Staging: et131x: config is already zeroed
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / cxgb3 / cxgb3_main.c
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <asm/uaccess.h>
48
49 #include "common.h"
50 #include "cxgb3_ioctl.h"
51 #include "regs.h"
52 #include "cxgb3_offload.h"
53 #include "version.h"
54
55 #include "cxgb3_ctl_defs.h"
56 #include "t3_cpl.h"
57 #include "firmware_exports.h"
58
59 enum {
60 MAX_TXQ_ENTRIES = 16384,
61 MAX_CTRL_TXQ_ENTRIES = 1024,
62 MAX_RSPQ_ENTRIES = 16384,
63 MAX_RX_BUFFERS = 16384,
64 MAX_RX_JUMBO_BUFFERS = 16384,
65 MIN_TXQ_ENTRIES = 4,
66 MIN_CTRL_TXQ_ENTRIES = 4,
67 MIN_RSPQ_ENTRIES = 32,
68 MIN_FL_ENTRIES = 32
69 };
70
71 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
72
73 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
74 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
75 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
76
77 #define EEPROM_MAGIC 0x38E2F10C
78
79 #define CH_DEVICE(devid, idx) \
80 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
81
82 static const struct pci_device_id cxgb3_pci_tbl[] = {
83 CH_DEVICE(0x20, 0), /* PE9000 */
84 CH_DEVICE(0x21, 1), /* T302E */
85 CH_DEVICE(0x22, 2), /* T310E */
86 CH_DEVICE(0x23, 3), /* T320X */
87 CH_DEVICE(0x24, 1), /* T302X */
88 CH_DEVICE(0x25, 3), /* T320E */
89 CH_DEVICE(0x26, 2), /* T310X */
90 CH_DEVICE(0x30, 2), /* T3B10 */
91 CH_DEVICE(0x31, 3), /* T3B20 */
92 CH_DEVICE(0x32, 1), /* T3B02 */
93 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
94 CH_DEVICE(0x36, 3), /* S320E-CR */
95 CH_DEVICE(0x37, 7), /* N320E-G2 */
96 {0,}
97 };
98
99 MODULE_DESCRIPTION(DRV_DESC);
100 MODULE_AUTHOR("Chelsio Communications");
101 MODULE_LICENSE("Dual BSD/GPL");
102 MODULE_VERSION(DRV_VERSION);
103 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
104
105 static int dflt_msg_enable = DFLT_MSG_ENABLE;
106
107 module_param(dflt_msg_enable, int, 0644);
108 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
109
110 /*
111 * The driver uses the best interrupt scheme available on a platform in the
112 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
113 * of these schemes the driver may consider as follows:
114 *
115 * msi = 2: choose from among all three options
116 * msi = 1: only consider MSI and pin interrupts
117 * msi = 0: force pin interrupts
118 */
119 static int msi = 2;
120
121 module_param(msi, int, 0644);
122 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
123
124 /*
125 * The driver enables offload as a default.
126 * To disable it, use ofld_disable = 1.
127 */
128
129 static int ofld_disable = 0;
130
131 module_param(ofld_disable, int, 0644);
132 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
133
134 /*
135 * We have work elements that we need to cancel when an interface is taken
136 * down. Normally the work elements would be executed by keventd but that
137 * can deadlock because of linkwatch. If our close method takes the rtnl
138 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
139 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
140 * for our work to complete. Get our own work queue to solve this.
141 */
142 static struct workqueue_struct *cxgb3_wq;
143
144 /**
145 * link_report - show link status and link speed/duplex
146 * @p: the port whose settings are to be reported
147 *
148 * Shows the link status, speed, and duplex of a port.
149 */
150 static void link_report(struct net_device *dev)
151 {
152 if (!netif_carrier_ok(dev))
153 printk(KERN_INFO "%s: link down\n", dev->name);
154 else {
155 const char *s = "10Mbps";
156 const struct port_info *p = netdev_priv(dev);
157
158 switch (p->link_config.speed) {
159 case SPEED_10000:
160 s = "10Gbps";
161 break;
162 case SPEED_1000:
163 s = "1000Mbps";
164 break;
165 case SPEED_100:
166 s = "100Mbps";
167 break;
168 }
169
170 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
171 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
172 }
173 }
174
175 static void enable_tx_fifo_drain(struct adapter *adapter,
176 struct port_info *pi)
177 {
178 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
179 F_ENDROPPKT);
180 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
181 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
182 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
183 }
184
185 static void disable_tx_fifo_drain(struct adapter *adapter,
186 struct port_info *pi)
187 {
188 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
189 F_ENDROPPKT, 0);
190 }
191
192 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
193 {
194 struct net_device *dev = adap->port[port_id];
195 struct port_info *pi = netdev_priv(dev);
196
197 if (state == netif_carrier_ok(dev))
198 return;
199
200 if (state) {
201 struct cmac *mac = &pi->mac;
202
203 netif_carrier_on(dev);
204
205 disable_tx_fifo_drain(adap, pi);
206
207 /* Clear local faults */
208 t3_xgm_intr_disable(adap, pi->port_id);
209 t3_read_reg(adap, A_XGM_INT_STATUS +
210 pi->mac.offset);
211 t3_write_reg(adap,
212 A_XGM_INT_CAUSE + pi->mac.offset,
213 F_XGM_INT);
214
215 t3_set_reg_field(adap,
216 A_XGM_INT_ENABLE +
217 pi->mac.offset,
218 F_XGM_INT, F_XGM_INT);
219 t3_xgm_intr_enable(adap, pi->port_id);
220
221 t3_mac_enable(mac, MAC_DIRECTION_TX);
222 } else {
223 netif_carrier_off(dev);
224
225 /* Flush TX FIFO */
226 enable_tx_fifo_drain(adap, pi);
227 }
228 link_report(dev);
229 }
230
231 /**
232 * t3_os_link_changed - handle link status changes
233 * @adapter: the adapter associated with the link change
234 * @port_id: the port index whose limk status has changed
235 * @link_stat: the new status of the link
236 * @speed: the new speed setting
237 * @duplex: the new duplex setting
238 * @pause: the new flow-control setting
239 *
240 * This is the OS-dependent handler for link status changes. The OS
241 * neutral handler takes care of most of the processing for these events,
242 * then calls this handler for any OS-specific processing.
243 */
244 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
245 int speed, int duplex, int pause)
246 {
247 struct net_device *dev = adapter->port[port_id];
248 struct port_info *pi = netdev_priv(dev);
249 struct cmac *mac = &pi->mac;
250
251 /* Skip changes from disabled ports. */
252 if (!netif_running(dev))
253 return;
254
255 if (link_stat != netif_carrier_ok(dev)) {
256 if (link_stat) {
257 disable_tx_fifo_drain(adapter, pi);
258
259 t3_mac_enable(mac, MAC_DIRECTION_RX);
260
261 /* Clear local faults */
262 t3_xgm_intr_disable(adapter, pi->port_id);
263 t3_read_reg(adapter, A_XGM_INT_STATUS +
264 pi->mac.offset);
265 t3_write_reg(adapter,
266 A_XGM_INT_CAUSE + pi->mac.offset,
267 F_XGM_INT);
268
269 t3_set_reg_field(adapter,
270 A_XGM_INT_ENABLE + pi->mac.offset,
271 F_XGM_INT, F_XGM_INT);
272 t3_xgm_intr_enable(adapter, pi->port_id);
273
274 netif_carrier_on(dev);
275 } else {
276 netif_carrier_off(dev);
277
278 t3_xgm_intr_disable(adapter, pi->port_id);
279 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
280 t3_set_reg_field(adapter,
281 A_XGM_INT_ENABLE + pi->mac.offset,
282 F_XGM_INT, 0);
283
284 if (is_10G(adapter))
285 pi->phy.ops->power_down(&pi->phy, 1);
286
287 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
288 t3_mac_disable(mac, MAC_DIRECTION_RX);
289 t3_link_start(&pi->phy, mac, &pi->link_config);
290
291 /* Flush TX FIFO */
292 enable_tx_fifo_drain(adapter, pi);
293 }
294
295 link_report(dev);
296 }
297 }
298
299 /**
300 * t3_os_phymod_changed - handle PHY module changes
301 * @phy: the PHY reporting the module change
302 * @mod_type: new module type
303 *
304 * This is the OS-dependent handler for PHY module changes. It is
305 * invoked when a PHY module is removed or inserted for any OS-specific
306 * processing.
307 */
308 void t3_os_phymod_changed(struct adapter *adap, int port_id)
309 {
310 static const char *mod_str[] = {
311 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
312 };
313
314 const struct net_device *dev = adap->port[port_id];
315 const struct port_info *pi = netdev_priv(dev);
316
317 if (pi->phy.modtype == phy_modtype_none)
318 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
319 else
320 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
321 mod_str[pi->phy.modtype]);
322 }
323
324 static void cxgb_set_rxmode(struct net_device *dev)
325 {
326 struct t3_rx_mode rm;
327 struct port_info *pi = netdev_priv(dev);
328
329 init_rx_mode(&rm, dev, dev->mc_list);
330 t3_mac_set_rx_mode(&pi->mac, &rm);
331 }
332
333 /**
334 * link_start - enable a port
335 * @dev: the device to enable
336 *
337 * Performs the MAC and PHY actions needed to enable a port.
338 */
339 static void link_start(struct net_device *dev)
340 {
341 struct t3_rx_mode rm;
342 struct port_info *pi = netdev_priv(dev);
343 struct cmac *mac = &pi->mac;
344
345 init_rx_mode(&rm, dev, dev->mc_list);
346 t3_mac_reset(mac);
347 t3_mac_set_mtu(mac, dev->mtu);
348 t3_mac_set_address(mac, 0, dev->dev_addr);
349 t3_mac_set_rx_mode(mac, &rm);
350 t3_link_start(&pi->phy, mac, &pi->link_config);
351 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
352 }
353
354 static inline void cxgb_disable_msi(struct adapter *adapter)
355 {
356 if (adapter->flags & USING_MSIX) {
357 pci_disable_msix(adapter->pdev);
358 adapter->flags &= ~USING_MSIX;
359 } else if (adapter->flags & USING_MSI) {
360 pci_disable_msi(adapter->pdev);
361 adapter->flags &= ~USING_MSI;
362 }
363 }
364
365 /*
366 * Interrupt handler for asynchronous events used with MSI-X.
367 */
368 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
369 {
370 t3_slow_intr_handler(cookie);
371 return IRQ_HANDLED;
372 }
373
374 /*
375 * Name the MSI-X interrupts.
376 */
377 static void name_msix_vecs(struct adapter *adap)
378 {
379 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
380
381 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
382 adap->msix_info[0].desc[n] = 0;
383
384 for_each_port(adap, j) {
385 struct net_device *d = adap->port[j];
386 const struct port_info *pi = netdev_priv(d);
387
388 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
389 snprintf(adap->msix_info[msi_idx].desc, n,
390 "%s-%d", d->name, pi->first_qset + i);
391 adap->msix_info[msi_idx].desc[n] = 0;
392 }
393 }
394 }
395
396 static int request_msix_data_irqs(struct adapter *adap)
397 {
398 int i, j, err, qidx = 0;
399
400 for_each_port(adap, i) {
401 int nqsets = adap2pinfo(adap, i)->nqsets;
402
403 for (j = 0; j < nqsets; ++j) {
404 err = request_irq(adap->msix_info[qidx + 1].vec,
405 t3_intr_handler(adap,
406 adap->sge.qs[qidx].
