Merge branch 'tip/tracing/core' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / cxgb3 / cxgb3_offload.c
1 /*
2 * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/list.h>
34 #include <net/neighbour.h>
35 #include <linux/notifier.h>
36 #include <asm/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/if_vlan.h>
39 #include <net/netevent.h>
40 #include <linux/highmem.h>
41 #include <linux/vmalloc.h>
42
43 #include "common.h"
44 #include "regs.h"
45 #include "cxgb3_ioctl.h"
46 #include "cxgb3_ctl_defs.h"
47 #include "cxgb3_defs.h"
48 #include "l2t.h"
49 #include "firmware_exports.h"
50 #include "cxgb3_offload.h"
51
52 static LIST_HEAD(client_list);
53 static LIST_HEAD(ofld_dev_list);
54 static DEFINE_MUTEX(cxgb3_db_lock);
55
56 static DEFINE_RWLOCK(adapter_list_lock);
57 static LIST_HEAD(adapter_list);
58
59 static const unsigned int MAX_ATIDS = 64 * 1024;
60 static const unsigned int ATID_BASE = 0x10000;
61
62 static inline int offload_activated(struct t3cdev *tdev)
63 {
64 const struct adapter *adapter = tdev2adap(tdev);
65
66 return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
67 }
68
69 /**
70 * cxgb3_register_client - register an offload client
71 * @client: the client
72 *
73 * Add the client to the client list,
74 * and call backs the client for each activated offload device
75 */
76 void cxgb3_register_client(struct cxgb3_client *client)
77 {
78 struct t3cdev *tdev;
79
80 mutex_lock(&cxgb3_db_lock);
81 list_add_tail(&client->client_list, &client_list);
82
83 if (client->add) {
84 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
85 if (offload_activated(tdev))
86 client->add(tdev);
87 }
88 }
89 mutex_unlock(&cxgb3_db_lock);
90 }
91
92 EXPORT_SYMBOL(cxgb3_register_client);
93
94 /**
95 * cxgb3_unregister_client - unregister an offload client
96 * @client: the client
97 *
98 * Remove the client to the client list,
99 * and call backs the client for each activated offload device.
100 */
101 void cxgb3_unregister_client(struct cxgb3_client *client)
102 {
103 struct t3cdev *tdev;
104
105 mutex_lock(&cxgb3_db_lock);
106 list_del(&client->client_list);
107
108 if (client->remove) {
109 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
110 if (offload_activated(tdev))
111 client->remove(tdev);
112 }
113 }
114 mutex_unlock(&cxgb3_db_lock);
115 }
116
117 EXPORT_SYMBOL(cxgb3_unregister_client);
118
119 /**
120 * cxgb3_add_clients - activate registered clients for an offload device
121 * @tdev: the offload device
122 *
123 * Call backs all registered clients once a offload device is activated
124 */
125 void cxgb3_add_clients(struct t3cdev *tdev)
126 {
127 struct cxgb3_client *client;
128
129 mutex_lock(&cxgb3_db_lock);
130 list_for_each_entry(client, &client_list, client_list) {
131 if (client->add)
132 client->add(tdev);
133 }
134 mutex_unlock(&cxgb3_db_lock);
135 }
136
137 /**
138 * cxgb3_remove_clients - deactivates registered clients
139 * for an offload device
140 * @tdev: the offload device
141 *
142 * Call backs all registered clients once a offload device is deactivated
143 */
144 void cxgb3_remove_clients(struct t3cdev *tdev)
145 {
146 struct cxgb3_client *client;
147
148 mutex_lock(&cxgb3_db_lock);
149 list_for_each_entry(client, &client_list, client_list) {
150 if (client->remove)
151 client->remove(tdev);
152 }
153 mutex_unlock(&cxgb3_db_lock);
154 }
155
156 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
157 {
158 struct cxgb3_client *client;
159
160 mutex_lock(&cxgb3_db_lock);
161 list_for_each_entry(client, &client_list, client_list) {
162 if (client->event_handler)
163 client->event_handler(tdev, event, port);
164 }
165 mutex_unlock(&cxgb3_db_lock);
166 }
167
168 static struct net_device *get_iff_from_mac(struct adapter *adapter,
169 const unsigned char *mac,
170 unsigned int vlan)
171 {
172 int i;
173
174 for_each_port(adapter, i) {
175 struct vlan_group *grp;
176 struct net_device *dev = adapter->port[i];
177 const struct port_info *p = netdev_priv(dev);
178
179 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
180 if (vlan && vlan != VLAN_VID_MASK) {
181 grp = p->vlan_grp;
182 dev = NULL;
183 if (grp)
184 dev = vlan_group_get_device(grp, vlan);
185 } else
186 while (dev->master)
187 dev = dev->master;
188 return dev;
189 }
190 }
191 return NULL;
192 }
193
194 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
195 void *data)
196 {
197 int i;
198 int ret = 0;
199 unsigned int val = 0;
200 struct ulp_iscsi_info *uiip = data;
201
202 switch (req) {
203 case ULP_ISCSI_GET_PARAMS:
204 uiip->pdev = adapter->pdev;
205 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
206 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
207 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
208
209 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
210 for (i = 0; i < 4; i++, val >>= 8)
211 uiip->pgsz_factor[i] = val & 0xFF;
212
213 val = t3_read_reg(adapter, A_TP_PARA_REG7);
214 uiip->max_txsz =
215 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
216 (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
217 /*
218 * On tx, the iscsi pdu has to be <= tx page size and has to
219 * fit into the Tx PM FIFO.
