2564312b3056c68bdbf50216c56882ed3c2da24b
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / chelsio / subr.c
1 /*****************************************************************************
2 * *
3 * File: subr.c *
4 * $Revision: 1.27 $ *
5 * $Date: 2005/06/22 01:08:36 $ *
6 * Description: *
7 * Various subroutines (intr,pio,etc.) used by Chelsio 10G Ethernet driver. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
39
40 #include "common.h"
41 #include "elmer0.h"
42 #include "regs.h"
43 #include "gmac.h"
44 #include "cphy.h"
45 #include "sge.h"
46 #include "tp.h"
47 #include "espi.h"
48
49 /**
50 * t1_wait_op_done - wait until an operation is completed
51 * @adapter: the adapter performing the operation
52 * @reg: the register to check for completion
53 * @mask: a single-bit field within @reg that indicates completion
54 * @polarity: the value of the field when the operation is completed
55 * @attempts: number of check iterations
56 * @delay: delay in usecs between iterations
57 *
58 * Wait until an operation is completed by checking a bit in a register
59 * up to @attempts times. Returns %0 if the operation completes and %1
60 * otherwise.
61 */
62 static int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity,
63 int attempts, int delay)
64 {
65 while (1) {
66 u32 val = readl(adapter->regs + reg) & mask;
67
68 if (!!val == polarity)
69 return 0;
70 if (--attempts == 0)
71 return 1;
72 if (delay)
73 udelay(delay);
74 }
75 }
76
77 #define TPI_ATTEMPTS 50
78
79 /*
80 * Write a register over the TPI interface (unlocked and locked versions).
81 */
82 int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
83 {
84 int tpi_busy;
85
86 writel(addr, adapter->regs + A_TPI_ADDR);
87 writel(value, adapter->regs + A_TPI_WR_DATA);
88 writel(F_TPIWR, adapter->regs + A_TPI_CSR);
89
90 tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
91 TPI_ATTEMPTS, 3);
92 if (tpi_busy)
93 CH_ALERT("%s: TPI write to 0x%x failed\n",
94 adapter->name, addr);
95 return tpi_busy;
96 }
97
98 int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
99 {
100 int ret;
101
102 spin_lock(&adapter->tpi_lock);
103 ret = __t1_tpi_write(adapter, addr, value);
104 spin_unlock(&adapter->tpi_lock);
105 return ret;
106 }
107
108 /*
109 * Read a register over the TPI interface (unlocked and locked versions).
110 */
111 int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
112 {
113 int tpi_busy;
114
115 writel(addr, adapter->regs + A_TPI_ADDR);
116 writel(0, adapter->regs + A_TPI_CSR);
117
118 tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
119 TPI_ATTEMPTS, 3);
120 if (tpi_busy)
121 CH_ALERT("%s: TPI read from 0x%x failed\n",
122 adapter->name, addr);
123 else
124 *valp = readl(adapter->regs + A_TPI_RD_DATA);
125 return tpi_busy;
126 }
127
128 int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
129 {
130 int ret;
131
132 spin_lock(&adapter->tpi_lock);
133 ret = __t1_tpi_read(adapter, addr, valp);
134 spin_unlock(&adapter->tpi_lock);
135 return ret;
136 }
137
138 /*
139 * Set a TPI parameter.
140 */
141 static void t1_tpi_par(adapter_t *adapter, u32 value)
142 {
143 writel(V_TPIPAR(value), adapter->regs + A_TPI_PAR);
144 }
145
146 /*
147 * Called when a port's link settings change to propagate the new values to the
148 * associated PHY and MAC. After performing the common tasks it invokes an
149 * OS-specific handler.
150 */
151 void t1_link_changed(adapter_t *adapter, int port_id)
152 {
153 int link_ok, speed, duplex, fc;
154 struct cphy *phy = adapter->port[port_id].phy;
155 struct link_config *lc = &adapter->port[port_id].link_config;
156
157 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
158
159 lc->speed = speed < 0 ? SPEED_INVALID : speed;
160 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
161 if (!(lc->requested_fc & PAUSE_AUTONEG))
162 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
163
164 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
165 /* Set MAC speed, duplex, and flow control to match PHY. */
166 struct cmac *mac = adapter->port[port_id].mac;
167
168 mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc);
169 lc->fc = (unsigned char)fc;
170 }
171 t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc);
172 }
173
174 static int t1_pci_intr_handler(adapter_t *adapter)
175 {
176 u32 pcix_cause;
177
178 pci_read_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, &pcix_cause);
179
180 if (pcix_cause) {
181 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE,
182 pcix_cause);
183 t1_fatal_err(adapter); /* PCI errors are fatal */
184 }
185 return 0;
186 }
187
188 #ifdef CONFIG_CHELSIO_T1_COUGAR
189 #include "cspi.h"
190 #endif
191 #ifdef CONFIG_CHELSIO_T1_1G
192 #include "fpga_defs.h"
193
194 /*
195 * PHY interrupt handler for FPGA boards.
