netdev: convert bulk of drivers to netdev_tx_t
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2009 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/list.h>
52
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
54 #define BCM_CNIC 1
55 #include "cnic_if.h"
56 #endif
57 #include "bnx2.h"
58 #include "bnx2_fw.h"
59
60 #define DRV_MODULE_NAME "bnx2"
61 #define PFX DRV_MODULE_NAME ": "
62 #define DRV_MODULE_VERSION "2.0.2"
63 #define DRV_MODULE_RELDATE "Aug 21, 2009"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
67 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
68 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
69
70 #define RUN_AT(x) (jiffies + (x))
71
72 /* Time in jiffies before concluding the transmitter is hung. */
73 #define TX_TIMEOUT (5*HZ)
74
75 static char version[] __devinitdata =
76 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
77
78 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
79 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
80 MODULE_LICENSE("GPL");
81 MODULE_VERSION(DRV_MODULE_VERSION);
82 MODULE_FIRMWARE(FW_MIPS_FILE_06);
83 MODULE_FIRMWARE(FW_RV2P_FILE_06);
84 MODULE_FIRMWARE(FW_MIPS_FILE_09);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09);
86 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
87
88 static int disable_msi = 0;
89
90 module_param(disable_msi, int, 0);
91 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
92
93 typedef enum {
94 BCM5706 = 0,
95 NC370T,
96 NC370I,
97 BCM5706S,
98 NC370F,
99 BCM5708,
100 BCM5708S,
101 BCM5709,
102 BCM5709S,
103 BCM5716,
104 BCM5716S,
105 } board_t;
106
107 /* indexed by board_t, above */
108 static struct {
109 char *name;
110 } board_info[] __devinitdata = {
111 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
112 { "HP NC370T Multifunction Gigabit Server Adapter" },
113 { "HP NC370i Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
115 { "HP NC370F Multifunction Gigabit Server Adapter" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
121 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
122 };
123
124 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
125 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
126 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
127 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
128 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
129 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
131 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
132 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
133 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
134 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
135 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
136 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
137 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
138 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
139 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
140 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
141 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
142 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
143 { PCI_VENDOR_ID_BROADCOM, 0x163b,
144 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
145 { PCI_VENDOR_ID_BROADCOM, 0x163c,
146 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
147 { 0, }
148 };
149
150 static const struct flash_spec flash_table[] =
151 {
152 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
153 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
154 /* Slow EEPROM */
155 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
156 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
157 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
158 "EEPROM - slow"},
159 /* Expansion entry 0001 */
160 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
162 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
163 "Entry 0001"},
164 /* Saifun SA25F010 (non-buffered flash) */
165 /* strap, cfg1, & write1 need updates */
166 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
168 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
169 "Non-buffered flash (128kB)"},
170 /* Saifun SA25F020 (non-buffered flash) */
171 /* strap, cfg1, & write1 need updates */
172 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
173 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
174 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
175 "Non-buffered flash (256kB)"},
176 /* Expansion entry 0100 */
177 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
178 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
179 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
180 "Entry 0100"},
181 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
182 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
183 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
184 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
185 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
186 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
187 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
189 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
190 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
191 /* Saifun SA25F005 (non-buffered flash) */
192 /* strap, cfg1, & write1 need updates */
193 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
196 "Non-buffered flash (64kB)"},
197 /* Fast EEPROM */
198 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
199 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
200 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
201 "EEPROM - fast"},
202 /* Expansion entry 1001 */
203 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
204 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
205 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
206 "Entry 1001"},
207 /* Expansion entry 1010 */
208 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
209 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
211 "Entry 1010"},
212 /* ATMEL AT45DB011B (buffered flash) */
213 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
214 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
215 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
216 "Buffered flash (128kB)"},
217 /* Expansion entry 1100 */
218 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
219 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221 "Entry 1100"},
222 /* Expansion entry 1101 */
223 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
224 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 "Entry 1101"},
227 /* Ateml Expansion entry 1110 */
228 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
229 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
231 "Entry 1110 (Atmel)"},
232 /* ATMEL AT45DB021B (buffered flash) */
233 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
234 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
235 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
236 "Buffered flash (256kB)"},
237 };
238
239 static const struct flash_spec flash_5709 = {
240 .flags = BNX2_NV_BUFFERED,
241 .page_bits = BCM5709_FLASH_PAGE_BITS,
242 .page_size = BCM5709_FLASH_PAGE_SIZE,
243 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
244 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
245 .name = "5709 Buffered flash (256kB)",
246 };
247
248 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
249
250 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
251 {
252 u32 diff;
253
254 smp_mb();
255
256 /* The ring uses 256 indices for 255 entries, one of them
257 * needs to be skipped.
258 */
259 diff = txr->tx_prod - txr->tx_cons;
260 if (unlikely(diff >= TX_DESC_CNT)) {
261 diff &= 0xffff;
262 if (diff == TX_DESC_CNT)
263 diff = MAX_TX_DESC_CNT;
264 }
265 return (bp->tx_ring_size - diff);
266 }
267
268 static u32
269 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
270 {
271 u32 val;
272
273 spin_lock_bh(&bp->indirect_lock);
274 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
275 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
276 spin_unlock_bh(&bp->indirect_lock);
277 return val;
278 }
279
280 static void
281 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
282 {
283 spin_lock_bh(&bp->indirect_lock);
284 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
285 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
286 spin_unlock_bh(&bp->indirect_lock);
287 }
288
289 static void
290 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
291 {
292 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
293 }
294
295 static u32
296 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
297 {
298 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
299 }
300
301 static void
302 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
303 {
304 offset += cid_addr;
305 spin_lock_bh(&bp->indirect_lock);
306 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
307 int i;
308
309 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
310 REG_WR(bp, BNX2_CTX_CTX_CTRL,
311 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
312 for (i = 0; i < 5; i++) {
313 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
314 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
315 break;
316 udelay(5);
317 }
318 } else {
319 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
320 REG_WR(bp, BNX2_CTX_DATA, val);
321 }
322 spin_unlock_bh(&bp->indirect_lock);
323 }
324
325 #ifdef BCM_CNIC
326 static int
327 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
328 {
329 struct bnx2 *bp = netdev_priv(dev);
330 struct drv_ctl_io *io = &info->data.io;
331
332 switch (info->cmd) {
333 case DRV_CTL_IO_WR_CMD:
334 bnx2_reg_wr_ind(bp, io->offset, io->data);
335 break;
336 case DRV_CTL_IO_RD_CMD:
337 io->data = bnx2_reg_rd_ind(bp, io->offset);
338 break;
339 case DRV_CTL_CTX_WR_CMD:
340 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
341 break;
342 default:
343 return -EINVAL;
344 }
345 return 0;
346 }
347
348 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
349 {
350 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
351 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
352 int sb_id;
353
354 if (bp->flags & BNX2_FLAG_USING_MSIX) {
355 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
356 bnapi->cnic_present = 0;
357 sb_id = bp->irq_nvecs;
358 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
359 } else {
360 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
361 bnapi->cnic_tag = bnapi->last_status_idx;
362 bnapi->cnic_present = 1;
363 sb_id = 0;
364 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
365 }
366
367 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
368 cp->irq_arr[0].status_blk = (void *)
369 ((unsigned long) bnapi->status_blk.msi +
370 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
371 cp->irq_arr[0].status_blk_num = sb_id;
372 cp->num_irq = 1;
373 }
374
375 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
376 void *data)
377 {
378 struct bnx2 *bp = netdev_priv(dev);
379 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
380
381 if (ops == NULL)
382 return -EINVAL;
383
384 if (cp->drv_state & CNIC_DRV_STATE_REGD)
385 return -EBUSY;
386
387 bp->cnic_data = data;
388 rcu_assign_pointer(bp->cnic_ops, ops);
389
390 cp->num_irq = 0;
391 cp->drv_state = CNIC_DRV_STATE_REGD;
392
393 bnx2_setup_cnic_irq_info(bp);
394
395 return 0;
396 }
397
398 static int bnx2_unregister_cnic(struct net_device *dev)
399 {
400 struct bnx2 *bp = netdev_priv(dev);
401 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
402 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
403
404 cp->drv_state = 0;
405 bnapi->cnic_present = 0;
406 rcu_assign_pointer(bp->cnic_ops, NULL);
407 synchronize_rcu();
408 return 0;
409 }
410
411 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
412 {
413 struct bnx2 *bp = netdev_priv(dev);
414 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
415
416 cp->drv_owner = THIS_MODULE;
417 cp->chip_id = bp->chip_id;
418 cp->pdev = bp->pdev;
419 cp->io_base = bp->regview;
420 cp->drv_ctl = bnx2_drv_ctl;
421 cp->drv_register_cnic = bnx2_register_cnic;
422 cp->drv_unregister_cnic = bnx2_unregister_cnic;
423
424 return cp;
425 }
426 EXPORT_SYMBOL(bnx2_cnic_probe);
427
428 static void
429 bnx2_cnic_stop(struct bnx2 *bp)
430 {
431 struct cnic_ops *c_ops;
432 struct cnic_ctl_info info;
433
434 rcu_read_lock();
435 c_ops = rcu_dereference(bp->cnic_ops);
436 if (c_ops) {
437 info.cmd = CNIC_CTL_STOP_CMD;
438 c_ops->cnic_ctl(bp->cnic_data, &info);
439 }
440 rcu_read_unlock();
441 }
442
443 static void
444 bnx2_cnic_start(struct bnx2 *bp)
445 {
446 struct cnic_ops *c_ops;
447 struct cnic_ctl_info info;
448
449 rcu_read_lock();
450 c_ops = rcu_dereference(bp->cnic_ops);
451 if (c_ops) {
452 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
453 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
454
455 bnapi->cnic_tag = bnapi->last_status_idx;
456 }
457 info.cmd = CNIC_CTL_START_CMD;
458 c_ops->cnic_ctl(bp->cnic_data, &info);
459 }
460 rcu_read_unlock();
461 }
462
463 #else
464
465 static void
466 bnx2_cnic_stop(struct bnx2 *bp)
467 {
468 }
469
470 static void
471 bnx2_cnic_start(struct bnx2 *bp)
472 {
473 }
474
475 #endif
476
477 static int
478 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
479 {
480 u32 val1;
481 int i, ret;
482
483 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
484 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
485 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
486
487 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
488 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
489
490 udelay(40);
491 }
492
493 val1 = (bp->phy_addr << 21) | (reg << 16) |
494 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
495 BNX2_EMAC_MDIO_COMM_START_BUSY;
496 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
497
498 for (i = 0; i < 50; i++) {
499 udelay(10);
500
501 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
502 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
503 udelay(5);
504
505 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
506 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
507
508 break;
509 }
510 }
511
512 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
513 *val = 0x0;
514 ret = -EBUSY;
515 }
516 else {
517 *val = val1;
518 ret = 0;
519 }
520
521 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
522 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
523 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
524
525 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
526 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
527
528 udelay(40);
529 }
530
531 return ret;
532 }
533
534 static int
535 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
536 {
537 u32 val1;
538 int i, ret;
539
540 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
541 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
542 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
543
544 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
545 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
546
547 udelay(40);
548 }
549
550 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
551 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
552 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
553 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
554
555 for (i = 0; i < 50; i++) {
556 udelay(10);
557
558 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
559 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
560 udelay(5);
561 break;
562 }
563 }
564
565 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
566 ret = -EBUSY;
567 else
568 ret = 0;
569
570 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
571 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
572 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
573
574 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
575 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
576
577 udelay(40);
578 }
579
580 return ret;
581 }
582
583 static void
584 bnx2_disable_int(struct bnx2 *bp)
585 {
586 int i;
587 struct bnx2_napi *bnapi;
588
589 for (i = 0; i < bp->irq_nvecs; i++) {
590 bnapi = &bp->bnx2_napi[i];
591 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
592 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
593 }
594 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
595 }
596
597 static void
598 bnx2_enable_int(struct bnx2 *bp)
599 {
600 int i;
601 struct bnx2_napi *bnapi;
602
603 for (i = 0; i < bp->irq_nvecs; i++) {
604 bnapi = &bp->bnx2_napi[i];
605
606 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
607 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
608 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
609 bnapi->last_status_idx);
610
611 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
612 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
613 bnapi->last_status_idx);
614 }
615 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
616 }
617
618 static void
619 bnx2_disable_int_sync(struct bnx2 *bp)
620 {
621 int i;
622
623 atomic_inc(&bp->intr_sem);
624 if (!netif_running(bp->dev))
625 return;
626
627 bnx2_disable_int(bp);
628 for (i = 0; i < bp->irq_nvecs; i++)
629 synchronize_irq(bp->irq_tbl[i].vector);
630 }
631
632 static void
633 bnx2_napi_disable(struct bnx2 *bp)
634 {
635 int i;
636
637 for (i = 0; i < bp->irq_nvecs; i++)
638 napi_disable(&bp->bnx2_napi[i].napi);
639 }
640
641 static void
642 bnx2_napi_enable(struct bnx2 *bp)
643 {
644 int i;
645
646 for (i = 0; i < bp->irq_nvecs; i++)
647 napi_enable(&bp->bnx2_napi[i].napi);
648 }
649
650 static void
651 bnx2_netif_stop(struct bnx2 *bp)
652 {
653 bnx2_cnic_stop(bp);
654 bnx2_disable_int_sync(bp);
655 if (netif_running(bp->dev)) {
656 bnx2_napi_disable(bp);
657 netif_tx_disable(bp->dev);
658 bp->dev->trans_start = jiffies; /* prevent tx timeout */
659 }
660 }
661
662 static void
663 bnx2_netif_start(struct bnx2 *bp)
664 {
665 if (atomic_dec_and_test(&bp->intr_sem)) {
666 if (netif_running(bp->dev)) {
667 netif_tx_wake_all_queues(bp->dev);
668 bnx2_napi_enable(bp);
669 bnx2_enable_int(bp);
670 bnx2_cnic_start(bp);
671 }
672 }
673 }
674
675 static void
676 bnx2_free_tx_mem(struct bnx2 *bp)
677 {
678 int i;
679
680 for (i = 0; i < bp->num_tx_rings; i++) {
681 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
682 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
683
684 if (txr->tx_desc_ring) {
685 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
686 txr->tx_desc_ring,
687 txr->tx_desc_mapping);
688 txr->tx_desc_ring = NULL;
689 }
690 kfree(txr->tx_buf_ring);
691 txr->tx_buf_ring = NULL;
692 }
693 }
694
695 static void
696 bnx2_free_rx_mem(struct bnx2 *bp)
697 {
698 int i;
699
700 for (i = 0; i < bp->num_rx_rings; i++) {
701 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
702 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
703 int j;
704
705 for (j = 0; j < bp->rx_max_ring; j++) {
706 if (rxr->rx_desc_ring[j])
707 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
708 rxr->rx_desc_ring[j],
709 rxr->rx_desc_mapping[j]);
710 rxr->rx_desc_ring[j] = NULL;
711 }
712 vfree(rxr->rx_buf_ring);
713 rxr->rx_buf_ring = NULL;
714
715 for (j = 0; j < bp->rx_max_pg_ring; j++) {
716 if (rxr->rx_pg_desc_ring[j])
717 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
718 rxr->rx_pg_desc_ring[j],
719 rxr->rx_pg_desc_mapping[j]);
720 rxr->rx_pg_desc_ring[j] = NULL;
721 }
722 vfree(rxr->rx_pg_ring);
723 rxr->rx_pg_ring = NULL;
724 }
725 }
726
727 static int
728 bnx2_alloc_tx_mem(struct bnx2 *bp)
729 {
730 int i;
731
732 for (i = 0; i < bp->num_tx_rings; i++) {
733 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
734 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
735
736 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
737 if (txr->tx_buf_ring == NULL)
738 return -ENOMEM;
739
740 txr->tx_desc_ring =
741 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
742 &txr->tx_desc_mapping);
743 if (txr->tx_desc_ring == NULL)
744 return -ENOMEM;
745 }
746 return 0;
747 }
748
749 static int
750 bnx2_alloc_rx_mem(struct bnx2 *bp)
751 {
752 int i;
753
754 for (i = 0; i < bp->num_rx_rings; i++) {
755 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
756 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
757 int j;
758
759 rxr->rx_buf_ring =
760 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
761 if (rxr->rx_buf_ring == NULL)
762 return -ENOMEM;
763
764 memset(rxr->rx_buf_ring, 0,
765 SW_RXBD_RING_SIZE * bp->rx_max_ring);
766
767 for (j = 0; j < bp->rx_max_ring; j++) {
768 rxr->rx_desc_ring[j] =
769 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
770 &rxr->rx_desc_mapping[j]);
771 if (rxr->rx_desc_ring[j] == NULL)
772 return -ENOMEM;
773
774 }
775
776 if (bp->rx_pg_ring_size) {
777 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
778 bp->rx_max_pg_ring);
779 if (rxr->rx_pg_ring == NULL)
780 return -ENOMEM;
781
782 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
783 bp->rx_max_pg_ring);
784 }
785
786 for (j = 0; j < bp->rx_max_pg_ring; j++) {
787 rxr->rx_pg_desc_ring[j] =
788 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
789 &rxr->rx_pg_desc_mapping[j]);
790 if (rxr->rx_pg_desc_ring[j] == NULL)
791 return -ENOMEM;
792
793 }
794 }
795 return 0;
796 }
797
798 static void
799 bnx2_free_mem(struct bnx2 *bp)
800 {
801 int i;
802 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
803
804 bnx2_free_tx_mem(bp);
805 bnx2_free_rx_mem(bp);
806
807 for (i = 0; i < bp->ctx_pages; i++) {
808 if (bp->ctx_blk[i]) {
809 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
810 bp->ctx_blk[i],
811 bp->ctx_blk_mapping[i]);
812 bp->ctx_blk[i] = NULL;
813 }
814 }
815 if (bnapi->status_blk.msi) {
816 pci_free_consistent(bp->pdev, bp->status_stats_size,
817 bnapi->status_blk.msi,
818 bp->status_blk_mapping);
819 bnapi->status_blk.msi = NULL;
820 bp->stats_blk = NULL;
821 }
822 }
823
824 static int
825 bnx2_alloc_mem(struct bnx2 *bp)
826 {
827 int i, status_blk_size, err;
828 struct bnx2_napi *bnapi;
829 void *status_blk;
830
831 /* Combine status and statistics blocks into one allocation. */
832 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
833 if (bp->flags & BNX2_FLAG_MSIX_CAP)
834 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
835 BNX2_SBLK_MSIX_ALIGN_SIZE);
836 bp->status_stats_size = status_blk_size +
837 sizeof(struct statistics_block);
838
839 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
840 &bp->status_blk_mapping);
841 if (status_blk == NULL)
842 goto alloc_mem_err;
843
844 memset(status_blk, 0, bp->status_stats_size);
845
846 bnapi = &bp->bnx2_napi[0];
847 bnapi->status_blk.msi = status_blk;
848 bnapi->hw_tx_cons_ptr =
849 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
850 bnapi->hw_rx_cons_ptr =
851 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
852 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
853 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
854 struct status_block_msix *sblk;
855
856 bnapi = &bp->bnx2_napi[i];
857
858 sblk = (void *) (status_blk +
859 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
860 bnapi->status_blk.msix = sblk;
861 bnapi->hw_tx_cons_ptr =
862 &sblk->status_tx_quick_consumer_index;
863 bnapi->hw_rx_cons_ptr =
864 &sblk->status_rx_quick_consumer_index;
865 bnapi->int_num = i << 24;
866 }
867 }
868
869 bp->stats_blk = status_blk + status_blk_size;
870
871 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
872
873 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
874 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
875 if (bp->ctx_pages == 0)
876 bp->ctx_pages = 1;
877 for (i = 0; i < bp->ctx_pages; i++) {
878 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
879 BCM_PAGE_SIZE,
880 &bp->ctx_blk_mapping[i]);
881 if (bp->ctx_blk[i] == NULL)
882 goto alloc_mem_err;
883 }
884 }
885
886 err = bnx2_alloc_rx_mem(bp);
887 if (err)
888 goto alloc_mem_err;
889
890 err = bnx2_alloc_tx_mem(bp);
891 if (err)
892 goto alloc_mem_err;
893
894 return 0;
895
896 alloc_mem_err:
897 bnx2_free_mem(bp);
898 return -ENOMEM;
899 }
900
901 static void
902 bnx2_report_fw_link(struct bnx2 *bp)
903 {
904 u32 fw_link_status = 0;
905
906 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
907 return;
908
909 if (bp->link_up) {
910 u32 bmsr;
911
912 switch (bp->line_speed) {
913 case SPEED_10:
914 if (bp->duplex == DUPLEX_HALF)
915 fw_link_status = BNX2_LINK_STATUS_10HALF;
916 else
917 fw_link_status = BNX2_LINK_STATUS_10FULL;
918 break;
919 case SPEED_100:
920 if (bp->duplex == DUPLEX_HALF)
921 fw_link_status = BNX2_LINK_STATUS_100HALF;
922 else
923 fw_link_status = BNX2_LINK_STATUS_100FULL;
924 break;
925 case SPEED_1000:
926 if (bp->duplex == DUPLEX_HALF)
927 fw_link_status = BNX2_LINK_STATUS_1000HALF;
928 else
929 fw_link_status = BNX2_LINK_STATUS_1000FULL;
930 break;
931 case SPEED_2500:
932 if (bp->duplex == DUPLEX_HALF)
933 fw_link_status = BNX2_LINK_STATUS_2500HALF;
934 else
935 fw_link_status = BNX2_LINK_STATUS_2500FULL;
936 break;
937 }
938
939 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
940
941 if (bp->autoneg) {
942 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
943
944 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
945 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
946
947 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
948 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
949 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
950 else
951 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
952 }
953 }
954 else
955 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
956
957 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
958 }
959
960 static char *
961 bnx2_xceiver_str(struct bnx2 *bp)
962 {
963 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
964 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
965 "Copper"));
966 }
967
968 static void
969 bnx2_report_link(struct bnx2 *bp)
970 {
971 if (bp->link_up) {
972 netif_carrier_on(bp->dev);
973 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
974 bnx2_xceiver_str(bp));
975
976 printk("%d Mbps ", bp->line_speed);
977
978 if (bp->duplex == DUPLEX_FULL)
979 printk("full duplex");
980 else
981 printk("half duplex");
982
983 if (bp->flow_ctrl) {
984 if (bp->flow_ctrl & FLOW_CTRL_RX) {
985 printk(", receive ");
986 if (bp->flow_ctrl & FLOW_CTRL_TX)
987 printk("& transmit ");
988 }
989 else {
990 printk(", transmit ");
991 }
992 printk("flow control ON");
993 }
994 printk("\n");
995 }
996 else {
997 netif_carrier_off(bp->dev);
998 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
999 bnx2_xceiver_str(bp));
1000 }
1001
1002 bnx2_report_fw_link(bp);
1003 }
1004
1005 static void
1006 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1007 {
1008 u32 local_adv, remote_adv;
1009
1010 bp->flow_ctrl = 0;
1011 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1012 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1013
1014 if (bp->duplex == DUPLEX_FULL) {
1015 bp->flow_ctrl = bp->req_flow_ctrl;
1016 }
1017 return;
1018 }
1019
1020 if (bp->duplex != DUPLEX_FULL) {
1021 return;
1022 }
1023
1024 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1025 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1026 u32 val;
1027
1028 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1029 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1030 bp->flow_ctrl |= FLOW_CTRL_TX;
1031 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1032 bp->flow_ctrl |= FLOW_CTRL_RX;
1033 return;
1034 }
1035
1036 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1037 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1038
1039 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1040 u32 new_local_adv = 0;
1041 u32 new_remote_adv = 0;
1042
1043 if (local_adv & ADVERTISE_1000XPAUSE)
1044 new_local_adv |= ADVERTISE_PAUSE_CAP;
1045 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1046 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1047 if (remote_adv & ADVERTISE_1000XPAUSE)
1048 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1049 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1050 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1051
1052 local_adv = new_local_adv;
1053 remote_adv = new_remote_adv;
1054 }
1055
1056 /* See Table 28B-3 of 802.3ab-1999 spec. */
1057 if (local_adv & ADVERTISE_PAUSE_CAP) {
1058 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1059 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1060 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1061 }
1062 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1063 bp->flow_ctrl = FLOW_CTRL_RX;
1064 }
1065 }
1066 else {
1067 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1068 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1069 }
1070 }
1071 }
1072 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1073 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1074 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1075
1076 bp->flow_ctrl = FLOW_CTRL_TX;
1077 }
1078 }
1079 }
1080
1081 static int
1082 bnx2_5709s_linkup(struct bnx2 *bp)
1083 {
1084 u32 val, speed;
1085
1086 bp->link_up = 1;
1087
1088 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1089 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1090 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1091
1092 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1093 bp->line_speed = bp->req_line_speed;
1094 bp->duplex = bp->req_duplex;
1095 return 0;
1096 }
1097 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1098 switch (speed) {
1099 case MII_BNX2_GP_TOP_AN_SPEED_10:
1100 bp->line_speed = SPEED_10;
1101 break;
1102 case MII_BNX2_GP_TOP_AN_SPEED_100:
1103 bp->line_speed = SPEED_100;
1104 break;