220 */
221 val = min(adapter->params.tp.tx_pg_size,
222 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
223 uiip->max_txsz = min(val, uiip->max_txsz);
224
225 /* set MaxRxData to 16224 */
226 val = t3_read_reg(adapter, A_TP_PARA_REG2);
227 if ((val >> S_MAXRXDATA) != 0x3f60) {
228 val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
229 val |= V_MAXRXDATA(0x3f60);
230 printk(KERN_INFO
231 "%s, iscsi set MaxRxData to 16224 (0x%x).\n",
232 adapter->name, val);
233 t3_write_reg(adapter, A_TP_PARA_REG2, val);
234 }
235
236 /*
237 * on rx, the iscsi pdu has to be < rx page size and the
238 * the max rx data length programmed in TP
239 */
240 val = min(adapter->params.tp.rx_pg_size,
241 ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
242 S_MAXRXDATA) & M_MAXRXDATA);
243 uiip->max_rxsz = min(val, uiip->max_rxsz);
244 break;
245 case ULP_ISCSI_SET_PARAMS:
246 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
247 /* program the ddp page sizes */
248 for (i = 0; i < 4; i++)
249 val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
250 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
251 printk(KERN_INFO
252 "%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
253 adapter->name, val, uiip->pgsz_factor[0],
254 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
255 uiip->pgsz_factor[3]);
256 t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
257 }
258 break;
259 default:
260 ret = -EOPNOTSUPP;
261 }
262 return ret;
263 }
264
265 /* Response queue used for RDMA events. */
266 #define ASYNC_NOTIF_RSPQ 0
267
268 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
269 {
270 int ret = 0;
271
272 switch (req) {
273 case RDMA_GET_PARAMS: {
274 struct rdma_info *rdma = data;
275 struct pci_dev *pdev = adapter->pdev;
276
277 rdma->udbell_physbase = pci_resource_start(pdev, 2);
278 rdma->udbell_len = pci_resource_len(pdev, 2);
279 rdma->tpt_base =
280 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
281 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
282 rdma->pbl_base =
283 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
284 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
285 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
286 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
287 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
288 rdma->pdev = pdev;
289 break;
290 }
291 case RDMA_CQ_OP:{
292 unsigned long flags;
293 struct rdma_cq_op *rdma = data;
294
295 /* may be called in any context */
296 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
297 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
298 rdma->credits);
299 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
300 break;
301 }
302 case RDMA_GET_MEM:{
303 struct ch_mem_range *t = data;
304 struct mc7 *mem;
305
306 if ((t->addr & 7) || (t->len & 7))
307 return -EINVAL;
308 if (t->mem_id == MEM_CM)
309 mem = &adapter->cm;
310 else if (t->mem_id == MEM_PMRX)
311 mem = &adapter->pmrx;
312 else if (t->mem_id == MEM_PMTX)
313 mem = &adapter->pmtx;
314 else
315 return -EINVAL;
316
317 ret =
318 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
319 (u64 *) t->buf);
320 if (ret)
321 return ret;
322 break;
323 }
324 case RDMA_CQ_SETUP:{
325 struct rdma_cq_setup *rdma = data;
326
327 spin_lock_irq(&adapter->sge.reg_lock);
328 ret =
329 t3_sge_init_cqcntxt(adapter, rdma->id,
330 rdma->base_addr, rdma->size,
331 ASYNC_NOTIF_RSPQ,
332 rdma->ovfl_mode, rdma->credits,
333 rdma->credit_thres);
334 spin_unlock_irq(&adapter->sge.reg_lock);
335 break;
336 }
337 case RDMA_CQ_DISABLE:
338 spin_lock_irq(&adapter->sge.reg_lock);
339 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
340 spin_unlock_irq(&adapter->sge.reg_lock);
341 break;
342 case RDMA_CTRL_QP_SETUP:{
343 struct rdma_ctrlqp_setup *rdma = data;
344
345 spin_lock_irq(&adapter->sge.reg_lock);
346 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
347 SGE_CNTXT_RDMA,
348 ASYNC_NOTIF_RSPQ,
349 rdma->base_addr, rdma->size,
350 FW_RI_TID_START, 1, 0);
351 spin_unlock_irq(&adapter->sge.reg_lock);
352 break;
353 }
354 case RDMA_GET_MIB: {
355 spin_lock(&adapter->stats_lock);
356 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
357 spin_unlock(&adapter->stats_lock);
358 break;
359 }
360 default:
361 ret = -EOPNOTSUPP;
362 }
363 return ret;
364 }
365
366 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
367 {
368 struct adapter *adapter = tdev2adap(tdev);
369 struct tid_range *tid;
370 struct mtutab *mtup;
371 struct iff_mac *iffmacp;
372 struct ddp_params *ddpp;
