Staging: et131x: config is already zeroed
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2009 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/list.h>
52
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
54 #define BCM_CNIC 1
55 #include "cnic_if.h"
56 #endif
57 #include "bnx2.h"
58 #include "bnx2_fw.h"
59
60 #define DRV_MODULE_NAME "bnx2"
61 #define PFX DRV_MODULE_NAME ": "
62 #define DRV_MODULE_VERSION "2.0.2"
63 #define DRV_MODULE_RELDATE "Aug 21, 2009"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
67 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
68 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
69
70 #define RUN_AT(x) (jiffies + (x))
71
72 /* Time in jiffies before concluding the transmitter is hung. */
73 #define TX_TIMEOUT (5*HZ)
74
75 static char version[] __devinitdata =
76 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
77
78 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
79 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
80 MODULE_LICENSE("GPL");
81 MODULE_VERSION(DRV_MODULE_VERSION);
82 MODULE_FIRMWARE(FW_MIPS_FILE_06);
83 MODULE_FIRMWARE(FW_RV2P_FILE_06);
84 MODULE_FIRMWARE(FW_MIPS_FILE_09);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09);
86 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
87
88 static int disable_msi = 0;
89
90 module_param(disable_msi, int, 0);
91 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
92
93 typedef enum {
94 BCM5706 = 0,
95 NC370T,
96 NC370I,
97 BCM5706S,
98 NC370F,
99 BCM5708,
100 BCM5708S,
101 BCM5709,
102 BCM5709S,
103 BCM5716,
104 BCM5716S,
105 } board_t;
106
107 /* indexed by board_t, above */
108 static struct {
109 char *name;
110 } board_info[] __devinitdata = {
111 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
112 { "HP NC370T Multifunction Gigabit Server Adapter" },
113 { "HP NC370i Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
115 { "HP NC370F Multifunction Gigabit Server Adapter" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
121 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
122 };
123
124 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
125 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
126 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
127 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
128 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
129 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
131 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
132 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
133 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
134 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
135 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
136 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
137 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
138 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
139 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
140 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
141 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
142 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
143 { PCI_VENDOR_ID_BROADCOM, 0x163b,
144 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
145 { PCI_VENDOR_ID_BROADCOM, 0x163c,
146 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
147 { 0, }
148 };
149
150 static const struct flash_spec flash_table[] =
151 {
152 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
153 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
154 /* Slow EEPROM */
155 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
156 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
157 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
158 "EEPROM - slow"},
159 /* Expansion entry 0001 */
160 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
162 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
163 "Entry 0001"},
164 /* Saifun SA25F010 (non-buffered flash) */
165 /* strap, cfg1, & write1 need updates */
166 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
168 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
169 "Non-buffered flash (128kB)"},
170 /* Saifun SA25F020 (non-buffered flash) */
171 /* strap, cfg1, & write1 need updates */
172 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
173 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
174 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
175 "Non-buffered flash (256kB)"},
176 /* Expansion entry 0100 */
177 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
178 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
179 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
180 "Entry 0100"},
181 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
182 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
183 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
184 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
185 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
186 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
187 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
189 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
190 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
191 /* Saifun SA25F005 (non-buffered flash) */
192 /* strap, cfg1, & write1 need updates */
193 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
196 "Non-buffered flash (64kB)"},
197 /* Fast EEPROM */
198 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
199 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
200 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
201 "EEPROM - fast"},
202 /* Expansion entry 1001 */
203 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
204 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
205 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
206 "Entry 1001"},
207 /* Expansion entry 1010 */
208 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
209 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
211 "Entry 1010"},
212 /* ATMEL AT45DB011B (buffered flash) */
213 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
214 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
215 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
216 "Buffered flash (128kB)"},
217 /* Expansion entry 1100 */
218 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
219 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221 "Entry 1100"},
222 /* Expansion entry 1101 */
223 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
224 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 "Entry 1101"},
227 /* Ateml Expansion entry 1110 */
228 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
229 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
231 "Entry 1110 (Atmel)"},
232 /* ATMEL AT45DB021B (buffered flash) */
233 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
234 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
235 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
236 "Buffered flash (256kB)"},
237 };
238
239 static const struct flash_spec flash_5709 = {
240 .flags = BNX2_NV_BUFFERED,
241 .page_bits = BCM5709_FLASH_PAGE_BITS,
242 .page_size = BCM5709_FLASH_PAGE_SIZE,
243 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
244 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
245 .name = "5709 Buffered flash (256kB)",
246 };
247
248 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
249
250 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
251 {
252 u32 diff;
253
254 smp_mb();
255
256 /* The ring uses 256 indices for 255 entries, one of them
257 * needs to be skipped.
258 */
259 diff = txr->tx_prod - txr->tx_cons;
260 if (unlikely(diff >= TX_DESC_CNT)) {
261 diff &= 0xffff;
262 if (diff == TX_DESC_CNT)
263 diff = MAX_TX_DESC_CNT;
264 }
265 return (bp->tx_ring_size - diff);
266 }
267
268 static u32
269 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
270 {
271 u32 val;
272
273 spin_lock_bh(&bp->indirect_lock);
274 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
275 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
276 spin_unlock_bh(&bp->indirect_lock);
277 return val;
278 }
279
280 static void
281 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
282 {
283 spin_lock_bh(&bp->indirect_lock);
284 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
285 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
286 spin_unlock_bh(&bp->indirect_lock);
287 }
288
289 static void
290 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
291 {
292 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
293 }
294
295 static u32
296 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
297 {
298 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
299 }
300
301 static void
302 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
303 {
304 offset += cid_addr;
305 spin_lock_bh(&bp->indirect_lock);
306 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
307 int i;
308
309 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
310 REG_WR(bp, BNX2_CTX_CTX_CTRL,
311 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
312 for (i = 0; i < 5; i++) {
313 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
314 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
315 break;
316 udelay(5);
317 }
318 } else {
319 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
320 REG_WR(bp, BNX2_CTX_DATA, val);
321 }
322 spin_unlock_bh(&bp->indirect_lock);
323 }
324
325 #ifdef BCM_CNIC
326 static int
327 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
328 {
329 struct bnx2 *bp = netdev_priv(dev);
330 struct drv_ctl_io *io = &info->data.io;
331
332 switch (info->cmd) {
333 case DRV_CTL_IO_WR_CMD:
334 bnx2_reg_wr_ind(bp, io->offset, io->data);
335 break;
336 case DRV_CTL_IO_RD_CMD:
337 io->data = bnx2_reg_rd_ind(bp, io->offset);
338 break;
339 case DRV_CTL_CTX_WR_CMD:
340 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
341 break;
342 default:
343 return -EINVAL;
344 }
345 return 0;
346 }
347
348 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
349 {
350 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
351 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
352 int sb_id;
353
354 if (bp->flags & BNX2_FLAG_USING_MSIX) {
355 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
356 bnapi->cnic_present = 0;
357 sb_id = bp->irq_nvecs;
358 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
359 } else {
360 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
361 bnapi->cnic_tag = bnapi->last_status_idx;
362 bnapi->cnic_present = 1;
363 sb_id = 0;
364 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
365 }
366
367 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
368 cp->irq_arr[0].status_blk = (void *)
369 ((unsigned long) bnapi->status_blk.msi +
370 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
371 cp->irq_arr[0].status_blk_num = sb_id;
372 cp->num_irq = 1;
373 }
374
375 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
376 void *data)
377 {
378 struct bnx2 *bp = netdev_priv(dev);
379 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
380
381 if (ops == NULL)
382 return -EINVAL;
383
384 if (cp->drv_state & CNIC_DRV_STATE_REGD)
385 return -EBUSY;
386
387 bp->cnic_data = data;
388 rcu_assign_pointer(bp->cnic_ops, ops);
389
390 cp->num_irq = 0;
391 cp->drv_state = CNIC_DRV_STATE_REGD;
392
393 bnx2_setup_cnic_irq_info(bp);
394
395 return 0;
396 }
397
398 static int bnx2_unregister_cnic(struct net_device *dev)
399 {
400 struct bnx2 *bp = netdev_priv(dev);
401 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
402 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
403
404 mutex_lock(&bp->cnic_lock);
405 cp->drv_state = 0;
406 bnapi->cnic_present = 0;
407 rcu_assign_pointer(bp->cnic_ops, NULL);
408 mutex_unlock(&bp->cnic_lock);
409 synchronize_rcu();
410 return 0;
411 }
412
413 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
414 {
415 struct bnx2 *bp = netdev_priv(dev);
416 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
417
418 cp->drv_owner = THIS_MODULE;
419 cp->chip_id = bp->chip_id;
420 cp->pdev = bp->pdev;
421 cp->io_base = bp->regview;
422 cp->drv_ctl = bnx2_drv_ctl;
423 cp->drv_register_cnic = bnx2_register_cnic;
424 cp->drv_unregister_cnic = bnx2_unregister_cnic;
425
426 return cp;
427 }
428 EXPORT_SYMBOL(bnx2_cnic_probe);
429
430 static void
431 bnx2_cnic_stop(struct bnx2 *bp)
432 {
433 struct cnic_ops *c_ops;
434 struct cnic_ctl_info info;
435
436 mutex_lock(&bp->cnic_lock);
437 c_ops = bp->cnic_ops;
438 if (c_ops) {
439 info.cmd = CNIC_CTL_STOP_CMD;
440 c_ops->cnic_ctl(bp->cnic_data, &info);
441 }
442 mutex_unlock(&bp->cnic_lock);
443 }
444
445 static void
446 bnx2_cnic_start(struct bnx2 *bp)
447 {
448 struct cnic_ops *c_ops;
449 struct cnic_ctl_info info;
450
451 mutex_lock(&bp->cnic_lock);
452 c_ops = bp->cnic_ops;
453 if (c_ops) {
454 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
455 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
456
457 bnapi->cnic_tag = bnapi->last_status_idx;
458 }
459 info.cmd = CNIC_CTL_START_CMD;
460 c_ops->cnic_ctl(bp->cnic_data, &info);
461 }
462 mutex_unlock(&bp->cnic_lock);
463 }
464
465 #else
466
467 static void
468 bnx2_cnic_stop(struct bnx2 *bp)
469 {
470 }
471
472 static void
473 bnx2_cnic_start(struct bnx2 *bp)
474 {
475 }
476
477 #endif
478
479 static int
480 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
481 {
482 u32 val1;
483 int i, ret;
484
485 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
486 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
487 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
488
489 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
490 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
491
492 udelay(40);
493 }
494
495 val1 = (bp->phy_addr << 21) | (reg << 16) |
496 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
497 BNX2_EMAC_MDIO_COMM_START_BUSY;
498 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
499
500 for (i = 0; i < 50; i++) {
501 udelay(10);
502
503 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
504 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
505 udelay(5);
506
507 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
508 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
509
510 break;
511 }
512 }
513
514 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
515 *val = 0x0;
516 ret = -EBUSY;
517 }
518 else {
519 *val = val1;
520 ret = 0;
521 }
522
523 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
524 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
525 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
526
527 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
528 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
529
530 udelay(40);
531 }
532
533 return ret;
534 }
535
536 static int
537 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
538 {
539 u32 val1;
540 int i, ret;
541
542 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
543 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
544 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
545
546 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
547 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
548
549 udelay(40);
550 }
551
552 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
553 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
554 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
555 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
556
557 for (i = 0; i < 50; i++) {
558 udelay(10);
559
560 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
561 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
562 udelay(5);
563 break;
564 }
565 }
566
567 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
568 ret = -EBUSY;
569 else
570 ret = 0;
571
572 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
573 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
574 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
575
576 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
577 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
578
579 udelay(40);
580 }
581
582 return ret;
583 }
584
585 static void
586 bnx2_disable_int(struct bnx2 *bp)
587 {
588 int i;
589 struct bnx2_napi *bnapi;
590
591 for (i = 0; i < bp->irq_nvecs; i++) {
592 bnapi = &bp->bnx2_napi[i];
593 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
594 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
595 }
596 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
597 }
598
599 static void
600 bnx2_enable_int(struct bnx2 *bp)
601 {
602 int i;
603 struct bnx2_napi *bnapi;
604
605 for (i = 0; i < bp->irq_nvecs; i++) {
606 bnapi = &bp->bnx2_napi[i];
607
608 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
609 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
610 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
611 bnapi->last_status_idx);
612
613 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