196 */
197 static int fpga_phy_intr_handler(adapter_t *adapter)
198 {
199 int p;
200 u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
201
202 for_each_port(adapter, p)
203 if (cause & (1 << p)) {
204 struct cphy *phy = adapter->port[p].phy;
205 int phy_cause = phy->ops->interrupt_handler(phy);
206
207 if (phy_cause & cphy_cause_link_change)
208 t1_link_changed(adapter, p);
209 }
210 writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
211 return 0;
212 }
213
214 /*
215 * Slow path interrupt handler for FPGAs.
216 */
217 static int fpga_slow_intr(adapter_t *adapter)
218 {
219 u32 cause = readl(adapter->regs + A_PL_CAUSE);
220
221 cause &= ~F_PL_INTR_SGE_DATA;
222 if (cause & F_PL_INTR_SGE_ERR)
223 t1_sge_intr_error_handler(adapter->sge);
224
225 if (cause & FPGA_PCIX_INTERRUPT_GMAC)
226 fpga_phy_intr_handler(adapter);
227
228 if (cause & FPGA_PCIX_INTERRUPT_TP) {
229 /*
230 * FPGA doesn't support MC4 interrupts and it requires
231 * this odd layer of indirection for MC5.
232 */
233 u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
234
235 /* Clear TP interrupt */
236 writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
237 }
238 if (cause & FPGA_PCIX_INTERRUPT_PCIX)
239 t1_pci_intr_handler(adapter);
240
241 /* Clear the interrupts just processed. */
242 if (cause)
243 writel(cause, adapter->regs + A_PL_CAUSE);
244
245 return cause != 0;
246 }
247 #endif
248
249 /*
250 * Wait until Elmer's MI1 interface is ready for new operations.
251 */
252 static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg)
253 {
254 int attempts = 100, busy;
255
256 do {
257 u32 val;
258
259 __t1_tpi_read(adapter, mi1_reg, &val);
260 busy = val & F_MI1_OP_BUSY;
261 if (busy)
262 udelay(10);
263 } while (busy && --attempts);
264 if (busy)
265 CH_ALERT("%s: MDIO operation timed out\n", adapter->name);
266 return busy;
267 }
268
269 /*
270 * MI1 MDIO initialization.
271 */
272 static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi)
273 {
274 u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1;
275 u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) |
276 V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv);
277
278 if (!(bi->caps & SUPPORTED_10000baseT_Full))
279 val |= V_MI1_SOF(1);
280 t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val);
281 }
282
283 #if defined(CONFIG_CHELSIO_T1_1G) || defined(CONFIG_CHELSIO_T1_COUGAR)
284 /*
285 * Elmer MI1 MDIO read/write operations.
286 */
287 static int mi1_mdio_read(struct net_device *dev, int phy_addr, int mmd_addr,
288 u16 reg_addr)
289 {
290 struct adapter *adapter = dev->ml_priv;
291 u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
292 unsigned int val;
293
294 spin_lock(&adapter->tpi_lock);
295 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
296 __t1_tpi_write(adapter,
297 A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ);
298 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
299 __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
300 spin_unlock(&adapter->tpi_lock);
301 return val;
302 }
303
304 static int mi1_mdio_write(struct net_device *dev, int phy_addr, int mmd_addr,
305 u16 reg_addr, u16 val)
306 {
307 struct adapter *adapter = dev->ml_priv;
308 u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
309
310 spin_lock(&adapter->tpi_lock);
311 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
312 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
313 __t1_tpi_write(adapter,
314 A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE);
315 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
316 spin_unlock(&adapter->tpi_lock);
317 return 0;
318 }
319
320 #if defined(CONFIG_CHELSIO_T1_1G) || defined(CONFIG_CHELSIO_T1_COUGAR)
321 static const struct mdio_ops mi1_mdio_ops = {
322 .init = mi1_mdio_init,
323 .read = mi1_mdio_read,
324 .write = mi1_mdio_write,
325 .mode_support = MDIO_SUPPORTS_C22
326 };
327 #endif
328
329 #endif
330
331 static int mi1_mdio_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
332 u16 reg_addr)
333 {
334 struct adapter *adapter = dev->ml_priv;
335 u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
336 unsigned int val;
337