373 struct adap_ports *ports;
374 struct ofld_page_info *rx_page_info;
375 struct tp_params *tp = &adapter->params.tp;
376 int i;
377
378 switch (req) {
379 case GET_MAX_OUTSTANDING_WR:
380 *(unsigned int *)data = FW_WR_NUM;
381 break;
382 case GET_WR_LEN:
383 *(unsigned int *)data = WR_FLITS;
384 break;
385 case GET_TX_MAX_CHUNK:
386 *(unsigned int *)data = 1 << 20; /* 1MB */
387 break;
388 case GET_TID_RANGE:
389 tid = data;
390 tid->num = t3_mc5_size(&adapter->mc5) -
391 adapter->params.mc5.nroutes -
392 adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
393 tid->base = 0;
394 break;
395 case GET_STID_RANGE:
396 tid = data;
397 tid->num = adapter->params.mc5.nservers;
398 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
399 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
400 break;
401 case GET_L2T_CAPACITY:
402 *(unsigned int *)data = 2048;
403 break;
404 case GET_MTUS:
405 mtup = data;
406 mtup->size = NMTUS;
407 mtup->mtus = adapter->params.mtus;
408 break;
409 case GET_IFF_FROM_MAC:
410 iffmacp = data;
411 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
412 iffmacp->vlan_tag &
413 VLAN_VID_MASK);
414 break;
415 case GET_DDP_PARAMS:
416 ddpp = data;
417 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
418 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
419 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
420 break;
421 case GET_PORTS:
422 ports = data;
423 ports->nports = adapter->params.nports;
424 for_each_port(adapter, i)
425 ports->lldevs[i] = adapter->port[i];
426 break;
427 case ULP_ISCSI_GET_PARAMS:
428 case ULP_ISCSI_SET_PARAMS:
429 if (!offload_running(adapter))
430 return -EAGAIN;
431 return cxgb_ulp_iscsi_ctl(adapter, req, data);
432 case RDMA_GET_PARAMS:
433 case RDMA_CQ_OP:
434 case RDMA_CQ_SETUP:
435 case RDMA_CQ_DISABLE:
436 case RDMA_CTRL_QP_SETUP:
437 case RDMA_GET_MEM:
438 case RDMA_GET_MIB:
439 if (!offload_running(adapter))
440 return -EAGAIN;
441 return cxgb_rdma_ctl(adapter, req, data);
442 case GET_RX_PAGE_INFO:
443 rx_page_info = data;
444 rx_page_info->page_size = tp->rx_pg_size;
445 rx_page_info->num = tp->rx_num_pgs;
446 break;
447 case GET_ISCSI_IPV4ADDR: {
448 struct iscsi_ipv4addr *p = data;
449 struct port_info *pi = netdev_priv(p->dev);
450 p->ipv4addr = pi->iscsi_ipv4addr;
451 break;
452 }
453 case GET_EMBEDDED_INFO: {
454 struct ch_embedded_info *e = data;
455
456 spin_lock(&adapter->stats_lock);
457 t3_get_fw_version(adapter, &e->fw_vers);
458 t3_get_tp_version(adapter, &e->tp_vers);
459 spin_unlock(&adapter->stats_lock);
460 break;
461 }
462 default:
463 return -EOPNOTSUPP;
464 }
465 return 0;
466 }
467
468 /*
469 * Dummy handler for Rx offload packets in case we get an offload packet before
470 * proper processing is setup. This complains and drops the packet as it isn't
471 * normal to get offload packets at this stage.
472 */
473 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
474 int n)
475 {
476 while (n--)
477 dev_kfree_skb_any(skbs[n]);
478 return 0;
479 }
480
481 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
482 {
483 }
484
485 void cxgb3_set_dummy_ops(struct t3cdev *dev)
486 {
487 dev->recv = rx_offload_blackhole;
488 dev->neigh_update = dummy_neigh_update;
489 }
490
491 /*
492 * Free an active-open TID.
493 */
494 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
495 {
496 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
497 union active_open_entry *p = atid2entry(t, atid);
498 void *ctx = p->t3c_tid.ctx;
499
500 spin_lock_bh(&t->atid_lock);
501 p->next = t->afree;
502 t->afree = p;
503 t->atids_in_use--;
504 spin_unlock_bh(&t->atid_lock);
505
506 return ctx;
507 }
508
509 EXPORT_SYMBOL(cxgb3_free_atid);
510
511 /*
512 * Free a server TID and return it to the free pool.
513 */
514 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
515 {
516 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
517 union listen_entry *p = stid2entry(t, stid);
518
519 spin_lock_bh(&t->stid_lock);
520 p->next = t->sfree;
521 t->sfree = p;
522 t->stids_in_use--;
523 spin_unlock_bh(&t->stid_lock);
524 }
525
526 EXPORT_SYMBOL(cxgb3_free_stid);
527
528 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
529 void *ctx, unsigned int tid)
530 {
531 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
532
533 t->tid_tab[tid].client = client;
534 t->tid_tab[tid].ctx = ctx;
535 atomic_inc(&t->tids_in_use);
536 }
537
538 EXPORT_SYMBOL(cxgb3_insert_tid);
539
540 /*
541 * Populate a TID_RELEASE WR. The skb must be already propely sized.