614 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
615 bnapi->last_status_idx);
616 }
617 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
618 }
619
620 static void
621 bnx2_disable_int_sync(struct bnx2 *bp)
622 {
623 int i;
624
625 atomic_inc(&bp->intr_sem);
626 if (!netif_running(bp->dev))
627 return;
628
629 bnx2_disable_int(bp);
630 for (i = 0; i < bp->irq_nvecs; i++)
631 synchronize_irq(bp->irq_tbl[i].vector);
632 }
633
634 static void
635 bnx2_napi_disable(struct bnx2 *bp)
636 {
637 int i;
638
639 for (i = 0; i < bp->irq_nvecs; i++)
640 napi_disable(&bp->bnx2_napi[i].napi);
641 }
642
643 static void
644 bnx2_napi_enable(struct bnx2 *bp)
645 {
646 int i;
647
648 for (i = 0; i < bp->irq_nvecs; i++)
649 napi_enable(&bp->bnx2_napi[i].napi);
650 }
651
652 static void
653 bnx2_netif_stop(struct bnx2 *bp)
654 {
655 bnx2_cnic_stop(bp);
656 bnx2_disable_int_sync(bp);
657 if (netif_running(bp->dev)) {
658 bnx2_napi_disable(bp);
659 netif_tx_disable(bp->dev);
660 bp->dev->trans_start = jiffies; /* prevent tx timeout */
661 }
662 }
663
664 static void
665 bnx2_netif_start(struct bnx2 *bp)
666 {
667 if (atomic_dec_and_test(&bp->intr_sem)) {
668 if (netif_running(bp->dev)) {
669 netif_tx_wake_all_queues(bp->dev);
670 bnx2_napi_enable(bp);
671 bnx2_enable_int(bp);
672 bnx2_cnic_start(bp);
673 }
674 }
675 }
676
677 static void
678 bnx2_free_tx_mem(struct bnx2 *bp)
679 {
680 int i;
681
682 for (i = 0; i < bp->num_tx_rings; i++) {
683 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
684 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
685
686 if (txr->tx_desc_ring) {
687 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
688 txr->tx_desc_ring,
689 txr->tx_desc_mapping);
690 txr->tx_desc_ring = NULL;
691 }
692 kfree(txr->tx_buf_ring);
693 txr->tx_buf_ring = NULL;
694 }
695 }
696
697 static void
698 bnx2_free_rx_mem(struct bnx2 *bp)
699 {
700 int i;
701
702 for (i = 0; i < bp->num_rx_rings; i++) {
703 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
704 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
705 int j;
706
707 for (j = 0; j < bp->rx_max_ring; j++) {
708 if (rxr->rx_desc_ring[j])
709 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
710 rxr->rx_desc_ring[j],
711 rxr->rx_desc_mapping[j]);
712 rxr->rx_desc_ring[j] = NULL;
713 }
714 vfree(rxr->rx_buf_ring);
715 rxr->rx_buf_ring = NULL;
716
717 for (j = 0; j < bp->rx_max_pg_ring; j++) {
718 if (rxr->rx_pg_desc_ring[j])
719 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
720 rxr->rx_pg_desc_ring[j],
721 rxr->rx_pg_desc_mapping[j]);
722 rxr->rx_pg_desc_ring[j] = NULL;
723 }
724 vfree(rxr->rx_pg_ring);
725 rxr->rx_pg_ring = NULL;
726 }
727 }
728
729 static int
730 bnx2_alloc_tx_mem(struct bnx2 *bp)
731 {
732 int i;
733
734 for (i = 0; i < bp->num_tx_rings; i++) {
735 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
736 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
737
738 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
739 if (txr->tx_buf_ring == NULL)
740 return -ENOMEM;
741
742 txr->tx_desc_ring =
743 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
744 &txr->tx_desc_mapping);
745 if (txr->tx_desc_ring == NULL)
746 return -ENOMEM;
747 }
748 return 0;
749 }
750
751 static int
752 bnx2_alloc_rx_mem(struct bnx2 *bp)
753 {
754 int i;
755
756 for (i = 0; i < bp->num_rx_rings; i++) {
757 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
758 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
759 int j;
760
761 rxr->rx_buf_ring =
762 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
763 if (rxr->rx_buf_ring == NULL)
764 return -ENOMEM;
765
766 memset(rxr->rx_buf_ring, 0,
767 SW_RXBD_RING_SIZE * bp->rx_max_ring);
768
769 for (j = 0; j < bp->rx_max_ring; j++) {
770 rxr->rx_desc_ring[j] =
771 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
772 &rxr->rx_desc_mapping[j]);
773 if (rxr->rx_desc_ring[j] == NULL)
774 return -ENOMEM;
775
776 }
777
778 if (bp->rx_pg_ring_size) {
779 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
780 bp->rx_max_pg_ring);
781 if (rxr->rx_pg_ring == NULL)
782 return -ENOMEM;
783
784 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
785 bp->rx_max_pg_ring);
786 }
787
788 for (j = 0; j < bp->rx_max_pg_ring; j++) {
789 rxr->rx_pg_desc_ring[j] =
790 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
791 &rxr->rx_pg_desc_mapping[j]);
792 if (rxr->rx_pg_desc_ring[j] == NULL)
793 return -ENOMEM;
794
795 }
796 }
797 return 0;
798 }
799
800 static void
801 bnx2_free_mem(struct bnx2 *bp)
802 {
803 int i;
804 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
805
806 bnx2_free_tx_mem(bp);
807 bnx2_free_rx_mem(bp);
808
809 for (i = 0; i < bp->ctx_pages; i++) {
810 if (bp->ctx_blk[i]) {
811 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
812 bp->ctx_blk[i],
813 bp->ctx_blk_mapping[i]);
814 bp->ctx_blk[i] = NULL;
815 }
816 }
817 if (bnapi->status_blk.msi) {
818 pci_free_consistent(bp->pdev, bp->status_stats_size,
819 bnapi->status_blk.msi,
820 bp->status_blk_mapping);
821 bnapi->status_blk.msi = NULL;
822 bp->stats_blk = NULL;
823 }
824 }
825
826 static int
827 bnx2_alloc_mem(struct bnx2 *bp)
828 {
829 int i, status_blk_size, err;
830 struct bnx2_napi *bnapi;
831 void *status_blk;
832
833 /* Combine status and statistics blocks into one allocation. */
834 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
835 if (bp->flags & BNX2_FLAG_MSIX_CAP)
836 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
837 BNX2_SBLK_MSIX_ALIGN_SIZE);
838 bp->status_stats_size = status_blk_size +
839 sizeof(struct statistics_block);
840
841 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
842 &bp->status_blk_mapping);
843 if (status_blk == NULL)
844 goto alloc_mem_err;
845
846 memset(status_blk, 0, bp->status_stats_size);
847
848 bnapi = &bp->bnx2_napi[0];
849 bnapi->status_blk.msi = status_blk;
850 bnapi->hw_tx_cons_ptr =
851 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
852 bnapi->hw_rx_cons_ptr =
853 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
854 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
855 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
856 struct status_block_msix *sblk;
857
858 bnapi = &bp->bnx2_napi[i];
859
860 sblk = (void *) (status_blk +
861 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
862 bnapi->status_blk.msix = sblk;
863 bnapi->hw_tx_cons_ptr =
864 &sblk->status_tx_quick_consumer_index;
865 bnapi->hw_rx_cons_ptr =
866 &sblk->status_rx_quick_consumer_index;
867 bnapi->int_num = i << 24;
868 }
869 }
870
871 bp->stats_blk = status_blk + status_blk_size;
872
873 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
874
875 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
876 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
877 if (bp->ctx_pages == 0)
878 bp->ctx_pages = 1;
879 for (i = 0; i < bp->ctx_pages; i++) {
880 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
881 BCM_PAGE_SIZE,
882 &bp->ctx_blk_mapping[i]);
883 if (bp->ctx_blk[i] == NULL)
884 goto alloc_mem_err;
885 }
886 }
887
888 err = bnx2_alloc_rx_mem(bp);
889 if (err)
890 goto alloc_mem_err;
891
892 err = bnx2_alloc_tx_mem(bp);
893 if (err)
894 goto alloc_mem_err;
895
896 return 0;
897
898 alloc_mem_err:
899 bnx2_free_mem(bp);
900 return -ENOMEM;
901 }
902
903 static void
904 bnx2_report_fw_link(struct bnx2 *bp)
905 {
906 u32 fw_link_status = 0;
907
908 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
909 return;
910
911 if (bp->link_up) {
912 u32 bmsr;
913
914 switch (bp->line_speed) {
915 case SPEED_10:
916 if (bp->duplex == DUPLEX_HALF)
917 fw_link_status = BNX2_LINK_STATUS_10HALF;
918 else
919 fw_link_status = BNX2_LINK_STATUS_10FULL;
920 break;
921 case SPEED_100:
922 if (bp->duplex == DUPLEX_HALF)
923 fw_link_status = BNX2_LINK_STATUS_100HALF;
924 else
925 fw_link_status = BNX2_LINK_STATUS_100FULL;
926 break;
927 case SPEED_1000:
928 if (bp->duplex == DUPLEX_HALF)
929 fw_link_status = BNX2_LINK_STATUS_1000HALF;
930 else
931 fw_link_status = BNX2_LINK_STATUS_1000FULL;
932 break;
933 case SPEED_2500:
934 if (bp->duplex == DUPLEX_HALF)
935 fw_link_status = BNX2_LINK_STATUS_2500HALF;
936 else
937 fw_link_status = BNX2_LINK_STATUS_2500FULL;
938 break;
939 }
940
941 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
942
943 if (bp->autoneg) {
944 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
945
946 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
947 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
948
949 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
950 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
951 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
952 else
953 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
954 }
955 }
956 else
957 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
958
959 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
960 }
961
962 static char *
963 bnx2_xceiver_str(struct bnx2 *bp)
964 {
965 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
966 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
967 "Copper"));
968 }
969
970 static void
971 bnx2_report_link(struct bnx2 *bp)
972 {
973 if (bp->link_up) {
974 netif_carrier_on(bp->dev);
975 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
976 bnx2_xceiver_str(bp));
977
978 printk("%d Mbps ", bp->line_speed);
979
980 if (bp->duplex == DUPLEX_FULL)
981 printk("full duplex");
982 else
983 printk("half duplex");
984
985 if (bp->flow_ctrl) {
986 if (bp->flow_ctrl & FLOW_CTRL_RX) {
987 printk(", receive ");
988 if (bp->flow_ctrl & FLOW_CTRL_TX)
989 printk("& transmit ");
990 }
991 else {
992 printk(", transmit ");
993 }
994 printk("flow control ON");
995 }
996 printk("\n");
997 }
998 else {
999 netif_carrier_off(bp->dev);
1000 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
1001 bnx2_xceiver_str(bp));
1002 }
1003
1004 bnx2_report_fw_link(bp);
1005 }
1006
1007 static void
1008 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1009 {
1010 u32 local_adv, remote_adv;
1011
1012 bp->flow_ctrl = 0;
1013 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1014 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1015
1016 if (bp->duplex == DUPLEX_FULL) {
1017 bp->flow_ctrl = bp->req_flow_ctrl;
1018 }
1019 return;
1020 }
1021
1022 if (bp->duplex != DUPLEX_FULL) {
1023 return;
1024 }
1025
1026 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1027 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1028 u32 val;
1029
1030 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1031 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1032 bp->flow_ctrl |= FLOW_CTRL_TX;
1033 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1034 bp->flow_ctrl |= FLOW_CTRL_RX;
1035 return;
1036 }
1037
1038 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1039 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1040
1041 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1042 u32 new_local_adv = 0;
1043 u32 new_remote_adv = 0;
1044
1045 if (local_adv & ADVERTISE_1000XPAUSE)
1046 new_local_adv |= ADVERTISE_PAUSE_CAP;
1047 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1048 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1049 if (remote_adv & ADVERTISE_1000XPAUSE)
1050 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1051 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1052 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1053
1054 local_adv = new_local_adv;
1055 remote_adv = new_remote_adv;
1056 }
1057
1058 /* See Table 28B-3 of 802.3ab-1999 spec. */
1059 if (local_adv & ADVERTISE_PAUSE_CAP) {
1060 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1061 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1062 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1063 }
1064 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1065 bp->flow_ctrl = FLOW_CTRL_RX;
1066 }
1067 }
1068 else {
1069 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1070 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1071 }
1072 }
1073 }
1074 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1075 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1076 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1077
1078 bp->flow_ctrl = FLOW_CTRL_TX;
1079 }
1080 }
1081 }
1082
1083 static int
1084 bnx2_5709s_linkup(struct bnx2 *bp)
1085 {
1086 u32 val, speed;
1087
1088 bp->link_up = 1;
1089
1090 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1091 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1092 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1093
1094 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1095 bp->line_speed = bp->req_line_speed;
1096 bp->duplex = bp->req_duplex;
1097 return 0;
1098 }
1099 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1100 switch (speed) {
1101 case MII_BNX2_GP_TOP_AN_SPEED_10:
1102 bp->line_speed = SPEED_10;
1103 break;
1104 case MII_BNX2_GP_TOP_AN_SPEED_100:
1105 bp->line_speed = SPEED_100;
1106 break;
1107 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1108 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1109 bp->line_speed = SPEED_1000;
1110 break;
1111 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1112 bp->line_speed = SPEED_2500;
1113 break;
1114 }
1115 if (val & MII_BNX2_GP_TOP_AN_FD)
1116 bp->duplex = DUPLEX_FULL;
1117 else
1118 bp->duplex = DUPLEX_HALF;
1119 return 0;
1120 }
1121
1122 static int
1123 bnx2_5708s_linkup(struct bnx2 *bp)
1124 {
1125 u32 val;
1126
1127 bp->link_up = 1;
1128 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1129 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1130 case BCM5708S_1000X_STAT1_SPEED_10:
1131 bp->line_speed = SPEED_10;
1132 break;
1133 case BCM5708S_1000X_STAT1_SPEED_100:
1134 bp->line_speed = SPEED_100;
1135 break;
1136 case BCM5708S_1000X_STAT1_SPEED_1G:
1137 bp->line_speed = SPEED_1000;
1138 break;
1139 case BCM5708S_1000X_STAT1_SPEED_2G5:
1140 bp->line_speed = SPEED_2500;
1141 break;
1142 }
1143 if (val & BCM5708S_1000X_STAT1_FD)
1144 bp->duplex = DUPLEX_FULL;
1145 else
1146 bp->duplex = DUPLEX_HALF;
1147
1148 return 0;
1149 }
1150
1151 static int
1152 bnx2_5706s_linkup(struct bnx2 *bp)
1153 {
1154 u32 bmcr, local_adv, remote_adv, common;
1155
1156 bp->link_up = 1;
1157 bp->line_speed = SPEED_1000;
1158
1159 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1160 if (bmcr & BMCR_FULLDPLX) {
1161 bp->duplex = DUPLEX_FULL;
1162 }
1163 else {
1164 bp->duplex = DUPLEX_HALF;
1165 }
1166
1167 if (!(bmcr & BMCR_ANENABLE)) {
1168 return 0;
1169 }
1170
1171 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1172 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1173
1174 common = local_adv & remote_adv;
1175 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1176
1177 if (common & ADVERTISE_1000XFULL) {
1178 bp->duplex = DUPLEX_FULL;
1179 }
1180 else {
1181 bp->duplex = DUPLEX_HALF;
1182 }
1183 }
1184
1185 return 0;
1186 }
1187
1188 static int
1189 bnx2_copper_linkup(struct bnx2 *bp)
1190 {
1191 u32 bmcr;
1192
1193 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1194 if (bmcr & BMCR_ANENABLE) {
1195 u32 local_adv, remote_adv, common;
1196
1197 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1198 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1199
1200 common = local_adv & (remote_adv >> 2);
1201 if (common & ADVERTISE_1000FULL) {
1202 bp->line_speed = SPEED_1000;
1203 bp->duplex = DUPLEX_FULL;
1204 }
1205 else if (common & ADVERTISE_1000HALF) {
1206 bp->line_speed = SPEED_1000;
1207 bp->duplex = DUPLEX_HALF;
1208 }
1209 else {
1210 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1211 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1212
1213 common = local_adv & remote_adv;
1214 if (common & ADVERTISE_100FULL) {
1215 bp->line_speed = SPEED_100;
1216 bp->duplex = DUPLEX_FULL;
1217 }
1218 else if (common & ADVERTISE_100HALF) {
1219 bp->line_speed = SPEED_100;
1220 bp->duplex = DUPLEX_HALF;
1221 }
1222 else if (common & ADVERTISE_10FULL) {
1223 bp->line_speed = SPEED_10;
1224 bp->duplex = DUPLEX_FULL;
1225 }
1226 else if (common & ADVERTISE_10HALF) {
1227 bp->line_speed = SPEED_10;
1228 bp->duplex = DUPLEX_HALF;
1229 }
1230 else {
1231 bp->line_speed = 0;
1232 bp->link_up = 0;
1233 }
1234 }
1235 }
1236 else {
1237 if (bmcr & BMCR_SPEED100) {
1238 bp->line_speed = SPEED_100;
1239 }
1240 else {
1241 bp->line_speed = SPEED_10;
1242 }
1243 if (bmcr & BMCR_FULLDPLX) {
1244 bp->duplex = DUPLEX_FULL;
1245 }
1246 else {
1247 bp->duplex = DUPLEX_HALF;
1248 }
1249 }
1250
1251 return 0;
1252 }
1253
1254 static void
1255 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1256 {
1257 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1258
1259 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1260 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1261 val |= 0x02 << 8;
1262
1263 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1264 u32 lo_water, hi_water;
1265
1266 if (bp->flow_ctrl & FLOW_CTRL_TX)