338 spin_lock(&adapter->tpi_lock);
339
340 /* Write the address we want. */
341 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
342 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
343 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
344 MI1_OP_INDIRECT_ADDRESS);
345 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
346
347 /* Write the operation we want. */
348 __t1_tpi_write(adapter,
349 A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ);
350 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
351
352 /* Read the data. */
353 __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
354 spin_unlock(&adapter->tpi_lock);
355 return val;
356 }
357
358 static int mi1_mdio_ext_write(struct net_device *dev, int phy_addr,
359 int mmd_addr, u16 reg_addr, u16 val)
360 {
361 struct adapter *adapter = dev->ml_priv;
362 u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
363
364 spin_lock(&adapter->tpi_lock);
365
366 /* Write the address we want. */
367 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
368 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
369 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
370 MI1_OP_INDIRECT_ADDRESS);
371 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
372
373 /* Write the data. */
374 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
375 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE);
376 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
377 spin_unlock(&adapter->tpi_lock);
378 return 0;
379 }
380
381 static const struct mdio_ops mi1_mdio_ext_ops = {
382 .init = mi1_mdio_init,
383 .read = mi1_mdio_ext_read,
384 .write = mi1_mdio_ext_write,
385 .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
386 };
387
388 enum {
389 CH_BRD_T110_1CU,
390 CH_BRD_N110_1F,
391 CH_BRD_N210_1F,
392 CH_BRD_T210_1F,
393 CH_BRD_T210_1CU,
394 CH_BRD_N204_4CU,
395 };
396
397 static const struct board_info t1_board[] = {
398 {
399 .board = CHBT_BOARD_CHT110,
400 .port_number = 1,
401 .caps = SUPPORTED_10000baseT_Full,
402 .chip_term = CHBT_TERM_T1,
403 .chip_mac = CHBT_MAC_PM3393,
404 .chip_phy = CHBT_PHY_MY3126,
405 .clock_core = 125000000,
406 .clock_mc3 = 150000000,
407 .clock_mc4 = 125000000,
408 .espi_nports = 1,
409 .clock_elmer0 = 44,
410 .mdio_mdien = 1,
411 .mdio_mdiinv = 1,
412 .mdio_mdc = 1,
413 .mdio_phybaseaddr = 1,
414 .gmac = &t1_pm3393_ops,
415 .gphy = &t1_my3126_ops,
416 .mdio_ops = &mi1_mdio_ext_ops,
417 .desc = "Chelsio T110 1x10GBase-CX4 TOE",
418 },
419
420 {
421 .board = CHBT_BOARD_N110,
422 .port_number = 1,
423 .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
424 .chip_term = CHBT_TERM_T1,
425 .chip_mac = CHBT_MAC_PM3393,
426 .chip_phy = CHBT_PHY_88X2010,
427 .clock_core = 125000000,
428 .espi_nports = 1,
429 .clock_elmer0 = 44,
430 .mdio_mdien = 0,
431 .mdio_mdiinv = 0,
432 .mdio_mdc = 1,
433 .mdio_phybaseaddr = 0,
434 .gmac = &t1_pm3393_ops,
435 .gphy = &t1_mv88x201x_ops,
436 .mdio_ops = &mi1_mdio_ext_ops,
437 .desc = "Chelsio N110 1x10GBaseX NIC",
438 },
439
440 {
441 .board = CHBT_BOARD_N210,
442 .port_number = 1,
443 .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
444 .chip_term = CHBT_TERM_T2,
445 .chip_mac = CHBT_MAC_PM3393,
446 .chip_phy = CHBT_PHY_88X2010,
447 .clock_core = 125000000,
448 .espi_nports = 1,
449 .clock_elmer0 = 44,
450 .mdio_mdien = 0,
451 .mdio_mdiinv = 0,
452 .mdio_mdc = 1,
453 .mdio_phybaseaddr = 0,
454 .gmac = &t1_pm3393_ops,
455 .gphy = &t1_mv88x201x_ops,
456 .mdio_ops = &mi1_mdio_ext_ops,
457 .desc = "Chelsio N210 1x10GBaseX NIC",
458 },
459
460 {
461 .board = CHBT_BOARD_CHT210,
462 .port_number = 1,
463 .caps = SUPPORTED_10000baseT_Full,
464 .chip_term = CHBT_TERM_T2,
465 .chip_mac = CHBT_MAC_PM3393,
466 .chip_phy = CHBT_PHY_88X2010,
467 .clock_core = 125000000,
468 .clock_mc3 = 133000000,
469 .clock_mc4 = 125000000,
470 .espi_nports = 1,
471 .clock_elmer0 = 44,
472 .mdio_mdien = 0,
473 .mdio_mdiinv = 0,
474 .mdio_mdc = 1,
475 .mdio_phybaseaddr = 0,
476 .gmac = &t1_pm3393_ops,
477 .gphy = &t1_mv88x201x_ops,
478 .mdio_ops = &mi1_mdio_ext_ops,
479 .desc = "Chelsio T210 1x10GBaseX TOE",
480 },
481
482 {
483 .board = CHBT_BOARD_CHT210,
