Merge branch 'drm-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2010 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
31 #include <asm/io.h>
32 #include <asm/irq.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if_vlan.h>
40 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
41 #define BCM_VLAN 1
42 #endif
43 #include <net/ip.h>
44 #include <net/tcp.h>
45 #include <net/checksum.h>
46 #include <linux/workqueue.h>
47 #include <linux/crc32.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/firmware.h>
51 #include <linux/log2.h>
52
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
54 #define BCM_CNIC 1
55 #include "cnic_if.h"
56 #endif
57 #include "bnx2.h"
58 #include "bnx2_fw.h"
59
60 #define DRV_MODULE_NAME "bnx2"
61 #define DRV_MODULE_VERSION "2.0.17"
62 #define DRV_MODULE_RELDATE "July 18, 2010"
63 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j6.fw"
64 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
65 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j15.fw"
66 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j10.fw"
67 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j10.fw"
68
69 #define RUN_AT(x) (jiffies + (x))
70
71 /* Time in jiffies before concluding the transmitter is hung. */
72 #define TX_TIMEOUT (5*HZ)
73
74 static char version[] __devinitdata =
75 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
76
77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
78 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(DRV_MODULE_VERSION);
81 MODULE_FIRMWARE(FW_MIPS_FILE_06);
82 MODULE_FIRMWARE(FW_RV2P_FILE_06);
83 MODULE_FIRMWARE(FW_MIPS_FILE_09);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
86
87 static int disable_msi = 0;
88
89 module_param(disable_msi, int, 0);
90 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
91
92 typedef enum {
93 BCM5706 = 0,
94 NC370T,
95 NC370I,
96 BCM5706S,
97 NC370F,
98 BCM5708,
99 BCM5708S,
100 BCM5709,
101 BCM5709S,
102 BCM5716,
103 BCM5716S,
104 } board_t;
105
106 /* indexed by board_t, above */
107 static struct {
108 char *name;
109 } board_info[] __devinitdata = {
110 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
111 { "HP NC370T Multifunction Gigabit Server Adapter" },
112 { "HP NC370i Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
114 { "HP NC370F Multifunction Gigabit Server Adapter" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
121 };
122
123 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
124 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
125 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
126 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
127 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
128 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
130 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
132 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
133 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
134 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
135 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
136 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
137 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
138 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
139 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
140 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
141 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
142 { PCI_VENDOR_ID_BROADCOM, 0x163b,
143 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
144 { PCI_VENDOR_ID_BROADCOM, 0x163c,
145 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
146 { 0, }
147 };
148
149 static const struct flash_spec flash_table[] =
150 {
151 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
152 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
153 /* Slow EEPROM */
154 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
155 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
156 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
157 "EEPROM - slow"},
158 /* Expansion entry 0001 */
159 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
160 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
161 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
162 "Entry 0001"},
163 /* Saifun SA25F010 (non-buffered flash) */
164 /* strap, cfg1, & write1 need updates */
165 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
166 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
167 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
168 "Non-buffered flash (128kB)"},
169 /* Saifun SA25F020 (non-buffered flash) */
170 /* strap, cfg1, & write1 need updates */
171 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
172 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
173 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
174 "Non-buffered flash (256kB)"},
175 /* Expansion entry 0100 */
176 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
177 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
178 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
179 "Entry 0100"},
180 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
181 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
182 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
183 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
184 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
185 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
186 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
187 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
188 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
189 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
190 /* Saifun SA25F005 (non-buffered flash) */
191 /* strap, cfg1, & write1 need updates */
192 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
195 "Non-buffered flash (64kB)"},
196 /* Fast EEPROM */
197 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
198 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
199 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
200 "EEPROM - fast"},
201 /* Expansion entry 1001 */
202 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
204 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
205 "Entry 1001"},
206 /* Expansion entry 1010 */
207 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
208 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
209 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
210 "Entry 1010"},
211 /* ATMEL AT45DB011B (buffered flash) */
212 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
214 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
215 "Buffered flash (128kB)"},
216 /* Expansion entry 1100 */
217 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
218 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
219 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
220 "Entry 1100"},
221 /* Expansion entry 1101 */
222 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
223 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
224 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
225 "Entry 1101"},
226 /* Ateml Expansion entry 1110 */
227 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
228 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
229 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
230 "Entry 1110 (Atmel)"},
231 /* ATMEL AT45DB021B (buffered flash) */
232 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
233 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
234 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
235 "Buffered flash (256kB)"},
236 };
237
238 static const struct flash_spec flash_5709 = {
239 .flags = BNX2_NV_BUFFERED,
240 .page_bits = BCM5709_FLASH_PAGE_BITS,
241 .page_size = BCM5709_FLASH_PAGE_SIZE,
242 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
243 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
244 .name = "5709 Buffered flash (256kB)",
245 };
246
247 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
248
249 static void bnx2_init_napi(struct bnx2 *bp);
250 static void bnx2_del_napi(struct bnx2 *bp);
251
252 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
253 {
254 u32 diff;
255
256 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
257 barrier();
258
259 /* The ring uses 256 indices for 255 entries, one of them
260 * needs to be skipped.
261 */
262 diff = txr->tx_prod - txr->tx_cons;
263 if (unlikely(diff >= TX_DESC_CNT)) {
264 diff &= 0xffff;
265 if (diff == TX_DESC_CNT)
266 diff = MAX_TX_DESC_CNT;
267 }
268 return (bp->tx_ring_size - diff);
269 }
270
271 static u32
272 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
273 {
274 u32 val;
275
276 spin_lock_bh(&bp->indirect_lock);
277 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
278 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
279 spin_unlock_bh(&bp->indirect_lock);
280 return val;
281 }
282
283 static void
284 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
285 {
286 spin_lock_bh(&bp->indirect_lock);
287 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
288 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
289 spin_unlock_bh(&bp->indirect_lock);
290 }
291
292 static void
293 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
294 {
295 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
296 }
297
298 static u32
299 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
300 {
301 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
302 }
303
304 static void
305 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
306 {
307 offset += cid_addr;
308 spin_lock_bh(&bp->indirect_lock);
309 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
310 int i;
311
312 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
313 REG_WR(bp, BNX2_CTX_CTX_CTRL,
314 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
315 for (i = 0; i < 5; i++) {
316 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
317 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
318 break;
319 udelay(5);
320 }
321 } else {
322 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
323 REG_WR(bp, BNX2_CTX_DATA, val);
324 }
325 spin_unlock_bh(&bp->indirect_lock);
326 }
327
328 #ifdef BCM_CNIC
329 static int
330 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
331 {
332 struct bnx2 *bp = netdev_priv(dev);
333 struct drv_ctl_io *io = &info->data.io;
334
335 switch (info->cmd) {
336 case DRV_CTL_IO_WR_CMD:
337 bnx2_reg_wr_ind(bp, io->offset, io->data);
338 break;
339 case DRV_CTL_IO_RD_CMD:
340 io->data = bnx2_reg_rd_ind(bp, io->offset);
341 break;
342 case DRV_CTL_CTX_WR_CMD:
343 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
344 break;
345 default:
346 return -EINVAL;
347 }
348 return 0;
349 }
350
351 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
352 {
353 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
354 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
355 int sb_id;
356
357 if (bp->flags & BNX2_FLAG_USING_MSIX) {
358 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
359 bnapi->cnic_present = 0;
360 sb_id = bp->irq_nvecs;
361 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
362 } else {
363 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
364 bnapi->cnic_tag = bnapi->last_status_idx;
365 bnapi->cnic_present = 1;
366 sb_id = 0;
367 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
368 }
369
370 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
371 cp->irq_arr[0].status_blk = (void *)
372 ((unsigned long) bnapi->status_blk.msi +
373 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
374 cp->irq_arr[0].status_blk_num = sb_id;
375 cp->num_irq = 1;
376 }
377
378 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
379 void *data)
380 {
381 struct bnx2 *bp = netdev_priv(dev);
382 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
383
384 if (ops == NULL)
385 return -EINVAL;
386
387 if (cp->drv_state & CNIC_DRV_STATE_REGD)
388 return -EBUSY;
389
390 bp->cnic_data = data;
391 rcu_assign_pointer(bp->cnic_ops, ops);
392
393 cp->num_irq = 0;
394 cp->drv_state = CNIC_DRV_STATE_REGD;
395
396 bnx2_setup_cnic_irq_info(bp);
397
398 return 0;
399 }
400
401 static int bnx2_unregister_cnic(struct net_device *dev)
402 {
403 struct bnx2 *bp = netdev_priv(dev);
404 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
405 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
406
407 mutex_lock(&bp->cnic_lock);
408 cp->drv_state = 0;
409 bnapi->cnic_present = 0;
410 rcu_assign_pointer(bp->cnic_ops, NULL);
411 mutex_unlock(&bp->cnic_lock);
412 synchronize_rcu();
413 return 0;
414 }
415
416 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
417 {
418 struct bnx2 *bp = netdev_priv(dev);
419 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
420
421 cp->drv_owner = THIS_MODULE;
422 cp->chip_id = bp->chip_id;
423 cp->pdev = bp->pdev;
424 cp->io_base = bp->regview;
425 cp->drv_ctl = bnx2_drv_ctl;
426 cp->drv_register_cnic = bnx2_register_cnic;
427 cp->drv_unregister_cnic = bnx2_unregister_cnic;
428
429 return cp;
430 }
431 EXPORT_SYMBOL(bnx2_cnic_probe);
432
433 static void
434 bnx2_cnic_stop(struct bnx2 *bp)
435 {
436 struct cnic_ops *c_ops;
437 struct cnic_ctl_info info;
438
439 mutex_lock(&bp->cnic_lock);
440 c_ops = bp->cnic_ops;
441 if (c_ops) {
442 info.cmd = CNIC_CTL_STOP_CMD;
443 c_ops->cnic_ctl(bp->cnic_data, &info);
444 }
445 mutex_unlock(&bp->cnic_lock);
446 }
447
448 static void
449 bnx2_cnic_start(struct bnx2 *bp)
450 {
451 struct cnic_ops *c_ops;
452 struct cnic_ctl_info info;
453
454 mutex_lock(&bp->cnic_lock);
455 c_ops = bp->cnic_ops;
456 if (c_ops) {
457 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
458 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
459
460 bnapi->cnic_tag = bnapi->last_status_idx;
461 }
462 info.cmd = CNIC_CTL_START_CMD;
463 c_ops->cnic_ctl(bp->cnic_data, &info);
464 }
465 mutex_unlock(&bp->cnic_lock);
466 }
467
468 #else
469
470 static void
471 bnx2_cnic_stop(struct bnx2 *bp)
472 {
473 }
474
475 static void
476 bnx2_cnic_start(struct bnx2 *bp)
477 {
478 }
479
480 #endif
481
482 static int
483 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
484 {
485 u32 val1;
486 int i, ret;
487
488 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
489 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
490 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
491
492 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
493 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
494
495 udelay(40);
496 }
497
498 val1 = (bp->phy_addr << 21) | (reg << 16) |
499 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
500 BNX2_EMAC_MDIO_COMM_START_BUSY;
501 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
502
503 for (i = 0; i < 50; i++) {
504 udelay(10);
505
506 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
507 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
508 udelay(5);
509
510 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
511 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
512
513 break;
514 }
515 }
516
517 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
518 *val = 0x0;
519 ret = -EBUSY;
520 }
521 else {
522 *val = val1;
523 ret = 0;
524 }
525
526 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
527 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
528 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
529
530 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
531 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
532
533 udelay(40);
534 }
535
536 return ret;
537 }
538
539 static int
540 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
541 {
542 u32 val1;
543 int i, ret;
544
545 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
546 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
547 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
548
549 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
550 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
551
552 udelay(40);
553 }
554
555 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
556 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
557 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
558 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
559
560 for (i = 0; i < 50; i++) {
561 udelay(10);
562
563 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
564 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
565 udelay(5);
566 break;
567 }
568 }
569
570 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
571 ret = -EBUSY;
572 else
573 ret = 0;
574
575 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
576 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
577 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
578
579 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
580 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
581
582 udelay(40);
583 }
584
585 return ret;
586 }
587
588 static void
589 bnx2_disable_int(struct bnx2 *bp)
590 {
591 int i;
592 struct bnx2_napi *bnapi;
593
594 for (i = 0; i < bp->irq_nvecs; i++) {
595 bnapi = &bp->bnx2_napi[i];
596 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
597 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
598 }
599 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
600 }
601
602 static void
603 bnx2_enable_int(struct bnx2 *bp)
604 {
605 int i;
606 struct bnx2_napi *bnapi;
607
608 for (i = 0; i < bp->irq_nvecs; i++) {
609 bnapi = &bp->bnx2_napi[i];
610
611 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
612 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
613 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
614 bnapi->last_status_idx);
615
616 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
617 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
618 bnapi->last_status_idx);
619 }
620 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
621 }
622
623 static void
624 bnx2_disable_int_sync(struct bnx2 *bp)
625 {
626 int i;
627
628 atomic_inc(&bp->intr_sem);
629 if (!netif_running(bp->dev))
630 return;
631
632 bnx2_disable_int(bp);
633 for (i = 0; i < bp->irq_nvecs; i++)
634 synchronize_irq(bp->irq_tbl[i].vector);
635 }
636
637 static void
638 bnx2_napi_disable(struct bnx2 *bp)
639 {
640 int i;
641
642 for (i = 0; i < bp->irq_nvecs; i++)
643 napi_disable(&bp->bnx2_napi[i].napi);
644 }
645
646 static void
647 bnx2_napi_enable(struct bnx2 *bp)
648 {
649 int i;
650
651 for (i = 0; i < bp->irq_nvecs; i++)
652 napi_enable(&bp->bnx2_napi[i].napi);
653 }
654
655 static void
656 bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
657 {
658 if (stop_cnic)
659 bnx2_cnic_stop(bp);
660 if (netif_running(bp->dev)) {
661 bnx2_napi_disable(bp);
662 netif_tx_disable(bp->dev);
663 }
664 bnx2_disable_int_sync(bp);
665 netif_carrier_off(bp->dev); /* prevent tx timeout */
666 }
667
668 static void
669 bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
670 {
671 if (atomic_dec_and_test(&bp->intr_sem)) {
672 if (netif_running(bp->dev)) {
673 netif_tx_wake_all_queues(bp->dev);
674 spin_lock_bh(&bp->phy_lock);
675 if (bp->link_up)
676 netif_carrier_on(bp->dev);
677 spin_unlock_bh(&bp->phy_lock);
678 bnx2_napi_enable(bp);
679 bnx2_enable_int(bp);
680 if (start_cnic)
681 bnx2_cnic_start(bp);
682 }
683 }
684 }
685
686 static void
687 bnx2_free_tx_mem(struct bnx2 *bp)
688 {
689 int i;
690
691 for (i = 0; i < bp->num_tx_rings; i++) {
692 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
693 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
694
695 if (txr->tx_desc_ring) {
696 dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
697 txr->tx_desc_ring,
698 txr->tx_desc_mapping);
699 txr->tx_desc_ring = NULL;
700 }
701 kfree(txr->tx_buf_ring);
702 txr->tx_buf_ring = NULL;
703 }
704 }
705
706 static void
707 bnx2_free_rx_mem(struct bnx2 *bp)
708 {
709 int i;
710
711 for (i = 0; i < bp->num_rx_rings; i++) {
712 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
713 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
714 int j;
715
716 for (j = 0; j < bp->rx_max_ring; j++) {
717 if (rxr->rx_desc_ring[j])
718 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
719 rxr->rx_desc_ring[j],
720 rxr->rx_desc_mapping[j]);
721 rxr->rx_desc_ring[j] = NULL;
722 }
723 vfree(rxr->rx_buf_ring);
724 rxr->rx_buf_ring = NULL;
725
726 for (j = 0; j < bp->rx_max_pg_ring; j++) {
727 if (rxr->rx_pg_desc_ring[j])
728 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
729 rxr->rx_pg_desc_ring[j],
730 rxr->rx_pg_desc_mapping[j]);
731 rxr->rx_pg_desc_ring[j] = NULL;
732 }
733 vfree(rxr->rx_pg_ring);
734 rxr->rx_pg_ring = NULL;
735 }
736 }
737
738 static int
739 bnx2_alloc_tx_mem(struct bnx2 *bp)
740 {
741 int i;
742
743 for (i = 0; i < bp->num_tx_rings; i++) {
744 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
745 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
746
747 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
748 if (txr->tx_buf_ring == NULL)
749 return -ENOMEM;
750
751 txr->tx_desc_ring =
752 dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
753 &txr->tx_desc_mapping, GFP_KERNEL);
754 if (txr->tx_desc_ring == NULL)
755 return -ENOMEM;
756 }
757 return 0;
758 }
759
760 static int
761 bnx2_alloc_rx_mem(struct bnx2 *bp)
762 {
763 int i;
764
765 for (i = 0; i < bp->num_rx_rings; i++) {
766 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
767 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
768 int j;
769
770 rxr->rx_buf_ring =
771 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
772 if (rxr->rx_buf_ring == NULL)
773 return -ENOMEM;
774
775 memset(rxr->rx_buf_ring, 0,
776 SW_RXBD_RING_SIZE * bp->rx_max_ring);
777
778 for (j = 0; j < bp->rx_max_ring; j++) {
779 rxr->rx_desc_ring[j] =
780 dma_alloc_coherent(&bp->pdev->dev,
781 RXBD_RING_SIZE,
782 &rxr->rx_desc_mapping[j],
783 GFP_KERNEL);
784 if (rxr->rx_desc_ring[j] == NULL)
785 return -ENOMEM;
786
787 }
788
789 if (bp->rx_pg_ring_size) {
790 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
791 bp->rx_max_pg_ring);
792 if (rxr->rx_pg_ring == NULL)
793 return -ENOMEM;
794
795 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
796 bp->rx_max_pg_ring);
797 }
798
799 for (j = 0; j < bp->rx_max_pg_ring; j++) {
800 rxr->rx_pg_desc_ring[j] =
801 dma_alloc_coherent(&bp->pdev->dev,
802 RXBD_RING_SIZE,
803 &rxr->rx_pg_desc_mapping[j],
804 GFP_KERNEL);
805 if (rxr->rx_pg_desc_ring[j] == NULL)
806 return -ENOMEM;
807
808 }
809 }
810 return 0;
811 }
812
813 static void
814 bnx2_free_mem(struct bnx2 *bp)
815 {
816 int i;
817 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
818
819 bnx2_free_tx_mem(bp);
820 bnx2_free_rx_mem(bp);
821
822 for (i = 0; i < bp->ctx_pages; i++) {
823 if (bp->ctx_blk[i]) {
824 dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE,
825 bp->ctx_blk[i],
826 bp->ctx_blk_mapping[i]);
827 bp->ctx_blk[i] = NULL;
828 }
829 }
830 if (bnapi->status_blk.msi) {
831 dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
832 bnapi->status_blk.msi,
833 bp->status_blk_mapping);
834 bnapi->status_blk.msi = NULL;
835 bp->stats_blk = NULL;
836 }
837 }
838
839 static int
840 bnx2_alloc_mem(struct bnx2 *bp)
841 {
842 int i, status_blk_size, err;
843 struct bnx2_napi *bnapi;
844 void *status_blk;
845
846 /* Combine status and statistics blocks into one allocation. */
847 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
848 if (bp->flags & BNX2_FLAG_MSIX_CAP)
849 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
850 BNX2_SBLK_MSIX_ALIGN_SIZE);
851 bp->status_stats_size = status_blk_size +
852 sizeof(struct statistics_block);
853
854 status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
855 &bp->status_blk_mapping, GFP_KERNEL);
856 if (status_blk == NULL)
857 goto alloc_mem_err;
858
859 memset(status_blk, 0, bp->status_stats_size);
860
861 bnapi = &bp->bnx2_napi[0];
862 bnapi->status_blk.msi = status_blk;
863 bnapi->hw_tx_cons_ptr =
864 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
865 bnapi->hw_rx_cons_ptr =
866 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
867 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
868 for (i = 1; i < bp->irq_nvecs; i++) {
869 struct status_block_msix *sblk;
870
871 bnapi = &bp->bnx2_napi[i];
872
873 sblk = (void *) (status_blk +
874 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
875 bnapi->status_blk.msix = sblk;
876 bnapi->hw_tx_cons_ptr =
877 &sblk->status_tx_quick_consumer_index;
878 bnapi->hw_rx_cons_ptr =
879 &sblk->status_rx_quick_consumer_index;
880 bnapi->int_num = i << 24;
881 }
882 }
883
884 bp->stats_blk = status_blk + status_blk_size;
885
886 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
887
888 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
889 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
890 if (bp->ctx_pages == 0)
891 bp->ctx_pages = 1;
892 for (i = 0; i < bp->ctx_pages; i++) {
893 bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
894 BCM_PAGE_SIZE,
895 &bp->ctx_blk_mapping[i],
896 GFP_KERNEL);
897 if (bp->ctx_blk[i] == NULL)
898 goto alloc_mem_err;
899 }
900 }
901
902 err = bnx2_alloc_rx_mem(bp);
903 if (err)
904 goto alloc_mem_err;
905
906 err = bnx2_alloc_tx_mem(bp);
907 if (err)
908 goto alloc_mem_err;
909
910 return 0;
911
912 alloc_mem_err:
913 bnx2_free_mem(bp);
914 return -ENOMEM;
915 }
916
917 static void
918 bnx2_report_fw_link(struct bnx2 *bp)
919 {
920 u32 fw_link_status = 0;
921
922 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
923 return;
924
925 if (bp->link_up) {
926 u32 bmsr;
927
928 switch (bp->line_speed) {
929 case SPEED_10:
930 if (bp->duplex == DUPLEX_HALF)
931 fw_link_status = BNX2_LINK_STATUS_10HALF;
932 else
933 fw_link_status = BNX2_LINK_STATUS_10FULL;
934 break;
935 case SPEED_100:
936 if (bp->duplex == DUPLEX_HALF)
937 fw_link_status = BNX2_LINK_STATUS_100HALF;
938 else
939 fw_link_status = BNX2_LINK_STATUS_100FULL;
940 break;
941 case SPEED_1000:
942 if (bp->duplex == DUPLEX_HALF)
943 fw_link_status = BNX2_LINK_STATUS_1000HALF;
944 else
945 fw_link_status = BNX2_LINK_STATUS_1000FULL;
946 break;
947 case SPEED_2500:
948 if (bp->duplex == DUPLEX_HALF)
949 fw_link_status = BNX2_LINK_STATUS_2500HALF;
950 else
951 fw_link_status = BNX2_LINK_STATUS_2500FULL;
952 break;
953 }
954
955 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
956
957 if (bp->autoneg) {
958 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
959
960 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
961 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
962
963 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
964 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
965 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
966 else
967 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
968 }
969 }
970 else
971 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
972
973 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
974 }
975
976 static char *
977 bnx2_xceiver_str(struct bnx2 *bp)
978 {
979 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
980 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
981 "Copper"));
982 }
983
984 static void
985 bnx2_report_link(struct bnx2 *bp)
986 {
987 if (bp->link_up) {
988 netif_carrier_on(bp->dev);
989 netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
990 bnx2_xceiver_str(bp),
991 bp->line_speed,
992 bp->duplex == DUPLEX_FULL ? "full" : "half");
993
994 if (bp->flow_ctrl) {
995 if (bp->flow_ctrl & FLOW_CTRL_RX) {
996 pr_cont(", receive ");
997 if (bp->flow_ctrl & FLOW_CTRL_TX)
998 pr_cont("& transmit ");
999 }
1000 else {
1001 pr_cont(", transmit ");
1002 }
1003 pr_cont("flow control ON");
1004 }
1005 pr_cont("\n");
1006 } else {
1007 netif_carrier_off(bp->dev);
1008 netdev_err(bp->dev, "NIC %s Link is Down\n",
1009 bnx2_xceiver_str(bp));
1010 }
1011
1012 bnx2_report_fw_link(bp);
1013 }
1014
1015 static void
1016 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1017 {
1018 u32 local_adv, remote_adv;
1019
1020 bp->flow_ctrl = 0;
1021 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1022 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1023
1024 if (bp->duplex == DUPLEX_FULL) {
1025 bp->flow_ctrl = bp->req_flow_ctrl;
1026 }
1027 return;
1028 }
1029
1030 if (bp->duplex != DUPLEX_FULL) {
1031 return;
1032 }
1033
1034 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1035 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1036 u32 val;
1037
1038 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1039 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1040 bp->flow_ctrl |= FLOW_CTRL_TX;
1041 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1042 bp->flow_ctrl |= FLOW_CTRL_RX;
1043 return;
1044 }
1045
1046 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1047 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1048
1049 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1050 u32 new_local_adv = 0;
1051 u32 new_remote_adv = 0;
1052
1053 if (local_adv & ADVERTISE_1000XPAUSE)
1054 new_local_adv |= ADVERTISE_PAUSE_CAP;
1055 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1056 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1057 if (remote_adv & ADVERTISE_1000XPAUSE)
1058 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1059 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1060 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1061
1062 local_adv = new_local_adv;
1063 remote_adv = new_remote_adv;
1064 }
1065
1066 /* See Table 28B-3 of 802.3ab-1999 spec. */
1067 if (local_adv & ADVERTISE_PAUSE_CAP) {
1068 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1069 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1070 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1071 }
1072 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1073 bp->flow_ctrl = FLOW_CTRL_RX;
1074 }
1075 }
1076 else {
1077 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1078 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1079 }
1080 }
1081 }
1082 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1083 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1084 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1085
1086 bp->flow_ctrl = FLOW_CTRL_TX;
1087 }
1088 }
1089 }
1090
1091 static int
1092 bnx2_5709s_linkup(struct bnx2 *bp)
1093 {
1094 u32 val, speed;
1095
1096 bp->link_up = 1;
1097
1098 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1099 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1100 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1101
1102 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1103 bp->line_speed = bp->req_line_speed;