1105 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1106 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1107 bp->line_speed = SPEED_1000;
1108 break;
1109 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1110 bp->line_speed = SPEED_2500;
1111 break;
1112 }
1113 if (val & MII_BNX2_GP_TOP_AN_FD)
1114 bp->duplex = DUPLEX_FULL;
1115 else
1116 bp->duplex = DUPLEX_HALF;
1117 return 0;
1118 }
1119
1120 static int
1121 bnx2_5708s_linkup(struct bnx2 *bp)
1122 {
1123 u32 val;
1124
1125 bp->link_up = 1;
1126 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1127 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1128 case BCM5708S_1000X_STAT1_SPEED_10:
1129 bp->line_speed = SPEED_10;
1130 break;
1131 case BCM5708S_1000X_STAT1_SPEED_100:
1132 bp->line_speed = SPEED_100;
1133 break;
1134 case BCM5708S_1000X_STAT1_SPEED_1G:
1135 bp->line_speed = SPEED_1000;
1136 break;
1137 case BCM5708S_1000X_STAT1_SPEED_2G5:
1138 bp->line_speed = SPEED_2500;
1139 break;
1140 }
1141 if (val & BCM5708S_1000X_STAT1_FD)
1142 bp->duplex = DUPLEX_FULL;
1143 else
1144 bp->duplex = DUPLEX_HALF;
1145
1146 return 0;
1147 }
1148
1149 static int
1150 bnx2_5706s_linkup(struct bnx2 *bp)
1151 {
1152 u32 bmcr, local_adv, remote_adv, common;
1153
1154 bp->link_up = 1;
1155 bp->line_speed = SPEED_1000;
1156
1157 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1158 if (bmcr & BMCR_FULLDPLX) {
1159 bp->duplex = DUPLEX_FULL;
1160 }
1161 else {
1162 bp->duplex = DUPLEX_HALF;
1163 }
1164
1165 if (!(bmcr & BMCR_ANENABLE)) {
1166 return 0;
1167 }
1168
1169 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1170 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1171
1172 common = local_adv & remote_adv;
1173 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1174
1175 if (common & ADVERTISE_1000XFULL) {
1176 bp->duplex = DUPLEX_FULL;
1177 }
1178 else {
1179 bp->duplex = DUPLEX_HALF;
1180 }
1181 }
1182
1183 return 0;
1184 }
1185
1186 static int
1187 bnx2_copper_linkup(struct bnx2 *bp)
1188 {
1189 u32 bmcr;
1190
1191 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1192 if (bmcr & BMCR_ANENABLE) {
1193 u32 local_adv, remote_adv, common;
1194
1195 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1196 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1197
1198 common = local_adv & (remote_adv >> 2);
1199 if (common & ADVERTISE_1000FULL) {
1200 bp->line_speed = SPEED_1000;
1201 bp->duplex = DUPLEX_FULL;
1202 }
1203 else if (common & ADVERTISE_1000HALF) {
1204 bp->line_speed = SPEED_1000;
1205 bp->duplex = DUPLEX_HALF;
1206 }
1207 else {
1208 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1209 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1210
1211 common = local_adv & remote_adv;
1212 if (common & ADVERTISE_100FULL) {
1213 bp->line_speed = SPEED_100;
1214 bp->duplex = DUPLEX_FULL;
1215 }
1216 else if (common & ADVERTISE_100HALF) {
1217 bp->line_speed = SPEED_100;
1218 bp->duplex = DUPLEX_HALF;
1219 }
1220 else if (common & ADVERTISE_10FULL) {
1221 bp->line_speed = SPEED_10;
1222 bp->duplex = DUPLEX_FULL;
1223 }
1224 else if (common & ADVERTISE_10HALF) {
1225 bp->line_speed = SPEED_10;
1226 bp->duplex = DUPLEX_HALF;
1227 }
1228 else {
1229 bp->line_speed = 0;
1230 bp->link_up = 0;
1231 }
1232 }
1233 }
1234 else {
1235 if (bmcr & BMCR_SPEED100) {
1236 bp->line_speed = SPEED_100;
1237 }
1238 else {
1239 bp->line_speed = SPEED_10;
1240 }
1241 if (bmcr & BMCR_FULLDPLX) {
1242 bp->duplex = DUPLEX_FULL;
1243 }
1244 else {
1245 bp->duplex = DUPLEX_HALF;
1246 }
1247 }
1248
1249 return 0;
1250 }
1251
1252 static void
1253 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1254 {
1255 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1256
1257 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1258 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1259 val |= 0x02 << 8;
1260
1261 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1262 u32 lo_water, hi_water;
1263
1264 if (bp->flow_ctrl & FLOW_CTRL_TX)
1265 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1266 else
1267 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1268 if (lo_water >= bp->rx_ring_size)
1269 lo_water = 0;
1270
1271 hi_water = bp->rx_ring_size / 4;
1272
1273 if (hi_water <= lo_water)
1274 lo_water = 0;
1275
1276 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1277 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1278
1279 if (hi_water > 0xf)
1280 hi_water = 0xf;
1281 else if (hi_water == 0)
1282 lo_water = 0;
1283 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1284 }
1285 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1286 }
1287
1288 static void
1289 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1290 {
1291 int i;
1292 u32 cid;
1293
1294 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1295 if (i == 1)
1296 cid = RX_RSS_CID;
1297 bnx2_init_rx_context(bp, cid);
1298 }
1299 }
1300
1301 static void
1302 bnx2_set_mac_link(struct bnx2 *bp)
1303 {
1304 u32 val;
1305
1306 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1307 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1308 (bp->duplex == DUPLEX_HALF)) {
1309 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1310 }
1311
1312 /* Configure the EMAC mode register. */
1313 val = REG_RD(bp, BNX2_EMAC_MODE);
1314
1315 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1316 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1317 BNX2_EMAC_MODE_25G_MODE);
1318
1319 if (bp->link_up) {
1320 switch (bp->line_speed) {
1321 case SPEED_10:
1322 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1323 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1324 break;
1325 }
1326 /* fall through */
1327 case SPEED_100:
1328 val |= BNX2_EMAC_MODE_PORT_MII;
1329 break;
1330 case SPEED_2500:
1331 val |= BNX2_EMAC_MODE_25G_MODE;
1332 /* fall through */
1333 case SPEED_1000:
1334 val |= BNX2_EMAC_MODE_PORT_GMII;
1335 break;
1336 }
1337 }
1338 else {
1339 val |= BNX2_EMAC_MODE_PORT_GMII;
1340 }
1341
1342 /* Set the MAC to operate in the appropriate duplex mode. */
1343 if (bp->duplex == DUPLEX_HALF)
1344 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1345 REG_WR(bp, BNX2_EMAC_MODE, val);
1346
1347 /* Enable/disable rx PAUSE. */
1348 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1349
1350 if (bp->flow_ctrl & FLOW_CTRL_RX)
1351 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1352 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1353
1354 /* Enable/disable tx PAUSE. */
1355 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1356 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1357
1358 if (bp->flow_ctrl & FLOW_CTRL_TX)
1359 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1360 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1361
1362 /* Acknowledge the interrupt. */
1363 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1364
1365 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1366 bnx2_init_all_rx_contexts(bp);
1367 }
1368
1369 static void
1370 bnx2_enable_bmsr1(struct bnx2 *bp)
1371 {
1372 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1373 (CHIP_NUM(bp) == CHIP_NUM_5709))
1374 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1375 MII_BNX2_BLK_ADDR_GP_STATUS);
1376 }
1377
1378 static void
1379 bnx2_disable_bmsr1(struct bnx2 *bp)
1380 {
1381 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1382 (CHIP_NUM(bp) == CHIP_NUM_5709))
1383 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1384 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1385 }
1386
1387 static int
1388 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1389 {
1390 u32 up1;
1391 int ret = 1;
1392
1393 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1394 return 0;
1395
1396 if (bp->autoneg & AUTONEG_SPEED)
1397 bp->advertising |= ADVERTISED_2500baseX_Full;
1398
1399 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1400 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1401
1402 bnx2_read_phy(bp, bp->mii_up1, &up1);
1403 if (!(up1 & BCM5708S_UP1_2G5)) {
1404 up1 |= BCM5708S_UP1_2G5;
1405 bnx2_write_phy(bp, bp->mii_up1, up1);
1406 ret = 0;
1407 }
1408
1409 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1410 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1411 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1412
1413 return ret;
1414 }
1415
1416 static int
1417 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1418 {
1419 u32 up1;
1420 int ret = 0;
1421
1422 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1423 return 0;
1424
1425 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1426 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1427
1428 bnx2_read_phy(bp, bp->mii_up1, &up1);
1429 if (up1 & BCM5708S_UP1_2G5) {
1430 up1 &= ~BCM5708S_UP1_2G5;
1431 bnx2_write_phy(bp, bp->mii_up1, up1);
1432 ret = 1;
1433 }
1434
1435 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1436 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1437 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1438
1439 return ret;
1440 }
1441
1442 static void
1443 bnx2_enable_forced_2g5(struct bnx2 *bp)
1444 {
1445 u32 bmcr;
1446
1447 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1448 return;
1449
1450 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1451 u32 val;
1452
1453 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1454 MII_BNX2_BLK_ADDR_SERDES_DIG);
1455 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1456 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1457 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1458 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1459
1460 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1461 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1462 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1463
1464 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1465 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1466 bmcr |= BCM5708S_BMCR_FORCE_2500;
1467 }
1468
1469 if (bp->autoneg & AUTONEG_SPEED) {
1470 bmcr &= ~BMCR_ANENABLE;
1471 if (bp->req_duplex == DUPLEX_FULL)
1472 bmcr |= BMCR_FULLDPLX;
1473 }
1474 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1475 }
1476
1477 static void
1478 bnx2_disable_forced_2g5(struct bnx2 *bp)
1479 {
1480 u32 bmcr;
1481
1482 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1483 return;
1484
1485 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1486 u32 val;
1487
1488 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1489 MII_BNX2_BLK_ADDR_SERDES_DIG);
1490 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1491 val &= ~MII_BNX2_SD_MISC1_FORCE;
1492 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1493
1494 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1495 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1496 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1497
1498 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1499 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1500 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1501 }
1502
1503 if (bp->autoneg & AUTONEG_SPEED)
1504 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1505 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1506 }
1507
1508 static void
1509 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1510 {
1511 u32 val;
1512
1513 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1514 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1515 if (start)
1516 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1517 else
1518 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1519 }
1520
1521 static int
1522 bnx2_set_link(struct bnx2 *bp)
1523 {
1524 u32 bmsr;
1525 u8 link_up;
1526
1527 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1528 bp->link_up = 1;
1529 return 0;
1530 }
1531
1532 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1533 return 0;
1534
1535 link_up = bp->link_up;
1536
1537 bnx2_enable_bmsr1(bp);
1538 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1539 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1540 bnx2_disable_bmsr1(bp);
1541
1542 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1543 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1544 u32 val, an_dbg;
1545
1546 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1547 bnx2_5706s_force_link_dn(bp, 0);
1548 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1549 }
1550 val = REG_RD(bp, BNX2_EMAC_STATUS);
1551
1552 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1553 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1554 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1555
1556 if ((val & BNX2_EMAC_STATUS_LINK) &&
1557 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1558 bmsr |= BMSR_LSTATUS;
1559 else
1560 bmsr &= ~BMSR_LSTATUS;
1561 }
1562
1563 if (bmsr & BMSR_LSTATUS) {
1564 bp->link_up = 1;
1565
1566 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1567 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1568 bnx2_5706s_linkup(bp);
1569 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1570 bnx2_5708s_linkup(bp);
1571 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1572 bnx2_5709s_linkup(bp);
1573 }
1574 else {
1575 bnx2_copper_linkup(bp);
1576 }
1577 bnx2_resolve_flow_ctrl(bp);
1578 }
1579 else {
1580 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1581 (bp->autoneg & AUTONEG_SPEED))
1582 bnx2_disable_forced_2g5(bp);
1583
1584 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1585 u32 bmcr;
1586
1587 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1588 bmcr |= BMCR_ANENABLE;
1589 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1590
1591 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1592 }
1593 bp->link_up = 0;
1594 }
1595
1596 if (bp->link_up != link_up) {
1597 bnx2_report_link(bp);
1598 }
1599
1600 bnx2_set_mac_link(bp);
1601
1602 return 0;
1603 }
1604
1605 static int
1606 bnx2_reset_phy(struct bnx2 *bp)
1607 {
1608 int i;
1609 u32 reg;
1610
1611 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1612
1613 #define PHY_RESET_MAX_WAIT 100
1614 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1615 udelay(10);
1616
1617 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1618 if (!(reg & BMCR_RESET)) {
1619 udelay(20);
1620 break;
1621 }
1622 }
1623 if (i == PHY_RESET_MAX_WAIT) {
1624 return -EBUSY;
1625 }
1626 return 0;
1627 }
1628
1629 static u32
1630 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1631 {
1632 u32 adv = 0;
1633
1634 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1635 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1636
1637 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1638 adv = ADVERTISE_1000XPAUSE;
1639 }
1640 else {
1641 adv = ADVERTISE_PAUSE_CAP;
1642 }
1643 }
1644 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1645 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1646 adv = ADVERTISE_1000XPSE_ASYM;
1647 }
1648 else {
1649 adv = ADVERTISE_PAUSE_ASYM;
1650 }
1651 }
1652 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1653 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1654 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1655 }
1656 else {
1657 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1658 }
1659 }
1660 return adv;
1661 }
1662
1663 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1664
1665 static int
1666 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1667 __releases(&bp->phy_lock)
1668 __acquires(&bp->phy_lock)
1669 {
1670 u32 speed_arg = 0, pause_adv;
1671
1672 pause_adv = bnx2_phy_get_pause_adv(bp);
1673
1674 if (bp->autoneg & AUTONEG_SPEED) {
1675 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1676 if (bp->advertising & ADVERTISED_10baseT_Half)
1677 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1678 if (bp->advertising & ADVERTISED_10baseT_Full)
1679 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1680 if (bp->advertising & ADVERTISED_100baseT_Half)
1681 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1682 if (bp->advertising & ADVERTISED_100baseT_Full)
1683 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1684 if (bp->advertising & ADVERTISED_1000baseT_Full)
1685 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1686 if (bp->advertising & ADVERTISED_2500baseX_Full)
1687 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1688 } else {
1689 if (bp->req_line_speed == SPEED_2500)
1690 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1691 else if (bp->req_line_speed == SPEED_1000)
1692 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1693 else if (bp->req_line_speed == SPEED_100) {
1694 if (bp->req_duplex == DUPLEX_FULL)
1695 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1696 else
1697 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1698 } else if (bp->req_line_speed == SPEED_10) {
1699 if (bp->req_duplex == DUPLEX_FULL)
1700 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1701 else
1702 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1703 }
1704 }
1705
1706 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1707 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1708 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1709 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1710
1711 if (port == PORT_TP)
1712 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1713 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1714
1715 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1716
1717 spin_unlock_bh(&bp->phy_lock);
1718 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1719 spin_lock_bh(&bp->phy_lock);
1720
1721 return 0;
1722 }
1723
1724 static int
1725 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1726 __releases(&bp->phy_lock)
1727 __acquires(&bp->phy_lock)
1728 {
1729 u32 adv, bmcr;
1730 u32 new_adv = 0;
1731
1732 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1733 return (bnx2_setup_remote_phy(bp, port));
1734
1735 if (!(bp->autoneg & AUTONEG_SPEED)) {
1736 u32 new_bmcr;
1737 int force_link_down = 0;
1738
1739 if (bp->req_line_speed == SPEED_2500) {
1740 if (!bnx2_test_and_enable_2g5(bp))
1741 force_link_down = 1;
1742 } else if (bp->req_line_speed == SPEED_1000) {
1743 if (bnx2_test_and_disable_2g5(bp))
1744 force_link_down = 1;
1745 }
1746 bnx2_read_phy(bp, bp->mii_adv, &adv);
1747 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1748
1749 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1750 new_bmcr = bmcr & ~BMCR_ANENABLE;
1751 new_bmcr |= BMCR_SPEED1000;
1752
1753 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1754 if (bp->req_line_speed == SPEED_2500)
1755 bnx2_enable_forced_2g5(bp);
1756 else if (bp->req_line_speed == SPEED_1000) {
1757 bnx2_disable_forced_2g5(bp);
1758 new_bmcr &= ~0x2000;
1759 }
1760
1761 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1762 if (bp->req_line_speed == SPEED_2500)
1763 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1764 else
1765 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1766 }
1767
1768 if (bp->req_duplex == DUPLEX_FULL) {
1769 adv |= ADVERTISE_1000XFULL;
1770 new_bmcr |= BMCR_FULLDPLX;
1771 }
1772 else {
1773 adv |= ADVERTISE_1000XHALF;
1774 new_bmcr &= ~BMCR_FULLDPLX;
1775 }
1776 if ((new_bmcr != bmcr) || (force_link_down)) {
1777 /* Force a link down visible on the other side */
1778 if (bp->link_up) {
1779 bnx2_write_phy(bp, bp->mii_adv, adv &
1780 ~(ADVERTISE_1000XFULL |
1781 ADVERTISE_1000XHALF));
1782 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1783 BMCR_ANRESTART | BMCR_ANENABLE);
1784
1785 bp->link_up = 0;
1786 netif_carrier_off(bp->dev);
1787 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1788 bnx2_report_link(bp);
1789 }
1790 bnx2_write_phy(bp, bp->mii_adv, adv);
1791 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1792 } else {
1793 bnx2_resolve_flow_ctrl(bp);
1794 bnx2_set_mac_link(bp);
1795 }
1796 return 0;
1797 }
1798
1799 bnx2_test_and_enable_2g5(bp);
1800
1801 if (bp->advertising & ADVERTISED_1000baseT_Full)
1802 new_adv |= ADVERTISE_1000XFULL;
1803
1804 new_adv |= bnx2_phy_get_pause_adv(bp);
1805
1806 bnx2_read_phy(bp, bp->mii_adv, &adv);
1807 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1808
1809 bp->serdes_an_pending = 0;
1810 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1811 /* Force a link down visible on the other side */
1812 if (bp->link_up) {
1813 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1814 spin_unlock_bh(&bp->phy_lock);
1815 msleep(20);
1816 spin_lock_bh(&bp->phy_lock);
1817 }
1818
1819 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1820 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1821 BMCR_ANENABLE);
1822 /* Speed up link-up time when the link partner
1823 * does not autonegotiate which is very common
1824 * in blade servers. Some blade servers use
1825 * IPMI for kerboard input and it's important
1826 * to minimize link disruptions. Autoneg. involves
1827 * exchanging base pages plus 3 next pages and
1828 * normally completes in about 120 msec.
1829 */
1830 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1831 bp->serdes_an_pending = 1;
1832 mod_timer(&bp->timer, jiffies + bp->current_interval);
1833 } else {
1834 bnx2_resolve_flow_ctrl(bp);
1835 bnx2_set_mac_link(bp);
1836 }
1837
1838 return 0;
1839 }
1840
1841 #define ETHTOOL_ALL_FIBRE_SPEED \
1842 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1843 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1844 (ADVERTISED_1000baseT_Full)
1845
1846 #define ETHTOOL_ALL_COPPER_SPEED \
1847 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1848 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1849 ADVERTISED_1000baseT_Full)
1850
1851 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1852 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1853
1854 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1855
1856 static void
1857 bnx2_set_default_remote_link(struct bnx2 *bp)
1858 {
1859 u32 link;
1860
1861 if (bp->phy_port == PORT_TP)
1862 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1863 else
1864 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1865
1866 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1867 bp->req_line_speed = 0;
1868 bp->autoneg |= AUTONEG_SPEED;
1869 bp->advertising = ADVERTISED_Autoneg;
1870 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1871 bp->advertising |= ADVERTISED_10baseT_Half;
1872 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1873 bp->advertising |= ADVERTISED_10baseT_Full;
1874 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1875 bp->advertising |= ADVERTISED_100baseT_Half;
1876 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1877 bp->advertising |= ADVERTISED_100baseT_Full;
1878 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1879 bp->advertising |= ADVERTISED_1000baseT_Full;
1880 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1881 bp->advertising |= ADVERTISED_2500baseX_Full;
1882 } else {
1883 bp->autoneg = 0;
1884 bp->advertising = 0;
1885 bp->req_duplex = DUPLEX_FULL;
1886 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1887 bp->req_line_speed = SPEED_10;
1888 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1889 bp->req_duplex = DUPLEX_HALF;
1890 }
1891 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1892 bp->req_line_speed = SPEED_100;
1893 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1894 bp->req_duplex = DUPLEX_HALF;
1895 }
1896 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1897 bp->req_line_speed = SPEED_1000;
1898 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1899 bp->req_line_speed = SPEED_2500;
1900 }
1901 }
1902
1903 static void
1904 bnx2_set_default_link(struct bnx2 *bp)
1905 {
1906 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1907 bnx2_set_default_remote_link(bp);
1908 return;
1909 }
1910
1911 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1912 bp->req_line_speed = 0;
1913 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1914 u32 reg;
1915
1916 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1917
1918 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1919 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1920 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1921 bp->autoneg = 0;
1922 bp->req_line_speed = bp->line_speed = SPEED_1000;
1923 bp->req_duplex = DUPLEX_FULL;
1924 }
1925 } else
1926 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1927 }
1928
1929 static void
1930 bnx2_send_heart_beat(struct bnx2 *bp)
1931 {
1932 u32 msg;
1933 u32 addr;
1934
1935 spin_lock(&bp->indirect_lock);
1936 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1937 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1938 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1939 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1940 spin_unlock(&bp->indirect_lock);
1941 }
1942
1943 static void
1944 bnx2_remote_phy_event(struct bnx2 *bp)
1945 {
1946 u32 msg;
1947 u8 link_up = bp->link_up;
1948 u8 old_port;
1949
1950 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1951
1952 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1953 bnx2_send_heart_beat(bp);
1954
1955 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1956
1957 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1958 bp->link_up = 0;
1959 else {
1960 u32 speed;
1961
1962 bp->link_up = 1;
1963 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1964 bp->duplex = DUPLEX_FULL;
1965 switch (speed) {
1966 case BNX2_LINK_STATUS_10HALF:
1967 bp->duplex = DUPLEX_HALF;
1968 case BNX2_LINK_STATUS_10FULL:
1969 bp->line_speed = SPEED_10;
1970 break;
1971 case BNX2_LINK_STATUS_100HALF:
1972 bp->duplex = DUPLEX_HALF;
1973 case BNX2_LINK_STATUS_100BASE_T4:
1974 case BNX2_LINK_STATUS_100FULL:
1975 bp->line_speed = SPEED_100;
1976 break;
1977 case BNX2_LINK_STATUS_1000HALF:
1978 bp->duplex = DUPLEX_HALF;
1979 case BNX2_LINK_STATUS_1000FULL:
1980 bp->line_speed = SPEED_1000;
1981 break;
1982 case BNX2_LINK_STATUS_2500HALF:
1983 bp->duplex = DUPLEX_HALF;
1984 case BNX2_LINK_STATUS_2500FULL:
1985 bp->line_speed = SPEED_2500;
1986 break;
1987 default:
1988 bp->line_speed = 0;
1989 break;
1990 }
1991
1992 bp->flow_ctrl = 0;
1993 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1994 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1995 if (bp->duplex == DUPLEX_FULL)
1996 bp->flow_ctrl = bp->req_flow_ctrl;
1997 } else {
1998 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
1999 bp->flow_ctrl |= FLOW_CTRL_TX;
2000 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2001 bp->flow_ctrl |= FLOW_CTRL_RX;
2002 }
2003
2004 old_port = bp->phy_port;
2005 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2006 bp->phy_port = PORT_FIBRE;
2007 else
2008 bp->phy_port = PORT_TP;
2009
2010 if (old_port != bp->phy_port)
2011 bnx2_set_default_link(bp);
2012
2013 }
2014 if (bp->link_up != link_up)
2015 bnx2_report_link(bp);
2016
2017 bnx2_set_mac_link(bp);
2018 }
2019
2020 static int
2021 bnx2_set_remote_link(struct bnx2 *bp)
2022 {
2023 u32 evt_code;
2024
2025 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2026 switch (evt_code) {
2027 case BNX2_FW_EVT_CODE_LINK_EVENT:
2028 bnx2_remote_phy_event(bp);
2029 break;
2030 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2031 default:
2032 bnx2_send_heart_beat(bp);
2033 break;
2034 }
2035 return 0;
2036 }
2037
2038 static int
2039 bnx2_setup_copper_phy(struct bnx2 *bp)
2040 __releases(&bp->phy_lock)
2041 __acquires(&bp->phy_lock)
2042 {
2043 u32 bmcr;
2044 u32 new_bmcr;
2045
2046 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2047
2048 if (bp->autoneg & AUTONEG_SPEED) {
2049 u32 adv_reg, adv1000_reg;
2050 u32 new_adv_reg = 0;
2051 u32 new_adv1000_reg = 0;
2052
2053 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2054 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2055 ADVERTISE_PAUSE_ASYM);
2056
2057 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2058 adv1000_reg &= PHY_ALL_1000_SPEED;
2059
2060 if (bp->advertising & ADVERTISED_10baseT_Half)
2061 new_adv_reg |= ADVERTISE_10HALF;
2062 if (bp->advertising & ADVERTISED_10baseT_Full)
2063 new_adv_reg |= ADVERTISE_10FULL;
2064 if (bp->advertising & ADVERTISED_100baseT_Half)
2065 new_adv_reg |= ADVERTISE_100HALF;
2066 if (bp->advertising & ADVERTISED_100baseT_Full)
2067 new_adv_reg |= ADVERTISE_100FULL;
2068 if (bp->advertising & ADVERTISED_1000baseT_Full)
2069 new_adv1000_reg |= ADVERTISE_1000FULL;
2070
2071 new_adv_reg |= ADVERTISE_CSMA;
2072
2073 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2074
2075 if ((adv1000_reg != new_adv1000_reg) ||
2076 (adv_reg != new_adv_reg) ||
2077 ((bmcr & BMCR_ANENABLE) == 0)) {
2078
2079 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2080 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2081 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2082 BMCR_ANENABLE);
2083 }
2084 else if (bp->link_up) {
2085 /* Flow ctrl may have changed from auto to forced */
2086 /* or vice-versa. */
2087
2088 bnx2_resolve_flow_ctrl(bp);
2089 bnx2_set_mac_link(bp);
2090 }
2091 return 0;
2092 }
2093
2094 new_bmcr = 0;
2095 if (bp->req_line_speed == SPEED_100) {
2096 new_bmcr |= BMCR_SPEED100;
2097 }
2098 if (bp->req_duplex == DUPLEX_FULL) {
2099 new_bmcr |= BMCR_FULLDPLX;
2100 }
2101 if (new_bmcr != bmcr) {
2102 u32 bmsr;
2103
2104 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2105 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2106
2107 if (bmsr & BMSR_LSTATUS) {
2108 /* Force link down */
2109 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2110 spin_unlock_bh(&bp->phy_lock);
2111 msleep(50);
2112 spin_lock_bh(&bp->phy_lock);
2113
2114 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2115 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2116 }
2117
2118 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2119
2120 /* Normally, the new speed is setup after the link has
2121 * gone down and up again. In some cases, link will not go
2122 * down so we need to set up the new speed here.