1267 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1268 else
1269 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1270 if (lo_water >= bp->rx_ring_size)
1271 lo_water = 0;
1272
1273 hi_water = bp->rx_ring_size / 4;
1274
1275 if (hi_water <= lo_water)
1276 lo_water = 0;
1277
1278 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1279 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1280
1281 if (hi_water > 0xf)
1282 hi_water = 0xf;
1283 else if (hi_water == 0)
1284 lo_water = 0;
1285 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1286 }
1287 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1288 }
1289
1290 static void
1291 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1292 {
1293 int i;
1294 u32 cid;
1295
1296 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1297 if (i == 1)
1298 cid = RX_RSS_CID;
1299 bnx2_init_rx_context(bp, cid);
1300 }
1301 }
1302
1303 static void
1304 bnx2_set_mac_link(struct bnx2 *bp)
1305 {
1306 u32 val;
1307
1308 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1309 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1310 (bp->duplex == DUPLEX_HALF)) {
1311 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1312 }
1313
1314 /* Configure the EMAC mode register. */
1315 val = REG_RD(bp, BNX2_EMAC_MODE);
1316
1317 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1318 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1319 BNX2_EMAC_MODE_25G_MODE);
1320
1321 if (bp->link_up) {
1322 switch (bp->line_speed) {
1323 case SPEED_10:
1324 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1325 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1326 break;
1327 }
1328 /* fall through */
1329 case SPEED_100:
1330 val |= BNX2_EMAC_MODE_PORT_MII;
1331 break;
1332 case SPEED_2500:
1333 val |= BNX2_EMAC_MODE_25G_MODE;
1334 /* fall through */
1335 case SPEED_1000:
1336 val |= BNX2_EMAC_MODE_PORT_GMII;
1337 break;
1338 }
1339 }
1340 else {
1341 val |= BNX2_EMAC_MODE_PORT_GMII;
1342 }
1343
1344 /* Set the MAC to operate in the appropriate duplex mode. */
1345 if (bp->duplex == DUPLEX_HALF)
1346 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1347 REG_WR(bp, BNX2_EMAC_MODE, val);
1348
1349 /* Enable/disable rx PAUSE. */
1350 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1351
1352 if (bp->flow_ctrl & FLOW_CTRL_RX)
1353 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1354 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1355
1356 /* Enable/disable tx PAUSE. */
1357 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1358 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1359
1360 if (bp->flow_ctrl & FLOW_CTRL_TX)
1361 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1362 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1363
1364 /* Acknowledge the interrupt. */
1365 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1366
1367 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1368 bnx2_init_all_rx_contexts(bp);
1369 }
1370
1371 static void
1372 bnx2_enable_bmsr1(struct bnx2 *bp)
1373 {
1374 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1375 (CHIP_NUM(bp) == CHIP_NUM_5709))
1376 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1377 MII_BNX2_BLK_ADDR_GP_STATUS);
1378 }
1379
1380 static void
1381 bnx2_disable_bmsr1(struct bnx2 *bp)
1382 {
1383 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1384 (CHIP_NUM(bp) == CHIP_NUM_5709))
1385 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1386 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1387 }
1388
1389 static int
1390 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1391 {
1392 u32 up1;
1393 int ret = 1;
1394
1395 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1396 return 0;
1397
1398 if (bp->autoneg & AUTONEG_SPEED)
1399 bp->advertising |= ADVERTISED_2500baseX_Full;
1400
1401 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1402 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1403
1404 bnx2_read_phy(bp, bp->mii_up1, &up1);
1405 if (!(up1 & BCM5708S_UP1_2G5)) {
1406 up1 |= BCM5708S_UP1_2G5;
1407 bnx2_write_phy(bp, bp->mii_up1, up1);
1408 ret = 0;
1409 }
1410
1411 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1412 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1413 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1414
1415 return ret;
1416 }
1417
1418 static int
1419 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1420 {
1421 u32 up1;
1422 int ret = 0;
1423
1424 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1425 return 0;
1426
1427 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1428 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1429
1430 bnx2_read_phy(bp, bp->mii_up1, &up1);
1431 if (up1 & BCM5708S_UP1_2G5) {
1432 up1 &= ~BCM5708S_UP1_2G5;
1433 bnx2_write_phy(bp, bp->mii_up1, up1);
1434 ret = 1;
1435 }
1436
1437 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1438 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1439 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1440
1441 return ret;
1442 }
1443
1444 static void
1445 bnx2_enable_forced_2g5(struct bnx2 *bp)
1446 {
1447 u32 bmcr;
1448
1449 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1450 return;
1451
1452 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1453 u32 val;
1454
1455 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1456 MII_BNX2_BLK_ADDR_SERDES_DIG);
1457 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1458 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1459 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1460 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1461
1462 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1463 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1464 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1465
1466 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1467 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1468 bmcr |= BCM5708S_BMCR_FORCE_2500;
1469 }
1470
1471 if (bp->autoneg & AUTONEG_SPEED) {
1472 bmcr &= ~BMCR_ANENABLE;
1473 if (bp->req_duplex == DUPLEX_FULL)
1474 bmcr |= BMCR_FULLDPLX;
1475 }
1476 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1477 }
1478
1479 static void
1480 bnx2_disable_forced_2g5(struct bnx2 *bp)
1481 {
1482 u32 bmcr;
1483
1484 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1485 return;
1486
1487 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1488 u32 val;
1489
1490 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1491 MII_BNX2_BLK_ADDR_SERDES_DIG);
1492 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1493 val &= ~MII_BNX2_SD_MISC1_FORCE;
1494 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1495
1496 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1497 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1498 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1499
1500 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1501 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1502 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1503 }
1504
1505 if (bp->autoneg & AUTONEG_SPEED)
1506 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1507 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1508 }
1509
1510 static void
1511 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1512 {
1513 u32 val;
1514
1515 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1516 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1517 if (start)
1518 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1519 else
1520 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1521 }
1522
1523 static int
1524 bnx2_set_link(struct bnx2 *bp)
1525 {
1526 u32 bmsr;
1527 u8 link_up;
1528
1529 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1530 bp->link_up = 1;
1531 return 0;
1532 }
1533
1534 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1535 return 0;
1536
1537 link_up = bp->link_up;
1538
1539 bnx2_enable_bmsr1(bp);
1540 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1541 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1542 bnx2_disable_bmsr1(bp);
1543
1544 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1545 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1546 u32 val, an_dbg;
1547
1548 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1549 bnx2_5706s_force_link_dn(bp, 0);
1550 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1551 }
1552 val = REG_RD(bp, BNX2_EMAC_STATUS);
1553
1554 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1555 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1556 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1557
1558 if ((val & BNX2_EMAC_STATUS_LINK) &&
1559 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1560 bmsr |= BMSR_LSTATUS;
1561 else
1562 bmsr &= ~BMSR_LSTATUS;
1563 }
1564
1565 if (bmsr & BMSR_LSTATUS) {
1566 bp->link_up = 1;
1567
1568 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1569 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1570 bnx2_5706s_linkup(bp);
1571 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1572 bnx2_5708s_linkup(bp);
1573 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1574 bnx2_5709s_linkup(bp);
1575 }
1576 else {
1577 bnx2_copper_linkup(bp);
1578 }
1579 bnx2_resolve_flow_ctrl(bp);
1580 }
1581 else {
1582 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1583 (bp->autoneg & AUTONEG_SPEED))
1584 bnx2_disable_forced_2g5(bp);
1585
1586 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1587 u32 bmcr;
1588
1589 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1590 bmcr |= BMCR_ANENABLE;
1591 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1592
1593 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1594 }
1595 bp->link_up = 0;
1596 }
1597
1598 if (bp->link_up != link_up) {
1599 bnx2_report_link(bp);
1600 }
1601
1602 bnx2_set_mac_link(bp);
1603
1604 return 0;
1605 }
1606
1607 static int
1608 bnx2_reset_phy(struct bnx2 *bp)
1609 {
1610 int i;
1611 u32 reg;
1612
1613 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1614
1615 #define PHY_RESET_MAX_WAIT 100
1616 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1617 udelay(10);
1618
1619 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1620 if (!(reg & BMCR_RESET)) {
1621 udelay(20);
1622 break;
1623 }
1624 }
1625 if (i == PHY_RESET_MAX_WAIT) {
1626 return -EBUSY;
1627 }
1628 return 0;
1629 }
1630
1631 static u32
1632 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1633 {
1634 u32 adv = 0;
1635
1636 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1637 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1638
1639 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1640 adv = ADVERTISE_1000XPAUSE;
1641 }
1642 else {
1643 adv = ADVERTISE_PAUSE_CAP;
1644 }
1645 }
1646 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1647 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1648 adv = ADVERTISE_1000XPSE_ASYM;
1649 }
1650 else {
1651 adv = ADVERTISE_PAUSE_ASYM;
1652 }
1653 }
1654 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1655 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1656 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1657 }
1658 else {
1659 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1660 }
1661 }
1662 return adv;
1663 }
1664
1665 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1666
1667 static int
1668 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1669 __releases(&bp->phy_lock)
1670 __acquires(&bp->phy_lock)
1671 {
1672 u32 speed_arg = 0, pause_adv;
1673
1674 pause_adv = bnx2_phy_get_pause_adv(bp);
1675
1676 if (bp->autoneg & AUTONEG_SPEED) {
1677 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1678 if (bp->advertising & ADVERTISED_10baseT_Half)
1679 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1680 if (bp->advertising & ADVERTISED_10baseT_Full)
1681 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1682 if (bp->advertising & ADVERTISED_100baseT_Half)
1683 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1684 if (bp->advertising & ADVERTISED_100baseT_Full)
1685 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1686 if (bp->advertising & ADVERTISED_1000baseT_Full)
1687 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1688 if (bp->advertising & ADVERTISED_2500baseX_Full)
1689 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1690 } else {
1691 if (bp->req_line_speed == SPEED_2500)
1692 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1693 else if (bp->req_line_speed == SPEED_1000)
1694 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1695 else if (bp->req_line_speed == SPEED_100) {
1696 if (bp->req_duplex == DUPLEX_FULL)
1697 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1698 else
1699 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1700 } else if (bp->req_line_speed == SPEED_10) {
1701 if (bp->req_duplex == DUPLEX_FULL)
1702 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1703 else
1704 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1705 }
1706 }
1707
1708 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1709 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1710 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1711 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1712
1713 if (port == PORT_TP)
1714 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1715 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1716
1717 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1718
1719 spin_unlock_bh(&bp->phy_lock);
1720 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1721 spin_lock_bh(&bp->phy_lock);
1722
1723 return 0;
1724 }
1725
1726 static int
1727 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1728 __releases(&bp->phy_lock)
1729 __acquires(&bp->phy_lock)
1730 {
1731 u32 adv, bmcr;
1732 u32 new_adv = 0;
1733
1734 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1735 return (bnx2_setup_remote_phy(bp, port));
1736
1737 if (!(bp->autoneg & AUTONEG_SPEED)) {
1738 u32 new_bmcr;
1739 int force_link_down = 0;
1740
1741 if (bp->req_line_speed == SPEED_2500) {
1742 if (!bnx2_test_and_enable_2g5(bp))
1743 force_link_down = 1;
1744 } else if (bp->req_line_speed == SPEED_1000) {
1745 if (bnx2_test_and_disable_2g5(bp))
1746 force_link_down = 1;
1747 }
1748 bnx2_read_phy(bp, bp->mii_adv, &adv);
1749 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1750
1751 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1752 new_bmcr = bmcr & ~BMCR_ANENABLE;
1753 new_bmcr |= BMCR_SPEED1000;
1754
1755 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1756 if (bp->req_line_speed == SPEED_2500)
1757 bnx2_enable_forced_2g5(bp);
1758 else if (bp->req_line_speed == SPEED_1000) {
1759 bnx2_disable_forced_2g5(bp);
1760 new_bmcr &= ~0x2000;
1761 }
1762
1763 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1764 if (bp->req_line_speed == SPEED_2500)
1765 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1766 else
1767 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1768 }
1769
1770 if (bp->req_duplex == DUPLEX_FULL) {
1771 adv |= ADVERTISE_1000XFULL;
1772 new_bmcr |= BMCR_FULLDPLX;
1773 }
1774 else {
1775 adv |= ADVERTISE_1000XHALF;
1776 new_bmcr &= ~BMCR_FULLDPLX;
1777 }
1778 if ((new_bmcr != bmcr) || (force_link_down)) {
1779 /* Force a link down visible on the other side */
1780 if (bp->link_up) {
1781 bnx2_write_phy(bp, bp->mii_adv, adv &
1782 ~(ADVERTISE_1000XFULL |
1783 ADVERTISE_1000XHALF));
1784 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1785 BMCR_ANRESTART | BMCR_ANENABLE);
1786
1787 bp->link_up = 0;
1788 netif_carrier_off(bp->dev);
1789 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1790 bnx2_report_link(bp);
1791 }
1792 bnx2_write_phy(bp, bp->mii_adv, adv);
1793 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1794 } else {
1795 bnx2_resolve_flow_ctrl(bp);
1796 bnx2_set_mac_link(bp);
1797 }
1798 return 0;
1799 }
1800
1801 bnx2_test_and_enable_2g5(bp);
1802
1803 if (bp->advertising & ADVERTISED_1000baseT_Full)
1804 new_adv |= ADVERTISE_1000XFULL;
1805
1806 new_adv |= bnx2_phy_get_pause_adv(bp);
1807
1808 bnx2_read_phy(bp, bp->mii_adv, &adv);
1809 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1810
1811 bp->serdes_an_pending = 0;
1812 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1813 /* Force a link down visible on the other side */
1814 if (bp->link_up) {
1815 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1816 spin_unlock_bh(&bp->phy_lock);
1817 msleep(20);
1818 spin_lock_bh(&bp->phy_lock);
1819 }
1820
1821 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1822 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1823 BMCR_ANENABLE);
1824 /* Speed up link-up time when the link partner
1825 * does not autonegotiate which is very common
1826 * in blade servers. Some blade servers use
1827 * IPMI for kerboard input and it's important
1828 * to minimize link disruptions. Autoneg. involves
1829 * exchanging base pages plus 3 next pages and
1830 * normally completes in about 120 msec.