1104 bp->duplex = bp->req_duplex;
1105 return 0;
1106 }
1107 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1108 switch (speed) {
1109 case MII_BNX2_GP_TOP_AN_SPEED_10:
1110 bp->line_speed = SPEED_10;
1111 break;
1112 case MII_BNX2_GP_TOP_AN_SPEED_100:
1113 bp->line_speed = SPEED_100;
1114 break;
1115 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1116 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1117 bp->line_speed = SPEED_1000;
1118 break;
1119 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1120 bp->line_speed = SPEED_2500;
1121 break;
1122 }
1123 if (val & MII_BNX2_GP_TOP_AN_FD)
1124 bp->duplex = DUPLEX_FULL;
1125 else
1126 bp->duplex = DUPLEX_HALF;
1127 return 0;
1128 }
1129
1130 static int
1131 bnx2_5708s_linkup(struct bnx2 *bp)
1132 {
1133 u32 val;
1134
1135 bp->link_up = 1;
1136 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1137 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1138 case BCM5708S_1000X_STAT1_SPEED_10:
1139 bp->line_speed = SPEED_10;
1140 break;
1141 case BCM5708S_1000X_STAT1_SPEED_100:
1142 bp->line_speed = SPEED_100;
1143 break;
1144 case BCM5708S_1000X_STAT1_SPEED_1G:
1145 bp->line_speed = SPEED_1000;
1146 break;
1147 case BCM5708S_1000X_STAT1_SPEED_2G5:
1148 bp->line_speed = SPEED_2500;
1149 break;
1150 }
1151 if (val & BCM5708S_1000X_STAT1_FD)
1152 bp->duplex = DUPLEX_FULL;
1153 else
1154 bp->duplex = DUPLEX_HALF;
1155
1156 return 0;
1157 }
1158
1159 static int
1160 bnx2_5706s_linkup(struct bnx2 *bp)
1161 {
1162 u32 bmcr, local_adv, remote_adv, common;
1163
1164 bp->link_up = 1;
1165 bp->line_speed = SPEED_1000;
1166
1167 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1168 if (bmcr & BMCR_FULLDPLX) {
1169 bp->duplex = DUPLEX_FULL;
1170 }
1171 else {
1172 bp->duplex = DUPLEX_HALF;
1173 }
1174
1175 if (!(bmcr & BMCR_ANENABLE)) {
1176 return 0;
1177 }
1178
1179 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1180 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1181
1182 common = local_adv & remote_adv;
1183 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1184
1185 if (common & ADVERTISE_1000XFULL) {
1186 bp->duplex = DUPLEX_FULL;
1187 }
1188 else {
1189 bp->duplex = DUPLEX_HALF;
1190 }
1191 }
1192
1193 return 0;
1194 }
1195
1196 static int
1197 bnx2_copper_linkup(struct bnx2 *bp)
1198 {
1199 u32 bmcr;
1200
1201 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1202 if (bmcr & BMCR_ANENABLE) {
1203 u32 local_adv, remote_adv, common;
1204
1205 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1206 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1207
1208 common = local_adv & (remote_adv >> 2);
1209 if (common & ADVERTISE_1000FULL) {
1210 bp->line_speed = SPEED_1000;
1211 bp->duplex = DUPLEX_FULL;
1212 }
1213 else if (common & ADVERTISE_1000HALF) {
1214 bp->line_speed = SPEED_1000;
1215 bp->duplex = DUPLEX_HALF;
1216 }
1217 else {
1218 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1219 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1220
1221 common = local_adv & remote_adv;
1222 if (common & ADVERTISE_100FULL) {
1223 bp->line_speed = SPEED_100;
1224 bp->duplex = DUPLEX_FULL;
1225 }
1226 else if (common & ADVERTISE_100HALF) {
1227 bp->line_speed = SPEED_100;
1228 bp->duplex = DUPLEX_HALF;
1229 }
1230 else if (common & ADVERTISE_10FULL) {
1231 bp->line_speed = SPEED_10;
1232 bp->duplex = DUPLEX_FULL;
1233 }
1234 else if (common & ADVERTISE_10HALF) {
1235 bp->line_speed = SPEED_10;
1236 bp->duplex = DUPLEX_HALF;
1237 }
1238 else {
1239 bp->line_speed = 0;
1240 bp->link_up = 0;
1241 }
1242 }
1243 }
1244 else {
1245 if (bmcr & BMCR_SPEED100) {
1246 bp->line_speed = SPEED_100;
1247 }
1248 else {
1249 bp->line_speed = SPEED_10;
1250 }
1251 if (bmcr & BMCR_FULLDPLX) {
1252 bp->duplex = DUPLEX_FULL;
1253 }
1254 else {
1255 bp->duplex = DUPLEX_HALF;
1256 }
1257 }
1258
1259 return 0;
1260 }
1261
1262 static void
1263 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1264 {
1265 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1266
1267 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1268 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1269 val |= 0x02 << 8;
1270
1271 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1272 u32 lo_water, hi_water;
1273
1274 if (bp->flow_ctrl & FLOW_CTRL_TX)
1275 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1276 else
1277 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1278 if (lo_water >= bp->rx_ring_size)
1279 lo_water = 0;
1280
1281 hi_water = min_t(int, bp->rx_ring_size / 4, lo_water + 16);
1282
1283 if (hi_water <= lo_water)
1284 lo_water = 0;
1285
1286 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1287 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1288
1289 if (hi_water > 0xf)
1290 hi_water = 0xf;
1291 else if (hi_water == 0)
1292 lo_water = 0;
1293 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1294 }
1295 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1296 }
1297
1298 static void
1299 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1300 {
1301 int i;
1302 u32 cid;
1303
1304 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1305 if (i == 1)
1306 cid = RX_RSS_CID;
1307 bnx2_init_rx_context(bp, cid);
1308 }
1309 }
1310
1311 static void
1312 bnx2_set_mac_link(struct bnx2 *bp)
1313 {
1314 u32 val;
1315
1316 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1317 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1318 (bp->duplex == DUPLEX_HALF)) {
1319 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1320 }
1321
1322 /* Configure the EMAC mode register. */
1323 val = REG_RD(bp, BNX2_EMAC_MODE);
1324
1325 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1326 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1327 BNX2_EMAC_MODE_25G_MODE);
1328
1329 if (bp->link_up) {
1330 switch (bp->line_speed) {
1331 case SPEED_10:
1332 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1333 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1334 break;
1335 }
1336 /* fall through */
1337 case SPEED_100:
1338 val |= BNX2_EMAC_MODE_PORT_MII;
1339 break;
1340 case SPEED_2500:
1341 val |= BNX2_EMAC_MODE_25G_MODE;
1342 /* fall through */
1343 case SPEED_1000:
1344 val |= BNX2_EMAC_MODE_PORT_GMII;
1345 break;
1346 }
1347 }
1348 else {
1349 val |= BNX2_EMAC_MODE_PORT_GMII;
1350 }
1351
1352 /* Set the MAC to operate in the appropriate duplex mode. */
1353 if (bp->duplex == DUPLEX_HALF)
1354 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1355 REG_WR(bp, BNX2_EMAC_MODE, val);
1356
1357 /* Enable/disable rx PAUSE. */
1358 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1359
1360 if (bp->flow_ctrl & FLOW_CTRL_RX)
1361 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1362 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1363
1364 /* Enable/disable tx PAUSE. */
1365 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1366 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1367
1368 if (bp->flow_ctrl & FLOW_CTRL_TX)
1369 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1370 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1371
1372 /* Acknowledge the interrupt. */
1373 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1374
1375 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1376 bnx2_init_all_rx_contexts(bp);
1377 }
1378
1379 static void
1380 bnx2_enable_bmsr1(struct bnx2 *bp)
1381 {
1382 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1383 (CHIP_NUM(bp) == CHIP_NUM_5709))
1384 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1385 MII_BNX2_BLK_ADDR_GP_STATUS);
1386 }
1387
1388 static void
1389 bnx2_disable_bmsr1(struct bnx2 *bp)
1390 {
1391 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1392 (CHIP_NUM(bp) == CHIP_NUM_5709))
1393 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1394 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1395 }
1396
1397 static int
1398 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1399 {
1400 u32 up1;
1401 int ret = 1;
1402
1403 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1404 return 0;
1405
1406 if (bp->autoneg & AUTONEG_SPEED)
1407 bp->advertising |= ADVERTISED_2500baseX_Full;
1408
1409 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1410 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1411
1412 bnx2_read_phy(bp, bp->mii_up1, &up1);
1413 if (!(up1 & BCM5708S_UP1_2G5)) {
1414 up1 |= BCM5708S_UP1_2G5;
1415 bnx2_write_phy(bp, bp->mii_up1, up1);
1416 ret = 0;
1417 }
1418
1419 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1420 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1421 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1422
1423 return ret;
1424 }
1425
1426 static int
1427 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1428 {
1429 u32 up1;
1430 int ret = 0;
1431
1432 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1433 return 0;
1434
1435 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1436 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1437
1438 bnx2_read_phy(bp, bp->mii_up1, &up1);
1439 if (up1 & BCM5708S_UP1_2G5) {
1440 up1 &= ~BCM5708S_UP1_2G5;
1441 bnx2_write_phy(bp, bp->mii_up1, up1);
1442 ret = 1;
1443 }
1444
1445 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1446 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1447 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1448
1449 return ret;
1450 }
1451
1452 static void
1453 bnx2_enable_forced_2g5(struct bnx2 *bp)
1454 {
1455 u32 uninitialized_var(bmcr);
1456 int err;
1457
1458 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1459 return;
1460
1461 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1462 u32 val;
1463
1464 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1465 MII_BNX2_BLK_ADDR_SERDES_DIG);
1466 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1467 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1468 val |= MII_BNX2_SD_MISC1_FORCE |
1469 MII_BNX2_SD_MISC1_FORCE_2_5G;
1470 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1471 }
1472
1473 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1474 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1475 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1476
1477 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1478 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1479 if (!err)
1480 bmcr |= BCM5708S_BMCR_FORCE_2500;
1481 } else {
1482 return;
1483 }
1484
1485 if (err)
1486 return;
1487
1488 if (bp->autoneg & AUTONEG_SPEED) {
1489 bmcr &= ~BMCR_ANENABLE;
1490 if (bp->req_duplex == DUPLEX_FULL)
1491 bmcr |= BMCR_FULLDPLX;
1492 }
1493 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1494 }
1495
1496 static void
1497 bnx2_disable_forced_2g5(struct bnx2 *bp)
1498 {
1499 u32 uninitialized_var(bmcr);
1500 int err;
1501
1502 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1503 return;
1504
1505 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1506 u32 val;
1507
1508 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1509 MII_BNX2_BLK_ADDR_SERDES_DIG);
1510 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1511 val &= ~MII_BNX2_SD_MISC1_FORCE;
1512 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1513 }
1514
1515 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1516 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1517 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1518
1519 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1520 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1521 if (!err)
1522 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1523 } else {
1524 return;
1525 }
1526
1527 if (err)
1528 return;
1529
1530 if (bp->autoneg & AUTONEG_SPEED)
1531 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1532 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1533 }
1534
1535 static void
1536 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1537 {
1538 u32 val;
1539
1540 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1541 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1542 if (start)
1543 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1544 else
1545 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1546 }
1547
1548 static int
1549 bnx2_set_link(struct bnx2 *bp)
1550 {
1551 u32 bmsr;
1552 u8 link_up;
1553
1554 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1555 bp->link_up = 1;
1556 return 0;
1557 }
1558
1559 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1560 return 0;
1561
1562 link_up = bp->link_up;
1563
1564 bnx2_enable_bmsr1(bp);
1565 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1566 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1567 bnx2_disable_bmsr1(bp);
1568
1569 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1570 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1571 u32 val, an_dbg;
1572
1573 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1574 bnx2_5706s_force_link_dn(bp, 0);
1575 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1576 }
1577 val = REG_RD(bp, BNX2_EMAC_STATUS);
1578
1579 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1580 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1581 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1582
1583 if ((val & BNX2_EMAC_STATUS_LINK) &&
1584 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1585 bmsr |= BMSR_LSTATUS;
1586 else
1587 bmsr &= ~BMSR_LSTATUS;
1588 }
1589
1590 if (bmsr & BMSR_LSTATUS) {
1591 bp->link_up = 1;
1592
1593 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1594 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1595 bnx2_5706s_linkup(bp);
1596 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1597 bnx2_5708s_linkup(bp);
1598 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1599 bnx2_5709s_linkup(bp);
1600 }
1601 else {
1602 bnx2_copper_linkup(bp);
1603 }
1604 bnx2_resolve_flow_ctrl(bp);
1605 }
1606 else {
1607 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1608 (bp->autoneg & AUTONEG_SPEED))
1609 bnx2_disable_forced_2g5(bp);
1610
1611 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1612 u32 bmcr;
1613
1614 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1615 bmcr |= BMCR_ANENABLE;
1616 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1617
1618 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1619 }
1620 bp->link_up = 0;
1621 }
1622
1623 if (bp->link_up != link_up) {
1624 bnx2_report_link(bp);
1625 }
1626
1627 bnx2_set_mac_link(bp);
1628
1629 return 0;
1630 }
1631
1632 static int
1633 bnx2_reset_phy(struct bnx2 *bp)
1634 {
1635 int i;
1636 u32 reg;
1637
1638 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1639
1640 #define PHY_RESET_MAX_WAIT 100
1641 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1642 udelay(10);
1643
1644 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1645 if (!(reg & BMCR_RESET)) {
1646 udelay(20);
1647 break;
1648 }
1649 }
1650 if (i == PHY_RESET_MAX_WAIT) {
1651 return -EBUSY;
1652 }
1653 return 0;
1654 }
1655
1656 static u32
1657 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1658 {
1659 u32 adv = 0;
1660
1661 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1662 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1663
1664 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1665 adv = ADVERTISE_1000XPAUSE;
1666 }
1667 else {
1668 adv = ADVERTISE_PAUSE_CAP;
1669 }
1670 }
1671 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1672 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1673 adv = ADVERTISE_1000XPSE_ASYM;
1674 }
1675 else {
1676 adv = ADVERTISE_PAUSE_ASYM;
1677 }
1678 }
1679 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1680 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1681 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1682 }
1683 else {
1684 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1685 }
1686 }
1687 return adv;
1688 }
1689
1690 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1691
1692 static int
1693 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1694 __releases(&bp->phy_lock)
1695 __acquires(&bp->phy_lock)
1696 {
1697 u32 speed_arg = 0, pause_adv;
1698
1699 pause_adv = bnx2_phy_get_pause_adv(bp);
1700
1701 if (bp->autoneg & AUTONEG_SPEED) {
1702 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1703 if (bp->advertising & ADVERTISED_10baseT_Half)
1704 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1705 if (bp->advertising & ADVERTISED_10baseT_Full)
1706 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1707 if (bp->advertising & ADVERTISED_100baseT_Half)
1708 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1709 if (bp->advertising & ADVERTISED_100baseT_Full)
1710 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1711 if (bp->advertising & ADVERTISED_1000baseT_Full)
1712 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1713 if (bp->advertising & ADVERTISED_2500baseX_Full)
1714 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1715 } else {
1716 if (bp->req_line_speed == SPEED_2500)
1717 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1718 else if (bp->req_line_speed == SPEED_1000)
1719 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1720 else if (bp->req_line_speed == SPEED_100) {
1721 if (bp->req_duplex == DUPLEX_FULL)
1722 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1723 else
1724 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1725 } else if (bp->req_line_speed == SPEED_10) {
1726 if (bp->req_duplex == DUPLEX_FULL)
1727 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1728 else
1729 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1730 }
1731 }
1732
1733 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1734 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1735 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1736 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1737
1738 if (port == PORT_TP)
1739 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1740 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1741
1742 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1743
1744 spin_unlock_bh(&bp->phy_lock);
1745 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1746 spin_lock_bh(&bp->phy_lock);
1747
1748 return 0;
1749 }
1750
1751 static int
1752 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1753 __releases(&bp->phy_lock)
1754 __acquires(&bp->phy_lock)
1755 {
1756 u32 adv, bmcr;
1757 u32 new_adv = 0;
1758
1759 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1760 return (bnx2_setup_remote_phy(bp, port));
1761
1762 if (!(bp->autoneg & AUTONEG_SPEED)) {
1763 u32 new_bmcr;
1764 int force_link_down = 0;
1765
1766 if (bp->req_line_speed == SPEED_2500) {
1767 if (!bnx2_test_and_enable_2g5(bp))
1768 force_link_down = 1;
1769 } else if (bp->req_line_speed == SPEED_1000) {
1770 if (bnx2_test_and_disable_2g5(bp))
1771 force_link_down = 1;
1772 }
1773 bnx2_read_phy(bp, bp->mii_adv, &adv);
1774 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1775
1776 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1777 new_bmcr = bmcr & ~BMCR_ANENABLE;
1778 new_bmcr |= BMCR_SPEED1000;
1779
1780 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1781 if (bp->req_line_speed == SPEED_2500)
1782 bnx2_enable_forced_2g5(bp);
1783 else if (bp->req_line_speed == SPEED_1000) {
1784 bnx2_disable_forced_2g5(bp);
1785 new_bmcr &= ~0x2000;
1786 }
1787
1788 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1789 if (bp->req_line_speed == SPEED_2500)
1790 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1791 else
1792 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1793 }
1794
1795 if (bp->req_duplex == DUPLEX_FULL) {
1796 adv |= ADVERTISE_1000XFULL;
1797 new_bmcr |= BMCR_FULLDPLX;
1798 }
1799 else {
1800 adv |= ADVERTISE_1000XHALF;
1801 new_bmcr &= ~BMCR_FULLDPLX;
1802 }
1803 if ((new_bmcr != bmcr) || (force_link_down)) {
1804 /* Force a link down visible on the other side */
1805 if (bp->link_up) {
1806 bnx2_write_phy(bp, bp->mii_adv, adv &
1807 ~(ADVERTISE_1000XFULL |
1808 ADVERTISE_1000XHALF));
1809 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1810 BMCR_ANRESTART | BMCR_ANENABLE);
1811
1812 bp->link_up = 0;
1813 netif_carrier_off(bp->dev);
1814 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1815 bnx2_report_link(bp);
1816 }
1817 bnx2_write_phy(bp, bp->mii_adv, adv);
1818 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1819 } else {
1820 bnx2_resolve_flow_ctrl(bp);
1821 bnx2_set_mac_link(bp);
1822 }
1823 return 0;
1824 }
1825
1826 bnx2_test_and_enable_2g5(bp);
1827
1828 if (bp->advertising & ADVERTISED_1000baseT_Full)
1829 new_adv |= ADVERTISE_1000XFULL;
1830
1831 new_adv |= bnx2_phy_get_pause_adv(bp);
1832
1833 bnx2_read_phy(bp, bp->mii_adv, &adv);
1834 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1835
1836 bp->serdes_an_pending = 0;
1837 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1838 /* Force a link down visible on the other side */
1839 if (bp->link_up) {
1840 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1841 spin_unlock_bh(&bp->phy_lock);
1842 msleep(20);
1843 spin_lock_bh(&bp->phy_lock);
1844 }
1845
1846 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1847 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1848 BMCR_ANENABLE);
1849 /* Speed up link-up time when the link partner
1850 * does not autonegotiate which is very common
1851 * in blade servers. Some blade servers use
1852 * IPMI for kerboard input and it's important
1853 * to minimize link disruptions. Autoneg. involves
1854 * exchanging base pages plus 3 next pages and
1855 * normally completes in about 120 msec.
1856 */
1857 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1858 bp->serdes_an_pending = 1;
1859 mod_timer(&bp->timer, jiffies + bp->current_interval);
1860 } else {
1861 bnx2_resolve_flow_ctrl(bp);
1862 bnx2_set_mac_link(bp);
1863 }
1864
1865 return 0;
1866 }
1867
1868 #define ETHTOOL_ALL_FIBRE_SPEED \
1869 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1870 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1871 (ADVERTISED_1000baseT_Full)
1872
1873 #define ETHTOOL_ALL_COPPER_SPEED \
1874 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1875 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1876 ADVERTISED_1000baseT_Full)
1877
1878 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1879 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1880
1881 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1882
1883 static void
1884 bnx2_set_default_remote_link(struct bnx2 *bp)
1885 {
1886 u32 link;
1887
1888 if (bp->phy_port == PORT_TP)
1889 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1890 else
1891 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1892
1893 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1894 bp->req_line_speed = 0;
1895 bp->autoneg |= AUTONEG_SPEED;
1896 bp->advertising = ADVERTISED_Autoneg;
1897 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1898 bp->advertising |= ADVERTISED_10baseT_Half;
1899 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1900 bp->advertising |= ADVERTISED_10baseT_Full;
1901 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1902 bp->advertising |= ADVERTISED_100baseT_Half;
1903 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1904 bp->advertising |= ADVERTISED_100baseT_Full;
1905 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1906 bp->advertising |= ADVERTISED_1000baseT_Full;
1907 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1908 bp->advertising |= ADVERTISED_2500baseX_Full;
1909 } else {
1910 bp->autoneg = 0;
1911 bp->advertising = 0;
1912 bp->req_duplex = DUPLEX_FULL;
1913 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1914 bp->req_line_speed = SPEED_10;
1915 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1916 bp->req_duplex = DUPLEX_HALF;
1917 }
1918 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1919 bp->req_line_speed = SPEED_100;
1920 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1921 bp->req_duplex = DUPLEX_HALF;
1922 }
1923 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1924 bp->req_line_speed = SPEED_1000;
1925 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1926 bp->req_line_speed = SPEED_2500;
1927 }
1928 }
1929
1930 static void
1931 bnx2_set_default_link(struct bnx2 *bp)
1932 {
1933 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1934 bnx2_set_default_remote_link(bp);
1935 return;
1936 }
1937
1938 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1939 bp->req_line_speed = 0;
1940 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1941 u32 reg;
1942
1943 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1944
1945 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1946 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1947 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1948 bp->autoneg = 0;
1949 bp->req_line_speed = bp->line_speed = SPEED_1000;
1950 bp->req_duplex = DUPLEX_FULL;
1951 }
1952 } else
1953 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1954 }
1955
1956 static void
1957 bnx2_send_heart_beat(struct bnx2 *bp)
1958 {
1959 u32 msg;
1960 u32 addr;
1961
1962 spin_lock(&bp->indirect_lock);
1963 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1964 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1965 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1966 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1967 spin_unlock(&bp->indirect_lock);
1968 }
1969
1970 static void
1971 bnx2_remote_phy_event(struct bnx2 *bp)
1972 {
1973 u32 msg;
1974 u8 link_up = bp->link_up;
1975 u8 old_port;
1976
1977 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1978
1979 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1980 bnx2_send_heart_beat(bp);
1981
1982 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1983
1984 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1985 bp->link_up = 0;
1986 else {
1987 u32 speed;
1988
1989 bp->link_up = 1;
1990 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1991 bp->duplex = DUPLEX_FULL;
1992 switch (speed) {
1993 case BNX2_LINK_STATUS_10HALF:
1994 bp->duplex = DUPLEX_HALF;
1995 case BNX2_LINK_STATUS_10FULL:
1996 bp->line_speed = SPEED_10;
1997 break;
1998 case BNX2_LINK_STATUS_100HALF:
1999 bp->duplex = DUPLEX_HALF;
2000 case BNX2_LINK_STATUS_100BASE_T4:
2001 case BNX2_LINK_STATUS_100FULL:
2002 bp->line_speed = SPEED_100;
2003 break;
2004 case BNX2_LINK_STATUS_1000HALF:
2005 bp->duplex = DUPLEX_HALF;
2006 case BNX2_LINK_STATUS_1000FULL:
2007 bp->line_speed = SPEED_1000;
2008 break;
2009 case BNX2_LINK_STATUS_2500HALF:
2010 bp->duplex = DUPLEX_HALF;
2011 case BNX2_LINK_STATUS_2500FULL:
2012 bp->line_speed = SPEED_2500;
2013 break;
2014 default:
2015 bp->line_speed = 0;
2016 break;
2017 }
2018
2019 bp->flow_ctrl = 0;
2020 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
2021 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
2022 if (bp->duplex == DUPLEX_FULL)
2023 bp->flow_ctrl = bp->req_flow_ctrl;
2024 } else {
2025 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
2026 bp->flow_ctrl |= FLOW_CTRL_TX;
2027 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2028 bp->flow_ctrl |= FLOW_CTRL_RX;
2029 }
2030
2031 old_port = bp->phy_port;
2032 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2033 bp->phy_port = PORT_FIBRE;
2034 else
2035 bp->phy_port = PORT_TP;
2036
2037 if (old_port != bp->phy_port)
2038 bnx2_set_default_link(bp);
2039
2040 }
2041 if (bp->link_up != link_up)
2042 bnx2_report_link(bp);
2043
2044 bnx2_set_mac_link(bp);
2045 }
2046
2047 static int
2048 bnx2_set_remote_link(struct bnx2 *bp)
2049 {
2050 u32 evt_code;
2051
2052 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2053 switch (evt_code) {
2054 case BNX2_FW_EVT_CODE_LINK_EVENT:
2055 bnx2_remote_phy_event(bp);
2056 break;
2057 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2058 default:
2059 bnx2_send_heart_beat(bp);
2060 break;
2061 }
2062 return 0;
2063 }
2064
2065 static int
2066 bnx2_setup_copper_phy(struct bnx2 *bp)
2067 __releases(&bp->phy_lock)
2068 __acquires(&bp->phy_lock)
2069 {
2070 u32 bmcr;
2071 u32 new_bmcr;
2072
2073 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2074
2075 if (bp->autoneg & AUTONEG_SPEED) {
2076 u32 adv_reg, adv1000_reg;
2077 u32 new_adv_reg = 0;
2078 u32 new_adv1000_reg = 0;
2079
2080 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2081 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2082 ADVERTISE_PAUSE_ASYM);
2083
2084 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2085 adv1000_reg &= PHY_ALL_1000_SPEED;
2086
2087 if (bp->advertising & ADVERTISED_10baseT_Half)
2088 new_adv_reg |= ADVERTISE_10HALF;
2089 if (bp->advertising & ADVERTISED_10baseT_Full)
2090 new_adv_reg |= ADVERTISE_10FULL;
2091 if (bp->advertising & ADVERTISED_100baseT_Half)
2092 new_adv_reg |= ADVERTISE_100HALF;
2093 if (bp->advertising & ADVERTISED_100baseT_Full)
2094 new_adv_reg |= ADVERTISE_100FULL;
2095 if (bp->advertising & ADVERTISED_1000baseT_Full)
2096 new_adv1000_reg |= ADVERTISE_1000FULL;
2097
2098 new_adv_reg |= ADVERTISE_CSMA;
2099
2100 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2101
2102 if ((adv1000_reg != new_adv1000_reg) ||
2103 (adv_reg != new_adv_reg) ||
2104 ((bmcr & BMCR_ANENABLE) == 0)) {
2105
2106 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2107 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2108 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2109 BMCR_ANENABLE);
2110 }
2111 else if (bp->link_up) {
2112 /* Flow ctrl may have changed from auto to forced */
2113 /* or vice-versa. */
2114
2115 bnx2_resolve_flow_ctrl(bp);
2116 bnx2_set_mac_link(bp);
2117 }
2118 return 0;
2119 }
2120
2121 new_bmcr = 0;
2122 if (bp->req_line_speed == SPEED_100) {
2123 new_bmcr |= BMCR_SPEED100;
2124 }
2125 if (bp->req_duplex == DUPLEX_FULL) {
2126 new_bmcr |= BMCR_FULLDPLX;
2127 }
2128 if (new_bmcr != bmcr) {
2129 u32 bmsr;
2130
2131 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2132 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2133
2134 if (bmsr & BMSR_LSTATUS) {
2135 /* Force link down */
2136 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2137 spin_unlock_bh(&bp->phy_lock);
2138 msleep(50);
2139 spin_lock_bh(&bp->phy_lock);
2140
2141 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2142 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2143 }
2144
2145 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2146
2147 /* Normally, the new speed is setup after the link has
2148 * gone down and up again. In some cases, link will not go
2149 * down so we need to set up the new speed here.