2123 */
2124 if (bmsr & BMSR_LSTATUS) {
2125 bp->line_speed = bp->req_line_speed;
2126 bp->duplex = bp->req_duplex;
2127 bnx2_resolve_flow_ctrl(bp);
2128 bnx2_set_mac_link(bp);
2129 }
2130 } else {
2131 bnx2_resolve_flow_ctrl(bp);
2132 bnx2_set_mac_link(bp);
2133 }
2134 return 0;
2135 }
2136
2137 static int
2138 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2139 __releases(&bp->phy_lock)
2140 __acquires(&bp->phy_lock)
2141 {
2142 if (bp->loopback == MAC_LOOPBACK)
2143 return 0;
2144
2145 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2146 return (bnx2_setup_serdes_phy(bp, port));
2147 }
2148 else {
2149 return (bnx2_setup_copper_phy(bp));
2150 }
2151 }
2152
2153 static int
2154 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2155 {
2156 u32 val;
2157
2158 bp->mii_bmcr = MII_BMCR + 0x10;
2159 bp->mii_bmsr = MII_BMSR + 0x10;
2160 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2161 bp->mii_adv = MII_ADVERTISE + 0x10;
2162 bp->mii_lpa = MII_LPA + 0x10;
2163 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2164
2165 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2166 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2167
2168 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2169 if (reset_phy)
2170 bnx2_reset_phy(bp);
2171
2172 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2173
2174 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2175 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2176 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2177 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2178
2179 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2180 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2181 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2182 val |= BCM5708S_UP1_2G5;
2183 else
2184 val &= ~BCM5708S_UP1_2G5;
2185 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2186
2187 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2188 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2189 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2190 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2191
2192 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2193
2194 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2195 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2196 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2197
2198 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2199
2200 return 0;
2201 }
2202
2203 static int
2204 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2205 {
2206 u32 val;
2207
2208 if (reset_phy)
2209 bnx2_reset_phy(bp);
2210
2211 bp->mii_up1 = BCM5708S_UP1;
2212
2213 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2214 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2215 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2216
2217 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2218 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2219 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2220
2221 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2222 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2223 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2224
2225 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2226 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2227 val |= BCM5708S_UP1_2G5;
2228 bnx2_write_phy(bp, BCM5708S_UP1, val);
2229 }
2230
2231 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2232 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2233 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2234 /* increase tx signal amplitude */
2235 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2236 BCM5708S_BLK_ADDR_TX_MISC);
2237 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2238 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2239 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2240 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2241 }
2242
2243 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2244 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2245
2246 if (val) {
2247 u32 is_backplane;
2248
2249 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2250 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2251 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2252 BCM5708S_BLK_ADDR_TX_MISC);
2253 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2254 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2255 BCM5708S_BLK_ADDR_DIG);
2256 }
2257 }
2258 return 0;
2259 }
2260
2261 static int
2262 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2263 {
2264 if (reset_phy)
2265 bnx2_reset_phy(bp);
2266
2267 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2268
2269 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2270 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2271
2272 if (bp->dev->mtu > 1500) {
2273 u32 val;
2274
2275 /* Set extended packet length bit */
2276 bnx2_write_phy(bp, 0x18, 0x7);
2277 bnx2_read_phy(bp, 0x18, &val);
2278 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2279
2280 bnx2_write_phy(bp, 0x1c, 0x6c00);
2281 bnx2_read_phy(bp, 0x1c, &val);
2282 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2283 }
2284 else {
2285 u32 val;
2286
2287 bnx2_write_phy(bp, 0x18, 0x7);
2288 bnx2_read_phy(bp, 0x18, &val);
2289 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2290
2291 bnx2_write_phy(bp, 0x1c, 0x6c00);
2292 bnx2_read_phy(bp, 0x1c, &val);
2293 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2294 }
2295
2296 return 0;
2297 }
2298
2299 static int
2300 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2301 {
2302 u32 val;
2303
2304 if (reset_phy)
2305 bnx2_reset_phy(bp);
2306
2307 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2308 bnx2_write_phy(bp, 0x18, 0x0c00);
2309 bnx2_write_phy(bp, 0x17, 0x000a);
2310 bnx2_write_phy(bp, 0x15, 0x310b);
2311 bnx2_write_phy(bp, 0x17, 0x201f);
2312 bnx2_write_phy(bp, 0x15, 0x9506);
2313 bnx2_write_phy(bp, 0x17, 0x401f);
2314 bnx2_write_phy(bp, 0x15, 0x14e2);
2315 bnx2_write_phy(bp, 0x18, 0x0400);
2316 }
2317
2318 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2319 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2320 MII_BNX2_DSP_EXPAND_REG | 0x8);
2321 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2322 val &= ~(1 << 8);
2323 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2324 }
2325
2326 if (bp->dev->mtu > 1500) {
2327 /* Set extended packet length bit */
2328 bnx2_write_phy(bp, 0x18, 0x7);
2329 bnx2_read_phy(bp, 0x18, &val);
2330 bnx2_write_phy(bp, 0x18, val | 0x4000);
2331
2332 bnx2_read_phy(bp, 0x10, &val);
2333 bnx2_write_phy(bp, 0x10, val | 0x1);
2334 }
2335 else {
2336 bnx2_write_phy(bp, 0x18, 0x7);
2337 bnx2_read_phy(bp, 0x18, &val);
2338 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2339
2340 bnx2_read_phy(bp, 0x10, &val);
2341 bnx2_write_phy(bp, 0x10, val & ~0x1);
2342 }
2343
2344 /* ethernet@wirespeed */
2345 bnx2_write_phy(bp, 0x18, 0x7007);
2346 bnx2_read_phy(bp, 0x18, &val);
2347 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2348 return 0;
2349 }
2350
2351
2352 static int
2353 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2354 __releases(&bp->phy_lock)
2355 __acquires(&bp->phy_lock)
2356 {
2357 u32 val;
2358 int rc = 0;
2359
2360 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2361 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2362
2363 bp->mii_bmcr = MII_BMCR;
2364 bp->mii_bmsr = MII_BMSR;
2365 bp->mii_bmsr1 = MII_BMSR;
2366 bp->mii_adv = MII_ADVERTISE;
2367 bp->mii_lpa = MII_LPA;
2368
2369 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2370
2371 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2372 goto setup_phy;
2373
2374 bnx2_read_phy(bp, MII_PHYSID1, &val);
2375 bp->phy_id = val << 16;
2376 bnx2_read_phy(bp, MII_PHYSID2, &val);
2377 bp->phy_id |= val & 0xffff;
2378
2379 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2380 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2381 rc = bnx2_init_5706s_phy(bp, reset_phy);
2382 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2383 rc = bnx2_init_5708s_phy(bp, reset_phy);
2384 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2385 rc = bnx2_init_5709s_phy(bp, reset_phy);
2386 }
2387 else {
2388 rc = bnx2_init_copper_phy(bp, reset_phy);
2389 }
2390
2391 setup_phy:
2392 if (!rc)
2393 rc = bnx2_setup_phy(bp, bp->phy_port);
2394
2395 return rc;
2396 }
2397
2398 static int
2399 bnx2_set_mac_loopback(struct bnx2 *bp)
2400 {
2401 u32 mac_mode;
2402
2403 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2404 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2405 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2406 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2407 bp->link_up = 1;
2408 return 0;
2409 }
2410
2411 static int bnx2_test_link(struct bnx2 *);
2412
2413 static int
2414 bnx2_set_phy_loopback(struct bnx2 *bp)
2415 {
2416 u32 mac_mode;
2417 int rc, i;
2418
2419 spin_lock_bh(&bp->phy_lock);
2420 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2421 BMCR_SPEED1000);
2422 spin_unlock_bh(&bp->phy_lock);
2423 if (rc)
2424 return rc;
2425
2426 for (i = 0; i < 10; i++) {
2427 if (bnx2_test_link(bp) == 0)
2428 break;
2429 msleep(100);
2430 }
2431
2432 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2433 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2434 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2435 BNX2_EMAC_MODE_25G_MODE);
2436
2437 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2438 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2439 bp->link_up = 1;
2440 return 0;
2441 }
2442
2443 static int
2444 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2445 {
2446 int i;
2447 u32 val;
2448
2449 bp->fw_wr_seq++;
2450 msg_data |= bp->fw_wr_seq;
2451
2452 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2453
2454 if (!ack)
2455 return 0;
2456
2457 /* wait for an acknowledgement. */
2458 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2459 msleep(10);
2460
2461 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2462
2463 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2464 break;
2465 }
2466 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2467 return 0;
2468
2469 /* If we timed out, inform the firmware that this is the case. */
2470 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2471 if (!silent)
2472 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2473 "%x\n", msg_data);
2474
2475 msg_data &= ~BNX2_DRV_MSG_CODE;
2476 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2477
2478 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2479
2480 return -EBUSY;
2481 }
2482
2483 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2484 return -EIO;
2485
2486 return 0;
2487 }
2488
2489 static int
2490 bnx2_init_5709_context(struct bnx2 *bp)
2491 {
2492 int i, ret = 0;
2493 u32 val;
2494
2495 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2496 val |= (BCM_PAGE_BITS - 8) << 16;
2497 REG_WR(bp, BNX2_CTX_COMMAND, val);
2498 for (i = 0; i < 10; i++) {
2499 val = REG_RD(bp, BNX2_CTX_COMMAND);
2500 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2501 break;
2502 udelay(2);
2503 }
2504 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2505 return -EBUSY;
2506
2507 for (i = 0; i < bp->ctx_pages; i++) {
2508 int j;
2509
2510 if (bp->ctx_blk[i])
2511 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2512 else
2513 return -ENOMEM;
2514
2515 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2516 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2517 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2518 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2519 (u64) bp->ctx_blk_mapping[i] >> 32);
2520 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2521 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2522 for (j = 0; j < 10; j++) {
2523
2524 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2525 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2526 break;
2527 udelay(5);
2528 }
2529 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2530 ret = -EBUSY;
2531 break;
2532 }
2533 }
2534 return ret;
2535 }
2536
2537 static void
2538 bnx2_init_context(struct bnx2 *bp)
2539 {
2540 u32 vcid;
2541
2542 vcid = 96;
2543 while (vcid) {
2544 u32 vcid_addr, pcid_addr, offset;
2545 int i;
2546
2547 vcid--;
2548
2549 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2550 u32 new_vcid;
2551
2552 vcid_addr = GET_PCID_ADDR(vcid);
2553 if (vcid & 0x8) {
2554 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2555 }
2556 else {
2557 new_vcid = vcid;
2558 }
2559 pcid_addr = GET_PCID_ADDR(new_vcid);
2560 }
2561 else {
2562 vcid_addr = GET_CID_ADDR(vcid);
2563 pcid_addr = vcid_addr;
2564 }
2565
2566 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2567 vcid_addr += (i << PHY_CTX_SHIFT);
2568 pcid_addr += (i << PHY_CTX_SHIFT);
2569
2570 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2571 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2572
2573 /* Zero out the context. */
2574 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2575 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2576 }
2577 }
2578 }
2579
2580 static int
2581 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2582 {
2583 u16 *good_mbuf;
2584 u32 good_mbuf_cnt;
2585 u32 val;
2586
2587 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2588 if (good_mbuf == NULL) {
2589 printk(KERN_ERR PFX "Failed to allocate memory in "
2590 "bnx2_alloc_bad_rbuf\n");
2591 return -ENOMEM;
2592 }
2593
2594 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2595 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2596
2597 good_mbuf_cnt = 0;
2598
2599 /* Allocate a bunch of mbufs and save the good ones in an array. */
2600 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2601 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2602 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2603 BNX2_RBUF_COMMAND_ALLOC_REQ);
2604
2605 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2606
2607 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2608
2609 /* The addresses with Bit 9 set are bad memory blocks. */
2610 if (!(val & (1 << 9))) {
2611 good_mbuf[good_mbuf_cnt] = (u16) val;
2612 good_mbuf_cnt++;
2613 }
2614
2615 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2616 }
2617
2618 /* Free the good ones back to the mbuf pool thus discarding
2619 * all the bad ones. */
2620 while (good_mbuf_cnt) {
2621 good_mbuf_cnt--;
2622
2623 val = good_mbuf[good_mbuf_cnt];
2624 val = (val << 9) | val | 1;
2625
2626 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2627 }
2628 kfree(good_mbuf);
2629 return 0;
2630 }
2631
2632 static void
2633 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2634 {
2635 u32 val;
2636
2637 val = (mac_addr[0] << 8) | mac_addr[1];
2638
2639 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2640
2641 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2642 (mac_addr[4] << 8) | mac_addr[5];
2643
2644 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2645 }
2646
2647 static inline int
2648 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2649 {
2650 dma_addr_t mapping;
2651 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2652 struct rx_bd *rxbd =
2653 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2654 struct page *page = alloc_page(GFP_ATOMIC);
2655
2656 if (!page)
2657 return -ENOMEM;
2658 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2659 PCI_DMA_FROMDEVICE);
2660 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2661 __free_page(page);
2662 return -EIO;
2663 }
2664
2665 rx_pg->page = page;
2666 pci_unmap_addr_set(rx_pg, mapping, mapping);
2667 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2668 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2669 return 0;
2670 }
2671
2672 static void
2673 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2674 {
2675 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2676 struct page *page = rx_pg->page;
2677
2678 if (!page)
2679 return;
2680
2681 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2682 PCI_DMA_FROMDEVICE);
2683
2684 __free_page(page);
2685 rx_pg->page = NULL;
2686 }
2687
2688 static inline int
2689 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2690 {
2691 struct sk_buff *skb;
2692 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2693 dma_addr_t mapping;
2694 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2695 unsigned long align;
2696
2697 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2698 if (skb == NULL) {
2699 return -ENOMEM;
2700 }
2701
2702 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2703 skb_reserve(skb, BNX2_RX_ALIGN - align);
2704
2705 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2706 PCI_DMA_FROMDEVICE);
2707 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2708 dev_kfree_skb(skb);
2709 return -EIO;
2710 }
2711
2712 rx_buf->skb = skb;
2713 pci_unmap_addr_set(rx_buf, mapping, mapping);
2714
2715 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2716 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2717
2718 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2719
2720 return 0;
2721 }
2722
2723 static int
2724 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2725 {
2726 struct status_block *sblk = bnapi->status_blk.msi;
2727 u32 new_link_state, old_link_state;
2728 int is_set = 1;
2729
2730 new_link_state = sblk->status_attn_bits & event;
2731 old_link_state = sblk->status_attn_bits_ack & event;
2732 if (new_link_state != old_link_state) {
2733 if (new_link_state)
2734 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2735 else
2736 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2737 } else
2738 is_set = 0;
2739
2740 return is_set;
2741 }
2742
2743 static void
2744 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2745 {
2746 spin_lock(&bp->phy_lock);
2747
2748 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2749 bnx2_set_link(bp);
2750 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2751 bnx2_set_remote_link(bp);
2752
2753 spin_unlock(&bp->phy_lock);
2754
2755 }
2756
2757 static inline u16
2758 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2759 {
2760 u16 cons;
2761
2762 /* Tell compiler that status block fields can change. */
2763 barrier();
2764 cons = *bnapi->hw_tx_cons_ptr;
2765 barrier();
2766 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2767 cons++;
2768 return cons;
2769 }
2770
2771 static int
2772 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2773 {
2774 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2775 u16 hw_cons, sw_cons, sw_ring_cons;
2776 int tx_pkt = 0, index;
2777 struct netdev_queue *txq;
2778
2779 index = (bnapi - bp->bnx2_napi);
2780 txq = netdev_get_tx_queue(bp->dev, index);
2781
2782 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2783 sw_cons = txr->tx_cons;
2784
2785 while (sw_cons != hw_cons) {
2786 struct sw_tx_bd *tx_buf;
2787 struct sk_buff *skb;
2788 int i, last;
2789
2790 sw_ring_cons = TX_RING_IDX(sw_cons);
2791
2792 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2793 skb = tx_buf->skb;
2794
2795 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2796 prefetch(&skb->end);
2797
2798 /* partial BD completions possible with TSO packets */
2799 if (tx_buf->is_gso) {
2800 u16 last_idx, last_ring_idx;
2801
2802 last_idx = sw_cons + tx_buf->nr_frags + 1;
2803 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2804 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2805 last_idx++;
2806 }
2807 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2808 break;
2809 }
2810 }
2811
2812 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
2813
2814 tx_buf->skb = NULL;
2815 last = tx_buf->nr_frags;
2816
2817 for (i = 0; i < last; i++) {
2818 sw_cons = NEXT_TX_BD(sw_cons);
2819 }
2820
2821 sw_cons = NEXT_TX_BD(sw_cons);
2822
2823 dev_kfree_skb(skb);
2824 tx_pkt++;
2825 if (tx_pkt == budget)
2826 break;
2827
2828 if (hw_cons == sw_cons)
2829 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2830 }
2831
2832 txr->hw_tx_cons = hw_cons;
2833 txr->tx_cons = sw_cons;
2834
2835 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2836 * before checking for netif_tx_queue_stopped(). Without the
2837 * memory barrier, there is a small possibility that bnx2_start_xmit()
2838 * will miss it and cause the queue to be stopped forever.
2839 */
2840 smp_mb();
2841
2842 if (unlikely(netif_tx_queue_stopped(txq)) &&
2843 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2844 __netif_tx_lock(txq, smp_processor_id());
2845 if ((netif_tx_queue_stopped(txq)) &&
2846 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2847 netif_tx_wake_queue(txq);
2848 __netif_tx_unlock(txq);
2849 }
2850
2851 return tx_pkt;
2852 }
2853
2854 static void
2855 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2856 struct sk_buff *skb, int count)
2857 {
2858 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2859 struct rx_bd *cons_bd, *prod_bd;
2860 int i;
2861 u16 hw_prod, prod;
2862 u16 cons = rxr->rx_pg_cons;
2863
2864 cons_rx_pg = &rxr->rx_pg_ring[cons];
2865
2866 /* The caller was unable to allocate a new page to replace the
2867 * last one in the frags array, so we need to recycle that page
2868 * and then free the skb.
2869 */
2870 if (skb) {
2871 struct page *page;
2872 struct skb_shared_info *shinfo;
2873
2874 shinfo = skb_shinfo(skb);
2875 shinfo->nr_frags--;
2876 page = shinfo->frags[shinfo->nr_frags].page;
2877 shinfo->frags[shinfo->nr_frags].page = NULL;
2878
2879 cons_rx_pg->page = page;
2880 dev_kfree_skb(skb);
2881 }
2882
2883 hw_prod = rxr->rx_pg_prod;
2884
2885 for (i = 0; i < count; i++) {
2886 prod = RX_PG_RING_IDX(hw_prod);
2887
2888 prod_rx_pg = &rxr->rx_pg_ring[prod];
2889 cons_rx_pg = &rxr->rx_pg_ring[cons];
2890 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2891 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2892
2893 if (prod != cons) {
2894 prod_rx_pg->page = cons_rx_pg->page;
2895 cons_rx_pg->page = NULL;
2896 pci_unmap_addr_set(prod_rx_pg, mapping,
2897 pci_unmap_addr(cons_rx_pg, mapping));
2898
2899 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2900 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2901
2902 }
2903 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2904 hw_prod = NEXT_RX_BD(hw_prod);
2905 }
2906 rxr->rx_pg_prod = hw_prod;
2907 rxr->rx_pg_cons = cons;
2908 }
2909
2910 static inline void
2911 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2912 struct sk_buff *skb, u16 cons, u16 prod)
2913 {
2914 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2915 struct rx_bd *cons_bd, *prod_bd;
2916
2917 cons_rx_buf = &rxr->rx_buf_ring[cons];
2918 prod_rx_buf = &rxr->rx_buf_ring[prod];
2919
2920 pci_dma_sync_single_for_device(bp->pdev,
2921 pci_unmap_addr(cons_rx_buf, mapping),
2922 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2923
2924 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2925
2926 prod_rx_buf->skb = skb;
2927
2928 if (cons == prod)
2929 return;
2930
2931 pci_unmap_addr_set(prod_rx_buf, mapping,
2932 pci_unmap_addr(cons_rx_buf, mapping));
2933
2934 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2935 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2936 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2937 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2938 }
2939
2940 static int
2941 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2942 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2943 u32 ring_idx)
2944 {
2945 int err;
2946 u16 prod = ring_idx & 0xffff;
2947
2948 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2949 if (unlikely(err)) {
2950 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2951 if (hdr_len) {
2952 unsigned int raw_len = len + 4;
2953 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2954
2955 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2956 }
2957 return err;
2958 }
2959
2960 skb_reserve(skb, BNX2_RX_OFFSET);
2961 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2962 PCI_DMA_FROMDEVICE);
2963
2964 if (hdr_len == 0) {
2965 skb_put(skb, len);
2966 return 0;
2967 } else {
2968 unsigned int i, frag_len, frag_size, pages;
2969 struct sw_pg *rx_pg;
2970 u16 pg_cons = rxr->rx_pg_cons;
2971 u16 pg_prod = rxr->rx_pg_prod;
2972
2973 frag_size = len + 4 - hdr_len;
2974 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2975 skb_put(skb, hdr_len);
2976
2977 for (i = 0; i < pages; i++) {
2978 dma_addr_t mapping_old;
2979
2980 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2981 if (unlikely(frag_len <= 4)) {
2982 unsigned int tail = 4 - frag_len;
2983
2984 rxr->rx_pg_cons = pg_cons;
2985 rxr->rx_pg_prod = pg_prod;
2986 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2987 pages - i);
2988 skb->len -= tail;
2989 if (i == 0) {
2990 skb->tail -= tail;
2991 } else {
2992 skb_frag_t *frag =
2993 &skb_shinfo(skb)->frags[i - 1];
2994 frag->size -= tail;
2995 skb->data_len -= tail;
2996 skb->truesize -= tail;
2997 }
2998 return 0;
2999 }
3000 rx_pg = &rxr->rx_pg_ring[pg_cons];
3001
3002 /* Don't unmap yet. If we're unable to allocate a new
3003 * page, we need to recycle the page and the DMA addr.
3004 */
3005 mapping_old = pci_unmap_addr(rx_pg, mapping);
3006 if (i == pages - 1)
3007 frag_len -= 4;
3008
3009 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3010 rx_pg->page = NULL;
3011
3012 err = bnx2_alloc_rx_page(bp, rxr,
3013 RX_PG_RING_IDX(pg_prod));
3014 if (unlikely(err)) {
3015 rxr->rx_pg_cons = pg_cons;
3016 rxr->rx_pg_prod = pg_prod;
3017 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3018 pages - i);
3019 return err;
3020 }
3021
3022 pci_unmap_page(bp->pdev, mapping_old,
3023 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3024
3025 frag_size -= frag_len;
3026 skb->data_len += frag_len;
3027 skb->truesize += frag_len;
3028 skb->len += frag_len;
3029
3030 pg_prod = NEXT_RX_BD(pg_prod);
3031 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3032 }
3033 rxr->rx_pg_prod = pg_prod;
3034 rxr->rx_pg_cons = pg_cons;
3035 }
3036 return 0;
3037 }
3038
3039 static inline u16
3040 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3041 {
3042 u16 cons;
3043
3044 /* Tell compiler that status block fields can change. */
3045 barrier();
3046 cons = *bnapi->hw_rx_cons_ptr;
3047 barrier();
3048 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3049 cons++;
3050 return cons;
3051 }
3052
3053 static int
3054 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3055 {
3056 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3057 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3058 struct l2_fhdr *rx_hdr;
3059 int rx_pkt = 0, pg_ring_used = 0;
3060
3061 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3062 sw_cons = rxr->rx_cons;
3063 sw_prod = rxr->rx_prod;
3064
3065 /* Memory barrier necessary as speculative reads of the rx
3066 * buffer can be ahead of the index in the status block
3067 */
3068 rmb();
3069 while (sw_cons != hw_cons) {
3070 unsigned int len, hdr_len;
3071 u32 status;
3072 struct sw_bd *rx_buf;
3073 struct sk_buff *skb;
3074 dma_addr_t dma_addr;
3075 u16 vtag = 0;
3076 int hw_vlan __maybe_unused = 0;
3077
3078 sw_ring_cons = RX_RING_IDX(sw_cons);
3079 sw_ring_prod = RX_RING_IDX(sw_prod);
3080
3081 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3082 skb = rx_buf->skb;
3083
3084 rx_buf->skb = NULL;
3085
3086 dma_addr = pci_unmap_addr(rx_buf, mapping);
3087
3088 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
3089 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3090 PCI_DMA_FROMDEVICE);
3091
3092 rx_hdr = (struct l2_fhdr *) skb->data;
3093 len = rx_hdr->l2_fhdr_pkt_len;
3094 status = rx_hdr->l2_fhdr_status;
3095
3096 hdr_len = 0;
3097 if (status & L2_FHDR_STATUS_SPLIT) {
3098 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3099 pg_ring_used = 1;
3100 } else if (len > bp->rx_jumbo_thresh) {
3101 hdr_len = bp->rx_jumbo_thresh;
3102 pg_ring_used = 1;
3103 }
3104
3105 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3106 L2_FHDR_ERRORS_PHY_DECODE |
3107 L2_FHDR_ERRORS_ALIGNMENT |
3108 L2_FHDR_ERRORS_TOO_SHORT |
3109 L2_FHDR_ERRORS_GIANT_FRAME))) {
3110
3111 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3112 sw_ring_prod);
3113 if (pg_ring_used) {
3114 int pages;
3115
3116 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3117
3118 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3119 }
3120 goto next_rx;
3121 }
3122
3123 len -= 4;
3124
3125 if (len <= bp->rx_copy_thresh) {
3126 struct sk_buff *new_skb;
3127
3128 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3129 if (new_skb == NULL) {
3130 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3131 sw_ring_prod);
3132 goto next_rx;
3133 }
3134
3135 /* aligned copy */
3136 skb_copy_from_linear_data_offset(skb,
3137 BNX2_RX_OFFSET - 6,
3138 new_skb->data, len + 6);
3139 skb_reserve(new_skb, 6);
3140 skb_put(new_skb, len);
3141
3142 bnx2_reuse_rx_skb(bp, rxr, skb,
3143 sw_ring_cons, sw_ring_prod);
3144
3145 skb = new_skb;
3146 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3147 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3148 goto next_rx;
3149
3150 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3151 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
3152 vtag = rx_hdr->l2_fhdr_vlan_tag;
3153 #ifdef BCM_VLAN
3154 if (bp->vlgrp)
3155 hw_vlan = 1;
3156 else
3157 #endif
3158 {
3159 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
3160 __skb_push(skb, 4);
3161
3162 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3163 ve->h_vlan_proto = htons(ETH_P_8021Q);
3164 ve->h_vlan_TCI = htons(vtag);
3165 len += 4;
3166 }
3167 }
3168
3169 skb->protocol = eth_type_trans(skb, bp->dev);
3170
3171 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3172 (ntohs(skb->protocol) != 0x8100)) {
3173
3174 dev_kfree_skb(skb);
3175 goto next_rx;
3176
3177 }
3178
3179 skb->ip_summed = CHECKSUM_NONE;
3180 if (bp->rx_csum &&
3181 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3182 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3183
3184 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3185 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3186 skb->ip_summed = CHECKSUM_UNNECESSARY;
3187 }
3188
3189 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3190
3191 #ifdef BCM_VLAN
3192 if (hw_vlan)
3193 vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3194 else
3195 #endif
3196 netif_receive_skb(skb);
3197
3198 rx_pkt++;
3199
3200 next_rx:
3201 sw_cons = NEXT_RX_BD(sw_cons);
3202 sw_prod = NEXT_RX_BD(sw_prod);
3203
3204 if ((rx_pkt == budget))
3205 break;
3206
3207 /* Refresh hw_cons to see if there is new work */
3208 if (sw_cons == hw_cons) {
3209 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3210 rmb();
3211 }
3212 }
3213 rxr->rx_cons = sw_cons;
3214 rxr->rx_prod = sw_prod;
3215
3216 if (pg_ring_used)
3217 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3218
3219 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3220
3221 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3222
3223 mmiowb();
3224
3225 return rx_pkt;
3226
3227 }
3228
3229 /* MSI ISR - The only difference between this and the INTx ISR
3230 * is that the MSI interrupt is always serviced.