542 */
543 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
544 {
545 struct cpl_tid_release *req;
546
547 skb->priority = CPL_PRIORITY_SETUP;
548 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
549 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
550 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
551 }
552
553 static void t3_process_tid_release_list(struct work_struct *work)
554 {
555 struct t3c_data *td = container_of(work, struct t3c_data,
556 tid_release_task);
557 struct sk_buff *skb;
558 struct t3cdev *tdev = td->dev;
559
560
561 spin_lock_bh(&td->tid_release_lock);
562 while (td->tid_release_list) {
563 struct t3c_tid_entry *p = td->tid_release_list;
564
565 td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
566 spin_unlock_bh(&td->tid_release_lock);
567
568 skb = alloc_skb(sizeof(struct cpl_tid_release),
569 GFP_KERNEL);
570 if (!skb)
571 skb = td->nofail_skb;
572 if (!skb) {
573 spin_lock_bh(&td->tid_release_lock);
574 p->ctx = (void *)td->tid_release_list;
575 td->tid_release_list = (struct t3c_tid_entry *)p;
576 break;
577 }
578 mk_tid_release(skb, p - td->tid_maps.tid_tab);
579 cxgb3_ofld_send(tdev, skb);
580 p->ctx = NULL;
581 if (skb == td->nofail_skb)
582 td->nofail_skb =
583 alloc_skb(sizeof(struct cpl_tid_release),
584 GFP_KERNEL);
585 spin_lock_bh(&td->tid_release_lock);
586 }
587 td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
588 spin_unlock_bh(&td->tid_release_lock);
589
590 if (!td->nofail_skb)
591 td->nofail_skb =
592 alloc_skb(sizeof(struct cpl_tid_release),
593 GFP_KERNEL);
594 }
595
596 /* use ctx as a next pointer in the tid release list */
597 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
598 {
599 struct t3c_data *td = T3C_DATA(tdev);
600 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
601
602 spin_lock_bh(&td->tid_release_lock);
603 p->ctx = (void *)td->tid_release_list;
604 p->client = NULL;
605 td->tid_release_list = p;
606 if (!p->ctx || td->release_list_incomplete)
607 schedule_work(&td->tid_release_task);
608 spin_unlock_bh(&td->tid_release_lock);
609 }
610
611 EXPORT_SYMBOL(cxgb3_queue_tid_release);
612
613 /*
614 * Remove a tid from the TID table. A client may defer processing its last
615 * CPL message if it is locked at the time it arrives, and while the message
616 * sits in the client's backlog the TID may be reused for another connection.
617 * To handle this we atomically switch the TID association if it still points
618 * to the original client context.
619 */
620 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
621 {
622 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
623
624 BUG_ON(tid >= t->ntids);
625 if (tdev->type == T3A)
626 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
627 else {
628 struct sk_buff *skb;
629
630 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
631 if (likely(skb)) {
632 mk_tid_release(skb, tid);
633 cxgb3_ofld_send(tdev, skb);
634 t->tid_tab[tid].ctx = NULL;
635 } else
636 cxgb3_queue_tid_release(tdev, tid);
637 }
638 atomic_dec(&t->tids_in_use);
639 }
640
641 EXPORT_SYMBOL(cxgb3_remove_tid);
642
643 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
644 void *ctx)
645 {
646 int atid = -1;
647 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
648
649 spin_lock_bh(&t->atid_lock);
650 if (t->afree &&
651 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
652 t->ntids) {
653 union active_open_entry *p = t->afree;
654
655 atid = (p - t->atid_tab) + t->atid_base;
656 t->afree = p->next;
657 p->t3c_tid.ctx = ctx;
658 p->t3c_tid.client = client;
659 t->atids_in_use++;
660 }
661 spin_unlock_bh(&t->atid_lock);
662 return atid;
663 }
664
665 EXPORT_SYMBOL(cxgb3_alloc_atid);
666
667 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
668 void *ctx)
669 {
670 int stid = -1;
671 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
672
673 spin_lock_bh(&t->stid_lock);
674 if (t->sfree) {
675 union listen_entry *p = t->sfree;
676
677 stid = (p - t->stid_tab) + t->stid_base;
678 t->sfree = p->next;
679 p->t3c_tid.ctx = ctx;
680 p->t3c_tid.client = client;
681 t->stids_in_use++;
682 }
683 spin_unlock_bh(&t->stid_lock);
684 return stid;
685 }
686
687 EXPORT_SYMBOL(cxgb3_alloc_stid);
688
689 /* Get the t3cdev associated with a net_device */
690 struct t3cdev *dev2t3cdev(struct net_device *dev)
691 {
692 const struct port_info *pi = netdev_priv(dev);
693
694 return (struct t3cdev *)pi->adapter;
695 }
696
697 EXPORT_SYMBOL(dev2t3cdev);
698
699 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
700 {
701 struct cpl_smt_write_rpl *rpl = cplhdr(skb);
702
703 if (rpl->status != CPL_ERR_NONE)
704 printk(KERN_ERR
705 "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
706 rpl->status, GET_TID(rpl));
707
708 return CPL_RET_BUF_DONE;
709 }
710
711 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
712 {
713 struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
714
715 if (rpl->status != CPL_ERR_NONE)
716 printk(KERN_ERR
717 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
718 rpl->status, GET_TID(rpl));
719
720 return CPL_RET_BUF_DONE;
721 }
722
723 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
724 {
725 struct cpl_rte_write_rpl *rpl = cplhdr(skb);
726
727 if (rpl->status != CPL_ERR_NONE)
728 printk(KERN_ERR
729 "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
730 rpl->status, GET_TID(rpl));
731
732 return CPL_RET_BUF_DONE;
733 }
734
735 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
736 {
737 struct cpl_act_open_rpl *rpl = cplhdr(skb);
738 unsigned int atid = G_TID(ntohl(rpl->atid));
739 struct t3c_tid_entry *t3c_tid;
740
741 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
742 if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
743 t3c_tid->client->handlers &&
744 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