2150 */
2151 if (bmsr & BMSR_LSTATUS) {
2152 bp->line_speed = bp->req_line_speed;
2153 bp->duplex = bp->req_duplex;
2154 bnx2_resolve_flow_ctrl(bp);
2155 bnx2_set_mac_link(bp);
2156 }
2157 } else {
2158 bnx2_resolve_flow_ctrl(bp);
2159 bnx2_set_mac_link(bp);
2160 }
2161 return 0;
2162 }
2163
2164 static int
2165 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2166 __releases(&bp->phy_lock)
2167 __acquires(&bp->phy_lock)
2168 {
2169 if (bp->loopback == MAC_LOOPBACK)
2170 return 0;
2171
2172 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2173 return (bnx2_setup_serdes_phy(bp, port));
2174 }
2175 else {
2176 return (bnx2_setup_copper_phy(bp));
2177 }
2178 }
2179
2180 static int
2181 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2182 {
2183 u32 val;
2184
2185 bp->mii_bmcr = MII_BMCR + 0x10;
2186 bp->mii_bmsr = MII_BMSR + 0x10;
2187 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2188 bp->mii_adv = MII_ADVERTISE + 0x10;
2189 bp->mii_lpa = MII_LPA + 0x10;
2190 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2191
2192 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2193 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2194
2195 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2196 if (reset_phy)
2197 bnx2_reset_phy(bp);
2198
2199 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2200
2201 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2202 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2203 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2204 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2205
2206 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2207 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2208 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2209 val |= BCM5708S_UP1_2G5;
2210 else
2211 val &= ~BCM5708S_UP1_2G5;
2212 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2213
2214 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2215 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2216 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2217 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2218
2219 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2220
2221 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2222 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2223 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2224
2225 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2226
2227 return 0;
2228 }
2229
2230 static int
2231 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2232 {
2233 u32 val;
2234
2235 if (reset_phy)
2236 bnx2_reset_phy(bp);
2237
2238 bp->mii_up1 = BCM5708S_UP1;
2239
2240 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2241 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2242 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2243
2244 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2245 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2246 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2247
2248 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2249 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2250 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2251
2252 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2253 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2254 val |= BCM5708S_UP1_2G5;
2255 bnx2_write_phy(bp, BCM5708S_UP1, val);
2256 }
2257
2258 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2259 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2260 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2261 /* increase tx signal amplitude */
2262 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2263 BCM5708S_BLK_ADDR_TX_MISC);
2264 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2265 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2266 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2267 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2268 }
2269
2270 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2271 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2272
2273 if (val) {
2274 u32 is_backplane;
2275
2276 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2277 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2278 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2279 BCM5708S_BLK_ADDR_TX_MISC);
2280 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2281 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2282 BCM5708S_BLK_ADDR_DIG);
2283 }
2284 }
2285 return 0;
2286 }
2287
2288 static int
2289 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2290 {
2291 if (reset_phy)
2292 bnx2_reset_phy(bp);
2293
2294 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2295
2296 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2297 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2298
2299 if (bp->dev->mtu > 1500) {
2300 u32 val;
2301
2302 /* Set extended packet length bit */
2303 bnx2_write_phy(bp, 0x18, 0x7);
2304 bnx2_read_phy(bp, 0x18, &val);
2305 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2306
2307 bnx2_write_phy(bp, 0x1c, 0x6c00);
2308 bnx2_read_phy(bp, 0x1c, &val);
2309 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2310 }
2311 else {
2312 u32 val;
2313
2314 bnx2_write_phy(bp, 0x18, 0x7);
2315 bnx2_read_phy(bp, 0x18, &val);
2316 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2317
2318 bnx2_write_phy(bp, 0x1c, 0x6c00);
2319 bnx2_read_phy(bp, 0x1c, &val);
2320 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2321 }
2322
2323 return 0;
2324 }
2325
2326 static int
2327 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2328 {
2329 u32 val;
2330
2331 if (reset_phy)
2332 bnx2_reset_phy(bp);
2333
2334 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2335 bnx2_write_phy(bp, 0x18, 0x0c00);
2336 bnx2_write_phy(bp, 0x17, 0x000a);
2337 bnx2_write_phy(bp, 0x15, 0x310b);
2338 bnx2_write_phy(bp, 0x17, 0x201f);
2339 bnx2_write_phy(bp, 0x15, 0x9506);
2340 bnx2_write_phy(bp, 0x17, 0x401f);
2341 bnx2_write_phy(bp, 0x15, 0x14e2);
2342 bnx2_write_phy(bp, 0x18, 0x0400);
2343 }
2344
2345 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2346 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2347 MII_BNX2_DSP_EXPAND_REG | 0x8);
2348 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2349 val &= ~(1 << 8);
2350 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2351 }
2352
2353 if (bp->dev->mtu > 1500) {
2354 /* Set extended packet length bit */
2355 bnx2_write_phy(bp, 0x18, 0x7);
2356 bnx2_read_phy(bp, 0x18, &val);
2357 bnx2_write_phy(bp, 0x18, val | 0x4000);
2358
2359 bnx2_read_phy(bp, 0x10, &val);
2360 bnx2_write_phy(bp, 0x10, val | 0x1);
2361 }
2362 else {
2363 bnx2_write_phy(bp, 0x18, 0x7);
2364 bnx2_read_phy(bp, 0x18, &val);
2365 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2366
2367 bnx2_read_phy(bp, 0x10, &val);
2368 bnx2_write_phy(bp, 0x10, val & ~0x1);
2369 }
2370
2371 /* ethernet@wirespeed */
2372 bnx2_write_phy(bp, 0x18, 0x7007);
2373 bnx2_read_phy(bp, 0x18, &val);
2374 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2375 return 0;
2376 }
2377
2378
2379 static int
2380 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2381 __releases(&bp->phy_lock)
2382 __acquires(&bp->phy_lock)
2383 {
2384 u32 val;
2385 int rc = 0;
2386
2387 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2388 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2389
2390 bp->mii_bmcr = MII_BMCR;
2391 bp->mii_bmsr = MII_BMSR;
2392 bp->mii_bmsr1 = MII_BMSR;
2393 bp->mii_adv = MII_ADVERTISE;
2394 bp->mii_lpa = MII_LPA;
2395
2396 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2397
2398 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2399 goto setup_phy;
2400
2401 bnx2_read_phy(bp, MII_PHYSID1, &val);
2402 bp->phy_id = val << 16;
2403 bnx2_read_phy(bp, MII_PHYSID2, &val);
2404 bp->phy_id |= val & 0xffff;
2405
2406 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2407 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2408 rc = bnx2_init_5706s_phy(bp, reset_phy);
2409 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2410 rc = bnx2_init_5708s_phy(bp, reset_phy);
2411 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2412 rc = bnx2_init_5709s_phy(bp, reset_phy);
2413 }
2414 else {
2415 rc = bnx2_init_copper_phy(bp, reset_phy);
2416 }
2417
2418 setup_phy:
2419 if (!rc)
2420 rc = bnx2_setup_phy(bp, bp->phy_port);
2421
2422 return rc;
2423 }
2424
2425 static int
2426 bnx2_set_mac_loopback(struct bnx2 *bp)
2427 {
2428 u32 mac_mode;
2429
2430 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2431 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2432 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2433 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2434 bp->link_up = 1;
2435 return 0;
2436 }
2437
2438 static int bnx2_test_link(struct bnx2 *);
2439
2440 static int
2441 bnx2_set_phy_loopback(struct bnx2 *bp)
2442 {
2443 u32 mac_mode;
2444 int rc, i;
2445
2446 spin_lock_bh(&bp->phy_lock);
2447 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2448 BMCR_SPEED1000);
2449 spin_unlock_bh(&bp->phy_lock);
2450 if (rc)
2451 return rc;
2452
2453 for (i = 0; i < 10; i++) {
2454 if (bnx2_test_link(bp) == 0)
2455 break;
2456 msleep(100);
2457 }
2458
2459 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2460 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2461 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2462 BNX2_EMAC_MODE_25G_MODE);
2463
2464 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2465 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2466 bp->link_up = 1;
2467 return 0;
2468 }
2469
2470 static int
2471 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2472 {
2473 int i;
2474 u32 val;
2475
2476 bp->fw_wr_seq++;
2477 msg_data |= bp->fw_wr_seq;
2478
2479 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2480
2481 if (!ack)
2482 return 0;
2483
2484 /* wait for an acknowledgement. */
2485 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2486 msleep(10);
2487
2488 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2489
2490 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2491 break;
2492 }
2493 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2494 return 0;
2495
2496 /* If we timed out, inform the firmware that this is the case. */
2497 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2498 if (!silent)
2499 pr_err("fw sync timeout, reset code = %x\n", msg_data);
2500
2501 msg_data &= ~BNX2_DRV_MSG_CODE;
2502 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2503
2504 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2505
2506 return -EBUSY;
2507 }
2508
2509 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2510 return -EIO;
2511
2512 return 0;
2513 }
2514
2515 static int
2516 bnx2_init_5709_context(struct bnx2 *bp)
2517 {
2518 int i, ret = 0;
2519 u32 val;
2520
2521 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2522 val |= (BCM_PAGE_BITS - 8) << 16;
2523 REG_WR(bp, BNX2_CTX_COMMAND, val);
2524 for (i = 0; i < 10; i++) {
2525 val = REG_RD(bp, BNX2_CTX_COMMAND);
2526 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2527 break;
2528 udelay(2);
2529 }
2530 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2531 return -EBUSY;
2532
2533 for (i = 0; i < bp->ctx_pages; i++) {
2534 int j;
2535
2536 if (bp->ctx_blk[i])
2537 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2538 else
2539 return -ENOMEM;
2540
2541 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2542 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2543 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2544 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2545 (u64) bp->ctx_blk_mapping[i] >> 32);
2546 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2547 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2548 for (j = 0; j < 10; j++) {
2549
2550 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2551 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2552 break;
2553 udelay(5);
2554 }
2555 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2556 ret = -EBUSY;
2557 break;
2558 }
2559 }
2560 return ret;
2561 }
2562
2563 static void
2564 bnx2_init_context(struct bnx2 *bp)
2565 {
2566 u32 vcid;
2567
2568 vcid = 96;
2569 while (vcid) {
2570 u32 vcid_addr, pcid_addr, offset;
2571 int i;
2572
2573 vcid--;
2574
2575 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2576 u32 new_vcid;
2577
2578 vcid_addr = GET_PCID_ADDR(vcid);
2579 if (vcid & 0x8) {
2580 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2581 }
2582 else {
2583 new_vcid = vcid;
2584 }
2585 pcid_addr = GET_PCID_ADDR(new_vcid);
2586 }
2587 else {
2588 vcid_addr = GET_CID_ADDR(vcid);
2589 pcid_addr = vcid_addr;
2590 }
2591
2592 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2593 vcid_addr += (i << PHY_CTX_SHIFT);
2594 pcid_addr += (i << PHY_CTX_SHIFT);
2595
2596 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2597 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2598
2599 /* Zero out the context. */
2600 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2601 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2602 }
2603 }
2604 }
2605
2606 static int
2607 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2608 {
2609 u16 *good_mbuf;
2610 u32 good_mbuf_cnt;
2611 u32 val;
2612
2613 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2614 if (good_mbuf == NULL) {
2615 pr_err("Failed to allocate memory in %s\n", __func__);
2616 return -ENOMEM;
2617 }
2618
2619 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2620 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2621
2622 good_mbuf_cnt = 0;
2623
2624 /* Allocate a bunch of mbufs and save the good ones in an array. */
2625 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2626 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2627 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2628 BNX2_RBUF_COMMAND_ALLOC_REQ);
2629
2630 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2631
2632 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2633
2634 /* The addresses with Bit 9 set are bad memory blocks. */
2635 if (!(val & (1 << 9))) {
2636 good_mbuf[good_mbuf_cnt] = (u16) val;
2637 good_mbuf_cnt++;
2638 }
2639
2640 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2641 }
2642
2643 /* Free the good ones back to the mbuf pool thus discarding
2644 * all the bad ones. */
2645 while (good_mbuf_cnt) {
2646 good_mbuf_cnt--;
2647
2648 val = good_mbuf[good_mbuf_cnt];
2649 val = (val << 9) | val | 1;
2650
2651 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2652 }
2653 kfree(good_mbuf);
2654 return 0;
2655 }
2656
2657 static void
2658 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2659 {
2660 u32 val;
2661
2662 val = (mac_addr[0] << 8) | mac_addr[1];
2663
2664 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2665
2666 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2667 (mac_addr[4] << 8) | mac_addr[5];
2668
2669 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2670 }
2671
2672 static inline int
2673 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
2674 {
2675 dma_addr_t mapping;
2676 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2677 struct rx_bd *rxbd =
2678 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2679 struct page *page = alloc_page(gfp);
2680
2681 if (!page)
2682 return -ENOMEM;
2683 mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
2684 PCI_DMA_FROMDEVICE);
2685 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
2686 __free_page(page);
2687 return -EIO;
2688 }
2689
2690 rx_pg->page = page;
2691 dma_unmap_addr_set(rx_pg, mapping, mapping);
2692 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2693 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2694 return 0;
2695 }
2696
2697 static void
2698 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2699 {
2700 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2701 struct page *page = rx_pg->page;
2702
2703 if (!page)
2704 return;
2705
2706 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
2707 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2708
2709 __free_page(page);
2710 rx_pg->page = NULL;
2711 }
2712
2713 static inline int
2714 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
2715 {
2716 struct sk_buff *skb;
2717 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2718 dma_addr_t mapping;
2719 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2720 unsigned long align;
2721
2722 skb = __netdev_alloc_skb(bp->dev, bp->rx_buf_size, gfp);
2723 if (skb == NULL) {
2724 return -ENOMEM;
2725 }
2726
2727 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2728 skb_reserve(skb, BNX2_RX_ALIGN - align);
2729
2730 mapping = dma_map_single(&bp->pdev->dev, skb->data, bp->rx_buf_use_size,
2731 PCI_DMA_FROMDEVICE);
2732 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
2733 dev_kfree_skb(skb);
2734 return -EIO;
2735 }
2736
2737 rx_buf->skb = skb;
2738 rx_buf->desc = (struct l2_fhdr *) skb->data;
2739 dma_unmap_addr_set(rx_buf, mapping, mapping);
2740
2741 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2742 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2743
2744 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2745
2746 return 0;
2747 }
2748
2749 static int
2750 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2751 {
2752 struct status_block *sblk = bnapi->status_blk.msi;
2753 u32 new_link_state, old_link_state;
2754 int is_set = 1;
2755
2756 new_link_state = sblk->status_attn_bits & event;
2757 old_link_state = sblk->status_attn_bits_ack & event;
2758 if (new_link_state != old_link_state) {
2759 if (new_link_state)
2760 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2761 else
2762 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2763 } else
2764 is_set = 0;
2765
2766 return is_set;
2767 }
2768
2769 static void
2770 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2771 {
2772 spin_lock(&bp->phy_lock);
2773
2774 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2775 bnx2_set_link(bp);
2776 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2777 bnx2_set_remote_link(bp);
2778
2779 spin_unlock(&bp->phy_lock);
2780
2781 }
2782
2783 static inline u16
2784 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2785 {
2786 u16 cons;
2787
2788 /* Tell compiler that status block fields can change. */
2789 barrier();
2790 cons = *bnapi->hw_tx_cons_ptr;
2791 barrier();
2792 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2793 cons++;
2794 return cons;
2795 }
2796
2797 static int
2798 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2799 {
2800 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2801 u16 hw_cons, sw_cons, sw_ring_cons;
2802 int tx_pkt = 0, index;
2803 struct netdev_queue *txq;
2804
2805 index = (bnapi - bp->bnx2_napi);
2806 txq = netdev_get_tx_queue(bp->dev, index);
2807
2808 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2809 sw_cons = txr->tx_cons;
2810
2811 while (sw_cons != hw_cons) {
2812 struct sw_tx_bd *tx_buf;
2813 struct sk_buff *skb;
2814 int i, last;
2815
2816 sw_ring_cons = TX_RING_IDX(sw_cons);
2817
2818 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2819 skb = tx_buf->skb;
2820
2821 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2822 prefetch(&skb->end);
2823
2824 /* partial BD completions possible with TSO packets */
2825 if (tx_buf->is_gso) {
2826 u16 last_idx, last_ring_idx;
2827
2828 last_idx = sw_cons + tx_buf->nr_frags + 1;
2829 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2830 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2831 last_idx++;
2832 }
2833 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2834 break;
2835 }
2836 }
2837
2838 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
2839 skb_headlen(skb), PCI_DMA_TODEVICE);
2840
2841 tx_buf->skb = NULL;
2842 last = tx_buf->nr_frags;
2843
2844 for (i = 0; i < last; i++) {
2845 sw_cons = NEXT_TX_BD(sw_cons);
2846
2847 dma_unmap_page(&bp->pdev->dev,
2848 dma_unmap_addr(
2849 &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
2850 mapping),
2851 skb_shinfo(skb)->frags[i].size,
2852 PCI_DMA_TODEVICE);
2853 }
2854
2855 sw_cons = NEXT_TX_BD(sw_cons);
2856
2857 dev_kfree_skb(skb);
2858 tx_pkt++;
2859 if (tx_pkt == budget)
2860 break;
2861
2862 if (hw_cons == sw_cons)
2863 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2864 }
2865
2866 txr->hw_tx_cons = hw_cons;
2867 txr->tx_cons = sw_cons;
2868
2869 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2870 * before checking for netif_tx_queue_stopped(). Without the
2871 * memory barrier, there is a small possibility that bnx2_start_xmit()
2872 * will miss it and cause the queue to be stopped forever.
2873 */
2874 smp_mb();
2875
2876 if (unlikely(netif_tx_queue_stopped(txq)) &&
2877 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2878 __netif_tx_lock(txq, smp_processor_id());
2879 if ((netif_tx_queue_stopped(txq)) &&
2880 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2881 netif_tx_wake_queue(txq);
2882 __netif_tx_unlock(txq);
2883 }
2884
2885 return tx_pkt;
2886 }
2887
2888 static void
2889 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2890 struct sk_buff *skb, int count)
2891 {
2892 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2893 struct rx_bd *cons_bd, *prod_bd;
2894 int i;
2895 u16 hw_prod, prod;
2896 u16 cons = rxr->rx_pg_cons;
2897
2898 cons_rx_pg = &rxr->rx_pg_ring[cons];
2899
2900 /* The caller was unable to allocate a new page to replace the
2901 * last one in the frags array, so we need to recycle that page
2902 * and then free the skb.
2903 */
2904 if (skb) {
2905 struct page *page;
2906 struct skb_shared_info *shinfo;
2907
2908 shinfo = skb_shinfo(skb);
2909 shinfo->nr_frags--;
2910 page = shinfo->frags[shinfo->nr_frags].page;
2911 shinfo->frags[shinfo->nr_frags].page = NULL;
2912
2913 cons_rx_pg->page = page;
2914 dev_kfree_skb(skb);
2915 }
2916
2917 hw_prod = rxr->rx_pg_prod;
2918
2919 for (i = 0; i < count; i++) {
2920 prod = RX_PG_RING_IDX(hw_prod);
2921
2922 prod_rx_pg = &rxr->rx_pg_ring[prod];
2923 cons_rx_pg = &rxr->rx_pg_ring[cons];
2924 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2925 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2926
2927 if (prod != cons) {
2928 prod_rx_pg->page = cons_rx_pg->page;
2929 cons_rx_pg->page = NULL;
2930 dma_unmap_addr_set(prod_rx_pg, mapping,
2931 dma_unmap_addr(cons_rx_pg, mapping));
2932
2933 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2934 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2935
2936 }
2937 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2938 hw_prod = NEXT_RX_BD(hw_prod);
2939 }
2940 rxr->rx_pg_prod = hw_prod;
2941 rxr->rx_pg_cons = cons;
2942 }
2943
2944 static inline void
2945 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2946 struct sk_buff *skb, u16 cons, u16 prod)
2947 {
2948 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2949 struct rx_bd *cons_bd, *prod_bd;
2950
2951 cons_rx_buf = &rxr->rx_buf_ring[cons];
2952 prod_rx_buf = &rxr->rx_buf_ring[prod];
2953
2954 dma_sync_single_for_device(&bp->pdev->dev,
2955 dma_unmap_addr(cons_rx_buf, mapping),
2956 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2957
2958 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2959
2960 prod_rx_buf->skb = skb;
2961 prod_rx_buf->desc = (struct l2_fhdr *) skb->data;
2962
2963 if (cons == prod)
2964 return;
2965
2966 dma_unmap_addr_set(prod_rx_buf, mapping,
2967 dma_unmap_addr(cons_rx_buf, mapping));
2968
2969 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2970 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2971 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2972 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2973 }
2974
2975 static int
2976 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2977 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2978 u32 ring_idx)
2979 {
2980 int err;
2981 u16 prod = ring_idx & 0xffff;
2982
2983 err = bnx2_alloc_rx_skb(bp, rxr, prod, GFP_ATOMIC);
2984 if (unlikely(err)) {
2985 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2986 if (hdr_len) {
2987 unsigned int raw_len = len + 4;
2988 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2989
2990 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2991 }
2992 return err;
2993 }
2994
2995 skb_reserve(skb, BNX2_RX_OFFSET);
2996 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
2997 PCI_DMA_FROMDEVICE);
2998
2999 if (hdr_len == 0) {
3000 skb_put(skb, len);
3001 return 0;
3002 } else {
3003 unsigned int i, frag_len, frag_size, pages;
3004 struct sw_pg *rx_pg;
3005 u16 pg_cons = rxr->rx_pg_cons;
3006 u16 pg_prod = rxr->rx_pg_prod;
3007
3008 frag_size = len + 4 - hdr_len;
3009 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
3010 skb_put(skb, hdr_len);
3011
3012 for (i = 0; i < pages; i++) {
3013 dma_addr_t mapping_old;
3014
3015 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
3016 if (unlikely(frag_len <= 4)) {
3017 unsigned int tail = 4 - frag_len;
3018
3019 rxr->rx_pg_cons = pg_cons;
3020 rxr->rx_pg_prod = pg_prod;
3021 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
3022 pages - i);
3023 skb->len -= tail;
3024 if (i == 0) {
3025 skb->tail -= tail;
3026 } else {
3027 skb_frag_t *frag =
3028 &skb_shinfo(skb)->frags[i - 1];
3029 frag->size -= tail;
3030 skb->data_len -= tail;
3031 skb->truesize -= tail;
3032 }
3033 return 0;
3034 }
3035 rx_pg = &rxr->rx_pg_ring[pg_cons];
3036
3037 /* Don't unmap yet. If we're unable to allocate a new
3038 * page, we need to recycle the page and the DMA addr.
3039 */
3040 mapping_old = dma_unmap_addr(rx_pg, mapping);
3041 if (i == pages - 1)
3042 frag_len -= 4;
3043
3044 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3045 rx_pg->page = NULL;
3046
3047 err = bnx2_alloc_rx_page(bp, rxr,
3048 RX_PG_RING_IDX(pg_prod),
3049 GFP_ATOMIC);
3050 if (unlikely(err)) {
3051 rxr->rx_pg_cons = pg_cons;
3052 rxr->rx_pg_prod = pg_prod;
3053 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3054 pages - i);
3055 return err;
3056 }
3057
3058 dma_unmap_page(&bp->pdev->dev, mapping_old,
3059 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3060
3061 frag_size -= frag_len;
3062 skb->data_len += frag_len;
3063 skb->truesize += frag_len;
3064 skb->len += frag_len;
3065
3066 pg_prod = NEXT_RX_BD(pg_prod);
3067 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3068 }
3069 rxr->rx_pg_prod = pg_prod;
3070 rxr->rx_pg_cons = pg_cons;
3071 }
3072 return 0;
3073 }
3074
3075 static inline u16
3076 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3077 {
3078 u16 cons;
3079
3080 /* Tell compiler that status block fields can change. */
3081 barrier();
3082 cons = *bnapi->hw_rx_cons_ptr;
3083 barrier();
3084 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3085 cons++;
3086 return cons;
3087 }
3088
3089 static int
3090 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3091 {
3092 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3093 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3094 struct l2_fhdr *rx_hdr;
3095 int rx_pkt = 0, pg_ring_used = 0;
3096
3097 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3098 sw_cons = rxr->rx_cons;
3099 sw_prod = rxr->rx_prod;
3100
3101 /* Memory barrier necessary as speculative reads of the rx
3102 * buffer can be ahead of the index in the status block
3103 */
3104 rmb();
3105 while (sw_cons != hw_cons) {
3106 unsigned int len, hdr_len;
3107 u32 status;
3108 struct sw_bd *rx_buf, *next_rx_buf;
3109 struct sk_buff *skb;
3110 dma_addr_t dma_addr;
3111 u16 vtag = 0;
3112 int hw_vlan __maybe_unused = 0;
3113
3114 sw_ring_cons = RX_RING_IDX(sw_cons);
3115 sw_ring_prod = RX_RING_IDX(sw_prod);
3116
3117 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3118 skb = rx_buf->skb;
3119 prefetchw(skb);
3120
3121 next_rx_buf =
3122 &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
3123 prefetch(next_rx_buf->desc);
3124
3125 rx_buf->skb = NULL;
3126
3127 dma_addr = dma_unmap_addr(rx_buf, mapping);
3128
3129 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
3130 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3131 PCI_DMA_FROMDEVICE);
3132
3133 rx_hdr = rx_buf->desc;
3134 len = rx_hdr->l2_fhdr_pkt_len;
3135 status = rx_hdr->l2_fhdr_status;
3136
3137 hdr_len = 0;
3138 if (status & L2_FHDR_STATUS_SPLIT) {
3139 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3140 pg_ring_used = 1;
3141 } else if (len > bp->rx_jumbo_thresh) {
3142 hdr_len = bp->rx_jumbo_thresh;
3143 pg_ring_used = 1;
3144 }
3145
3146 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3147 L2_FHDR_ERRORS_PHY_DECODE |
3148 L2_FHDR_ERRORS_ALIGNMENT |
3149 L2_FHDR_ERRORS_TOO_SHORT |
3150 L2_FHDR_ERRORS_GIANT_FRAME))) {
3151
3152 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3153 sw_ring_prod);
3154 if (pg_ring_used) {
3155 int pages;
3156
3157 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3158
3159 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3160 }
3161 goto next_rx;
3162 }
3163
3164 len -= 4;
3165
3166 if (len <= bp->rx_copy_thresh) {
3167 struct sk_buff *new_skb;
3168
3169 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3170 if (new_skb == NULL) {
3171 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3172 sw_ring_prod);
3173 goto next_rx;
3174 }
3175
3176 /* aligned copy */
3177 skb_copy_from_linear_data_offset(skb,
3178 BNX2_RX_OFFSET - 6,
3179 new_skb->data, len + 6);
3180 skb_reserve(new_skb, 6);
3181 skb_put(new_skb, len);
3182
3183 bnx2_reuse_rx_skb(bp, rxr, skb,
3184 sw_ring_cons, sw_ring_prod);
3185
3186 skb = new_skb;
3187 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3188 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3189 goto next_rx;
3190
3191 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3192 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
3193 vtag = rx_hdr->l2_fhdr_vlan_tag;
3194 #ifdef BCM_VLAN
3195 if (bp->vlgrp)
3196 hw_vlan = 1;
3197 else
3198 #endif
3199 {
3200 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
3201 __skb_push(skb, 4);
3202
3203 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3204 ve->h_vlan_proto = htons(ETH_P_8021Q);
3205 ve->h_vlan_TCI = htons(vtag);
3206 len += 4;
3207 }
3208 }
3209
3210 skb->protocol = eth_type_trans(skb, bp->dev);
3211
3212 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3213 (ntohs(skb->protocol) != 0x8100)) {
3214
3215 dev_kfree_skb(skb);
3216 goto next_rx;
3217
3218 }
3219
3220 skb->ip_summed = CHECKSUM_NONE;
3221 if (bp->rx_csum &&
3222 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3223 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3224
3225 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3226 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3227 skb->ip_summed = CHECKSUM_UNNECESSARY;
3228 }
3229 if ((bp->dev->features & NETIF_F_RXHASH) &&
3230 ((status & L2_FHDR_STATUS_USE_RXHASH) ==
3231 L2_FHDR_STATUS_USE_RXHASH))
3232 skb->rxhash = rx_hdr->l2_fhdr_hash;
3233
3234 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3235
3236 #ifdef BCM_VLAN
3237 if (hw_vlan)
3238 vlan_gro_receive(&bnapi->napi, bp->vlgrp, vtag, skb);
3239 else
3240 #endif
3241 napi_gro_receive(&bnapi->napi, skb);
3242
3243 rx_pkt++;
3244
3245 next_rx:
3246 sw_cons = NEXT_RX_BD(sw_cons);
3247 sw_prod = NEXT_RX_BD(sw_prod);
3248
3249 if ((rx_pkt == budget))
3250 break;
3251
3252 /* Refresh hw_cons to see if there is new work */
3253 if (sw_cons == hw_cons) {
3254 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3255 rmb();
3256 }
3257 }
3258 rxr->rx_cons = sw_cons;
3259 rxr->rx_prod = sw_prod;
3260
3261 if (pg_ring_used)
3262 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3263
3264 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3265
3266 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3267
3268 mmiowb();
3269
3270 return rx_pkt;
3271
3272 }
3273
3274 /* MSI ISR - The only difference between this and the INTx ISR
3275 * is that the MSI interrupt is always serviced.
3276 */
3277 static irqreturn_t
3278 bnx2_msi(int irq, void *dev_instance)
3279 {
3280 struct bnx2_napi *bnapi = dev_instance;
3281 struct bnx2 *bp = bnapi->bp;
3282
3283 prefetch(bnapi->status_blk.msi);
3284 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3285 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3286 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3287
3288 /* Return here if interrupt is disabled. */
3289 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3290 return IRQ_HANDLED;
3291
3292 napi_schedule(&bnapi->napi);
3293
3294 return IRQ_HANDLED;
3295 }
3296
3297 static irqreturn_t
3298 bnx2_msi_1shot(int irq, void *dev_instance)
3299 {
3300 struct bnx2_napi *bnapi = dev_instance;
3301 struct bnx2 *bp = bnapi->bp;
3302
3303 prefetch(bnapi->status_blk.msi);
3304
3305 /* Return here if interrupt is disabled. */
3306 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3307 return IRQ_HANDLED;
3308
3309 napi_schedule(&bnapi->napi);
3310
3311 return IRQ_HANDLED;
3312 }
3313
3314 static irqreturn_t
3315 bnx2_interrupt(int irq, void *dev_instance)
3316 {
3317 struct bnx2_napi *bnapi = dev_instance;
3318 struct bnx2 *bp = bnapi->bp;
3319 struct status_block *sblk = bnapi->status_blk.msi;
3320
3321 /* When using INTx, it is possible for the interrupt to arrive
3322 * at the CPU before the status block posted prior to the
3323 * interrupt. Reading a register will flush the status block.
3324 * When using MSI, the MSI message will always complete after
3325 * the status block write.
