td->tid_release_lock);
614 }
615
616 EXPORT_SYMBOL(cxgb3_queue_tid_release);
617
618 /*
619 * Remove a tid from the TID table. A client may defer processing its last
620 * CPL message if it is locked at the time it arrives, and while the message
621 * sits in the client's backlog the TID may be reused for another connection.
622 * To handle this we atomically switch the TID association if it still points
623 * to the original client context.
624 */
625 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
626 {
627 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
628
629 BUG_ON(tid >= t->ntids);
630 if (tdev->type == T3A)
631 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
632 else {
633 struct sk_buff *skb;
634
635 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
636 if (likely(skb)) {
637 mk_tid_release(skb, tid);
638 cxgb3_ofld_send(tdev, skb);
639 t->tid_tab[tid].ctx = NULL;
640 } else
641 cxgb3_queue_tid_release(tdev, tid);
642 }
643 atomic_dec(&t->tids_in_use);
644 }
645
646 EXPORT_SYMBOL(cxgb3_remove_tid);
647
648 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
649 void *ctx)
650 {
651 int atid = -1;
652 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
653
654 spin_lock_bh(&t->atid_lock);
655 if (t->afree &&
656 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
657 t->ntids) {
658 union active_open_entry *p = t->afree;
659
660 atid = (p - t->atid_tab) + t->atid_base;
661 t->afree = p->next;
662 p->t3c_tid.ctx = ctx;
663 p->t3c_tid.client = client;
664 t->atids_in_use++;
665 }
666 spin_unlock_bh(&t->atid_lock);
667 return atid;
668 }
669
670 EXPORT_SYMBOL(cxgb3_alloc_atid);
671
672 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
673 void *ctx)
674 {
675 int stid = -1;
676 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
677
678 spin_lock_bh(&t->stid_lock);
679 if (t->sfree) {
680 union listen_entry *p = t->sfree;
681
682 stid = (p - t->stid_tab) + t->stid_base;
683 t->sfree = p->next;
684 p->t3c_tid.ctx = ctx;
685 p->t3c_tid.client = client;
686 t->stids_in_use++;
687 }
688 spin_unlock_bh(&t->stid_lock);
689 return stid;
690 }
691
692 EXPORT_SYMBOL(cxgb3_alloc_stid);
693
694 /* Get the t3cdev associated with a net_device */
695 struct t3cdev *dev2t3cdev(struct net_device *dev)
696 {
697 const struct port_info *pi = netdev_priv(dev);
698
699 return (struct t3cdev *)pi->adapter;
700 }
701
702 EXPORT_SYMBOL(dev2t3cdev);
703
704 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
705 {
706 struct cpl_smt_write_rpl *rpl = cplhdr(skb);
707
708 if (rpl->status != CPL_ERR_NONE)
709 printk(KERN_ERR
710 "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
711 rpl->status, GET_TID(rpl));
712
713 return CPL_RET_BUF_DONE;
714 }
715
716 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
717 {
718 struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
719
720 if (rpl->status != CPL_ERR_NONE)
721 printk(KERN_ERR
722 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
723 rpl->status, GET_TID(rpl));
724
725 return CPL_RET_BUF_DONE;
726 }
727
728 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
729 {
730 struct cpl_rte_write_rpl *rpl = cplhdr(skb);
731
732 if (rpl->status != CPL_ERR_NONE)
733 printk(KERN_ERR
734 "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
735 rpl->status, GET_TID(rpl));
736
737 return CPL_RET_BUF_DONE;
738 }
739
740 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
741 {
742 struct cpl_act_open_rpl *rpl = cplhdr(skb);
743 unsigned int atid = G_TID(ntohl(rpl->atid));
744 struct t3c_tid_entry *t3c_tid;
745
746 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
747 if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
748 t3c_tid->client->handlers &&
749 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
750 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
751 t3c_tid->
752 ctx);
753 } else {
754 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
755 dev->name, CPL_ACT_OPEN_RPL);
756 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
757 }
758 }
759
760 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
761 {
762 union opcode_tid *p = cplhdr(skb);
763 unsigned int stid = G_TID(ntohl(p->opcode_tid));
764 struct t3c_tid_entry *t3c_tid;
765
766 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
767 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
768 t3c_tid->client->handlers[p->opcode]) {
769 return t3c_tid->client->handlers[p->opcode] (dev, skb,
770 t3c_tid->ctx);
771 } else {
772 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
773 dev->name, p->opcode);
774 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
775 }
776 }
777
778 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
779 {
780 union opcode_tid *p = cplhdr(skb);
781 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
782 struct t3c_tid_entry *t3c_tid;
783
784 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
785 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
786 t3c_tid->client->handlers[p->opcode]) {
787 return t3c_tid->client->handlers[p->opcode]
788 (dev, skb, t3c_tid->ctx);
789 } else {
790 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
791 dev->name, p->opcode);
792 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
793 }
794 }
795
796 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
797 {
798 struct cpl_pass_accept_req *req = cplhdr(skb);
799 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
800 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
801 struct t3c_tid_entry *t3c_tid;
802 unsigned int tid = GET_TID(req);
803
804 if (unlikely(tid >= t->ntids)) {
805 printk("%s: passive open TID %u too large\n",
806 dev->name, tid);
807 t3_fatal_err(tdev2adap(dev));
808 return CPL_RET_BUF_DONE;
809 }
810
811 t3c_tid = lookup_stid(t, stid);
812 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
813 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
814 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
815 (dev, skb, t3c_tid->ctx);
816 } else {
817 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
818 dev->name, CPL_PASS_ACCEPT_REQ);
819 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
820 }
821 }
822
823 /*
824 * Returns an sk_buff for a reply CPL message of size len. If the input
825 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
826 * is allocated. The input skb must be of size at least len. Note that this
827 * operation does not destroy the original skb data even if it decides to reuse
828 * the buffer.