1831 */
1832 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1833 bp->serdes_an_pending = 1;
1834 mod_timer(&bp->timer, jiffies + bp->current_interval);
1835 } else {
1836 bnx2_resolve_flow_ctrl(bp);
1837 bnx2_set_mac_link(bp);
1838 }
1839
1840 return 0;
1841 }
1842
1843 #define ETHTOOL_ALL_FIBRE_SPEED \
1844 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1845 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1846 (ADVERTISED_1000baseT_Full)
1847
1848 #define ETHTOOL_ALL_COPPER_SPEED \
1849 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1850 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1851 ADVERTISED_1000baseT_Full)
1852
1853 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1854 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1855
1856 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1857
1858 static void
1859 bnx2_set_default_remote_link(struct bnx2 *bp)
1860 {
1861 u32 link;
1862
1863 if (bp->phy_port == PORT_TP)
1864 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1865 else
1866 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1867
1868 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1869 bp->req_line_speed = 0;
1870 bp->autoneg |= AUTONEG_SPEED;
1871 bp->advertising = ADVERTISED_Autoneg;
1872 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1873 bp->advertising |= ADVERTISED_10baseT_Half;
1874 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1875 bp->advertising |= ADVERTISED_10baseT_Full;
1876 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1877 bp->advertising |= ADVERTISED_100baseT_Half;
1878 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1879 bp->advertising |= ADVERTISED_100baseT_Full;
1880 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1881 bp->advertising |= ADVERTISED_1000baseT_Full;
1882 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1883 bp->advertising |= ADVERTISED_2500baseX_Full;
1884 } else {
1885 bp->autoneg = 0;
1886 bp->advertising = 0;
1887 bp->req_duplex = DUPLEX_FULL;
1888 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1889 bp->req_line_speed = SPEED_10;
1890 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1891 bp->req_duplex = DUPLEX_HALF;
1892 }
1893 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1894 bp->req_line_speed = SPEED_100;
1895 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1896 bp->req_duplex = DUPLEX_HALF;
1897 }
1898 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1899 bp->req_line_speed = SPEED_1000;
1900 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1901 bp->req_line_speed = SPEED_2500;
1902 }
1903 }
1904
1905 static void
1906 bnx2_set_default_link(struct bnx2 *bp)
1907 {
1908 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1909 bnx2_set_default_remote_link(bp);
1910 return;
1911 }
1912
1913 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1914 bp->req_line_speed = 0;
1915 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1916 u32 reg;
1917
1918 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1919
1920 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1921 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1922 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1923 bp->autoneg = 0;
1924 bp->req_line_speed = bp->line_speed = SPEED_1000;
1925 bp->req_duplex = DUPLEX_FULL;
1926 }
1927 } else
1928 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1929 }
1930
1931 static void
1932 bnx2_send_heart_beat(struct bnx2 *bp)
1933 {
1934 u32 msg;
1935 u32 addr;
1936
1937 spin_lock(&bp->indirect_lock);
1938 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1939 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1940 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1941 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1942 spin_unlock(&bp->indirect_lock);
1943 }
1944
1945 static void
1946 bnx2_remote_phy_event(struct bnx2 *bp)
1947 {
1948 u32 msg;
1949 u8 link_up = bp->link_up;
1950 u8 old_port;
1951
1952 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1953
1954 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1955 bnx2_send_heart_beat(bp);
1956
1957 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1958
1959 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1960 bp->link_up = 0;
1961 else {
1962 u32 speed;
1963
1964 bp->link_up = 1;
1965 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1966 bp->duplex = DUPLEX_FULL;
1967 switch (speed) {
1968 case BNX2_LINK_STATUS_10HALF:
1969 bp->duplex = DUPLEX_HALF;
1970 case BNX2_LINK_STATUS_10FULL:
1971 bp->line_speed = SPEED_10;
1972 break;
1973 case BNX2_LINK_STATUS_100HALF:
1974 bp->duplex = DUPLEX_HALF;
1975 case BNX2_LINK_STATUS_100BASE_T4:
1976 case BNX2_LINK_STATUS_100FULL:
1977 bp->line_speed = SPEED_100;
1978 break;
1979 case BNX2_LINK_STATUS_1000HALF:
1980 bp->duplex = DUPLEX_HALF;
1981 case BNX2_LINK_STATUS_1000FULL:
1982 bp->line_speed = SPEED_1000;
1983 break;
1984 case BNX2_LINK_STATUS_2500HALF:
1985 bp->duplex = DUPLEX_HALF;
1986 case BNX2_LINK_STATUS_2500FULL:
1987 bp->line_speed = SPEED_2500;
1988 break;
1989 default:
1990 bp->line_speed = 0;
1991 break;
1992 }
1993
1994 bp->flow_ctrl = 0;
1995 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1996 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1997 if (bp->duplex == DUPLEX_FULL)
1998 bp->flow_ctrl = bp->req_flow_ctrl;
1999 } else {
2000 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
2001 bp->flow_ctrl |= FLOW_CTRL_TX;
2002 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2003 bp->flow_ctrl |= FLOW_CTRL_RX;
2004 }
2005
2006 old_port = bp->phy_port;
2007 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2008 bp->phy_port = PORT_FIBRE;
2009 else
2010 bp->phy_port = PORT_TP;
2011
2012 if (old_port != bp->phy_port)
2013 bnx2_set_default_link(bp);
2014
2015 }
2016 if (bp->link_up != link_up)
2017 bnx2_report_link(bp);
2018
2019 bnx2_set_mac_link(bp);
2020 }
2021
2022 static int
2023 bnx2_set_remote_link(struct bnx2 *bp)
2024 {
2025 u32 evt_code;
2026
2027 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2028 switch (evt_code) {
2029 case BNX2_FW_EVT_CODE_LINK_EVENT:
2030 bnx2_remote_phy_event(bp);
2031 break;
2032 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2033 default:
2034 bnx2_send_heart_beat(bp);
2035 break;
2036 }
2037 return 0;
2038 }
2039
2040 static int
2041 bnx2_setup_copper_phy(struct bnx2 *bp)
2042 __releases(&bp->phy_lock)
2043 __acquires(&bp->phy_lock)
2044 {
2045 u32 bmcr;
2046 u32 new_bmcr;
2047
2048 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2049
2050 if (bp->autoneg & AUTONEG_SPEED) {
2051 u32 adv_reg, adv1000_reg;
2052 u32 new_adv_reg = 0;
2053 u32 new_adv1000_reg = 0;
2054
2055 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2056 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2057 ADVERTISE_PAUSE_ASYM);
2058
2059 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2060 adv1000_reg &= PHY_ALL_1000_SPEED;
2061
2062 if (bp->advertising & ADVERTISED_10baseT_Half)
2063 new_adv_reg |= ADVERTISE_10HALF;
2064 if (bp->advertising & ADVERTISED_10baseT_Full)
2065 new_adv_reg |= ADVERTISE_10FULL;
2066 if (bp->advertising & ADVERTISED_100baseT_Half)
2067 new_adv_reg |= ADVERTISE_100HALF;
2068 if (bp->advertising & ADVERTISED_100baseT_Full)
2069 new_adv_reg |= ADVERTISE_100FULL;
2070 if (bp->advertising & ADVERTISED_1000baseT_Full)
2071 new_adv1000_reg |= ADVERTISE_1000FULL;
2072
2073 new_adv_reg |= ADVERTISE_CSMA;
2074
2075 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2076
2077 if ((adv1000_reg != new_adv1000_reg) ||
2078 (adv_reg != new_adv_reg) ||
2079 ((bmcr & BMCR_ANENABLE) == 0)) {
2080
2081 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2082 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2083 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2084 BMCR_ANENABLE);
2085 }
2086 else if (bp->link_up) {
2087 /* Flow ctrl may have changed from auto to forced */
2088 /* or vice-versa. */
2089
2090 bnx2_resolve_flow_ctrl(bp);
2091 bnx2_set_mac_link(bp);
2092 }
2093 return 0;
2094 }
2095
2096 new_bmcr = 0;
2097 if (bp->req_line_speed == SPEED_100) {
2098 new_bmcr |= BMCR_SPEED100;
2099 }
2100 if (bp->req_duplex == DUPLEX_FULL) {
2101 new_bmcr |= BMCR_FULLDPLX;
2102 }
2103 if (new_bmcr != bmcr) {
2104 u32 bmsr;
2105
2106 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2107 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2108
2109 if (bmsr & BMSR_LSTATUS) {
2110 /* Force link down */
2111 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2112 spin_unlock_bh(&bp->phy_lock);
2113 msleep(50);
2114 spin_lock_bh(&bp->phy_lock);
2115
2116 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2117 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2118 }
2119
2120 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2121
2122 /* Normally, the new speed is setup after the link has
2123 * gone down and up again. In some cases, link will not go
2124 * down so we need to set up the new speed here.
2125 */
2126 if (bmsr & BMSR_LSTATUS) {
2127 bp->line_speed = bp->req_line_speed;
2128 bp->duplex = bp->req_duplex;
2129 bnx2_resolve_flow_ctrl(bp);
2130 bnx2_set_mac_link(bp);
2131 }
2132 } else {
2133 bnx2_resolve_flow_ctrl(bp);
2134 bnx2_set_mac_link(bp);
2135 }
2136 return 0;
2137 }
2138
2139 static int
2140 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2141 __releases(&bp->phy_lock)
2142 __acquires(&bp->phy_lock)
2143 {
2144 if (bp->loopback == MAC_LOOPBACK)
2145 return 0;
2146
2147 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2148 return (bnx2_setup_serdes_phy(bp, port));
2149 }
2150 else {
2151 return (bnx2_setup_copper_phy(bp));
2152 }
2153 }
2154
2155 static int
2156 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2157 {
2158 u32 val;
2159
2160 bp->mii_bmcr = MII_BMCR + 0x10;
2161 bp->mii_bmsr = MII_BMSR + 0x10;
2162 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2163 bp->mii_adv = MII_ADVERTISE + 0x10;
2164 bp->mii_lpa = MII_LPA + 0x10;
2165 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2166
2167 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2168 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2169
2170 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2171 if (reset_phy)
2172 bnx2_reset_phy(bp);
2173
2174 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2175
2176 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2177 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2178 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2179 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2180
2181 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2182 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2183 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2184 val |= BCM5708S_UP1_2G5;
2185 else
2186 val &= ~BCM5708S_UP1_2G5;
2187 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2188
2189 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2190 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2191 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2192 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2193
2194 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2195
2196 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2197 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2198 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2199
2200 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2201
2202 return 0;
2203 }
2204
2205 static int
2206 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2207 {
2208 u32 val;
2209
2210 if (reset_phy)
2211 bnx2_reset_phy(bp);
2212
2213 bp->mii_up1 = BCM5708S_UP1;
2214
2215 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2216 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2217 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2218
2219 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2220 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2221 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2222
2223 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2224 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2225 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2226
2227 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2228 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2229 val |= BCM5708S_UP1_2G5;
2230 bnx2_write_phy(bp, BCM5708S_UP1, val);
2231 }
2232
2233 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2234 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2235 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2236 /* increase tx signal amplitude */
2237 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2238 BCM5708S_BLK_ADDR_TX_MISC);
2239 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2240 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2241 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2242 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2243 }
2244
2245 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2246 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2247
2248 if (val) {
2249 u32 is_backplane;
2250
2251 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2252 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2253 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2254 BCM5708S_BLK_ADDR_TX_MISC);
2255 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2256 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2257 BCM5708S_BLK_ADDR_DIG);
2258 }
2259 }
2260 return 0;
2261 }
2262
2263 static int
2264 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2265 {
2266 if (reset_phy)
2267 bnx2_reset_phy(bp);
2268
2269 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2270
2271 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2272 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2273
2274 if (bp->dev->mtu > 1500) {
2275 u32 val;
2276
2277 /* Set extended packet length bit */
2278 bnx2_write_phy(bp, 0x18, 0x7);
2279 bnx2_read_phy(bp, 0x18, &val);
2280 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2281
2282 bnx2_write_phy(bp, 0x1c, 0x6c00);
2283 bnx2_read_phy(bp, 0x1c, &val);
2284 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2285 }
2286 else {
2287 u32 val;
2288
2289 bnx2_write_phy(bp, 0x18, 0x7);
2290 bnx2_read_phy(bp, 0x18, &val);
2291 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2292
2293 bnx2_write_phy(bp, 0x1c, 0x6c00);
2294 bnx2_read_phy(bp, 0x1c, &val);
2295 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2296 }
2297
2298 return 0;
2299 }
2300
2301 static int
2302 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2303 {
2304 u32 val;
2305
2306 if (reset_phy)
2307 bnx2_reset_phy(bp);
2308
2309 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2310 bnx2_write_phy(bp, 0x18, 0x0c00);
2311 bnx2_write_phy(bp, 0x17, 0x000a);
2312 bnx2_write_phy(bp, 0x15, 0x310b);
2313 bnx2_write_phy(bp, 0x17, 0x201f);
2314 bnx2_write_phy(bp, 0x15, 0x9506);
2315 bnx2_write_phy(bp, 0x17, 0x401f);
2316 bnx2_write_phy(bp, 0x15, 0x14e2);
2317 bnx2_write_phy(bp, 0x18, 0x0400);
2318 }
2319
2320 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2321 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2322 MII_BNX2_DSP_EXPAND_REG | 0x8);
2323 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2324 val &= ~(1 << 8);
2325 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2326 }
2327
2328 if (bp->dev->mtu > 1500) {
2329 /* Set extended packet length bit */
2330 bnx2_write_phy(bp, 0x18, 0x7);
2331 bnx2_read_phy(bp, 0x18, &val);
2332 bnx2_write_phy(bp, 0x18, val | 0x4000);
2333
2334 bnx2_read_phy(bp, 0x10, &val);
2335 bnx2_write_phy(bp, 0x10, val | 0x1);
2336 }
2337 else {
2338 bnx2_write_phy(bp, 0x18, 0x7);
2339 bnx2_read_phy(bp, 0x18, &val);
2340 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2341
2342 bnx2_read_phy(bp, 0x10, &val);
2343 bnx2_write_phy(bp, 0x10, val & ~0x1);
2344 }
2345
2346 /* ethernet@wirespeed */
2347 bnx2_write_phy(bp, 0x18, 0x7007);
2348 bnx2_read_phy(bp, 0x18, &val);
2349 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2350 return 0;
2351 }
2352
2353
2354 static int
2355 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2356 __releases(&bp->phy_lock)
2357 __acquires(&bp->phy_lock)
2358 {
2359 u32 val;
2360 int rc = 0;
2361
2362 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2363 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2364
2365 bp->mii_bmcr = MII_BMCR;
2366 bp->mii_bmsr = MII_BMSR;
2367 bp->mii_bmsr1 = MII_BMSR;
2368 bp->mii_adv = MII_ADVERTISE;
2369 bp->mii_lpa = MII_LPA;
2370
2371 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2372
2373 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2374 goto setup_phy;
2375
2376 bnx2_read_phy(bp, MII_PHYSID1, &val);
2377 bp->phy_id = val << 16;
2378 bnx2_read_phy(bp, MII_PHYSID2, &val);
2379 bp->phy_id |= val & 0xffff;
2380
2381 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2382 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2383 rc = bnx2_init_5706s_phy(bp, reset_phy);
2384 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2385 rc = bnx2_init_5708s_phy(bp, reset_phy);