745 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
746 t3c_tid->
747 ctx);
748 } else {
749 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
750 dev->name, CPL_ACT_OPEN_RPL);
751 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
752 }
753 }
754
755 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
756 {
757 union opcode_tid *p = cplhdr(skb);
758 unsigned int stid = G_TID(ntohl(p->opcode_tid));
759 struct t3c_tid_entry *t3c_tid;
760
761 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
762 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
763 t3c_tid->client->handlers[p->opcode]) {
764 return t3c_tid->client->handlers[p->opcode] (dev, skb,
765 t3c_tid->ctx);
766 } else {
767 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
768 dev->name, p->opcode);
769 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
770 }
771 }
772
773 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
774 {
775 union opcode_tid *p = cplhdr(skb);
776 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
777 struct t3c_tid_entry *t3c_tid;
778
779 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
780 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
781 t3c_tid->client->handlers[p->opcode]) {
782 return t3c_tid->client->handlers[p->opcode]
783 (dev, skb, t3c_tid->ctx);
784 } else {
785 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
786 dev->name, p->opcode);
787 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
788 }
789 }
790
791 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
792 {
793 struct cpl_pass_accept_req *req = cplhdr(skb);
794 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
795 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
796 struct t3c_tid_entry *t3c_tid;
797 unsigned int tid = GET_TID(req);
798
799 if (unlikely(tid >= t->ntids)) {
800 printk("%s: passive open TID %u too large\n",
801 dev->name, tid);
802 t3_fatal_err(tdev2adap(dev));
803 return CPL_RET_BUF_DONE;
804 }
805
806 t3c_tid = lookup_stid(t, stid);
807 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
808 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
809 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
810 (dev, skb, t3c_tid->ctx);
811 } else {
812 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
813 dev->name, CPL_PASS_ACCEPT_REQ);
814 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
815 }
816 }
817
818 /*
819 * Returns an sk_buff for a reply CPL message of size len. If the input
820 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
821 * is allocated. The input skb must be of size at least len. Note that this
822 * operation does not destroy the original skb data even if it decides to reuse
823 * the buffer.
824 */
825 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
826 gfp_t gfp)
827 {
828 if (likely(!skb_cloned(skb))) {
829 BUG_ON(skb->len < len);
830 __skb_trim(skb, len);
831 skb_get(skb);
832 } else {
833 skb = alloc_skb(len, gfp);
834 if (skb)
835 __skb_put(skb, len);
836 }
837 return skb;
838 }
839
840 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
841 {
842 union opcode_tid *p = cplhdr(skb);
843 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
844 struct t3c_tid_entry *t3c_tid;
845
846 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
847 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
848 t3c_tid->client->handlers[p->opcode]) {
849 return t3c_tid->client->handlers[p->opcode]
850 (dev, skb, t3c_tid->ctx);
851 } else {
852 struct cpl_abort_req_rss *req = cplhdr(skb);
853 struct cpl_abort_rpl *rpl;
854 struct sk_buff *reply_skb;
855 unsigned int tid = GET_TID(req);
856 u8 cmd = req->status;
857
858 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
859 req->status == CPL_ERR_PERSIST_NEG_ADVICE)
860 goto out;
861
862 reply_skb = cxgb3_get_cpl_reply_skb(skb,
863 sizeof(struct
864 cpl_abort_rpl),
865 GFP_ATOMIC);
866
867 if (!reply_skb) {
868 printk("do_abort_req_rss: couldn't get skb!\n");
869 goto out;
870 }
871 reply_skb->priority = CPL_PRIORITY_DATA;
872 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
873 rpl = cplhdr(reply_skb);
874 rpl->wr.wr_hi =
875 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
876 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
877 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
878 rpl->cmd = cmd;
879 cxgb3_ofld_send(dev, reply_skb);
880 out:
881 return CPL_RET_BUF_DONE;
882 }
883 }
884
885 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
886 {
887 struct cpl_act_establish *req = cplhdr(skb);
888 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
889 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
890 struct t3c_tid_entry *t3c_tid;
891 unsigned int tid = GET_TID(req);
892
893 if (unlikely(tid >= t->ntids)) {
894 printk("%s: active establish TID %u too large\n",
895 dev->name, tid);
896 t3_fatal_err(tdev2adap(dev));
897 return CPL_RET_BUF_DONE;
898 }
899
900 t3c_tid = lookup_atid(t, atid);
901 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
902 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
903 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
904 (dev, skb, t3c_tid->ctx);
905 } else {
906 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
907 dev->name, CPL_ACT_ESTABLISH);
908 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
909 }
910 }
911
912 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
913 {
914 struct cpl_trace_pkt *p = cplhdr(skb);
915
916 skb->protocol = htons(0xffff);
917 skb->dev = dev->lldev;
918 skb_pull(skb, sizeof(*p));
919 skb_reset_mac_header(skb);
920 netif_receive_skb(skb);
921 return 0;
922 }
923
924 /*
925 * That skb would better have come from process_responses() where we abuse
926 * ->priority and ->csum to carry our data. NB: if we get to per-arch
927 * ->csum, the things might get really interesting here.