829 */
830 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
831 gfp_t gfp)
832 {
833 if (likely(!skb_cloned(skb))) {
834 BUG_ON(skb->len < len);
835 __skb_trim(skb, len);
836 skb_get(skb);
837 } else {
838 skb = alloc_skb(len, gfp);
839 if (skb)
840 __skb_put(skb, len);
841 }
842 return skb;
843 }
844
845 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
846 {
847 union opcode_tid *p = cplhdr(skb);
848 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
849 struct t3c_tid_entry *t3c_tid;
850
851 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
852 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
853 t3c_tid->client->handlers[p->opcode]) {
854 return t3c_tid->client->handlers[p->opcode]
855 (dev, skb, t3c_tid->ctx);
856 } else {
857 struct cpl_abort_req_rss *req = cplhdr(skb);
858 struct cpl_abort_rpl *rpl;
859 struct sk_buff *reply_skb;
860 unsigned int tid = GET_TID(req);
861 u8 cmd = req->status;
862
863 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
864 req->status == CPL_ERR_PERSIST_NEG_ADVICE)
865 goto out;
866
867 reply_skb = cxgb3_get_cpl_reply_skb(skb,
868 sizeof(struct
869 cpl_abort_rpl),
870 GFP_ATOMIC);
871
872 if (!reply_skb) {
873 printk("do_abort_req_rss: couldn't get skb!\n");
874 goto out;
875 }
876 reply_skb->priority = CPL_PRIORITY_DATA;
877 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
878 rpl = cplhdr(reply_skb);
879 rpl->wr.wr_hi =
880 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
881 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
882 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
883 rpl->cmd = cmd;
884 cxgb3_ofld_send(dev, reply_skb);
885 out:
886 return CPL_RET_BUF_DONE;
887 }
888 }
889
890 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
891 {
892 struct cpl_act_establish *req = cplhdr(skb);
893 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
894 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
895 struct t3c_tid_entry *t3c_tid;
896 unsigned int tid = GET_TID(req);
897
898 if (unlikely(tid >= t->ntids)) {
899 printk("%s: active establish TID %u too large\n",
900 dev->name, tid);
901 t3_fatal_err(tdev2adap(dev));
902 return CPL_RET_BUF_DONE;
903 }
904
905 t3c_tid = lookup_atid(t, atid);
906 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
907 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
908 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
909 (dev, skb, t3c_tid->ctx);
910 } else {
911 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
912 dev->name, CPL_ACT_ESTABLISH);
913 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
914 }
915 }
916
917 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
918 {
919 struct cpl_trace_pkt *p = cplhdr(skb);
920
921 skb->protocol = htons(0xffff);
922 skb->dev = dev->lldev;
923 skb_pull(skb, sizeof(*p));
924 skb_reset_mac_header(skb);
925 netif_receive_skb(skb);
926 return 0;
927 }
928
929 /*
930 * That skb would better have come from process_responses() where we abuse
931 * ->priority and ->csum to carry our data. NB: if we get to per-arch
932 * ->csum, the things might get really interesting here.