407 rspq.polling), 0,
408 adap->msix_info[qidx + 1].desc,
409 &adap->sge.qs[qidx]);
410 if (err) {
411 while (--qidx >= 0)
412 free_irq(adap->msix_info[qidx + 1].vec,
413 &adap->sge.qs[qidx]);
414 return err;
415 }
416 qidx++;
417 }
418 }
419 return 0;
420 }
421
422 static void free_irq_resources(struct adapter *adapter)
423 {
424 if (adapter->flags & USING_MSIX) {
425 int i, n = 0;
426
427 free_irq(adapter->msix_info[0].vec, adapter);
428 for_each_port(adapter, i)
429 n += adap2pinfo(adapter, i)->nqsets;
430
431 for (i = 0; i < n; ++i)
432 free_irq(adapter->msix_info[i + 1].vec,
433 &adapter->sge.qs[i]);
434 } else
435 free_irq(adapter->pdev->irq, adapter);
436 }
437
438 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
439 unsigned long n)
440 {
441 int attempts = 5;
442
443 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
444 if (!--attempts)
445 return -ETIMEDOUT;
446 msleep(10);
447 }
448 return 0;
449 }
450
451 static int init_tp_parity(struct adapter *adap)
452 {
453 int i;
454 struct sk_buff *skb;
455 struct cpl_set_tcb_field *greq;
456 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
457
458 t3_tp_set_offload_mode(adap, 1);
459
460 for (i = 0; i < 16; i++) {
461 struct cpl_smt_write_req *req;
462
463 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
464 if (!skb)
465 skb = adap->nofail_skb;
466 if (!skb)
467 goto alloc_skb_fail;
468
469 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
470 memset(req, 0, sizeof(*req));
471 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
472 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
473 req->mtu_idx = NMTUS - 1;
474 req->iff = i;
475 t3_mgmt_tx(adap, skb);
476 if (skb == adap->nofail_skb) {
477 await_mgmt_replies(adap, cnt, i + 1);
478 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
479 if (!adap->nofail_skb)
480 goto alloc_skb_fail;
481 }
482 }
483
484 for (i = 0; i < 2048; i++) {
485 struct cpl_l2t_write_req *req;
486
487 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
488 if (!skb)
489 skb = adap->nofail_skb;
490 if (!skb)
491 goto alloc_skb_fail;
492
493 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
494 memset(req, 0, sizeof(*req));
495 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
496 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
497 req->params = htonl(V_L2T_W_IDX(i));
498 t3_mgmt_tx(adap, skb);
499 if (skb == adap->nofail_skb) {
500 await_mgmt_replies(adap, cnt, 16 + i + 1);
501 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
502 if (!adap->nofail_skb)
503 goto alloc_skb_fail;
504 }
505 }
506
507 for (i = 0; i < 2048; i++) {
508 struct cpl_rte_write_req *req;
509
510 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
511 if (!skb)
512 skb = adap->nofail_skb;
513 if (!skb)
514 goto alloc_skb_fail;
515
516 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
517 memset(req, 0, sizeof(*req));
518 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
519 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
520 req->l2t_idx = htonl(V_L2T_W_IDX(i));
521 t3_mgmt_tx(adap, skb);
522 if (skb == adap->nofail_skb) {
523 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
524 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
525 if (!adap->nofail_skb)
526 goto alloc_skb_fail;
527 }
528 }
529
530 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
531 if (!skb)
532 skb = adap->nofail_skb;
533 if (!skb)
534 goto alloc_skb_fail;
535
536 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
537 memset(greq, 0, sizeof(*greq));
538 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
539 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
540 greq->mask = cpu_to_be64(1);
541 t3_mgmt_tx(adap, skb);
542
543 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
544 if (skb == adap->nofail_skb) {
545 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
546 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
547 }
548
549 t3_tp_set_offload_mode(adap, 0);
550 return i;
551
552 alloc_skb_fail:
553 t3_tp_set_offload_mode(adap, 0);
554 return -ENOMEM;
555 }
556
557 /**
558 * setup_rss - configure RSS
559 * @adap: the adapter
560 *
561 * Sets up RSS to distribute packets to multiple receive queues. We
562 * configure the RSS CPU lookup table to distribute to the number of HW
563 * receive queues, and the response queue lookup table to narrow that
564 * down to the response queues actually configured for each port.
565 * We always configure the RSS mapping for two ports since the mapping
566 * table has plenty of entries.
567 */
568 static void setup_rss(struct adapter *adap)
569 {
570 int i;
571 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
572 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
573 u8 cpus[SGE_QSETS + 1];
574 u16 rspq_map[RSS_TABLE_SIZE];
575
576 for (i = 0; i < SGE_QSETS; ++i)
577 cpus[i] = i;
578 cpus[SGE_QSETS] = 0xff; /* terminator */
579
580 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
581 rspq_map[i] = i % nq0;
582 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
583 }
584
585 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
586 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
587 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
588 }
589
590 static void init_napi(struct adapter *adap)
591 {
592 int i;
593
594 for (i = 0; i < SGE_QSETS; i++) {
595 struct sge_qset *qs = &adap->sge.qs[i];
596
597 if (qs->adap)
598 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
599 64);
600 }
601
602 /*
603 * netif_napi_add() can be called only once per napi_struct because it
604 * adds each new napi_struct to a list. Be careful not to call it a
605 * second time, e.g., during EEH recovery, by making a note of it.
606 */
607 adap->flags |= NAPI_INIT;
608 }
609
610 /*
611 * Wait until all NAPI handlers are descheduled. This includes the handlers of
612 * both netdevices representing interfaces and the dummy ones for the extra
613 * queues.
614 */
615 static void quiesce_rx(struct adapter *adap)
616 {
617 int i;
618
619 for (i = 0; i < SGE_QSETS; i++)
620 if (adap->sge.qs[i].adap)
621 napi_disable(&adap->sge.qs[i].napi);
622 }
623
624 static void enable_all_napi(struct adapter *adap)
625 {
626 int i;
627 for (i = 0; i < SGE_QSETS; i++)
628 if (adap->sge.qs[i].adap)
629 napi_enable(&adap->sge.qs[i].napi);
630 }
631
632 /**
633 * set_qset_lro - Turn a queue set's LRO capability on and off
634 * @dev: the device the qset is attached to
635 * @qset_idx: the queue set index
636 * @val: the LRO switch
637 *
638 * Sets LRO on or off for a particular queue set.
639 * the device's features flag is updated to reflect the LRO
640 * capability when all queues belonging to the device are
641 * in the same state.
642 */
643 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
644 {
645 struct port_info *pi = netdev_priv(dev);
646 struct adapter *adapter = pi->adapter;
647
648 adapter->params.sge.qset[qset_idx].lro = !!val;
649 adapter->sge.qs[qset_idx].lro_enabled = !!val;
650 }
651
652 /**
653 * setup_sge_qsets - configure SGE Tx/Rx/response queues
654 * @adap: the adapter
655 *
656 * Determines how many sets of SGE queues to use and initializes them.
657 * We support multiple queue sets per port if we have MSI-X, otherwise
658 * just one queue set per port.
659 */
660 static int setup_sge_qsets(struct adapter *adap)
661 {
662 int i, j, err, irq_idx = 0, qset_idx = 0;
663 unsigned int ntxq = SGE_TXQ_PER_SET;
664
665 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
666 irq_idx = -1;
667
668 for_each_port(adap, i) {
669 struct net_device *dev = adap->port[i];
670 struct port_info *pi = netdev_priv(dev);
671
672 pi->qs = &adap->sge.qs[pi->first_qset];
673 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
674 set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
675 err = t3_sge_alloc_qset(adap, qset_idx, 1,
676 (adap->flags & USING_MSIX) ? qset_idx + 1 :
677 irq_idx,
678 &adap->params.sge.qset[qset_idx], ntxq, dev,
679 netdev_get_tx_queue(dev, j));
680 if (err) {
681 t3_free_sge_resources(adap);
682 return err;
683 }
684 }
685 }
686
687 return 0;
688 }
689
690 static ssize_t attr_show(struct device *d, char *buf,
691 ssize_t(*format) (struct net_device *, char *))
692 {
693 ssize_t len;
694
695 /* Synchronize with ioctls that may shut down the device */
696 rtnl_lock();
697 len = (*format) (to_net_dev(d), buf);
698 rtnl_unlock();
699 return len;
700 }
701
702 static ssize_t attr_store(struct device *d,
703 const char *buf, size_t len,
704 ssize_t(*set) (struct net_device *, unsigned int),
705 unsigned int min_val, unsigned int max_val)
706 {
707 char *endp;
708 ssize_t ret;
709 unsigned int val;
710
711 if (!capable(CAP_NET_ADMIN))
712 return -EPERM;
713
714 val = simple_strtoul(buf, &endp, 0);
715 if (endp == buf || val < min_val || val > max_val)
716 return -EINVAL;
717
718 rtnl_lock();
719 ret = (*set) (to_net_dev(d), val);
720 if (!ret)
721 ret = len;
722 rtnl_unlock();
723 return ret;
724 }
725
726 #define CXGB3_SHOW(name, val_expr) \
727 static ssize_t format_##name(struct net_device *dev, char *buf) \
728 { \
729 struct port_info *pi = netdev_priv(dev); \
730 struct adapter *adap = pi->adapter; \
731 return sprintf(buf, "%u\n", val_expr); \
732 } \
733 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
734 char *buf) \
735 { \
736 return attr_show(d, buf, format_##name); \
737 }
738
739 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
740 {
741 struct port_info *pi = netdev_priv(dev);
742 struct adapter *adap = pi->adapter;
743 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
744
745 if (adap->flags & FULL_INIT_DONE)
746 return -EBUSY;
747 if (val && adap->params.rev == 0)
748 return -EINVAL;
749 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
750 min_tids)
751 return -EINVAL;
752 adap->params.mc5.nfilters = val;
753 return 0;
754 }
755
756 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
757 const char *buf, size_t len)
758 {
759 return attr_store(d, buf, len, set_nfilters, 0, ~0);
760 }
761
762 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
763 {
764 struct port_info *pi = netdev_priv(dev);
765 struct adapter *adap = pi->adapter;
766
767 if (adap->flags & FULL_INIT_DONE)
768 return -EBUSY;
769 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
770 MC5_MIN_TIDS)
771 return -EINVAL;
772 adap->params.mc5.nservers = val;
773 return 0;
774 }
775
776 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
777 const char *buf, size_t len)
778 {
779 return attr_store(d, buf, len, set_nservers, 0, ~0);
780 }
781
782 #define CXGB3_ATTR_R(name, val_expr) \
783 CXGB3_SHOW(name, val_expr) \
784 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
785
786 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
787 CXGB3_SHOW(name, val_expr) \
788 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
789
790 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
791 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
792 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
793
794 static struct attribute *cxgb3_attrs[] = {
795 &dev_attr_cam_size.attr,
796 &dev_attr_nfilters.attr,
797 &dev_attr_nservers.attr,
798 NULL
799 };
800
801 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
802
803 static ssize_t tm_attr_show(struct device *d,
804 char *buf, int sched)
805 {
806 struct port_info *pi = netdev_priv(to_net_dev(d));
807 struct adapter *adap = pi->adapter;
808 unsigned int v, addr, bpt, cpt;
809 ssize_t len;
810
811 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
812 rtnl_lock();
813 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
814 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
815 if (sched & 1)
816 v >>= 16;
817 bpt = (v >> 8) & 0xff;
818 cpt = v & 0xff;
819 if (!cpt)
820 len = sprintf(buf, "disabled\n");
821 else {
822 v = (adap->params.vpd.cclk * 1000) / cpt;
823 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
824 }
825 rtnl_unlock();
826 return len;
827 }
828
829 static ssize_t tm_attr_store(struct device *d,
830 const char *buf, size_t len, int sched)
831 {
832 struct port_info *pi = netdev_priv(to_net_dev(d));
833 struct adapter *adap = pi->adapter;
834 unsigned int val;
835 char *endp;
836 ssize_t ret;
837
838 if (!capable(CAP_NET_ADMIN))
839 return -EPERM;
840
841 val = simple_strtoul(buf, &endp, 0);
842 if (endp == buf || val > 10000000)
843 return -EINVAL;
844
845 rtnl_lock();
846 ret = t3_config_sched(adap, val, sched);
847 if (!ret)
848 ret = len;
849 rtnl_unlock();
850 return ret;
851 }
852
853 #define TM_ATTR(name, sched) \
854 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
855 char *buf) \
856 { \
857 return tm_attr_show(d, buf, sched); \
858 } \
859 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
860 const char *buf, size_t len) \
861 { \
862 return tm_attr_store(d, buf, len, sched); \
863 } \
864 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
865
866 TM_ATTR(sched0, 0);
867 TM_ATTR(sched1, 1);
868 TM_ATTR(sched2, 2);
869 TM_ATTR(sched3, 3);
870 TM_ATTR(sched4, 4);
871 TM_ATTR(sched5, 5);
872 TM_ATTR(sched6, 6);
873 TM_ATTR(sched7, 7);
874
875 static struct attribute *offload_attrs[] = {
876 &dev_attr_sched0.attr,
877 &dev_attr_sched1.attr,
878 &dev_attr_sched2.attr,
879 &dev_attr_sched3.attr,
880 &dev_attr_sched4.attr,
881 &dev_attr_sched5.attr,
882 &dev_attr_sched6.attr,
883 &dev_attr_sched7.attr,
884 NULL
885 };
886
887 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
888
889 /*
890 * Sends an sk_buff to an offload queue driver
891 * after dealing with any active network taps.