484 .port_number = 1,
485 .caps = SUPPORTED_10000baseT_Full,
486 .chip_term = CHBT_TERM_T2,
487 .chip_mac = CHBT_MAC_PM3393,
488 .chip_phy = CHBT_PHY_MY3126,
489 .clock_core = 125000000,
490 .clock_mc3 = 133000000,
491 .clock_mc4 = 125000000,
492 .espi_nports = 1,
493 .clock_elmer0 = 44,
494 .mdio_mdien = 1,
495 .mdio_mdiinv = 1,
496 .mdio_mdc = 1,
497 .mdio_phybaseaddr = 1,
498 .gmac = &t1_pm3393_ops,
499 .gphy = &t1_my3126_ops,
500 .mdio_ops = &mi1_mdio_ext_ops,
501 .desc = "Chelsio T210 1x10GBase-CX4 TOE",
502 },
503
504 #ifdef CONFIG_CHELSIO_T1_1G
505 {
506 .board = CHBT_BOARD_CHN204,
507 .port_number = 4,
508 .caps = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full
509 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full
510 | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg |
511 SUPPORTED_PAUSE | SUPPORTED_TP,
512 .chip_term = CHBT_TERM_T2,
513 .chip_mac = CHBT_MAC_VSC7321,
514 .chip_phy = CHBT_PHY_88E1111,
515 .clock_core = 100000000,
516 .espi_nports = 4,
517 .clock_elmer0 = 44,
518 .mdio_mdien = 0,
519 .mdio_mdiinv = 0,
520 .mdio_mdc = 0,
521 .mdio_phybaseaddr = 4,
522 .gmac = &t1_vsc7326_ops,
523 .gphy = &t1_mv88e1xxx_ops,
524 .mdio_ops = &mi1_mdio_ops,
525 .desc = "Chelsio N204 4x100/1000BaseT NIC",
526 },
527 #endif
528
529 };
530
531 struct pci_device_id t1_pci_tbl[] = {
532 CH_DEVICE(8, 0, CH_BRD_T110_1CU),
533 CH_DEVICE(8, 1, CH_BRD_T110_1CU),
534 CH_DEVICE(7, 0, CH_BRD_N110_1F),
535 CH_DEVICE(10, 1, CH_BRD_N210_1F),
536 CH_DEVICE(11, 1, CH_BRD_T210_1F),
537 CH_DEVICE(14, 1, CH_BRD_T210_1CU),
538 CH_DEVICE(16, 1, CH_BRD_N204_4CU),
539 { 0 }
540 };
541
542 MODULE_DEVICE_TABLE(pci, t1_pci_tbl);
543
544 /*
545 * Return the board_info structure with a given index. Out-of-range indices
546 * return NULL.
547 */
548 const struct board_info *t1_get_board_info(unsigned int board_id)
549 {
550 return board_id < ARRAY_SIZE(t1_board) ? &t1_board[board_id] : NULL;
551 }
552
553 struct chelsio_vpd_t {
554 u32 format_version;
555 u8 serial_number[16];
556 u8 mac_base_address[6];
557 u8 pad[2]; /* make multiple-of-4 size requirement explicit */
558 };
559
560 #define EEPROMSIZE (8 * 1024)
561 #define EEPROM_MAX_POLL 4
562
563 /*
564 * Read SEEPROM. A zero is written to the flag register when the addres is
565 * written to the Control register. The hardware device will set the flag to a
566 * one when 4B have been transferred to the Data register.
567 */
568 int t1_seeprom_read(adapter_t *adapter, u32 addr, __le32 *data)
569 {
570 int i = EEPROM_MAX_POLL;
571 u16 val;
572 u32 v;
573
574 if (addr >= EEPROMSIZE || (addr & 3))
575 return -EINVAL;
576
577 pci_write_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, (u16)addr);
578 do {
579 udelay(50);
580 pci_read_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, &val);
581 } while (!(val & F_VPD_OP_FLAG) && --i);
582
583 if (!(val & F_VPD_OP_FLAG)) {
584 CH_ERR("%s: reading EEPROM address 0x%x failed\n",
585 adapter->name, addr);
586 return -EIO;
587 }
588 pci_read_config_dword(adapter->pdev, A_PCICFG_VPD_DATA, &v);
589 *data = cpu_to_le32(v);
590 return 0;
591 }
592
593 static int t1_eeprom_vpd_get(adapter_t *adapter, struct chelsio_vpd_t *vpd)
594 {
595 int addr, ret = 0;
596
597 for (addr = 0; !ret && addr < sizeof(*vpd); addr += sizeof(u32))
598 ret = t1_seeprom_read(adapter, addr,
599 (__le32 *)((u8 *)vpd + addr));
600
601 return ret;
602 }
603
604 /*
605 * Read a port's MAC address from the VPD ROM.
606 */
607 static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[])
608 {
609 struct chelsio_vpd_t vpd;
610
611 if (t1_eeprom_vpd_get(adapter, &vpd))
612 return 1;
613 memcpy(mac_addr, vpd.mac_base_address, 5);
614 mac_addr[5] = vpd.mac_base_address[5] + index;
615 return 0;
616 }
617
618 /*
619 * Set up the MAC/PHY according to the requested link settings.
620 *
621 * If the PHY can auto-negotiate first decide what to advertise, then
622 * enable/disable auto-negotiation as desired and reset.
623 *
624 * If the PHY does not auto-negotiate we just reset it.
625 *
626 * If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
627 * otherwise do it later based on the outcome of auto-negotiation.