933 */
934
935 static inline u32 get_hwtid(struct sk_buff *skb)
936 {
937 return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
938 }
939
940 static inline u32 get_opcode(struct sk_buff *skb)
941 {
942 return G_OPCODE(ntohl((__force __be32)skb->csum));
943 }
944
945 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
946 {
947 unsigned int hwtid = get_hwtid(skb);
948 unsigned int opcode = get_opcode(skb);
949 struct t3c_tid_entry *t3c_tid;
950
951 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
952 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
953 t3c_tid->client->handlers[opcode]) {
954 return t3c_tid->client->handlers[opcode] (dev, skb,
955 t3c_tid->ctx);
956 } else {
957 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
958 dev->name, opcode);
959 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
960 }
961 }
962
963 static int nb_callback(struct notifier_block *self, unsigned long event,
964 void *ctx)
965 {
966 switch (event) {
967 case (NETEVENT_NEIGH_UPDATE):{
968 cxgb_neigh_update((struct neighbour *)ctx);
969 break;
970 }
971 case (NETEVENT_REDIRECT):{
972 struct netevent_redirect *nr = ctx;
973 cxgb_redirect(nr->old, nr->new);
974 cxgb_neigh_update(nr->new->neighbour);
975 break;
976 }
977 default:
978 break;
979 }
980 return 0;
981 }
982
983 static struct notifier_block nb = {
984 .notifier_call = nb_callback
985 };
986
987 /*
988 * Process a received packet with an unknown/unexpected CPL opcode.
989 */
990 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
991 {
992 printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
993 *skb->data);
994 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
995 }
996
997 /*
998 * Handlers for each CPL opcode
999 */
1000 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
1001
1002 /*
1003 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
1004 * to unregister an existing handler.
1005 */
1006 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
1007 {
1008 if (opcode < NUM_CPL_CMDS)
1009 cpl_handlers[opcode] = h ? h : do_bad_cpl;
1010 else
1011 printk(KERN_ERR "T3C: handler registration for "
1012 "opcode %x failed\n", opcode);
1013 }
1014
1015 EXPORT_SYMBOL(t3_register_cpl_handler);
1016
1017 /*
1018 * T3CDEV's receive method.
1019 */
1020 static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1021 {
1022 while (n--) {
1023 struct sk_buff *skb = *skbs++;
1024 unsigned int opcode = get_opcode(skb);
1025 int ret = cpl_handlers[opcode] (dev, skb);
1026
1027 #if VALIDATE_TID
1028 if (ret & CPL_RET_UNKNOWN_TID) {
1029 union opcode_tid *p = cplhdr(skb);
1030
1031 printk(KERN_ERR "%s: CPL message (opcode %u) had "
1032 "unknown TID %u\n", dev->name, opcode,
1033 G_TID(ntohl(p->opcode_tid)));
1034 }
1035 #endif
1036 if (ret & CPL_RET_BUF_DONE)
1037 kfree_skb(skb);
1038 }
1039 return 0;
1040 }
1041
1042 /*
1043 * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1044 */
1045 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1046 {
1047 int r;
1048
1049 local_bh_disable();
1050 r = dev->send(dev, skb);
1051 local_bh_enable();
1052 return r;
1053 }
1054
1055 EXPORT_SYMBOL(cxgb3_ofld_send);
1056
1057 static int is_offloading(struct net_device *dev)
1058 {
1059 struct adapter *adapter;
1060 int i;
1061
1062 read_lock_bh(&adapter_list_lock);
1063 list_for_each_entry(adapter, &adapter_list, adapter_list) {
1064 for_each_port(adapter, i) {
1065 if (dev == adapter->port[i]) {
1066 read_unlock_bh(&adapter_list_lock);
1067 return 1;
1068 }
1069 }
1070 }
1071 read_unlock_bh(&adapter_list_lock);
1072 return 0;
1073 }
1074
1075 static void cxgb_neigh_update(struct neighbour *neigh)
1076 {
1077 struct net_device *dev = neigh->dev;
1078
1079 if (dev && (is_offloading(dev))) {