3326 */
3327 if ((sblk->status_idx == bnapi->last_status_idx) &&
3328 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3329 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3330 return IRQ_NONE;
3331
3332 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3333 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3334 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3335
3336 /* Read back to deassert IRQ immediately to avoid too many
3337 * spurious interrupts.
3338 */
3339 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3340
3341 /* Return here if interrupt is shared and is disabled. */
3342 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3343 return IRQ_HANDLED;
3344
3345 if (napi_schedule_prep(&bnapi->napi)) {
3346 bnapi->last_status_idx = sblk->status_idx;
3347 __napi_schedule(&bnapi->napi);
3348 }
3349
3350 return IRQ_HANDLED;
3351 }
3352
3353 static inline int
3354 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3355 {
3356 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3357 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3358
3359 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3360 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3361 return 1;
3362 return 0;
3363 }
3364
3365 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3366 STATUS_ATTN_BITS_TIMER_ABORT)
3367
3368 static inline int
3369 bnx2_has_work(struct bnx2_napi *bnapi)
3370 {
3371 struct status_block *sblk = bnapi->status_blk.msi;
3372
3373 if (bnx2_has_fast_work(bnapi))
3374 return 1;
3375
3376 #ifdef BCM_CNIC
3377 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3378 return 1;
3379 #endif
3380
3381 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3382 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3383 return 1;
3384
3385 return 0;
3386 }
3387
3388 static void
3389 bnx2_chk_missed_msi(struct bnx2 *bp)
3390 {
3391 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3392 u32 msi_ctrl;
3393
3394 if (bnx2_has_work(bnapi)) {
3395 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3396 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3397 return;
3398
3399 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3400 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3401 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3402 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3403 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3404 }
3405 }
3406
3407 bp->idle_chk_status_idx = bnapi->last_status_idx;
3408 }
3409
3410 #ifdef BCM_CNIC
3411 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3412 {
3413 struct cnic_ops *c_ops;
3414
3415 if (!bnapi->cnic_present)
3416 return;
3417
3418 rcu_read_lock();
3419 c_ops = rcu_dereference(bp->cnic_ops);
3420 if (c_ops)
3421 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3422 bnapi->status_blk.msi);
3423 rcu_read_unlock();
3424 }
3425 #endif
3426
3427 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3428 {
3429 struct status_block *sblk = bnapi->status_blk.msi;
3430 u32 status_attn_bits = sblk->status_attn_bits;
3431 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3432
3433 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3434 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3435
3436 bnx2_phy_int(bp, bnapi);
3437
3438 /* This is needed to take care of transient status
3439 * during link changes.
3440 */
3441 REG_WR(bp, BNX2_HC_COMMAND,
3442 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3443 REG_RD(bp, BNX2_HC_COMMAND);
3444 }
3445 }
3446
3447 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3448 int work_done, int budget)
3449 {
3450 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3451 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3452
3453 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3454 bnx2_tx_int(bp, bnapi, 0);
3455
3456 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3457 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3458
3459 return work_done;
3460 }
3461
3462 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3463 {
3464 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3465 struct bnx2 *bp = bnapi->bp;
3466 int work_done = 0;
3467 struct status_block_msix *sblk = bnapi->status_blk.msix;
3468
3469 while (1) {
3470 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3471 if (unlikely(work_done >= budget))
3472 break;
3473
3474 bnapi->last_status_idx = sblk->status_idx;
3475 /* status idx must be read before checking for more work. */
3476 rmb();
3477 if (likely(!bnx2_has_fast_work(bnapi))) {
3478
3479 napi_complete(napi);
3480 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3481 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3482 bnapi->last_status_idx);
3483 break;
3484 }
3485 }
3486 return work_done;
3487 }
3488
3489 static int bnx2_poll(struct napi_struct *napi, int budget)
3490 {
3491 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3492 struct bnx2 *bp = bnapi->bp;
3493 int work_done = 0;
3494 struct status_block *sblk = bnapi->status_blk.msi;
3495
3496 while (1) {
3497 bnx2_poll_link(bp, bnapi);
3498
3499 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3500
3501 #ifdef BCM_CNIC
3502 bnx2_poll_cnic(bp, bnapi);
3503 #endif
3504
3505 /* bnapi->last_status_idx is used below to tell the hw how
3506 * much work has been processed, so we must read it before
3507 * checking for more work.
3508 */
3509 bnapi->last_status_idx = sblk->status_idx;
3510
3511 if (unlikely(work_done >= budget))
3512 break;
3513
3514 rmb();
3515 if (likely(!bnx2_has_work(bnapi))) {
3516 napi_complete(napi);
3517 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3518 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3519 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3520 bnapi->last_status_idx);
3521 break;
3522 }
3523 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3524 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3525 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3526 bnapi->last_status_idx);
3527
3528 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3529 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3530 bnapi->last_status_idx);
3531 break;
3532 }
3533 }
3534
3535 return work_done;
3536 }
3537
3538 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3539 * from set_multicast.
3540 */
3541 static void
3542 bnx2_set_rx_mode(struct net_device *dev)
3543 {
3544 struct bnx2 *bp = netdev_priv(dev);
3545 u32 rx_mode, sort_mode;
3546 struct netdev_hw_addr *ha;
3547 int i;
3548
3549 if (!netif_running(dev))
3550 return;
3551
3552 spin_lock_bh(&bp->phy_lock);
3553
3554 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3555 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3556 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3557 #ifdef BCM_VLAN
3558 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3559 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3560 #else
3561 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3562 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3563 #endif
3564 if (dev->flags & IFF_PROMISC) {
3565 /* Promiscuous mode. */
3566 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3567 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3568 BNX2_RPM_SORT_USER0_PROM_VLAN;
3569 }
3570 else if (dev->flags & IFF_ALLMULTI) {
3571 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3572 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3573 0xffffffff);
3574 }
3575 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3576 }
3577 else {
3578 /* Accept one or more multicast(s). */
3579 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3580 u32 regidx;
3581 u32 bit;
3582 u32 crc;
3583
3584 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3585
3586 netdev_for_each_mc_addr(ha, dev) {
3587 crc = ether_crc_le(ETH_ALEN, ha->addr);
3588 bit = crc & 0xff;
3589 regidx = (bit & 0xe0) >> 5;
3590 bit &= 0x1f;
3591 mc_filter[regidx] |= (1 << bit);
3592 }
3593
3594 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3595 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3596 mc_filter[i]);
3597 }
3598
3599 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3600 }
3601
3602 if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
3603 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3604 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3605 BNX2_RPM_SORT_USER0_PROM_VLAN;
3606 } else if (!(dev->flags & IFF_PROMISC)) {
3607 /* Add all entries into to the match filter list */
3608 i = 0;
3609 netdev_for_each_uc_addr(ha, dev) {
3610 bnx2_set_mac_addr(bp, ha->addr,
3611 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3612 sort_mode |= (1 <<
3613 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3614 i++;
3615 }
3616
3617 }
3618
3619 if (rx_mode != bp->rx_mode) {
3620 bp->rx_mode = rx_mode;
3621 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3622 }
3623
3624 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3625 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3626 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3627
3628 spin_unlock_bh(&bp->phy_lock);
3629 }
3630
3631 static int __devinit
3632 check_fw_section(const struct firmware *fw,
3633 const struct bnx2_fw_file_section *section,
3634 u32 alignment, bool non_empty)
3635 {
3636 u32 offset = be32_to_cpu(section->offset);
3637 u32 len = be32_to_cpu(section->len);
3638
3639 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3640 return -EINVAL;
3641 if ((non_empty && len == 0) || len > fw->size - offset ||
3642 len & (alignment - 1))
3643 return -EINVAL;
3644 return 0;
3645 }
3646
3647 static int __devinit
3648 check_mips_fw_entry(const struct firmware *fw,
3649 const struct bnx2_mips_fw_file_entry *entry)
3650 {
3651 if (check_fw_section(fw, &entry->text, 4, true) ||
3652 check_fw_section(fw, &entry->data, 4, false) ||
3653 check_fw_section(fw, &entry->rodata, 4, false))
3654 return -EINVAL;
3655 return 0;
3656 }
3657
3658 static int __devinit
3659 bnx2_request_firmware(struct bnx2 *bp)
3660 {
3661 const char *mips_fw_file, *rv2p_fw_file;
3662 const struct bnx2_mips_fw_file *mips_fw;
3663 const struct bnx2_rv2p_fw_file *rv2p_fw;
3664 int rc;
3665
3666 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3667 mips_fw_file = FW_MIPS_FILE_09;
3668 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3669 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3670 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3671 else
3672 rv2p_fw_file = FW_RV2P_FILE_09;
3673 } else {
3674 mips_fw_file = FW_MIPS_FILE_06;
3675 rv2p_fw_file = FW_RV2P_FILE_06;
3676 }
3677
3678 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3679 if (rc) {
3680 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
3681 return rc;
3682 }
3683
3684 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3685 if (rc) {
3686 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
3687 return rc;
3688 }
3689 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3690 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3691 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3692 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3693 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3694 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3695 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3696 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3697 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
3698 return -EINVAL;
3699 }
3700 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3701 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3702 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3703 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
3704 return -EINVAL;
3705 }
3706
3707 return 0;
3708 }
3709
3710 static u32
3711 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3712 {
3713 switch (idx) {
3714 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3715 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3716 rv2p_code |= RV2P_BD_PAGE_SIZE;
3717 break;
3718 }
3719 return rv2p_code;
3720 }
3721
3722 static int
3723 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3724 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3725 {
3726 u32 rv2p_code_len, file_offset;
3727 __be32 *rv2p_code;
3728 int i;
3729 u32 val, cmd, addr;
3730
3731 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3732 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3733
3734 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3735
3736 if (rv2p_proc == RV2P_PROC1) {
3737 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3738 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3739 } else {
3740 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3741 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3742 }
3743
3744 for (i = 0; i < rv2p_code_len; i += 8) {
3745 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3746 rv2p_code++;
3747 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3748 rv2p_code++;
3749
3750 val = (i / 8) | cmd;
3751 REG_WR(bp, addr, val);
3752 }
3753
3754 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3755 for (i = 0; i < 8; i++) {
3756 u32 loc, code;
3757
3758 loc = be32_to_cpu(fw_entry->fixup[i]);
3759 if (loc && ((loc * 4) < rv2p_code_len)) {
3760 code = be32_to_cpu(*(rv2p_code + loc - 1));
3761 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3762 code = be32_to_cpu(*(rv2p_code + loc));
3763 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3764 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3765
3766 val = (loc / 2) | cmd;
3767 REG_WR(bp, addr, val);
3768 }
3769 }
3770
3771 /* Reset the processor, un-stall is done later. */
3772 if (rv2p_proc == RV2P_PROC1) {
3773 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3774 }
3775 else {
3776 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3777 }
3778
3779 return 0;
3780 }
3781
3782 static int
3783 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3784 const struct bnx2_mips_fw_file_entry *fw_entry)
3785 {
3786 u32 addr, len, file_offset;
3787 __be32 *data;
3788 u32 offset;
3789 u32 val;
3790
3791 /* Halt the CPU. */
3792 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3793 val |= cpu_reg->mode_value_halt;
3794 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3795 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3796
3797 /* Load the Text area. */
3798 addr = be32_to_cpu(fw_entry->text.addr);
3799 len = be32_to_cpu(fw_entry->text.len);
3800 file_offset = be32_to_cpu(fw_entry->text.offset);
3801 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3802
3803 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3804 if (len) {
3805 int j;
3806
3807 for (j = 0; j < (len / 4); j++, offset += 4)
3808 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3809 }
3810
3811 /* Load the Data area. */
3812 addr = be32_to_cpu(fw_entry->data.addr);
3813 len = be32_to_cpu(fw_entry->data.len);
3814 file_offset = be32_to_cpu(fw_entry->data.offset);
3815 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3816
3817 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3818 if (len) {
3819 int j;
3820
3821 for (j = 0; j < (len / 4); j++, offset += 4)
3822 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3823 }
3824
3825 /* Load the Read-Only area. */
3826 addr = be32_to_cpu(fw_entry->rodata.addr);
3827 len = be32_to_cpu(fw_entry->rodata.len);
3828 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3829 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3830
3831 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3832 if (len) {
3833 int j;
3834
3835 for (j = 0; j < (len / 4); j++, offset += 4)
3836 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3837 }
3838
3839 /* Clear the pre-fetch instruction. */
3840 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3841
3842 val = be32_to_cpu(fw_entry->start_addr);
3843 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3844
3845 /* Start the CPU. */
3846 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3847 val &= ~cpu_reg->mode_value_halt;
3848 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3849 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3850
3851 return 0;
3852 }
3853
3854 static int
3855 bnx2_init_cpus(struct bnx2 *bp)
3856 {
3857 const struct bnx2_mips_fw_file *mips_fw =
3858 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3859 const struct bnx2_rv2p_fw_file *rv2p_fw =
3860 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3861 int rc;
3862
3863 /* Initialize the RV2P processor. */
3864 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3865 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3866
3867 /* Initialize the RX Processor. */
3868 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3869 if (rc)
3870 goto init_cpu_err;
3871
3872 /* Initialize the TX Processor. */
3873 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3874 if (rc)
3875 goto init_cpu_err;
3876
3877 /* Initialize the TX Patch-up Processor. */
3878 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3879 if (rc)
3880 goto init_cpu_err;
3881
3882 /* Initialize the Completion Processor. */
3883 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3884 if (rc)
3885 goto init_cpu_err;
3886
3887 /* Initialize the Command Processor. */
3888 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3889
3890 init_cpu_err:
3891 return rc;
3892 }
3893
3894 static int
3895 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3896 {
3897 u16 pmcsr;
3898
3899 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3900
3901 switch (state) {
3902 case PCI_D0: {
3903 u32 val;
3904
3905 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3906 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3907 PCI_PM_CTRL_PME_STATUS);
3908
3909 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3910 /* delay required during transition out of D3hot */
3911 msleep(20);
3912
3913 val = REG_RD(bp, BNX2_EMAC_MODE);
3914 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3915 val &= ~BNX2_EMAC_MODE_MPKT;
3916 REG_WR(bp, BNX2_EMAC_MODE, val);
3917
3918 val = REG_RD(bp, BNX2_RPM_CONFIG);
3919 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3920 REG_WR(bp, BNX2_RPM_CONFIG, val);
3921 break;
3922 }
3923 case PCI_D3hot: {
3924 int i;
3925 u32 val, wol_msg;
3926
3927 if (bp->wol) {
3928 u32 advertising;
3929 u8 autoneg;
3930
3931 autoneg = bp->autoneg;
3932 advertising = bp->advertising;
3933
3934 if (bp->phy_port == PORT_TP) {
3935 bp->autoneg = AUTONEG_SPEED;
3936 bp->advertising = ADVERTISED_10baseT_Half |
3937 ADVERTISED_10baseT_Full |
3938 ADVERTISED_100baseT_Half |
3939 ADVERTISED_100baseT_Full |
3940 ADVERTISED_Autoneg;
3941 }
3942
3943 spin_lock_bh(&bp->phy_lock);
3944 bnx2_setup_phy(bp, bp->phy_port);
3945 spin_unlock_bh(&bp->phy_lock);
3946
3947 bp->autoneg = autoneg;
3948 bp->advertising = advertising;
3949
3950 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3951
3952 val = REG_RD(bp, BNX2_EMAC_MODE);
3953
3954 /* Enable port mode. */
3955 val &= ~BNX2_EMAC_MODE_PORT;
3956 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3957 BNX2_EMAC_MODE_ACPI_RCVD |
3958 BNX2_EMAC_MODE_MPKT;
3959 if (bp->phy_port == PORT_TP)
3960 val |= BNX2_EMAC_MODE_PORT_MII;
3961 else {
3962 val |= BNX2_EMAC_MODE_PORT_GMII;
3963 if (bp->line_speed == SPEED_2500)
3964 val |= BNX2_EMAC_MODE_25G_MODE;
3965 }
3966
3967 REG_WR(bp, BNX2_EMAC_MODE, val);
3968
3969 /* receive all multicast */
3970 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3971 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3972 0xffffffff);
3973 }
3974 REG_WR(bp, BNX2_EMAC_RX_MODE,
3975 BNX2_EMAC_RX_MODE_SORT_MODE);
3976
3977 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3978 BNX2_RPM_SORT_USER0_MC_EN;
3979 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3980 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3981 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3982 BNX2_RPM_SORT_USER0_ENA);
3983
3984 /* Need to enable EMAC and RPM for WOL. */
3985 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3986 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3987 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3988 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3989
3990 val = REG_RD(bp, BNX2_RPM_CONFIG);
3991 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3992 REG_WR(bp, BNX2_RPM_CONFIG, val);
3993
3994 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3995 }
3996 else {
3997 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3998 }
3999
4000 if (!(bp->flags & BNX2_FLAG_NO_WOL))
4001 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
4002 1, 0);
4003
4004 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4005 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4006 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
4007
4008 if (bp->wol)
4009 pmcsr |= 3;
4010 }
4011 else {
4012 pmcsr |= 3;
4013 }
4014 if (bp->wol) {
4015 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
4016 }
4017 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
4018 pmcsr);
4019
4020 /* No more memory access after this point until
4021 * device is brought back to D0.
4022 */
4023 udelay(50);
4024 break;
4025 }
4026 default:
4027 return -EINVAL;
4028 }
4029 return 0;
4030 }
4031
4032 static int
4033 bnx2_acquire_nvram_lock(struct bnx2 *bp)
4034 {
4035 u32 val;
4036 int j;
4037
4038 /* Request access to the flash interface. */
4039 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
4040 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4041 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4042 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
4043 break;
4044
4045 udelay(5);
4046 }
4047
4048 if (j >= NVRAM_TIMEOUT_COUNT)
4049 return -EBUSY;
4050
4051 return 0;
4052 }
4053
4054 static int
4055 bnx2_release_nvram_lock(struct bnx2 *bp)
4056 {
4057 int j;
4058 u32 val;
4059
4060 /* Relinquish nvram interface. */
4061 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4062
4063 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4064 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4065 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4066 break;
4067
4068 udelay(5);
4069 }
4070
4071 if (j >= NVRAM_TIMEOUT_COUNT)
4072 return -EBUSY;
4073
4074 return 0;
4075 }
4076
4077
4078 static int
4079 bnx2_enable_nvram_write(struct bnx2 *bp)
4080 {
4081 u32 val;
4082
4083 val = REG_RD(bp, BNX2_MISC_CFG);
4084 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4085
4086 if (bp->flash_info->flags & BNX2_NV_WREN) {
4087 int j;
4088
4089 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4090 REG_WR(bp, BNX2_NVM_COMMAND,
4091 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4092
4093 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4094 udelay(5);
4095
4096 val = REG_RD(bp, BNX2_NVM_COMMAND);
4097 if (val & BNX2_NVM_COMMAND_DONE)
4098 break;
4099 }
4100
4101 if (j >= NVRAM_TIMEOUT_COUNT)
4102 return -EBUSY;
4103 }
4104 return 0;
4105 }
4106
4107 static void
4108 bnx2_disable_nvram_write(struct bnx2 *bp)
4109 {
4110 u32 val;
4111
4112 val = REG_RD(bp, BNX2_MISC_CFG);
4113 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4114 }
4115
4116
4117 static void
4118 bnx2_enable_nvram_access(struct bnx2 *bp)
4119 {
4120 u32 val;
4121
4122 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4123 /* Enable both bits, even on read. */
4124 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4125 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4126 }
4127
4128 static void
4129 bnx2_disable_nvram_access(struct bnx2 *bp)
4130 {
4131 u32 val;
4132
4133 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4134 /* Disable both bits, even after read. */
4135 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4136 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4137 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4138 }
4139
4140 static int
4141 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4142 {
4143 u32 cmd;
4144 int j;
4145
4146 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4147 /* Buffered flash, no erase needed */
4148 return 0;
4149
4150 /* Build an erase command */
4151 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4152 BNX2_NVM_COMMAND_DOIT;
4153
4154 /* Need to clear DONE bit separately. */
4155 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4156
4157 /* Address of the NVRAM to read from. */
4158 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4159
4160 /* Issue an erase command. */
4161 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4162
4163 /* Wait for completion. */
4164 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4165 u32 val;
4166
4167 udelay(5);
4168
4169 val = REG_RD(bp, BNX2_NVM_COMMAND);
4170 if (val & BNX2_NVM_COMMAND_DONE)
4171 break;
4172 }
4173
4174 if (j >= NVRAM_TIMEOUT_COUNT)
4175 return -EBUSY;
4176
4177 return 0;
4178 }
4179
4180 static int
4181 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4182 {
4183 u32 cmd;
4184 int j;
4185
4186 /* Build the command word. */
4187 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4188
4189 /* Calculate an offset of a buffered flash, not needed for 5709. */
4190 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4191 offset = ((offset / bp->flash_info->page_size) <<
4192 bp->flash_info->page_bits) +
4193 (offset % bp->flash_info->page_size);
4194 }
4195
4196 /* Need to clear DONE bit separately. */
4197 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4198
4199 /* Address of the NVRAM to read from. */
4200 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4201
4202 /* Issue a read command. */
4203 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4204
4205 /* Wait for completion. */
4206 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4207 u32 val;
4208
4209 udelay(5);
4210
4211 val = REG_RD(bp, BNX2_NVM_COMMAND);
4212 if (val & BNX2_NVM_COMMAND_DONE) {
4213 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4214 memcpy(ret_val, &v, 4);
4215 break;
4216 }
4217 }
4218 if (j >= NVRAM_TIMEOUT_COUNT)
4219 return -EBUSY;
4220
4221 return 0;
4222 }
4223
4224
4225 static int
4226 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4227 {
4228 u32 cmd;
4229 __be32 val32;
4230 int j;
4231
4232 /* Build the command word. */
4233 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4234
4235 /* Calculate an offset of a buffered flash, not needed for 5709. */
4236 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4237 offset = ((offset / bp->flash_info->page_size) <<
4238 bp->flash_info->page_bits) +
4239 (offset % bp->flash_info->page_size);
4240 }
4241
4242 /* Need to clear DONE bit separately. */
4243 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4244
4245 memcpy(&val32, val, 4);
4246
4247 /* Write the data. */
4248 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4249
4250 /* Address of the NVRAM to write to. */
4251 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4252
4253 /* Issue the write command. */
4254 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4255
4256 /* Wait for completion. */
4257 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4258 udelay(5);
4259
4260 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4261 break;
4262 }
4263 if (j >= NVRAM_TIMEOUT_COUNT)
4264 return -EBUSY;
4265
4266 return 0;
4267 }
4268
4269 static int
4270 bnx2_init_nvram(struct bnx2 *bp)
4271 {
4272 u32 val;
4273 int j, entry_count, rc = 0;
4274 const struct flash_spec *flash;
4275
4276 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4277 bp->flash_info = &flash_5709;
4278 goto get_flash_size;
4279 }
4280
4281 /* Determine the selected interface. */
4282 val = REG_RD(bp, BNX2_NVM_CFG1);
4283
4284 entry_count = ARRAY_SIZE(flash_table);
4285
4286 if (val & 0x40000000) {
4287
4288 /* Flash interface has been reconfigured */
4289 for (j = 0, flash = &flash_table[0]; j < entry_count;
4290 j++, flash++) {
4291 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4292 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4293 bp->flash_info = flash;
4294 break;
4295 }
4296 }
4297 }
4298 else {
4299 u32 mask;
4300 /* Not yet been reconfigured */
4301
4302 if (val & (1 << 23))
4303 mask = FLASH_BACKUP_STRAP_MASK;
4304 else
4305 mask = FLASH_STRAP_MASK;
4306
4307 for (j = 0, flash = &flash_table[0]; j < entry_count;
4308 j++, flash++) {
4309
4310 if ((val & mask) == (flash->strapping & mask)) {
4311 bp->flash_info = flash;
4312
4313 /* Request access to the flash interface. */
4314 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4315 return rc;
4316
4317 /* Enable access to flash interface */
4318 bnx2_enable_nvram_access(bp);
4319
4320 /* Reconfigure the flash interface */
4321 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4322 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4323 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4324 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4325
4326 /* Disable access to flash interface */
4327 bnx2_disable_nvram_access(bp);
4328 bnx2_release_nvram_lock(bp);
4329
4330 break;
4331 }
4332 }
4333 } /* if (val & 0x40000000) */
4334
4335 if (j == entry_count) {
4336 bp->flash_info = NULL;
4337 pr_alert("Unknown flash/EEPROM type\n");
4338 return -ENODEV;
4339 }
4340
4341 get_flash_size:
4342 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4343 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4344 if (val)
4345 bp->flash_size = val;
4346 else
4347 bp->flash_size = bp->flash_info->total_size;
4348
4349 return rc;
4350 }
4351
4352 static int
4353 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4354 int buf_size)
4355 {
4356 int rc = 0;
4357 u32 cmd_flags, offset32, len32, extra;
4358
4359 if (buf_size == 0)
4360 return 0;
4361
4362 /* Request access to the flash interface. */
4363 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4364 return rc;
4365
4366 /* Enable access to flash interface */
4367 bnx2_enable_nvram_access(bp);
4368
4369 len32 = buf_size;
4370 offset32 = offset;
4371 extra = 0;
4372
4373 cmd_flags = 0;
4374
4375 if (offset32 & 3) {
4376 u8 buf[4];
4377 u32 pre_len;
4378
4379 offset32 &= ~3;
4380 pre_len = 4 - (offset & 3);
4381
4382 if (pre_len >= len32) {
4383 pre_len = len32;
4384 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4385 BNX2_NVM_COMMAND_LAST;
4386 }
4387 else {
4388 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4389 }
4390
4391 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4392
4393 if (rc)
4394 return rc;
4395
4396 memcpy(ret_buf, buf + (offset & 3), pre_len);
4397
4398 offset32 += 4;
4399 ret_buf += pre_len;
4400 len32 -= pre_len;
4401 }
4402 if (len32 & 3) {
4403 extra = 4 - (len32 & 3);
4404 len32 = (len32 + 4) & ~3;
4405 }
4406
4407 if (len32 == 4) {
4408 u8 buf[4];
4409
4410 if (cmd_flags)
4411 cmd_flags = BNX2_NVM_COMMAND_LAST;
4412 else
4413 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4414 BNX2_NVM_COMMAND_LAST;
4415
4416 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4417
4418 memcpy(ret_buf, buf, 4 - extra);
4419 }
4420 else if (len32 > 0) {
4421 u8 buf[4];
4422
4423 /* Read the first word. */
4424 if (cmd_flags)
4425 cmd_flags = 0;
4426 else
4427 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4428
4429 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4430
4431 /* Advance to the next dword. */
4432 offset32 += 4;
4433 ret_buf += 4;
4434 len32 -= 4;
4435
4436 while (len32 > 4 && rc == 0) {
4437 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4438
4439 /* Advance to the next dword. */
4440 offset32 += 4;
4441 ret_buf += 4;
4442 len32 -= 4;
4443 }
4444
4445 if (rc)
4446 return rc;
4447
4448 cmd_flags = BNX2_NVM_COMMAND_LAST;
4449 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4450
4451 memcpy(ret_buf, buf, 4 - extra);
4452 }
4453
4454 /* Disable access to flash interface */
4455 bnx2_disable_nvram_access(bp);
4456
4457 bnx2_release_nvram_lock(bp);
4458
4459 return rc;
4460 }
4461
4462 static int
4463 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4464 int buf_size)
4465 {
4466 u32 written, offset32, len32;
4467 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4468 int rc = 0;
4469 int align_start, align_end;
4470
4471 buf = data_buf;
4472 offset32 = offset;
4473 len32 = buf_size;
4474 align_start = align_end = 0;
4475
4476 if ((align_start = (offset32 & 3))) {
4477 offset32 &= ~3;
4478 len32 += align_start;
4479 if (len32 < 4)
4480 len32 = 4;
4481 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4482 return rc;
4483 }
4484
4485 if (len32 & 3) {
4486 align_end = 4 - (len32 & 3);
4487 len32 += align_end;
4488 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4489 return rc;
4490 }
4491
4492 if (align_start || align_end) {
4493 align_buf = kmalloc(len32, GFP_KERNEL);
4494 if (align_buf == NULL)
4495 return -ENOMEM;
4496 if (align_start) {
4497 memcpy(align_buf, start, 4);
4498 }
4499 if (align_end) {
4500 memcpy(align_buf + len32 - 4, end, 4);
4501 }
4502 memcpy(align_buf + align_start, data_buf, buf_size);
4503 buf = align_buf;
4504 }
4505
4506 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4507 flash_buffer = kmalloc(264, GFP_KERNEL);
4508 if (flash_buffer == NULL) {
4509 rc = -ENOMEM;
4510 goto nvram_write_end;
4511 }
4512 }
4513
4514 written = 0;
4515 while ((written < len32) && (rc == 0)) {
4516 u32 page_start, page_end, data_start, data_end;
4517 u32 addr, cmd_flags;
4518 int i;
4519
4520 /* Find the page_start addr */
4521 page_start = offset32 + written;
4522 page_start -= (page_start % bp->flash_info->page_size);
4523 /* Find the page_end addr */
4524 page_end = page_start + bp->flash_info->page_size;
4525 /* Find the data_start addr */
4526 data_start = (written == 0) ? offset32 : page_start;
4527 /* Find the data_end addr */
4528 data_end = (page_end > offset32 + len32) ?