3231 */
3232 static irqreturn_t
3233 bnx2_msi(int irq, void *dev_instance)
3234 {
3235 struct bnx2_napi *bnapi = dev_instance;
3236 struct bnx2 *bp = bnapi->bp;
3237
3238 prefetch(bnapi->status_blk.msi);
3239 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3240 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3241 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3242
3243 /* Return here if interrupt is disabled. */
3244 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3245 return IRQ_HANDLED;
3246
3247 napi_schedule(&bnapi->napi);
3248
3249 return IRQ_HANDLED;
3250 }
3251
3252 static irqreturn_t
3253 bnx2_msi_1shot(int irq, void *dev_instance)
3254 {
3255 struct bnx2_napi *bnapi = dev_instance;
3256 struct bnx2 *bp = bnapi->bp;
3257
3258 prefetch(bnapi->status_blk.msi);
3259
3260 /* Return here if interrupt is disabled. */
3261 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3262 return IRQ_HANDLED;
3263
3264 napi_schedule(&bnapi->napi);
3265
3266 return IRQ_HANDLED;
3267 }
3268
3269 static irqreturn_t
3270 bnx2_interrupt(int irq, void *dev_instance)
3271 {
3272 struct bnx2_napi *bnapi = dev_instance;
3273 struct bnx2 *bp = bnapi->bp;
3274 struct status_block *sblk = bnapi->status_blk.msi;
3275
3276 /* When using INTx, it is possible for the interrupt to arrive
3277 * at the CPU before the status block posted prior to the
3278 * interrupt. Reading a register will flush the status block.
3279 * When using MSI, the MSI message will always complete after
3280 * the status block write.
3281 */
3282 if ((sblk->status_idx == bnapi->last_status_idx) &&
3283 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3284 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3285 return IRQ_NONE;
3286
3287 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3288 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3289 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3290
3291 /* Read back to deassert IRQ immediately to avoid too many
3292 * spurious interrupts.
3293 */
3294 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3295
3296 /* Return here if interrupt is shared and is disabled. */
3297 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3298 return IRQ_HANDLED;
3299
3300 if (napi_schedule_prep(&bnapi->napi)) {
3301 bnapi->last_status_idx = sblk->status_idx;
3302 __napi_schedule(&bnapi->napi);
3303 }
3304
3305 return IRQ_HANDLED;
3306 }
3307
3308 static inline int
3309 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3310 {
3311 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3312 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3313
3314 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3315 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3316 return 1;
3317 return 0;
3318 }
3319
3320 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3321 STATUS_ATTN_BITS_TIMER_ABORT)
3322
3323 static inline int
3324 bnx2_has_work(struct bnx2_napi *bnapi)
3325 {
3326 struct status_block *sblk = bnapi->status_blk.msi;
3327
3328 if (bnx2_has_fast_work(bnapi))
3329 return 1;
3330
3331 #ifdef BCM_CNIC
3332 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3333 return 1;
3334 #endif
3335
3336 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3337 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3338 return 1;
3339
3340 return 0;
3341 }
3342
3343 static void
3344 bnx2_chk_missed_msi(struct bnx2 *bp)
3345 {
3346 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3347 u32 msi_ctrl;
3348
3349 if (bnx2_has_work(bnapi)) {
3350 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3351 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3352 return;
3353
3354 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3355 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3356 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3357 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3358 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3359 }
3360 }
3361
3362 bp->idle_chk_status_idx = bnapi->last_status_idx;
3363 }
3364
3365 #ifdef BCM_CNIC
3366 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3367 {
3368 struct cnic_ops *c_ops;
3369
3370 if (!bnapi->cnic_present)
3371 return;
3372
3373 rcu_read_lock();
3374 c_ops = rcu_dereference(bp->cnic_ops);
3375 if (c_ops)
3376 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3377 bnapi->status_blk.msi);
3378 rcu_read_unlock();
3379 }
3380 #endif
3381
3382 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3383 {
3384 struct status_block *sblk = bnapi->status_blk.msi;
3385 u32 status_attn_bits = sblk->status_attn_bits;
3386 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3387
3388 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3389 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3390
3391 bnx2_phy_int(bp, bnapi);
3392
3393 /* This is needed to take care of transient status
3394 * during link changes.
3395 */
3396 REG_WR(bp, BNX2_HC_COMMAND,
3397 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3398 REG_RD(bp, BNX2_HC_COMMAND);
3399 }
3400 }
3401
3402 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3403 int work_done, int budget)
3404 {
3405 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3406 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3407
3408 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3409 bnx2_tx_int(bp, bnapi, 0);
3410
3411 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3412 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3413
3414 return work_done;
3415 }
3416
3417 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3418 {
3419 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3420 struct bnx2 *bp = bnapi->bp;
3421 int work_done = 0;
3422 struct status_block_msix *sblk = bnapi->status_blk.msix;
3423
3424 while (1) {
3425 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3426 if (unlikely(work_done >= budget))
3427 break;
3428
3429 bnapi->last_status_idx = sblk->status_idx;
3430 /* status idx must be read before checking for more work. */
3431 rmb();
3432 if (likely(!bnx2_has_fast_work(bnapi))) {
3433
3434 napi_complete(napi);
3435 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3436 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3437 bnapi->last_status_idx);
3438 break;
3439 }
3440 }
3441 return work_done;
3442 }
3443
3444 static int bnx2_poll(struct napi_struct *napi, int budget)
3445 {
3446 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3447 struct bnx2 *bp = bnapi->bp;
3448 int work_done = 0;
3449 struct status_block *sblk = bnapi->status_blk.msi;
3450
3451 while (1) {
3452 bnx2_poll_link(bp, bnapi);
3453
3454 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3455
3456 #ifdef BCM_CNIC
3457 bnx2_poll_cnic(bp, bnapi);
3458 #endif
3459
3460 /* bnapi->last_status_idx is used below to tell the hw how
3461 * much work has been processed, so we must read it before
3462 * checking for more work.
3463 */
3464 bnapi->last_status_idx = sblk->status_idx;
3465
3466 if (unlikely(work_done >= budget))
3467 break;
3468
3469 rmb();
3470 if (likely(!bnx2_has_work(bnapi))) {
3471 napi_complete(napi);
3472 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3473 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3474 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3475 bnapi->last_status_idx);
3476 break;
3477 }
3478 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3479 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3480 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3481 bnapi->last_status_idx);
3482
3483 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3484 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3485 bnapi->last_status_idx);
3486 break;
3487 }
3488 }
3489
3490 return work_done;
3491 }
3492
3493 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3494 * from set_multicast.
3495 */
3496 static void
3497 bnx2_set_rx_mode(struct net_device *dev)
3498 {
3499 struct bnx2 *bp = netdev_priv(dev);
3500 u32 rx_mode, sort_mode;
3501 struct netdev_hw_addr *ha;
3502 int i;
3503
3504 if (!netif_running(dev))
3505 return;
3506
3507 spin_lock_bh(&bp->phy_lock);
3508
3509 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3510 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3511 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3512 #ifdef BCM_VLAN
3513 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3514 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3515 #else
3516 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3517 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3518 #endif
3519 if (dev->flags & IFF_PROMISC) {
3520 /* Promiscuous mode. */
3521 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3522 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3523 BNX2_RPM_SORT_USER0_PROM_VLAN;
3524 }
3525 else if (dev->flags & IFF_ALLMULTI) {
3526 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3527 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3528 0xffffffff);
3529 }
3530 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3531 }
3532 else {
3533 /* Accept one or more multicast(s). */
3534 struct dev_mc_list *mclist;
3535 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3536 u32 regidx;
3537 u32 bit;
3538 u32 crc;
3539
3540 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3541
3542 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3543 i++, mclist = mclist->next) {
3544
3545 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3546 bit = crc & 0xff;
3547 regidx = (bit & 0xe0) >> 5;
3548 bit &= 0x1f;
3549 mc_filter[regidx] |= (1 << bit);
3550 }
3551
3552 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3553 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3554 mc_filter[i]);
3555 }
3556
3557 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3558 }
3559
3560 if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
3561 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3562 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3563 BNX2_RPM_SORT_USER0_PROM_VLAN;
3564 } else if (!(dev->flags & IFF_PROMISC)) {
3565 /* Add all entries into to the match filter list */
3566 i = 0;
3567 list_for_each_entry(ha, &dev->uc.list, list) {
3568 bnx2_set_mac_addr(bp, ha->addr,
3569 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3570 sort_mode |= (1 <<
3571 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3572 i++;
3573 }
3574
3575 }
3576
3577 if (rx_mode != bp->rx_mode) {
3578 bp->rx_mode = rx_mode;
3579 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3580 }
3581
3582 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3583 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3584 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3585
3586 spin_unlock_bh(&bp->phy_lock);
3587 }
3588
3589 static int __devinit
3590 check_fw_section(const struct firmware *fw,
3591 const struct bnx2_fw_file_section *section,
3592 u32 alignment, bool non_empty)
3593 {
3594 u32 offset = be32_to_cpu(section->offset);
3595 u32 len = be32_to_cpu(section->len);
3596
3597 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3598 return -EINVAL;
3599 if ((non_empty && len == 0) || len > fw->size - offset ||
3600 len & (alignment - 1))
3601 return -EINVAL;
3602 return 0;
3603 }
3604
3605 static int __devinit
3606 check_mips_fw_entry(const struct firmware *fw,
3607 const struct bnx2_mips_fw_file_entry *entry)
3608 {
3609 if (check_fw_section(fw, &entry->text, 4, true) ||
3610 check_fw_section(fw, &entry->data, 4, false) ||
3611 check_fw_section(fw, &entry->rodata, 4, false))
3612 return -EINVAL;
3613 return 0;
3614 }
3615
3616 static int __devinit
3617 bnx2_request_firmware(struct bnx2 *bp)
3618 {
3619 const char *mips_fw_file, *rv2p_fw_file;
3620 const struct bnx2_mips_fw_file *mips_fw;
3621 const struct bnx2_rv2p_fw_file *rv2p_fw;
3622 int rc;
3623
3624 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3625 mips_fw_file = FW_MIPS_FILE_09;
3626 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3627 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3628 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3629 else
3630 rv2p_fw_file = FW_RV2P_FILE_09;
3631 } else {
3632 mips_fw_file = FW_MIPS_FILE_06;
3633 rv2p_fw_file = FW_RV2P_FILE_06;
3634 }
3635
3636 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3637 if (rc) {
3638 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3639 mips_fw_file);
3640 return rc;
3641 }
3642
3643 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3644 if (rc) {
3645 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3646 rv2p_fw_file);
3647 return rc;
3648 }
3649 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3650 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3651 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3652 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3653 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3654 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3655 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3656 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3657 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3658 mips_fw_file);
3659 return -EINVAL;
3660 }
3661 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3662 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3663 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3664 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3665 rv2p_fw_file);
3666 return -EINVAL;
3667 }
3668
3669 return 0;
3670 }
3671
3672 static u32
3673 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3674 {
3675 switch (idx) {
3676 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3677 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3678 rv2p_code |= RV2P_BD_PAGE_SIZE;
3679 break;
3680 }
3681 return rv2p_code;
3682 }
3683
3684 static int
3685 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3686 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3687 {
3688 u32 rv2p_code_len, file_offset;
3689 __be32 *rv2p_code;
3690 int i;
3691 u32 val, cmd, addr;
3692
3693 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3694 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3695
3696 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3697
3698 if (rv2p_proc == RV2P_PROC1) {
3699 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3700 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3701 } else {
3702 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3703 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3704 }
3705
3706 for (i = 0; i < rv2p_code_len; i += 8) {
3707 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3708 rv2p_code++;
3709 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3710 rv2p_code++;
3711
3712 val = (i / 8) | cmd;
3713 REG_WR(bp, addr, val);
3714 }
3715
3716 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3717 for (i = 0; i < 8; i++) {
3718 u32 loc, code;
3719
3720 loc = be32_to_cpu(fw_entry->fixup[i]);
3721 if (loc && ((loc * 4) < rv2p_code_len)) {
3722 code = be32_to_cpu(*(rv2p_code + loc - 1));
3723 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3724 code = be32_to_cpu(*(rv2p_code + loc));
3725 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3726 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3727
3728 val = (loc / 2) | cmd;
3729 REG_WR(bp, addr, val);
3730 }
3731 }
3732
3733 /* Reset the processor, un-stall is done later. */
3734 if (rv2p_proc == RV2P_PROC1) {
3735 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3736 }
3737 else {
3738 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3739 }
3740
3741 return 0;
3742 }
3743
3744 static int
3745 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3746 const struct bnx2_mips_fw_file_entry *fw_entry)
3747 {
3748 u32 addr, len, file_offset;
3749 __be32 *data;
3750 u32 offset;
3751 u32 val;
3752
3753 /* Halt the CPU. */
3754 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3755 val |= cpu_reg->mode_value_halt;
3756 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3757 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3758
3759 /* Load the Text area. */
3760 addr = be32_to_cpu(fw_entry->text.addr);
3761 len = be32_to_cpu(fw_entry->text.len);
3762 file_offset = be32_to_cpu(fw_entry->text.offset);
3763 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3764
3765 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3766 if (len) {
3767 int j;
3768
3769 for (j = 0; j < (len / 4); j++, offset += 4)
3770 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3771 }
3772
3773 /* Load the Data area. */
3774 addr = be32_to_cpu(fw_entry->data.addr);
3775 len = be32_to_cpu(fw_entry->data.len);
3776 file_offset = be32_to_cpu(fw_entry->data.offset);
3777 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3778
3779 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3780 if (len) {
3781 int j;
3782
3783 for (j = 0; j < (len / 4); j++, offset += 4)
3784 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3785 }
3786
3787 /* Load the Read-Only area. */
3788 addr = be32_to_cpu(fw_entry->rodata.addr);
3789 len = be32_to_cpu(fw_entry->rodata.len);
3790 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3791 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3792
3793 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3794 if (len) {
3795 int j;
3796
3797 for (j = 0; j < (len / 4); j++, offset += 4)
3798 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3799 }
3800
3801 /* Clear the pre-fetch instruction. */
3802 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3803
3804 val = be32_to_cpu(fw_entry->start_addr);
3805 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3806
3807 /* Start the CPU. */
3808 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3809 val &= ~cpu_reg->mode_value_halt;
3810 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3811 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3812
3813 return 0;
3814 }
3815
3816 static int
3817 bnx2_init_cpus(struct bnx2 *bp)
3818 {
3819 const struct bnx2_mips_fw_file *mips_fw =
3820 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3821 const struct bnx2_rv2p_fw_file *rv2p_fw =
3822 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3823 int rc;
3824
3825 /* Initialize the RV2P processor. */
3826 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3827 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3828
3829 /* Initialize the RX Processor. */
3830 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3831 if (rc)
3832 goto init_cpu_err;
3833
3834 /* Initialize the TX Processor. */
3835 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3836 if (rc)
3837 goto init_cpu_err;
3838
3839 /* Initialize the TX Patch-up Processor. */
3840 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3841 if (rc)
3842 goto init_cpu_err;
3843
3844 /* Initialize the Completion Processor. */
3845 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3846 if (rc)
3847 goto init_cpu_err;
3848
3849 /* Initialize the Command Processor. */
3850 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3851
3852 init_cpu_err:
3853 return rc;
3854 }
3855
3856 static int
3857 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3858 {
3859 u16 pmcsr;
3860
3861 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3862
3863 switch (state) {
3864 case PCI_D0: {
3865 u32 val;
3866
3867 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3868 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3869 PCI_PM_CTRL_PME_STATUS);
3870
3871 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3872 /* delay required during transition out of D3hot */
3873 msleep(20);
3874
3875 val = REG_RD(bp, BNX2_EMAC_MODE);
3876 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3877 val &= ~BNX2_EMAC_MODE_MPKT;
3878 REG_WR(bp, BNX2_EMAC_MODE, val);
3879
3880 val = REG_RD(bp, BNX2_RPM_CONFIG);
3881 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3882 REG_WR(bp, BNX2_RPM_CONFIG, val);
3883 break;
3884 }
3885 case PCI_D3hot: {
3886 int i;
3887 u32 val, wol_msg;
3888
3889 if (bp->wol) {
3890 u32 advertising;
3891 u8 autoneg;
3892
3893 autoneg = bp->autoneg;
3894 advertising = bp->advertising;
3895
3896 if (bp->phy_port == PORT_TP) {
3897 bp->autoneg = AUTONEG_SPEED;
3898 bp->advertising = ADVERTISED_10baseT_Half |
3899 ADVERTISED_10baseT_Full |
3900 ADVERTISED_100baseT_Half |
3901 ADVERTISED_100baseT_Full |
3902 ADVERTISED_Autoneg;
3903 }
3904
3905 spin_lock_bh(&bp->phy_lock);
3906 bnx2_setup_phy(bp, bp->phy_port);
3907 spin_unlock_bh(&bp->phy_lock);
3908
3909 bp->autoneg = autoneg;
3910 bp->advertising = advertising;
3911
3912 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3913
3914 val = REG_RD(bp, BNX2_EMAC_MODE);
3915
3916 /* Enable port mode. */
3917 val &= ~BNX2_EMAC_MODE_PORT;
3918 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3919 BNX2_EMAC_MODE_ACPI_RCVD |
3920 BNX2_EMAC_MODE_MPKT;
3921 if (bp->phy_port == PORT_TP)
3922 val |= BNX2_EMAC_MODE_PORT_MII;
3923 else {
3924 val |= BNX2_EMAC_MODE_PORT_GMII;
3925 if (bp->line_speed == SPEED_2500)
3926 val |= BNX2_EMAC_MODE_25G_MODE;
3927 }
3928
3929 REG_WR(bp, BNX2_EMAC_MODE, val);
3930
3931 /* receive all multicast */
3932 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3933 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3934 0xffffffff);
3935 }
3936 REG_WR(bp, BNX2_EMAC_RX_MODE,
3937 BNX2_EMAC_RX_MODE_SORT_MODE);
3938
3939 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3940 BNX2_RPM_SORT_USER0_MC_EN;
3941 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3942 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3943 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3944 BNX2_RPM_SORT_USER0_ENA);
3945
3946 /* Need to enable EMAC and RPM for WOL. */
3947 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3948 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3949 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3950 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3951
3952 val = REG_RD(bp, BNX2_RPM_CONFIG);
3953 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3954 REG_WR(bp, BNX2_RPM_CONFIG, val);
3955
3956 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3957 }
3958 else {
3959 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3960 }
3961
3962 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3963 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3964 1, 0);
3965
3966 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3967 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3968 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3969
3970 if (bp->wol)
3971 pmcsr |= 3;
3972 }
3973 else {
3974 pmcsr |= 3;
3975 }
3976 if (bp->wol) {
3977 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3978 }
3979 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3980 pmcsr);
3981
3982 /* No more memory access after this point until
3983 * device is brought back to D0.
3984 */
3985 udelay(50);
3986 break;
3987 }
3988 default:
3989 return -EINVAL;
3990 }
3991 return 0;
3992 }
3993
3994 static int
3995 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3996 {
3997 u32 val;
3998 int j;
3999
4000 /* Request access to the flash interface. */
4001 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
4002 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4003 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4004 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
4005 break;
4006
4007 udelay(5);
4008 }
4009
4010 if (j >= NVRAM_TIMEOUT_COUNT)
4011 return -EBUSY;
4012
4013 return 0;
4014 }
4015
4016 static int
4017 bnx2_release_nvram_lock(struct bnx2 *bp)
4018 {
4019 int j;
4020 u32 val;
4021
4022 /* Relinquish nvram interface. */
4023 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4024
4025 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4026 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4027 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4028 break;
4029
4030 udelay(5);
4031 }
4032
4033 if (j >= NVRAM_TIMEOUT_COUNT)
4034 return -EBUSY;
4035
4036 return 0;
4037 }
4038
4039
4040 static int
4041 bnx2_enable_nvram_write(struct bnx2 *bp)
4042 {
4043 u32 val;
4044
4045 val = REG_RD(bp, BNX2_MISC_CFG);
4046 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4047
4048 if (bp->flash_info->flags & BNX2_NV_WREN) {
4049 int j;
4050
4051 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4052 REG_WR(bp, BNX2_NVM_COMMAND,
4053 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4054
4055 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4056 udelay(5);
4057
4058 val = REG_RD(bp, BNX2_NVM_COMMAND);
4059 if (val & BNX2_NVM_COMMAND_DONE)
4060 break;
4061 }
4062
4063 if (j >= NVRAM_TIMEOUT_COUNT)
4064 return -EBUSY;
4065 }
4066 return 0;
4067 }
4068
4069 static void
4070 bnx2_disable_nvram_write(struct bnx2 *bp)
4071 {
4072 u32 val;
4073
4074 val = REG_RD(bp, BNX2_MISC_CFG);
4075 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4076 }
4077
4078
4079 static void
4080 bnx2_enable_nvram_access(struct bnx2 *bp)
4081 {
4082 u32 val;
4083
4084 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4085 /* Enable both bits, even on read. */
4086 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4087 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4088 }
4089
4090 static void
4091 bnx2_disable_nvram_access(struct bnx2 *bp)
4092 {
4093 u32 val;
4094
4095 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4096 /* Disable both bits, even after read. */
4097 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4098 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4099 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4100 }
4101
4102 static int
4103 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4104 {
4105 u32 cmd;
4106 int j;
4107
4108 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4109 /* Buffered flash, no erase needed */
4110 return 0;
4111
4112 /* Build an erase command */
4113 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4114 BNX2_NVM_COMMAND_DOIT;
4115
4116 /* Need to clear DONE bit separately. */
4117 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4118
4119 /* Address of the NVRAM to read from. */
4120 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4121
4122 /* Issue an erase command. */
4123 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4124
4125 /* Wait for completion. */
4126 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4127 u32 val;
4128
4129 udelay(5);
4130
4131 val = REG_RD(bp, BNX2_NVM_COMMAND);
4132 if (val & BNX2_NVM_COMMAND_DONE)
4133 break;
4134 }
4135
4136 if (j >= NVRAM_TIMEOUT_COUNT)
4137 return -EBUSY;
4138
4139 return 0;
4140 }
4141
4142 static int
4143 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4144 {
4145 u32 cmd;
4146 int j;
4147
4148 /* Build the command word. */
4149 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4150
4151 /* Calculate an offset of a buffered flash, not needed for 5709. */
4152 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4153 offset = ((offset / bp->flash_info->page_size) <<
4154 bp->flash_info->page_bits) +
4155 (offset % bp->flash_info->page_size);
4156 }
4157
4158 /* Need to clear DONE bit separately. */
4159 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4160
4161 /* Address of the NVRAM to read from. */
4162 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4163
4164 /* Issue a read command. */
4165 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4166
4167 /* Wait for completion. */
4168 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4169 u32 val;
4170
4171 udelay(5);
4172
4173 val = REG_RD(bp, BNX2_NVM_COMMAND);
4174 if (val & BNX2_NVM_COMMAND_DONE) {
4175 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4176 memcpy(ret_val, &v, 4);
4177 break;
4178 }
4179 }
4180 if (j >= NVRAM_TIMEOUT_COUNT)
4181 return -EBUSY;
4182
4183 return 0;
4184 }
4185
4186
4187 static int
4188 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4189 {
4190 u32 cmd;
4191 __be32 val32;
4192 int j;
4193
4194 /* Build the command word. */
4195 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4196
4197 /* Calculate an offset of a buffered flash, not needed for 5709. */
4198 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4199 offset = ((offset / bp->flash_info->page_size) <<
4200 bp->flash_info->page_bits) +
4201 (offset % bp->flash_info->page_size);
4202 }
4203
4204 /* Need to clear DONE bit separately. */
4205 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4206
4207 memcpy(&val32, val, 4);
4208
4209 /* Write the data. */
4210 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4211
4212 /* Address of the NVRAM to write to. */
4213 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4214
4215 /* Issue the write command. */
4216 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4217
4218 /* Wait for completion. */
4219 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4220 udelay(5);
4221
4222 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4223 break;
4224 }
4225 if (j >= NVRAM_TIMEOUT_COUNT)
4226 return -EBUSY;
4227
4228 return 0;
4229 }
4230
4231 static int
4232 bnx2_init_nvram(struct bnx2 *bp)
4233 {
4234 u32 val;
4235 int j, entry_count, rc = 0;
4236 const struct flash_spec *flash;
4237
4238 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4239 bp->flash_info = &flash_5709;
4240 goto get_flash_size;
4241 }
4242
4243 /* Determine the selected interface. */
4244 val = REG_RD(bp, BNX2_NVM_CFG1);
4245
4246 entry_count = ARRAY_SIZE(flash_table);
4247
4248 if (val & 0x40000000) {
4249
4250 /* Flash interface has been reconfigured */
4251 for (j = 0, flash = &flash_table[0]; j < entry_count;
4252 j++, flash++) {
4253 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4254 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4255 bp->flash_info = flash;
4256 break;
4257 }
4258 }
4259 }
4260 else {
4261 u32 mask;
4262 /* Not yet been reconfigured */
4263
4264 if (val & (1 << 23))
4265 mask = FLASH_BACKUP_STRAP_MASK;
4266 else
4267 mask = FLASH_STRAP_MASK;
4268
4269 for (j = 0, flash = &flash_table[0]; j < entry_count;
4270 j++, flash++) {
4271
4272 if ((val & mask) == (flash->strapping & mask)) {
4273 bp->flash_info = flash;
4274
4275 /* Request access to the flash interface. */
4276 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4277 return rc;
4278
4279 /* Enable access to flash interface */
4280 bnx2_enable_nvram_access(bp);
4281
4282 /* Reconfigure the flash interface */
4283 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4284 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4285 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4286 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4287
4288 /* Disable access to flash interface */
4289 bnx2_disable_nvram_access(bp);
4290 bnx2_release_nvram_lock(bp);
4291
4292 break;
4293 }
4294 }
4295 } /* if (val & 0x40000000) */
4296
4297 if (j == entry_count) {
4298 bp->flash_info = NULL;
4299 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4300 return -ENODEV;
4301 }
4302
4303 get_flash_size:
4304 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4305 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4306 if (val)
4307 bp->flash_size = val;
4308 else
4309 bp->flash_size = bp->flash_info->total_size;
4310
4311 return rc;
4312 }
4313
4314 static int
4315 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4316 int buf_size)
4317 {
4318 int rc = 0;
4319 u32 cmd_flags, offset32, len32, extra;
4320
4321 if (buf_size == 0)
4322 return 0;
4323
4324 /* Request access to the flash interface. */
4325 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4326 return rc;
4327
4328 /* Enable access to flash interface */
4329 bnx2_enable_nvram_access(bp);
4330
4331 len32 = buf_size;
4332 offset32 = offset;
4333 extra = 0;
4334
4335 cmd_flags = 0;
4336
4337 if (offset32 & 3) {
4338 u8 buf[4];
4339 u32 pre_len;
4340
4341 offset32 &= ~3;
4342 pre_len = 4 - (offset & 3);
4343
4344 if (pre_len >= len32) {
4345 pre_len = len32;
4346 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4347 BNX2_NVM_COMMAND_LAST;
4348 }
4349 else {
4350 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4351 }
4352
4353 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4354
4355 if (rc)
4356 return rc;
4357
4358 memcpy(ret_buf, buf + (offset & 3), pre_len);
4359
4360 offset32 += 4;
4361 ret_buf += pre_len;
4362 len32 -= pre_len;
4363 }
4364 if (len32 & 3) {
4365 extra = 4 - (len32 & 3);
4366 len32 = (len32 + 4) & ~3;
4367 }
4368
4369 if (len32 == 4) {
4370 u8 buf[4];
4371
4372 if (cmd_flags)
4373 cmd_flags = BNX2_NVM_COMMAND_LAST;
4374 else
4375 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4376 BNX2_NVM_COMMAND_LAST;
4377
4378 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4379
4380 memcpy(ret_buf, buf, 4 - extra);
4381 }
4382 else if (len32 > 0) {
4383 u8 buf[4];
4384
4385 /* Read the first word. */
4386 if (cmd_flags)
4387 cmd_flags = 0;
4388 else
4389 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4390
4391 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4392
4393 /* Advance to the next dword. */
4394 offset32 += 4;
4395 ret_buf += 4;
4396 len32 -= 4;
4397
4398 while (len32 > 4 && rc == 0) {
4399 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4400
4401 /* Advance to the next dword. */
4402 offset32 += 4;
4403 ret_buf += 4;
4404 len32 -= 4;
4405 }
4406
4407 if (rc)
4408 return rc;
4409
4410 cmd_flags = BNX2_NVM_COMMAND_LAST;
4411 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4412
4413 memcpy(ret_buf, buf, 4 - extra);
4414 }
4415
4416 /* Disable access to flash interface */
4417 bnx2_disable_nvram_access(bp);
4418
4419 bnx2_release_nvram_lock(bp);
4420
4421 return rc;
4422 }
4423
4424 static int
4425 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4426 int buf_size)
4427 {
4428 u32 written, offset32, len32;
4429 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4430 int rc = 0;
4431 int align_start, align_end;
4432
4433 buf = data_buf;
4434 offset32 = offset;
4435 len32 = buf_size;
4436 align_start = align_end = 0;
4437
4438 if ((align_start = (offset32 & 3))) {
4439 offset32 &= ~3;
4440 len32 += align_start;
4441 if (len32 < 4)
4442 len32 = 4;
4443 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4444 return rc;
4445 }
4446
4447 if (len32 & 3) {
4448 align_end = 4 - (len32 & 3);
4449 len32 += align_end;
4450 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4451 return rc;
4452 }
4453
4454 if (align_start || align_end) {
4455 align_buf = kmalloc(len32, GFP_KERNEL);
4456 if (align_buf == NULL)
4457 return -ENOMEM;
4458 if (align_start) {
4459 memcpy(align_buf, start, 4);
4460 }
4461 if (align_end) {
4462 memcpy(align_buf + len32 - 4, end, 4);
4463 }
4464 memcpy(align_buf + align_start, data_buf, buf_size);
4465 buf = align_buf;
4466 }
4467
4468 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4469 flash_buffer = kmalloc(264, GFP_KERNEL);
4470 if (flash_buffer == NULL) {
4471 rc = -ENOMEM;
4472 goto nvram_write_end;
4473 }
4474 }
4475
4476 written = 0;
4477 while ((written < len32) && (rc == 0)) {
4478 u32 page_start, page_end, data_start, data_end;
4479 u32 addr, cmd_flags;
4480 int i;
4481
4482 /* Find the page_start addr */
4483 page_start = offset32 + written;
4484 page_start -= (page_start % bp->flash_info->page_size);
4485 /* Find the page_end addr */
4486 page_end = page_start + bp->flash_info->page_size;
4487 /* Find the data_start addr */
4488 data_start = (written == 0) ? offset32 : page_start;
4489 /* Find the data_end addr */
4490 data_end = (page_end > offset32 + len32) ?