628 */
629 int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
630 {
631 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
632
633 if (lc->supported & SUPPORTED_Autoneg) {
634 lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE);
635 if (fc) {
636 if (fc == ((PAUSE_RX | PAUSE_TX) &
637 (mac->adapter->params.nports < 2)))
638 lc->advertising |= ADVERTISED_PAUSE;
639 else {
640 lc->advertising |= ADVERTISED_ASYM_PAUSE;
641 if (fc == PAUSE_RX)
642 lc->advertising |= ADVERTISED_PAUSE;
643 }
644 }
645 phy->ops->advertise(phy, lc->advertising);
646
647 if (lc->autoneg == AUTONEG_DISABLE) {
648 lc->speed = lc->requested_speed;
649 lc->duplex = lc->requested_duplex;
650 lc->fc = (unsigned char)fc;
651 mac->ops->set_speed_duplex_fc(mac, lc->speed,
652 lc->duplex, fc);
653 /* Also disables autoneg */
654 phy->state = PHY_AUTONEG_RDY;
655 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
656 phy->ops->reset(phy, 0);
657 } else {
658 phy->state = PHY_AUTONEG_EN;
659 phy->ops->autoneg_enable(phy); /* also resets PHY */
660 }
661 } else {
662 phy->state = PHY_AUTONEG_RDY;
663 mac->ops->set_speed_duplex_fc(mac, -1, -1, fc);
664 lc->fc = (unsigned char)fc;
665 phy->ops->reset(phy, 0);
666 }
667 return 0;
668 }
669
670 /*
671 * External interrupt handler for boards using elmer0.
672 */
673 int t1_elmer0_ext_intr_handler(adapter_t *adapter)
674 {
675 struct cphy *phy;
676 int phy_cause;
677 u32 cause;
678
679 t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause);
680
681 switch (board_info(adapter)->board) {
682 #ifdef CONFIG_CHELSIO_T1_1G
683 case CHBT_BOARD_CHT204:
684 case CHBT_BOARD_CHT204E:
685 case CHBT_BOARD_CHN204:
686 case CHBT_BOARD_CHT204V: {
687 int i, port_bit;
688 for_each_port(adapter, i) {
689 port_bit = i + 1;
690 if (!(cause & (1 << port_bit)))
691 continue;
692
693 phy = adapter->port[i].phy;
694 phy_cause = phy->ops->interrupt_handler(phy);
695 if (phy_cause & cphy_cause_link_change)
696 t1_link_changed(adapter, i);
697 }
698 break;
699 }
700 case CHBT_BOARD_CHT101:
701 if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */
702 phy = adapter->port[0].phy;
703 phy_cause = phy->ops->interrupt_handler(phy);
704 if (phy_cause & cphy_cause_link_change)
705 t1_link_changed(adapter, 0);
706 }
707 break;
708 case CHBT_BOARD_7500: {
709 int p;
710 /*
711 * Elmer0's interrupt cause isn't useful here because there is
712 * only one bit that can be set for all 4 ports. This means
713 * we are forced to check every PHY's interrupt status
714 * register to see who initiated the interrupt.
715 */
716 for_each_port(adapter, p) {
717 phy = adapter->port[p].phy;
718 phy_cause = phy->ops->interrupt_handler(phy);
719 if (phy_cause & cphy_cause_link_change)
720 t1_link_changed(adapter, p);
721 }
722 break;
723 }
724 #endif
725 case CHBT_BOARD_CHT210:
726 case CHBT_BOARD_N210:
727 case CHBT_BOARD_N110:
728 if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */
729 phy = adapter->port[0].phy;
730 phy_cause = phy->ops->interrupt_handler(phy);
731 if (phy_cause & cphy_cause_link_change)
732 t1_link_changed(adapter, 0);
733 }
734 break;
735 case CHBT_BOARD_8000:
736 case CHBT_BOARD_CHT110:
737 CH_DBG(adapter, INTR, "External interrupt cause 0x%x\n",
738 cause);
739 if (cause & ELMER0_GP_BIT1) { /* PMC3393 INTB */
740 struct cmac *mac = adapter->port[0].mac;
741
742 mac->ops->interrupt_handler(mac);
743 }
744 if (cause & ELMER0_GP_BIT5) { /* XPAK MOD_DETECT */
745 u32 mod_detect;
746
747 t1_tpi_read(adapter,
748 A_ELMER0_GPI_STAT, &mod_detect);
749 CH_MSG(adapter, INFO, LINK, "XPAK %s\n",