4529 (offset32 + len32) : page_end;
4530
4531 /* Request access to the flash interface. */
4532 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4533 goto nvram_write_end;
4534
4535 /* Enable access to flash interface */
4536 bnx2_enable_nvram_access(bp);
4537
4538 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4539 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4540 int j;
4541
4542 /* Read the whole page into the buffer
4543 * (non-buffer flash only) */
4544 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4545 if (j == (bp->flash_info->page_size - 4)) {
4546 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4547 }
4548 rc = bnx2_nvram_read_dword(bp,
4549 page_start + j,
4550 &flash_buffer[j],
4551 cmd_flags);
4552
4553 if (rc)
4554 goto nvram_write_end;
4555
4556 cmd_flags = 0;
4557 }
4558 }
4559
4560 /* Enable writes to flash interface (unlock write-protect) */
4561 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4562 goto nvram_write_end;
4563
4564 /* Loop to write back the buffer data from page_start to
4565 * data_start */
4566 i = 0;
4567 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4568 /* Erase the page */
4569 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4570 goto nvram_write_end;
4571
4572 /* Re-enable the write again for the actual write */
4573 bnx2_enable_nvram_write(bp);
4574
4575 for (addr = page_start; addr < data_start;
4576 addr += 4, i += 4) {
4577
4578 rc = bnx2_nvram_write_dword(bp, addr,
4579 &flash_buffer[i], cmd_flags);
4580
4581 if (rc != 0)
4582 goto nvram_write_end;
4583
4584 cmd_flags = 0;
4585 }
4586 }
4587
4588 /* Loop to write the new data from data_start to data_end */
4589 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4590 if ((addr == page_end - 4) ||
4591 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4592 (addr == data_end - 4))) {
4593
4594 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4595 }
4596 rc = bnx2_nvram_write_dword(bp, addr, buf,
4597 cmd_flags);
4598
4599 if (rc != 0)
4600 goto nvram_write_end;
4601
4602 cmd_flags = 0;
4603 buf += 4;
4604 }
4605
4606 /* Loop to write back the buffer data from data_end
4607 * to page_end */
4608 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4609 for (addr = data_end; addr < page_end;
4610 addr += 4, i += 4) {
4611
4612 if (addr == page_end-4) {
4613 cmd_flags = BNX2_NVM_COMMAND_LAST;
4614 }
4615 rc = bnx2_nvram_write_dword(bp, addr,
4616 &flash_buffer[i], cmd_flags);
4617
4618 if (rc != 0)
4619 goto nvram_write_end;
4620
4621 cmd_flags = 0;
4622 }
4623 }
4624
4625 /* Disable writes to flash interface (lock write-protect) */
4626 bnx2_disable_nvram_write(bp);
4627
4628 /* Disable access to flash interface */
4629 bnx2_disable_nvram_access(bp);
4630 bnx2_release_nvram_lock(bp);
4631
4632 /* Increment written */
4633 written += data_end - data_start;
4634 }
4635
4636 nvram_write_end:
4637 kfree(flash_buffer);
4638 kfree(align_buf);
4639 return rc;
4640 }
4641
4642 static void
4643 bnx2_init_fw_cap(struct bnx2 *bp)
4644 {
4645 u32 val, sig = 0;
4646
4647 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4648 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4649
4650 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4651 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4652
4653 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4654 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4655 return;
4656
4657 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4658 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4659 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4660 }
4661
4662 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4663 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4664 u32 link;
4665
4666 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4667
4668 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4669 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4670 bp->phy_port = PORT_FIBRE;
4671 else
4672 bp->phy_port = PORT_TP;
4673
4674 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4675 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4676 }
4677
4678 if (netif_running(bp->dev) && sig)
4679 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4680 }
4681
4682 static void
4683 bnx2_setup_msix_tbl(struct bnx2 *bp)
4684 {
4685 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4686
4687 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4688 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4689 }
4690
4691 static int
4692 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4693 {
4694 u32 val;
4695 int i, rc = 0;
4696 u8 old_port;
4697
4698 /* Wait for the current PCI transaction to complete before
4699 * issuing a reset. */
4700 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4701 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4702 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4703 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4704 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4705 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4706 udelay(5);
4707
4708 /* Wait for the firmware to tell us it is ok to issue a reset. */
4709 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4710
4711 /* Deposit a driver reset signature so the firmware knows that
4712 * this is a soft reset. */
4713 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4714 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4715
4716 /* Do a dummy read to force the chip to complete all current transaction
4717 * before we issue a reset. */
4718 val = REG_RD(bp, BNX2_MISC_ID);
4719
4720 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4721 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4722 REG_RD(bp, BNX2_MISC_COMMAND);
4723 udelay(5);
4724
4725 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4726 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4727
4728 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4729
4730 } else {
4731 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4732 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4733 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4734
4735 /* Chip reset. */
4736 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4737
4738 /* Reading back any register after chip reset will hang the
4739 * bus on 5706 A0 and A1. The msleep below provides plenty
4740 * of margin for write posting.
4741 */
4742 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4743 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4744 msleep(20);
4745
4746 /* Reset takes approximate 30 usec */
4747 for (i = 0; i < 10; i++) {
4748 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4749 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4750 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4751 break;
4752 udelay(10);
4753 }
4754
4755 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4756 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4757 pr_err("Chip reset did not complete\n");
4758 return -EBUSY;
4759 }
4760 }
4761
4762 /* Make sure byte swapping is properly configured. */
4763 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4764 if (val != 0x01020304) {
4765 pr_err("Chip not in correct endian mode\n");
4766 return -ENODEV;
4767 }
4768
4769 /* Wait for the firmware to finish its initialization. */
4770 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4771 if (rc)
4772 return rc;
4773
4774 spin_lock_bh(&bp->phy_lock);
4775 old_port = bp->phy_port;
4776 bnx2_init_fw_cap(bp);
4777 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4778 old_port != bp->phy_port)
4779 bnx2_set_default_remote_link(bp);
4780 spin_unlock_bh(&bp->phy_lock);
4781
4782 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4783 /* Adjust the voltage regular to two steps lower. The default
4784 * of this register is 0x0000000e. */
4785 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4786
4787 /* Remove bad rbuf memory from the free pool. */
4788 rc = bnx2_alloc_bad_rbuf(bp);
4789 }
4790
4791 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4792 bnx2_setup_msix_tbl(bp);
4793 /* Prevent MSIX table reads and write from timing out */
4794 REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
4795 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
4796 }
4797
4798 return rc;
4799 }
4800
4801 static int
4802 bnx2_init_chip(struct bnx2 *bp)
4803 {
4804 u32 val, mtu;
4805 int rc, i;
4806
4807 /* Make sure the interrupt is not active. */
4808 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4809
4810 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4811 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4812 #ifdef __BIG_ENDIAN
4813 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4814 #endif
4815 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4816 DMA_READ_CHANS << 12 |
4817 DMA_WRITE_CHANS << 16;
4818
4819 val |= (0x2 << 20) | (1 << 11);
4820
4821 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4822 val |= (1 << 23);
4823
4824 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4825 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4826 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4827
4828 REG_WR(bp, BNX2_DMA_CONFIG, val);
4829
4830 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4831 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4832 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4833 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4834 }
4835
4836 if (bp->flags & BNX2_FLAG_PCIX) {
4837 u16 val16;
4838
4839 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4840 &val16);
4841 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4842 val16 & ~PCI_X_CMD_ERO);
4843 }
4844
4845 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4846 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4847 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4848 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4849
4850 /* Initialize context mapping and zero out the quick contexts. The
4851 * context block must have already been enabled. */
4852 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4853 rc = bnx2_init_5709_context(bp);
4854 if (rc)
4855 return rc;
4856 } else
4857 bnx2_init_context(bp);
4858
4859 if ((rc = bnx2_init_cpus(bp)) != 0)
4860 return rc;
4861
4862 bnx2_init_nvram(bp);
4863
4864 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4865
4866 val = REG_RD(bp, BNX2_MQ_CONFIG);
4867 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4868 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4869 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4870 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4871 if (CHIP_REV(bp) == CHIP_REV_Ax)
4872 val |= BNX2_MQ_CONFIG_HALT_DIS;
4873 }
4874
4875 REG_WR(bp, BNX2_MQ_CONFIG, val);
4876
4877 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4878 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4879 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4880
4881 val = (BCM_PAGE_BITS - 8) << 24;
4882 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4883
4884 /* Configure page size. */
4885 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4886 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4887 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4888 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4889
4890 val = bp->mac_addr[0] +
4891 (bp->mac_addr[1] << 8) +
4892 (bp->mac_addr[2] << 16) +
4893 bp->mac_addr[3] +
4894 (bp->mac_addr[4] << 8) +
4895 (bp->mac_addr[5] << 16);
4896 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4897
4898 /* Program the MTU. Also include 4 bytes for CRC32. */
4899 mtu = bp->dev->mtu;
4900 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4901 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4902 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4903 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4904
4905 if (mtu < 1500)
4906 mtu = 1500;
4907
4908 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4909 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4910 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4911
4912 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4913 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4914 bp->bnx2_napi[i].last_status_idx = 0;
4915
4916 bp->idle_chk_status_idx = 0xffff;
4917
4918 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4919
4920 /* Set up how to generate a link change interrupt. */
4921 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4922
4923 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4924 (u64) bp->status_blk_mapping & 0xffffffff);
4925 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4926
4927 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4928 (u64) bp->stats_blk_mapping & 0xffffffff);
4929 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4930 (u64) bp->stats_blk_mapping >> 32);
4931
4932 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4933 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4934
4935 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4936 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4937
4938 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4939 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4940
4941 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4942
4943 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4944
4945 REG_WR(bp, BNX2_HC_COM_TICKS,
4946 (bp->com_ticks_int << 16) | bp->com_ticks);
4947
4948 REG_WR(bp, BNX2_HC_CMD_TICKS,
4949 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4950
4951 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4952 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4953 else
4954 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4955 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4956
4957 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4958 val = BNX2_HC_CONFIG_COLLECT_STATS;
4959 else {
4960 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4961 BNX2_HC_CONFIG_COLLECT_STATS;
4962 }
4963
4964 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4965 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4966 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4967
4968 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4969 }
4970
4971 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4972 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4973
4974 REG_WR(bp, BNX2_HC_CONFIG, val);
4975
4976 for (i = 1; i < bp->irq_nvecs; i++) {
4977 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4978 BNX2_HC_SB_CONFIG_1;
4979
4980 REG_WR(bp, base,
4981 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4982 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4983 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4984
4985 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4986 (bp->tx_quick_cons_trip_int << 16) |
4987 bp->tx_quick_cons_trip);
4988
4989 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4990 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4991
4992 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4993 (bp->rx_quick_cons_trip_int << 16) |
4994 bp->rx_quick_cons_trip);
4995
4996 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4997 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4998 }
4999
5000 /* Clear internal stats counters. */
5001 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
5002
5003 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
5004
5005 /* Initialize the receive filter. */
5006 bnx2_set_rx_mode(bp->dev);
5007
5008 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5009 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
5010 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
5011 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
5012 }
5013 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
5014 1, 0);
5015
5016 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
5017 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
5018
5019 udelay(20);
5020
5021 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
5022
5023 return rc;
5024 }
5025
5026 static void
5027 bnx2_clear_ring_states(struct bnx2 *bp)
5028 {
5029 struct bnx2_napi *bnapi;
5030 struct bnx2_tx_ring_info *txr;
5031 struct bnx2_rx_ring_info *rxr;
5032 int i;
5033
5034 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5035 bnapi = &bp->bnx2_napi[i];
5036 txr = &bnapi->tx_ring;
5037 rxr = &bnapi->rx_ring;
5038
5039 txr->tx_cons = 0;
5040 txr->hw_tx_cons = 0;
5041 rxr->rx_prod_bseq = 0;
5042 rxr->rx_prod = 0;
5043 rxr->rx_cons = 0;
5044 rxr->rx_pg_prod = 0;
5045 rxr->rx_pg_cons = 0;
5046 }
5047 }
5048
5049 static void
5050 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5051 {
5052 u32 val, offset0, offset1, offset2, offset3;
5053 u32 cid_addr = GET_CID_ADDR(cid);
5054
5055 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5056 offset0 = BNX2_L2CTX_TYPE_XI;
5057 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5058 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5059 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5060 } else {
5061 offset0 = BNX2_L2CTX_TYPE;
5062 offset1 = BNX2_L2CTX_CMD_TYPE;
5063 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5064 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5065 }
5066 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5067 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5068
5069 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5070 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5071
5072 val = (u64) txr->tx_desc_mapping >> 32;
5073 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5074
5075 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5076 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5077 }
5078
5079 static void
5080 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5081 {
5082 struct tx_bd *txbd;
5083 u32 cid = TX_CID;
5084 struct bnx2_napi *bnapi;
5085 struct bnx2_tx_ring_info *txr;
5086
5087 bnapi = &bp->bnx2_napi[ring_num];
5088 txr = &bnapi->tx_ring;
5089
5090 if (ring_num == 0)
5091 cid = TX_CID;
5092 else
5093 cid = TX_TSS_CID + ring_num - 1;
5094
5095 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5096
5097 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5098
5099 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5100 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5101
5102 txr->tx_prod = 0;
5103 txr->tx_prod_bseq = 0;
5104
5105 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5106 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5107
5108 bnx2_init_tx_context(bp, cid, txr);
5109 }
5110
5111 static void
5112 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5113 int num_rings)
5114 {
5115 int i;
5116 struct rx_bd *rxbd;
5117
5118 for (i = 0; i < num_rings; i++) {
5119 int j;
5120
5121 rxbd = &rx_ring[i][0];
5122 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5123 rxbd->rx_bd_len = buf_size;
5124 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5125 }
5126 if (i == (num_rings - 1))
5127 j = 0;
5128 else
5129 j = i + 1;
5130 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5131 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5132 }
5133 }
5134
5135 static void
5136 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5137 {
5138 int i;
5139 u16 prod, ring_prod;
5140 u32 cid, rx_cid_addr, val;
5141 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5142 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5143
5144 if (ring_num == 0)
5145 cid = RX_CID;
5146 else
5147 cid = RX_RSS_CID + ring_num - 1;
5148
5149 rx_cid_addr = GET_CID_ADDR(cid);
5150
5151 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5152 bp->rx_buf_use_size, bp->rx_max_ring);
5153
5154 bnx2_init_rx_context(bp, cid);
5155
5156 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5157 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5158 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5159 }
5160
5161 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5162 if (bp->rx_pg_ring_size) {
5163 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5164 rxr->rx_pg_desc_mapping,
5165 PAGE_SIZE, bp->rx_max_pg_ring);
5166 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5167 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5168 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5169 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5170
5171 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5172 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5173
5174 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5175 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5176
5177 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5178 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5179 }
5180
5181 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5182 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5183
5184 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5185 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5186
5187 ring_prod = prod = rxr->rx_pg_prod;
5188 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5189 if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
5190 netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
5191 ring_num, i, bp->rx_pg_ring_size);
5192 break;
5193 }
5194 prod = NEXT_RX_BD(prod);
5195 ring_prod = RX_PG_RING_IDX(prod);
5196 }
5197 rxr->rx_pg_prod = prod;
5198
5199 ring_prod = prod = rxr->rx_prod;
5200 for (i = 0; i < bp->rx_ring_size; i++) {
5201 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
5202 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
5203 ring_num, i, bp->rx_ring_size);
5204 break;
5205 }
5206 prod = NEXT_RX_BD(prod);
5207 ring_prod = RX_RING_IDX(prod);
5208 }
5209 rxr->rx_prod = prod;
5210
5211 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5212 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5213 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5214
5215 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5216 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5217
5218 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5219 }
5220
5221 static void
5222 bnx2_init_all_rings(struct bnx2 *bp)
5223 {
5224 int i;
5225 u32 val;
5226
5227 bnx2_clear_ring_states(bp);
5228
5229 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5230 for (i = 0; i < bp->num_tx_rings; i++)
5231 bnx2_init_tx_ring(bp, i);
5232
5233 if (bp->num_tx_rings > 1)
5234 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5235 (TX_TSS_CID << 7));
5236
5237 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5238 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5239
5240 for (i = 0; i < bp->num_rx_rings; i++)
5241 bnx2_init_rx_ring(bp, i);
5242
5243 if (bp->num_rx_rings > 1) {
5244 u32 tbl_32;
5245 u8 *tbl = (u8 *) &tbl_32;
5246
5247 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5248 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5249
5250 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5251 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5252 if ((i % 4) == 3)
5253 bnx2_reg_wr_ind(bp,
5254 BNX2_RXP_SCRATCH_RSS_TBL + i,
5255 cpu_to_be32(tbl_32));
5256 }
5257
5258 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5259 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5260
5261 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5262
5263 }
5264 }
5265
5266 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5267 {
5268 u32 max, num_rings = 1;
5269
5270 while (ring_size > MAX_RX_DESC_CNT) {
5271 ring_size -= MAX_RX_DESC_CNT;
5272 num_rings++;
5273 }
5274 /* round to next power of 2 */
5275 max = max_size;
5276 while ((max & num_rings) == 0)
5277 max >>= 1;
5278
5279 if (num_rings != max)
5280 max <<= 1;
5281
5282 return max;
5283 }
5284
5285 static void
5286 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5287 {
5288 u32 rx_size, rx_space, jumbo_size;
5289
5290 /* 8 for CRC and VLAN */
5291 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5292
5293 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5294 sizeof(struct skb_shared_info);
5295
5296 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5297 bp->rx_pg_ring_size = 0;
5298 bp->rx_max_pg_ring = 0;
5299 bp->rx_max_pg_ring_idx = 0;
5300 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5301 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5302
5303 jumbo_size = size * pages;
5304 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5305 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5306
5307 bp->rx_pg_ring_size = jumbo_size;
5308 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5309 MAX_RX_PG_RINGS);
5310 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5311 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5312 bp->rx_copy_thresh = 0;
5313 }
5314
5315 bp->rx_buf_use_size = rx_size;
5316 /* hw alignment */
5317 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5318 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5319 bp->rx_ring_size = size;
5320 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5321 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5322 }
5323
5324 static void
5325 bnx2_free_tx_skbs(struct bnx2 *bp)
5326 {
5327 int i;
5328
5329 for (i = 0; i < bp->num_tx_rings; i++) {
5330 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5331 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5332 int j;
5333
5334 if (txr->tx_buf_ring == NULL)
5335 continue;
5336
5337 for (j = 0; j < TX_DESC_CNT; ) {
5338 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5339 struct sk_buff *skb = tx_buf->skb;
5340 int k, last;
5341
5342 if (skb == NULL) {
5343 j++;
5344 continue;
5345 }
5346
5347 dma_unmap_single(&bp->pdev->dev,
5348 dma_unmap_addr(tx_buf, mapping),
5349 skb_headlen(skb),
5350 PCI_DMA_TODEVICE);
5351
5352 tx_buf->skb = NULL;
5353
5354 last = tx_buf->nr_frags;
5355 j++;
5356 for (k = 0; k < last; k++, j++) {
5357 tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
5358 dma_unmap_page(&bp->pdev->dev,
5359 dma_unmap_addr(tx_buf, mapping),
5360 skb_shinfo(skb)->frags[k].size,
5361 PCI_DMA_TODEVICE);
5362 }
5363 dev_kfree_skb(skb);
5364 }
5365 }
5366 }
5367
5368 static void
5369 bnx2_free_rx_skbs(struct bnx2 *bp)
5370 {
5371 int i;
5372
5373 for (i = 0; i < bp->num_rx_rings; i++) {
5374 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5375 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5376 int j;
5377
5378 if (rxr->rx_buf_ring == NULL)
5379 return;
5380
5381 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5382 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5383 struct sk_buff *skb = rx_buf->skb;
5384
5385 if (skb == NULL)
5386 continue;
5387
5388 dma_unmap_single(&bp->pdev->dev,
5389 dma_unmap_addr(rx_buf, mapping),
5390 bp->rx_buf_use_size,
5391 PCI_DMA_FROMDEVICE);
5392
5393 rx_buf->skb = NULL;
5394
5395 dev_kfree_skb(skb);
5396 }
5397 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5398 bnx2_free_rx_page(bp, rxr, j);
5399 }
5400 }
5401
5402 static void
5403 bnx2_free_skbs(struct bnx2 *bp)
5404 {
5405 bnx2_free_tx_skbs(bp);
5406 bnx2_free_rx_skbs(bp);
5407 }
5408
5409 static int
5410 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5411 {
5412 int rc;
5413
5414 rc = bnx2_reset_chip(bp, reset_code);
5415 bnx2_free_skbs(bp);
5416 if (rc)
5417 return rc;
5418
5419 if ((rc = bnx2_init_chip(bp)) != 0)
5420 return rc;
5421
5422 bnx2_init_all_rings(bp);
5423 return 0;
5424 }
5425
5426 static int
5427 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5428 {
5429 int rc;
5430
5431 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5432 return rc;
5433
5434 spin_lock_bh(&bp->phy_lock);
5435 bnx2_init_phy(bp, reset_phy);
5436 bnx2_set_link(bp);
5437 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5438 bnx2_remote_phy_event(bp);
5439 spin_unlock_bh(&bp->phy_lock);
5440 return 0;
5441 }
5442
5443 static int
5444 bnx2_shutdown_chip(struct bnx2 *bp)
5445 {
5446 u32 reset_code;
5447
5448 if (bp->flags & BNX2_FLAG_NO_WOL)
5449 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5450 else if (bp->wol)
5451 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5452 else
5453 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5454
5455 return bnx2_reset_chip(bp, reset_code);
5456 }
5457
5458 static int
5459 bnx2_test_registers(struct bnx2 *bp)
5460 {
5461 int ret;
5462 int i, is_5709;
5463 static const struct {
5464 u16 offset;
5465 u16 flags;
5466 #define BNX2_FL_NOT_5709 1
5467 u32 rw_mask;
5468 u32 ro_mask;
5469 } reg_tbl[] = {
5470 { 0x006c, 0, 0x00000000, 0x0000003f },
5471 { 0x0090, 0, 0xffffffff, 0x00000000 },
5472 { 0x0094, 0, 0x00000000, 0x00000000 },
5473
5474 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5475 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5476 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5477 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5478 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5479 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5480 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5481 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5482 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5483
5484 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5485 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5486 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5487 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5488 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5489 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5490
5491 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5492 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5493 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5494
5495 { 0x1000, 0, 0x00000000, 0x00000001 },
5496 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5497