928 */
929
930 static inline u32 get_hwtid(struct sk_buff *skb)
931 {
932 return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
933 }
934
935 static inline u32 get_opcode(struct sk_buff *skb)
936 {
937 return G_OPCODE(ntohl((__force __be32)skb->csum));
938 }
939
940 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
941 {
942 unsigned int hwtid = get_hwtid(skb);
943 unsigned int opcode = get_opcode(skb);
944 struct t3c_tid_entry *t3c_tid;
945
946 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
947 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
948 t3c_tid->client->handlers[opcode]) {
949 return t3c_tid->client->handlers[opcode] (dev, skb,
950 t3c_tid->ctx);
951 } else {
952 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
953 dev->name, opcode);
954 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
955 }
956 }
957
958 static int nb_callback(struct notifier_block *self, unsigned long event,
959 void *ctx)
960 {
961 switch (event) {
962 case (NETEVENT_NEIGH_UPDATE):{
963 cxgb_neigh_update((struct neighbour *)ctx);
964 break;
965 }
966 case (NETEVENT_PMTU_UPDATE):
967 break;
968 case (NETEVENT_REDIRECT):{
969 struct netevent_redirect *nr = ctx;
970 cxgb_redirect(nr->old, nr->new);
971 cxgb_neigh_update(nr->new->neighbour);
972 break;
973 }
974 default:
975 break;
976 }
977 return 0;
978 }
979
980 static struct notifier_block nb = {
981 .notifier_call = nb_callback
982 };
983
984 /*
985 * Process a received packet with an unknown/unexpected CPL opcode.
986 */
987 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
988 {
989 printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
990 *skb->data);
991 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
992 }
993
994 /*
995 * Handlers for each CPL opcode
996 */
997 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
998
999 /*
1000 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
1001 * to unregister an existing handler.
1002 */
1003 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
1004 {
1005 if (opcode < NUM_CPL_CMDS)
1006 cpl_handlers[opcode] = h ? h : do_bad_cpl;
1007 else
1008 printk(KERN_ERR "T3C: handler registration for "
1009 "opcode %x failed\n", opcode);
1010 }
1011
1012 EXPORT_SYMBOL(t3_register_cpl_handler);
1013
1014 /*
1015 * T3CDEV's receive method.
1016 */
1017 int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1018 {
1019 while (n--) {
1020 struct sk_buff *skb = *skbs++;
1021 unsigned int opcode = get_opcode(skb);
1022 int ret = cpl_handlers[opcode] (dev, skb);
1023
1024 #if VALIDATE_TID
1025 if (ret & CPL_RET_UNKNOWN_TID) {
1026 union opcode_tid *p = cplhdr(skb);
1027
1028 printk(KERN_ERR "%s: CPL message (opcode %u) had "
1029 "unknown TID %u\n", dev->name, opcode,
1030 G_TID(ntohl(p->opcode_tid)));
1031 }
1032 #endif
1033 if (ret & CPL_RET_BUF_DONE)
1034 kfree_skb(skb);
1035 }
1036 return 0;
1037 }
1038
1039 /*
1040 * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1041 */
1042 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1043 {
1044 int r;
1045
1046 local_bh_disable();
1047 r = dev->send(dev, skb);
1048 local_bh_enable();
1049 return r;
1050 }
1051
1052 EXPORT_SYMBOL(cxgb3_ofld_send);
1053
1054 static int is_offloading(struct net_device *dev)
1055 {
1056 struct adapter *adapter;
1057 int i;
1058
1059 read_lock_bh(&adapter_list_lock);
1060 list_for_each_entry(adapter, &adapter_list, adapter_list) {
1061 for_each_port(adapter, i) {
1062 if (dev == adapter->port[i]) {
1063 read_unlock_bh(&adapter_list_lock);
1064 return 1;
1065 }
1066 }
1067 }
1068 read_unlock_bh(&adapter_list_lock);
1069 return 0;
1070 }
1071
1072 void cxgb_neigh_update(struct neighbour *neigh)
1073 {
1074 struct net_device *dev = neigh->dev;
1075
1076 if (dev && (is_offloading(dev))) {