892 */
893 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
894 {
895 int ret;
896
897 local_bh_disable();
898 ret = t3_offload_tx(tdev, skb);
899 local_bh_enable();
900 return ret;
901 }
902
903 static int write_smt_entry(struct adapter *adapter, int idx)
904 {
905 struct cpl_smt_write_req *req;
906 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
907
908 if (!skb)
909 return -ENOMEM;
910
911 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
912 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
913 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
914 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
915 req->iff = idx;
916 memset(req->src_mac1, 0, sizeof(req->src_mac1));
917 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
918 skb->priority = 1;
919 offload_tx(&adapter->tdev, skb);
920 return 0;
921 }
922
923 static int init_smt(struct adapter *adapter)
924 {
925 int i;
926
927 for_each_port(adapter, i)
928 write_smt_entry(adapter, i);
929 return 0;
930 }
931
932 static void init_port_mtus(struct adapter *adapter)
933 {
934 unsigned int mtus = adapter->port[0]->mtu;
935
936 if (adapter->port[1])
937 mtus |= adapter->port[1]->mtu << 16;
938 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
939 }
940
941 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
942 int hi, int port)
943 {
944 struct sk_buff *skb;
945 struct mngt_pktsched_wr *req;
946 int ret;
947
948 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
949 if (!skb)
950 skb = adap->nofail_skb;
951 if (!skb)
952 return -ENOMEM;
953
954 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
955 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
956 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
957 req->sched = sched;
958 req->idx = qidx;
959 req->min = lo;
960 req->max = hi;
961 req->binding = port;
962 ret = t3_mgmt_tx(adap, skb);
963 if (skb == adap->nofail_skb) {
964 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
965 GFP_KERNEL);
966 if (!adap->nofail_skb)
967 ret = -ENOMEM;
968 }
969
970 return ret;
971 }
972
973 static int bind_qsets(struct adapter *adap)
974 {
975 int i, j, err = 0;
976
977 for_each_port(adap, i) {
978 const struct port_info *pi = adap2pinfo(adap, i);
979
980 for (j = 0; j < pi->nqsets; ++j) {
981 int ret = send_pktsched_cmd(adap, 1,
982 pi->first_qset + j, -1,
983 -1, i);
984 if (ret)
985 err = ret;
986 }
987 }
988
989 return err;
990 }
991
992 #define FW_FNAME "cxgb3/t3fw-%d.%d.%d.bin"
993 #define TPSRAM_NAME "cxgb3/t3%c_psram-%d.%d.%d.bin"
994 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
995 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
996 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
997
998 static inline const char *get_edc_fw_name(int edc_idx)
999 {
1000 const char *fw_name = NULL;
1001
1002 switch (edc_idx) {
1003 case EDC_OPT_AEL2005:
1004 fw_name = AEL2005_OPT_EDC_NAME;
1005 break;
1006 case EDC_TWX_AEL2005:
1007 fw_name = AEL2005_TWX_EDC_NAME;
1008 break;
1009 case EDC_TWX_AEL2020:
1010 fw_name = AEL2020_TWX_EDC_NAME;
1011 break;
1012 }
1013 return fw_name;
1014 }
1015
1016 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1017 {
1018 struct adapter *adapter = phy->adapter;
1019 const struct firmware *fw;
1020 char buf[64];
1021 u32 csum;
1022 const __be32 *p;
1023 u16 *cache = phy->phy_cache;
1024 int i, ret;
1025
1026 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1027
1028 ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1029 if (ret < 0) {
1030 dev_err(&adapter->pdev->dev,
1031 "could not upgrade firmware: unable to load %s\n",
1032 buf);
1033 return ret;
1034 }
1035
1036 /* check size, take checksum in account */
1037 if (fw->size > size + 4) {
1038 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1039 (unsigned int)fw->size, size + 4);
1040 ret = -EINVAL;
1041 }
1042
1043 /* compute checksum */
1044 p = (const __be32 *)fw->data;
1045 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1046 csum += ntohl(p[i]);
1047
1048 if (csum != 0xffffffff) {
1049 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1050 csum);
1051 ret = -EINVAL;
1052 }
1053
1054 for (i = 0; i < size / 4 ; i++) {
1055 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1056 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1057 }
1058
1059 release_firmware(fw);
1060
1061 return ret;
1062 }
1063
1064 static int upgrade_fw(struct adapter *adap)
1065 {
1066 int ret;
1067 char buf[64];
1068 const struct firmware *fw;
1069 struct device *dev = &adap->pdev->dev;
1070
1071 snprintf(buf, sizeof(buf), FW_FNAME, FW_VERSION_MAJOR,
1072 FW_VERSION_MINOR, FW_VERSION_MICRO);
1073 ret = request_firmware(&fw, buf, dev);
1074 if (ret < 0) {
1075 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1076 buf);
1077 return ret;
1078 }
1079 ret = t3_load_fw(adap, fw->data, fw->size);
1080 release_firmware(fw);
1081
1082 if (ret == 0)
1083 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1084 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1085 else
1086 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1087 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1088
1089 return ret;
1090 }
1091
1092 static inline char t3rev2char(struct adapter *adapter)
1093 {
1094 char rev = 0;
1095
1096 switch(adapter->params.rev) {
1097 case T3_REV_B:
1098 case T3_REV_B2:
1099 rev = 'b';
1100 break;
1101 case T3_REV_C:
1102 rev = 'c';
1103 break;
1104 }
1105 return rev;
1106 }
1107
1108 static int update_tpsram(struct adapter *adap)
1109 {
1110 const struct firmware *tpsram;
1111 char buf[64];
1112 struct device *dev = &adap->pdev->dev;
1113 int ret;
1114 char rev;
1115
1116 rev = t3rev2char(adap);
1117 if (!rev)
1118 return 0;
1119
1120 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev,
1121 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1122
1123 ret = request_firmware(&tpsram, buf, dev);
1124 if (ret < 0) {
1125 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1126 buf);
1127 return ret;
1128 }
1129
1130 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1131 if (ret)
1132 goto release_tpsram;
1133
1134 ret = t3_set_proto_sram(adap, tpsram->data);
1135 if (ret == 0)
1136 dev_info(dev,
1137 "successful update of protocol engine "
1138 "to %d.%d.%d\n",
1139 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1140 else
1141 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1142 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1143 if (ret)
1144 dev_err(dev, "loading protocol SRAM failed\n");
1145
1146 release_tpsram:
1147 release_firmware(tpsram);
1148
1149 return ret;
1150 }
1151
1152 /**
1153 * cxgb_up - enable the adapter
1154 * @adapter: adapter being enabled
1155 *
1156 * Called when the first port is enabled, this function performs the
1157 * actions necessary to make an adapter operational, such as completing
1158 * the initialization of HW modules, and enabling interrupts.
1159 *
1160 * Must be called with the rtnl lock held.
1161 */
1162 static int cxgb_up(struct adapter *adap)
1163 {
1164 int err;
1165
1166 if (!(adap->flags & FULL_INIT_DONE)) {
1167 err = t3_check_fw_version(adap);
1168 if (err == -EINVAL) {
1169 err = upgrade_fw(adap);
1170 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1171 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1172 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1173 }
1174
1175 err = t3_check_tpsram_version(adap);
1176 if (err == -EINVAL) {
1177 err = update_tpsram(adap);
1178 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1179 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1180 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1181 }
1182
1183 /*
1184 * Clear interrupts now to catch errors if t3_init_hw fails.
1185 * We clear them again later as initialization may trigger
1186 * conditions that can interrupt.
1187 */
1188 t3_intr_clear(adap);
1189
1190 err = t3_init_hw(adap, 0);
1191 if (err)
1192 goto out;
1193
1194 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1195 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1196
1197 err = setup_sge_qsets(adap);
1198 if (err)
1199 goto out;
1200
1201 setup_rss(adap);
1202 if (!(adap->flags & NAPI_INIT))
1203 init_napi(adap);
1204
1205 t3_start_sge_timers(adap);
1206 adap->flags |= FULL_INIT_DONE;
1207 }
1208
1209 t3_intr_clear(adap);
1210
1211 if (adap->flags & USING_MSIX) {
1212 name_msix_vecs(adap);
1213 err = request_irq(adap->msix_info[0].vec,
1214 t3_async_intr_handler, 0,
1215 adap->msix_info[0].desc, adap);
1216 if (err)
1217 goto irq_err;
1218
1219 err = request_msix_data_irqs(adap);
1220 if (err) {
1221 free_irq(adap->msix_info[0].vec, adap);
1222 goto irq_err;
1223 }
1224 } else if ((err = request_irq(adap->pdev->irq,
1225 t3_intr_handler(adap,
1226 adap->sge.qs[0].rspq.
1227 polling),
1228 (adap->flags & USING_MSI) ?
1229 0 : IRQF_SHARED,
1230 adap->name, adap)))
1231 goto irq_err;
1232
1233 enable_all_napi(adap);
1234 t3_sge_start(adap);
1235 t3_intr_enable(adap);
1236
1237 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1238 is_offload(adap) && init_tp_parity(adap) == 0)
1239 adap->flags |= TP_PARITY_INIT;
1240
1241 if (adap->flags & TP_PARITY_INIT) {
1242 t3_write_reg(adap, A_TP_INT_CAUSE,
1243 F_CMCACHEPERR | F_ARPLUTPERR);
1244 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1245 }
1246
1247 if (!(adap->flags & QUEUES_BOUND)) {
1248 err = bind_qsets(adap);
1249 if (err) {
1250 CH_ERR(adap, "failed to bind qsets, err %d\n", err);
1251 t3_intr_disable(adap);
1252 free_irq_resources(adap);
1253 goto out;
1254 }
1255 adap->flags |= QUEUES_BOUND;
1256 }
1257
1258 out:
1259 return err;
1260 irq_err:
1261 CH_ERR(adap, "request_irq failed, err %d\n", err);
1262 goto out;
1263 }
1264
1265 /*
1266 * Release resources when all the ports and offloading have been stopped.
1267 */
1268 static void cxgb_down(struct adapter *adapter)
1269 {
1270 t3_sge_stop(adapter);
1271 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1272 t3_intr_disable(adapter);
1273 spin_unlock_irq(&adapter->work_lock);
1274
1275 free_irq_resources(adapter);
1276 quiesce_rx(adapter);
1277 flush_workqueue(cxgb3_wq); /* wait for external IRQ handler */
1278 }
1279
1280 static void schedule_chk_task(struct adapter *adap)
1281 {
1282 unsigned int timeo;
1283
1284 timeo = adap->params.linkpoll_period ?
1285 (HZ * adap->params.linkpoll_period) / 10 :
1286 adap->params.stats_update_period * HZ;
1287 if (timeo)
1288 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1289 }
1290
1291 static int offload_open(struct net_device *dev)
1292 {
1293 struct port_info *pi = netdev_priv(dev);
1294 struct adapter *adapter = pi->adapter;
1295 struct t3cdev *tdev = dev2t3cdev(dev);
1296 int adap_up = adapter->open_device_map & PORT_MASK;
1297 int err;
1298
1299 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1300 return 0;
1301
1302 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1303 goto out;
1304
1305 t3_tp_set_offload_mode(adapter, 1);
1306 tdev->lldev = adapter->port[0];
1307 err = cxgb3_offload_activate(adapter);
1308 if (err)
1309 goto out;
1310
1311 init_port_mtus(adapter);
1312 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1313 adapter->params.b_wnd,
1314 adapter->params.rev == 0 ?