5498 { 0x1408, 0, 0x01c00800, 0x00000000 },
5499 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5500 { 0x14a8, 0, 0x00000000, 0x000001ff },
5501 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5502 { 0x14b0, 0, 0x00000002, 0x00000001 },
5503 { 0x14b8, 0, 0x00000000, 0x00000000 },
5504 { 0x14c0, 0, 0x00000000, 0x00000009 },
5505 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5506 { 0x14cc, 0, 0x00000000, 0x00000001 },
5507 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5508
5509 { 0x1800, 0, 0x00000000, 0x00000001 },
5510 { 0x1804, 0, 0x00000000, 0x00000003 },
5511
5512 { 0x2800, 0, 0x00000000, 0x00000001 },
5513 { 0x2804, 0, 0x00000000, 0x00003f01 },
5514 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5515 { 0x2810, 0, 0xffff0000, 0x00000000 },
5516 { 0x2814, 0, 0xffff0000, 0x00000000 },
5517 { 0x2818, 0, 0xffff0000, 0x00000000 },
5518 { 0x281c, 0, 0xffff0000, 0x00000000 },
5519 { 0x2834, 0, 0xffffffff, 0x00000000 },
5520 { 0x2840, 0, 0x00000000, 0xffffffff },
5521 { 0x2844, 0, 0x00000000, 0xffffffff },
5522 { 0x2848, 0, 0xffffffff, 0x00000000 },
5523 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5524
5525 { 0x2c00, 0, 0x00000000, 0x00000011 },
5526 { 0x2c04, 0, 0x00000000, 0x00030007 },
5527
5528 { 0x3c00, 0, 0x00000000, 0x00000001 },
5529 { 0x3c04, 0, 0x00000000, 0x00070000 },
5530 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5531 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5532 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5533 { 0x3c14, 0, 0x00000000, 0xffffffff },
5534 { 0x3c18, 0, 0x00000000, 0xffffffff },
5535 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5536 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5537
5538 { 0x5004, 0, 0x00000000, 0x0000007f },
5539 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5540
5541 { 0x5c00, 0, 0x00000000, 0x00000001 },
5542 { 0x5c04, 0, 0x00000000, 0x0003000f },
5543 { 0x5c08, 0, 0x00000003, 0x00000000 },
5544 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5545 { 0x5c10, 0, 0x00000000, 0xffffffff },
5546 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5547 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5548 { 0x5c88, 0, 0x00000000, 0x00077373 },
5549 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5550
5551 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5552 { 0x680c, 0, 0xffffffff, 0x00000000 },
5553 { 0x6810, 0, 0xffffffff, 0x00000000 },
5554 { 0x6814, 0, 0xffffffff, 0x00000000 },
5555 { 0x6818, 0, 0xffffffff, 0x00000000 },
5556 { 0x681c, 0, 0xffffffff, 0x00000000 },
5557 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5558 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5559 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5560 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5561 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5562 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5563 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5564 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5565 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5566 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5567 { 0x684c, 0, 0xffffffff, 0x00000000 },
5568 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5569 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5570 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5571 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5572 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5573 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5574
5575 { 0xffff, 0, 0x00000000, 0x00000000 },
5576 };
5577
5578 ret = 0;
5579 is_5709 = 0;
5580 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5581 is_5709 = 1;
5582
5583 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5584 u32 offset, rw_mask, ro_mask, save_val, val;
5585 u16 flags = reg_tbl[i].flags;
5586
5587 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5588 continue;
5589
5590 offset = (u32) reg_tbl[i].offset;
5591 rw_mask = reg_tbl[i].rw_mask;
5592 ro_mask = reg_tbl[i].ro_mask;
5593
5594 save_val = readl(bp->regview + offset);
5595
5596 writel(0, bp->regview + offset);
5597
5598 val = readl(bp->regview + offset);
5599 if ((val & rw_mask) != 0) {
5600 goto reg_test_err;
5601 }
5602
5603 if ((val & ro_mask) != (save_val & ro_mask)) {
5604 goto reg_test_err;
5605 }
5606
5607 writel(0xffffffff, bp->regview + offset);
5608
5609 val = readl(bp->regview + offset);
5610 if ((val & rw_mask) != rw_mask) {
5611 goto reg_test_err;
5612 }
5613
5614 if ((val & ro_mask) != (save_val & ro_mask)) {
5615 goto reg_test_err;
5616 }
5617
5618 writel(save_val, bp->regview + offset);
5619 continue;
5620
5621 reg_test_err:
5622 writel(save_val, bp->regview + offset);
5623 ret = -ENODEV;
5624 break;
5625 }
5626 return ret;
5627 }
5628
5629 static int
5630 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5631 {
5632 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5633 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5634 int i;
5635
5636 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5637 u32 offset;
5638
5639 for (offset = 0; offset < size; offset += 4) {
5640
5641 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5642
5643 if (bnx2_reg_rd_ind(bp, start + offset) !=
5644 test_pattern[i]) {
5645 return -ENODEV;
5646 }
5647 }
5648 }
5649 return 0;
5650 }
5651
5652 static int
5653 bnx2_test_memory(struct bnx2 *bp)
5654 {
5655 int ret = 0;
5656 int i;
5657 static struct mem_entry {
5658 u32 offset;
5659 u32 len;
5660 } mem_tbl_5706[] = {
5661 { 0x60000, 0x4000 },
5662 { 0xa0000, 0x3000 },
5663 { 0xe0000, 0x4000 },
5664 { 0x120000, 0x4000 },
5665 { 0x1a0000, 0x4000 },
5666 { 0x160000, 0x4000 },
5667 { 0xffffffff, 0 },
5668 },
5669 mem_tbl_5709[] = {
5670 { 0x60000, 0x4000 },
5671 { 0xa0000, 0x3000 },
5672 { 0xe0000, 0x4000 },
5673 { 0x120000, 0x4000 },
5674 { 0x1a0000, 0x4000 },
5675 { 0xffffffff, 0 },
5676 };
5677 struct mem_entry *mem_tbl;
5678
5679 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5680 mem_tbl = mem_tbl_5709;
5681 else
5682 mem_tbl = mem_tbl_5706;
5683
5684 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5685 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5686 mem_tbl[i].len)) != 0) {
5687 return ret;
5688 }
5689 }
5690
5691 return ret;
5692 }
5693
5694 #define BNX2_MAC_LOOPBACK 0
5695 #define BNX2_PHY_LOOPBACK 1
5696
5697 static int
5698 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5699 {
5700 unsigned int pkt_size, num_pkts, i;
5701 struct sk_buff *skb, *rx_skb;
5702 unsigned char *packet;
5703 u16 rx_start_idx, rx_idx;
5704 dma_addr_t map;
5705 struct tx_bd *txbd;
5706 struct sw_bd *rx_buf;
5707 struct l2_fhdr *rx_hdr;
5708 int ret = -ENODEV;
5709 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5710 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5711 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5712
5713 tx_napi = bnapi;
5714
5715 txr = &tx_napi->tx_ring;
5716 rxr = &bnapi->rx_ring;
5717 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5718 bp->loopback = MAC_LOOPBACK;
5719 bnx2_set_mac_loopback(bp);
5720 }
5721 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5722 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5723 return 0;
5724
5725 bp->loopback = PHY_LOOPBACK;
5726 bnx2_set_phy_loopback(bp);
5727 }
5728 else
5729 return -EINVAL;
5730
5731 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5732 skb = netdev_alloc_skb(bp->dev, pkt_size);
5733 if (!skb)
5734 return -ENOMEM;
5735 packet = skb_put(skb, pkt_size);
5736 memcpy(packet, bp->dev->dev_addr, 6);
5737 memset(packet + 6, 0x0, 8);
5738 for (i = 14; i < pkt_size; i++)
5739 packet[i] = (unsigned char) (i & 0xff);
5740
5741 map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
5742 PCI_DMA_TODEVICE);
5743 if (dma_mapping_error(&bp->pdev->dev, map)) {
5744 dev_kfree_skb(skb);
5745 return -EIO;
5746 }
5747
5748 REG_WR(bp, BNX2_HC_COMMAND,
5749 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5750
5751 REG_RD(bp, BNX2_HC_COMMAND);
5752
5753 udelay(5);
5754 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5755
5756 num_pkts = 0;
5757
5758 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5759
5760 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5761 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5762 txbd->tx_bd_mss_nbytes = pkt_size;
5763 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5764
5765 num_pkts++;
5766 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5767 txr->tx_prod_bseq += pkt_size;
5768
5769 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5770 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5771
5772 udelay(100);
5773
5774 REG_WR(bp, BNX2_HC_COMMAND,
5775 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5776
5777 REG_RD(bp, BNX2_HC_COMMAND);
5778
5779 udelay(5);
5780
5781 dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
5782 dev_kfree_skb(skb);
5783
5784 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5785 goto loopback_test_done;
5786
5787 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5788 if (rx_idx != rx_start_idx + num_pkts) {
5789 goto loopback_test_done;
5790 }
5791
5792 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5793 rx_skb = rx_buf->skb;
5794
5795 rx_hdr = rx_buf->desc;
5796 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5797
5798 dma_sync_single_for_cpu(&bp->pdev->dev,
5799 dma_unmap_addr(rx_buf, mapping),
5800 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5801
5802 if (rx_hdr->l2_fhdr_status &
5803 (L2_FHDR_ERRORS_BAD_CRC |
5804 L2_FHDR_ERRORS_PHY_DECODE |
5805 L2_FHDR_ERRORS_ALIGNMENT |
5806 L2_FHDR_ERRORS_TOO_SHORT |
5807 L2_FHDR_ERRORS_GIANT_FRAME)) {
5808
5809 goto loopback_test_done;
5810 }
5811
5812 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5813 goto loopback_test_done;
5814 }
5815
5816 for (i = 14; i < pkt_size; i++) {
5817 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5818 goto loopback_test_done;
5819 }
5820 }
5821
5822 ret = 0;
5823
5824 loopback_test_done:
5825 bp->loopback = 0;
5826 return ret;
5827 }
5828
5829 #define BNX2_MAC_LOOPBACK_FAILED 1
5830 #define BNX2_PHY_LOOPBACK_FAILED 2
5831 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5832 BNX2_PHY_LOOPBACK_FAILED)
5833
5834 static int
5835 bnx2_test_loopback(struct bnx2 *bp)
5836 {
5837 int rc = 0;
5838
5839 if (!netif_running(bp->dev))
5840 return BNX2_LOOPBACK_FAILED;
5841
5842 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5843 spin_lock_bh(&bp->phy_lock);
5844 bnx2_init_phy(bp, 1);
5845 spin_unlock_bh(&bp->phy_lock);
5846 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5847 rc |= BNX2_MAC_LOOPBACK_FAILED;
5848 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5849 rc |= BNX2_PHY_LOOPBACK_FAILED;
5850 return rc;
5851 }
5852
5853 #define NVRAM_SIZE 0x200
5854 #define CRC32_RESIDUAL 0xdebb20e3
5855
5856 static int
5857 bnx2_test_nvram(struct bnx2 *bp)
5858 {
5859 __be32 buf[NVRAM_SIZE / 4];
5860 u8 *data = (u8 *) buf;
5861 int rc = 0;
5862 u32 magic, csum;
5863
5864 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5865 goto test_nvram_done;
5866
5867 magic = be32_to_cpu(buf[0]);
5868 if (magic != 0x669955aa) {
5869 rc = -ENODEV;
5870 goto test_nvram_done;
5871 }
5872
5873 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5874 goto test_nvram_done;
5875
5876 csum = ether_crc_le(0x100, data);
5877 if (csum != CRC32_RESIDUAL) {
5878 rc = -ENODEV;
5879 goto test_nvram_done;
5880 }
5881
5882 csum = ether_crc_le(0x100, data + 0x100);
5883 if (csum != CRC32_RESIDUAL) {
5884 rc = -ENODEV;
5885 }
5886
5887 test_nvram_done:
5888 return rc;
5889 }
5890
5891 static int
5892 bnx2_test_link(struct bnx2 *bp)
5893 {
5894 u32 bmsr;
5895
5896 if (!netif_running(bp->dev))
5897 return -ENODEV;
5898
5899 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5900 if (bp->link_up)
5901 return 0;
5902 return -ENODEV;
5903 }
5904 spin_lock_bh(&bp->phy_lock);
5905 bnx2_enable_bmsr1(bp);
5906 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5907 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5908 bnx2_disable_bmsr1(bp);
5909 spin_unlock_bh(&bp->phy_lock);
5910
5911 if (bmsr & BMSR_LSTATUS) {
5912 return 0;
5913 }
5914 return -ENODEV;
5915 }
5916
5917 static int
5918 bnx2_test_intr(struct bnx2 *bp)
5919 {
5920 int i;
5921 u16 status_idx;
5922
5923 if (!netif_running(bp->dev))
5924 return -ENODEV;
5925
5926 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5927
5928 /* This register is not touched during run-time. */
5929 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5930 REG_RD(bp, BNX2_HC_COMMAND);
5931
5932 for (i = 0; i < 10; i++) {
5933 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5934 status_idx) {
5935
5936 break;
5937 }
5938
5939 msleep_interruptible(10);
5940 }
5941 if (i < 10)
5942 return 0;
5943
5944 return -ENODEV;
5945 }
5946
5947 /* Determining link for parallel detection. */
5948 static int
5949 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5950 {
5951 u32 mode_ctl, an_dbg, exp;
5952
5953 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5954 return 0;
5955
5956 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5957 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5958
5959 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5960 return 0;
5961
5962 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5963 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5964 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5965
5966 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5967 return 0;
5968
5969 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5970 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5971 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5972
5973 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5974 return 0;
5975
5976 return 1;
5977 }
5978
5979 static void
5980 bnx2_5706_serdes_timer(struct bnx2 *bp)
5981 {
5982 int check_link = 1;
5983
5984 spin_lock(&bp->phy_lock);
5985 if (bp->serdes_an_pending) {
5986 bp->serdes_an_pending--;
5987 check_link = 0;
5988 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5989 u32 bmcr;
5990
5991 bp->current_interval = BNX2_TIMER_INTERVAL;
5992
5993 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5994
5995 if (bmcr & BMCR_ANENABLE) {
5996 if (bnx2_5706_serdes_has_link(bp)) {
5997 bmcr &= ~BMCR_ANENABLE;
5998 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5999 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
6000 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
6001 }
6002 }
6003 }
6004 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
6005 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
6006 u32 phy2;
6007
6008 bnx2_write_phy(bp, 0x17, 0x0f01);
6009 bnx2_read_phy(bp, 0x15, &phy2);
6010 if (phy2 & 0x20) {
6011 u32 bmcr;
6012
6013 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6014 bmcr |= BMCR_ANENABLE;
6015 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
6016
6017 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
6018 }
6019 } else
6020 bp->current_interval = BNX2_TIMER_INTERVAL;
6021
6022 if (check_link) {
6023 u32 val;
6024
6025 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
6026 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6027 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6028
6029 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
6030 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
6031 bnx2_5706s_force_link_dn(bp, 1);
6032 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
6033 } else
6034 bnx2_set_link(bp);
6035 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
6036 bnx2_set_link(bp);
6037 }
6038 spin_unlock(&bp->phy_lock);
6039 }
6040
6041 static void
6042 bnx2_5708_serdes_timer(struct bnx2 *bp)
6043 {
6044 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
6045 return;
6046
6047 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
6048 bp->serdes_an_pending = 0;
6049 return;
6050 }
6051
6052 spin_lock(&bp->phy_lock);
6053 if (bp->serdes_an_pending)
6054 bp->serdes_an_pending--;
6055 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6056 u32 bmcr;
6057
6058 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6059 if (bmcr & BMCR_ANENABLE) {
6060 bnx2_enable_forced_2g5(bp);
6061 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6062 } else {
6063 bnx2_disable_forced_2g5(bp);
6064 bp->serdes_an_pending = 2;
6065 bp->current_interval = BNX2_TIMER_INTERVAL;
6066 }
6067
6068 } else
6069 bp->current_interval = BNX2_TIMER_INTERVAL;
6070
6071 spin_unlock(&bp->phy_lock);
6072 }
6073
6074 static void
6075 bnx2_timer(unsigned long data)
6076 {
6077 struct bnx2 *bp = (struct bnx2 *) data;
6078
6079 if (!netif_running(bp->dev))
6080 return;
6081
6082 if (atomic_read(&bp->intr_sem) != 0)
6083 goto bnx2_restart_timer;
6084
6085 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6086 BNX2_FLAG_USING_MSI)
6087 bnx2_chk_missed_msi(bp);
6088
6089 bnx2_send_heart_beat(bp);
6090
6091 bp->stats_blk->stat_FwRxDrop =
6092 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6093
6094 /* workaround occasional corrupted counters */
6095 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6096 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6097 BNX2_HC_COMMAND_STATS_NOW);
6098
6099 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6100 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6101 bnx2_5706_serdes_timer(bp);
6102 else
6103 bnx2_5708_serdes_timer(bp);
6104 }
6105
6106 bnx2_restart_timer:
6107 mod_timer(&bp->timer, jiffies + bp->current_interval);
6108 }
6109
6110 static int
6111 bnx2_request_irq(struct bnx2 *bp)
6112 {
6113 unsigned long flags;
6114 struct bnx2_irq *irq;
6115 int rc = 0, i;
6116
6117 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6118 flags = 0;
6119 else
6120 flags = IRQF_SHARED;
6121
6122 for (i = 0; i < bp->irq_nvecs; i++) {
6123 irq = &bp->irq_tbl[i];
6124 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6125 &bp->bnx2_napi[i]);
6126 if (rc)
6127 break;
6128 irq->requested = 1;
6129 }
6130 return rc;
6131 }
6132
6133 static void
6134 bnx2_free_irq(struct bnx2 *bp)
6135 {
6136 struct bnx2_irq *irq;
6137 int i;
6138
6139 for (i = 0; i < bp->irq_nvecs; i++) {
6140 irq = &bp->irq_tbl[i];
6141 if (irq->requested)
6142 free_irq(irq->vector, &bp->bnx2_napi[i]);
6143 irq->requested = 0;
6144 }
6145 if (bp->flags & BNX2_FLAG_USING_MSI)
6146 pci_disable_msi(bp->pdev);
6147 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6148 pci_disable_msix(bp->pdev);
6149
6150 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6151 }
6152
6153 static void
6154 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6155 {
6156 int i, total_vecs, rc;
6157 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6158 struct net_device *dev = bp->dev;
6159 const int len = sizeof(bp->irq_tbl[0].name);
6160
6161 bnx2_setup_msix_tbl(bp);
6162 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6163 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6164 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6165
6166 /* Need to flush the previous three writes to ensure MSI-X
6167 * is setup properly */
6168 REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
6169
6170 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6171 msix_ent[i].entry = i;
6172 msix_ent[i].vector = 0;
6173 }
6174
6175 total_vecs = msix_vecs;
6176 #ifdef BCM_CNIC
6177 total_vecs++;
6178 #endif
6179 rc = -ENOSPC;
6180 while (total_vecs >= BNX2_MIN_MSIX_VEC) {
6181 rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
6182 if (rc <= 0)
6183 break;
6184 if (rc > 0)
6185 total_vecs = rc;
6186 }
6187
6188 if (rc != 0)
6189 return;
6190
6191 msix_vecs = total_vecs;
6192 #ifdef BCM_CNIC
6193 msix_vecs--;
6194 #endif
6195 bp->irq_nvecs = msix_vecs;
6196 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6197 for (i = 0; i < total_vecs; i++) {
6198 bp->irq_tbl[i].vector = msix_ent[i].vector;
6199 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6200 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6201 }
6202 }
6203
6204 static void
6205 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6206 {
6207 int cpus = num_online_cpus();
6208 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6209
6210 bp->irq_tbl[0].handler = bnx2_interrupt;
6211 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6212 bp->irq_nvecs = 1;
6213 bp->irq_tbl[0].vector = bp->pdev->irq;
6214
6215 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
6216 bnx2_enable_msix(bp, msix_vecs);
6217
6218 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6219 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6220 if (pci_enable_msi(bp->pdev) == 0) {
6221 bp->flags |= BNX2_FLAG_USING_MSI;
6222 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6223 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6224 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6225 } else
6226 bp->irq_tbl[0].handler = bnx2_msi;
6227
6228 bp->irq_tbl[0].vector = bp->pdev->irq;
6229 }
6230 }
6231
6232 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6233 bp->dev->real_num_tx_queues = bp->num_tx_rings;
6234
6235 bp->num_rx_rings = bp->irq_nvecs;
6236 }
6237
6238 /* Called with rtnl_lock */
6239 static int
6240 bnx2_open(struct net_device *dev)
6241 {
6242 struct bnx2 *bp = netdev_priv(dev);
6243 int rc;
6244
6245 netif_carrier_off(dev);
6246
6247 bnx2_set_power_state(bp, PCI_D0);
6248 bnx2_disable_int(bp);
6249
6250 bnx2_setup_int_mode(bp, disable_msi);
6251 bnx2_init_napi(bp);
6252 bnx2_napi_enable(bp);
6253 rc = bnx2_alloc_mem(bp);
6254 if (rc)
6255 goto open_err;
6256
6257 rc = bnx2_request_irq(bp);
6258 if (rc)
6259 goto open_err;
6260
6261 rc = bnx2_init_nic(bp, 1);
6262 if (rc)
6263 goto open_err;
6264
6265 mod_timer(&bp->timer, jiffies + bp->current_interval);
6266
6267 atomic_set(&bp->intr_sem, 0);
6268
6269 memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
6270
6271 bnx2_enable_int(bp);
6272
6273 if (bp->flags & BNX2_FLAG_USING_MSI) {
6274 /* Test MSI to make sure it is working
6275 * If MSI test fails, go back to INTx mode
6276 */
6277 if (bnx2_test_intr(bp) != 0) {
6278 netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6279
6280 bnx2_disable_int(bp);
6281 bnx2_free_irq(bp);
6282
6283 bnx2_setup_int_mode(bp, 1);
6284
6285 rc = bnx2_init_nic(bp, 0);
6286
6287 if (!rc)
6288 rc = bnx2_request_irq(bp);
6289
6290 if (rc) {
6291 del_timer_sync(&bp->timer);
6292 goto open_err;
6293 }
6294 bnx2_enable_int(bp);
6295 }
6296 }
6297 if (bp->flags & BNX2_FLAG_USING_MSI)
6298 netdev_info(dev, "using MSI\n");
6299 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6300 netdev_info(dev, "using MSIX\n");
6301
6302 netif_tx_start_all_queues(dev);
6303
6304 return 0;
6305
6306 open_err:
6307 bnx2_napi_disable(bp);
6308 bnx2_free_skbs(bp);
6309 bnx2_free_irq(bp);
6310 bnx2_free_mem(bp);
6311 bnx2_del_napi(bp);
6312 return rc;
6313 }
6314
6315 static void
6316 bnx2_reset_task(struct work_struct *work)
6317 {
6318 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6319
6320 rtnl_lock();
6321 if (!netif_running(bp->dev)) {
6322 rtnl_unlock();
6323 return;
6324 }
6325
6326 bnx2_netif_stop(bp, true);
6327
6328 bnx2_init_nic(bp, 1);
6329
6330 atomic_set(&bp->intr_sem, 1);
6331 bnx2_netif_start(bp, true);
6332 rtnl_unlock();
6333 }
6334
6335 static void
6336 bnx2_dump_state(struct bnx2 *bp)
6337 {
6338 struct net_device *dev = bp->dev;
6339 u32 mcp_p0, mcp_p1, val1, val2;
6340
6341 pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
6342 netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6343 atomic_read(&bp->intr_sem), val1);
6344 pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
6345 pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
6346 netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
6347 netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6348 REG_RD(bp, BNX2_EMAC_TX_STATUS),
6349 REG_RD(bp, BNX2_EMAC_RX_STATUS));
6350 netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6351 REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
6352 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6353 mcp_p0 = BNX2_MCP_STATE_P0;
6354 mcp_p1 = BNX2_MCP_STATE_P1;
6355 } else {
6356 mcp_p0 = BNX2_MCP_STATE_P0_5708;
6357 mcp_p1 = BNX2_MCP_STATE_P1_5708;
6358 }
6359 netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
6360 bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
6361 netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6362 REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
6363 if (bp->flags & BNX2_FLAG_USING_MSIX)
6364 netdev_err(dev, "DEBUG: PBA[%08x]\n",
6365 REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
6366 }
6367
6368 static void
6369 bnx2_tx_timeout(struct net_device *dev)
6370 {
6371 struct bnx2 *bp = netdev_priv(dev);
6372
6373 bnx2_dump_state(bp);
6374
6375 /* This allows the netif to be shutdown gracefully before resetting */
6376 schedule_work(&bp->reset_task);
6377 }
6378
6379 #ifdef BCM_VLAN
6380 /* Called with rtnl_lock */
6381 static void
6382 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6383 {
6384 struct bnx2 *bp = netdev_priv(dev);
6385
6386 if (netif_running(dev))
6387 bnx2_netif_stop(bp, false);
6388
6389 bp->vlgrp = vlgrp;
6390
6391 if (!netif_running(dev))
6392 return;
6393
6394 bnx2_set_rx_mode(dev);
6395 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6396 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6397
6398 bnx2_netif_start(bp, false);
6399 }
6400 #endif
6401
6402 /* Called with netif_tx_lock.
6403 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6404 * netif_wake_queue().
6405 */
6406 static netdev_tx_t
6407 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6408 {
6409 struct bnx2 *bp = netdev_priv(dev);
6410 dma_addr_t mapping;
6411 struct tx_bd *txbd;
6412 struct sw_tx_bd *tx_buf;
6413 u32 len, vlan_tag_flags, last_frag, mss;
6414 u16 prod, ring_prod;
6415 int i;
6416 struct bnx2_napi *bnapi;
6417 struct bnx2_tx_ring_info *txr;
6418 struct netdev_queue *txq;
6419
6420 /* Determine which tx ring we will be placed on */
6421 i = skb_get_queue_mapping(skb);
6422 bnapi = &bp->bnx2_napi[i];
6423 txr = &bnapi->tx_ring;
6424 txq = netdev_get_tx_queue(dev, i);
6425
6426 if (unlikely(bnx2_tx_avail(bp, txr) <
6427 (skb_shinfo(skb)->nr_frags + 1))) {
6428 netif_tx_stop_queue(txq);
6429 netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
6430
6431 return NETDEV_TX_BUSY;
6432 }
6433 len = skb_headlen(skb);
6434 prod = txr->tx_prod;
6435 ring_prod = TX_RING_IDX(prod);
6436
6437 vlan_tag_flags = 0;
6438 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6439 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6440 }
6441
6442 #ifdef BCM_VLAN
6443 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6444 vlan_tag_flags |=
6445 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6446 }
6447 #endif
6448 if ((mss = skb_shinfo(skb)->gso_size)) {
6449 u32 tcp_opt_len;
6450 struct iphdr *iph;
6451
6452 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6453
6454 tcp_opt_len = tcp_optlen(skb);
6455
6456 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6457 u32 tcp_off = skb_transport_offset(skb) -
6458 sizeof(struct ipv6hdr) - ETH_HLEN;
6459
6460 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6461 TX_BD_FLAGS_SW_FLAGS;
6462 if (likely(tcp_off == 0))
6463 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6464 else {
6465 tcp_off >>= 3;
6466 vlan_tag_flags |= ((tcp_off & 0x3) <<
6467 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6468 ((tcp_off & 0x10) <<
6469 TX_BD_FLAGS_TCP6_OFF4_SHL);
6470 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6471 }
6472 } else {
6473 iph = ip_hdr(skb);
6474 if (tcp_opt_len || (iph->ihl > 5)) {
6475 vlan_tag_flags |= ((iph->ihl - 5) +
6476 (tcp_opt_len >> 2)) << 8;
6477 }
6478 }
6479 } else
6480 mss = 0;
6481
6482 mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
6483 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
6484 dev_kfree_skb(skb);
6485 return NETDEV_TX_OK;
6486 }
6487
6488 tx_buf = &txr->tx_buf_ring[ring_prod];
6489 tx_buf->skb = skb;
6490 dma_unmap_addr_set(tx_buf, mapping, mapping);
6491
6492 txbd = &txr->tx_desc_ring[ring_prod];
6493
6494 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6495 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6496 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6497 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6498
6499 last_frag = skb_shinfo(skb)->nr_frags;
6500 tx_buf->nr_frags = last_frag;
6501 tx_buf->is_gso = skb_is_gso(skb);
6502
6503 for (i = 0; i < last_frag; i++) {
6504 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6505
6506 prod = NEXT_TX_BD(prod);
6507 ring_prod = TX_RING_IDX(prod);
6508 txbd = &txr->tx_desc_ring[ring_prod];
6509
6510 len = frag->size;
6511 mapping = dma_map_page(&bp->pdev->dev, frag->page, frag->page_offset,
6512 len, PCI_DMA_TODEVICE);
6513 if (dma_mapping_error(&bp->pdev->dev, mapping))
6514 goto dma_error;
6515 dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
6516 mapping);
6517
6518 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6519 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6520 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6521 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6522
6523 }
6524 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6525
6526 prod = NEXT_TX_BD(prod);
6527 txr->tx_prod_bseq += skb->len;
6528
6529 REG_WR16(bp, txr->tx_bidx_addr, prod);
6530 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6531
6532 mmiowb();
6533
6534 txr->tx_prod = prod;
6535
6536 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6537 netif_tx_stop_queue(txq);
6538
6539 /* netif_tx_stop_queue() must be done before checking
6540 * tx index in bnx2_tx_avail() below, because in
6541 * bnx2_tx_int(), we update tx index before checking for
6542 * netif_tx_queue_stopped().