2386 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2387 rc = bnx2_init_5709s_phy(bp, reset_phy);
2388 }
2389 else {
2390 rc = bnx2_init_copper_phy(bp, reset_phy);
2391 }
2392
2393 setup_phy:
2394 if (!rc)
2395 rc = bnx2_setup_phy(bp, bp->phy_port);
2396
2397 return rc;
2398 }
2399
2400 static int
2401 bnx2_set_mac_loopback(struct bnx2 *bp)
2402 {
2403 u32 mac_mode;
2404
2405 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2406 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2407 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2408 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2409 bp->link_up = 1;
2410 return 0;
2411 }
2412
2413 static int bnx2_test_link(struct bnx2 *);
2414
2415 static int
2416 bnx2_set_phy_loopback(struct bnx2 *bp)
2417 {
2418 u32 mac_mode;
2419 int rc, i;
2420
2421 spin_lock_bh(&bp->phy_lock);
2422 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2423 BMCR_SPEED1000);
2424 spin_unlock_bh(&bp->phy_lock);
2425 if (rc)
2426 return rc;
2427
2428 for (i = 0; i < 10; i++) {
2429 if (bnx2_test_link(bp) == 0)
2430 break;
2431 msleep(100);
2432 }
2433
2434 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2435 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2436 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2437 BNX2_EMAC_MODE_25G_MODE);
2438
2439 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2440 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2441 bp->link_up = 1;
2442 return 0;
2443 }
2444
2445 static int
2446 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2447 {
2448 int i;
2449 u32 val;
2450
2451 bp->fw_wr_seq++;
2452 msg_data |= bp->fw_wr_seq;
2453
2454 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2455
2456 if (!ack)
2457 return 0;
2458
2459 /* wait for an acknowledgement. */
2460 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2461 msleep(10);
2462
2463 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2464
2465 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2466 break;
2467 }
2468 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2469 return 0;
2470
2471 /* If we timed out, inform the firmware that this is the case. */
2472 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2473 if (!silent)
2474 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2475 "%x\n", msg_data);
2476
2477 msg_data &= ~BNX2_DRV_MSG_CODE;
2478 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2479
2480 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2481
2482 return -EBUSY;
2483 }
2484
2485 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2486 return -EIO;
2487
2488 return 0;
2489 }
2490
2491 static int
2492 bnx2_init_5709_context(struct bnx2 *bp)
2493 {
2494 int i, ret = 0;
2495 u32 val;
2496
2497 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2498 val |= (BCM_PAGE_BITS - 8) << 16;
2499 REG_WR(bp, BNX2_CTX_COMMAND, val);
2500 for (i = 0; i < 10; i++) {
2501 val = REG_RD(bp, BNX2_CTX_COMMAND);
2502 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2503 break;
2504 udelay(2);
2505 }
2506 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2507 return -EBUSY;
2508
2509 for (i = 0; i < bp->ctx_pages; i++) {
2510 int j;
2511
2512 if (bp->ctx_blk[i])
2513 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2514 else
2515 return -ENOMEM;
2516
2517 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2518 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2519 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2520 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2521 (u64) bp->ctx_blk_mapping[i] >> 32);
2522 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2523 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2524 for (j = 0; j < 10; j++) {
2525
2526 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2527 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2528 break;
2529 udelay(5);
2530 }
2531 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2532 ret = -EBUSY;
2533 break;
2534 }
2535 }
2536 return ret;
2537 }
2538
2539 static void
2540 bnx2_init_context(struct bnx2 *bp)
2541 {
2542 u32 vcid;
2543
2544 vcid = 96;
2545 while (vcid) {
2546 u32 vcid_addr, pcid_addr, offset;
2547 int i;
2548
2549 vcid--;
2550
2551 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2552 u32 new_vcid;
2553
2554 vcid_addr = GET_PCID_ADDR(vcid);
2555 if (vcid & 0x8) {
2556 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2557 }
2558 else {
2559 new_vcid = vcid;
2560 }
2561 pcid_addr = GET_PCID_ADDR(new_vcid);
2562 }
2563 else {
2564 vcid_addr = GET_CID_ADDR(vcid);
2565 pcid_addr = vcid_addr;
2566 }
2567
2568 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2569 vcid_addr += (i << PHY_CTX_SHIFT);
2570 pcid_addr += (i << PHY_CTX_SHIFT);
2571
2572 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2573 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2574
2575 /* Zero out the context. */
2576 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2577 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2578 }
2579 }
2580 }
2581
2582 static int
2583 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2584 {
2585 u16 *good_mbuf;
2586 u32 good_mbuf_cnt;
2587 u32 val;
2588
2589 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2590 if (good_mbuf == NULL) {
2591 printk(KERN_ERR PFX "Failed to allocate memory in "
2592 "bnx2_alloc_bad_rbuf\n");
2593 return -ENOMEM;
2594 }
2595
2596 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2597 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2598
2599 good_mbuf_cnt = 0;
2600
2601 /* Allocate a bunch of mbufs and save the good ones in an array. */
2602 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2603 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2604 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2605 BNX2_RBUF_COMMAND_ALLOC_REQ);
2606
2607 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2608
2609 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2610
2611 /* The addresses with Bit 9 set are bad memory blocks. */
2612 if (!(val & (1 << 9))) {
2613 good_mbuf[good_mbuf_cnt] = (u16) val;
2614 good_mbuf_cnt++;
2615 }
2616
2617 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2618 }
2619
2620 /* Free the good ones back to the mbuf pool thus discarding
2621 * all the bad ones. */
2622 while (good_mbuf_cnt) {
2623 good_mbuf_cnt--;
2624
2625 val = good_mbuf[good_mbuf_cnt];
2626 val = (val << 9) | val | 1;
2627
2628 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2629 }
2630 kfree(good_mbuf);
2631 return 0;
2632 }
2633
2634 static void
2635 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2636 {
2637 u32 val;
2638
2639 val = (mac_addr[0] << 8) | mac_addr[1];
2640
2641 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2642
2643 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2644 (mac_addr[4] << 8) | mac_addr[5];
2645
2646 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2647 }
2648
2649 static inline int
2650 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2651 {
2652 dma_addr_t mapping;
2653 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2654 struct rx_bd *rxbd =
2655 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2656 struct page *page = alloc_page(GFP_ATOMIC);
2657
2658 if (!page)
2659 return -ENOMEM;
2660 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2661 PCI_DMA_FROMDEVICE);
2662 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2663 __free_page(page);
2664 return -EIO;
2665 }
2666
2667 rx_pg->page = page;
2668 pci_unmap_addr_set(rx_pg, mapping, mapping);
2669 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2670 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2671 return 0;
2672 }
2673
2674 static void
2675 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2676 {
2677 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2678 struct page *page = rx_pg->page;
2679
2680 if (!page)
2681 return;
2682
2683 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2684 PCI_DMA_FROMDEVICE);
2685
2686 __free_page(page);
2687 rx_pg->page = NULL;
2688 }
2689
2690 static inline int
2691 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2692 {
2693 struct sk_buff *skb;
2694 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2695 dma_addr_t mapping;
2696 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2697 unsigned long align;
2698
2699 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2700 if (skb == NULL) {
2701 return -ENOMEM;
2702 }
2703
2704 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2705 skb_reserve(skb, BNX2_RX_ALIGN - align);
2706
2707 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2708 PCI_DMA_FROMDEVICE);
2709 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2710 dev_kfree_skb(skb);
2711 return -EIO;
2712 }
2713
2714 rx_buf->skb = skb;
2715 pci_unmap_addr_set(rx_buf, mapping, mapping);
2716
2717 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2718 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2719
2720 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2721
2722 return 0;
2723 }
2724
2725 static int
2726 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2727 {
2728 struct status_block *sblk = bnapi->status_blk.msi;
2729 u32 new_link_state, old_link_state;
2730 int is_set = 1;
2731
2732 new_link_state = sblk->status_attn_bits & event;
2733 old_link_state = sblk->status_attn_bits_ack & event;
2734 if (new_link_state != old_link_state) {
2735 if (new_link_state)
2736 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2737 else
2738 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2739 } else
2740 is_set = 0;
2741
2742 return is_set;
2743 }
2744
2745 static void
2746 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2747 {
2748 spin_lock(&bp->phy_lock);
2749
2750 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2751 bnx2_set_link(bp);
2752 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2753 bnx2_set_remote_link(bp);
2754
2755 spin_unlock(&bp->phy_lock);
2756
2757 }
2758
2759 static inline u16
2760 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2761 {
2762 u16 cons;
2763
2764 /* Tell compiler that status block fields can change. */
2765 barrier();
2766 cons = *bnapi->hw_tx_cons_ptr;
2767 barrier();
2768 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2769 cons++;
2770 return cons;
2771 }
2772
2773 static int
2774 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2775 {
2776 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2777 u16 hw_cons, sw_cons, sw_ring_cons;
2778 int tx_pkt = 0, index;
2779 struct netdev_queue *txq;
2780
2781 index = (bnapi - bp->bnx2_napi);
2782 txq = netdev_get_tx_queue(bp->dev, index);
2783
2784 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2785 sw_cons = txr->tx_cons;
2786
2787 while (sw_cons != hw_cons) {
2788 struct sw_tx_bd *tx_buf;
2789 struct sk_buff *skb;
2790 int i, last;
2791
2792 sw_ring_cons = TX_RING_IDX(sw_cons);
2793
2794 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2795 skb = tx_buf->skb;
2796
2797 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2798 prefetch(&skb->end);
2799
2800 /* partial BD completions possible with TSO packets */
2801 if (tx_buf->is_gso) {
2802 u16 last_idx, last_ring_idx;
2803
2804 last_idx = sw_cons + tx_buf->nr_frags + 1;
2805 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2806 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2807 last_idx++;
2808 }
2809 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2810 break;
2811 }
2812 }
2813
2814 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
2815
2816 tx_buf->skb = NULL;
2817 last = tx_buf->nr_frags;
2818
2819 for (i = 0; i < last; i++) {
2820 sw_cons = NEXT_TX_BD(sw_cons);
2821 }
2822
2823 sw_cons = NEXT_TX_BD(sw_cons);
2824
2825 dev_kfree_skb(skb);
2826 tx_pkt++;
2827 if (tx_pkt == budget)
2828 break;
2829
2830 if (hw_cons == sw_cons)
2831 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2832 }
2833
2834 txr->hw_tx_cons = hw_cons;
2835 txr->tx_cons = sw_cons;
2836
2837 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2838 * before checking for netif_tx_queue_stopped(). Without the
2839 * memory barrier, there is a small possibility that bnx2_start_xmit()
2840 * will miss it and cause the queue to be stopped forever.
2841 */
2842 smp_mb();
2843
2844 if (unlikely(netif_tx_queue_stopped(txq)) &&
2845 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2846 __netif_tx_lock(txq, smp_processor_id());
2847 if ((netif_tx_queue_stopped(txq)) &&
2848 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2849 netif_tx_wake_queue(txq);
2850 __netif_tx_unlock(txq);
2851 }
2852
2853 return tx_pkt;
2854 }
2855
2856 static void
2857 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2858 struct sk_buff *skb, int count)
2859 {
2860 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2861 struct rx_bd *cons_bd, *prod_bd;
2862 int i;
2863 u16 hw_prod, prod;
2864 u16 cons = rxr->rx_pg_cons;
2865
2866 cons_rx_pg = &rxr->rx_pg_ring[cons];
2867
2868 /* The caller was unable to allocate a new page to replace the
2869 * last one in the frags array, so we need to recycle that page
2870 * and then free the skb.
2871 */
2872 if (skb) {
2873 struct page *page;
2874 struct skb_shared_info *shinfo;
2875
2876 shinfo = skb_shinfo(skb);
2877 shinfo->nr_frags--;
2878 page = shinfo->frags[shinfo->nr_frags].page;
2879 shinfo->frags[shinfo->nr_frags].page = NULL;
2880
2881 cons_rx_pg->page = page;
2882 dev_kfree_skb(skb);
2883 }
2884
2885 hw_prod = rxr->rx_pg_prod;
2886
2887 for (i = 0; i < count; i++) {
2888 prod = RX_PG_RING_IDX(hw_prod);
2889
2890 prod_rx_pg = &rxr->rx_pg_ring[prod];
2891 cons_rx_pg = &rxr->rx_pg_ring[cons];
2892 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2893 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2894
2895 if (prod != cons) {
2896 prod_rx_pg->page = cons_rx_pg->page;
2897 cons_rx_pg->page = NULL;
2898 pci_unmap_addr_set(prod_rx_pg, mapping,
2899 pci_unmap_addr(cons_rx_pg, mapping));
2900
2901 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2902 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2903
2904 }
2905 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2906 hw_prod = NEXT_RX_BD(hw_prod);
2907 }
2908 rxr->rx_pg_prod = hw_prod;
2909 rxr->rx_pg_cons = cons;
2910 }
2911
2912 static inline void
2913 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2914 struct sk_buff *skb, u16 cons, u16 prod)
2915 {
2916 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2917 struct rx_bd *cons_bd, *prod_bd;
2918
2919 cons_rx_buf = &rxr->rx_buf_ring[cons];
2920 prod_rx_buf = &rxr->rx_buf_ring[prod];
2921
2922 pci_dma_sync_single_for_device(bp->pdev,
2923 pci_unmap_addr(cons_rx_buf, mapping),
2924 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2925
2926 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2927
2928 prod_rx_buf->skb = skb;
2929
2930 if (cons == prod)
2931 return;
2932
2933 pci_unmap_addr_set(prod_rx_buf, mapping,
2934 pci_unmap_addr(cons_rx_buf, mapping));
2935
2936 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2937 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2938 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2939 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2940 }
2941
2942 static int
2943 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2944 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2945 u32 ring_idx)
2946 {
2947 int err;
2948 u16 prod = ring_idx & 0xffff;
2949
2950 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2951 if (unlikely(err)) {
2952 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2953 if (hdr_len) {
2954 unsigned int raw_len = len + 4;
2955 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2956
2957 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2958 }
2959 return err;
2960 }
2961
2962 skb_reserve(skb, BNX2_RX_OFFSET);
2963 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2964 PCI_DMA_FROMDEVICE);
2965
2966 if (hdr_len == 0) {
2967 skb_put(skb, len);
2968 return 0;
2969 } else {
2970 unsigned int i, frag_len, frag_size, pages;
2971 struct sw_pg *rx_pg;
2972 u16 pg_cons = rxr->rx_pg_cons;
2973 u16 pg_prod = rxr->rx_pg_prod;
2974
2975 frag_size = len + 4 - hdr_len;
2976 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2977 skb_put(skb, hdr_len);
2978
2979 for (i = 0; i < pages; i++) {
2980 dma_addr_t mapping_old;
2981
2982 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2983 if (unlikely(frag_len <= 4)) {
2984 unsigned int tail = 4 - frag_len;
2985
2986 rxr->rx_pg_cons = pg_cons;
2987 rxr->rx_pg_prod = pg_prod;
2988 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2989 pages - i);
2990 skb->len -= tail;
2991 if (i == 0) {
2992 skb->tail -= tail;
2993 } else {
2994 skb_frag_t *frag =
2995 &skb_shinfo(skb)->frags[i - 1];
2996 frag->size -= tail;
2997 skb->data_len -= tail;
2998 skb->truesize -= tail;
2999 }
3000 return 0;
3001 }
3002 rx_pg = &rxr->rx_pg_ring[pg_cons];
3003
3004 /* Don't unmap yet. If we're unable to allocate a new
3005 * page, we need to recycle the page and the DMA addr.