750 mod_detect ? "removed" : "inserted");
751 }
752 break;
753 #ifdef CONFIG_CHELSIO_T1_COUGAR
754 case CHBT_BOARD_COUGAR:
755 if (adapter->params.nports == 1) {
756 if (cause & ELMER0_GP_BIT1) { /* Vitesse MAC */
757 struct cmac *mac = adapter->port[0].mac;
758 mac->ops->interrupt_handler(mac);
759 }
760 if (cause & ELMER0_GP_BIT5) { /* XPAK MOD_DETECT */
761 }
762 } else {
763 int i, port_bit;
764
765 for_each_port(adapter, i) {
766 port_bit = i ? i + 1 : 0;
767 if (!(cause & (1 << port_bit)))
768 continue;
769
770 phy = adapter->port[i].phy;
771 phy_cause = phy->ops->interrupt_handler(phy);
772 if (phy_cause & cphy_cause_link_change)
773 t1_link_changed(adapter, i);
774 }
775 }
776 break;
777 #endif
778 }
779 t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause);
780 return 0;
781 }
782
783 /* Enables all interrupts. */
784 void t1_interrupts_enable(adapter_t *adapter)
785 {
786 unsigned int i;
787
788 adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP;
789
790 t1_sge_intr_enable(adapter->sge);
791 t1_tp_intr_enable(adapter->tp);
792 if (adapter->espi) {
793 adapter->slow_intr_mask |= F_PL_INTR_ESPI;
794 t1_espi_intr_enable(adapter->espi);
795 }
796
797 /* Enable MAC/PHY interrupts for each port. */
798 for_each_port(adapter, i) {
799 adapter->port[i].mac->ops->interrupt_enable(adapter->port[i].mac);
800 adapter->port[i].phy->ops->interrupt_enable(adapter->port[i].phy);
801 }
802
803 /* Enable PCIX & external chip interrupts on ASIC boards. */
804 if (t1_is_asic(adapter)) {
805 u32 pl_intr = readl(adapter->regs + A_PL_ENABLE);
806
807 /* PCI-X interrupts */
808 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE,
809 0xffffffff);
810
811 adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
812 pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
813 writel(pl_intr, adapter->regs + A_PL_ENABLE);
814 }
815 }
816
817 /* Disables all interrupts. */
818 void t1_interrupts_disable(adapter_t* adapter)
819 {
820 unsigned int i;
821
822 t1_sge_intr_disable(adapter->sge);
823 t1_tp_intr_disable(adapter->tp);
824 if (adapter->espi)
825 t1_espi_intr_disable(adapter->espi);
826
827 /* Disable MAC/PHY interrupts for each port. */
828 for_each_port(adapter, i) {
829 adapter->port[i].mac->ops->interrupt_disable(adapter->port[i].mac);
830 adapter->port[i].phy->ops->interrupt_disable(adapter->port[i].phy);
831 }
832
833 /* Disable PCIX & external chip interrupts. */
834 if (t1_is_asic(adapter))
835 writel(0, adapter->regs + A_PL_ENABLE);
836
837 /* PCI-X interrupts */
838 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0);
839
840 adapter->slow_intr_mask = 0;
841 }
842
843 /* Clears all interrupts */
844 void t1_interrupts_clear(adapter_t* adapter)
845 {
846 unsigned int i;
847
848 t1_sge_intr_clear(adapter->sge);
849 t1_tp_intr_clear(adapter->tp);
850 if (adapter->espi)
851 t1_espi_intr_clear(adapter->espi);
852
853 /* Clear MAC/PHY interrupts for each port. */
854 for_each_port(adapter, i) {
855 adapter->port[i].mac->ops->interrupt_clear(adapter->port[i].mac);
856 adapter->port[i].phy->ops->interrupt_clear(adapter->port[i].phy);
857 }
858
859 /* Enable interrupts for external devices. */
860 if (t1_is_asic(adapter)) {
861 u32 pl_intr = readl(adapter->regs + A_PL_CAUSE);
862
863 writel(pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX,
864 adapter->regs + A_PL_CAUSE);
865 }
866
867 /* PCI-X interrupts */
868 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 0xffffffff);
869 }
870
871 /*
872 * Slow path interrupt handler for ASICs.