4491 (offset32 + len32) : page_end;
4492
4493 /* Request access to the flash interface. */
4494 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4495 goto nvram_write_end;
4496
4497 /* Enable access to flash interface */
4498 bnx2_enable_nvram_access(bp);
4499
4500 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4501 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4502 int j;
4503
4504 /* Read the whole page into the buffer
4505 * (non-buffer flash only) */
4506 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4507 if (j == (bp->flash_info->page_size - 4)) {
4508 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4509 }
4510 rc = bnx2_nvram_read_dword(bp,
4511 page_start + j,
4512 &flash_buffer[j],
4513 cmd_flags);
4514
4515 if (rc)
4516 goto nvram_write_end;
4517
4518 cmd_flags = 0;
4519 }
4520 }
4521
4522 /* Enable writes to flash interface (unlock write-protect) */
4523 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4524 goto nvram_write_end;
4525
4526 /* Loop to write back the buffer data from page_start to
4527 * data_start */
4528 i = 0;
4529 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4530 /* Erase the page */
4531 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4532 goto nvram_write_end;
4533
4534 /* Re-enable the write again for the actual write */
4535 bnx2_enable_nvram_write(bp);
4536
4537 for (addr = page_start; addr < data_start;
4538 addr += 4, i += 4) {
4539
4540 rc = bnx2_nvram_write_dword(bp, addr,
4541 &flash_buffer[i], cmd_flags);
4542
4543 if (rc != 0)
4544 goto nvram_write_end;
4545
4546 cmd_flags = 0;
4547 }
4548 }
4549
4550 /* Loop to write the new data from data_start to data_end */
4551 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4552 if ((addr == page_end - 4) ||
4553 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4554 (addr == data_end - 4))) {
4555
4556 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4557 }
4558 rc = bnx2_nvram_write_dword(bp, addr, buf,
4559 cmd_flags);
4560
4561 if (rc != 0)
4562 goto nvram_write_end;
4563
4564 cmd_flags = 0;
4565 buf += 4;
4566 }
4567
4568 /* Loop to write back the buffer data from data_end
4569 * to page_end */
4570 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4571 for (addr = data_end; addr < page_end;
4572 addr += 4, i += 4) {
4573
4574 if (addr == page_end-4) {
4575 cmd_flags = BNX2_NVM_COMMAND_LAST;
4576 }
4577 rc = bnx2_nvram_write_dword(bp, addr,
4578 &flash_buffer[i], cmd_flags);
4579
4580 if (rc != 0)
4581 goto nvram_write_end;
4582
4583 cmd_flags = 0;
4584 }
4585 }
4586
4587 /* Disable writes to flash interface (lock write-protect) */
4588 bnx2_disable_nvram_write(bp);
4589
4590 /* Disable access to flash interface */
4591 bnx2_disable_nvram_access(bp);
4592 bnx2_release_nvram_lock(bp);
4593
4594 /* Increment written */
4595 written += data_end - data_start;
4596 }
4597
4598 nvram_write_end:
4599 kfree(flash_buffer);
4600 kfree(align_buf);
4601 return rc;
4602 }
4603
4604 static void
4605 bnx2_init_fw_cap(struct bnx2 *bp)
4606 {
4607 u32 val, sig = 0;
4608
4609 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4610 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4611
4612 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4613 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4614
4615 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4616 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4617 return;
4618
4619 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4620 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4621 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4622 }
4623
4624 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4625 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4626 u32 link;
4627
4628 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4629
4630 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4631 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4632 bp->phy_port = PORT_FIBRE;
4633 else
4634 bp->phy_port = PORT_TP;
4635
4636 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4637 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4638 }
4639
4640 if (netif_running(bp->dev) && sig)
4641 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4642 }
4643
4644 static void
4645 bnx2_setup_msix_tbl(struct bnx2 *bp)
4646 {
4647 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4648
4649 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4650 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4651 }
4652
4653 static int
4654 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4655 {
4656 u32 val;
4657 int i, rc = 0;
4658 u8 old_port;
4659
4660 /* Wait for the current PCI transaction to complete before
4661 * issuing a reset. */
4662 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4663 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4664 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4665 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4666 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4667 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4668 udelay(5);
4669
4670 /* Wait for the firmware to tell us it is ok to issue a reset. */
4671 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4672
4673 /* Deposit a driver reset signature so the firmware knows that
4674 * this is a soft reset. */
4675 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4676 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4677
4678 /* Do a dummy read to force the chip to complete all current transaction
4679 * before we issue a reset. */
4680 val = REG_RD(bp, BNX2_MISC_ID);
4681
4682 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4683 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4684 REG_RD(bp, BNX2_MISC_COMMAND);
4685 udelay(5);
4686
4687 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4688 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4689
4690 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4691
4692 } else {
4693 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4694 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4695 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4696
4697 /* Chip reset. */
4698 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4699
4700 /* Reading back any register after chip reset will hang the
4701 * bus on 5706 A0 and A1. The msleep below provides plenty
4702 * of margin for write posting.
4703 */
4704 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4705 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4706 msleep(20);
4707
4708 /* Reset takes approximate 30 usec */
4709 for (i = 0; i < 10; i++) {
4710 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4711 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4712 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4713 break;
4714 udelay(10);
4715 }
4716
4717 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4718 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4719 printk(KERN_ERR PFX "Chip reset did not complete\n");
4720 return -EBUSY;
4721 }
4722 }
4723
4724 /* Make sure byte swapping is properly configured. */
4725 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4726 if (val != 0x01020304) {
4727 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4728 return -ENODEV;
4729 }
4730
4731 /* Wait for the firmware to finish its initialization. */
4732 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4733 if (rc)
4734 return rc;
4735
4736 spin_lock_bh(&bp->phy_lock);
4737 old_port = bp->phy_port;
4738 bnx2_init_fw_cap(bp);
4739 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4740 old_port != bp->phy_port)
4741 bnx2_set_default_remote_link(bp);
4742 spin_unlock_bh(&bp->phy_lock);
4743
4744 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4745 /* Adjust the voltage regular to two steps lower. The default
4746 * of this register is 0x0000000e. */
4747 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4748
4749 /* Remove bad rbuf memory from the free pool. */
4750 rc = bnx2_alloc_bad_rbuf(bp);
4751 }
4752
4753 if (bp->flags & BNX2_FLAG_USING_MSIX)
4754 bnx2_setup_msix_tbl(bp);
4755
4756 return rc;
4757 }
4758
4759 static int
4760 bnx2_init_chip(struct bnx2 *bp)
4761 {
4762 u32 val, mtu;
4763 int rc, i;
4764
4765 /* Make sure the interrupt is not active. */
4766 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4767
4768 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4769 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4770 #ifdef __BIG_ENDIAN
4771 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4772 #endif
4773 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4774 DMA_READ_CHANS << 12 |
4775 DMA_WRITE_CHANS << 16;
4776
4777 val |= (0x2 << 20) | (1 << 11);
4778
4779 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4780 val |= (1 << 23);
4781
4782 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4783 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4784 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4785
4786 REG_WR(bp, BNX2_DMA_CONFIG, val);
4787
4788 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4789 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4790 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4791 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4792 }
4793
4794 if (bp->flags & BNX2_FLAG_PCIX) {
4795 u16 val16;
4796
4797 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4798 &val16);
4799 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4800 val16 & ~PCI_X_CMD_ERO);
4801 }
4802
4803 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4804 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4805 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4806 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4807
4808 /* Initialize context mapping and zero out the quick contexts. The
4809 * context block must have already been enabled. */
4810 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4811 rc = bnx2_init_5709_context(bp);
4812 if (rc)
4813 return rc;
4814 } else
4815 bnx2_init_context(bp);
4816
4817 if ((rc = bnx2_init_cpus(bp)) != 0)
4818 return rc;
4819
4820 bnx2_init_nvram(bp);
4821
4822 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4823
4824 val = REG_RD(bp, BNX2_MQ_CONFIG);
4825 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4826 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4827 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4828 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4829 if (CHIP_REV(bp) == CHIP_REV_Ax)
4830 val |= BNX2_MQ_CONFIG_HALT_DIS;
4831 }
4832
4833 REG_WR(bp, BNX2_MQ_CONFIG, val);
4834
4835 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4836 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4837 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4838
4839 val = (BCM_PAGE_BITS - 8) << 24;
4840 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4841
4842 /* Configure page size. */
4843 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4844 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4845 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4846 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4847
4848 val = bp->mac_addr[0] +
4849 (bp->mac_addr[1] << 8) +
4850 (bp->mac_addr[2] << 16) +
4851 bp->mac_addr[3] +
4852 (bp->mac_addr[4] << 8) +
4853 (bp->mac_addr[5] << 16);
4854 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4855
4856 /* Program the MTU. Also include 4 bytes for CRC32. */
4857 mtu = bp->dev->mtu;
4858 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4859 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4860 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4861 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4862
4863 if (mtu < 1500)
4864 mtu = 1500;
4865
4866 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4867 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4868 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4869
4870 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4871 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4872 bp->bnx2_napi[i].last_status_idx = 0;
4873
4874 bp->idle_chk_status_idx = 0xffff;
4875
4876 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4877
4878 /* Set up how to generate a link change interrupt. */
4879 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4880
4881 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4882 (u64) bp->status_blk_mapping & 0xffffffff);
4883 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4884
4885 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4886 (u64) bp->stats_blk_mapping & 0xffffffff);
4887 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4888 (u64) bp->stats_blk_mapping >> 32);
4889
4890 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4891 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4892
4893 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4894 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4895
4896 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4897 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4898
4899 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4900
4901 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4902
4903 REG_WR(bp, BNX2_HC_COM_TICKS,
4904 (bp->com_ticks_int << 16) | bp->com_ticks);
4905
4906 REG_WR(bp, BNX2_HC_CMD_TICKS,
4907 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4908
4909 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4910 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4911 else
4912 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4913 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4914
4915 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4916 val = BNX2_HC_CONFIG_COLLECT_STATS;
4917 else {
4918 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4919 BNX2_HC_CONFIG_COLLECT_STATS;
4920 }
4921
4922 if (bp->irq_nvecs > 1) {
4923 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4924 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4925
4926 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4927 }
4928
4929 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4930 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4931
4932 REG_WR(bp, BNX2_HC_CONFIG, val);
4933
4934 for (i = 1; i < bp->irq_nvecs; i++) {
4935 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4936 BNX2_HC_SB_CONFIG_1;
4937
4938 REG_WR(bp, base,
4939 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4940 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4941 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4942
4943 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4944 (bp->tx_quick_cons_trip_int << 16) |
4945 bp->tx_quick_cons_trip);
4946
4947 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4948 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4949
4950 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4951 (bp->rx_quick_cons_trip_int << 16) |
4952 bp->rx_quick_cons_trip);
4953
4954 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4955 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4956 }
4957
4958 /* Clear internal stats counters. */
4959 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4960
4961 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4962
4963 /* Initialize the receive filter. */
4964 bnx2_set_rx_mode(bp->dev);
4965
4966 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4967 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4968 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4969 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4970 }
4971 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4972 1, 0);
4973
4974 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4975 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4976
4977 udelay(20);
4978
4979 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4980
4981 return rc;
4982 }
4983
4984 static void
4985 bnx2_clear_ring_states(struct bnx2 *bp)
4986 {
4987 struct bnx2_napi *bnapi;
4988 struct bnx2_tx_ring_info *txr;
4989 struct bnx2_rx_ring_info *rxr;
4990 int i;
4991
4992 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4993 bnapi = &bp->bnx2_napi[i];
4994 txr = &bnapi->tx_ring;
4995 rxr = &bnapi->rx_ring;
4996
4997 txr->tx_cons = 0;
4998 txr->hw_tx_cons = 0;
4999 rxr->rx_prod_bseq = 0;
5000 rxr->rx_prod = 0;
5001 rxr->rx_cons = 0;
5002 rxr->rx_pg_prod = 0;
5003 rxr->rx_pg_cons = 0;
5004 }
5005 }
5006
5007 static void
5008 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5009 {
5010 u32 val, offset0, offset1, offset2, offset3;
5011 u32 cid_addr = GET_CID_ADDR(cid);
5012
5013 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5014 offset0 = BNX2_L2CTX_TYPE_XI;
5015 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5016 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5017 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5018 } else {
5019 offset0 = BNX2_L2CTX_TYPE;
5020 offset1 = BNX2_L2CTX_CMD_TYPE;
5021 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5022 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5023 }
5024 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5025 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5026
5027 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5028 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5029
5030 val = (u64) txr->tx_desc_mapping >> 32;
5031 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5032
5033 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5034 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5035 }
5036
5037 static void
5038 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5039 {
5040 struct tx_bd *txbd;
5041 u32 cid = TX_CID;
5042 struct bnx2_napi *bnapi;
5043 struct bnx2_tx_ring_info *txr;
5044
5045 bnapi = &bp->bnx2_napi[ring_num];
5046 txr = &bnapi->tx_ring;
5047
5048 if (ring_num == 0)
5049 cid = TX_CID;
5050 else
5051 cid = TX_TSS_CID + ring_num - 1;
5052
5053 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5054
5055 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5056
5057 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5058 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5059
5060 txr->tx_prod = 0;
5061 txr->tx_prod_bseq = 0;
5062
5063 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5064 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5065
5066 bnx2_init_tx_context(bp, cid, txr);
5067 }
5068
5069 static void
5070 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5071 int num_rings)
5072 {
5073 int i;
5074 struct rx_bd *rxbd;
5075
5076 for (i = 0; i < num_rings; i++) {
5077 int j;
5078
5079 rxbd = &rx_ring[i][0];
5080 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5081 rxbd->rx_bd_len = buf_size;
5082 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5083 }
5084 if (i == (num_rings - 1))
5085 j = 0;
5086 else
5087 j = i + 1;
5088 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5089 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5090 }
5091 }
5092
5093 static void
5094 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5095 {
5096 int i;
5097 u16 prod, ring_prod;
5098 u32 cid, rx_cid_addr, val;
5099 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5100 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5101
5102 if (ring_num == 0)
5103 cid = RX_CID;
5104 else
5105 cid = RX_RSS_CID + ring_num - 1;
5106
5107 rx_cid_addr = GET_CID_ADDR(cid);
5108
5109 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5110 bp->rx_buf_use_size, bp->rx_max_ring);
5111
5112 bnx2_init_rx_context(bp, cid);
5113
5114 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5115 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5116 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5117 }
5118
5119 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5120 if (bp->rx_pg_ring_size) {
5121 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5122 rxr->rx_pg_desc_mapping,
5123 PAGE_SIZE, bp->rx_max_pg_ring);
5124 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5125 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5126 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5127 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5128
5129 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5130 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5131
5132 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5133 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5134
5135 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5136 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5137 }
5138
5139 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5140 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5141
5142 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5143 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5144
5145 ring_prod = prod = rxr->rx_pg_prod;
5146 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5147 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
5148 break;
5149 prod = NEXT_RX_BD(prod);
5150 ring_prod = RX_PG_RING_IDX(prod);
5151 }
5152 rxr->rx_pg_prod = prod;
5153
5154 ring_prod = prod = rxr->rx_prod;
5155 for (i = 0; i < bp->rx_ring_size; i++) {
5156 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
5157 break;
5158 prod = NEXT_RX_BD(prod);
5159 ring_prod = RX_RING_IDX(prod);
5160 }
5161 rxr->rx_prod = prod;
5162
5163 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5164 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5165 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5166
5167 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5168 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5169
5170 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5171 }
5172
5173 static void
5174 bnx2_init_all_rings(struct bnx2 *bp)
5175 {
5176 int i;
5177 u32 val;
5178
5179 bnx2_clear_ring_states(bp);
5180
5181 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5182 for (i = 0; i < bp->num_tx_rings; i++)
5183 bnx2_init_tx_ring(bp, i);
5184
5185 if (bp->num_tx_rings > 1)
5186 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5187 (TX_TSS_CID << 7));
5188
5189 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5190 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5191
5192 for (i = 0; i < bp->num_rx_rings; i++)
5193 bnx2_init_rx_ring(bp, i);
5194
5195 if (bp->num_rx_rings > 1) {
5196 u32 tbl_32;
5197 u8 *tbl = (u8 *) &tbl_32;
5198
5199 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5200 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5201
5202 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5203 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5204 if ((i % 4) == 3)
5205 bnx2_reg_wr_ind(bp,
5206 BNX2_RXP_SCRATCH_RSS_TBL + i,
5207 cpu_to_be32(tbl_32));
5208 }
5209
5210 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5211 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5212
5213 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5214
5215 }
5216 }
5217
5218 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5219 {
5220 u32 max, num_rings = 1;
5221
5222 while (ring_size > MAX_RX_DESC_CNT) {
5223 ring_size -= MAX_RX_DESC_CNT;
5224 num_rings++;
5225 }
5226 /* round to next power of 2 */
5227 max = max_size;
5228 while ((max & num_rings) == 0)
5229 max >>= 1;
5230
5231 if (num_rings != max)
5232 max <<= 1;
5233
5234 return max;
5235 }
5236
5237 static void
5238 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5239 {
5240 u32 rx_size, rx_space, jumbo_size;
5241
5242 /* 8 for CRC and VLAN */
5243 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5244
5245 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5246 sizeof(struct skb_shared_info);
5247
5248 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5249 bp->rx_pg_ring_size = 0;
5250 bp->rx_max_pg_ring = 0;
5251 bp->rx_max_pg_ring_idx = 0;
5252 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5253 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5254
5255 jumbo_size = size * pages;
5256 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5257 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5258
5259 bp->rx_pg_ring_size = jumbo_size;
5260 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5261 MAX_RX_PG_RINGS);
5262 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5263 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5264 bp->rx_copy_thresh = 0;
5265 }
5266
5267 bp->rx_buf_use_size = rx_size;
5268 /* hw alignment */
5269 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5270 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5271 bp->rx_ring_size = size;
5272 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5273 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5274 }
5275
5276 static void
5277 bnx2_free_tx_skbs(struct bnx2 *bp)
5278 {
5279 int i;
5280
5281 for (i = 0; i < bp->num_tx_rings; i++) {
5282 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5283 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5284 int j;
5285
5286 if (txr->tx_buf_ring == NULL)
5287 continue;
5288
5289 for (j = 0; j < TX_DESC_CNT; ) {
5290 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5291 struct sk_buff *skb = tx_buf->skb;
5292
5293 if (skb == NULL) {
5294 j++;
5295 continue;
5296 }
5297
5298 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5299
5300 tx_buf->skb = NULL;
5301
5302 j += skb_shinfo(skb)->nr_frags + 1;
5303 dev_kfree_skb(skb);
5304 }
5305 }
5306 }
5307
5308 static void
5309 bnx2_free_rx_skbs(struct bnx2 *bp)
5310 {
5311 int i;
5312
5313 for (i = 0; i < bp->num_rx_rings; i++) {
5314 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5315 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5316 int j;
5317
5318 if (rxr->rx_buf_ring == NULL)
5319 return;
5320
5321 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5322 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5323 struct sk_buff *skb = rx_buf->skb;
5324
5325 if (skb == NULL)
5326 continue;
5327
5328 pci_unmap_single(bp->pdev,
5329 pci_unmap_addr(rx_buf, mapping),
5330 bp->rx_buf_use_size,
5331 PCI_DMA_FROMDEVICE);
5332
5333 rx_buf->skb = NULL;
5334
5335 dev_kfree_skb(skb);
5336 }
5337 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5338 bnx2_free_rx_page(bp, rxr, j);
5339 }
5340 }
5341
5342 static void
5343 bnx2_free_skbs(struct bnx2 *bp)
5344 {
5345 bnx2_free_tx_skbs(bp);
5346 bnx2_free_rx_skbs(bp);
5347 }
5348
5349 static int