1080 struct t3cdev *tdev = dev2t3cdev(dev);
1081
1082 BUG_ON(!tdev);
1083 t3_l2t_update(tdev, neigh);
1084 }
1085 }
1086
1087 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1088 {
1089 struct sk_buff *skb;
1090 struct cpl_set_tcb_field *req;
1091
1092 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1093 if (!skb) {
1094 printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
1095 return;
1096 }
1097 skb->priority = CPL_PRIORITY_CONTROL;
1098 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1099 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1100 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1101 req->reply = 0;
1102 req->cpu_idx = 0;
1103 req->word = htons(W_TCB_L2T_IX);
1104 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1105 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1106 tdev->send(tdev, skb);
1107 }
1108
1109 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1110 {
1111 struct net_device *olddev, *newdev;
1112 struct tid_info *ti;
1113 struct t3cdev *tdev;
1114 u32 tid;
1115 int update_tcb;
1116 struct l2t_entry *e;
1117 struct t3c_tid_entry *te;
1118
1119 olddev = old->neighbour->dev;
1120 newdev = new->neighbour->dev;
1121 if (!is_offloading(olddev))
1122 return;
1123 if (!is_offloading(newdev)) {
1124 printk(KERN_WARNING "%s: Redirect to non-offload "
1125 "device ignored.\n", __func__);
1126 return;
1127 }
1128 tdev = dev2t3cdev(olddev);
1129 BUG_ON(!tdev);
1130 if (tdev != dev2t3cdev(newdev)) {
1131 printk(KERN_WARNING "%s: Redirect to different "
1132 "offload device ignored.\n", __func__);
1133 return;
1134 }
1135
1136 /* Add new L2T entry */
1137 e = t3_l2t_get(tdev, new->neighbour, newdev);
1138 if (!e) {
1139 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1140 __func__);
1141 return;
1142 }
1143
1144 /* Walk tid table and notify clients of dst change. */
1145 ti = &(T3C_DATA(tdev))->tid_maps;
1146 for (tid = 0; tid < ti->ntids; tid++) {
1147 te = lookup_tid(ti, tid);
1148 BUG_ON(!te);
1149 if (te && te->ctx && te->client && te->client->redirect) {
1150 update_tcb = te->client->redirect(te->ctx, old, new, e);
1151 if (update_tcb) {
1152 l2t_hold(L2DATA(tdev), e);
1153 set_l2t_ix(tdev, tid, e);
1154 }
1155 }
1156 }
1157 l2t_release(L2DATA(tdev), e);
1158 }
1159
1160 /*
1161 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1162 * The allocated memory is cleared.
1163 */
1164 void *cxgb_alloc_mem(unsigned long size)
1165 {
1166 void *p = kzalloc(size, GFP_KERNEL);
1167
1168 if (!p)
1169 p = vzalloc(size);
1170 return p;
1171 }
1172
1173 /*
1174 * Free memory allocated through t3_alloc_mem().
1175 */
1176 void cxgb_free_mem(void *addr)
1177 {
1178 if (is_vmalloc_addr(addr))
1179 vfree(addr);
1180 else
1181 kfree(addr);
1182 }
1183
1184 /*
1185 * Allocate and initialize the TID tables. Returns 0 on success.
1186 */
1187 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1188 unsigned int natids, unsigned int nstids,
1189 unsigned int atid_base, unsigned int stid_base)
1190 {
1191 unsigned long size = ntids * sizeof(*t->tid_tab) +
1192 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1193
1194 t->tid_tab = cxgb_alloc_mem(size);
1195 if (!t->tid_tab)
1196 return -ENOMEM;
1197
1198 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1199 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1200 t->ntids = ntids;
1201 t->nstids = nstids;
1202 t->stid_base = stid_base;
1203 t->sfree = NULL;
1204 t->natids = natids;
1205 t->atid_base = atid_base;
1206 t->afree = NULL;
1207 t->stids_in_use = t->atids_in_use = 0;
1208 atomic_set(&t->tids_in_use, 0);
1209 spin_lock_init(&t->stid_lock);
1210 spin_lock_init(&t->atid_lock);
1211
1212 /*
1213 * Setup the free lists for stid_tab and atid_tab.