1315 adapter->port[0]->mtu : 0xffff);
1316 init_smt(adapter);
1317
1318 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1319 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1320
1321 /* Call back all registered clients */
1322 cxgb3_add_clients(tdev);
1323
1324 out:
1325 /* restore them in case the offload module has changed them */
1326 if (err) {
1327 t3_tp_set_offload_mode(adapter, 0);
1328 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1329 cxgb3_set_dummy_ops(tdev);
1330 }
1331 return err;
1332 }
1333
1334 static int offload_close(struct t3cdev *tdev)
1335 {
1336 struct adapter *adapter = tdev2adap(tdev);
1337
1338 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1339 return 0;
1340
1341 /* Call back all registered clients */
1342 cxgb3_remove_clients(tdev);
1343
1344 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1345
1346 /* Flush work scheduled while releasing TIDs */
1347 flush_scheduled_work();
1348
1349 tdev->lldev = NULL;
1350 cxgb3_set_dummy_ops(tdev);
1351 t3_tp_set_offload_mode(adapter, 0);
1352 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1353
1354 if (!adapter->open_device_map)
1355 cxgb_down(adapter);
1356
1357 cxgb3_offload_deactivate(adapter);
1358 return 0;
1359 }
1360
1361 static int cxgb_open(struct net_device *dev)
1362 {
1363 struct port_info *pi = netdev_priv(dev);
1364 struct adapter *adapter = pi->adapter;
1365 int other_ports = adapter->open_device_map & PORT_MASK;
1366 int err;
1367
1368 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1369 return err;
1370
1371 set_bit(pi->port_id, &adapter->open_device_map);
1372 if (is_offload(adapter) && !ofld_disable) {
1373 err = offload_open(dev);
1374 if (err)
1375 printk(KERN_WARNING
1376 "Could not initialize offload capabilities\n");
1377 }
1378
1379 dev->real_num_tx_queues = pi->nqsets;
1380 link_start(dev);
1381 t3_port_intr_enable(adapter, pi->port_id);
1382 netif_tx_start_all_queues(dev);
1383 if (!other_ports)
1384 schedule_chk_task(adapter);
1385
1386 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1387 return 0;
1388 }
1389
1390 static int cxgb_close(struct net_device *dev)
1391 {
1392 struct port_info *pi = netdev_priv(dev);
1393 struct adapter *adapter = pi->adapter;
1394
1395
1396 if (!adapter->open_device_map)
1397 return 0;
1398
1399 /* Stop link fault interrupts */
1400 t3_xgm_intr_disable(adapter, pi->port_id);
1401 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1402
1403 t3_port_intr_disable(adapter, pi->port_id);
1404 netif_tx_stop_all_queues(dev);
1405 pi->phy.ops->power_down(&pi->phy, 1);
1406 netif_carrier_off(dev);
1407 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1408
1409 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1410 clear_bit(pi->port_id, &adapter->open_device_map);
1411 spin_unlock_irq(&adapter->work_lock);
1412
1413 if (!(adapter->open_device_map & PORT_MASK))
1414 cancel_delayed_work_sync(&adapter->adap_check_task);
1415
1416 if (!adapter->open_device_map)
1417 cxgb_down(adapter);
1418
1419 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1420 return 0;
1421 }
1422
1423 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1424 {
1425 struct port_info *pi = netdev_priv(dev);
1426 struct adapter *adapter = pi->adapter;
1427 struct net_device_stats *ns = &pi->netstats;
1428 const struct mac_stats *pstats;
1429
1430 spin_lock(&adapter->stats_lock);
1431 pstats = t3_mac_update_stats(&pi->mac);
1432 spin_unlock(&adapter->stats_lock);
1433
1434 ns->tx_bytes = pstats->tx_octets;
1435 ns->tx_packets = pstats->tx_frames;
1436 ns->rx_bytes = pstats->rx_octets;
1437 ns->rx_packets = pstats->rx_frames;
1438 ns->multicast = pstats->rx_mcast_frames;
1439
1440 ns->tx_errors = pstats->tx_underrun;
1441 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1442 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1443 pstats->rx_fifo_ovfl;
1444
1445 /* detailed rx_errors */
1446 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1447 ns->rx_over_errors = 0;
1448 ns->rx_crc_errors = pstats->rx_fcs_errs;
1449 ns->rx_frame_errors = pstats->rx_symbol_errs;
1450 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1451 ns->rx_missed_errors = pstats->rx_cong_drops;
1452
1453 /* detailed tx_errors */
1454 ns->tx_aborted_errors = 0;
1455 ns->tx_carrier_errors = 0;
1456 ns->tx_fifo_errors = pstats->tx_underrun;
1457 ns->tx_heartbeat_errors = 0;
1458 ns->tx_window_errors = 0;
1459 return ns;
1460 }
1461
1462 static u32 get_msglevel(struct net_device *dev)
1463 {
1464 struct port_info *pi = netdev_priv(dev);
1465 struct adapter *adapter = pi->adapter;
1466
1467 return adapter->msg_enable;
1468 }
1469
1470 static void set_msglevel(struct net_device *dev, u32 val)
1471 {
1472 struct port_info *pi = netdev_priv(dev);
1473 struct adapter *adapter = pi->adapter;
1474
1475 adapter->msg_enable = val;
1476 }
1477
1478 static char stats_strings[][ETH_GSTRING_LEN] = {
1479 "TxOctetsOK ",
1480 "TxFramesOK ",
1481 "TxMulticastFramesOK",
1482 "TxBroadcastFramesOK",
1483 "TxPauseFrames ",
1484 "TxUnderrun ",
1485 "TxExtUnderrun ",
1486
1487 "TxFrames64 ",
1488 "TxFrames65To127 ",
1489 "TxFrames128To255 ",
1490 "TxFrames256To511 ",
1491 "TxFrames512To1023 ",
1492 "TxFrames1024To1518 ",
1493 "TxFrames1519ToMax ",
1494
1495 "RxOctetsOK ",
1496 "RxFramesOK ",
1497 "RxMulticastFramesOK",
1498 "RxBroadcastFramesOK",
1499 "RxPauseFrames ",
1500 "RxFCSErrors ",
1501 "RxSymbolErrors ",
1502 "RxShortErrors ",
1503 "RxJabberErrors ",
1504 "RxLengthErrors ",
1505 "RxFIFOoverflow ",
1506
1507 "RxFrames64 ",
1508 "RxFrames65To127 ",
1509 "RxFrames128To255 ",
1510 "RxFrames256To511 ",
1511 "RxFrames512To1023 ",
1512 "RxFrames1024To1518 ",
1513 "RxFrames1519ToMax ",
1514
1515 "PhyFIFOErrors ",
1516 "TSO ",
1517 "VLANextractions ",
1518 "VLANinsertions ",
1519 "TxCsumOffload ",
1520 "RxCsumGood ",
1521 "LroAggregated ",
1522 "LroFlushed ",
1523 "LroNoDesc ",
1524 "RxDrops ",
1525
1526 "CheckTXEnToggled ",
1527 "CheckResets ",
1528
1529 "LinkFaults ",
1530 };
1531
1532 static int get_sset_count(struct net_device *dev, int sset)
1533 {
1534 switch (sset) {
1535 case ETH_SS_STATS:
1536 return ARRAY_SIZE(stats_strings);
1537 default:
1538 return -EOPNOTSUPP;
1539 }
1540 }
1541
1542 #define T3_REGMAP_SIZE (3 * 1024)
1543
1544 static int get_regs_len(struct net_device *dev)
1545 {
1546 return T3_REGMAP_SIZE;
1547 }
1548
1549 static int get_eeprom_len(struct net_device *dev)
1550 {
1551 return EEPROMSIZE;
1552 }
1553
1554 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1555 {
1556 struct port_info *pi = netdev_priv(dev);
1557 struct adapter *adapter = pi->adapter;
1558 u32 fw_vers = 0;
1559 u32 tp_vers = 0;
1560
1561 spin_lock(&adapter->stats_lock);
1562 t3_get_fw_version(adapter, &fw_vers);
1563 t3_get_tp_version(adapter, &tp_vers);
1564 spin_unlock(&adapter->stats_lock);
1565
1566 strcpy(info->driver, DRV_NAME);
1567 strcpy(info->version, DRV_VERSION);
1568 strcpy(info->bus_info, pci_name(adapter->pdev));
1569 if (!fw_vers)
1570 strcpy(info->fw_version, "N/A");
1571 else {
1572 snprintf(info->fw_version, sizeof(info->fw_version),
1573 "%s %u.%u.%u TP %u.%u.%u",
1574 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1575 G_FW_VERSION_MAJOR(fw_vers),
1576 G_FW_VERSION_MINOR(fw_vers),
1577 G_FW_VERSION_MICRO(fw_vers),
1578 G_TP_VERSION_MAJOR(tp_vers),
1579 G_TP_VERSION_MINOR(tp_vers),
1580 G_TP_VERSION_MICRO(tp_vers));
1581 }
1582 }
1583
1584 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1585 {
1586 if (stringset == ETH_SS_STATS)
1587 memcpy(data, stats_strings, sizeof(stats_strings));
1588 }
1589
1590 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1591 struct port_info *p, int idx)
1592 {
1593 int i;
1594 unsigned long tot = 0;
1595
1596 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1597 tot += adapter->sge.qs[i].port_stats[idx];
1598 return tot;
1599 }
1600
1601 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1602 u64 *data)
1603 {
1604 struct port_info *pi = netdev_priv(dev);
1605 struct adapter *adapter = pi->adapter;
1606 const struct mac_stats *s;
1607
1608 spin_lock(&adapter->stats_lock);
1609 s = t3_mac_update_stats(&pi->mac);
1610 spin_unlock(&adapter->stats_lock);
1611
1612 *data++ = s->tx_octets;
1613 *data++ = s->tx_frames;
1614 *data++ = s->tx_mcast_frames;
1615 *data++ = s->tx_bcast_frames;
1616 *data++ = s->tx_pause;
1617 *data++ = s->tx_underrun;
1618 *data++ = s->tx_fifo_urun;
1619
1620 *data++ = s->tx_frames_64;
1621 *data++ = s->tx_frames_65_127;
1622 *data++ = s->tx_frames_128_255;
1623 *data++ = s->tx_frames_256_511;
1624 *data++ = s->tx_frames_512_1023;
1625 *data++ = s->tx_frames_1024_1518;
1626 *data++ = s->tx_frames_1519_max;
1627
1628 *data++ = s->rx_octets;
1629 *data++ = s->rx_frames;
1630 *data++ = s->rx_mcast_frames;
1631 *data++ = s->rx_bcast_frames;
1632 *data++ = s->rx_pause;
1633 *data++ = s->rx_fcs_errs;
1634 *data++ = s->rx_symbol_errs;
1635 *data++ = s->rx_short;
1636 *data++ = s->rx_jabber;
1637 *data++ = s->rx_too_long;
1638 *data++ = s->rx_fifo_ovfl;
1639
1640 *data++ = s->rx_frames_64;
1641 *data++ = s->rx_frames_65_127;
1642 *data++ = s->rx_frames_128_255;
1643 *data++ = s->rx_frames_256_511;
1644 *data++ = s->rx_frames_512_1023;
1645 *data++ = s->rx_frames_1024_1518;
1646 *data++ = s->rx_frames_1519_max;
1647
1648 *data++ = pi->phy.fifo_errors;
1649
1650 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1651 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1652 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1653 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1654 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1655 *data++ = 0;
1656 *data++ = 0;
1657 *data++ = 0;
1658 *data++ = s->rx_cong_drops;
1659
1660 *data++ = s->num_toggled;
1661 *data++ = s->num_resets;
1662
1663 *data++ = s->link_faults;
1664 }
1665
1666 static inline void reg_block_dump(struct adapter *ap, void *buf,
1667 unsigned int start, unsigned int end)
1668 {
1669 u32 *p = buf + start;
1670
1671 for (; start <= end; start += sizeof(u32))
1672 *p++ = t3_read_reg(ap, start);
1673 }
1674
1675 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1676 void *buf)
1677 {
1678 struct port_info *pi = netdev_priv(dev);
1679 struct adapter *ap = pi->adapter;
1680
1681 /*
1682 * Version scheme:
1683 * bits 0..9: chip version
1684 * bits 10..15: chip revision
1685 * bit 31: set for PCIe cards
1686 */
1687 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1688
1689 /*
1690 * We skip the MAC statistics registers because they are clear-on-read.
1691 * Also reading multi-register stats would need to synchronize with the
1692 * periodic mac stats accumulation. Hard to justify the complexity.
1693 */
1694 memset(buf, 0, T3_REGMAP_SIZE);
1695 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1696 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1697 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1698 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1699 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1700 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1701 XGM_REG(A_XGM_SERDES_STAT3, 1));
1702 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1703 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1704 }
1705
1706 static int restart_autoneg(struct net_device *dev)
1707 {
1708 struct port_info *p = netdev_priv(dev);
1709
1710 if (!netif_running(dev))
1711 return -EAGAIN;
1712 if (p->link_config.autoneg != AUTONEG_ENABLE)
1713 return -EINVAL;
1714 p->phy.ops->autoneg_restart(&p->phy);
1715 return 0;
1716 }
1717
1718 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1719 {
1720 struct port_info *pi = netdev_priv(dev);
1721 struct adapter *adapter = pi->adapter;
1722 int i;
1723
1724 if (data == 0)
1725 data = 2;
1726
1727 for (i = 0; i < data * 2; i++) {
1728 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1729 (i & 1) ? F_GPIO0_OUT_VAL : 0);
1730 if (msleep_interruptible(500))
1731 break;
1732 }
1733 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1734 F_GPIO0_OUT_VAL);
1735 return 0;
1736 }
1737
1738 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1739 {
1740 struct port_info *p = netdev_priv(dev);
1741
1742 cmd->supported = p->link_config.supported;
1743 cmd->advertising = p->link_config.advertising;
1744
1745 if (netif_carrier_ok(dev)) {
1746 cmd->speed = p->link_config.speed;
1747 cmd->duplex = p->link_config.duplex;
1748 } else {
1749 cmd->speed = -1;
1750 cmd->duplex = -1;
1751 }
1752
1753 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1754 cmd->phy_address = p->phy.mdio.prtad;
1755 cmd->transceiver = XCVR_EXTERNAL;
1756 cmd->autoneg = p->link_config.autoneg;
1757 cmd->maxtxpkt = 0;
1758 cmd->maxrxpkt = 0;
1759 return 0;
1760 }
1761
1762 static int speed_duplex_to_caps(int speed, int duplex)
1763 {
1764 int cap = 0;
1765
1766 switch (speed) {
1767 case SPEED_10:
1768 if (duplex == DUPLEX_FULL)
1769 cap = SUPPORTED_10baseT_Full;
1770 else
1771 cap = SUPPORTED_10baseT_Half;
1772 break;
1773 case SPEED_100:
1774 if (duplex == DUPLEX_FULL)
1775 cap = SUPPORTED_100baseT_Full;
1776 else
1777 cap = SUPPORTED_100baseT_Half;
1778 break;
1779 case SPEED_1000:
1780 if (duplex == DUPLEX_FULL)
1781 cap = SUPPORTED_1000baseT_Full;
1782 else
1783 cap = SUPPORTED_1000baseT_Half;
1784 break;
1785 case SPEED_10000:
1786 if (duplex == DUPLEX_FULL)
1787 cap = SUPPORTED_10000baseT_Full;
1788 }
1789 return cap;
1790 }
1791
1792 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1793 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1794 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1795 ADVERTISED_10000baseT_Full)
1796
1797 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1798 {
1799 struct port_info *p = netdev_priv(dev);
1800 struct link_config *lc = &p->link_config;
1801
1802 if (!(lc->supported & SUPPORTED_Autoneg)) {
1803 /*
1804 * PHY offers a single speed/duplex. See if that's what's
1805 * being requested.