5350 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5351 {
5352 int rc;
5353
5354 rc = bnx2_reset_chip(bp, reset_code);
5355 bnx2_free_skbs(bp);
5356 if (rc)
5357 return rc;
5358
5359 if ((rc = bnx2_init_chip(bp)) != 0)
5360 return rc;
5361
5362 bnx2_init_all_rings(bp);
5363 return 0;
5364 }
5365
5366 static int
5367 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5368 {
5369 int rc;
5370
5371 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5372 return rc;
5373
5374 spin_lock_bh(&bp->phy_lock);
5375 bnx2_init_phy(bp, reset_phy);
5376 bnx2_set_link(bp);
5377 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5378 bnx2_remote_phy_event(bp);
5379 spin_unlock_bh(&bp->phy_lock);
5380 return 0;
5381 }
5382
5383 static int
5384 bnx2_shutdown_chip(struct bnx2 *bp)
5385 {
5386 u32 reset_code;
5387
5388 if (bp->flags & BNX2_FLAG_NO_WOL)
5389 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5390 else if (bp->wol)
5391 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5392 else
5393 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5394
5395 return bnx2_reset_chip(bp, reset_code);
5396 }
5397
5398 static int
5399 bnx2_test_registers(struct bnx2 *bp)
5400 {
5401 int ret;
5402 int i, is_5709;
5403 static const struct {
5404 u16 offset;
5405 u16 flags;
5406 #define BNX2_FL_NOT_5709 1
5407 u32 rw_mask;
5408 u32 ro_mask;
5409 } reg_tbl[] = {
5410 { 0x006c, 0, 0x00000000, 0x0000003f },
5411 { 0x0090, 0, 0xffffffff, 0x00000000 },
5412 { 0x0094, 0, 0x00000000, 0x00000000 },
5413
5414 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5415 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5416 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5417 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5418 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5419 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5420 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5421 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5422 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5423
5424 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5425 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5426 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5427 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5428 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5429 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5430
5431 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5432 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5433 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5434
5435 { 0x1000, 0, 0x00000000, 0x00000001 },
5436 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5437
5438 { 0x1408, 0, 0x01c00800, 0x00000000 },
5439 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5440 { 0x14a8, 0, 0x00000000, 0x000001ff },
5441 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5442 { 0x14b0, 0, 0x00000002, 0x00000001 },
5443 { 0x14b8, 0, 0x00000000, 0x00000000 },
5444 { 0x14c0, 0, 0x00000000, 0x00000009 },
5445 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5446 { 0x14cc, 0, 0x00000000, 0x00000001 },
5447 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5448
5449 { 0x1800, 0, 0x00000000, 0x00000001 },
5450 { 0x1804, 0, 0x00000000, 0x00000003 },
5451
5452 { 0x2800, 0, 0x00000000, 0x00000001 },
5453 { 0x2804, 0, 0x00000000, 0x00003f01 },
5454 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5455 { 0x2810, 0, 0xffff0000, 0x00000000 },
5456 { 0x2814, 0, 0xffff0000, 0x00000000 },
5457 { 0x2818, 0, 0xffff0000, 0x00000000 },
5458 { 0x281c, 0, 0xffff0000, 0x00000000 },
5459 { 0x2834, 0, 0xffffffff, 0x00000000 },
5460 { 0x2840, 0, 0x00000000, 0xffffffff },
5461 { 0x2844, 0, 0x00000000, 0xffffffff },
5462 { 0x2848, 0, 0xffffffff, 0x00000000 },
5463 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5464
5465 { 0x2c00, 0, 0x00000000, 0x00000011 },
5466 { 0x2c04, 0, 0x00000000, 0x00030007 },
5467
5468 { 0x3c00, 0, 0x00000000, 0x00000001 },
5469 { 0x3c04, 0, 0x00000000, 0x00070000 },
5470 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5471 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5472 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5473 { 0x3c14, 0, 0x00000000, 0xffffffff },
5474 { 0x3c18, 0, 0x00000000, 0xffffffff },
5475 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5476 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5477
5478 { 0x5004, 0, 0x00000000, 0x0000007f },
5479 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5480
5481 { 0x5c00, 0, 0x00000000, 0x00000001 },
5482 { 0x5c04, 0, 0x00000000, 0x0003000f },
5483 { 0x5c08, 0, 0x00000003, 0x00000000 },
5484 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5485 { 0x5c10, 0, 0x00000000, 0xffffffff },
5486 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5487 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5488 { 0x5c88, 0, 0x00000000, 0x00077373 },
5489 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5490
5491 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5492 { 0x680c, 0, 0xffffffff, 0x00000000 },
5493 { 0x6810, 0, 0xffffffff, 0x00000000 },
5494 { 0x6814, 0, 0xffffffff, 0x00000000 },
5495 { 0x6818, 0, 0xffffffff, 0x00000000 },
5496 { 0x681c, 0, 0xffffffff, 0x00000000 },
5497 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5498 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5499 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5500 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5501 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5502 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5503 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5504 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5505 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5506 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5507 { 0x684c, 0, 0xffffffff, 0x00000000 },
5508 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5509 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5510 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5511 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5512 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5513 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5514
5515 { 0xffff, 0, 0x00000000, 0x00000000 },
5516 };
5517
5518 ret = 0;
5519 is_5709 = 0;
5520 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5521 is_5709 = 1;
5522
5523 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5524 u32 offset, rw_mask, ro_mask, save_val, val;
5525 u16 flags = reg_tbl[i].flags;
5526
5527 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5528 continue;
5529
5530 offset = (u32) reg_tbl[i].offset;
5531 rw_mask = reg_tbl[i].rw_mask;
5532 ro_mask = reg_tbl[i].ro_mask;
5533
5534 save_val = readl(bp->regview + offset);
5535
5536 writel(0, bp->regview + offset);
5537
5538 val = readl(bp->regview + offset);
5539 if ((val & rw_mask) != 0) {
5540 goto reg_test_err;
5541 }
5542
5543 if ((val & ro_mask) != (save_val & ro_mask)) {
5544 goto reg_test_err;
5545 }
5546
5547 writel(0xffffffff, bp->regview + offset);
5548
5549 val = readl(bp->regview + offset);
5550 if ((val & rw_mask) != rw_mask) {
5551 goto reg_test_err;
5552 }
5553
5554 if ((val & ro_mask) != (save_val & ro_mask)) {
5555 goto reg_test_err;
5556 }
5557
5558 writel(save_val, bp->regview + offset);
5559 continue;
5560
5561 reg_test_err:
5562 writel(save_val, bp->regview + offset);
5563 ret = -ENODEV;
5564 break;
5565 }
5566 return ret;
5567 }
5568
5569 static int
5570 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5571 {
5572 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5573 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5574 int i;
5575
5576 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5577 u32 offset;
5578
5579 for (offset = 0; offset < size; offset += 4) {
5580
5581 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5582
5583 if (bnx2_reg_rd_ind(bp, start + offset) !=
5584 test_pattern[i]) {
5585 return -ENODEV;
5586 }
5587 }
5588 }
5589 return 0;
5590 }
5591
5592 static int
5593 bnx2_test_memory(struct bnx2 *bp)
5594 {
5595 int ret = 0;
5596 int i;
5597 static struct mem_entry {
5598 u32 offset;
5599 u32 len;
5600 } mem_tbl_5706[] = {
5601 { 0x60000, 0x4000 },
5602 { 0xa0000, 0x3000 },
5603 { 0xe0000, 0x4000 },
5604 { 0x120000, 0x4000 },
5605 { 0x1a0000, 0x4000 },
5606 { 0x160000, 0x4000 },
5607 { 0xffffffff, 0 },
5608 },
5609 mem_tbl_5709[] = {
5610 { 0x60000, 0x4000 },
5611 { 0xa0000, 0x3000 },
5612 { 0xe0000, 0x4000 },
5613 { 0x120000, 0x4000 },
5614 { 0x1a0000, 0x4000 },
5615 { 0xffffffff, 0 },
5616 };
5617 struct mem_entry *mem_tbl;
5618
5619 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5620 mem_tbl = mem_tbl_5709;
5621 else
5622 mem_tbl = mem_tbl_5706;
5623
5624 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5625 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5626 mem_tbl[i].len)) != 0) {
5627 return ret;
5628 }
5629 }
5630
5631 return ret;
5632 }
5633
5634 #define BNX2_MAC_LOOPBACK 0
5635 #define BNX2_PHY_LOOPBACK 1
5636
5637 static int
5638 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5639 {
5640 unsigned int pkt_size, num_pkts, i;
5641 struct sk_buff *skb, *rx_skb;
5642 unsigned char *packet;
5643 u16 rx_start_idx, rx_idx;
5644 dma_addr_t map;
5645 struct tx_bd *txbd;
5646 struct sw_bd *rx_buf;
5647 struct l2_fhdr *rx_hdr;
5648 int ret = -ENODEV;
5649 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5650 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5651 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5652
5653 tx_napi = bnapi;
5654
5655 txr = &tx_napi->tx_ring;
5656 rxr = &bnapi->rx_ring;
5657 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5658 bp->loopback = MAC_LOOPBACK;
5659 bnx2_set_mac_loopback(bp);
5660 }
5661 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5662 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5663 return 0;
5664
5665 bp->loopback = PHY_LOOPBACK;
5666 bnx2_set_phy_loopback(bp);
5667 }
5668 else
5669 return -EINVAL;
5670
5671 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5672 skb = netdev_alloc_skb(bp->dev, pkt_size);
5673 if (!skb)
5674 return -ENOMEM;
5675 packet = skb_put(skb, pkt_size);
5676 memcpy(packet, bp->dev->dev_addr, 6);
5677 memset(packet + 6, 0x0, 8);
5678 for (i = 14; i < pkt_size; i++)
5679 packet[i] = (unsigned char) (i & 0xff);
5680
5681 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
5682 dev_kfree_skb(skb);
5683 return -EIO;
5684 }
5685 map = skb_shinfo(skb)->dma_head;
5686
5687 REG_WR(bp, BNX2_HC_COMMAND,
5688 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5689
5690 REG_RD(bp, BNX2_HC_COMMAND);
5691
5692 udelay(5);
5693 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5694
5695 num_pkts = 0;
5696
5697 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5698
5699 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5700 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5701 txbd->tx_bd_mss_nbytes = pkt_size;
5702 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5703
5704 num_pkts++;
5705 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5706 txr->tx_prod_bseq += pkt_size;
5707
5708 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5709 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5710
5711 udelay(100);
5712
5713 REG_WR(bp, BNX2_HC_COMMAND,
5714 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5715
5716 REG_RD(bp, BNX2_HC_COMMAND);
5717
5718 udelay(5);
5719
5720 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5721 dev_kfree_skb(skb);
5722
5723 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5724 goto loopback_test_done;
5725
5726 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5727 if (rx_idx != rx_start_idx + num_pkts) {
5728 goto loopback_test_done;
5729 }
5730
5731 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5732 rx_skb = rx_buf->skb;
5733
5734 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5735 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5736
5737 pci_dma_sync_single_for_cpu(bp->pdev,
5738 pci_unmap_addr(rx_buf, mapping),
5739 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5740
5741 if (rx_hdr->l2_fhdr_status &
5742 (L2_FHDR_ERRORS_BAD_CRC |
5743 L2_FHDR_ERRORS_PHY_DECODE |
5744 L2_FHDR_ERRORS_ALIGNMENT |
5745 L2_FHDR_ERRORS_TOO_SHORT |
5746 L2_FHDR_ERRORS_GIANT_FRAME)) {
5747
5748 goto loopback_test_done;
5749 }
5750
5751 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5752 goto loopback_test_done;
5753 }
5754
5755 for (i = 14; i < pkt_size; i++) {
5756 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5757 goto loopback_test_done;
5758 }
5759 }
5760
5761 ret = 0;
5762
5763 loopback_test_done:
5764 bp->loopback = 0;
5765 return ret;
5766 }
5767
5768 #define BNX2_MAC_LOOPBACK_FAILED 1
5769 #define BNX2_PHY_LOOPBACK_FAILED 2
5770 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5771 BNX2_PHY_LOOPBACK_FAILED)
5772
5773 static int
5774 bnx2_test_loopback(struct bnx2 *bp)
5775 {
5776 int rc = 0;
5777
5778 if (!netif_running(bp->dev))
5779 return BNX2_LOOPBACK_FAILED;
5780
5781 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5782 spin_lock_bh(&bp->phy_lock);
5783 bnx2_init_phy(bp, 1);
5784 spin_unlock_bh(&bp->phy_lock);
5785 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5786 rc |= BNX2_MAC_LOOPBACK_FAILED;
5787 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5788 rc |= BNX2_PHY_LOOPBACK_FAILED;
5789 return rc;
5790 }
5791
5792 #define NVRAM_SIZE 0x200
5793 #define CRC32_RESIDUAL 0xdebb20e3
5794
5795 static int
5796 bnx2_test_nvram(struct bnx2 *bp)
5797 {
5798 __be32 buf[NVRAM_SIZE / 4];
5799 u8 *data = (u8 *) buf;
5800 int rc = 0;
5801 u32 magic, csum;
5802
5803 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5804 goto test_nvram_done;
5805
5806 magic = be32_to_cpu(buf[0]);
5807 if (magic != 0x669955aa) {
5808 rc = -ENODEV;
5809 goto test_nvram_done;
5810 }
5811
5812 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5813 goto test_nvram_done;
5814
5815 csum = ether_crc_le(0x100, data);
5816 if (csum != CRC32_RESIDUAL) {
5817 rc = -ENODEV;
5818 goto test_nvram_done;
5819 }
5820
5821 csum = ether_crc_le(0x100, data + 0x100);
5822 if (csum != CRC32_RESIDUAL) {
5823 rc = -ENODEV;
5824 }
5825
5826 test_nvram_done:
5827 return rc;
5828 }
5829
5830 static int
5831 bnx2_test_link(struct bnx2 *bp)
5832 {
5833 u32 bmsr;
5834
5835 if (!netif_running(bp->dev))
5836 return -ENODEV;
5837
5838 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5839 if (bp->link_up)
5840 return 0;
5841 return -ENODEV;
5842 }
5843 spin_lock_bh(&bp->phy_lock);
5844 bnx2_enable_bmsr1(bp);
5845 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5846 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5847 bnx2_disable_bmsr1(bp);
5848 spin_unlock_bh(&bp->phy_lock);
5849
5850 if (bmsr & BMSR_LSTATUS) {
5851 return 0;
5852 }
5853 return -ENODEV;
5854 }
5855
5856 static int
5857 bnx2_test_intr(struct bnx2 *bp)
5858 {
5859 int i;
5860 u16 status_idx;
5861
5862 if (!netif_running(bp->dev))
5863 return -ENODEV;
5864
5865 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5866
5867 /* This register is not touched during run-time. */
5868 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5869 REG_RD(bp, BNX2_HC_COMMAND);
5870
5871 for (i = 0; i < 10; i++) {
5872 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5873 status_idx) {
5874
5875 break;
5876 }
5877
5878 msleep_interruptible(10);
5879 }
5880 if (i < 10)
5881 return 0;
5882
5883 return -ENODEV;
5884 }
5885
5886 /* Determining link for parallel detection. */
5887 static int
5888 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5889 {
5890 u32 mode_ctl, an_dbg, exp;
5891
5892 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5893 return 0;
5894
5895 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5896 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5897
5898 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5899 return 0;
5900
5901 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5902 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5903 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5904
5905 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5906 return 0;
5907
5908 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5909 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5910 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5911
5912 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5913 return 0;
5914
5915 return 1;
5916 }
5917
5918 static void
5919 bnx2_5706_serdes_timer(struct bnx2 *bp)
5920 {
5921 int check_link = 1;
5922
5923 spin_lock(&bp->phy_lock);
5924 if (bp->serdes_an_pending) {
5925 bp->serdes_an_pending--;
5926 check_link = 0;
5927 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5928 u32 bmcr;
5929
5930 bp->current_interval = BNX2_TIMER_INTERVAL;
5931
5932 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5933
5934 if (bmcr & BMCR_ANENABLE) {
5935 if (bnx2_5706_serdes_has_link(bp)) {
5936 bmcr &= ~BMCR_ANENABLE;
5937 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5938 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5939 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5940 }
5941 }
5942 }
5943 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5944 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5945 u32 phy2;
5946
5947 bnx2_write_phy(bp, 0x17, 0x0f01);
5948 bnx2_read_phy(bp, 0x15, &phy2);
5949 if (phy2 & 0x20) {
5950 u32 bmcr;
5951
5952 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5953 bmcr |= BMCR_ANENABLE;
5954 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5955
5956 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5957 }
5958 } else
5959 bp->current_interval = BNX2_TIMER_INTERVAL;
5960
5961 if (check_link) {
5962 u32 val;
5963
5964 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5965 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5966 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5967
5968 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5969 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5970 bnx2_5706s_force_link_dn(bp, 1);
5971 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5972 } else
5973 bnx2_set_link(bp);
5974 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
5975 bnx2_set_link(bp);
5976 }
5977 spin_unlock(&bp->phy_lock);
5978 }
5979
5980 static void
5981 bnx2_5708_serdes_timer(struct bnx2 *bp)
5982 {
5983 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5984 return;
5985
5986 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
5987 bp->serdes_an_pending = 0;
5988 return;
5989 }
5990
5991 spin_lock(&bp->phy_lock);
5992 if (bp->serdes_an_pending)
5993 bp->serdes_an_pending--;
5994 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5995 u32 bmcr;
5996
5997 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5998 if (bmcr & BMCR_ANENABLE) {
5999 bnx2_enable_forced_2g5(bp);
6000 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6001 } else {
6002 bnx2_disable_forced_2g5(bp);
6003 bp->serdes_an_pending = 2;
6004 bp->current_interval = BNX2_TIMER_INTERVAL;
6005 }
6006
6007 } else
6008 bp->current_interval = BNX2_TIMER_INTERVAL;
6009
6010 spin_unlock(&bp->phy_lock);
6011 }
6012
6013 static void
6014 bnx2_timer(unsigned long data)
6015 {
6016 struct bnx2 *bp = (struct bnx2 *) data;
6017
6018 if (!netif_running(bp->dev))
6019 return;
6020
6021 if (atomic_read(&bp->intr_sem) != 0)
6022 goto bnx2_restart_timer;
6023
6024 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6025 BNX2_FLAG_USING_MSI)
6026 bnx2_chk_missed_msi(bp);
6027
6028 bnx2_send_heart_beat(bp);
6029
6030 bp->stats_blk->stat_FwRxDrop =
6031 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6032
6033 /* workaround occasional corrupted counters */
6034 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6035 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6036 BNX2_HC_COMMAND_STATS_NOW);
6037
6038 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6039 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6040 bnx2_5706_serdes_timer(bp);
6041 else
6042 bnx2_5708_serdes_timer(bp);
6043 }
6044
6045 bnx2_restart_timer:
6046 mod_timer(&bp->timer, jiffies + bp->current_interval);
6047 }
6048
6049 static int
6050 bnx2_request_irq(struct bnx2 *bp)
6051 {
6052 unsigned long flags;
6053 struct bnx2_irq *irq;
6054 int rc = 0, i;
6055
6056 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6057 flags = 0;
6058 else
6059 flags = IRQF_SHARED;
6060
6061 for (i = 0; i < bp->irq_nvecs; i++) {
6062 irq = &bp->irq_tbl[i];
6063 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6064 &bp->bnx2_napi[i]);
6065 if (rc)
6066 break;
6067 irq->requested = 1;
6068 }
6069 return rc;
6070 }
6071
6072 static void
6073 bnx2_free_irq(struct bnx2 *bp)
6074 {
6075 struct bnx2_irq *irq;
6076 int i;
6077
6078 for (i = 0; i < bp->irq_nvecs; i++) {
6079 irq = &bp->irq_tbl[i];
6080 if (irq->requested)
6081 free_irq(irq->vector, &bp->bnx2_napi[i]);
6082 irq->requested = 0;
6083 }
6084 if (bp->flags & BNX2_FLAG_USING_MSI)
6085 pci_disable_msi(bp->pdev);
6086 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6087 pci_disable_msix(bp->pdev);
6088
6089 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6090 }
6091
6092 static void
6093 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6094 {
6095 int i, rc;
6096 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6097 struct net_device *dev = bp->dev;
6098 const int len = sizeof(bp->irq_tbl[0].name);
6099
6100 bnx2_setup_msix_tbl(bp);
6101 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6102 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6103 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6104
6105 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6106 msix_ent[i].entry = i;
6107 msix_ent[i].vector = 0;
6108 }
6109
6110 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
6111 if (rc != 0)
6112 return;
6113
6114 bp->irq_nvecs = msix_vecs;
6115 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6116 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6117 bp->irq_tbl[i].vector = msix_ent[i].vector;
6118 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6119 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6120 }
6121 }
6122
6123 static void
6124 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6125 {
6126 int cpus = num_online_cpus();
6127 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6128
6129 bp->irq_tbl[0].handler = bnx2_interrupt;
6130 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6131 bp->irq_nvecs = 1;
6132 bp->irq_tbl[0].vector = bp->pdev->irq;
6133
6134 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
6135 bnx2_enable_msix(bp, msix_vecs);
6136
6137 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6138 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6139 if (pci_enable_msi(bp->pdev) == 0) {
6140 bp->flags |= BNX2_FLAG_USING_MSI;
6141 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6142 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6143 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6144 } else
6145 bp->irq_tbl[0].handler = bnx2_msi;
6146
6147 bp->irq_tbl[0].vector = bp->pdev->irq;
6148 }
6149 }
6150
6151 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6152 bp->dev->real_num_tx_queues = bp->num_tx_rings;
6153
6154 bp->num_rx_rings = bp->irq_nvecs;
6155 }
6156
6157 /* Called with rtnl_lock */
6158 static int
6159 bnx2_open(struct net_device *dev)
6160 {
6161 struct bnx2 *bp = netdev_priv(dev);
6162 int rc;
6163
6164 netif_carrier_off(dev);
6165
6166 bnx2_set_power_state(bp, PCI_D0);
6167 bnx2_disable_int(bp);
6168
6169 bnx2_setup_int_mode(bp, disable_msi);
6170 bnx2_napi_enable(bp);
6171 rc = bnx2_alloc_mem(bp);
6172 if (rc)
6173 goto open_err;
6174
6175 rc = bnx2_request_irq(bp);
6176 if (rc)
6177 goto open_err;
6178
6179 rc = bnx2_init_nic(bp, 1);
6180 if (rc)
6181 goto open_err;
6182
6183 mod_timer(&bp->timer, jiffies + bp->current_interval);
6184
6185 atomic_set(&bp->intr_sem, 0);
6186
6187 bnx2_enable_int(bp);
6188
6189 if (bp->flags & BNX2_FLAG_USING_MSI) {
6190 /* Test MSI to make sure it is working
6191 * If MSI test fails, go back to INTx mode
6192 */
6193 if (bnx2_test_intr(bp) != 0) {
6194 printk(KERN_WARNING PFX "%s: No interrupt was generated"
6195 " using MSI, switching to INTx mode. Please"
6196 " report this failure to the PCI maintainer"
6197 " and include system chipset information.\n",
6198 bp->dev->name);
6199
6200 bnx2_disable_int(bp);
6201 bnx2_free_irq(bp);
6202
6203 bnx2_setup_int_mode(bp, 1);
6204
6205 rc = bnx2_init_nic(bp, 0);
6206
6207 if (!rc)
6208 rc = bnx2_request_irq(bp);
6209
6210 if (rc) {
6211 del_timer_sync(&bp->timer);
6212 goto open_err;
6213 }
6214 bnx2_enable_int(bp);
6215 }
6216 }
6217 if (bp->flags & BNX2_FLAG_USING_MSI)
6218 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
6219 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6220 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
6221
6222 netif_tx_start_all_queues(dev);
6223
6224 return 0;
6225
6226 open_err:
6227 bnx2_napi_disable(bp);
6228 bnx2_free_skbs(bp);
6229 bnx2_free_irq(bp);
6230 bnx2_free_mem(bp);
6231 return rc;
6232 }
6233
6234 static void
6235 bnx2_reset_task(struct work_struct *work)
6236 {
6237 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6238
6239 if (!netif_running(bp->dev))
6240 return;
6241
6242 bnx2_netif_stop(bp);
6243
6244 bnx2_init_nic(bp, 1);
6245
6246 atomic_set(&bp->intr_sem, 1);
6247 bnx2_netif_start(bp);
6248 }
6249
6250 static void
6251 bnx2_tx_timeout(struct net_device *dev)
6252 {
6253 struct bnx2 *bp = netdev_priv(dev);
6254
6255 /* This allows the netif to be shutdown gracefully before resetting */
6256 schedule_work(&bp->reset_task);
6257 }
6258
6259 #ifdef BCM_VLAN
6260 /* Called with rtnl_lock */
6261 static void
6262 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6263 {
6264 struct bnx2 *bp = netdev_priv(dev);
6265
6266 if (netif_running(dev))
6267 bnx2_netif_stop(bp);
6268
6269 bp->vlgrp = vlgrp;
6270
6271 if (!netif_running(dev))
6272 return;
6273
6274 bnx2_set_rx_mode(dev);
6275 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6276 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6277
6278 bnx2_netif_start(bp);
6279 }
6280 #endif
6281
6282 /* Called with netif_tx_lock.
6283 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6284 * netif_wake_queue().