3006 */
3007 mapping_old = pci_unmap_addr(rx_pg, mapping);
3008 if (i == pages - 1)
3009 frag_len -= 4;
3010
3011 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3012 rx_pg->page = NULL;
3013
3014 err = bnx2_alloc_rx_page(bp, rxr,
3015 RX_PG_RING_IDX(pg_prod));
3016 if (unlikely(err)) {
3017 rxr->rx_pg_cons = pg_cons;
3018 rxr->rx_pg_prod = pg_prod;
3019 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3020 pages - i);
3021 return err;
3022 }
3023
3024 pci_unmap_page(bp->pdev, mapping_old,
3025 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3026
3027 frag_size -= frag_len;
3028 skb->data_len += frag_len;
3029 skb->truesize += frag_len;
3030 skb->len += frag_len;
3031
3032 pg_prod = NEXT_RX_BD(pg_prod);
3033 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3034 }
3035 rxr->rx_pg_prod = pg_prod;
3036 rxr->rx_pg_cons = pg_cons;
3037 }
3038 return 0;
3039 }
3040
3041 static inline u16
3042 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3043 {
3044 u16 cons;
3045
3046 /* Tell compiler that status block fields can change. */
3047 barrier();
3048 cons = *bnapi->hw_rx_cons_ptr;
3049 barrier();
3050 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3051 cons++;
3052 return cons;
3053 }
3054
3055 static int
3056 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3057 {
3058 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3059 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3060 struct l2_fhdr *rx_hdr;
3061 int rx_pkt = 0, pg_ring_used = 0;
3062
3063 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3064 sw_cons = rxr->rx_cons;
3065 sw_prod = rxr->rx_prod;
3066
3067 /* Memory barrier necessary as speculative reads of the rx
3068 * buffer can be ahead of the index in the status block
3069 */
3070 rmb();
3071 while (sw_cons != hw_cons) {
3072 unsigned int len, hdr_len;
3073 u32 status;
3074 struct sw_bd *rx_buf;
3075 struct sk_buff *skb;
3076 dma_addr_t dma_addr;
3077 u16 vtag = 0;
3078 int hw_vlan __maybe_unused = 0;
3079
3080 sw_ring_cons = RX_RING_IDX(sw_cons);
3081 sw_ring_prod = RX_RING_IDX(sw_prod);
3082
3083 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3084 skb = rx_buf->skb;
3085
3086 rx_buf->skb = NULL;
3087
3088 dma_addr = pci_unmap_addr(rx_buf, mapping);
3089
3090 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
3091 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3092 PCI_DMA_FROMDEVICE);
3093
3094 rx_hdr = (struct l2_fhdr *) skb->data;
3095 len = rx_hdr->l2_fhdr_pkt_len;
3096 status = rx_hdr->l2_fhdr_status;
3097
3098 hdr_len = 0;
3099 if (status & L2_FHDR_STATUS_SPLIT) {
3100 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3101 pg_ring_used = 1;
3102 } else if (len > bp->rx_jumbo_thresh) {
3103 hdr_len = bp->rx_jumbo_thresh;
3104 pg_ring_used = 1;
3105 }
3106
3107 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3108 L2_FHDR_ERRORS_PHY_DECODE |
3109 L2_FHDR_ERRORS_ALIGNMENT |
3110 L2_FHDR_ERRORS_TOO_SHORT |
3111 L2_FHDR_ERRORS_GIANT_FRAME))) {
3112
3113 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3114 sw_ring_prod);
3115 if (pg_ring_used) {
3116 int pages;
3117
3118 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3119
3120 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3121 }
3122 goto next_rx;
3123 }
3124
3125 len -= 4;
3126
3127 if (len <= bp->rx_copy_thresh) {
3128 struct sk_buff *new_skb;
3129
3130 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3131 if (new_skb == NULL) {
3132 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3133 sw_ring_prod);
3134 goto next_rx;
3135 }
3136
3137 /* aligned copy */
3138 skb_copy_from_linear_data_offset(skb,
3139 BNX2_RX_OFFSET - 6,
3140 new_skb->data, len + 6);
3141 skb_reserve(new_skb, 6);
3142 skb_put(new_skb, len);
3143
3144 bnx2_reuse_rx_skb(bp, rxr, skb,
3145 sw_ring_cons, sw_ring_prod);
3146
3147 skb = new_skb;
3148 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3149 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3150 goto next_rx;
3151
3152 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3153 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
3154 vtag = rx_hdr->l2_fhdr_vlan_tag;
3155 #ifdef BCM_VLAN
3156 if (bp->vlgrp)
3157 hw_vlan = 1;
3158 else
3159 #endif
3160 {
3161 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
3162 __skb_push(skb, 4);
3163
3164 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3165 ve->h_vlan_proto = htons(ETH_P_8021Q);
3166 ve->h_vlan_TCI = htons(vtag);
3167 len += 4;
3168 }
3169 }
3170
3171 skb->protocol = eth_type_trans(skb, bp->dev);
3172
3173 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3174 (ntohs(skb->protocol) != 0x8100)) {
3175
3176 dev_kfree_skb(skb);
3177 goto next_rx;
3178
3179 }
3180
3181 skb->ip_summed = CHECKSUM_NONE;
3182 if (bp->rx_csum &&
3183 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3184 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3185
3186 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3187 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3188 skb->ip_summed = CHECKSUM_UNNECESSARY;
3189 }
3190
3191 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3192
3193 #ifdef BCM_VLAN
3194 if (hw_vlan)
3195 vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3196 else
3197 #endif
3198 netif_receive_skb(skb);
3199
3200 rx_pkt++;
3201
3202 next_rx:
3203 sw_cons = NEXT_RX_BD(sw_cons);
3204 sw_prod = NEXT_RX_BD(sw_prod);
3205
3206 if ((rx_pkt == budget))
3207 break;
3208
3209 /* Refresh hw_cons to see if there is new work */
3210 if (sw_cons == hw_cons) {
3211 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3212 rmb();
3213 }
3214 }
3215 rxr->rx_cons = sw_cons;
3216 rxr->rx_prod = sw_prod;
3217
3218 if (pg_ring_used)
3219 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3220
3221 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3222
3223 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3224
3225 mmiowb();
3226
3227 return rx_pkt;
3228
3229 }
3230
3231 /* MSI ISR - The only difference between this and the INTx ISR
3232 * is that the MSI interrupt is always serviced.
3233 */
3234 static irqreturn_t
3235 bnx2_msi(int irq, void *dev_instance)
3236 {
3237 struct bnx2_napi *bnapi = dev_instance;
3238 struct bnx2 *bp = bnapi->bp;
3239
3240 prefetch(bnapi->status_blk.msi);
3241 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3242 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3243 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3244
3245 /* Return here if interrupt is disabled. */
3246 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3247 return IRQ_HANDLED;
3248
3249 napi_schedule(&bnapi->napi);
3250
3251 return IRQ_HANDLED;
3252 }
3253
3254 static irqreturn_t
3255 bnx2_msi_1shot(int irq, void *dev_instance)
3256 {
3257 struct bnx2_napi *bnapi = dev_instance;
3258 struct bnx2 *bp = bnapi->bp;
3259
3260 prefetch(bnapi->status_blk.msi);
3261
3262 /* Return here if interrupt is disabled. */
3263 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3264 return IRQ_HANDLED;
3265
3266 napi_schedule(&bnapi->napi);
3267
3268 return IRQ_HANDLED;
3269 }
3270
3271 static irqreturn_t
3272 bnx2_interrupt(int irq, void *dev_instance)
3273 {
3274 struct bnx2_napi *bnapi = dev_instance;
3275 struct bnx2 *bp = bnapi->bp;
3276 struct status_block *sblk = bnapi->status_blk.msi;
3277
3278 /* When using INTx, it is possible for the interrupt to arrive
3279 * at the CPU before the status block posted prior to the
3280 * interrupt. Reading a register will flush the status block.
3281 * When using MSI, the MSI message will always complete after
3282 * the status block write.
3283 */
3284 if ((sblk->status_idx == bnapi->last_status_idx) &&
3285 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3286 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3287 return IRQ_NONE;
3288
3289 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3290 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3291 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3292
3293 /* Read back to deassert IRQ immediately to avoid too many
3294 * spurious interrupts.
3295 */
3296 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3297
3298 /* Return here if interrupt is shared and is disabled. */
3299 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3300 return IRQ_HANDLED;
3301
3302 if (napi_schedule_prep(&bnapi->napi)) {
3303 bnapi->last_status_idx = sblk->status_idx;
3304 __napi_schedule(&bnapi->napi);
3305 }
3306
3307 return IRQ_HANDLED;
3308 }
3309
3310 static inline int
3311 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3312 {
3313 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3314 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3315
3316 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3317 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3318 return 1;
3319 return 0;
3320 }
3321
3322 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3323 STATUS_ATTN_BITS_TIMER_ABORT)
3324
3325 static inline int
3326 bnx2_has_work(struct bnx2_napi *bnapi)
3327 {
3328 struct status_block *sblk = bnapi->status_blk.msi;
3329
3330 if (bnx2_has_fast_work(bnapi))
3331 return 1;
3332
3333 #ifdef BCM_CNIC
3334 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3335 return 1;
3336 #endif
3337
3338 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3339 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3340 return 1;
3341
3342 return 0;
3343 }
3344
3345 static void
3346 bnx2_chk_missed_msi(struct bnx2 *bp)
3347 {
3348 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3349 u32 msi_ctrl;
3350
3351 if (bnx2_has_work(bnapi)) {
3352 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3353 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3354 return;
3355
3356 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3357 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3358 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3359 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3360 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3361 }
3362 }
3363
3364 bp->idle_chk_status_idx = bnapi->last_status_idx;
3365 }
3366
3367 #ifdef BCM_CNIC
3368 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3369 {
3370 struct cnic_ops *c_ops;
3371
3372 if (!bnapi->cnic_present)
3373 return;
3374
3375 rcu_read_lock();
3376 c_ops = rcu_dereference(bp->cnic_ops);
3377 if (c_ops)
3378 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3379 bnapi->status_blk.msi);
3380 rcu_read_unlock();
3381 }
3382 #endif
3383
3384 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3385 {
3386 struct status_block *sblk = bnapi->status_blk.msi;
3387 u32 status_attn_bits = sblk->status_attn_bits;
3388 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3389
3390 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3391 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3392
3393 bnx2_phy_int(bp, bnapi);
3394
3395 /* This is needed to take care of transient status
3396 * during link changes.
3397 */
3398 REG_WR(bp, BNX2_HC_COMMAND,
3399 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3400 REG_RD(bp, BNX2_HC_COMMAND);
3401 }
3402 }
3403
3404 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3405 int work_done, int budget)
3406 {
3407 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3408 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3409
3410 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3411 bnx2_tx_int(bp, bnapi, 0);
3412
3413 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3414 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3415
3416 return work_done;
3417 }
3418
3419 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3420 {
3421 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3422 struct bnx2 *bp = bnapi->bp;
3423 int work_done = 0;
3424 struct status_block_msix *sblk = bnapi->status_blk.msix;
3425
3426 while (1) {
3427 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3428 if (unlikely(work_done >= budget))
3429 break;
3430
3431 bnapi->last_status_idx = sblk->status_idx;
3432 /* status idx must be read before checking for more work. */
3433 rmb();
3434 if (likely(!bnx2_has_fast_work(bnapi))) {
3435
3436 napi_complete(napi);
3437 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3438 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3439 bnapi->last_status_idx);
3440 break;
3441 }
3442 }
3443 return work_done;
3444 }
3445
3446 static int bnx2_poll(struct napi_struct *napi, int budget)
3447 {
3448 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3449 struct bnx2 *bp = bnapi->bp;
3450 int work_done = 0;
3451 struct status_block *sblk = bnapi->status_blk.msi;
3452
3453 while (1) {
3454 bnx2_poll_link(bp, bnapi);
3455
3456 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3457
3458 #ifdef BCM_CNIC
3459 bnx2_poll_cnic(bp, bnapi);
3460 #endif
3461
3462 /* bnapi->last_status_idx is used below to tell the hw how
3463 * much work has been processed, so we must read it before
3464 * checking for more work.
3465 */
3466 bnapi->last_status_idx = sblk->status_idx;
3467
3468 if (unlikely(work_done >= budget))
3469 break;
3470
3471 rmb();
3472 if (likely(!bnx2_has_work(bnapi))) {
3473 napi_complete(napi);
3474 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3475 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3476 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3477 bnapi->last_status_idx);
3478 break;
3479 }
3480 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3481 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3482 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3483 bnapi->last_status_idx);
3484
3485 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3486 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3487 bnapi->last_status_idx);
3488 break;
3489 }
3490 }
3491
3492 return work_done;
3493 }
3494
3495 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3496 * from set_multicast.