873 */
874 static int asic_slow_intr(adapter_t *adapter)
875 {
876 u32 cause = readl(adapter->regs + A_PL_CAUSE);
877
878 cause &= adapter->slow_intr_mask;
879 if (!cause)
880 return 0;
881 if (cause & F_PL_INTR_SGE_ERR)
882 t1_sge_intr_error_handler(adapter->sge);
883 if (cause & F_PL_INTR_TP)
884 t1_tp_intr_handler(adapter->tp);
885 if (cause & F_PL_INTR_ESPI)
886 t1_espi_intr_handler(adapter->espi);
887 if (cause & F_PL_INTR_PCIX)
888 t1_pci_intr_handler(adapter);
889 if (cause & F_PL_INTR_EXT)
890 t1_elmer0_ext_intr(adapter);
891
892 /* Clear the interrupts just processed. */
893 writel(cause, adapter->regs + A_PL_CAUSE);
894 readl(adapter->regs + A_PL_CAUSE); /* flush writes */
895 return 1;
896 }
897
898 int t1_slow_intr_handler(adapter_t *adapter)
899 {
900 #ifdef CONFIG_CHELSIO_T1_1G
901 if (!t1_is_asic(adapter))
902 return fpga_slow_intr(adapter);
903 #endif
904 return asic_slow_intr(adapter);
905 }
906
907 /* Power sequencing is a work-around for Intel's XPAKs. */
908 static void power_sequence_xpak(adapter_t* adapter)
909 {
910 u32 mod_detect;
911 u32 gpo;
912
913 /* Check for XPAK */
914 t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect);
915 if (!(ELMER0_GP_BIT5 & mod_detect)) {
916 /* XPAK is present */
917 t1_tpi_read(adapter, A_ELMER0_GPO, &gpo);
918 gpo |= ELMER0_GP_BIT18;
919 t1_tpi_write(adapter, A_ELMER0_GPO, gpo);
920 }
921 }
922
923 int __devinit t1_get_board_rev(adapter_t *adapter, const struct board_info *bi,
924 struct adapter_params *p)
925 {
926 p->chip_version = bi->chip_term;
927 p->is_asic = (p->chip_version != CHBT_TERM_FPGA);
928 if (p->chip_version == CHBT_TERM_T1 ||
929 p->chip_version == CHBT_TERM_T2 ||
930 p->chip_version == CHBT_TERM_FPGA) {
931 u32 val = readl(adapter->regs + A_TP_PC_CONFIG);
932
933 val = G_TP_PC_REV(val);
934 if (val == 2)
935 p->chip_revision = TERM_T1B;
936 else if (val == 3)
937 p->chip_revision = TERM_T2;
938 else
939 return -1;
940 } else
941 return -1;
942 return 0;
943 }
944
945 /*
946 * Enable board components other than the Chelsio chip, such as external MAC
947 * and PHY.
948 */
949 static int board_init(adapter_t *adapter, const struct board_info *bi)
950 {
951 switch (bi->board) {
952 case CHBT_BOARD_8000:
953 case CHBT_BOARD_N110:
954 case CHBT_BOARD_N210:
955 case CHBT_BOARD_CHT210:
956 case CHBT_BOARD_COUGAR:
957 t1_tpi_par(adapter, 0xf);
958 t1_tpi_write(adapter, A_ELMER0_GPO, 0x800);
959 break;
960 case CHBT_BOARD_CHT110:
961 t1_tpi_par(adapter, 0xf);
962 t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800);
963
964 /* TBD XXX Might not need. This fixes a problem
965 * described in the Intel SR XPAK errata.
966 */
967 power_sequence_xpak(adapter);
968 break;
969 #ifdef CONFIG_CHELSIO_T1_1G
970 case CHBT_BOARD_CHT204E:
971 /* add config space write here */
972 case CHBT_BOARD_CHT204:
973 case CHBT_BOARD_CHT204V:
974 case CHBT_BOARD_CHN204:
975 t1_tpi_par(adapter, 0xf);
976 t1_tpi_write(adapter, A_ELMER0_GPO, 0x804);
977 break;
978 case CHBT_BOARD_CHT101:
979 case CHBT_BOARD_7500:
980 t1_tpi_par(adapter, 0xf);
981 t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804);
982 break;
983 #endif
984 }
985 return 0;
986 }
987
988 /*
989 * Initialize and configure the Terminator HW modules. Note that external
990 * MAC and PHYs are initialized separately.
991 */
992 int t1_init_hw_modules(adapter_t *adapter)
993 {
994 int err = -EIO;
995 const struct board_info *bi = board_info(adapter);
996
997 if (!bi->clock_mc4) {
998 u32 val = readl(adapter->regs + A_MC4_CFG);
999
1000 writel(val | F_READY | F_MC4_SLOW, adapter->regs + A_MC4_CFG);
1001 writel(F_M_BUS_ENABLE | F_TCAM_RESET,
1002 adapter->regs + A_MC5_CONFIG);
1003 }
1004
1005 #ifdef CONFIG_CHELSIO_T1_COUGAR
1006 if (adapter->cspi && t1_cspi_init(adapter->cspi))
1007 goto out_err;
1008 #endif
1009 if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac,
1010 bi->espi_nports))
1011 goto out_err;
1012
1013 if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core))
1014 goto out_err;
1015
1016 err = t1_sge_configure(adapter->sge, &adapter->params.sge);
1017 if (err)
1018 goto out_err;
1019
1020 err = 0;
1021 out_err:
1022 return err;
1023 }
1024
1025 /*
1026 * Determine a card's PCI mode.
1027 */
1028 static void __devinit get_pci_mode(adapter_t *adapter, struct chelsio_pci_params *p)
1029 {
1030 static const unsigned short speed_map[] = { 33, 66, 100, 133 };
1031 u32 pci_mode;
1032
1033 pci_read_config_dword(adapter->pdev, A_PCICFG_MODE, &pci_mode);
1034 p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)];
1035 p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32;
1036 p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0;
1037 }
1038
1039 /*
1040 * Release the structures holding the SW per-Terminator-HW-module state.