6543 */
6544 smp_mb();
6545 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6546 netif_tx_wake_queue(txq);
6547 }
6548
6549 return NETDEV_TX_OK;
6550 dma_error:
6551 /* save value of frag that failed */
6552 last_frag = i;
6553
6554 /* start back at beginning and unmap skb */
6555 prod = txr->tx_prod;
6556 ring_prod = TX_RING_IDX(prod);
6557 tx_buf = &txr->tx_buf_ring[ring_prod];
6558 tx_buf->skb = NULL;
6559 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
6560 skb_headlen(skb), PCI_DMA_TODEVICE);
6561
6562 /* unmap remaining mapped pages */
6563 for (i = 0; i < last_frag; i++) {
6564 prod = NEXT_TX_BD(prod);
6565 ring_prod = TX_RING_IDX(prod);
6566 tx_buf = &txr->tx_buf_ring[ring_prod];
6567 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
6568 skb_shinfo(skb)->frags[i].size,
6569 PCI_DMA_TODEVICE);
6570 }
6571
6572 dev_kfree_skb(skb);
6573 return NETDEV_TX_OK;
6574 }
6575
6576 /* Called with rtnl_lock */
6577 static int
6578 bnx2_close(struct net_device *dev)
6579 {
6580 struct bnx2 *bp = netdev_priv(dev);
6581
6582 cancel_work_sync(&bp->reset_task);
6583
6584 bnx2_disable_int_sync(bp);
6585 bnx2_napi_disable(bp);
6586 del_timer_sync(&bp->timer);
6587 bnx2_shutdown_chip(bp);
6588 bnx2_free_irq(bp);
6589 bnx2_free_skbs(bp);
6590 bnx2_free_mem(bp);
6591 bnx2_del_napi(bp);
6592 bp->link_up = 0;
6593 netif_carrier_off(bp->dev);
6594 bnx2_set_power_state(bp, PCI_D3hot);
6595 return 0;
6596 }
6597
6598 static void
6599 bnx2_save_stats(struct bnx2 *bp)
6600 {
6601 u32 *hw_stats = (u32 *) bp->stats_blk;
6602 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
6603 int i;
6604
6605 /* The 1st 10 counters are 64-bit counters */
6606 for (i = 0; i < 20; i += 2) {
6607 u32 hi;
6608 u64 lo;
6609
6610 hi = temp_stats[i] + hw_stats[i];
6611 lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
6612 if (lo > 0xffffffff)
6613 hi++;
6614 temp_stats[i] = hi;
6615 temp_stats[i + 1] = lo & 0xffffffff;
6616 }
6617
6618 for ( ; i < sizeof(struct statistics_block) / 4; i++)
6619 temp_stats[i] += hw_stats[i];
6620 }
6621
6622 #define GET_64BIT_NET_STATS64(ctr) \
6623 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6624
6625 #define GET_64BIT_NET_STATS(ctr) \
6626 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6627 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6628
6629 #define GET_32BIT_NET_STATS(ctr) \
6630 (unsigned long) (bp->stats_blk->ctr + \
6631 bp->temp_stats_blk->ctr)
6632
6633 static struct rtnl_link_stats64 *
6634 bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
6635 {
6636 struct bnx2 *bp = netdev_priv(dev);
6637
6638 if (bp->stats_blk == NULL)
6639 return net_stats;
6640
6641 net_stats->rx_packets =
6642 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
6643 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
6644 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
6645
6646 net_stats->tx_packets =
6647 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
6648 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
6649 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
6650
6651 net_stats->rx_bytes =
6652 GET_64BIT_NET_STATS(stat_IfHCInOctets);
6653
6654 net_stats->tx_bytes =
6655 GET_64BIT_NET_STATS(stat_IfHCOutOctets);
6656
6657 net_stats->multicast =
6658 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
6659
6660 net_stats->collisions =
6661 GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
6662
6663 net_stats->rx_length_errors =
6664 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
6665 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
6666
6667 net_stats->rx_over_errors =
6668 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6669 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
6670
6671 net_stats->rx_frame_errors =
6672 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
6673
6674 net_stats->rx_crc_errors =
6675 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
6676
6677 net_stats->rx_errors = net_stats->rx_length_errors +
6678 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6679 net_stats->rx_crc_errors;
6680
6681 net_stats->tx_aborted_errors =
6682 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
6683 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
6684
6685 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6686 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6687 net_stats->tx_carrier_errors = 0;
6688 else {
6689 net_stats->tx_carrier_errors =
6690 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
6691 }
6692
6693 net_stats->tx_errors =
6694 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
6695 net_stats->tx_aborted_errors +
6696 net_stats->tx_carrier_errors;
6697
6698 net_stats->rx_missed_errors =
6699 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6700 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
6701 GET_32BIT_NET_STATS(stat_FwRxDrop);
6702
6703 return net_stats;
6704 }
6705
6706 /* All ethtool functions called with rtnl_lock */
6707
6708 static int
6709 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6710 {
6711 struct bnx2 *bp = netdev_priv(dev);
6712 int support_serdes = 0, support_copper = 0;
6713
6714 cmd->supported = SUPPORTED_Autoneg;
6715 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6716 support_serdes = 1;
6717 support_copper = 1;
6718 } else if (bp->phy_port == PORT_FIBRE)
6719 support_serdes = 1;
6720 else
6721 support_copper = 1;
6722
6723 if (support_serdes) {
6724 cmd->supported |= SUPPORTED_1000baseT_Full |
6725 SUPPORTED_FIBRE;
6726 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6727 cmd->supported |= SUPPORTED_2500baseX_Full;
6728
6729 }
6730 if (support_copper) {
6731 cmd->supported |= SUPPORTED_10baseT_Half |
6732 SUPPORTED_10baseT_Full |
6733 SUPPORTED_100baseT_Half |
6734 SUPPORTED_100baseT_Full |
6735 SUPPORTED_1000baseT_Full |
6736 SUPPORTED_TP;
6737
6738 }
6739
6740 spin_lock_bh(&bp->phy_lock);
6741 cmd->port = bp->phy_port;
6742 cmd->advertising = bp->advertising;
6743
6744 if (bp->autoneg & AUTONEG_SPEED) {
6745 cmd->autoneg = AUTONEG_ENABLE;
6746 }
6747 else {
6748 cmd->autoneg = AUTONEG_DISABLE;
6749 }
6750
6751 if (netif_carrier_ok(dev)) {
6752 cmd->speed = bp->line_speed;
6753 cmd->duplex = bp->duplex;
6754 }
6755 else {
6756 cmd->speed = -1;
6757 cmd->duplex = -1;
6758 }
6759 spin_unlock_bh(&bp->phy_lock);
6760
6761 cmd->transceiver = XCVR_INTERNAL;
6762 cmd->phy_address = bp->phy_addr;
6763
6764 return 0;
6765 }
6766
6767 static int
6768 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6769 {
6770 struct bnx2 *bp = netdev_priv(dev);
6771 u8 autoneg = bp->autoneg;
6772 u8 req_duplex = bp->req_duplex;
6773 u16 req_line_speed = bp->req_line_speed;
6774 u32 advertising = bp->advertising;
6775 int err = -EINVAL;
6776
6777 spin_lock_bh(&bp->phy_lock);
6778
6779 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6780 goto err_out_unlock;
6781
6782 if (cmd->port != bp->phy_port &&
6783 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6784 goto err_out_unlock;
6785
6786 /* If device is down, we can store the settings only if the user
6787 * is setting the currently active port.
6788 */
6789 if (!netif_running(dev) && cmd->port != bp->phy_port)
6790 goto err_out_unlock;
6791
6792 if (cmd->autoneg == AUTONEG_ENABLE) {
6793 autoneg |= AUTONEG_SPEED;
6794
6795 advertising = cmd->advertising;
6796 if (cmd->port == PORT_TP) {
6797 advertising &= ETHTOOL_ALL_COPPER_SPEED;
6798 if (!advertising)
6799 advertising = ETHTOOL_ALL_COPPER_SPEED;
6800 } else {
6801 advertising &= ETHTOOL_ALL_FIBRE_SPEED;
6802 if (!advertising)
6803 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6804 }
6805 advertising |= ADVERTISED_Autoneg;
6806 }
6807 else {
6808 if (cmd->port == PORT_FIBRE) {
6809 if ((cmd->speed != SPEED_1000 &&
6810 cmd->speed != SPEED_2500) ||
6811 (cmd->duplex != DUPLEX_FULL))
6812 goto err_out_unlock;
6813
6814 if (cmd->speed == SPEED_2500 &&
6815 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6816 goto err_out_unlock;
6817 }
6818 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6819 goto err_out_unlock;
6820
6821 autoneg &= ~AUTONEG_SPEED;
6822 req_line_speed = cmd->speed;
6823 req_duplex = cmd->duplex;
6824 advertising = 0;
6825 }
6826
6827 bp->autoneg = autoneg;
6828 bp->advertising = advertising;
6829 bp->req_line_speed = req_line_speed;
6830 bp->req_duplex = req_duplex;
6831
6832 err = 0;
6833 /* If device is down, the new settings will be picked up when it is
6834 * brought up.
6835 */
6836 if (netif_running(dev))
6837 err = bnx2_setup_phy(bp, cmd->port);
6838
6839 err_out_unlock:
6840 spin_unlock_bh(&bp->phy_lock);
6841
6842 return err;
6843 }
6844
6845 static void
6846 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6847 {
6848 struct bnx2 *bp = netdev_priv(dev);
6849
6850 strcpy(info->driver, DRV_MODULE_NAME);
6851 strcpy(info->version, DRV_MODULE_VERSION);
6852 strcpy(info->bus_info, pci_name(bp->pdev));
6853 strcpy(info->fw_version, bp->fw_version);
6854 }
6855
6856 #define BNX2_REGDUMP_LEN (32 * 1024)
6857
6858 static int
6859 bnx2_get_regs_len(struct net_device *dev)
6860 {
6861 return BNX2_REGDUMP_LEN;
6862 }
6863
6864 static void
6865 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6866 {
6867 u32 *p = _p, i, offset;
6868 u8 *orig_p = _p;
6869 struct bnx2 *bp = netdev_priv(dev);
6870 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6871 0x0800, 0x0880, 0x0c00, 0x0c10,
6872 0x0c30, 0x0d08, 0x1000, 0x101c,
6873 0x1040, 0x1048, 0x1080, 0x10a4,
6874 0x1400, 0x1490, 0x1498, 0x14f0,
6875 0x1500, 0x155c, 0x1580, 0x15dc,
6876 0x1600, 0x1658, 0x1680, 0x16d8,
6877 0x1800, 0x1820, 0x1840, 0x1854,
6878 0x1880, 0x1894, 0x1900, 0x1984,
6879 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6880 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6881 0x2000, 0x2030, 0x23c0, 0x2400,
6882 0x2800, 0x2820, 0x2830, 0x2850,
6883 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6884 0x3c00, 0x3c94, 0x4000, 0x4010,
6885 0x4080, 0x4090, 0x43c0, 0x4458,
6886 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6887 0x4fc0, 0x5010, 0x53c0, 0x5444,
6888 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6889 0x5fc0, 0x6000, 0x6400, 0x6428,
6890 0x6800, 0x6848, 0x684c, 0x6860,
6891 0x6888, 0x6910, 0x8000 };
6892
6893 regs->version = 0;
6894
6895 memset(p, 0, BNX2_REGDUMP_LEN);
6896
6897 if (!netif_running(bp->dev))
6898 return;
6899
6900 i = 0;
6901 offset = reg_boundaries[0];
6902 p += offset;
6903 while (offset < BNX2_REGDUMP_LEN) {
6904 *p++ = REG_RD(bp, offset);
6905 offset += 4;
6906 if (offset == reg_boundaries[i + 1]) {
6907 offset = reg_boundaries[i + 2];
6908 p = (u32 *) (orig_p + offset);
6909 i += 2;
6910 }
6911 }
6912 }
6913
6914 static void
6915 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6916 {
6917 struct bnx2 *bp = netdev_priv(dev);
6918
6919 if (bp->flags & BNX2_FLAG_NO_WOL) {
6920 wol->supported = 0;
6921 wol->wolopts = 0;
6922 }
6923 else {
6924 wol->supported = WAKE_MAGIC;
6925 if (bp->wol)
6926 wol->wolopts = WAKE_MAGIC;
6927 else
6928 wol->wolopts = 0;
6929 }
6930 memset(&wol->sopass, 0, sizeof(wol->sopass));
6931 }
6932
6933 static int
6934 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6935 {
6936 struct bnx2 *bp = netdev_priv(dev);
6937
6938 if (wol->wolopts & ~WAKE_MAGIC)
6939 return -EINVAL;
6940
6941 if (wol->wolopts & WAKE_MAGIC) {
6942 if (bp->flags & BNX2_FLAG_NO_WOL)
6943 return -EINVAL;
6944
6945 bp->wol = 1;
6946 }
6947 else {
6948 bp->wol = 0;
6949 }
6950 return 0;
6951 }
6952
6953 static int
6954 bnx2_nway_reset(struct net_device *dev)
6955 {
6956 struct bnx2 *bp = netdev_priv(dev);
6957 u32 bmcr;
6958
6959 if (!netif_running(dev))
6960 return -EAGAIN;
6961
6962 if (!(bp->autoneg & AUTONEG_SPEED)) {
6963 return -EINVAL;
6964 }
6965
6966 spin_lock_bh(&bp->phy_lock);
6967
6968 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6969 int rc;
6970
6971 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6972 spin_unlock_bh(&bp->phy_lock);
6973 return rc;
6974 }
6975
6976 /* Force a link down visible on the other side */
6977 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6978 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6979 spin_unlock_bh(&bp->phy_lock);
6980
6981 msleep(20);
6982
6983 spin_lock_bh(&bp->phy_lock);
6984
6985 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6986 bp->serdes_an_pending = 1;
6987 mod_timer(&bp->timer, jiffies + bp->current_interval);
6988 }
6989
6990 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6991 bmcr &= ~BMCR_LOOPBACK;
6992 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6993
6994 spin_unlock_bh(&bp->phy_lock);
6995
6996 return 0;
6997 }
6998
6999 static u32
7000 bnx2_get_link(struct net_device *dev)
7001 {
7002 struct bnx2 *bp = netdev_priv(dev);
7003
7004 return bp->link_up;
7005 }
7006
7007 static int
7008 bnx2_get_eeprom_len(struct net_device *dev)
7009 {
7010 struct bnx2 *bp = netdev_priv(dev);
7011
7012 if (bp->flash_info == NULL)
7013 return 0;
7014
7015 return (int) bp->flash_size;
7016 }
7017
7018 static int
7019 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
7020 u8 *eebuf)
7021 {
7022 struct bnx2 *bp = netdev_priv(dev);
7023 int rc;
7024
7025 if (!netif_running(dev))
7026 return -EAGAIN;
7027
7028 /* parameters already validated in ethtool_get_eeprom */
7029
7030 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
7031
7032 return rc;
7033 }
7034
7035 static int
7036 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
7037 u8 *eebuf)
7038 {
7039 struct bnx2 *bp = netdev_priv(dev);
7040 int rc;
7041
7042 if (!netif_running(dev))
7043 return -EAGAIN;
7044
7045 /* parameters already validated in ethtool_set_eeprom */
7046
7047 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
7048
7049 return rc;
7050 }
7051
7052 static int
7053 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7054 {
7055 struct bnx2 *bp = netdev_priv(dev);
7056
7057 memset(coal, 0, sizeof(struct ethtool_coalesce));
7058
7059 coal->rx_coalesce_usecs = bp->rx_ticks;
7060 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
7061 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
7062 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
7063
7064 coal->tx_coalesce_usecs = bp->tx_ticks;
7065 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
7066 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
7067 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
7068
7069 coal->stats_block_coalesce_usecs = bp->stats_ticks;
7070
7071 return 0;
7072 }
7073
7074 static int
7075 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7076 {
7077 struct bnx2 *bp = netdev_priv(dev);
7078
7079 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
7080 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
7081
7082 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
7083 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
7084
7085 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
7086 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
7087
7088 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
7089 if (bp->rx_quick_cons_trip_int > 0xff)
7090 bp->rx_quick_cons_trip_int = 0xff;
7091
7092 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
7093 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
7094
7095 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
7096 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
7097
7098 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
7099 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
7100
7101 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
7102 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
7103 0xff;
7104
7105 bp->stats_ticks = coal->stats_block_coalesce_usecs;
7106 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
7107 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
7108 bp->stats_ticks = USEC_PER_SEC;
7109 }
7110 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
7111 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7112 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7113
7114 if (netif_running(bp->dev)) {
7115 bnx2_netif_stop(bp, true);
7116 bnx2_init_nic(bp, 0);
7117 bnx2_netif_start(bp, true);
7118 }
7119
7120 return 0;
7121 }
7122
7123 static void
7124 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7125 {
7126 struct bnx2 *bp = netdev_priv(dev);
7127
7128 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
7129 ering->rx_mini_max_pending = 0;
7130 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
7131
7132 ering->rx_pending = bp->rx_ring_size;
7133 ering->rx_mini_pending = 0;
7134 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
7135
7136 ering->tx_max_pending = MAX_TX_DESC_CNT;
7137 ering->tx_pending = bp->tx_ring_size;
7138 }
7139
7140 static int
7141 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
7142 {
7143 if (netif_running(bp->dev)) {
7144 /* Reset will erase chipset stats; save them */
7145 bnx2_save_stats(bp);
7146
7147 bnx2_netif_stop(bp, true);
7148 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
7149 bnx2_free_skbs(bp);
7150 bnx2_free_mem(bp);
7151 }
7152
7153 bnx2_set_rx_ring_size(bp, rx);
7154 bp->tx_ring_size = tx;
7155
7156 if (netif_running(bp->dev)) {
7157 int rc;
7158
7159 rc = bnx2_alloc_mem(bp);
7160 if (!rc)
7161 rc = bnx2_init_nic(bp, 0);
7162
7163 if (rc) {
7164 bnx2_napi_enable(bp);
7165 dev_close(bp->dev);
7166 return rc;
7167 }
7168 #ifdef BCM_CNIC
7169 mutex_lock(&bp->cnic_lock);
7170 /* Let cnic know about the new status block. */
7171 if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
7172 bnx2_setup_cnic_irq_info(bp);
7173 mutex_unlock(&bp->cnic_lock);
7174 #endif
7175 bnx2_netif_start(bp, true);
7176 }
7177 return 0;
7178 }
7179
7180 static int
7181 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7182 {
7183 struct bnx2 *bp = netdev_priv(dev);
7184 int rc;
7185
7186 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7187 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7188 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7189
7190 return -EINVAL;
7191 }
7192 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7193 return rc;
7194 }
7195
7196 static void
7197 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7198 {
7199 struct bnx2 *bp = netdev_priv(dev);
7200
7201 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7202 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7203 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7204 }
7205
7206 static int
7207 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7208 {
7209 struct bnx2 *bp = netdev_priv(dev);
7210
7211 bp->req_flow_ctrl = 0;
7212 if (epause->rx_pause)
7213 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7214 if (epause->tx_pause)
7215 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7216
7217 if (epause->autoneg) {
7218 bp->autoneg |= AUTONEG_FLOW_CTRL;
7219 }
7220 else {
7221 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7222 }
7223
7224 if (netif_running(dev)) {
7225 spin_lock_bh(&bp->phy_lock);
7226 bnx2_setup_phy(bp, bp->phy_port);
7227 spin_unlock_bh(&bp->phy_lock);
7228 }
7229
7230 return 0;
7231 }
7232
7233 static u32
7234 bnx2_get_rx_csum(struct net_device *dev)
7235 {
7236 struct bnx2 *bp = netdev_priv(dev);
7237
7238 return bp->rx_csum;
7239 }
7240
7241 static int
7242 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7243 {
7244 struct bnx2 *bp = netdev_priv(dev);
7245
7246 bp->rx_csum = data;
7247 return 0;
7248 }
7249
7250 static int
7251 bnx2_set_tso(struct net_device *dev, u32 data)
7252 {
7253 struct bnx2 *bp = netdev_priv(dev);
7254
7255 if (data) {
7256 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7257 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7258 dev->features |= NETIF_F_TSO6;
7259 } else
7260 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7261 NETIF_F_TSO_ECN);
7262 return 0;
7263 }
7264
7265 static struct {
7266 char string[ETH_GSTRING_LEN];
7267 } bnx2_stats_str_arr[] = {
7268 { "rx_bytes" },
7269 { "rx_error_bytes" },
7270 { "tx_bytes" },
7271 { "tx_error_bytes" },
7272 { "rx_ucast_packets" },
7273 { "rx_mcast_packets" },
7274 { "rx_bcast_packets" },
7275 { "tx_ucast_packets" },
7276 { "tx_mcast_packets" },
7277 { "tx_bcast_packets" },
7278 { "tx_mac_errors" },
7279 { "tx_carrier_errors" },
7280 { "rx_crc_errors" },
7281 { "rx_align_errors" },
7282 { "tx_single_collisions" },
7283 { "tx_multi_collisions" },
7284 { "tx_deferred" },
7285 { "tx_excess_collisions" },
7286 { "tx_late_collisions" },
7287 { "tx_total_collisions" },
7288 { "rx_fragments" },
7289 { "rx_jabbers" },
7290 { "rx_undersize_packets" },
7291 { "rx_oversize_packets" },
7292 { "rx_64_byte_packets" },
7293 { "rx_65_to_127_byte_packets" },
7294 { "rx_128_to_255_byte_packets" },
7295 { "rx_256_to_511_byte_packets" },
7296 { "rx_512_to_1023_byte_packets" },
7297 { "rx_1024_to_1522_byte_packets" },
7298 { "rx_1523_to_9022_byte_packets" },
7299 { "tx_64_byte_packets" },
7300 { "tx_65_to_127_byte_packets" },
7301 { "tx_128_to_255_byte_packets" },
7302 { "tx_256_to_511_byte_packets" },
7303 { "tx_512_to_1023_byte_packets" },
7304 { "tx_1024_to_1522_byte_packets" },
7305 { "tx_1523_to_9022_byte_packets" },
7306 { "rx_xon_frames" },
7307 { "rx_xoff_frames" },
7308 { "tx_xon_frames" },
7309 { "tx_xoff_frames" },
7310 { "rx_mac_ctrl_frames" },
7311 { "rx_filtered_packets" },
7312 { "rx_ftq_discards" },
7313 { "rx_discards" },
7314 { "rx_fw_discards" },
7315 };
7316
7317 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7318 sizeof(bnx2_stats_str_arr[0]))
7319
7320 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7321
7322 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7323 STATS_OFFSET32(stat_IfHCInOctets_hi),
7324 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7325 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7326 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7327 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7328 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7329 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7330 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7331 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7332 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7333 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7334 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7335 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7336 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7337 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7338 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7339 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7340 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7341 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7342 STATS_OFFSET32(stat_EtherStatsCollisions),
7343 STATS_OFFSET32(stat_EtherStatsFragments),
7344 STATS_OFFSET32(stat_EtherStatsJabbers),
7345 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7346 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7347 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7348 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7349 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7350 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7351 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7352 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7353 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7354 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7355 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7356 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7357 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7358 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7359 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7360 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7361 STATS_OFFSET32(stat_XonPauseFramesReceived),
7362 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7363 STATS_OFFSET32(stat_OutXonSent),
7364 STATS_OFFSET32(stat_OutXoffSent),
7365 STATS_OFFSET32(stat_MacControlFramesReceived),
7366 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7367 STATS_OFFSET32(stat_IfInFTQDiscards),
7368 STATS_OFFSET32(stat_IfInMBUFDiscards),
7369 STATS_OFFSET32(stat_FwRxDrop),
7370 };
7371
7372 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7373 * skipped because of errata.