1806 */
1807 if (cmd->autoneg == AUTONEG_DISABLE) {
1808 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1809 if (lc->supported & cap)
1810 return 0;
1811 }
1812 return -EINVAL;
1813 }
1814
1815 if (cmd->autoneg == AUTONEG_DISABLE) {
1816 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1817
1818 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1819 return -EINVAL;
1820 lc->requested_speed = cmd->speed;
1821 lc->requested_duplex = cmd->duplex;
1822 lc->advertising = 0;
1823 } else {
1824 cmd->advertising &= ADVERTISED_MASK;
1825 cmd->advertising &= lc->supported;
1826 if (!cmd->advertising)
1827 return -EINVAL;
1828 lc->requested_speed = SPEED_INVALID;
1829 lc->requested_duplex = DUPLEX_INVALID;
1830 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1831 }
1832 lc->autoneg = cmd->autoneg;
1833 if (netif_running(dev))
1834 t3_link_start(&p->phy, &p->mac, lc);
1835 return 0;
1836 }
1837
1838 static void get_pauseparam(struct net_device *dev,
1839 struct ethtool_pauseparam *epause)
1840 {
1841 struct port_info *p = netdev_priv(dev);
1842
1843 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1844 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1845 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1846 }
1847
1848 static int set_pauseparam(struct net_device *dev,
1849 struct ethtool_pauseparam *epause)
1850 {
1851 struct port_info *p = netdev_priv(dev);
1852 struct link_config *lc = &p->link_config;
1853
1854 if (epause->autoneg == AUTONEG_DISABLE)
1855 lc->requested_fc = 0;
1856 else if (lc->supported & SUPPORTED_Autoneg)
1857 lc->requested_fc = PAUSE_AUTONEG;
1858 else
1859 return -EINVAL;
1860
1861 if (epause->rx_pause)
1862 lc->requested_fc |= PAUSE_RX;
1863 if (epause->tx_pause)
1864 lc->requested_fc |= PAUSE_TX;
1865 if (lc->autoneg == AUTONEG_ENABLE) {
1866 if (netif_running(dev))
1867 t3_link_start(&p->phy, &p->mac, lc);
1868 } else {
1869 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1870 if (netif_running(dev))
1871 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1872 }
1873 return 0;
1874 }
1875
1876 static u32 get_rx_csum(struct net_device *dev)
1877 {
1878 struct port_info *p = netdev_priv(dev);
1879
1880 return p->rx_offload & T3_RX_CSUM;
1881 }
1882
1883 static int set_rx_csum(struct net_device *dev, u32 data)
1884 {
1885 struct port_info *p = netdev_priv(dev);
1886
1887 if (data) {
1888 p->rx_offload |= T3_RX_CSUM;
1889 } else {
1890 int i;
1891
1892 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1893 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1894 set_qset_lro(dev, i, 0);
1895 }
1896 return 0;
1897 }
1898
1899 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1900 {
1901 struct port_info *pi = netdev_priv(dev);
1902 struct adapter *adapter = pi->adapter;
1903 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1904
1905 e->rx_max_pending = MAX_RX_BUFFERS;
1906 e->rx_mini_max_pending = 0;
1907 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1908 e->tx_max_pending = MAX_TXQ_ENTRIES;
1909
1910 e->rx_pending = q->fl_size;
1911 e->rx_mini_pending = q->rspq_size;
1912 e->rx_jumbo_pending = q->jumbo_size;
1913 e->tx_pending = q->txq_size[0];
1914 }
1915
1916 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1917 {
1918 struct port_info *pi = netdev_priv(dev);
1919 struct adapter *adapter = pi->adapter;
1920 struct qset_params *q;
1921 int i;
1922
1923 if (e->rx_pending > MAX_RX_BUFFERS ||
1924 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1925 e->tx_pending > MAX_TXQ_ENTRIES ||
1926 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1927 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1928 e->rx_pending < MIN_FL_ENTRIES ||
1929 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1930 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1931 return -EINVAL;
1932
1933 if (adapter->flags & FULL_INIT_DONE)
1934 return -EBUSY;
1935
1936 q = &adapter->params.sge.qset[pi->first_qset];
1937 for (i = 0; i < pi->nqsets; ++i, ++q) {
1938 q->rspq_size = e->rx_mini_pending;
1939 q->fl_size = e->rx_pending;
1940 q->jumbo_size = e->rx_jumbo_pending;
1941 q->txq_size[0] = e->tx_pending;
1942 q->txq_size[1] = e->tx_pending;
1943 q->txq_size[2] = e->tx_pending;
1944 }
1945 return 0;
1946 }
1947
1948 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1949 {
1950 struct port_info *pi = netdev_priv(dev);
1951 struct adapter *adapter = pi->adapter;
1952 struct qset_params *qsp = &adapter->params.sge.qset[0];
1953 struct sge_qset *qs = &adapter->sge.qs[0];
1954
1955 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1956 return -EINVAL;
1957
1958 qsp->coalesce_usecs = c->rx_coalesce_usecs;
1959 t3_update_qset_coalesce(qs, qsp);
1960 return 0;
1961 }
1962
1963 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1964 {
1965 struct port_info *pi = netdev_priv(dev);
1966 struct adapter *adapter = pi->adapter;
1967 struct qset_params *q = adapter->params.sge.qset;
1968
1969 c->rx_coalesce_usecs = q->coalesce_usecs;
1970 return 0;
1971 }
1972
1973 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1974 u8 * data)
1975 {
1976 struct port_info *pi = netdev_priv(dev);
1977 struct adapter *adapter = pi->adapter;
1978 int i, err = 0;
1979
1980 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1981 if (!buf)
1982 return -ENOMEM;
1983
1984 e->magic = EEPROM_MAGIC;
1985 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1986 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
1987
1988 if (!err)
1989 memcpy(data, buf + e->offset, e->len);
1990 kfree(buf);
1991 return err;
1992 }
1993
1994 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1995 u8 * data)
1996 {
1997 struct port_info *pi = netdev_priv(dev);
1998 struct adapter *adapter = pi->adapter;
1999 u32 aligned_offset, aligned_len;
2000 __le32 *p;
2001 u8 *buf;
2002 int err;
2003
2004 if (eeprom->magic != EEPROM_MAGIC)
2005 return -EINVAL;
2006
2007 aligned_offset = eeprom->offset & ~3;
2008 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2009
2010 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2011 buf = kmalloc(aligned_len, GFP_KERNEL);
2012 if (!buf)
2013 return -ENOMEM;
2014 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2015 if (!err && aligned_len > 4)
2016 err = t3_seeprom_read(adapter,
2017 aligned_offset + aligned_len - 4,
2018 (__le32 *) & buf[aligned_len - 4]);
2019 if (err)
2020 goto out;
2021 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2022 } else
2023 buf = data;
2024
2025 err = t3_seeprom_wp(adapter, 0);
2026 if (err)
2027 goto out;
2028
2029 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2030 err = t3_seeprom_write(adapter, aligned_offset, *p);
2031 aligned_offset += 4;
2032 }
2033
2034 if (!err)
2035 err = t3_seeprom_wp(adapter, 1);
2036 out:
2037 if (buf != data)
2038 kfree(buf);
2039 return err;
2040 }
2041
2042 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2043 {
2044 wol->supported = 0;
2045 wol->wolopts = 0;
2046 memset(&wol->sopass, 0, sizeof(wol->sopass));
2047 }
2048
2049 static const struct ethtool_ops cxgb_ethtool_ops = {
2050 .get_settings = get_settings,
2051 .set_settings = set_settings,
2052 .get_drvinfo = get_drvinfo,
2053 .get_msglevel = get_msglevel,
2054 .set_msglevel = set_msglevel,
2055 .get_ringparam = get_sge_param,
2056 .set_ringparam = set_sge_param,
2057 .get_coalesce = get_coalesce,
2058 .set_coalesce = set_coalesce,
2059 .get_eeprom_len = get_eeprom_len,
2060 .get_eeprom = get_eeprom,
2061 .set_eeprom = set_eeprom,
2062 .get_pauseparam = get_pauseparam,
2063 .set_pauseparam = set_pauseparam,
2064 .get_rx_csum = get_rx_csum,
2065 .set_rx_csum = set_rx_csum,
2066 .set_tx_csum = ethtool_op_set_tx_csum,
2067 .set_sg = ethtool_op_set_sg,
2068 .get_link = ethtool_op_get_link,
2069 .get_strings = get_strings,
2070 .phys_id = cxgb3_phys_id,
2071 .nway_reset = restart_autoneg,
2072 .get_sset_count = get_sset_count,
2073 .get_ethtool_stats = get_stats,
2074 .get_regs_len = get_regs_len,
2075 .get_regs = get_regs,
2076 .get_wol = get_wol,
2077 .set_tso = ethtool_op_set_tso,
2078 };
2079
2080 static int in_range(int val, int lo, int hi)
2081 {
2082 return val < 0 || (val <= hi && val >= lo);
2083 }
2084
2085 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2086 {
2087 struct port_info *pi = netdev_priv(dev);
2088 struct adapter *adapter = pi->adapter;
2089 u32 cmd;
2090 int ret;
2091
2092 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2093 return -EFAULT;
2094
2095 switch (cmd) {
2096 case CHELSIO_SET_QSET_PARAMS:{
2097 int i;
2098 struct qset_params *q;
2099 struct ch_qset_params t;
2100 int q1 = pi->first_qset;
2101 int nqsets = pi->nqsets;
2102
2103 if (!capable(CAP_NET_ADMIN))
2104 return -EPERM;
2105 if (copy_from_user(&t, useraddr, sizeof(t)))
2106 return -EFAULT;
2107 if (t.qset_idx >= SGE_QSETS)
2108 return -EINVAL;
2109 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2110 !in_range(t.cong_thres, 0, 255) ||
2111 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2112 MAX_TXQ_ENTRIES) ||
2113 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2114 MAX_TXQ_ENTRIES) ||
2115 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2116 MAX_CTRL_TXQ_ENTRIES) ||
2117 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2118 MAX_RX_BUFFERS)
2119 || !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2120 MAX_RX_JUMBO_BUFFERS)
2121 || !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2122 MAX_RSPQ_ENTRIES))
2123 return -EINVAL;
2124
2125 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
2126 for_each_port(adapter, i) {
2127 pi = adap2pinfo(adapter, i);
2128 if (t.qset_idx >= pi->first_qset &&
2129 t.qset_idx < pi->first_qset + pi->nqsets &&
2130 !(pi->rx_offload & T3_RX_CSUM))
2131 return -EINVAL;
2132 }
2133
2134 if ((adapter->flags & FULL_INIT_DONE) &&
2135 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2136 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2137 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2138 t.polling >= 0 || t.cong_thres >= 0))
2139 return -EBUSY;
2140
2141 /* Allow setting of any available qset when offload enabled */
2142 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2143 q1 = 0;
2144 for_each_port(adapter, i) {
2145 pi = adap2pinfo(adapter, i);
2146 nqsets += pi->first_qset + pi->nqsets;
2147 }
2148 }
2149
2150 if (t.qset_idx < q1)
2151 return -EINVAL;
2152 if (t.qset_idx > q1 + nqsets - 1)
2153 return -EINVAL;
2154
2155 q = &adapter->params.sge.qset[t.qset_idx];
2156
2157 if (t.rspq_size >= 0)
2158 q->rspq_size = t.rspq_size;
2159 if (t.fl_size[0] >= 0)
2160 q->fl_size = t.fl_size[0];
2161 if (t.fl_size[1] >= 0)
2162 q->jumbo_size = t.fl_size[1];
2163 if (t.txq_size[0] >= 0)
2164 q->txq_size[0] = t.txq_size[0];
2165 if (t.txq_size[1] >= 0)
2166 q->txq_size[1] = t.txq_size[1];
2167 if (t.txq_size[2] >= 0)
2168 q->txq_size[2] = t.txq_size[2];
2169 if (t.cong_thres >= 0)
2170 q->cong_thres = t.cong_thres;
2171 if (t.intr_lat >= 0) {
2172 struct sge_qset *qs =
2173 &adapter->sge.qs[t.qset_idx];
2174
2175 q->coalesce_usecs = t.intr_lat;
2176 t3_update_qset_coalesce(qs, q);
2177 }
2178 if (t.polling >= 0) {
2179 if (adapter->flags & USING_MSIX)
2180 q->polling = t.polling;
2181 else {
2182 /* No polling with INTx for T3A */
2183 if (adapter->params.rev == 0 &&
2184 !(adapter->flags & USING_MSI))
2185 t.polling = 0;
2186
2187 for (i = 0; i < SGE_QSETS; i++) {
2188 q = &adapter->params.sge.