1077 struct t3cdev *tdev = dev2t3cdev(dev);
1078
1079 BUG_ON(!tdev);
1080 t3_l2t_update(tdev, neigh);
1081 }
1082 }
1083
1084 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1085 {
1086 struct sk_buff *skb;
1087 struct cpl_set_tcb_field *req;
1088
1089 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1090 if (!skb) {
1091 printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
1092 return;
1093 }
1094 skb->priority = CPL_PRIORITY_CONTROL;
1095 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1096 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1097 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1098 req->reply = 0;
1099 req->cpu_idx = 0;
1100 req->word = htons(W_TCB_L2T_IX);
1101 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1102 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1103 tdev->send(tdev, skb);
1104 }
1105
1106 void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1107 {
1108 struct net_device *olddev, *newdev;
1109 struct tid_info *ti;
1110 struct t3cdev *tdev;
1111 u32 tid;
1112 int update_tcb;
1113 struct l2t_entry *e;
1114 struct t3c_tid_entry *te;
1115
1116 olddev = old->neighbour->dev;
1117 newdev = new->neighbour->dev;
1118 if (!is_offloading(olddev))
1119 return;
1120 if (!is_offloading(newdev)) {
1121 printk(KERN_WARNING "%s: Redirect to non-offload "
1122 "device ignored.\n", __func__);
1123 return;
1124 }
1125 tdev = dev2t3cdev(olddev);
1126 BUG_ON(!tdev);
1127 if (tdev != dev2t3cdev(newdev)) {
1128 printk(KERN_WARNING "%s: Redirect to different "
1129 "offload device ignored.\n", __func__);
1130 return;
1131 }
1132
1133 /* Add new L2T entry */
1134 e = t3_l2t_get(tdev, new->neighbour, newdev);
1135 if (!e) {
1136 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1137 __func__);
1138 return;
1139 }
1140
1141 /* Walk tid table and notify clients of dst change. */
1142 ti = &(T3C_DATA(tdev))->tid_maps;
1143 for (tid = 0; tid < ti->ntids; tid++) {
1144 te = lookup_tid(ti, tid);
1145 BUG_ON(!te);
1146 if (te && te->ctx && te->client && te->client->redirect) {
1147 update_tcb = te->client->redirect(te->ctx, old, new, e);
1148 if (update_tcb) {
1149 l2t_hold(L2DATA(tdev), e);
1150 set_l2t_ix(tdev, tid, e);
1151 }
1152 }
1153 }
1154 l2t_release(L2DATA(tdev), e);
1155 }
1156
1157 /*
1158 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1159 * The allocated memory is cleared.
1160 */
1161 void *cxgb_alloc_mem(unsigned long size)
1162 {
1163 void *p = kmalloc(size, GFP_KERNEL);
1164
1165 if (!p)
1166 p = vmalloc(size);
1167 if (p)
1168 memset(p, 0, size);
1169 return p;
1170 }
1171
1172 /*
1173 * Free memory allocated through t3_alloc_mem().
1174 */
1175 void cxgb_free_mem(void *addr)
1176 {
1177 if (is_vmalloc_addr(addr))
1178 vfree(addr);
1179 else
1180 kfree(addr);
1181 }
1182
1183 /*
1184 * Allocate and initialize the TID tables. Returns 0 on success.
1185 */
1186 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1187 unsigned int natids, unsigned int nstids,
1188 unsigned int atid_base, unsigned int stid_base)
1189 {
1190 unsigned long size = ntids * sizeof(*t->tid_tab) +
1191 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1192
1193 t->tid_tab = cxgb_alloc_mem(size);
1194 if (!t->tid_tab)
1195 return -ENOMEM;
1196
1197 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1198 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1199 t->ntids = ntids;
1200 t->nstids = nstids;
1201 t->stid_base = stid_base;
1202 t->sfree = NULL;
1203 t->natids = natids;
1204 t->atid_base = atid_base;
1205 t->afree = NULL;
1206 t->stids_in_use = t->atids_in_use = 0;
1207 atomic_set(&t->tids_in_use, 0);
1208 spin_lock_init(&t->stid_lock);
1209 spin_lock_init(&t->atid_lock);
1210
1211 /*
1212 * Setup the free lists for stid_tab and atid_tab.