6285 */
6286 static netdev_tx_t
6287 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6288 {
6289 struct bnx2 *bp = netdev_priv(dev);
6290 dma_addr_t mapping;
6291 struct tx_bd *txbd;
6292 struct sw_tx_bd *tx_buf;
6293 u32 len, vlan_tag_flags, last_frag, mss;
6294 u16 prod, ring_prod;
6295 int i;
6296 struct bnx2_napi *bnapi;
6297 struct bnx2_tx_ring_info *txr;
6298 struct netdev_queue *txq;
6299 struct skb_shared_info *sp;
6300
6301 /* Determine which tx ring we will be placed on */
6302 i = skb_get_queue_mapping(skb);
6303 bnapi = &bp->bnx2_napi[i];
6304 txr = &bnapi->tx_ring;
6305 txq = netdev_get_tx_queue(dev, i);
6306
6307 if (unlikely(bnx2_tx_avail(bp, txr) <
6308 (skb_shinfo(skb)->nr_frags + 1))) {
6309 netif_tx_stop_queue(txq);
6310 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6311 dev->name);
6312
6313 return NETDEV_TX_BUSY;
6314 }
6315 len = skb_headlen(skb);
6316 prod = txr->tx_prod;
6317 ring_prod = TX_RING_IDX(prod);
6318
6319 vlan_tag_flags = 0;
6320 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6321 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6322 }
6323
6324 #ifdef BCM_VLAN
6325 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6326 vlan_tag_flags |=
6327 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6328 }
6329 #endif
6330 if ((mss = skb_shinfo(skb)->gso_size)) {
6331 u32 tcp_opt_len;
6332 struct iphdr *iph;
6333
6334 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6335
6336 tcp_opt_len = tcp_optlen(skb);
6337
6338 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6339 u32 tcp_off = skb_transport_offset(skb) -
6340 sizeof(struct ipv6hdr) - ETH_HLEN;
6341
6342 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6343 TX_BD_FLAGS_SW_FLAGS;
6344 if (likely(tcp_off == 0))
6345 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6346 else {
6347 tcp_off >>= 3;
6348 vlan_tag_flags |= ((tcp_off & 0x3) <<
6349 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6350 ((tcp_off & 0x10) <<
6351 TX_BD_FLAGS_TCP6_OFF4_SHL);
6352 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6353 }
6354 } else {
6355 iph = ip_hdr(skb);
6356 if (tcp_opt_len || (iph->ihl > 5)) {
6357 vlan_tag_flags |= ((iph->ihl - 5) +
6358 (tcp_opt_len >> 2)) << 8;
6359 }
6360 }
6361 } else
6362 mss = 0;
6363
6364 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
6365 dev_kfree_skb(skb);
6366 return NETDEV_TX_OK;
6367 }
6368
6369 sp = skb_shinfo(skb);
6370 mapping = sp->dma_head;
6371
6372 tx_buf = &txr->tx_buf_ring[ring_prod];
6373 tx_buf->skb = skb;
6374
6375 txbd = &txr->tx_desc_ring[ring_prod];
6376
6377 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6378 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6379 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6380 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6381
6382 last_frag = skb_shinfo(skb)->nr_frags;
6383 tx_buf->nr_frags = last_frag;
6384 tx_buf->is_gso = skb_is_gso(skb);
6385
6386 for (i = 0; i < last_frag; i++) {
6387 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6388
6389 prod = NEXT_TX_BD(prod);
6390 ring_prod = TX_RING_IDX(prod);
6391 txbd = &txr->tx_desc_ring[ring_prod];
6392
6393 len = frag->size;
6394 mapping = sp->dma_maps[i];
6395
6396 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6397 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6398 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6399 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6400
6401 }
6402 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6403
6404 prod = NEXT_TX_BD(prod);
6405 txr->tx_prod_bseq += skb->len;
6406
6407 REG_WR16(bp, txr->tx_bidx_addr, prod);
6408 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6409
6410 mmiowb();
6411
6412 txr->tx_prod = prod;
6413
6414 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6415 netif_tx_stop_queue(txq);
6416 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6417 netif_tx_wake_queue(txq);
6418 }
6419
6420 return NETDEV_TX_OK;
6421 }
6422
6423 /* Called with rtnl_lock */
6424 static int
6425 bnx2_close(struct net_device *dev)
6426 {
6427 struct bnx2 *bp = netdev_priv(dev);
6428
6429 cancel_work_sync(&bp->reset_task);
6430
6431 bnx2_disable_int_sync(bp);
6432 bnx2_napi_disable(bp);
6433 del_timer_sync(&bp->timer);
6434 bnx2_shutdown_chip(bp);
6435 bnx2_free_irq(bp);
6436 bnx2_free_skbs(bp);
6437 bnx2_free_mem(bp);
6438 bp->link_up = 0;
6439 netif_carrier_off(bp->dev);
6440 bnx2_set_power_state(bp, PCI_D3hot);
6441 return 0;
6442 }
6443
6444 #define GET_NET_STATS64(ctr) \
6445 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6446 (unsigned long) (ctr##_lo)
6447
6448 #define GET_NET_STATS32(ctr) \
6449 (ctr##_lo)
6450
6451 #if (BITS_PER_LONG == 64)
6452 #define GET_NET_STATS GET_NET_STATS64
6453 #else
6454 #define GET_NET_STATS GET_NET_STATS32
6455 #endif
6456
6457 static struct net_device_stats *
6458 bnx2_get_stats(struct net_device *dev)
6459 {
6460 struct bnx2 *bp = netdev_priv(dev);
6461 struct statistics_block *stats_blk = bp->stats_blk;
6462 struct net_device_stats *net_stats = &dev->stats;
6463
6464 if (bp->stats_blk == NULL) {
6465 return net_stats;
6466 }
6467 net_stats->rx_packets =
6468 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6469 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6470 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6471
6472 net_stats->tx_packets =
6473 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6474 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6475 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6476
6477 net_stats->rx_bytes =
6478 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6479
6480 net_stats->tx_bytes =
6481 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6482
6483 net_stats->multicast =
6484 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6485
6486 net_stats->collisions =
6487 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6488
6489 net_stats->rx_length_errors =
6490 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6491 stats_blk->stat_EtherStatsOverrsizePkts);
6492
6493 net_stats->rx_over_errors =
6494 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6495 stats_blk->stat_IfInMBUFDiscards);
6496
6497 net_stats->rx_frame_errors =
6498 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6499
6500 net_stats->rx_crc_errors =
6501 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6502
6503 net_stats->rx_errors = net_stats->rx_length_errors +
6504 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6505 net_stats->rx_crc_errors;
6506
6507 net_stats->tx_aborted_errors =
6508 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6509 stats_blk->stat_Dot3StatsLateCollisions);
6510
6511 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6512 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6513 net_stats->tx_carrier_errors = 0;
6514 else {
6515 net_stats->tx_carrier_errors =
6516 (unsigned long)
6517 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6518 }
6519
6520 net_stats->tx_errors =
6521 (unsigned long)
6522 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6523 +
6524 net_stats->tx_aborted_errors +
6525 net_stats->tx_carrier_errors;
6526
6527 net_stats->rx_missed_errors =
6528 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6529 stats_blk->stat_IfInMBUFDiscards + stats_blk->stat_FwRxDrop);
6530
6531 return net_stats;
6532 }
6533
6534 /* All ethtool functions called with rtnl_lock */
6535
6536 static int
6537 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6538 {
6539 struct bnx2 *bp = netdev_priv(dev);
6540 int support_serdes = 0, support_copper = 0;
6541
6542 cmd->supported = SUPPORTED_Autoneg;
6543 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6544 support_serdes = 1;
6545 support_copper = 1;
6546 } else if (bp->phy_port == PORT_FIBRE)
6547 support_serdes = 1;
6548 else
6549 support_copper = 1;
6550
6551 if (support_serdes) {
6552 cmd->supported |= SUPPORTED_1000baseT_Full |
6553 SUPPORTED_FIBRE;
6554 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6555 cmd->supported |= SUPPORTED_2500baseX_Full;
6556
6557 }
6558 if (support_copper) {
6559 cmd->supported |= SUPPORTED_10baseT_Half |
6560 SUPPORTED_10baseT_Full |
6561 SUPPORTED_100baseT_Half |
6562 SUPPORTED_100baseT_Full |
6563 SUPPORTED_1000baseT_Full |
6564 SUPPORTED_TP;
6565
6566 }
6567
6568 spin_lock_bh(&bp->phy_lock);
6569 cmd->port = bp->phy_port;
6570 cmd->advertising = bp->advertising;
6571
6572 if (bp->autoneg & AUTONEG_SPEED) {
6573 cmd->autoneg = AUTONEG_ENABLE;
6574 }
6575 else {
6576 cmd->autoneg = AUTONEG_DISABLE;
6577 }
6578
6579 if (netif_carrier_ok(dev)) {
6580 cmd->speed = bp->line_speed;
6581 cmd->duplex = bp->duplex;
6582 }
6583 else {
6584 cmd->speed = -1;
6585 cmd->duplex = -1;
6586 }
6587 spin_unlock_bh(&bp->phy_lock);
6588
6589 cmd->transceiver = XCVR_INTERNAL;
6590 cmd->phy_address = bp->phy_addr;
6591
6592 return 0;
6593 }
6594
6595 static int
6596 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6597 {
6598 struct bnx2 *bp = netdev_priv(dev);
6599 u8 autoneg = bp->autoneg;
6600 u8 req_duplex = bp->req_duplex;
6601 u16 req_line_speed = bp->req_line_speed;
6602 u32 advertising = bp->advertising;
6603 int err = -EINVAL;
6604
6605 spin_lock_bh(&bp->phy_lock);
6606
6607 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6608 goto err_out_unlock;
6609
6610 if (cmd->port != bp->phy_port &&
6611 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6612 goto err_out_unlock;
6613
6614 /* If device is down, we can store the settings only if the user
6615 * is setting the currently active port.
6616 */
6617 if (!netif_running(dev) && cmd->port != bp->phy_port)
6618 goto err_out_unlock;
6619
6620 if (cmd->autoneg == AUTONEG_ENABLE) {
6621 autoneg |= AUTONEG_SPEED;
6622
6623 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6624
6625 /* allow advertising 1 speed */
6626 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6627 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6628 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6629 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6630
6631 if (cmd->port == PORT_FIBRE)
6632 goto err_out_unlock;
6633
6634 advertising = cmd->advertising;
6635
6636 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6637 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6638 (cmd->port == PORT_TP))
6639 goto err_out_unlock;
6640 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6641 advertising = cmd->advertising;
6642 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6643 goto err_out_unlock;
6644 else {
6645 if (cmd->port == PORT_FIBRE)
6646 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6647 else
6648 advertising = ETHTOOL_ALL_COPPER_SPEED;
6649 }
6650 advertising |= ADVERTISED_Autoneg;
6651 }
6652 else {
6653 if (cmd->port == PORT_FIBRE) {
6654 if ((cmd->speed != SPEED_1000 &&
6655 cmd->speed != SPEED_2500) ||
6656 (cmd->duplex != DUPLEX_FULL))
6657 goto err_out_unlock;
6658
6659 if (cmd->speed == SPEED_2500 &&
6660 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6661 goto err_out_unlock;
6662 }
6663 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6664 goto err_out_unlock;
6665
6666 autoneg &= ~AUTONEG_SPEED;
6667 req_line_speed = cmd->speed;
6668 req_duplex = cmd->duplex;
6669 advertising = 0;
6670 }
6671
6672 bp->autoneg = autoneg;
6673 bp->advertising = advertising;
6674 bp->req_line_speed = req_line_speed;
6675 bp->req_duplex = req_duplex;
6676
6677 err = 0;
6678 /* If device is down, the new settings will be picked up when it is
6679 * brought up.
6680 */
6681 if (netif_running(dev))
6682 err = bnx2_setup_phy(bp, cmd->port);
6683
6684 err_out_unlock:
6685 spin_unlock_bh(&bp->phy_lock);
6686
6687 return err;
6688 }
6689
6690 static void
6691 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6692 {
6693 struct bnx2 *bp = netdev_priv(dev);
6694
6695 strcpy(info->driver, DRV_MODULE_NAME);
6696 strcpy(info->version, DRV_MODULE_VERSION);
6697 strcpy(info->bus_info, pci_name(bp->pdev));
6698 strcpy(info->fw_version, bp->fw_version);
6699 }
6700
6701 #define BNX2_REGDUMP_LEN (32 * 1024)
6702
6703 static int
6704 bnx2_get_regs_len(struct net_device *dev)
6705 {
6706 return BNX2_REGDUMP_LEN;
6707 }
6708
6709 static void
6710 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6711 {
6712 u32 *p = _p, i, offset;
6713 u8 *orig_p = _p;
6714 struct bnx2 *bp = netdev_priv(dev);
6715 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6716 0x0800, 0x0880, 0x0c00, 0x0c10,
6717 0x0c30, 0x0d08, 0x1000, 0x101c,
6718 0x1040, 0x1048, 0x1080, 0x10a4,
6719 0x1400, 0x1490, 0x1498, 0x14f0,
6720 0x1500, 0x155c, 0x1580, 0x15dc,
6721 0x1600, 0x1658, 0x1680, 0x16d8,
6722 0x1800, 0x1820, 0x1840, 0x1854,
6723 0x1880, 0x1894, 0x1900, 0x1984,
6724 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6725 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6726 0x2000, 0x2030, 0x23c0, 0x2400,
6727 0x2800, 0x2820, 0x2830, 0x2850,
6728 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6729 0x3c00, 0x3c94, 0x4000, 0x4010,
6730 0x4080, 0x4090, 0x43c0, 0x4458,
6731 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6732 0x4fc0, 0x5010, 0x53c0, 0x5444,
6733 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6734 0x5fc0, 0x6000, 0x6400, 0x6428,
6735 0x6800, 0x6848, 0x684c, 0x6860,
6736 0x6888, 0x6910, 0x8000 };
6737
6738 regs->version = 0;
6739
6740 memset(p, 0, BNX2_REGDUMP_LEN);
6741
6742 if (!netif_running(bp->dev))
6743 return;
6744
6745 i = 0;
6746 offset = reg_boundaries[0];
6747 p += offset;
6748 while (offset < BNX2_REGDUMP_LEN) {
6749 *p++ = REG_RD(bp, offset);
6750 offset += 4;
6751 if (offset == reg_boundaries[i + 1]) {
6752 offset = reg_boundaries[i + 2];
6753 p = (u32 *) (orig_p + offset);
6754 i += 2;
6755 }
6756 }
6757 }
6758
6759 static void
6760 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6761 {
6762 struct bnx2 *bp = netdev_priv(dev);
6763
6764 if (bp->flags & BNX2_FLAG_NO_WOL) {
6765 wol->supported = 0;
6766 wol->wolopts = 0;
6767 }
6768 else {
6769 wol->supported = WAKE_MAGIC;
6770 if (bp->wol)
6771 wol->wolopts = WAKE_MAGIC;
6772 else
6773 wol->wolopts = 0;
6774 }
6775 memset(&wol->sopass, 0, sizeof(wol->sopass));
6776 }
6777
6778 static int
6779 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6780 {
6781 struct bnx2 *bp = netdev_priv(dev);
6782
6783 if (wol->wolopts & ~WAKE_MAGIC)
6784 return -EINVAL;
6785
6786 if (wol->wolopts & WAKE_MAGIC) {
6787 if (bp->flags & BNX2_FLAG_NO_WOL)
6788 return -EINVAL;
6789
6790 bp->wol = 1;
6791 }
6792 else {
6793 bp->wol = 0;
6794 }
6795 return 0;
6796 }
6797
6798 static int
6799 bnx2_nway_reset(struct net_device *dev)
6800 {
6801 struct bnx2 *bp = netdev_priv(dev);
6802 u32 bmcr;
6803
6804 if (!netif_running(dev))
6805 return -EAGAIN;
6806
6807 if (!(bp->autoneg & AUTONEG_SPEED)) {
6808 return -EINVAL;
6809 }
6810
6811 spin_lock_bh(&bp->phy_lock);
6812
6813 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6814 int rc;
6815
6816 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6817 spin_unlock_bh(&bp->phy_lock);
6818 return rc;
6819 }
6820
6821 /* Force a link down visible on the other side */
6822 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6823 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6824 spin_unlock_bh(&bp->phy_lock);
6825
6826 msleep(20);
6827
6828 spin_lock_bh(&bp->phy_lock);
6829
6830 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6831 bp->serdes_an_pending = 1;
6832 mod_timer(&bp->timer, jiffies + bp->current_interval);
6833 }
6834
6835 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6836 bmcr &= ~BMCR_LOOPBACK;
6837 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6838
6839 spin_unlock_bh(&bp->phy_lock);
6840
6841 return 0;
6842 }
6843
6844 static u32
6845 bnx2_get_link(struct net_device *dev)
6846 {
6847 struct bnx2 *bp = netdev_priv(dev);
6848
6849 return bp->link_up;
6850 }
6851
6852 static int
6853 bnx2_get_eeprom_len(struct net_device *dev)
6854 {
6855 struct bnx2 *bp = netdev_priv(dev);
6856
6857 if (bp->flash_info == NULL)
6858 return 0;
6859
6860 return (int) bp->flash_size;
6861 }
6862
6863 static int
6864 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6865 u8 *eebuf)
6866 {
6867 struct bnx2 *bp = netdev_priv(dev);
6868 int rc;
6869
6870 if (!netif_running(dev))
6871 return -EAGAIN;
6872
6873 /* parameters already validated in ethtool_get_eeprom */
6874
6875 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6876
6877 return rc;
6878 }
6879
6880 static int
6881 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6882 u8 *eebuf)
6883 {
6884 struct bnx2 *bp = netdev_priv(dev);
6885 int rc;
6886
6887 if (!netif_running(dev))
6888 return -EAGAIN;
6889
6890 /* parameters already validated in ethtool_set_eeprom */
6891
6892 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6893
6894 return rc;
6895 }
6896
6897 static int
6898 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6899 {
6900 struct bnx2 *bp = netdev_priv(dev);
6901
6902 memset(coal, 0, sizeof(struct ethtool_coalesce));
6903
6904 coal->rx_coalesce_usecs = bp->rx_ticks;
6905 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6906 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6907 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6908
6909 coal->tx_coalesce_usecs = bp->tx_ticks;
6910 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
6911 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
6912 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
6913
6914 coal->stats_block_coalesce_usecs = bp->stats_ticks;
6915
6916 return 0;
6917 }
6918
6919 static int
6920 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6921 {
6922 struct bnx2 *bp = netdev_priv(dev);
6923
6924 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
6925 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
6926
6927 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
6928 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
6929
6930 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
6931 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
6932
6933 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
6934 if (bp->rx_quick_cons_trip_int > 0xff)
6935 bp->rx_quick_cons_trip_int = 0xff;
6936
6937 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
6938 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
6939
6940 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
6941 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
6942
6943 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
6944 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
6945
6946 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
6947 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
6948 0xff;
6949
6950 bp->stats_ticks = coal->stats_block_coalesce_usecs;
6951 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
6952 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
6953 bp->stats_ticks = USEC_PER_SEC;
6954 }
6955 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
6956 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6957 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6958
6959 if (netif_running(bp->dev)) {
6960 bnx2_netif_stop(bp);
6961 bnx2_init_nic(bp, 0);
6962 bnx2_netif_start(bp);
6963 }
6964
6965 return 0;
6966 }
6967
6968 static void
6969 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6970 {
6971 struct bnx2 *bp = netdev_priv(dev);
6972
6973 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
6974 ering->rx_mini_max_pending = 0;
6975 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
6976
6977 ering->rx_pending = bp->rx_ring_size;
6978 ering->rx_mini_pending = 0;
6979 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
6980
6981 ering->tx_max_pending = MAX_TX_DESC_CNT;
6982 ering->tx_pending = bp->tx_ring_size;
6983 }
6984
6985 static int
6986 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
6987 {
6988 if (netif_running(bp->dev)) {
6989 bnx2_netif_stop(bp);
6990 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6991 bnx2_free_skbs(bp);
6992 bnx2_free_mem(bp);
6993 }
6994
6995 bnx2_set_rx_ring_size(bp, rx);
6996 bp->tx_ring_size = tx;
6997
6998 if (netif_running(bp->dev)) {
6999 int rc;
7000
7001 rc = bnx2_alloc_mem(bp);
7002 if (!rc)
7003 rc = bnx2_init_nic(bp, 0);
7004
7005 if (rc) {
7006 bnx2_napi_enable(bp);
7007 dev_close(bp->dev);
7008 return rc;
7009 }
7010 bnx2_netif_start(bp);
7011 }
7012 return 0;
7013 }
7014
7015 static int
7016 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7017 {
7018 struct bnx2 *bp = netdev_priv(dev);
7019 int rc;
7020
7021 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7022 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7023 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7024
7025 return -EINVAL;
7026 }
7027 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7028 return rc;
7029 }
7030
7031 static void
7032 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7033 {
7034 struct bnx2 *bp = netdev_priv(dev);
7035
7036 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7037 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7038 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7039 }
7040
7041 static int
7042 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7043 {
7044 struct bnx2 *bp = netdev_priv(dev);
7045
7046 bp->req_flow_ctrl = 0;
7047 if (epause->rx_pause)
7048 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7049 if (epause->tx_pause)
7050 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7051
7052 if (epause->autoneg) {
7053 bp->autoneg |= AUTONEG_FLOW_CTRL;
7054 }
7055 else {
7056 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7057 }
7058
7059 if (netif_running(dev)) {
7060 spin_lock_bh(&bp->phy_lock);
7061 bnx2_setup_phy(bp, bp->phy_port);
7062 spin_unlock_bh(&bp->phy_lock);
7063 }
7064
7065 return 0;
7066 }
7067
7068 static u32
7069 bnx2_get_rx_csum(struct net_device *dev)
7070 {
7071 struct bnx2 *bp = netdev_priv(dev);
7072
7073 return bp->rx_csum;
7074 }
7075
7076 static int
7077 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7078 {
7079 struct bnx2 *bp = netdev_priv(dev);
7080
7081 bp->rx_csum = data;
7082 return 0;
7083 }
7084
7085 static int
7086 bnx2_set_tso(struct net_device *dev, u32 data)
7087 {
7088 struct bnx2 *bp = netdev_priv(dev);
7089
7090 if (data) {
7091 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7092 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7093 dev->features |= NETIF_F_TSO6;
7094 } else
7095 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7096 NETIF_F_TSO_ECN);
7097 return 0;
7098 }
7099
7100 static struct {
7101 char string[ETH_GSTRING_LEN];
7102 } bnx2_stats_str_arr[] = {
7103 { "rx_bytes" },
7104 { "rx_error_bytes" },
7105 { "tx_bytes" },
7106 { "tx_error_bytes" },
7107 { "rx_ucast_packets" },
7108 { "rx_mcast_packets" },
7109 { "rx_bcast_packets" },
7110 { "tx_ucast_packets" },
7111 { "tx_mcast_packets" },
7112 { "tx_bcast_packets" },
7113 { "tx_mac_errors" },
7114 { "tx_carrier_errors" },
7115 { "rx_crc_errors" },
7116 { "rx_align_errors" },
7117 { "tx_single_collisions" },
7118 { "tx_multi_collisions" },
7119 { "tx_deferred" },
7120 { "tx_excess_collisions" },
7121 { "tx_late_collisions" },
7122 { "tx_total_collisions" },
7123 { "rx_fragments" },
7124 { "rx_jabbers" },
7125 { "rx_undersize_packets" },
7126 { "rx_oversize_packets" },
7127 { "rx_64_byte_packets" },
7128 { "rx_65_to_127_byte_packets" },
7129 { "rx_128_to_255_byte_packets" },
7130 { "rx_256_to_511_byte_packets" },
7131 { "rx_512_to_1023_byte_packets" },
7132 { "rx_1024_to_1522_byte_packets" },
7133 { "rx_1523_to_9022_byte_packets" },
7134 { "tx_64_byte_packets" },
7135 { "tx_65_to_127_byte_packets" },
7136 { "tx_128_to_255_byte_packets" },
7137 { "tx_256_to_511_byte_packets" },
7138 { "tx_512_to_1023_byte_packets" },
7139 { "tx_1024_to_1522_byte_packets" },
7140 { "tx_1523_to_9022_byte_packets" },
7141 { "rx_xon_frames" },
7142 { "rx_xoff_frames" },
7143 { "tx_xon_frames" },
7144 { "tx_xoff_frames" },
7145 { "rx_mac_ctrl_frames" },
7146 { "rx_filtered_packets" },
7147 { "rx_ftq_discards" },
7148 { "rx_discards" },
7149 { "rx_fw_discards" },
7150 };
7151
7152 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7153 sizeof(bnx2_stats_str_arr[0]))
7154
7155 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7156
7157 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7158 STATS_OFFSET32(stat_IfHCInOctets_hi),
7159 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7160 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7161 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7162 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7163 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7164 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7165 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7166 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7167 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7168 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7169 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7170 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7171 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7172 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7173 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7174 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7175 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7176 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7177 STATS_OFFSET32(stat_EtherStatsCollisions),
7178 STATS_OFFSET32(stat_EtherStatsFragments),
7179 STATS_OFFSET32(stat_EtherStatsJabbers),
7180 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7181 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7182 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7183 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7184 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7185 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7186 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7187 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7188 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7189 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7190 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7191 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7192 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7193 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7194 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7195 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7196 STATS_OFFSET32(stat_XonPauseFramesReceived),
7197 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7198 STATS_OFFSET32(stat_OutXonSent),
7199 STATS_OFFSET32(stat_OutXoffSent),
7200 STATS_OFFSET32(stat_MacControlFramesReceived),
7201 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7202 STATS_OFFSET32(stat_IfInFTQDiscards),
7203 STATS_OFFSET32(stat_IfInMBUFDiscards),
7204 STATS_OFFSET32(stat_FwRxDrop),
7205 };
7206
7207 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7208 * skipped because of errata.