2189 qset[i];
2190 q->polling = t.polling;
2191 }
2192 }
2193 }
2194 if (t.lro >= 0)
2195 set_qset_lro(dev, t.qset_idx, t.lro);
2196
2197 break;
2198 }
2199 case CHELSIO_GET_QSET_PARAMS:{
2200 struct qset_params *q;
2201 struct ch_qset_params t;
2202 int q1 = pi->first_qset;
2203 int nqsets = pi->nqsets;
2204 int i;
2205
2206 if (copy_from_user(&t, useraddr, sizeof(t)))
2207 return -EFAULT;
2208
2209 /* Display qsets for all ports when offload enabled */
2210 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2211 q1 = 0;
2212 for_each_port(adapter, i) {
2213 pi = adap2pinfo(adapter, i);
2214 nqsets = pi->first_qset + pi->nqsets;
2215 }
2216 }
2217
2218 if (t.qset_idx >= nqsets)
2219 return -EINVAL;
2220
2221 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2222 t.rspq_size = q->rspq_size;
2223 t.txq_size[0] = q->txq_size[0];
2224 t.txq_size[1] = q->txq_size[1];
2225 t.txq_size[2] = q->txq_size[2];
2226 t.fl_size[0] = q->fl_size;
2227 t.fl_size[1] = q->jumbo_size;
2228 t.polling = q->polling;
2229 t.lro = q->lro;
2230 t.intr_lat = q->coalesce_usecs;
2231 t.cong_thres = q->cong_thres;
2232 t.qnum = q1;
2233
2234 if (adapter->flags & USING_MSIX)
2235 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2236 else
2237 t.vector = adapter->pdev->irq;
2238
2239 if (copy_to_user(useraddr, &t, sizeof(t)))
2240 return -EFAULT;
2241 break;
2242 }
2243 case CHELSIO_SET_QSET_NUM:{
2244 struct ch_reg edata;
2245 unsigned int i, first_qset = 0, other_qsets = 0;
2246
2247 if (!capable(CAP_NET_ADMIN))
2248 return -EPERM;
2249 if (adapter->flags & FULL_INIT_DONE)
2250 return -EBUSY;
2251 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2252 return -EFAULT;
2253 if (edata.val < 1 ||
2254 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2255 return -EINVAL;
2256
2257 for_each_port(adapter, i)
2258 if (adapter->port[i] && adapter->port[i] != dev)
2259 other_qsets += adap2pinfo(adapter, i)->nqsets;
2260
2261 if (edata.val + other_qsets > SGE_QSETS)
2262 return -EINVAL;
2263
2264 pi->nqsets = edata.val;
2265
2266 for_each_port(adapter, i)
2267 if (adapter->port[i]) {
2268 pi = adap2pinfo(adapter, i);
2269 pi->first_qset = first_qset;
2270 first_qset += pi->nqsets;
2271 }
2272 break;
2273 }
2274 case CHELSIO_GET_QSET_NUM:{
2275 struct ch_reg edata;
2276
2277 edata.cmd = CHELSIO_GET_QSET_NUM;
2278 edata.val = pi->nqsets;
2279 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2280 return -EFAULT;
2281 break;
2282 }
2283 case CHELSIO_LOAD_FW:{
2284 u8 *fw_data;
2285 struct ch_mem_range t;
2286
2287 if (!capable(CAP_SYS_RAWIO))
2288 return -EPERM;
2289 if (copy_from_user(&t, useraddr, sizeof(t)))
2290 return -EFAULT;
2291 /* Check t.len sanity ? */
2292 fw_data = kmalloc(t.len, GFP_KERNEL);
2293 if (!fw_data)
2294 return -ENOMEM;
2295
2296 if (copy_from_user
2297 (fw_data, useraddr + sizeof(t), t.len)) {
2298 kfree(fw_data);
2299 return -EFAULT;
2300 }
2301
2302 ret = t3_load_fw(adapter, fw_data, t.len);
2303 kfree(fw_data);
2304 if (ret)
2305 return ret;
2306 break;
2307 }
2308 case CHELSIO_SETMTUTAB:{
2309 struct ch_mtus m;
2310 int i;
2311
2312 if (!is_offload(adapter))
2313 return -EOPNOTSUPP;
2314 if (!capable(CAP_NET_ADMIN))
2315 return -EPERM;
2316 if (offload_running(adapter))
2317 return -EBUSY;
2318 if (copy_from_user(&m, useraddr, sizeof(m)))
2319 return -EFAULT;
2320 if (m.nmtus != NMTUS)
2321 return -EINVAL;
2322 if (m.mtus[0] < 81) /* accommodate SACK */
2323 return -EINVAL;
2324
2325 /* MTUs must be in ascending order */
2326 for (i = 1; i < NMTUS; ++i)
2327 if (m.mtus[i] < m.mtus[i - 1])
2328 return -EINVAL;
2329
2330 memcpy(adapter->params.mtus, m.mtus,
2331 sizeof(adapter->params.mtus));
2332 break;
2333 }
2334 case CHELSIO_GET_PM:{
2335 struct tp_params *p = &adapter->params.tp;
2336 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2337
2338 if (!is_offload(adapter))
2339 return -EOPNOTSUPP;
2340 m.tx_pg_sz = p->tx_pg_size;
2341 m.tx_num_pg = p->tx_num_pgs;
2342 m.rx_pg_sz = p->rx_pg_size;
2343 m.rx_num_pg = p->rx_num_pgs;
2344 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2345 if (copy_to_user(useraddr, &m, sizeof(m)))
2346 return -EFAULT;
2347 break;
2348 }
2349 case CHELSIO_SET_PM:{
2350 struct ch_pm m;
2351 struct tp_params *p = &adapter->params.tp;
2352
2353 if (!is_offload(adapter))
2354 return -EOPNOTSUPP;
2355 if (!capable(CAP_NET_ADMIN))
2356 return -EPERM;
2357 if (adapter->flags & FULL_INIT_DONE)
2358 return -EBUSY;
2359 if (copy_from_user(&m, useraddr, sizeof(m)))
2360 return -EFAULT;
2361 if (!is_power_of_2(m.rx_pg_sz) ||
2362 !is_power_of_2(m.tx_pg_sz))
2363 return -EINVAL; /* not power of 2 */
2364 if (!(m.rx_pg_sz & 0x14000))
2365 return -EINVAL; /* not 16KB or 64KB */
2366 if (!(m.tx_pg_sz & 0x1554000))
2367 return -EINVAL;
2368 if (m.tx_num_pg == -1)
2369 m.tx_num_pg = p->tx_num_pgs;
2370 if (m.rx_num_pg == -1)
2371 m.rx_num_pg = p->rx_num_pgs;
2372 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2373 return -EINVAL;
2374 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2375 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2376 return -EINVAL;
2377 p->rx_pg_size = m.rx_pg_sz;
2378 p->tx_pg_size = m.tx_pg_sz;
2379 p->rx_num_pgs = m.rx_num_pg;
2380 p->tx_num_pgs = m.tx_num_pg;
2381 break;
2382 }
2383 case CHELSIO_GET_MEM:{
2384 struct ch_mem_range t;
2385 struct mc7 *mem;
2386 u64 buf[32];
2387
2388 if (!is_offload(adapter))
2389 return -EOPNOTSUPP;
2390 if (!(adapter->flags & FULL_INIT_DONE))
2391 return -EIO; /* need the memory controllers */
2392 if (copy_from_user(&t, useraddr, sizeof(t)))
2393 return -EFAULT;
2394 if ((t.addr & 7) || (t.len & 7))
2395 return -EINVAL;
2396 if (t.mem_id == MEM_CM)
2397 mem = &adapter->cm;
2398 else if (t.mem_id == MEM_PMRX)
2399 mem = &adapter->pmrx;
2400 else if (t.mem_id == MEM_PMTX)
2401 mem = &adapter->pmtx;
2402 else
2403 return -EINVAL;
2404
2405 /*
2406 * Version scheme:
2407 * bits 0..9: chip version
2408 * bits 10..15: chip revision
2409 */
2410 t.version = 3 | (adapter->params.rev << 10);
2411 if (copy_to_user(useraddr, &t, sizeof(t)))
2412 return -EFAULT;
2413
2414 /*
2415 * Read 256 bytes at a time as len can be large and we don't
2416 * want to use huge intermediate buffers.
2417 */
2418 useraddr += sizeof(t); /* advance to start of buffer */
2419 while (t.len) {
2420 unsigned int chunk =
2421 min_t(unsigned int, t.len, sizeof(buf));
2422
2423 ret =
2424 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2425 buf);
2426 if (ret)
2427 return ret;
2428 if (copy_to_user(useraddr, buf, chunk))
2429 return -EFAULT;
2430 useraddr += chunk;
2431 t.addr += chunk;
2432 t.len -= chunk;
2433 }
2434 break;
2435 }
2436 case CHELSIO_SET_TRACE_FILTER:{
2437 struct ch_trace t;
2438 const struct trace_params *tp;
2439
2440 if (!capable(CAP_NET_ADMIN))
2441 return -EPERM;
2442 if (!offload_running(adapter))
2443 return -EAGAIN;
2444 if (copy_from_user(&t, useraddr, sizeof(t)))
2445 return -EFAULT;
2446
2447 tp = (const struct trace_params *)&t.sip;
2448 if (t.config_tx)
2449 t3_config_trace_filter(adapter, tp, 0,
2450 t.invert_match,
2451 t.trace_tx);
2452 if (t.config_rx)
2453 t3_config_trace_filter(adapter, tp, 1,
2454 t.invert_match,
2455 t.trace_rx);
2456 break;
2457 }
2458 default:
2459 return -EOPNOTSUPP;
2460 }
2461 return 0;
2462 }
2463
2464 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2465 {
2466 struct mii_ioctl_data *data = if_mii(req);
2467 struct port_info *pi = netdev_priv(dev);
2468 struct adapter *adapter = pi->adapter;
2469
2470 switch (cmd) {
2471 case SIOCGMIIREG:
2472 case SIOCSMIIREG:
2473 /* Convert phy_id from older PRTAD/DEVAD format */
2474 if (is_10G(adapter) &&
2475 !mdio_phy_id_is_c45(data->phy_id) &&
2476 (data->phy_id & 0x1f00) &&
2477 !(data->phy_id & 0xe0e0))
2478 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2479 data->phy_id & 0x1f);
2480 /* FALLTHRU */
2481 case SIOCGMIIPHY:
2482 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2483 case SIOCCHIOCTL:
2484 return cxgb_extension_ioctl(dev, req->ifr_data);
2485 default:
2486 return -EOPNOTSUPP;
2487 }
2488 }
2489
2490 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2491 {
2492 struct port_info *pi = netdev_priv(dev);
2493 struct adapter *adapter = pi->adapter;
2494 int ret;
2495
2496 if (new_mtu < 81) /* accommodate SACK */
2497 return -EINVAL;
2498 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2499 return ret;
2500 dev->mtu = new_mtu;
2501 init_port_mtus(adapter);
2502 if (adapter->params.rev == 0 && offload_running(adapter))
2503 t3_load_mtus(adapter, adapter->params.mtus,
2504 adapter->params.a_wnd, adapter->params.b_wnd,
2505 adapter->port[0]->mtu);
2506 return 0;
2507 }
2508
2509 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2510 {
2511 struct port_info *pi = netdev_priv(dev);
2512 struct adapter *adapter = pi->adapter;
2513 struct sockaddr *addr = p;
2514
2515 if (!is_valid_ether_addr(addr->sa_data))
2516 return -EINVAL;
2517
2518 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2519 t3_mac_set_address(&pi->mac, 0, dev->dev_addr);
2520 if (offload_running(adapter))
2521 write_smt_entry(adapter, pi->port_id);
2522 return 0;
2523 }
2524
2525 /**
2526 * t3_synchronize_rx - wait for current Rx processing on a port to complete
2527 * @adap: the adapter
2528 * @p: the port
2529 *
2530 * Ensures that current Rx processing on any of the queues associated with
2531 * the given port completes before returning. We do this by acquiring and
2532 * releasing the locks of the response queues associated with the port.