1041 */
1042 void t1_free_sw_modules(adapter_t *adapter)
1043 {
1044 unsigned int i;
1045
1046 for_each_port(adapter, i) {
1047 struct cmac *mac = adapter->port[i].mac;
1048 struct cphy *phy = adapter->port[i].phy;
1049
1050 if (mac)
1051 mac->ops->destroy(mac);
1052 if (phy)
1053 phy->ops->destroy(phy);
1054 }
1055
1056 if (adapter->sge)
1057 t1_sge_destroy(adapter->sge);
1058 if (adapter->tp)
1059 t1_tp_destroy(adapter->tp);
1060 if (adapter->espi)
1061 t1_espi_destroy(adapter->espi);
1062 #ifdef CONFIG_CHELSIO_T1_COUGAR
1063 if (adapter->cspi)
1064 t1_cspi_destroy(adapter->cspi);
1065 #endif
1066 }
1067
1068 static void __devinit init_link_config(struct link_config *lc,
1069 const struct board_info *bi)
1070 {
1071 lc->supported = bi->caps;
1072 lc->requested_speed = lc->speed = SPEED_INVALID;
1073 lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
1074 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
1075 if (lc->supported & SUPPORTED_Autoneg) {
1076 lc->advertising = lc->supported;
1077 lc->autoneg = AUTONEG_ENABLE;
1078 lc->requested_fc |= PAUSE_AUTONEG;
1079 } else {
1080 lc->advertising = 0;
1081 lc->autoneg = AUTONEG_DISABLE;
1082 }
1083 }
1084
1085 #ifdef CONFIG_CHELSIO_T1_COUGAR
1086 if (bi->clock_cspi && !(adapter->cspi = t1_cspi_create(adapter))) {
1087 CH_ERR("%s: CSPI initialization failed\n",
1088 adapter->name);
1089 goto error;
1090 }
1091 #endif
1092
1093 /*
1094 * Allocate and initialize the data structures that hold the SW state of
1095 * the Terminator HW modules.
1096 */
1097 int __devinit t1_init_sw_modules(adapter_t *adapter,
1098 const struct board_info *bi)
1099 {
1100 unsigned int i;
1101
1102 adapter->params.brd_info = bi;
1103 adapter->params.nports = bi->port_number;
1104 adapter->params.stats_update_period = bi->gmac->stats_update_period;
1105
1106 adapter->sge = t1_sge_create(adapter, &adapter->params.sge);
1107 if (!adapter->sge) {
1108 CH_ERR("%s: SGE initialization failed\n",
1109 adapter->name);
1110 goto error;
1111 }
1112
1113 if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) {
1114 CH_ERR("%s: ESPI initialization failed\n",
1115 adapter->name);
1116 goto error;
1117 }
1118
1119 adapter->tp = t1_tp_create(adapter, &adapter->params.tp);
1120 if (!adapter->tp) {
1121 CH_ERR("%s: TP initialization failed\n",
1122 adapter->name);
1123 goto error;
1124 }
1125
1126 board_init(adapter, bi);
1127 bi->mdio_ops->init(adapter, bi);
1128 if (bi->gphy->reset)
1129 bi->gphy->reset(adapter);
1130 if (bi->gmac->reset)
1131 bi->gmac->reset(adapter);
1132
1133 for_each_port(adapter, i) {
1134 u8 hw_addr[6];
1135 struct cmac *mac;
1136 int phy_addr = bi->mdio_phybaseaddr + i;
1137
1138 adapter->port[i].phy = bi->gphy->create(adapter, phy_addr,
1139 bi->mdio_ops);
1140 if (!adapter->port[i].phy) {
1141 CH_ERR("%s: PHY %d initialization failed\n",
1142 adapter->name, i);
1143 goto error;
1144 }
1145 adapter->port[i].phy->mdio.dev = adapter->port[i].dev;
1146
1147 adapter->port[i].mac = mac = bi->gmac->create(adapter, i);
1148 if (!mac) {
1149 CH_ERR("%s: MAC %d initialization failed\n",
1150 adapter->name, i);
1151 goto error;
1152 }
1153
1154 /*
1155 * Get the port's MAC addresses either from the EEPROM if one
1156 * exists or the one hardcoded in the MAC.
1157 */
1158 if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY)
1159 mac->ops->macaddress_get(mac, hw_addr);
1160 else if (vpd_macaddress_get(adapter, i, hw_addr)) {
1161 CH_ERR("%s: could not read MAC address from VPD ROM\n",
1162 adapter->port[i].dev->name);
1163 goto error;
1164 }
1165 memcpy(adapter->port[i].dev->dev_addr, hw_addr, ETH_ALEN);
1166 init_link_config(&adapter->port[i].link_config, bi);
1167 }
1168
1169 get_pci_mode(adapter, &adapter->params.pci);
1170 t1_interrupts_clear(adapter);
1171 return 0;
1172
1173 error:
1174 t1_free_sw_modules(adapter);
1175 return -1;
1176 }