1214 */
1215 if (nstids) {
1216 while (--nstids)
1217 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1218 t->sfree = t->stid_tab;
1219 }
1220 if (natids) {
1221 while (--natids)
1222 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1223 t->afree = t->atid_tab;
1224 }
1225 return 0;
1226 }
1227
1228 static void free_tid_maps(struct tid_info *t)
1229 {
1230 cxgb_free_mem(t->tid_tab);
1231 }
1232
1233 static inline void add_adapter(struct adapter *adap)
1234 {
1235 write_lock_bh(&adapter_list_lock);
1236 list_add_tail(&adap->adapter_list, &adapter_list);
1237 write_unlock_bh(&adapter_list_lock);
1238 }
1239
1240 static inline void remove_adapter(struct adapter *adap)
1241 {
1242 write_lock_bh(&adapter_list_lock);
1243 list_del(&adap->adapter_list);
1244 write_unlock_bh(&adapter_list_lock);
1245 }
1246
1247 int cxgb3_offload_activate(struct adapter *adapter)
1248 {
1249 struct t3cdev *dev = &adapter->tdev;
1250 int natids, err;
1251 struct t3c_data *t;
1252 struct tid_range stid_range, tid_range;
1253 struct mtutab mtutab;
1254 unsigned int l2t_capacity;
1255
1256 t = kzalloc(sizeof(*t), GFP_KERNEL);
1257 if (!t)
1258 return -ENOMEM;
1259
1260 err = -EOPNOTSUPP;
1261 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1262 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1263 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1264 dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1265 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1266 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1267 goto out_free;
1268
1269 err = -ENOMEM;
1270 L2DATA(dev) = t3_init_l2t(l2t_capacity);
1271 if (!L2DATA(dev))
1272 goto out_free;
1273
1274 natids = min(tid_range.num / 2, MAX_ATIDS);
1275 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1276 stid_range.num, ATID_BASE, stid_range.base);
1277 if (err)
1278 goto out_free_l2t;
1279
1280 t->mtus = mtutab.mtus;
1281 t->nmtus = mtutab.size;
1282
1283 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1284 spin_lock_init(&t->tid_release_lock);
1285 INIT_LIST_HEAD(&t->list_node);
1286 t->dev = dev;
1287
1288 T3C_DATA(dev) = t;
1289 dev->recv = process_rx;
1290 dev->neigh_update = t3_l2t_update;
1291
1292 /* Register netevent handler once */
1293 if (list_empty(&adapter_list))
1294 register_netevent_notifier(&nb);
1295
1296 t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
1297 t->release_list_incomplete = 0;
1298
1299 add_adapter(adapter);
1300 return 0;
1301
1302 out_free_l2t:
1303 t3_free_l2t(L2DATA(dev));
1304 L2DATA(dev) = NULL;
1305 out_free:
1306 kfree(t);
1307 return err;
1308 }
1309
1310 void cxgb3_offload_deactivate(struct adapter *adapter)
1311 {
1312 struct t3cdev *tdev = &adapter->tdev;
1313 struct t3c_data *t = T3C_DATA(tdev);
1314
1315 remove_adapter(adapter);
1316 if (list_empty(&adapter_list))
1317 unregister_netevent_notifier(&nb);
1318
1319 free_tid_maps(&t->tid_maps);
1320 T3C_DATA(tdev) = NULL;
1321 t3_free_l2t(L2DATA(tdev));
1322 L2DATA(tdev) = NULL;
1323 if (t->nofail_skb)
1324 kfree_skb(t->nofail_skb);
1325 kfree(t);
1326 }
1327
1328 static inline void register_tdev(struct t3cdev *tdev)
1329 {
1330 static int unit;
1331
1332 mutex_lock(&cxgb3_db_lock);
1333 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1334 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1335 mutex_unlock(&cxgb3_db_lock);
1336 }
1337
1338 static inline void unregister_tdev(struct t3cdev *tdev)
1339 {
1340 mutex_lock(&cxgb3_db_lock);
1341 list_del(&tdev->ofld_dev_list);
1342 mutex_unlock(&cxgb3_db_lock);
1343 }
1344
1345 static inline int adap2type(struct adapter *adapter)
1346 {
1347 int type = 0;
1348
1349 switch (adapter->params.rev) {
1350 case T3_REV_A:
1351 type = T3A;
1352 break;
1353 case T3_REV_B:
1354 case T3_REV_B2:
1355 type = T3B;
1356 break;
1357 case T3_REV_C:
1358 type = T3C;
1359 break;
1360 }
1361 return type;
1362 }
1363
1364 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1365 {
1366 struct t3cdev *tdev = &adapter->tdev;
1367
1368 INIT_LIST_HEAD(&tdev->ofld_dev_list);
1369
1370 cxgb3_set_dummy_ops(tdev);
1371 tdev->send = t3_offload_tx;
1372 tdev->ctl = cxgb_offload_ctl;
1373 tdev->type = adap2type(adapter);
1374
1375 register_tdev(tdev);
1376 }
1377
1378 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1379 {
1380 struct t3cdev *tdev = &adapter->tdev;
1381
1382 tdev->recv = NULL;
1383 tdev->neigh_update = NULL;
1384
1385 unregister_tdev(tdev);
1386 }
1387
1388 void __init cxgb3_offload_init(void)
1389 {
1390 int i;
1391
1392 for (i = 0; i < NUM_CPL_CMDS; ++i)
1393 cpl_handlers[i] = do_bad_cpl;
1394
1395 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1396 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1397 t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1398 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1399 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1400 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1401 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1402 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1403 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1404 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1405 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1406 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1407 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1408 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1409 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1410 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1411 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1412 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1413 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1414 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1415 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1416 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1417 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1418 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1419 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1420 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1421 }