2533 */
2534 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2535 {
2536 int i;
2537
2538 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2539 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2540
2541 spin_lock_irq(&q->lock);
2542 spin_unlock_irq(&q->lock);
2543 }
2544 }
2545
2546 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2547 {
2548 struct port_info *pi = netdev_priv(dev);
2549 struct adapter *adapter = pi->adapter;
2550
2551 pi->vlan_grp = grp;
2552 if (adapter->params.rev > 0)
2553 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2554 else {
2555 /* single control for all ports */
2556 unsigned int i, have_vlans = 0;
2557 for_each_port(adapter, i)
2558 have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2559
2560 t3_set_vlan_accel(adapter, 1, have_vlans);
2561 }
2562 t3_synchronize_rx(adapter, pi);
2563 }
2564
2565 #ifdef CONFIG_NET_POLL_CONTROLLER
2566 static void cxgb_netpoll(struct net_device *dev)
2567 {
2568 struct port_info *pi = netdev_priv(dev);
2569 struct adapter *adapter = pi->adapter;
2570 int qidx;
2571
2572 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2573 struct sge_qset *qs = &adapter->sge.qs[qidx];
2574 void *source;
2575
2576 if (adapter->flags & USING_MSIX)
2577 source = qs;
2578 else
2579 source = adapter;
2580
2581 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2582 }
2583 }
2584 #endif
2585
2586 /*
2587 * Periodic accumulation of MAC statistics.
2588 */
2589 static void mac_stats_update(struct adapter *adapter)
2590 {
2591 int i;
2592
2593 for_each_port(adapter, i) {
2594 struct net_device *dev = adapter->port[i];
2595 struct port_info *p = netdev_priv(dev);
2596
2597 if (netif_running(dev)) {
2598 spin_lock(&adapter->stats_lock);
2599 t3_mac_update_stats(&p->mac);
2600 spin_unlock(&adapter->stats_lock);
2601 }
2602 }
2603 }
2604
2605 static void check_link_status(struct adapter *adapter)
2606 {
2607 int i;
2608
2609 for_each_port(adapter, i) {
2610 struct net_device *dev = adapter->port[i];
2611 struct port_info *p = netdev_priv(dev);
2612 int link_fault;
2613
2614 spin_lock_irq(&adapter->work_lock);
2615 link_fault = p->link_fault;
2616 spin_unlock_irq(&adapter->work_lock);
2617
2618 if (link_fault) {
2619 t3_link_fault(adapter, i);
2620 continue;
2621 }
2622
2623 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2624 t3_xgm_intr_disable(adapter, i);
2625 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2626
2627 t3_link_changed(adapter, i);
2628 t3_xgm_intr_enable(adapter, i);
2629 }
2630 }
2631 }
2632
2633 static void check_t3b2_mac(struct adapter *adapter)
2634 {
2635 int i;
2636
2637 if (!rtnl_trylock()) /* synchronize with ifdown */
2638 return;
2639
2640 for_each_port(adapter, i) {
2641 struct net_device *dev = adapter->port[i];
2642 struct port_info *p = netdev_priv(dev);
2643 int status;
2644
2645 if (!netif_running(dev))
2646 continue;
2647
2648 status = 0;
2649 if (netif_running(dev) && netif_carrier_ok(dev))
2650 status = t3b2_mac_watchdog_task(&p->mac);
2651 if (status == 1)
2652 p->mac.stats.num_toggled++;
2653 else if (status == 2) {
2654 struct cmac *mac = &p->mac;
2655
2656 t3_mac_set_mtu(mac, dev->mtu);
2657 t3_mac_set_address(mac, 0, dev->dev_addr);
2658 cxgb_set_rxmode(dev);
2659 t3_link_start(&p->phy, mac, &p->link_config);
2660 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2661 t3_port_intr_enable(adapter, p->port_id);
2662 p->mac.stats.num_resets++;
2663 }
2664 }
2665 rtnl_unlock();
2666 }
2667
2668
2669 static void t3_adap_check_task(struct work_struct *work)
2670 {
2671 struct adapter *adapter = container_of(work, struct adapter,
2672 adap_check_task.work);
2673 const struct adapter_params *p = &adapter->params;
2674 int port;
2675 unsigned int v, status, reset;
2676
2677 adapter->check_task_cnt++;
2678
2679 check_link_status(adapter);
2680
2681 /* Accumulate MAC stats if needed */
2682 if (!p->linkpoll_period ||
2683 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2684 p->stats_update_period) {
2685 mac_stats_update(adapter);
2686 adapter->check_task_cnt = 0;
2687 }
2688
2689 if (p->rev == T3_REV_B2)
2690 check_t3b2_mac(adapter);
2691
2692 /*
2693 * Scan the XGMAC's to check for various conditions which we want to
2694 * monitor in a periodic polling manner rather than via an interrupt
2695 * condition. This is used for conditions which would otherwise flood
2696 * the system with interrupts and we only really need to know that the
2697 * conditions are "happening" ... For each condition we count the
2698 * detection of the condition and reset it for the next polling loop.
2699 */
2700 for_each_port(adapter, port) {
2701 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2702 u32 cause;
2703
2704 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2705 reset = 0;
2706 if (cause & F_RXFIFO_OVERFLOW) {
2707 mac->stats.rx_fifo_ovfl++;
2708 reset |= F_RXFIFO_OVERFLOW;
2709 }
2710
2711 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2712 }
2713
2714 /*
2715 * We do the same as above for FL_EMPTY interrupts.
2716 */
2717 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2718 reset = 0;
2719
2720 if (status & F_FLEMPTY) {
2721 struct sge_qset *qs = &adapter->sge.qs[0];
2722 int i = 0;
2723
2724 reset |= F_FLEMPTY;
2725
2726 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2727 0xffff;
2728
2729 while (v) {
2730 qs->fl[i].empty += (v & 1);
2731 if (i)
2732 qs++;
2733 i ^= 1;
2734 v >>= 1;
2735 }
2736 }
2737
2738 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2739
2740 /* Schedule the next check update if any port is active. */
2741 spin_lock_irq(&adapter->work_lock);
2742 if (adapter->open_device_map & PORT_MASK)
2743 schedule_chk_task(adapter);
2744 spin_unlock_irq(&adapter->work_lock);
2745 }
2746
2747 /*
2748 * Processes external (PHY) interrupts in process context.
2749 */
2750 static void ext_intr_task(struct work_struct *work)
2751 {
2752 struct adapter *adapter = container_of(work, struct adapter,
2753 ext_intr_handler_task);
2754 int i;
2755
2756 /* Disable link fault interrupts */
2757 for_each_port(adapter, i) {
2758 struct net_device *dev = adapter->port[i];
2759 struct port_info *p = netdev_priv(dev);
2760
2761 t3_xgm_intr_disable(adapter, i);
2762 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2763 }
2764
2765 /* Re-enable link fault interrupts */
2766 t3_phy_intr_handler(adapter);
2767
2768 for_each_port(adapter, i)
2769 t3_xgm_intr_enable(adapter, i);
2770
2771 /* Now reenable external interrupts */
2772 spin_lock_irq(&adapter->work_lock);
2773 if (adapter->slow_intr_mask) {
2774 adapter->slow_intr_mask |= F_T3DBG;
2775 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2776 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2777 adapter->slow_intr_mask);
2778 }
2779 spin_unlock_irq(&adapter->work_lock);
2780 }
2781
2782 /*
2783 * Interrupt-context handler for external (PHY) interrupts.
2784 */
2785 void t3_os_ext_intr_handler(struct adapter *adapter)
2786 {
2787 /*
2788 * Schedule a task to handle external interrupts as they may be slow
2789 * and we use a mutex to protect MDIO registers. We disable PHY
2790 * interrupts in the meantime and let the task reenable them when
2791 * it's done.
2792 */
2793 spin_lock(&adapter->work_lock);
2794 if (adapter->slow_intr_mask) {
2795 adapter->slow_intr_mask &= ~F_T3DBG;
2796 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2797 adapter->slow_intr_mask);
2798 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2799 }
2800 spin_unlock(&adapter->work_lock);
2801 }
2802
2803 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2804 {
2805 struct net_device *netdev = adapter->port[port_id];
2806 struct port_info *pi = netdev_priv(netdev);
2807
2808 spin_lock(&adapter->work_lock);
2809 pi->link_fault = 1;
2810 spin_unlock(&adapter->work_lock);
2811 }
2812
2813 static int t3_adapter_error(struct adapter *adapter, int reset)
2814 {
2815 int i, ret = 0;
2816
2817 if (is_offload(adapter) &&
2818 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2819 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2820 offload_close(&adapter->tdev);
2821 }
2822
2823 /* Stop all ports */
2824 for_each_port(adapter, i) {
2825 struct net_device *netdev = adapter->port[i];
2826
2827 if (netif_running(netdev))
2828 cxgb_close(netdev);
2829 }
2830
2831 /* Stop SGE timers */
2832 t3_stop_sge_timers(adapter);
2833
2834 adapter->flags &= ~FULL_INIT_DONE;
2835
2836 if (reset)
2837 ret = t3_reset_adapter(adapter);
2838
2839 pci_disable_device(adapter->pdev);
2840
2841 return ret;
2842 }
2843
2844 static int t3_reenable_adapter(struct adapter *adapter)
2845 {
2846 if (pci_enable_device(adapter->pdev)) {
2847 dev_err(&adapter->pdev->dev,
2848 "Cannot re-enable PCI device after reset.\n");
2849 goto err;
2850 }
2851 pci_set_master(adapter->pdev);
2852 pci_restore_state(adapter->pdev);
2853
2854 /* Free sge resources */
2855 t3_free_sge_resources(adapter);
2856
2857 if (t3_replay_prep_adapter(adapter))
2858 goto err;
2859
2860 return 0;
2861 err:
2862 return -1;
2863 }
2864
2865 static void t3_resume_ports(struct adapter *adapter)
2866 {
2867 int i;
2868
2869 /* Restart the ports */
2870 for_each_port(adapter, i) {
2871 struct net_device *netdev = adapter->port[i];
2872
2873 if (netif_running(netdev)) {
2874 if (cxgb_open(netdev)) {
2875 dev_err(&adapter->pdev->dev,
2876 "can't bring device back up"
2877 " after reset\n");
2878 continue;
2879 }
2880 }
2881 }
2882
2883 if (is_offload(adapter) && !ofld_disable)
2884 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2885 }
2886
2887 /*
2888 * processes a fatal error.
2889 * Bring the ports down, reset the chip, bring the ports back up.
2890 */
2891 static void fatal_error_task(struct work_struct *work)
2892 {
2893 struct adapter *adapter = container_of(work, struct adapter,
2894 fatal_error_handler_task);
2895 int err = 0;
2896
2897 rtnl_lock();
2898 err = t3_adapter_error(adapter, 1);
2899 if (!err)
2900 err = t3_reenable_adapter(adapter);
2901 if (!err)
2902 t3_resume_ports(adapter);
2903
2904 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2905 rtnl_unlock();
2906 }
2907
2908 void t3_fatal_err(struct adapter *adapter)
2909 {
2910 unsigned int fw_status[4];
2911
2912 if (adapter->flags & FULL_INIT_DONE) {
2913 t3_sge_stop(adapter);
2914 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2915 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2916 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2917 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2918
2919 spin_lock(&adapter->work_lock);
2920 t3_intr_disable(adapter);
2921 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2922 spin_unlock(&adapter->work_lock);
2923 }
2924 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2925 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2926 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2927 fw_status[0], fw_status[1],
2928 fw_status[2], fw_status[3]);
2929 }
2930
2931 /**
2932 * t3_io_error_detected - called when PCI error is detected
2933 * @pdev: Pointer to PCI device
2934 * @state: The current pci connection state
2935 *
2936 * This function is called after a PCI bus error affecting
2937 * this device has been detected.
2938 */
2939 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2940 pci_channel_state_t state)
2941 {
2942 struct adapter *adapter = pci_get_drvdata(pdev);
2943 int ret;
2944
2945 if (state == pci_channel_io_perm_failure)
2946 return PCI_ERS_RESULT_DISCONNECT;
2947
2948 ret = t3_adapter_error(adapter, 0);
2949
2950 /* Request a slot reset. */
2951 return PCI_ERS_RESULT_NEED_RESET;
2952 }
2953
2954 /**
2955 * t3_io_slot_reset - called after the pci bus has been reset.
2956 * @pdev: Pointer to PCI device
2957 *
2958 * Restart the card from scratch, as if from a cold-boot.
2959 */
2960 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
2961 {
2962 struct adapter *adapter = pci_get_drvdata(pdev);
2963
2964 if (!t3_reenable_adapter(adapter))
2965 return PCI_ERS_RESULT_RECOVERED;
2966
2967 return PCI_ERS_RESULT_DISCONNECT;
2968 }
2969
2970 /**
2971 * t3_io_resume - called when traffic can start flowing again.
2972 * @pdev: Pointer to PCI device
2973 *
2974 * This callback is called when the error recovery driver tells us that
2975 * its OK to resume normal operation.