7374 */
7375 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7376 8,0,8,8,8,8,8,8,8,8,
7377 4,0,4,4,4,4,4,4,4,4,
7378 4,4,4,4,4,4,4,4,4,4,
7379 4,4,4,4,4,4,4,4,4,4,
7380 4,4,4,4,4,4,4,
7381 };
7382
7383 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7384 8,0,8,8,8,8,8,8,8,8,
7385 4,4,4,4,4,4,4,4,4,4,
7386 4,4,4,4,4,4,4,4,4,4,
7387 4,4,4,4,4,4,4,4,4,4,
7388 4,4,4,4,4,4,4,
7389 };
7390
7391 #define BNX2_NUM_TESTS 6
7392
7393 static struct {
7394 char string[ETH_GSTRING_LEN];
7395 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7396 { "register_test (offline)" },
7397 { "memory_test (offline)" },
7398 { "loopback_test (offline)" },
7399 { "nvram_test (online)" },
7400 { "interrupt_test (online)" },
7401 { "link_test (online)" },
7402 };
7403
7404 static int
7405 bnx2_get_sset_count(struct net_device *dev, int sset)
7406 {
7407 switch (sset) {
7408 case ETH_SS_TEST:
7409 return BNX2_NUM_TESTS;
7410 case ETH_SS_STATS:
7411 return BNX2_NUM_STATS;
7412 default:
7413 return -EOPNOTSUPP;
7414 }
7415 }
7416
7417 static void
7418 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7419 {
7420 struct bnx2 *bp = netdev_priv(dev);
7421
7422 bnx2_set_power_state(bp, PCI_D0);
7423
7424 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7425 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7426 int i;
7427
7428 bnx2_netif_stop(bp, true);
7429 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7430 bnx2_free_skbs(bp);
7431
7432 if (bnx2_test_registers(bp) != 0) {
7433 buf[0] = 1;
7434 etest->flags |= ETH_TEST_FL_FAILED;
7435 }
7436 if (bnx2_test_memory(bp) != 0) {
7437 buf[1] = 1;
7438 etest->flags |= ETH_TEST_FL_FAILED;
7439 }
7440 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7441 etest->flags |= ETH_TEST_FL_FAILED;
7442
7443 if (!netif_running(bp->dev))
7444 bnx2_shutdown_chip(bp);
7445 else {
7446 bnx2_init_nic(bp, 1);
7447 bnx2_netif_start(bp, true);
7448 }
7449
7450 /* wait for link up */
7451 for (i = 0; i < 7; i++) {
7452 if (bp->link_up)
7453 break;
7454 msleep_interruptible(1000);
7455 }
7456 }
7457
7458 if (bnx2_test_nvram(bp) != 0) {
7459 buf[3] = 1;
7460 etest->flags |= ETH_TEST_FL_FAILED;
7461 }
7462 if (bnx2_test_intr(bp) != 0) {
7463 buf[4] = 1;
7464 etest->flags |= ETH_TEST_FL_FAILED;
7465 }
7466
7467 if (bnx2_test_link(bp) != 0) {
7468 buf[5] = 1;
7469 etest->flags |= ETH_TEST_FL_FAILED;
7470
7471 }
7472 if (!netif_running(bp->dev))
7473 bnx2_set_power_state(bp, PCI_D3hot);
7474 }
7475
7476 static void
7477 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7478 {
7479 switch (stringset) {
7480 case ETH_SS_STATS:
7481 memcpy(buf, bnx2_stats_str_arr,
7482 sizeof(bnx2_stats_str_arr));
7483 break;
7484 case ETH_SS_TEST:
7485 memcpy(buf, bnx2_tests_str_arr,
7486 sizeof(bnx2_tests_str_arr));
7487 break;
7488 }
7489 }
7490
7491 static void
7492 bnx2_get_ethtool_stats(struct net_device *dev,
7493 struct ethtool_stats *stats, u64 *buf)
7494 {
7495 struct bnx2 *bp = netdev_priv(dev);
7496 int i;
7497 u32 *hw_stats = (u32 *) bp->stats_blk;
7498 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
7499 u8 *stats_len_arr = NULL;
7500
7501 if (hw_stats == NULL) {
7502 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7503 return;
7504 }
7505
7506 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7507 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7508 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7509 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7510 stats_len_arr = bnx2_5706_stats_len_arr;
7511 else
7512 stats_len_arr = bnx2_5708_stats_len_arr;
7513
7514 for (i = 0; i < BNX2_NUM_STATS; i++) {
7515 unsigned long offset;
7516
7517 if (stats_len_arr[i] == 0) {
7518 /* skip this counter */
7519 buf[i] = 0;
7520 continue;
7521 }
7522
7523 offset = bnx2_stats_offset_arr[i];
7524 if (stats_len_arr[i] == 4) {
7525 /* 4-byte counter */
7526 buf[i] = (u64) *(hw_stats + offset) +
7527 *(temp_stats + offset);
7528 continue;
7529 }
7530 /* 8-byte counter */
7531 buf[i] = (((u64) *(hw_stats + offset)) << 32) +
7532 *(hw_stats + offset + 1) +
7533 (((u64) *(temp_stats + offset)) << 32) +
7534 *(temp_stats + offset + 1);
7535 }
7536 }
7537
7538 static int
7539 bnx2_phys_id(struct net_device *dev, u32 data)
7540 {
7541 struct bnx2 *bp = netdev_priv(dev);
7542 int i;
7543 u32 save;
7544
7545 bnx2_set_power_state(bp, PCI_D0);
7546
7547 if (data == 0)
7548 data = 2;
7549
7550 save = REG_RD(bp, BNX2_MISC_CFG);
7551 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7552
7553 for (i = 0; i < (data * 2); i++) {
7554 if ((i % 2) == 0) {
7555 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7556 }
7557 else {
7558 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7559 BNX2_EMAC_LED_1000MB_OVERRIDE |
7560 BNX2_EMAC_LED_100MB_OVERRIDE |
7561 BNX2_EMAC_LED_10MB_OVERRIDE |
7562 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7563 BNX2_EMAC_LED_TRAFFIC);
7564 }
7565 msleep_interruptible(500);
7566 if (signal_pending(current))
7567 break;
7568 }
7569 REG_WR(bp, BNX2_EMAC_LED, 0);
7570 REG_WR(bp, BNX2_MISC_CFG, save);
7571
7572 if (!netif_running(dev))
7573 bnx2_set_power_state(bp, PCI_D3hot);
7574
7575 return 0;
7576 }
7577
7578 static int
7579 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7580 {
7581 struct bnx2 *bp = netdev_priv(dev);
7582
7583 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7584 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7585 else
7586 return (ethtool_op_set_tx_csum(dev, data));
7587 }
7588
7589 static int
7590 bnx2_set_flags(struct net_device *dev, u32 data)
7591 {
7592 return ethtool_op_set_flags(dev, data, ETH_FLAG_RXHASH);
7593 }
7594
7595 static const struct ethtool_ops bnx2_ethtool_ops = {
7596 .get_settings = bnx2_get_settings,
7597 .set_settings = bnx2_set_settings,
7598 .get_drvinfo = bnx2_get_drvinfo,
7599 .get_regs_len = bnx2_get_regs_len,
7600 .get_regs = bnx2_get_regs,
7601 .get_wol = bnx2_get_wol,
7602 .set_wol = bnx2_set_wol,
7603 .nway_reset = bnx2_nway_reset,
7604 .get_link = bnx2_get_link,
7605 .get_eeprom_len = bnx2_get_eeprom_len,
7606 .get_eeprom = bnx2_get_eeprom,
7607 .set_eeprom = bnx2_set_eeprom,
7608 .get_coalesce = bnx2_get_coalesce,
7609 .set_coalesce = bnx2_set_coalesce,
7610 .get_ringparam = bnx2_get_ringparam,
7611 .set_ringparam = bnx2_set_ringparam,
7612 .get_pauseparam = bnx2_get_pauseparam,
7613 .set_pauseparam = bnx2_set_pauseparam,
7614 .get_rx_csum = bnx2_get_rx_csum,
7615 .set_rx_csum = bnx2_set_rx_csum,
7616 .set_tx_csum = bnx2_set_tx_csum,
7617 .set_sg = ethtool_op_set_sg,
7618 .set_tso = bnx2_set_tso,
7619 .self_test = bnx2_self_test,
7620 .get_strings = bnx2_get_strings,
7621 .phys_id = bnx2_phys_id,
7622 .get_ethtool_stats = bnx2_get_ethtool_stats,
7623 .get_sset_count = bnx2_get_sset_count,
7624 .set_flags = bnx2_set_flags,
7625 .get_flags = ethtool_op_get_flags,
7626 };
7627
7628 /* Called with rtnl_lock */
7629 static int
7630 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7631 {
7632 struct mii_ioctl_data *data = if_mii(ifr);
7633 struct bnx2 *bp = netdev_priv(dev);
7634 int err;
7635
7636 switch(cmd) {
7637 case SIOCGMIIPHY:
7638 data->phy_id = bp->phy_addr;
7639
7640 /* fallthru */
7641 case SIOCGMIIREG: {
7642 u32 mii_regval;
7643
7644 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7645 return -EOPNOTSUPP;
7646
7647 if (!netif_running(dev))
7648 return -EAGAIN;
7649
7650 spin_lock_bh(&bp->phy_lock);
7651 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7652 spin_unlock_bh(&bp->phy_lock);
7653
7654 data->val_out = mii_regval;
7655
7656 return err;
7657 }
7658
7659 case SIOCSMIIREG:
7660 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7661 return -EOPNOTSUPP;
7662
7663 if (!netif_running(dev))
7664 return -EAGAIN;
7665
7666 spin_lock_bh(&bp->phy_lock);
7667 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7668 spin_unlock_bh(&bp->phy_lock);
7669
7670 return err;
7671
7672 default:
7673 /* do nothing */
7674 break;
7675 }
7676 return -EOPNOTSUPP;
7677 }
7678
7679 /* Called with rtnl_lock */
7680 static int
7681 bnx2_change_mac_addr(struct net_device *dev, void *p)
7682 {
7683 struct sockaddr *addr = p;
7684 struct bnx2 *bp = netdev_priv(dev);
7685
7686 if (!is_valid_ether_addr(addr->sa_data))
7687 return -EINVAL;
7688
7689 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7690 if (netif_running(dev))
7691 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7692
7693 return 0;
7694 }
7695
7696 /* Called with rtnl_lock */
7697 static int
7698 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7699 {
7700 struct bnx2 *bp = netdev_priv(dev);
7701
7702 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7703 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7704 return -EINVAL;
7705
7706 dev->mtu = new_mtu;
7707 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7708 }
7709
7710 #ifdef CONFIG_NET_POLL_CONTROLLER
7711 static void
7712 poll_bnx2(struct net_device *dev)
7713 {
7714 struct bnx2 *bp = netdev_priv(dev);
7715 int i;
7716
7717 for (i = 0; i < bp->irq_nvecs; i++) {
7718 struct bnx2_irq *irq = &bp->irq_tbl[i];
7719
7720 disable_irq(irq->vector);
7721 irq->handler(irq->vector, &bp->bnx2_napi[i]);
7722 enable_irq(irq->vector);
7723 }
7724 }
7725 #endif
7726
7727 static void __devinit
7728 bnx2_get_5709_media(struct bnx2 *bp)
7729 {
7730 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7731 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7732 u32 strap;
7733
7734 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7735 return;
7736 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7737 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7738 return;
7739 }
7740
7741 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7742 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7743 else
7744 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7745
7746 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7747 switch (strap) {
7748 case 0x4:
7749 case 0x5:
7750 case 0x6:
7751 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7752 return;
7753 }
7754 } else {
7755 switch (strap) {
7756 case 0x1:
7757 case 0x2:
7758 case 0x4:
7759 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7760 return;
7761 }
7762 }
7763 }
7764
7765 static void __devinit
7766 bnx2_get_pci_speed(struct bnx2 *bp)
7767 {
7768 u32 reg;
7769
7770 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7771 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7772 u32 clkreg;
7773
7774 bp->flags |= BNX2_FLAG_PCIX;
7775
7776 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7777
7778 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7779 switch (clkreg) {
7780 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7781 bp->bus_speed_mhz = 133;
7782 break;
7783
7784 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7785 bp->bus_speed_mhz = 100;
7786 break;
7787
7788 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7789 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7790 bp->bus_speed_mhz = 66;
7791 break;
7792
7793 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7794 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7795 bp->bus_speed_mhz = 50;
7796 break;
7797
7798 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7799 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7800 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7801 bp->bus_speed_mhz = 33;
7802 break;
7803 }
7804 }
7805 else {
7806 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7807 bp->bus_speed_mhz = 66;
7808 else
7809 bp->bus_speed_mhz = 33;
7810 }
7811
7812 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7813 bp->flags |= BNX2_FLAG_PCI_32BIT;
7814
7815 }
7816
7817 static void __devinit
7818 bnx2_read_vpd_fw_ver(struct bnx2 *bp)
7819 {
7820 int rc, i, j;
7821 u8 *data;
7822 unsigned int block_end, rosize, len;
7823
7824 #define BNX2_VPD_NVRAM_OFFSET 0x300
7825 #define BNX2_VPD_LEN 128
7826 #define BNX2_MAX_VER_SLEN 30
7827
7828 data = kmalloc(256, GFP_KERNEL);
7829 if (!data)
7830 return;
7831
7832 rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
7833 BNX2_VPD_LEN);
7834 if (rc)
7835 goto vpd_done;
7836
7837 for (i = 0; i < BNX2_VPD_LEN; i += 4) {
7838 data[i] = data[i + BNX2_VPD_LEN + 3];
7839 data[i + 1] = data[i + BNX2_VPD_LEN + 2];
7840 data[i + 2] = data[i + BNX2_VPD_LEN + 1];
7841 data[i + 3] = data[i + BNX2_VPD_LEN];
7842 }
7843
7844 i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
7845 if (i < 0)
7846 goto vpd_done;
7847
7848 rosize = pci_vpd_lrdt_size(&data[i]);
7849 i += PCI_VPD_LRDT_TAG_SIZE;
7850 block_end = i + rosize;
7851
7852 if (block_end > BNX2_VPD_LEN)
7853 goto vpd_done;
7854
7855 j = pci_vpd_find_info_keyword(data, i, rosize,
7856 PCI_VPD_RO_KEYWORD_MFR_ID);
7857 if (j < 0)
7858 goto vpd_done;
7859
7860 len = pci_vpd_info_field_size(&data[j]);
7861
7862 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7863 if (j + len > block_end || len != 4 ||
7864 memcmp(&data[j], "1028", 4))
7865 goto vpd_done;
7866
7867 j = pci_vpd_find_info_keyword(data, i, rosize,
7868 PCI_VPD_RO_KEYWORD_VENDOR0);
7869 if (j < 0)
7870 goto vpd_done;
7871
7872 len = pci_vpd_info_field_size(&data[j]);
7873
7874 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7875 if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
7876 goto vpd_done;
7877
7878 memcpy(bp->fw_version, &data[j], len);
7879 bp->fw_version[len] = ' ';
7880
7881 vpd_done:
7882 kfree(data);
7883 }
7884
7885 static int __devinit
7886 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7887 {
7888 struct bnx2 *bp;
7889 unsigned long mem_len;
7890 int rc, i, j;
7891 u32 reg;
7892 u64 dma_mask, persist_dma_mask;
7893
7894 SET_NETDEV_DEV(dev, &pdev->dev);
7895 bp = netdev_priv(dev);
7896
7897 bp->flags = 0;
7898 bp->phy_flags = 0;
7899
7900 bp->temp_stats_blk =
7901 kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
7902
7903 if (bp->temp_stats_blk == NULL) {
7904 rc = -ENOMEM;
7905 goto err_out;
7906 }
7907
7908 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7909 rc = pci_enable_device(pdev);
7910 if (rc) {
7911 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7912 goto err_out;
7913 }
7914
7915 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7916 dev_err(&pdev->dev,
7917 "Cannot find PCI device base address, aborting\n");
7918 rc = -ENODEV;
7919 goto err_out_disable;
7920 }
7921
7922 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7923 if (rc) {
7924 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7925 goto err_out_disable;
7926 }
7927
7928 pci_set_master(pdev);
7929 pci_save_state(pdev);
7930
7931 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7932 if (bp->pm_cap == 0) {
7933 dev_err(&pdev->dev,
7934 "Cannot find power management capability, aborting\n");
7935 rc = -EIO;
7936 goto err_out_release;
7937 }
7938
7939 bp->dev = dev;
7940 bp->pdev = pdev;
7941
7942 spin_lock_init(&bp->phy_lock);
7943 spin_lock_init(&bp->indirect_lock);
7944 #ifdef BCM_CNIC
7945 mutex_init(&bp->cnic_lock);
7946 #endif
7947 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7948
7949 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7950 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7951 dev->mem_end = dev->mem_start + mem_len;
7952 dev->irq = pdev->irq;
7953
7954 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7955
7956 if (!bp->regview) {
7957 dev_err(&pdev->dev, "Cannot map register space, aborting\n");
7958 rc = -ENOMEM;
7959 goto err_out_release;
7960 }
7961
7962 /* Configure byte swap and enable write to the reg_window registers.
7963 * Rely on CPU to do target byte swapping on big endian systems
7964 * The chip's target access swapping will not swap all accesses
7965 */
7966 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7967 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7968 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7969
7970 bnx2_set_power_state(bp, PCI_D0);
7971
7972 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7973
7974 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7975 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7976 dev_err(&pdev->dev,
7977 "Cannot find PCIE capability, aborting\n");
7978 rc = -EIO;
7979 goto err_out_unmap;
7980 }
7981 bp->flags |= BNX2_FLAG_PCIE;
7982 if (CHIP_REV(bp) == CHIP_REV_Ax)
7983 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7984 } else {
7985 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7986 if (bp->pcix_cap == 0) {
7987 dev_err(&pdev->dev,
7988 "Cannot find PCIX capability, aborting\n");
7989 rc = -EIO;
7990 goto err_out_unmap;
7991 }
7992 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7993 }
7994
7995 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7996 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7997 bp->flags |= BNX2_FLAG_MSIX_CAP;
7998 }
7999
8000 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
8001 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
8002 bp->flags |= BNX2_FLAG_MSI_CAP;
8003 }
8004
8005 /* 5708 cannot support DMA addresses > 40-bit. */
8006 if (CHIP_NUM(bp) == CHIP_NUM_5708)
8007 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
8008 else
8009 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
8010
8011 /* Configure DMA attributes. */
8012 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
8013 dev->features |= NETIF_F_HIGHDMA;
8014 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
8015 if (rc) {
8016 dev_err(&pdev->dev,
8017 "pci_set_consistent_dma_mask failed, aborting\n");
8018 goto err_out_unmap;
8019 }
8020 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
8021 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
8022 goto err_out_unmap;
8023 }
8024
8025 if (!(bp->flags & BNX2_FLAG_PCIE))
8026 bnx2_get_pci_speed(bp);
8027
8028 /* 5706A0 may falsely detect SERR and PERR. */
8029 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8030 reg = REG_RD(bp, PCI_COMMAND);
8031 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
8032 REG_WR(bp, PCI_COMMAND, reg);
8033 }
8034 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
8035 !(bp->flags & BNX2_FLAG_PCIX)) {
8036
8037 dev_err(&pdev->dev,
8038 "5706 A1 can only be used in a PCIX bus, aborting\n");
8039 goto err_out_unmap;
8040 }
8041
8042 bnx2_init_nvram(bp);
8043
8044 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
8045
8046 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
8047 BNX2_SHM_HDR_SIGNATURE_SIG) {
8048 u32 off = PCI_FUNC(pdev->devfn) << 2;
8049
8050 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
8051 } else
8052 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
8053
8054 /* Get the permanent MAC address. First we need to make sure the
8055 * firmware is actually running.
8056 */
8057 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
8058
8059 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
8060 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
8061 dev_err(&pdev->dev, "Firmware not running, aborting\n");
8062 rc = -ENODEV;
8063 goto err_out_unmap;
8064 }
8065
8066 bnx2_read_vpd_fw_ver(bp);
8067
8068 j = strlen(bp->fw_version);
8069 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
8070 for (i = 0; i < 3 && j < 24; i++) {
8071 u8 num, k, skip0;
8072
8073 if (i == 0) {
8074 bp->fw_version[j++] = 'b';
8075 bp->fw_version[j++] = 'c';
8076 bp->fw_version[j++] = ' ';
8077 }
8078 num = (u8) (reg >> (24 - (i * 8)));
8079 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
8080 if (num >= k || !skip0 || k == 1) {
8081 bp->fw_version[j++] = (num / k) + '0';
8082 skip0 = 0;
8083 }
8084 }
8085 if (i != 2)
8086 bp->fw_version[j++] = '.';
8087 }
8088 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
8089 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
8090 bp->wol = 1;
8091
8092 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
8093 bp->flags |= BNX2_FLAG_ASF_ENABLE;
8094
8095 for (i = 0; i < 30; i++) {
8096 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8097 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
8098 break;
8099 msleep(10);
8100 }
8101 }
8102 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8103 reg &= BNX2_CONDITION_MFW_RUN_MASK;
8104 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
8105 reg != BNX2_CONDITION_MFW_RUN_NONE) {
8106 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
8107
8108 if (j < 32)
8109 bp->fw_version[j++] = ' ';
8110 for (i = 0; i < 3 && j < 28; i++) {
8111 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
8112 reg = swab32(reg);
8113 memcpy(&bp->fw_version[j], &reg, 4);
8114 j += 4;
8115 }
8116 }
8117
8118 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
8119 bp->mac_addr[0] = (u8) (reg >> 8);
8120 bp->mac_addr[1] = (u8) reg;
8121
8122 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
8123 bp->mac_addr[2] = (u8) (reg >> 24);
8124 bp->mac_addr[3] = (u8) (reg >> 16);
8125 bp->mac_addr[4] = (u8) (reg >> 8);
8126 bp->mac_addr[5] = (u8) reg;
8127
8128 bp->tx_ring_size = MAX_TX_DESC_CNT;
8129 bnx2_set_rx_ring_size(bp, 255);
8130
8131 bp->rx_csum = 1;
8132
8133 bp->tx_quick_cons_trip_int = 2;
8134 bp->tx_quick_cons_trip = 20;
8135 bp->tx_ticks_int = 18;
8136 bp->tx_ticks = 80;
8137
8138 bp->rx_quick_cons_trip_int = 2;
8139 bp->rx_quick_cons_trip = 12;
8140 bp->rx_ticks_int = 18;
8141 bp->rx_ticks = 18;
8142
8143 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
8144
8145 bp->current_interval = BNX2_TIMER_INTERVAL;
8146
8147 bp->phy_addr = 1;
8148
8149 /* Disable WOL support if we are running on a SERDES chip. */
8150 if (CHIP_NUM(bp) == CHIP_NUM_5709)
8151 bnx2_get_5709_media(bp);
8152 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
8153 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
8154
8155 bp->phy_port = PORT_TP;
8156 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
8157 bp->phy_port = PORT_FIBRE;
8158 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
8159 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
8160 bp->flags |= BNX2_FLAG_NO_WOL;
8161 bp->wol = 0;
8162 }
8163 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
8164 /* Don't do parallel detect on this board because of
8165 * some board problems. The link will not go down
8166 * if we do parallel detect.
8167 */
8168 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
8169 pdev->subsystem_device == 0x310c)
8170 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
8171 } else {
8172 bp->phy_addr = 2;
8173 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
8174 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
8175 }
8176 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
8177 CHIP_NUM(bp) == CHIP_NUM_5708)
8178 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
8179 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
8180 (CHIP_REV(bp) == CHIP_REV_Ax ||
8181 CHIP_REV(bp) == CHIP_REV_Bx))
8182 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
8183
8184 bnx2_init_fw_cap(bp);
8185
8186 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
8187 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
8188 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
8189 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
8190 bp->flags |= BNX2_FLAG_NO_WOL;
8191 bp->wol = 0;
8192 }
8193
8194 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8195 bp->tx_quick_cons_trip_int =
8196 bp->tx_quick_cons_trip;
8197 bp->tx_ticks_int = bp->tx_ticks;
8198 bp->rx_quick_cons_trip_int =
8199 bp->rx_quick_cons_trip;
8200 bp->rx_ticks_int = bp->rx_ticks;
8201 bp->comp_prod_trip_int = bp->comp_prod_trip;
8202 bp->com_ticks_int = bp->com_ticks;
8203 bp->cmd_ticks_int = bp->cmd_ticks;
8204 }
8205
8206 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8207 *
8208 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8209 * with byte enables disabled on the unused 32-bit word. This is legal
8210 * but causes problems on the AMD 8132 which will eventually stop
8211 * responding after a while.
8212 *
8213 * AMD believes this incompatibility is unique to the 5706, and
8214 * prefers to locally disable MSI rather than globally disabling it.
8215 */
8216 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
8217 struct pci_dev *amd_8132 = NULL;
8218
8219 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
8220 PCI_DEVICE_ID_AMD_8132_BRIDGE,
8221 amd_8132))) {
8222
8223 if (amd_8132->revision >= 0x10 &&
8224 amd_8132->revision <= 0x13) {
8225 disable_msi = 1;
8226 pci_dev_put(amd_8132);
8227 break;
8228 }
8229 }
8230 }
8231
8232 bnx2_set_default_link(bp);
8233 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
8234
8235 init_timer(&bp->timer);
8236 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
8237 bp->timer.data = (unsigned long) bp;
8238 bp->timer.function = bnx2_timer;
8239
8240 return 0;
8241
8242 err_out_unmap:
8243 if (bp->regview) {
8244 iounmap(bp->regview);
8245 bp->regview = NULL;
8246 }
8247
8248 err_out_release:
8249 pci_release_regions(pdev);
8250
8251 err_out_disable:
8252 pci_disable_device(pdev);
8253 pci_set_drvdata(pdev, NULL);
8254
8255 err_out:
8256 return rc;
8257 }
8258
8259 static char * __devinit
8260 bnx2_bus_string(struct bnx2 *bp, char *str)
8261 {
8262 char *s = str;
8263
8264 if (bp->flags & BNX2_FLAG_PCIE) {
8265 s += sprintf(s, "PCI Express");
8266 } else {
8267 s += sprintf(s, "PCI");
8268 if (bp->flags & BNX2_FLAG_PCIX)
8269 s += sprintf(s, "-X");
8270 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8271 s += sprintf(s, " 32-bit");
8272 else
8273 s += sprintf(s, " 64-bit");
8274 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8275 }
8276 return str;
8277 }
8278
8279 static void
8280 bnx2_del_napi(struct bnx2 *bp)
8281 {
8282 int i;
8283
8284 for (i = 0; i < bp->irq_nvecs; i++)
8285 netif_napi_del(&bp->bnx2_napi[i].napi);
8286 }
8287
8288 static void
8289 bnx2_init_napi(struct bnx2 *bp)
8290 {
8291 int i;
8292
8293 for (i = 0; i < bp->irq_nvecs; i++) {
8294 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8295 int (*poll)(struct napi_struct *, int);
8296
8297 if (i == 0)
8298 poll = bnx2_poll;
8299 else
8300 poll = bnx2_poll_msix;
8301
8302 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8303 bnapi->bp = bp;
8304 }
8305 }
8306
8307 static const struct net_device_ops bnx2_netdev_ops = {
8308 .ndo_open = bnx2_open,
8309 .ndo_start_xmit = bnx2_start_xmit,
8310 .ndo_stop = bnx2_close,
8311 .ndo_get_stats64 = bnx2_get_stats64,
8312 .ndo_set_rx_mode = bnx2_set_rx_mode,
8313 .ndo_do_ioctl = bnx2_ioctl,
8314 .ndo_validate_addr = eth_validate_addr,
8315 .ndo_set_mac_address = bnx2_change_mac_addr,
8316 .ndo_change_mtu = bnx2_change_mtu,
8317 .ndo_tx_timeout = bnx2_tx_timeout,
8318 #ifdef BCM_VLAN
8319 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
8320 #endif
8321 #ifdef CONFIG_NET_POLL_CONTROLLER
8322 .ndo_poll_controller = poll_bnx2,
8323 #endif
8324 };
8325
8326 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8327 {
8328 #ifdef BCM_VLAN
8329 dev->vlan_features |= flags;
8330 #endif
8331 }
8332
8333 static int __devinit
8334 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8335 {
8336 static int version_printed = 0;
8337 struct net_device *dev = NULL;
8338 struct bnx2 *bp;
8339 int rc;
8340 char str[40];
8341
8342 if (version_printed++ == 0)
8343 pr_info("%s", version);
8344
8345 /* dev zeroed in init_etherdev */
8346 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8347
8348 if (!dev)
8349 return -ENOMEM;
8350
8351 rc = bnx2_init_board(pdev, dev);
8352 if (rc < 0) {
8353 free_netdev(dev);
8354 return rc;
8355 }
8356
8357 dev->netdev_ops = &bnx2_netdev_ops;
8358 dev->watchdog_timeo = TX_TIMEOUT;
8359 dev->ethtool_ops = &bnx2_ethtool_ops;
8360
8361 bp = netdev_priv(dev);
8362
8363 pci_set_drvdata(pdev, dev);
8364
8365 rc = bnx2_request_firmware(bp);
8366 if (rc)
8367 goto error;
8368
8369 memcpy(dev->dev_addr, bp->mac_addr, 6);
8370 memcpy(dev->perm_addr, bp->mac_addr, 6);
8371
8372 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_GRO |
8373 NETIF_F_RXHASH;
8374 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8375 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8376 dev->features |= NETIF_F_IPV6_CSUM;
8377 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8378 }
8379 #ifdef BCM_VLAN
8380 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8381 #endif
8382 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8383 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8384 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8385 dev->features |= NETIF_F_TSO6;
8386 vlan_features_add(dev, NETIF_F_TSO6);
8387 }
8388 if ((rc = register_netdev(dev))) {
8389 dev_err(&pdev->dev, "Cannot register net device\n");
8390 goto error;
8391 }
8392
8393 netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8394 board_info[ent->driver_data].name,
8395 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8396 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8397 bnx2_bus_string(bp, str),
8398 dev->base_addr,
8399 bp->pdev->irq, dev->dev_addr);
8400
8401 return 0;
8402
8403 error:
8404 if (bp->mips_firmware)
8405 release_firmware(bp->mips_firmware);
8406 if (bp->rv2p_firmware)
8407 release_firmware(bp->rv2p_firmware);
8408
8409 if (bp->regview)
8410 iounmap(bp->regview);
8411 pci_release_regions(pdev);
8412 pci_disable_device(pdev);
8413 pci_set_drvdata(pdev, NULL);
8414 free_netdev(dev);
8415 return rc;
8416 }
8417
8418 static void __devexit
8419 bnx2_remove_one(struct pci_dev *pdev)
8420 {
8421 struct net_device *dev = pci_get_drvdata(pdev);
8422 struct bnx2 *bp = netdev_priv(dev);
8423
8424 flush_scheduled_work();
8425
8426 unregister_netdev(dev);
8427
8428 if (bp->mips_firmware)
8429 release_firmware(bp->mips_firmware);
8430 if (bp->rv2p_firmware)
8431 release_firmware(bp->rv2p_firmware);
8432
8433 if (bp->regview)
8434 iounmap(bp->regview);
8435
8436 kfree(bp->temp_stats_blk);
8437
8438 free_netdev(dev);
8439 pci_release_regions(pdev);
8440 pci_disable_device(pdev);
8441 pci_set_drvdata(pdev, NULL);
8442 }
8443
8444 static int
8445 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8446 {
8447 struct net_device *dev = pci_get_drvdata(pdev);
8448 struct bnx2 *bp = netdev_priv(dev);
8449
8450 /* PCI register 4 needs to be saved whether netif_running() or not.
8451 * MSI address and data need to be saved if using MSI and
8452 * netif_running().
8453 */
8454 pci_save_state(pdev);
8455 if (!netif_running(dev))
8456 return 0;
8457
8458 flush_scheduled_work();
8459 bnx2_netif_stop(bp, true);
8460 netif_device_detach(dev);
8461 del_timer_sync(&bp->timer);
8462 bnx2_shutdown_chip(bp);
8463 bnx2_free_skbs(bp);
8464 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8465 return 0;
8466 }
8467
8468 static int
8469 bnx2_resume(struct pci_dev *pdev)
8470 {
8471 struct net_device *dev = pci_get_drvdata(pdev);
8472 struct bnx2 *bp = netdev_priv(dev);
8473
8474 pci_restore_state(pdev);
8475 if (!netif_running(dev))
8476 return 0;
8477
8478 bnx2_set_power_state(bp, PCI_D0);
8479 netif_device_attach(dev);
8480 bnx2_init_nic(bp, 1);
8481 bnx2_netif_start(bp, true);
8482 return 0;
8483 }
8484
8485 /**
8486 * bnx2_io_error_detected - called when PCI error is detected
8487 * @pdev: Pointer to PCI device
8488 * @state: The current pci connection state
8489 *
8490 * This function is called after a PCI bus error affecting
8491 * this device has been detected.
8492 */
8493 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8494 pci_channel_state_t state)
8495 {
8496 struct net_device *dev = pci_get_drvdata(pdev);
8497 struct bnx2 *bp = netdev_priv(dev);
8498
8499 rtnl_lock();
8500 netif_device_detach(dev);
8501
8502 if (state == pci_channel_io_perm_failure) {
8503 rtnl_unlock();
8504 return PCI_ERS_RESULT_DISCONNECT;
8505 }
8506
8507 if (netif_running(dev)) {
8508 bnx2_netif_stop(bp, true);
8509 del_timer_sync(&bp->timer);
8510 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8511 }
8512
8513 pci_disable_device(pdev);
8514 rtnl_unlock();
8515
8516 /* Request a slot slot reset. */
8517 return PCI_ERS_RESULT_NEED_RESET;
8518 }
8519
8520 /**
8521 * bnx2_io_slot_reset - called after the pci bus has been reset.
8522 * @pdev: Pointer to PCI device
8523 *
8524 * Restart the card from scratch, as if from a cold-boot.
8525 */
8526 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8527 {
8528 struct net_device *dev = pci_get_drvdata(pdev);
8529 struct bnx2 *bp = netdev_priv(dev);
8530
8531 rtnl_lock();
8532 if (pci_enable_device(pdev)) {
8533 dev_err(&pdev->dev,
8534 "Cannot re-enable PCI device after reset\n");
8535 rtnl_unlock();
8536 return PCI_ERS_RESULT_DISCONNECT;
8537 }
8538 pci_set_master(pdev);
8539 pci_restore_state(pdev);
8540 pci_save_state(pdev);
8541
8542 if (netif_running(dev)) {
8543 bnx2_set_power_state(bp, PCI_D0);
8544 bnx2_init_nic(bp, 1);
8545 }
8546
8547 rtnl_unlock();
8548 return PCI_ERS_RESULT_RECOVERED;
8549 }
8550
8551 /**
8552 * bnx2_io_resume - called when traffic can start flowing again.
8553 * @pdev: Pointer to PCI device
8554 *
8555 * This callback is called when the error recovery driver tells us that
8556 * its OK to resume normal operation.
8557 */
8558 static void bnx2_io_resume(struct pci_dev *pdev)
8559 {
8560 struct net_device *dev = pci_get_drvdata(pdev);
8561 struct bnx2 *bp = netdev_priv(dev);
8562
8563 rtnl_lock();
8564 if (netif_running(dev))
8565 bnx2_netif_start(bp, true);
8566
8567 netif_device_attach(dev);
8568 rtnl_unlock();
8569 }
8570
8571 static struct pci_error_handlers bnx2_err_handler = {
8572 .error_detected = bnx2_io_error_detected,
8573 .slot_reset = bnx2_io_slot_reset,
8574 .resume = bnx2_io_resume,
8575 };
8576
8577 static struct pci_driver bnx2_pci_driver = {
8578 .name = DRV_MODULE_NAME,
8579 .id_table = bnx2_pci_tbl,
8580 .probe = bnx2_init_one,
8581 .remove = __devexit_p(bnx2_remove_one),
8582 .suspend = bnx2_suspend,
8583 .resume = bnx2_resume,
8584 .err_handler = &bnx2_err_handler,
8585 };
8586
8587 static int __init bnx2_init(void)
8588 {
8589 return pci_register_driver(&bnx2_pci_driver);
8590 }
8591
8592 static void __exit bnx2_cleanup(void)
8593 {
8594 pci_unregister_driver(&bnx2_pci_driver);
8595 }
8596
8597 module_init(bnx2_init);
8598 module_exit(bnx2_cleanup);
8599
8600
8601