7209 */
7210 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7211 8,0,8,8,8,8,8,8,8,8,
7212 4,0,4,4,4,4,4,4,4,4,
7213 4,4,4,4,4,4,4,4,4,4,
7214 4,4,4,4,4,4,4,4,4,4,
7215 4,4,4,4,4,4,4,
7216 };
7217
7218 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7219 8,0,8,8,8,8,8,8,8,8,
7220 4,4,4,4,4,4,4,4,4,4,
7221 4,4,4,4,4,4,4,4,4,4,
7222 4,4,4,4,4,4,4,4,4,4,
7223 4,4,4,4,4,4,4,
7224 };
7225
7226 #define BNX2_NUM_TESTS 6
7227
7228 static struct {
7229 char string[ETH_GSTRING_LEN];
7230 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7231 { "register_test (offline)" },
7232 { "memory_test (offline)" },
7233 { "loopback_test (offline)" },
7234 { "nvram_test (online)" },
7235 { "interrupt_test (online)" },
7236 { "link_test (online)" },
7237 };
7238
7239 static int
7240 bnx2_get_sset_count(struct net_device *dev, int sset)
7241 {
7242 switch (sset) {
7243 case ETH_SS_TEST:
7244 return BNX2_NUM_TESTS;
7245 case ETH_SS_STATS:
7246 return BNX2_NUM_STATS;
7247 default:
7248 return -EOPNOTSUPP;
7249 }
7250 }
7251
7252 static void
7253 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7254 {
7255 struct bnx2 *bp = netdev_priv(dev);
7256
7257 bnx2_set_power_state(bp, PCI_D0);
7258
7259 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7260 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7261 int i;
7262
7263 bnx2_netif_stop(bp);
7264 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7265 bnx2_free_skbs(bp);
7266
7267 if (bnx2_test_registers(bp) != 0) {
7268 buf[0] = 1;
7269 etest->flags |= ETH_TEST_FL_FAILED;
7270 }
7271 if (bnx2_test_memory(bp) != 0) {
7272 buf[1] = 1;
7273 etest->flags |= ETH_TEST_FL_FAILED;
7274 }
7275 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7276 etest->flags |= ETH_TEST_FL_FAILED;
7277
7278 if (!netif_running(bp->dev))
7279 bnx2_shutdown_chip(bp);
7280 else {
7281 bnx2_init_nic(bp, 1);
7282 bnx2_netif_start(bp);
7283 }
7284
7285 /* wait for link up */
7286 for (i = 0; i < 7; i++) {
7287 if (bp->link_up)
7288 break;
7289 msleep_interruptible(1000);
7290 }
7291 }
7292
7293 if (bnx2_test_nvram(bp) != 0) {
7294 buf[3] = 1;
7295 etest->flags |= ETH_TEST_FL_FAILED;
7296 }
7297 if (bnx2_test_intr(bp) != 0) {
7298 buf[4] = 1;
7299 etest->flags |= ETH_TEST_FL_FAILED;
7300 }
7301
7302 if (bnx2_test_link(bp) != 0) {
7303 buf[5] = 1;
7304 etest->flags |= ETH_TEST_FL_FAILED;
7305
7306 }
7307 if (!netif_running(bp->dev))
7308 bnx2_set_power_state(bp, PCI_D3hot);
7309 }
7310
7311 static void
7312 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7313 {
7314 switch (stringset) {
7315 case ETH_SS_STATS:
7316 memcpy(buf, bnx2_stats_str_arr,
7317 sizeof(bnx2_stats_str_arr));
7318 break;
7319 case ETH_SS_TEST:
7320 memcpy(buf, bnx2_tests_str_arr,
7321 sizeof(bnx2_tests_str_arr));
7322 break;
7323 }
7324 }
7325
7326 static void
7327 bnx2_get_ethtool_stats(struct net_device *dev,
7328 struct ethtool_stats *stats, u64 *buf)
7329 {
7330 struct bnx2 *bp = netdev_priv(dev);
7331 int i;
7332 u32 *hw_stats = (u32 *) bp->stats_blk;
7333 u8 *stats_len_arr = NULL;
7334
7335 if (hw_stats == NULL) {
7336 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7337 return;
7338 }
7339
7340 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7341 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7342 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7343 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7344 stats_len_arr = bnx2_5706_stats_len_arr;
7345 else
7346 stats_len_arr = bnx2_5708_stats_len_arr;
7347
7348 for (i = 0; i < BNX2_NUM_STATS; i++) {
7349 if (stats_len_arr[i] == 0) {
7350 /* skip this counter */
7351 buf[i] = 0;
7352 continue;
7353 }
7354 if (stats_len_arr[i] == 4) {
7355 /* 4-byte counter */
7356 buf[i] = (u64)
7357 *(hw_stats + bnx2_stats_offset_arr[i]);
7358 continue;
7359 }
7360 /* 8-byte counter */
7361 buf[i] = (((u64) *(hw_stats +
7362 bnx2_stats_offset_arr[i])) << 32) +
7363 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
7364 }
7365 }
7366
7367 static int
7368 bnx2_phys_id(struct net_device *dev, u32 data)
7369 {
7370 struct bnx2 *bp = netdev_priv(dev);
7371 int i;
7372 u32 save;
7373
7374 bnx2_set_power_state(bp, PCI_D0);
7375
7376 if (data == 0)
7377 data = 2;
7378
7379 save = REG_RD(bp, BNX2_MISC_CFG);
7380 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7381
7382 for (i = 0; i < (data * 2); i++) {
7383 if ((i % 2) == 0) {
7384 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7385 }
7386 else {
7387 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7388 BNX2_EMAC_LED_1000MB_OVERRIDE |
7389 BNX2_EMAC_LED_100MB_OVERRIDE |
7390 BNX2_EMAC_LED_10MB_OVERRIDE |
7391 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7392 BNX2_EMAC_LED_TRAFFIC);
7393 }
7394 msleep_interruptible(500);
7395 if (signal_pending(current))
7396 break;
7397 }
7398 REG_WR(bp, BNX2_EMAC_LED, 0);
7399 REG_WR(bp, BNX2_MISC_CFG, save);
7400
7401 if (!netif_running(dev))
7402 bnx2_set_power_state(bp, PCI_D3hot);
7403
7404 return 0;
7405 }
7406
7407 static int
7408 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7409 {
7410 struct bnx2 *bp = netdev_priv(dev);
7411
7412 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7413 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7414 else
7415 return (ethtool_op_set_tx_csum(dev, data));
7416 }
7417
7418 static const struct ethtool_ops bnx2_ethtool_ops = {
7419 .get_settings = bnx2_get_settings,
7420 .set_settings = bnx2_set_settings,
7421 .get_drvinfo = bnx2_get_drvinfo,
7422 .get_regs_len = bnx2_get_regs_len,
7423 .get_regs = bnx2_get_regs,
7424 .get_wol = bnx2_get_wol,
7425 .set_wol = bnx2_set_wol,
7426 .nway_reset = bnx2_nway_reset,
7427 .get_link = bnx2_get_link,
7428 .get_eeprom_len = bnx2_get_eeprom_len,
7429 .get_eeprom = bnx2_get_eeprom,
7430 .set_eeprom = bnx2_set_eeprom,
7431 .get_coalesce = bnx2_get_coalesce,
7432 .set_coalesce = bnx2_set_coalesce,
7433 .get_ringparam = bnx2_get_ringparam,
7434 .set_ringparam = bnx2_set_ringparam,
7435 .get_pauseparam = bnx2_get_pauseparam,
7436 .set_pauseparam = bnx2_set_pauseparam,
7437 .get_rx_csum = bnx2_get_rx_csum,
7438 .set_rx_csum = bnx2_set_rx_csum,
7439 .set_tx_csum = bnx2_set_tx_csum,
7440 .set_sg = ethtool_op_set_sg,
7441 .set_tso = bnx2_set_tso,
7442 .self_test = bnx2_self_test,
7443 .get_strings = bnx2_get_strings,
7444 .phys_id = bnx2_phys_id,
7445 .get_ethtool_stats = bnx2_get_ethtool_stats,
7446 .get_sset_count = bnx2_get_sset_count,
7447 };
7448
7449 /* Called with rtnl_lock */
7450 static int
7451 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7452 {
7453 struct mii_ioctl_data *data = if_mii(ifr);
7454 struct bnx2 *bp = netdev_priv(dev);
7455 int err;
7456
7457 switch(cmd) {
7458 case SIOCGMIIPHY:
7459 data->phy_id = bp->phy_addr;
7460
7461 /* fallthru */
7462 case SIOCGMIIREG: {
7463 u32 mii_regval;
7464
7465 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7466 return -EOPNOTSUPP;
7467
7468 if (!netif_running(dev))
7469 return -EAGAIN;
7470
7471 spin_lock_bh(&bp->phy_lock);
7472 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7473 spin_unlock_bh(&bp->phy_lock);
7474
7475 data->val_out = mii_regval;
7476
7477 return err;
7478 }
7479
7480 case SIOCSMIIREG:
7481 if (!capable(CAP_NET_ADMIN))
7482 return -EPERM;
7483
7484 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7485 return -EOPNOTSUPP;
7486
7487 if (!netif_running(dev))
7488 return -EAGAIN;
7489
7490 spin_lock_bh(&bp->phy_lock);
7491 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7492 spin_unlock_bh(&bp->phy_lock);
7493
7494 return err;
7495
7496 default:
7497 /* do nothing */
7498 break;
7499 }
7500 return -EOPNOTSUPP;
7501 }
7502
7503 /* Called with rtnl_lock */
7504 static int
7505 bnx2_change_mac_addr(struct net_device *dev, void *p)
7506 {
7507 struct sockaddr *addr = p;
7508 struct bnx2 *bp = netdev_priv(dev);
7509
7510 if (!is_valid_ether_addr(addr->sa_data))
7511 return -EINVAL;
7512
7513 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7514 if (netif_running(dev))
7515 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7516
7517 return 0;
7518 }
7519
7520 /* Called with rtnl_lock */
7521 static int
7522 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7523 {
7524 struct bnx2 *bp = netdev_priv(dev);
7525
7526 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7527 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7528 return -EINVAL;
7529
7530 dev->mtu = new_mtu;
7531 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7532 }
7533
7534 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7535 static void
7536 poll_bnx2(struct net_device *dev)
7537 {
7538 struct bnx2 *bp = netdev_priv(dev);
7539 int i;
7540
7541 for (i = 0; i < bp->irq_nvecs; i++) {
7542 disable_irq(bp->irq_tbl[i].vector);
7543 bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
7544 enable_irq(bp->irq_tbl[i].vector);
7545 }
7546 }
7547 #endif
7548
7549 static void __devinit
7550 bnx2_get_5709_media(struct bnx2 *bp)
7551 {
7552 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7553 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7554 u32 strap;
7555
7556 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7557 return;
7558 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7559 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7560 return;
7561 }
7562
7563 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7564 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7565 else
7566 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7567
7568 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7569 switch (strap) {
7570 case 0x4:
7571 case 0x5:
7572 case 0x6:
7573 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7574 return;
7575 }
7576 } else {
7577 switch (strap) {
7578 case 0x1:
7579 case 0x2:
7580 case 0x4:
7581 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7582 return;
7583 }
7584 }
7585 }
7586
7587 static void __devinit
7588 bnx2_get_pci_speed(struct bnx2 *bp)
7589 {
7590 u32 reg;
7591
7592 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7593 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7594 u32 clkreg;
7595
7596 bp->flags |= BNX2_FLAG_PCIX;
7597
7598 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7599
7600 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7601 switch (clkreg) {
7602 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7603 bp->bus_speed_mhz = 133;
7604 break;
7605
7606 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7607 bp->bus_speed_mhz = 100;
7608 break;
7609
7610 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7611 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7612 bp->bus_speed_mhz = 66;
7613 break;
7614
7615 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7616 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7617 bp->bus_speed_mhz = 50;
7618 break;
7619
7620 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7621 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7622 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7623 bp->bus_speed_mhz = 33;
7624 break;
7625 }
7626 }
7627 else {
7628 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7629 bp->bus_speed_mhz = 66;
7630 else
7631 bp->bus_speed_mhz = 33;
7632 }
7633
7634 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7635 bp->flags |= BNX2_FLAG_PCI_32BIT;
7636
7637 }
7638
7639 static int __devinit
7640 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7641 {
7642 struct bnx2 *bp;
7643 unsigned long mem_len;
7644 int rc, i, j;
7645 u32 reg;
7646 u64 dma_mask, persist_dma_mask;
7647
7648 SET_NETDEV_DEV(dev, &pdev->dev);
7649 bp = netdev_priv(dev);
7650
7651 bp->flags = 0;
7652 bp->phy_flags = 0;
7653
7654 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7655 rc = pci_enable_device(pdev);
7656 if (rc) {
7657 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7658 goto err_out;
7659 }
7660
7661 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7662 dev_err(&pdev->dev,
7663 "Cannot find PCI device base address, aborting.\n");
7664 rc = -ENODEV;
7665 goto err_out_disable;
7666 }
7667
7668 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7669 if (rc) {
7670 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7671 goto err_out_disable;
7672 }
7673
7674 pci_set_master(pdev);
7675 pci_save_state(pdev);
7676
7677 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7678 if (bp->pm_cap == 0) {
7679 dev_err(&pdev->dev,
7680 "Cannot find power management capability, aborting.\n");
7681 rc = -EIO;
7682 goto err_out_release;
7683 }
7684
7685 bp->dev = dev;
7686 bp->pdev = pdev;
7687
7688 spin_lock_init(&bp->phy_lock);
7689 spin_lock_init(&bp->indirect_lock);
7690 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7691
7692 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7693 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7694 dev->mem_end = dev->mem_start + mem_len;
7695 dev->irq = pdev->irq;
7696
7697 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7698
7699 if (!bp->regview) {
7700 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7701 rc = -ENOMEM;
7702 goto err_out_release;
7703 }
7704
7705 /* Configure byte swap and enable write to the reg_window registers.
7706 * Rely on CPU to do target byte swapping on big endian systems
7707 * The chip's target access swapping will not swap all accesses
7708 */
7709 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7710 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7711 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7712
7713 bnx2_set_power_state(bp, PCI_D0);
7714
7715 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7716
7717 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7718 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7719 dev_err(&pdev->dev,
7720 "Cannot find PCIE capability, aborting.\n");
7721 rc = -EIO;
7722 goto err_out_unmap;
7723 }
7724 bp->flags |= BNX2_FLAG_PCIE;
7725 if (CHIP_REV(bp) == CHIP_REV_Ax)
7726 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7727 } else {
7728 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7729 if (bp->pcix_cap == 0) {
7730 dev_err(&pdev->dev,
7731 "Cannot find PCIX capability, aborting.\n");
7732 rc = -EIO;
7733 goto err_out_unmap;
7734 }
7735 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7736 }
7737
7738 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7739 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7740 bp->flags |= BNX2_FLAG_MSIX_CAP;
7741 }
7742
7743 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7744 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7745 bp->flags |= BNX2_FLAG_MSI_CAP;
7746 }
7747
7748 /* 5708 cannot support DMA addresses > 40-bit. */
7749 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7750 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7751 else
7752 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7753
7754 /* Configure DMA attributes. */
7755 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7756 dev->features |= NETIF_F_HIGHDMA;
7757 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7758 if (rc) {
7759 dev_err(&pdev->dev,
7760 "pci_set_consistent_dma_mask failed, aborting.\n");
7761 goto err_out_unmap;
7762 }
7763 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7764 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7765 goto err_out_unmap;
7766 }
7767
7768 if (!(bp->flags & BNX2_FLAG_PCIE))
7769 bnx2_get_pci_speed(bp);
7770
7771 /* 5706A0 may falsely detect SERR and PERR. */
7772 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7773 reg = REG_RD(bp, PCI_COMMAND);
7774 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7775 REG_WR(bp, PCI_COMMAND, reg);
7776 }
7777 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7778 !(bp->flags & BNX2_FLAG_PCIX)) {
7779
7780 dev_err(&pdev->dev,
7781 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7782 goto err_out_unmap;
7783 }
7784
7785 bnx2_init_nvram(bp);
7786
7787 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7788
7789 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7790 BNX2_SHM_HDR_SIGNATURE_SIG) {
7791 u32 off = PCI_FUNC(pdev->devfn) << 2;
7792
7793 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7794 } else
7795 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7796
7797 /* Get the permanent MAC address. First we need to make sure the
7798 * firmware is actually running.
7799 */
7800 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7801
7802 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7803 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7804 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7805 rc = -ENODEV;
7806 goto err_out_unmap;
7807 }
7808
7809 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7810 for (i = 0, j = 0; i < 3; i++) {
7811 u8 num, k, skip0;
7812
7813 num = (u8) (reg >> (24 - (i * 8)));
7814 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7815 if (num >= k || !skip0 || k == 1) {
7816 bp->fw_version[j++] = (num / k) + '0';
7817 skip0 = 0;
7818 }
7819 }
7820 if (i != 2)
7821 bp->fw_version[j++] = '.';
7822 }
7823 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
7824 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
7825 bp->wol = 1;
7826
7827 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
7828 bp->flags |= BNX2_FLAG_ASF_ENABLE;
7829
7830 for (i = 0; i < 30; i++) {
7831 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7832 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
7833 break;
7834 msleep(10);
7835 }
7836 }
7837 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7838 reg &= BNX2_CONDITION_MFW_RUN_MASK;
7839 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
7840 reg != BNX2_CONDITION_MFW_RUN_NONE) {
7841 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
7842
7843 bp->fw_version[j++] = ' ';
7844 for (i = 0; i < 3; i++) {
7845 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
7846 reg = swab32(reg);
7847 memcpy(&bp->fw_version[j], &reg, 4);
7848 j += 4;
7849 }
7850 }
7851
7852 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
7853 bp->mac_addr[0] = (u8) (reg >> 8);
7854 bp->mac_addr[1] = (u8) reg;
7855
7856 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
7857 bp->mac_addr[2] = (u8) (reg >> 24);
7858 bp->mac_addr[3] = (u8) (reg >> 16);
7859 bp->mac_addr[4] = (u8) (reg >> 8);
7860 bp->mac_addr[5] = (u8) reg;
7861
7862 bp->tx_ring_size = MAX_TX_DESC_CNT;
7863 bnx2_set_rx_ring_size(bp, 255);
7864
7865 bp->rx_csum = 1;
7866
7867 bp->tx_quick_cons_trip_int = 2;
7868 bp->tx_quick_cons_trip = 20;
7869 bp->tx_ticks_int = 18;
7870 bp->tx_ticks = 80;
7871
7872 bp->rx_quick_cons_trip_int = 2;
7873 bp->rx_quick_cons_trip = 12;
7874 bp->rx_ticks_int = 18;
7875 bp->rx_ticks = 18;
7876
7877 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7878
7879 bp->current_interval = BNX2_TIMER_INTERVAL;
7880
7881 bp->phy_addr = 1;
7882
7883 /* Disable WOL support if we are running on a SERDES chip. */
7884 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7885 bnx2_get_5709_media(bp);
7886 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
7887 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7888
7889 bp->phy_port = PORT_TP;
7890 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7891 bp->phy_port = PORT_FIBRE;
7892 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
7893 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
7894 bp->flags |= BNX2_FLAG_NO_WOL;
7895 bp->wol = 0;
7896 }
7897 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
7898 /* Don't do parallel detect on this board because of
7899 * some board problems. The link will not go down
7900 * if we do parallel detect.
7901 */
7902 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
7903 pdev->subsystem_device == 0x310c)
7904 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
7905 } else {
7906 bp->phy_addr = 2;
7907 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
7908 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
7909 }
7910 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
7911 CHIP_NUM(bp) == CHIP_NUM_5708)
7912 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
7913 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
7914 (CHIP_REV(bp) == CHIP_REV_Ax ||
7915 CHIP_REV(bp) == CHIP_REV_Bx))
7916 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
7917
7918 bnx2_init_fw_cap(bp);
7919
7920 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
7921 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
7922 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
7923 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
7924 bp->flags |= BNX2_FLAG_NO_WOL;
7925 bp->wol = 0;
7926 }
7927
7928 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7929 bp->tx_quick_cons_trip_int =
7930 bp->tx_quick_cons_trip;
7931 bp->tx_ticks_int = bp->tx_ticks;
7932 bp->rx_quick_cons_trip_int =
7933 bp->rx_quick_cons_trip;
7934 bp->rx_ticks_int = bp->rx_ticks;
7935 bp->comp_prod_trip_int = bp->comp_prod_trip;
7936 bp->com_ticks_int = bp->com_ticks;
7937 bp->cmd_ticks_int = bp->cmd_ticks;
7938 }
7939
7940 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7941 *
7942 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7943 * with byte enables disabled on the unused 32-bit word. This is legal
7944 * but causes problems on the AMD 8132 which will eventually stop
7945 * responding after a while.
7946 *
7947 * AMD believes this incompatibility is unique to the 5706, and
7948 * prefers to locally disable MSI rather than globally disabling it.
7949 */
7950 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
7951 struct pci_dev *amd_8132 = NULL;
7952
7953 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
7954 PCI_DEVICE_ID_AMD_8132_BRIDGE,
7955 amd_8132))) {
7956
7957 if (amd_8132->revision >= 0x10 &&
7958 amd_8132->revision <= 0x13) {
7959 disable_msi = 1;
7960 pci_dev_put(amd_8132);
7961 break;
7962 }
7963 }
7964 }
7965
7966 bnx2_set_default_link(bp);
7967 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
7968
7969 init_timer(&bp->timer);
7970 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
7971 bp->timer.data = (unsigned long) bp;
7972 bp->timer.function = bnx2_timer;
7973
7974 return 0;
7975
7976 err_out_unmap:
7977 if (bp->regview) {
7978 iounmap(bp->regview);
7979 bp->regview = NULL;
7980 }
7981
7982 err_out_release:
7983 pci_release_regions(pdev);
7984
7985 err_out_disable:
7986 pci_disable_device(pdev);
7987 pci_set_drvdata(pdev, NULL);
7988
7989 err_out:
7990 return rc;
7991 }
7992
7993 static char * __devinit
7994 bnx2_bus_string(struct bnx2 *bp, char *str)
7995 {
7996 char *s = str;
7997
7998 if (bp->flags & BNX2_FLAG_PCIE) {
7999 s += sprintf(s, "PCI Express");
8000 } else {
8001 s += sprintf(s, "PCI");
8002 if (bp->flags & BNX2_FLAG_PCIX)
8003 s += sprintf(s, "-X");
8004 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8005 s += sprintf(s, " 32-bit");
8006 else
8007 s += sprintf(s, " 64-bit");
8008 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8009 }
8010 return str;
8011 }
8012
8013 static void __devinit
8014 bnx2_init_napi(struct bnx2 *bp)
8015 {
8016 int i;
8017
8018 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
8019 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8020 int (*poll)(struct napi_struct *, int);
8021
8022 if (i == 0)
8023 poll = bnx2_poll;
8024 else
8025 poll = bnx2_poll_msix;
8026
8027 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8028 bnapi->bp = bp;
8029 }
8030 }
8031
8032 static const struct net_device_ops bnx2_netdev_ops = {
8033 .ndo_open = bnx2_open,
8034 .ndo_start_xmit = bnx2_start_xmit,
8035 .ndo_stop = bnx2_close,
8036 .ndo_get_stats = bnx2_get_stats,
8037 .ndo_set_rx_mode = bnx2_set_rx_mode,
8038 .ndo_do_ioctl = bnx2_ioctl,
8039 .ndo_validate_addr = eth_validate_addr,
8040 .ndo_set_mac_address = bnx2_change_mac_addr,
8041 .ndo_change_mtu = bnx2_change_mtu,
8042 .ndo_tx_timeout = bnx2_tx_timeout,
8043 #ifdef BCM_VLAN
8044 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
8045 #endif
8046 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
8047 .ndo_poll_controller = poll_bnx2,
8048 #endif
8049 };
8050
8051 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8052 {
8053 #ifdef BCM_VLAN
8054 dev->vlan_features |= flags;
8055 #endif
8056 }
8057
8058 static int __devinit
8059 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8060 {
8061 static int version_printed = 0;
8062 struct net_device *dev = NULL;
8063 struct bnx2 *bp;
8064 int rc;
8065 char str[40];
8066
8067 if (version_printed++ == 0)
8068 printk(KERN_INFO "%s", version);
8069
8070 /* dev zeroed in init_etherdev */
8071 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8072
8073 if (!dev)
8074 return -ENOMEM;
8075
8076 rc = bnx2_init_board(pdev, dev);
8077 if (rc < 0) {
8078 free_netdev(dev);
8079 return rc;
8080 }
8081
8082 dev->netdev_ops = &bnx2_netdev_ops;
8083 dev->watchdog_timeo = TX_TIMEOUT;
8084 dev->ethtool_ops = &bnx2_ethtool_ops;
8085
8086 bp = netdev_priv(dev);
8087 bnx2_init_napi(bp);
8088
8089 pci_set_drvdata(pdev, dev);
8090
8091 rc = bnx2_request_firmware(bp);
8092 if (rc)
8093 goto error;
8094
8095 memcpy(dev->dev_addr, bp->mac_addr, 6);
8096 memcpy(dev->perm_addr, bp->mac_addr, 6);
8097
8098 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
8099 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8100 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8101 dev->features |= NETIF_F_IPV6_CSUM;
8102 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8103 }
8104 #ifdef BCM_VLAN
8105 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8106 #endif
8107 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8108 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8109 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8110 dev->features |= NETIF_F_TSO6;
8111 vlan_features_add(dev, NETIF_F_TSO6);
8112 }
8113 if ((rc = register_netdev(dev))) {
8114 dev_err(&pdev->dev, "Cannot register net device\n");
8115 goto error;
8116 }
8117
8118 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
8119 "IRQ %d, node addr %pM\n",
8120 dev->name,
8121 board_info[ent->driver_data].name,
8122 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8123 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8124 bnx2_bus_string(bp, str),
8125 dev->base_addr,
8126 bp->pdev->irq, dev->dev_addr);
8127
8128 return 0;
8129
8130 error:
8131 if (bp->mips_firmware)
8132 release_firmware(bp->mips_firmware);
8133 if (bp->rv2p_firmware)
8134 release_firmware(bp->rv2p_firmware);
8135
8136 if (bp->regview)
8137 iounmap(bp->regview);
8138 pci_release_regions(pdev);
8139 pci_disable_device(pdev);
8140 pci_set_drvdata(pdev, NULL);
8141 free_netdev(dev);
8142 return rc;
8143 }
8144
8145 static void __devexit
8146 bnx2_remove_one(struct pci_dev *pdev)
8147 {
8148 struct net_device *dev = pci_get_drvdata(pdev);
8149 struct bnx2 *bp = netdev_priv(dev);
8150
8151 flush_scheduled_work();
8152
8153 unregister_netdev(dev);
8154
8155 if (bp->mips_firmware)
8156 release_firmware(bp->mips_firmware);
8157 if (bp->rv2p_firmware)
8158 release_firmware(bp->rv2p_firmware);
8159
8160 if (bp->regview)
8161 iounmap(bp->regview);
8162
8163 free_netdev(dev);
8164 pci_release_regions(pdev);
8165 pci_disable_device(pdev);
8166 pci_set_drvdata(pdev, NULL);
8167 }
8168
8169 static int
8170 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8171 {
8172 struct net_device *dev = pci_get_drvdata(pdev);
8173 struct bnx2 *bp = netdev_priv(dev);
8174
8175 /* PCI register 4 needs to be saved whether netif_running() or not.
8176 * MSI address and data need to be saved if using MSI and
8177 * netif_running().
8178 */
8179 pci_save_state(pdev);
8180 if (!netif_running(dev))
8181 return 0;
8182
8183 flush_scheduled_work();
8184 bnx2_netif_stop(bp);
8185 netif_device_detach(dev);
8186 del_timer_sync(&bp->timer);
8187 bnx2_shutdown_chip(bp);
8188 bnx2_free_skbs(bp);
8189 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8190 return 0;
8191 }
8192
8193 static int
8194 bnx2_resume(struct pci_dev *pdev)
8195 {
8196 struct net_device *dev = pci_get_drvdata(pdev);
8197 struct bnx2 *bp = netdev_priv(dev);
8198
8199 pci_restore_state(pdev);
8200 if (!netif_running(dev))
8201 return 0;
8202
8203 bnx2_set_power_state(bp, PCI_D0);
8204 netif_device_attach(dev);
8205 bnx2_init_nic(bp, 1);
8206 bnx2_netif_start(bp);
8207 return 0;
8208 }
8209
8210 /**
8211 * bnx2_io_error_detected - called when PCI error is detected
8212 * @pdev: Pointer to PCI device
8213 * @state: The current pci connection state
8214 *
8215 * This function is called after a PCI bus error affecting
8216 * this device has been detected.
8217 */
8218 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8219 pci_channel_state_t state)
8220 {
8221 struct net_device *dev = pci_get_drvdata(pdev);
8222 struct bnx2 *bp = netdev_priv(dev);
8223
8224 rtnl_lock();
8225 netif_device_detach(dev);
8226
8227 if (state == pci_channel_io_perm_failure) {
8228 rtnl_unlock();
8229 return PCI_ERS_RESULT_DISCONNECT;
8230 }
8231
8232 if (netif_running(dev)) {
8233 bnx2_netif_stop(bp);
8234 del_timer_sync(&bp->timer);
8235 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8236 }
8237
8238 pci_disable_device(pdev);
8239 rtnl_unlock();
8240
8241 /* Request a slot slot reset. */
8242 return PCI_ERS_RESULT_NEED_RESET;
8243 }
8244
8245 /**
8246 * bnx2_io_slot_reset - called after the pci bus has been reset.
8247 * @pdev: Pointer to PCI device
8248 *
8249 * Restart the card from scratch, as if from a cold-boot.
8250 */
8251 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8252 {
8253 struct net_device *dev = pci_get_drvdata(pdev);
8254 struct bnx2 *bp = netdev_priv(dev);
8255
8256 rtnl_lock();
8257 if (pci_enable_device(pdev)) {
8258 dev_err(&pdev->dev,
8259 "Cannot re-enable PCI device after reset.\n");
8260 rtnl_unlock();
8261 return PCI_ERS_RESULT_DISCONNECT;
8262 }
8263 pci_set_master(pdev);
8264 pci_restore_state(pdev);
8265
8266 if (netif_running(dev)) {
8267 bnx2_set_power_state(bp, PCI_D0);
8268 bnx2_init_nic(bp, 1);
8269 }
8270
8271 rtnl_unlock();
8272 return PCI_ERS_RESULT_RECOVERED;
8273 }
8274
8275 /**
8276 * bnx2_io_resume - called when traffic can start flowing again.
8277 * @pdev: Pointer to PCI device
8278 *
8279 * This callback is called when the error recovery driver tells us that
8280 * its OK to resume normal operation.
8281 */
8282 static void bnx2_io_resume(struct pci_dev *pdev)
8283 {
8284 struct net_device *dev = pci_get_drvdata(pdev);
8285 struct bnx2 *bp = netdev_priv(dev);
8286
8287 rtnl_lock();
8288 if (netif_running(dev))
8289 bnx2_netif_start(bp);
8290
8291 netif_device_attach(dev);
8292 rtnl_unlock();
8293 }
8294
8295 static struct pci_error_handlers bnx2_err_handler = {
8296 .error_detected = bnx2_io_error_detected,
8297 .slot_reset = bnx2_io_slot_reset,
8298 .resume = bnx2_io_resume,
8299 };
8300
8301 static struct pci_driver bnx2_pci_driver = {
8302 .name = DRV_MODULE_NAME,
8303 .id_table = bnx2_pci_tbl,
8304 .probe = bnx2_init_one,
8305 .remove = __devexit_p(bnx2_remove_one),
8306 .suspend = bnx2_suspend,
8307 .resume = bnx2_resume,
8308 .err_handler = &bnx2_err_handler,
8309 };
8310
8311 static int __init bnx2_init(void)
8312 {
8313 return pci_register_driver(&bnx2_pci_driver);
8314 }
8315
8316 static void __exit bnx2_cleanup(void)
8317 {
8318 pci_unregister_driver(&bnx2_pci_driver);
8319 }
8320
8321 module_init(bnx2_init);
8322 module_exit(bnx2_cleanup);
8323
8324
8325