3497 */
3498 static void
3499 bnx2_set_rx_mode(struct net_device *dev)
3500 {
3501 struct bnx2 *bp = netdev_priv(dev);
3502 u32 rx_mode, sort_mode;
3503 struct netdev_hw_addr *ha;
3504 int i;
3505
3506 if (!netif_running(dev))
3507 return;
3508
3509 spin_lock_bh(&bp->phy_lock);
3510
3511 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3512 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3513 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3514 #ifdef BCM_VLAN
3515 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3516 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3517 #else
3518 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3519 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3520 #endif
3521 if (dev->flags & IFF_PROMISC) {
3522 /* Promiscuous mode. */
3523 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3524 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3525 BNX2_RPM_SORT_USER0_PROM_VLAN;
3526 }
3527 else if (dev->flags & IFF_ALLMULTI) {
3528 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3529 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3530 0xffffffff);
3531 }
3532 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3533 }
3534 else {
3535 /* Accept one or more multicast(s). */
3536 struct dev_mc_list *mclist;
3537 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3538 u32 regidx;
3539 u32 bit;
3540 u32 crc;
3541
3542 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3543
3544 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3545 i++, mclist = mclist->next) {
3546
3547 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3548 bit = crc & 0xff;
3549 regidx = (bit & 0xe0) >> 5;
3550 bit &= 0x1f;
3551 mc_filter[regidx] |= (1 << bit);
3552 }
3553
3554 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3555 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3556 mc_filter[i]);
3557 }
3558
3559 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3560 }
3561
3562 if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
3563 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3564 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3565 BNX2_RPM_SORT_USER0_PROM_VLAN;
3566 } else if (!(dev->flags & IFF_PROMISC)) {
3567 /* Add all entries into to the match filter list */
3568 i = 0;
3569 list_for_each_entry(ha, &dev->uc.list, list) {
3570 bnx2_set_mac_addr(bp, ha->addr,
3571 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3572 sort_mode |= (1 <<
3573 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3574 i++;
3575 }
3576
3577 }
3578
3579 if (rx_mode != bp->rx_mode) {
3580 bp->rx_mode = rx_mode;
3581 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3582 }
3583
3584 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3585 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3586 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3587
3588 spin_unlock_bh(&bp->phy_lock);
3589 }
3590
3591 static int __devinit
3592 check_fw_section(const struct firmware *fw,
3593 const struct bnx2_fw_file_section *section,
3594 u32 alignment, bool non_empty)
3595 {
3596 u32 offset = be32_to_cpu(section->offset);
3597 u32 len = be32_to_cpu(section->len);
3598
3599 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3600 return -EINVAL;
3601 if ((non_empty && len == 0) || len > fw->size - offset ||
3602 len & (alignment - 1))
3603 return -EINVAL;
3604 return 0;
3605 }
3606
3607 static int __devinit
3608 check_mips_fw_entry(const struct firmware *fw,
3609 const struct bnx2_mips_fw_file_entry *entry)
3610 {
3611 if (check_fw_section(fw, &entry->text, 4, true) ||
3612 check_fw_section(fw, &entry->data, 4, false) ||
3613 check_fw_section(fw, &entry->rodata, 4, false))
3614 return -EINVAL;
3615 return 0;
3616 }
3617
3618 static int __devinit
3619 bnx2_request_firmware(struct bnx2 *bp)
3620 {
3621 const char *mips_fw_file, *rv2p_fw_file;
3622 const struct bnx2_mips_fw_file *mips_fw;
3623 const struct bnx2_rv2p_fw_file *rv2p_fw;
3624 int rc;
3625
3626 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3627 mips_fw_file = FW_MIPS_FILE_09;
3628 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3629 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3630 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3631 else
3632 rv2p_fw_file = FW_RV2P_FILE_09;
3633 } else {
3634 mips_fw_file = FW_MIPS_FILE_06;
3635 rv2p_fw_file = FW_RV2P_FILE_06;
3636 }
3637
3638 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3639 if (rc) {
3640 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3641 mips_fw_file);
3642 return rc;
3643 }
3644
3645 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3646 if (rc) {
3647 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3648 rv2p_fw_file);
3649 return rc;
3650 }
3651 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3652 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3653 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3654 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3655 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3656 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3657 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3658 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3659 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3660 mips_fw_file);
3661 return -EINVAL;
3662 }
3663 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3664 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3665 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3666 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3667 rv2p_fw_file);
3668 return -EINVAL;
3669 }
3670
3671 return 0;
3672 }
3673
3674 static u32
3675 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3676 {
3677 switch (idx) {
3678 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3679 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3680 rv2p_code |= RV2P_BD_PAGE_SIZE;
3681 break;
3682 }
3683 return rv2p_code;
3684 }
3685
3686 static int
3687 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3688 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3689 {
3690 u32 rv2p_code_len, file_offset;
3691 __be32 *rv2p_code;
3692 int i;
3693 u32 val, cmd, addr;
3694
3695 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3696 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3697
3698 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3699
3700 if (rv2p_proc == RV2P_PROC1) {
3701 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3702 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3703 } else {
3704 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3705 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3706 }
3707
3708 for (i = 0; i < rv2p_code_len; i += 8) {
3709 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3710 rv2p_code++;
3711 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3712 rv2p_code++;
3713
3714 val = (i / 8) | cmd;
3715 REG_WR(bp, addr, val);
3716 }
3717
3718 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3719 for (i = 0; i < 8; i++) {
3720 u32 loc, code;
3721
3722 loc = be32_to_cpu(fw_entry->fixup[i]);
3723 if (loc && ((loc * 4) < rv2p_code_len)) {
3724 code = be32_to_cpu(*(rv2p_code + loc - 1));
3725 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3726 code = be32_to_cpu(*(rv2p_code + loc));
3727 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3728 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3729
3730 val = (loc / 2) | cmd;
3731 REG_WR(bp, addr, val);
3732 }
3733 }
3734
3735 /* Reset the processor, un-stall is done later. */
3736 if (rv2p_proc == RV2P_PROC1) {
3737 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3738 }
3739 else {
3740 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3741 }
3742
3743 return 0;
3744 }
3745
3746 static int
3747 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3748 const struct bnx2_mips_fw_file_entry *fw_entry)
3749 {
3750 u32 addr, len, file_offset;
3751 __be32 *data;
3752 u32 offset;
3753 u32 val;
3754
3755 /* Halt the CPU. */
3756 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3757 val |= cpu_reg->mode_value_halt;
3758 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3759 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3760
3761 /* Load the Text area. */
3762 addr = be32_to_cpu(fw_entry->text.addr);
3763 len = be32_to_cpu(fw_entry->text.len);
3764 file_offset = be32_to_cpu(fw_entry->text.offset);
3765 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3766
3767 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3768 if (len) {
3769 int j;
3770
3771 for (j = 0; j < (len / 4); j++, offset += 4)
3772 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3773 }
3774
3775 /* Load the Data area. */
3776 addr = be32_to_cpu(fw_entry->data.addr);
3777 len = be32_to_cpu(fw_entry->data.len);
3778 file_offset = be32_to_cpu(fw_entry->data.offset);
3779 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3780
3781 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3782 if (len) {
3783 int j;
3784
3785 for (j = 0; j < (len / 4); j++, offset += 4)
3786 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3787 }
3788
3789 /* Load the Read-Only area. */
3790 addr = be32_to_cpu(fw_entry->rodata.addr);
3791 len = be32_to_cpu(fw_entry->rodata.len);
3792 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3793 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3794
3795 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3796 if (len) {
3797 int j;
3798
3799 for (j = 0; j < (len / 4); j++, offset += 4)
3800 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3801 }
3802
3803 /* Clear the pre-fetch instruction. */
3804 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3805
3806 val = be32_to_cpu(fw_entry->start_addr);
3807 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3808
3809 /* Start the CPU. */
3810 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3811 val &= ~cpu_reg->mode_value_halt;
3812 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3813 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3814
3815 return 0;
3816 }
3817
3818 static int
3819 bnx2_init_cpus(struct bnx2 *bp)
3820 {
3821 const struct bnx2_mips_fw_file *mips_fw =
3822 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3823 const struct bnx2_rv2p_fw_file *rv2p_fw =
3824 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3825 int rc;
3826
3827 /* Initialize the RV2P processor. */
3828 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3829 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3830
3831 /* Initialize the RX Processor. */
3832 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3833 if (rc)
3834 goto init_cpu_err;
3835
3836 /* Initialize the TX Processor. */
3837 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3838 if (rc)
3839 goto init_cpu_err;
3840
3841 /* Initialize the TX Patch-up Processor. */
3842 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3843 if (rc)
3844 goto init_cpu_err;
3845
3846 /* Initialize the Completion Processor. */
3847 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3848 if (rc)
3849 goto init_cpu_err;
3850
3851 /* Initialize the Command Processor. */
3852 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3853
3854 init_cpu_err:
3855 return rc;
3856 }
3857
3858 static int
3859 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3860 {
3861 u16 pmcsr;
3862
3863 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3864
3865 switch (state) {
3866 case PCI_D0: {
3867 u32 val;
3868
3869 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3870 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3871 PCI_PM_CTRL_PME_STATUS);
3872
3873 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3874 /* delay required during transition out of D3hot */
3875 msleep(20);
3876
3877 val = REG_RD(bp, BNX2_EMAC_MODE);
3878 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3879 val &= ~BNX2_EMAC_MODE_MPKT;
3880 REG_WR(bp, BNX2_EMAC_MODE, val);
3881
3882 val = REG_RD(bp, BNX2_RPM_CONFIG);
3883 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3884 REG_WR(bp, BNX2_RPM_CONFIG, val);
3885 break;
3886 }
3887 case PCI_D3hot: {
3888 int i;
3889 u32 val, wol_msg;
3890
3891 if (bp->wol) {
3892 u32 advertising;
3893 u8 autoneg;
3894
3895 autoneg = bp->autoneg;
3896 advertising = bp->advertising;
3897
3898 if (bp->phy_port == PORT_TP) {
3899 bp->autoneg = AUTONEG_SPEED;
3900 bp->advertising = ADVERTISED_10baseT_Half |
3901 ADVERTISED_10baseT_Full |
3902 ADVERTISED_100baseT_Half |
3903 ADVERTISED_100baseT_Full |
3904 ADVERTISED_Autoneg;
3905 }
3906
3907 spin_lock_bh(&bp->phy_lock);
3908 bnx2_setup_phy(bp, bp->phy_port);
3909 spin_unlock_bh(&bp->phy_lock);
3910
3911 bp->autoneg = autoneg;
3912 bp->advertising = advertising;
3913
3914 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3915
3916 val = REG_RD(bp, BNX2_EMAC_MODE);
3917
3918 /* Enable port mode. */
3919 val &= ~BNX2_EMAC_MODE_PORT;
3920 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3921 BNX2_EMAC_MODE_ACPI_RCVD |
3922 BNX2_EMAC_MODE_MPKT;
3923 if (bp->phy_port == PORT_TP)
3924 val |= BNX2_EMAC_MODE_PORT_MII;
3925 else {
3926 val |= BNX2_EMAC_MODE_PORT_GMII;
3927 if (bp->line_speed == SPEED_2500)
3928 val |= BNX2_EMAC_MODE_25G_MODE;
3929 }
3930
3931 REG_WR(bp, BNX2_EMAC_MODE, val);
3932
3933 /* receive all multicast */
3934 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3935 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3936 0xffffffff);
3937 }
3938 REG_WR(bp, BNX2_EMAC_RX_MODE,
3939 BNX2_EMAC_RX_MODE_SORT_MODE);
3940
3941 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3942 BNX2_RPM_SORT_USER0_MC_EN;
3943 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3944 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3945 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3946 BNX2_RPM_SORT_USER0_ENA);
3947
3948 /* Need to enable EMAC and RPM for WOL. */
3949 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3950 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3951 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3952 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3953
3954 val = REG_RD(bp, BNX2_RPM_CONFIG);
3955 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3956 REG_WR(bp, BNX2_RPM_CONFIG, val);
3957
3958 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3959 }
3960 else {
3961 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3962 }
3963
3964 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3965 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3966 1, 0);
3967
3968 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3969 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3970 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3971
3972 if (bp->wol)
3973 pmcsr |= 3;
3974 }
3975 else {
3976 pmcsr |= 3;
3977 }
3978 if (bp->wol) {
3979 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3980 }
3981 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3982 pmcsr);
3983
3984 /* No more memory access after this point until
3985 * device is brought back to D0.