1213 */
1214 if (nstids) {
1215 while (--nstids)
1216 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1217 t->sfree = t->stid_tab;
1218 }
1219 if (natids) {
1220 while (--natids)
1221 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1222 t->afree = t->atid_tab;
1223 }
1224 return 0;
1225 }
1226
1227 static void free_tid_maps(struct tid_info *t)
1228 {
1229 cxgb_free_mem(t->tid_tab);
1230 }
1231
1232 static inline void add_adapter(struct adapter *adap)
1233 {
1234 write_lock_bh(&adapter_list_lock);
1235 list_add_tail(&adap->adapter_list, &adapter_list);
1236 write_unlock_bh(&adapter_list_lock);
1237 }
1238
1239 static inline void remove_adapter(struct adapter *adap)
1240 {
1241 write_lock_bh(&adapter_list_lock);
1242 list_del(&adap->adapter_list);
1243 write_unlock_bh(&adapter_list_lock);
1244 }
1245
1246 int cxgb3_offload_activate(struct adapter *adapter)
1247 {
1248 struct t3cdev *dev = &adapter->tdev;
1249 int natids, err;
1250 struct t3c_data *t;
1251 struct tid_range stid_range, tid_range;
1252 struct mtutab mtutab;
1253 unsigned int l2t_capacity;
1254
1255 t = kzalloc(sizeof(*t), GFP_KERNEL);
1256 if (!t)
1257 return -ENOMEM;
1258
1259 err = -EOPNOTSUPP;
1260 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1261 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1262 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1263 dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1264 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1265 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1266 goto out_free;
1267
1268 err = -ENOMEM;
1269 L2DATA(dev) = t3_init_l2t(l2t_capacity);
1270 if (!L2DATA(dev))
1271 goto out_free;
1272
1273 natids = min(tid_range.num / 2, MAX_ATIDS);
1274 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1275 stid_range.num, ATID_BASE, stid_range.base);
1276 if (err)
1277 goto out_free_l2t;
1278
1279 t->mtus = mtutab.mtus;
1280 t->nmtus = mtutab.size;
1281
1282 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1283 spin_lock_init(&t->tid_release_lock);
1284 INIT_LIST_HEAD(&t->list_node);
1285 t->dev = dev;
1286
1287 T3C_DATA(dev) = t;
1288 dev->recv = process_rx;
1289 dev->neigh_update = t3_l2t_update;
1290
1291 /* Register netevent handler once */
1292 if (list_empty(&adapter_list))
1293 register_netevent_notifier(&nb);
1294
1295 t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
1296 t->release_list_incomplete = 0;
1297
1298 add_adapter(adapter);
1299 return 0;
1300
1301 out_free_l2t:
1302 t3_free_l2t(L2DATA(dev));
1303 L2DATA(dev) = NULL;
1304 out_free:
1305 kfree(t);
1306 return err;
1307 }
1308
1309 void cxgb3_offload_deactivate(struct adapter *adapter)
1310 {
1311 struct t3cdev *tdev = &adapter->tdev;
1312 struct t3c_data *t = T3C_DATA(tdev);
1313
1314 remove_adapter(adapter);
1315 if (list_empty(&adapter_list))
1316 unregister_netevent_notifier(&nb);
1317
1318 free_tid_maps(&t->tid_maps);
1319 T3C_DATA(tdev) = NULL;
1320 t3_free_l2t(L2DATA(tdev));
1321 L2DATA(tdev) = NULL;
1322 if (t->nofail_skb)
1323 kfree_skb(t->nofail_skb);
1324 kfree(t);
1325 }
1326
1327 static inline void register_tdev(struct t3cdev *tdev)
1328 {
1329 static int unit;
1330
1331 mutex_lock(&cxgb3_db_lock);
1332 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1333 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1334 mutex_unlock(&cxgb3_db_lock);
1335 }
1336
1337 static inline void unregister_tdev(struct t3cdev *tdev)
1338 {
1339 mutex_lock(&cxgb3_db_lock);
1340 list_del(&tdev->ofld_dev_list);
1341 mutex_unlock(&cxgb3_db_lock);
1342 }
1343
1344 static inline int adap2type(struct adapter *adapter)
1345 {
1346 int type = 0;
1347
1348 switch (adapter->params.rev) {
1349 case T3_REV_A:
1350 type = T3A;
1351 break;
1352 case T3_REV_B:
1353 case T3_REV_B2:
1354 type = T3B;
1355 break;
1356 case T3_REV_C:
1357 type = T3C;
1358 break;
1359 }
1360 return type;
1361 }
1362
1363 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1364 {
1365 struct t3cdev *tdev = &adapter->tdev;
1366
1367 INIT_LIST_HEAD(&tdev->ofld_dev_list);
1368
1369 cxgb3_set_dummy_ops(tdev);
1370 tdev->send = t3_offload_tx;
1371 tdev->ctl = cxgb_offload_ctl;
1372 tdev->type = adap2type(adapter);
1373
1374 register_tdev(tdev);
1375 }
1376
1377 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1378 {
1379 struct t3cdev *tdev = &adapter->tdev;
1380
1381 tdev->recv = NULL;
1382 tdev->neigh_update = NULL;
1383
1384 unregister_tdev(tdev);
1385 }
1386
1387 void __init cxgb3_offload_init(void)
1388 {
1389 int i;
1390
1391 for (i = 0; i < NUM_CPL_CMDS; ++i)
1392 cpl_handlers[i] = do_bad_cpl;
1393
1394 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1395 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1396 t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1397 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1398 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1399 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1400 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1401 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1402 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1403 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1404 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1405 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1406 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1407 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1408 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1409 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1410 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1411 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1412 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1413 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1414 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1415 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1416 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1417 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1418 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1419 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1420 }