2976 */
2977 static void t3_io_resume(struct pci_dev *pdev)
2978 {
2979 struct adapter *adapter = pci_get_drvdata(pdev);
2980
2981 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
2982 t3_read_reg(adapter, A_PCIE_PEX_ERR));
2983
2984 t3_resume_ports(adapter);
2985 }
2986
2987 static struct pci_error_handlers t3_err_handler = {
2988 .error_detected = t3_io_error_detected,
2989 .slot_reset = t3_io_slot_reset,
2990 .resume = t3_io_resume,
2991 };
2992
2993 /*
2994 * Set the number of qsets based on the number of CPUs and the number of ports,
2995 * not to exceed the number of available qsets, assuming there are enough qsets
2996 * per port in HW.
2997 */
2998 static void set_nqsets(struct adapter *adap)
2999 {
3000 int i, j = 0;
3001 int num_cpus = num_online_cpus();
3002 int hwports = adap->params.nports;
3003 int nqsets = adap->msix_nvectors - 1;
3004
3005 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3006 if (hwports == 2 &&
3007 (hwports * nqsets > SGE_QSETS ||
3008 num_cpus >= nqsets / hwports))
3009 nqsets /= hwports;
3010 if (nqsets > num_cpus)
3011 nqsets = num_cpus;
3012 if (nqsets < 1 || hwports == 4)
3013 nqsets = 1;
3014 } else
3015 nqsets = 1;
3016
3017 for_each_port(adap, i) {
3018 struct port_info *pi = adap2pinfo(adap, i);
3019
3020 pi->first_qset = j;
3021 pi->nqsets = nqsets;
3022 j = pi->first_qset + nqsets;
3023
3024 dev_info(&adap->pdev->dev,
3025 "Port %d using %d queue sets.\n", i, nqsets);
3026 }
3027 }
3028
3029 static int __devinit cxgb_enable_msix(struct adapter *adap)
3030 {
3031 struct msix_entry entries[SGE_QSETS + 1];
3032 int vectors;
3033 int i, err;
3034
3035 vectors = ARRAY_SIZE(entries);
3036 for (i = 0; i < vectors; ++i)
3037 entries[i].entry = i;
3038
3039 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3040 vectors = err;
3041
3042 if (err < 0)
3043 pci_disable_msix(adap->pdev);
3044
3045 if (!err && vectors < (adap->params.nports + 1)) {
3046 pci_disable_msix(adap->pdev);
3047 err = -1;
3048 }
3049
3050 if (!err) {
3051 for (i = 0; i < vectors; ++i)
3052 adap->msix_info[i].vec = entries[i].vector;
3053 adap->msix_nvectors = vectors;
3054 }
3055
3056 return err;
3057 }
3058
3059 static void __devinit print_port_info(struct adapter *adap,
3060 const struct adapter_info *ai)
3061 {
3062 static const char *pci_variant[] = {
3063 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3064 };
3065
3066 int i;
3067 char buf[80];
3068
3069 if (is_pcie(adap))
3070 snprintf(buf, sizeof(buf), "%s x%d",
3071 pci_variant[adap->params.pci.variant],
3072 adap->params.pci.width);
3073 else
3074 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3075 pci_variant[adap->params.pci.variant],
3076 adap->params.pci.speed, adap->params.pci.width);
3077
3078 for_each_port(adap, i) {
3079 struct net_device *dev = adap->port[i];
3080 const struct port_info *pi = netdev_priv(dev);
3081
3082 if (!test_bit(i, &adap->registered_device_map))
3083 continue;
3084 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3085 dev->name, ai->desc, pi->phy.desc,
3086 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3087 (adap->flags & USING_MSIX) ? " MSI-X" :
3088 (adap->flags & USING_MSI) ? " MSI" : "");
3089 if (adap->name == dev->name && adap->params.vpd.mclk)
3090 printk(KERN_INFO
3091 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3092 adap->name, t3_mc7_size(&adap->cm) >> 20,
3093 t3_mc7_size(&adap->pmtx) >> 20,
3094 t3_mc7_size(&adap->pmrx) >> 20,
3095 adap->params.vpd.sn);
3096 }
3097 }
3098
3099 static const struct net_device_ops cxgb_netdev_ops = {
3100 .ndo_open = cxgb_open,
3101 .ndo_stop = cxgb_close,
3102 .ndo_start_xmit = t3_eth_xmit,
3103 .ndo_get_stats = cxgb_get_stats,
3104 .ndo_validate_addr = eth_validate_addr,
3105 .ndo_set_multicast_list = cxgb_set_rxmode,
3106 .ndo_do_ioctl = cxgb_ioctl,
3107 .ndo_change_mtu = cxgb_change_mtu,
3108 .ndo_set_mac_address = cxgb_set_mac_addr,
3109 .ndo_vlan_rx_register = vlan_rx_register,
3110 #ifdef CONFIG_NET_POLL_CONTROLLER
3111 .ndo_poll_controller = cxgb_netpoll,
3112 #endif
3113 };
3114
3115 static int __devinit init_one(struct pci_dev *pdev,
3116 const struct pci_device_id *ent)
3117 {
3118 static int version_printed;
3119
3120 int i, err, pci_using_dac = 0;
3121 resource_size_t mmio_start, mmio_len;
3122 const struct adapter_info *ai;
3123 struct adapter *adapter = NULL;
3124 struct port_info *pi;
3125
3126 if (!version_printed) {
3127 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3128 ++version_printed;
3129 }
3130
3131 if (!cxgb3_wq) {
3132 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3133 if (!cxgb3_wq) {
3134 printk(KERN_ERR DRV_NAME
3135 ": cannot initialize work queue\n");
3136 return -ENOMEM;
3137 }
3138 }
3139
3140 err = pci_request_regions(pdev, DRV_NAME);
3141 if (err) {
3142 /* Just info, some other driver may have claimed the device. */
3143 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3144 return err;
3145 }
3146
3147 err = pci_enable_device(pdev);
3148 if (err) {
3149 dev_err(&pdev->dev, "cannot enable PCI device\n");
3150 goto out_release_regions;
3151 }
3152
3153 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3154 pci_using_dac = 1;
3155 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3156 if (err) {
3157 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3158 "coherent allocations\n");
3159 goto out_disable_device;
3160 }
3161 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3162 dev_err(&pdev->dev, "no usable DMA configuration\n");
3163 goto out_disable_device;
3164 }
3165
3166 pci_set_master(pdev);
3167 pci_save_state(pdev);
3168
3169 mmio_start = pci_resource_start(pdev, 0);
3170 mmio_len = pci_resource_len(pdev, 0);
3171 ai = t3_get_adapter_info(ent->driver_data);
3172
3173 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3174 if (!adapter) {
3175 err = -ENOMEM;
3176 goto out_disable_device;
3177 }
3178
3179 adapter->nofail_skb =
3180 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3181 if (!adapter->nofail_skb) {
3182 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3183 err = -ENOMEM;
3184 goto out_free_adapter;
3185 }
3186
3187 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3188 if (!adapter->regs) {
3189 dev_err(&pdev->dev, "cannot map device registers\n");
3190 err = -ENOMEM;
3191 goto out_free_adapter;
3192 }
3193
3194 adapter->pdev = pdev;
3195 adapter->name = pci_name(pdev);
3196 adapter->msg_enable = dflt_msg_enable;
3197 adapter->mmio_len = mmio_len;
3198
3199 mutex_init(&adapter->mdio_lock);
3200 spin_lock_init(&adapter->work_lock);
3201 spin_lock_init(&adapter->stats_lock);
3202
3203 INIT_LIST_HEAD(&adapter->adapter_list);
3204 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3205 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3206 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3207
3208 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3209 struct net_device *netdev;
3210
3211 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3212 if (!netdev) {
3213 err = -ENOMEM;
3214 goto out_free_dev;
3215 }
3216
3217 SET_NETDEV_DEV(netdev, &pdev->dev);
3218
3219 adapter->port[i] = netdev;
3220 pi = netdev_priv(netdev);
3221 pi->adapter = adapter;
3222 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3223 pi->port_id = i;
3224 netif_carrier_off(netdev);
3225 netif_tx_stop_all_queues(netdev);
3226 netdev->irq = pdev->irq;
3227 netdev->mem_start = mmio_start;
3228 netdev->mem_end = mmio_start + mmio_len - 1;
3229 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3230 netdev->features |= NETIF_F_GRO;
3231 if (pci_using_dac)
3232 netdev->features |= NETIF_F_HIGHDMA;
3233
3234 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3235 netdev->netdev_ops = &cxgb_netdev_ops;
3236 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3237 }
3238
3239 pci_set_drvdata(pdev, adapter);
3240 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3241 err = -ENODEV;
3242 goto out_free_dev;
3243 }
3244
3245 /*
3246 * The card is now ready to go. If any errors occur during device
3247 * registration we do not fail the whole card but rather proceed only
3248 * with the ports we manage to register successfully. However we must
3249 * register at least one net device.
3250 */
3251 for_each_port(adapter, i) {
3252 err = register_netdev(adapter->port[i]);
3253 if (err)
3254 dev_warn(&pdev->dev,
3255 "cannot register net device %s, skipping\n",
3256 adapter->port[i]->name);
3257 else {
3258 /*
3259 * Change the name we use for messages to the name of
3260 * the first successfully registered interface.
3261 */
3262 if (!adapter->registered_device_map)
3263 adapter->name = adapter->port[i]->name;
3264
3265 __set_bit(i, &adapter->registered_device_map);
3266 }
3267 }
3268 if (!adapter->registered_device_map) {
3269 dev_err(&pdev->dev, "could not register any net devices\n");
3270 goto out_free_dev;
3271 }
3272
3273 /* Driver's ready. Reflect it on LEDs */
3274 t3_led_ready(adapter);
3275
3276 if (is_offload(adapter)) {
3277 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3278 cxgb3_adapter_ofld(adapter);
3279 }
3280
3281 /* See what interrupts we'll be using */
3282 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3283 adapter->flags |= USING_MSIX;
3284 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3285 adapter->flags |= USING_MSI;
3286
3287 set_nqsets(adapter);
3288
3289 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3290 &cxgb3_attr_group);
3291
3292 print_port_info(adapter, ai);
3293 return 0;
3294
3295 out_free_dev:
3296 iounmap(adapter->regs);
3297 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3298 if (adapter->port[i])
3299 free_netdev(adapter->port[i]);
3300
3301 out_free_adapter:
3302 kfree(adapter);
3303
3304 out_disable_device:
3305 pci_disable_device(pdev);
3306 out_release_regions:
3307 pci_release_regions(pdev);
3308 pci_set_drvdata(pdev, NULL);
3309 return err;
3310 }
3311
3312 static void __devexit remove_one(struct pci_dev *pdev)
3313 {
3314 struct adapter *adapter = pci_get_drvdata(pdev);
3315
3316 if (adapter) {
3317 int i;
3318
3319 t3_sge_stop(adapter);
3320 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3321 &cxgb3_attr_group);
3322
3323 if (is_offload(adapter)) {
3324 cxgb3_adapter_unofld(adapter);
3325 if (test_bit(OFFLOAD_DEVMAP_BIT,
3326 &adapter->open_device_map))
3327 offload_close(&adapter->tdev);
3328 }
3329
3330 for_each_port(adapter, i)
3331 if (test_bit(i, &adapter->registered_device_map))
3332 unregister_netdev(adapter->port[i]);
3333
3334 t3_stop_sge_timers(adapter);
3335 t3_free_sge_resources(adapter);
3336 cxgb_disable_msi(adapter);
3337
3338 for_each_port(adapter, i)
3339 if (adapter->port[i])
3340 free_netdev(adapter->port[i]);
3341
3342 iounmap(adapter->regs);
3343 if (adapter->nofail_skb)
3344 kfree_skb(adapter->nofail_skb);
3345 kfree(adapter);
3346 pci_release_regions(pdev);
3347 pci_disable_device(pdev);
3348 pci_set_drvdata(pdev, NULL);
3349 }
3350 }
3351
3352 static struct pci_driver driver = {
3353 .name = DRV_NAME,
3354 .id_table = cxgb3_pci_tbl,
3355 .probe = init_one,
3356 .remove = __devexit_p(remove_one),
3357 .err_handler = &t3_err_handler,
3358 };
3359
3360 static int __init cxgb3_init_module(void)
3361 {
3362 int ret;
3363
3364 cxgb3_offload_init();
3365
3366 ret = pci_register_driver(&driver);
3367 return ret;
3368 }
3369
3370 static void __exit cxgb3_cleanup_module(void)
3371 {
3372 pci_unregister_driver(&driver);
3373 if (cxgb3_wq)
3374 destroy_workqueue(cxgb3_wq);
3375 }
3376
3377 module_init(cxgb3_init_module);
3378 module_exit(cxgb3_cleanup_module);