3986 */
3987 udelay(50);
3988 break;
3989 }
3990 default:
3991 return -EINVAL;
3992 }
3993 return 0;
3994 }
3995
3996 static int
3997 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3998 {
3999 u32 val;
4000 int j;
4001
4002 /* Request access to the flash interface. */
4003 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
4004 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4005 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4006 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
4007 break;
4008
4009 udelay(5);
4010 }
4011
4012 if (j >= NVRAM_TIMEOUT_COUNT)
4013 return -EBUSY;
4014
4015 return 0;
4016 }
4017
4018 static int
4019 bnx2_release_nvram_lock(struct bnx2 *bp)
4020 {
4021 int j;
4022 u32 val;
4023
4024 /* Relinquish nvram interface. */
4025 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4026
4027 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4028 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4029 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4030 break;
4031
4032 udelay(5);
4033 }
4034
4035 if (j >= NVRAM_TIMEOUT_COUNT)
4036 return -EBUSY;
4037
4038 return 0;
4039 }
4040
4041
4042 static int
4043 bnx2_enable_nvram_write(struct bnx2 *bp)
4044 {
4045 u32 val;
4046
4047 val = REG_RD(bp, BNX2_MISC_CFG);
4048 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4049
4050 if (bp->flash_info->flags & BNX2_NV_WREN) {
4051 int j;
4052
4053 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4054 REG_WR(bp, BNX2_NVM_COMMAND,
4055 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4056
4057 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4058 udelay(5);
4059
4060 val = REG_RD(bp, BNX2_NVM_COMMAND);
4061 if (val & BNX2_NVM_COMMAND_DONE)
4062 break;
4063 }
4064
4065 if (j >= NVRAM_TIMEOUT_COUNT)
4066 return -EBUSY;
4067 }
4068 return 0;
4069 }
4070
4071 static void
4072 bnx2_disable_nvram_write(struct bnx2 *bp)
4073 {
4074 u32 val;
4075
4076 val = REG_RD(bp, BNX2_MISC_CFG);
4077 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4078 }
4079
4080
4081 static void
4082 bnx2_enable_nvram_access(struct bnx2 *bp)
4083 {
4084 u32 val;
4085
4086 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4087 /* Enable both bits, even on read. */
4088 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4089 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4090 }
4091
4092 static void
4093 bnx2_disable_nvram_access(struct bnx2 *bp)
4094 {
4095 u32 val;
4096
4097 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4098 /* Disable both bits, even after read. */
4099 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4100 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4101 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4102 }
4103
4104 static int
4105 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4106 {
4107 u32 cmd;
4108 int j;
4109
4110 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4111 /* Buffered flash, no erase needed */
4112 return 0;
4113
4114 /* Build an erase command */
4115 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4116 BNX2_NVM_COMMAND_DOIT;
4117
4118 /* Need to clear DONE bit separately. */
4119 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4120
4121 /* Address of the NVRAM to read from. */
4122 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4123
4124 /* Issue an erase command. */
4125 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4126
4127 /* Wait for completion. */
4128 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4129 u32 val;
4130
4131 udelay(5);
4132
4133 val = REG_RD(bp, BNX2_NVM_COMMAND);
4134 if (val & BNX2_NVM_COMMAND_DONE)
4135 break;
4136 }
4137
4138 if (j >= NVRAM_TIMEOUT_COUNT)
4139 return -EBUSY;
4140
4141 return 0;
4142 }
4143
4144 static int
4145 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4146 {
4147 u32 cmd;
4148 int j;
4149
4150 /* Build the command word. */
4151 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4152
4153 /* Calculate an offset of a buffered flash, not needed for 5709. */
4154 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4155 offset = ((offset / bp->flash_info->page_size) <<
4156 bp->flash_info->page_bits) +
4157 (offset % bp->flash_info->page_size);
4158 }
4159
4160 /* Need to clear DONE bit separately. */
4161 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4162
4163 /* Address of the NVRAM to read from. */
4164 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4165
4166 /* Issue a read command. */
4167 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4168
4169 /* Wait for completion. */
4170 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4171 u32 val;
4172
4173 udelay(5);
4174
4175 val = REG_RD(bp, BNX2_NVM_COMMAND);
4176 if (val & BNX2_NVM_COMMAND_DONE) {
4177 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4178 memcpy(ret_val, &v, 4);
4179 break;
4180 }
4181 }
4182 if (j >= NVRAM_TIMEOUT_COUNT)
4183 return -EBUSY;
4184
4185 return 0;
4186 }
4187
4188
4189 static int
4190 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4191 {
4192 u32 cmd;
4193 __be32 val32;
4194 int j;
4195
4196 /* Build the command word. */
4197 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4198
4199 /* Calculate an offset of a buffered flash, not needed for 5709. */
4200 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4201 offset = ((offset / bp->flash_info->page_size) <<
4202 bp->flash_info->page_bits) +
4203 (offset % bp->flash_info->page_size);
4204 }
4205
4206 /* Need to clear DONE bit separately. */
4207 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4208
4209 memcpy(&val32, val, 4);
4210
4211 /* Write the data. */
4212 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4213
4214 /* Address of the NVRAM to write to. */
4215 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4216
4217 /* Issue the write command. */
4218 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4219
4220 /* Wait for completion. */
4221 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4222 udelay(5);
4223
4224 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4225 break;
4226 }
4227 if (j >= NVRAM_TIMEOUT_COUNT)
4228 return -EBUSY;
4229
4230 return 0;
4231 }
4232
4233 static int
4234 bnx2_init_nvram(struct bnx2 *bp)
4235 {
4236 u32 val;
4237 int j, entry_count, rc = 0;
4238 const struct flash_spec *flash;
4239
4240 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4241 bp->flash_info = &flash_5709;
4242 goto get_flash_size;
4243 }
4244
4245 /* Determine the selected interface. */
4246 val = REG_RD(bp, BNX2_NVM_CFG1);
4247
4248 entry_count = ARRAY_SIZE(flash_table);
4249
4250 if (val & 0x40000000) {
4251
4252 /* Flash interface has been reconfigured */
4253 for (j = 0, flash = &flash_table[0]; j < entry_count;
4254 j++, flash++) {
4255 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4256 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4257 bp->flash_info = flash;
4258 break;
4259 }
4260 }
4261 }
4262 else {
4263 u32 mask;
4264 /* Not yet been reconfigured */
4265
4266 if (val & (1 << 23))
4267 mask = FLASH_BACKUP_STRAP_MASK;
4268 else
4269 mask = FLASH_STRAP_MASK;
4270
4271 for (j = 0, flash = &flash_table[0]; j < entry_count;
4272 j++, flash++) {
4273
4274 if ((val & mask) == (flash->strapping & mask)) {
4275 bp->flash_info = flash;
4276
4277 /* Request access to the flash interface. */
4278 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4279 return rc;
4280
4281 /* Enable access to flash interface */
4282 bnx2_enable_nvram_access(bp);
4283
4284 /* Reconfigure the flash interface */
4285 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4286 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4287 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4288 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4289
4290 /* Disable access to flash interface */
4291 bnx2_disable_nvram_access(bp);
4292 bnx2_release_nvram_lock(bp);
4293
4294 break;
4295 }
4296 }
4297 } /* if (val & 0x40000000) */
4298
4299 if (j == entry_count) {
4300 bp->flash_info = NULL;
4301 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4302 return -ENODEV;
4303 }
4304
4305 get_flash_size:
4306 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4307 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4308 if (val)
4309 bp->flash_size = val;
4310 else
4311 bp->flash_size = bp->flash_info->total_size;
4312
4313 return rc;
4314 }
4315
4316 static int
4317 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4318 int buf_size)
4319 {
4320 int rc = 0;
4321 u32 cmd_flags, offset32, len32, extra;
4322
4323 if (buf_size == 0)
4324 return 0;
4325
4326 /* Request access to the flash interface. */
4327 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4328 return rc;
4329
4330 /* Enable access to flash interface */
4331 bnx2_enable_nvram_access(bp);
4332
4333 len32 = buf_size;
4334 offset32 = offset;
4335 extra = 0;
4336
4337 cmd_flags = 0;
4338
4339 if (offset32 & 3) {
4340 u8 buf[4];
4341 u32 pre_len;
4342
4343 offset32 &= ~3;
4344 pre_len = 4 - (offset & 3);
4345
4346 if (pre_len >= len32) {
4347 pre_len = len32;
4348 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4349 BNX2_NVM_COMMAND_LAST;
4350 }
4351 else {
4352 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4353 }
4354
4355 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4356
4357 if (rc)
4358 return rc;
4359
4360 memcpy(ret_buf, buf + (offset & 3), pre_len);
4361
4362 offset32 += 4;
4363 ret_buf += pre_len;
4364 len32 -= pre_len;
4365 }
4366 if (len32 & 3) {
4367 extra = 4 - (len32 & 3);
4368 len32 = (len32 + 4) & ~3;
4369 }
4370
4371 if (len32 == 4) {
4372 u8 buf[4];
4373
4374 if (cmd_flags)
4375 cmd_flags = BNX2_NVM_COMMAND_LAST;
4376 else
4377 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4378 BNX2_NVM_COMMAND_LAST;
4379
4380 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4381
4382 memcpy(ret_buf, buf, 4 - extra);
4383 }
4384 else if (len32 > 0) {
4385 u8 buf[4];
4386
4387 /* Read the first word. */
4388 if (cmd_flags)
4389 cmd_flags = 0;
4390 else
4391 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4392
4393 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4394
4395 /* Advance to the next dword. */
4396 offset32 += 4;
4397 ret_buf += 4;
4398 len32 -= 4;
4399
4400 while (len32 > 4 && rc == 0) {
4401 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4402
4403 /* Advance to the next dword. */
4404 offset32 += 4;
4405 ret_buf += 4;
4406 len32 -= 4;
4407 }
4408
4409 if (rc)
4410 return rc;
4411
4412 cmd_flags = BNX2_NVM_COMMAND_LAST;
4413 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4414
4415 memcpy(ret_buf, buf, 4 - extra);
4416 }
4417
4418 /* Disable access to flash interface */
4419 bnx2_disable_nvram_access(bp);
4420
4421 bnx2_release_nvram_lock(bp);
4422
4423 return rc;
4424 }
4425
4426 static int
4427 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4428 int buf_size)
4429 {
4430 u32 written, offset32, len32;
4431 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4432 int rc = 0;
4433 int align_start, align_end;
4434
4435 buf = data_buf;
4436 offset32 = offset;
4437 len32 = buf_size;
4438 align_start = align_end = 0;
4439
4440 if ((align_start = (offset32 & 3))) {
4441 offset32 &= ~3;
4442 len32 += align_start;
4443 if (len32 < 4)
4444 len32 = 4;
4445 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4446 return rc;
4447 }
4448
4449 if (len32 & 3) {
4450 align_end = 4 - (len32 & 3);
4451 len32 += align_end;
4452 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4453 return rc;
4454 }
4455
4456 if (align_start || align_end) {
4457 align_buf = kmalloc(len32, GFP_KERNEL);
4458 if (align_buf == NULL)
4459 return -ENOMEM;
4460 if (align_start) {
4461 memcpy(align_buf, start, 4);
4462 }
4463 if (align_end) {
4464 memcpy(align_buf + len32 - 4, end, 4);
4465 }
4466 memcpy(align_buf + align_start, data_buf, buf_size);
4467 buf = align_buf;
4468 }
4469
4470 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4471 flash_buffer = kmalloc(264, GFP_KERNEL);
4472 if (flash_buffer == NULL) {
4473 rc = -ENOMEM;
4474 goto nvram_write_end;
4475 }
4476 }
4477
4478 written = 0;
4479 while ((written < len32) && (rc == 0)) {
4480 u32 page_start, page_end, data_start, data_end;
4481 u32 addr, cmd_flags;
4482 int i;
4483
4484 /* Find the page_start addr */
4485 page_start = offset32 + written;
4486 page_start -= (page_start % bp->flash_info->page_size);
4487 /* Find the page_end addr */
4488 page_end = page_start + bp->flash_info->page_size;
4489 /* Find the data_start addr */
4490 data_start = (written == 0) ? offset32 : page_start;
4491 /* Find the data_end addr */
4492 data_end = (page_end > offset32 + len32) ?
4493 (offset32 + len32) : page_end;
4494
4495 /* Request access to the flash interface. */
4496 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4497 goto nvram_write_end;
4498
4499 /* Enable access to flash interface */
4500 bnx2_enable_nvram_access(bp);
4501
4502 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4503 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4504 int j;
4505
4506 /* Read the whole page into the buffer
4507 * (non-buffer flash only) */
4508 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4509 if (j == (bp->flash_info->page_size - 4)) {
4510 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4511 }
4512 rc = bnx2_nvram_read_dword(bp,
4513 page_start + j,
4514 &flash_buffer[j],
4515 cmd_flags);
4516
4517 if (rc)
4518 goto nvram_write_end;
4519
4520 cmd_flags = 0;
4521 }
4522 }
4523
4524 /* Enable writes to flash interface (unlock write-protect) */
4525 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4526 goto nvram_write_end;
4527
4528 /* Loop to write back the buffer data from page_start to
4529 * data_start */
4530 i = 0;
4531 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4532 /* Erase the page */
4533 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4534 goto nvram_write_end;
4535
4536 /* Re-enable the write again for the actual write */
4537 bnx2_enable_nvram_write(bp);
4538
4539 for (addr = page_start; addr < data_start;
4540 addr += 4, i += 4) {
4541
4542 rc = bnx2_nvram_write_dword(bp, addr,
4543 &flash_buffer[i], cmd_flags);
4544
4545 if (rc != 0)
4546 goto nvram_write_end;
4547
4548 cmd_flags = 0;
4549 }
4550 }
4551
4552 /* Loop to write the new data from data_start to data_end */
4553 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4554 if ((addr == page_end - 4) ||
4555 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4556 (addr == data_end - 4))) {
4557
4558 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4559 }
4560 rc = bnx2_nvram_write_dword(bp, addr, buf,
4561 cmd_flags);
4562
4563 if (rc != 0)
4564 goto nvram_write_end;
4565
4566 cmd_flags = 0;
4567 buf += 4;
4568 }
4569
4570 /* Loop to write back the buffer data from data_end
4571 * to page_end */
4572 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4573 for (addr = data_end; addr < page_end;
4574 addr += 4, i += 4) {
4575
4576 if (addr == page_end-4) {
4577 cmd_flags = BNX2_NVM_COMMAND_LAST;
4578 }
4579 rc = bnx2_nvram_write_dword(bp, addr,
4580 &flash_buffer[i], cmd_flags);
4581
4582 if (rc != 0)
4583 goto nvram_write_end;
4584
4585 cmd_flags = 0;
4586 }
4587 }
4588
4589 /* Disable writes to flash interface (lock write-protect) */
4590 bnx2_disable_nvram_write(bp);
4591
4592 /* Disable access to flash interface */
4593 bnx2_disable_nvram_access(bp);
4594 bnx2_release_nvram_lock(bp);
4595
4596 /* Increment written */
4597 written += data_end - data_start;
4598 }
4599
4600 nvram_write_end:
4601 kfree(flash_buffer);
4602 kfree(align_buf);
4603 return rc;
4604 }
4605
4606 static void
4607 bnx2_init_fw_cap(struct bnx2 *bp)
4608 {
4609 u32 val, sig = 0;
4610
4611 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4612 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4613
4614 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4615 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4616
4617 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4618 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4619 return;
4620
4621 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4622 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4623 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4624 }
4625
4626 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4627 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4628 u32 link;
4629
4630 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4631
4632 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4633 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4634 bp->phy_port = PORT_FIBRE;
4635 else
4636 bp->phy_port = PORT_TP;
4637
4638 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4639 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4640 }
4641
4642 if (netif_running(bp->dev) && sig)
4643 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4644 }
4645
4646 static void
4647 bnx2_setup_msix_tbl(struct bnx2 *bp)
4648 {
4649 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4650
4651 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4652 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4653 }
4654
4655 static int
4656 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4657 {
4658 u32 val;
4659 int i, rc = 0;
4660 u8 old_port;
4661
4662 /* Wait for the current PCI transaction to complete before
4663 * issuing a reset. */
4664 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4665 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4666 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4667 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4668 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4669 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4670 udelay(5);
4671
4672 /* Wait for the firmware to tell us it is ok to issue a reset. */
4673 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4674
4675 /* Deposit a driver reset signature so the firmware knows that
4676 * this is a soft reset. */
4677 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4678 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4679
4680 /* Do a dummy read to force the chip to complete all current transaction
4681 * before we issue a reset. */
4682 val = REG_RD(bp, BNX2_MISC_ID);
4683
4684 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4685 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4686 REG_RD(bp, BNX2_MISC_COMMAND);
4687 udelay(5);
4688
4689 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4690 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4691
4692 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4693
4694 } else {
4695 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4696 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4697 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4698
4699 /* Chip reset. */
4700 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4701
4702 /* Reading back any register after chip reset will hang the
4703 * bus on 5706 A0 and A1. The msleep below provides plenty
4704 * of margin for write posting.
4705 */
4706 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4707 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4708 msleep(20);
4709
4710 /* Reset takes approximate 30 usec */
4711 for (i = 0; i < 10; i++) {
4712 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4713 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4714 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4715 break;
4716 udelay(10);
4717 }
4718
4719 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4720 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4721 printk(KERN_ERR PFX "Chip reset did not complete\n");
4722 return -EBUSY;
4723 }
4724 }
4725
4726 /* Make sure byte swapping is properly configured. */
4727 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4728 if (val != 0x01020304) {
4729 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4730 return -ENODEV;
4731 }
4732
4733 /* Wait for the firmware to finish its initialization. */
4734 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4735 if (rc)
4736 return rc;
4737
4738 spin_lock_bh(&bp->phy_lock);
4739 old_port = bp->phy_port;
4740 bnx2_init_fw_cap(bp);
4741 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4742 old_port != bp->phy_port)
4743 bnx2_set_default_remote_link(bp);
4744 spin_unlock_bh(&bp->phy_lock);
4745
4746 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4747 /* Adjust the voltage regular to two steps lower. The default
4748 * of this register is 0x0000000e. */
4749 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4750
4751 /* Remove bad rbuf memory from the free pool. */
4752 rc = bnx2_alloc_bad_rbuf(bp);
4753 }
4754
4755 if (bp->flags & BNX2_FLAG_USING_MSIX)
4756 bnx2_setup_msix_tbl(bp);
4757
4758 return rc;
4759 }
4760
4761 static int
4762 bnx2_init_chip(struct bnx2 *bp)
4763 {
4764 u32 val, mtu;
4765 int rc, i;
4766
4767 /* Make sure the interrupt is not active. */
4768 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4769
4770 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4771 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4772 #ifdef __BIG_ENDIAN
4773 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4774 #endif
4775 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4776 DMA_READ_CHANS << 12 |
4777 DMA_WRITE_CHANS << 16;
4778
4779 val |= (0x2 << 20) | (1 << 11);
4780
4781 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4782 val |= (1 << 23);
4783
4784 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4785 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4786 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4787
4788 REG_WR(bp, BNX2_DMA_CONFIG, val);
4789
4790 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4791 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4792 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4793 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4794 }
4795
4796 if (bp->flags & BNX2_FLAG_PCIX) {
4797 u16 val16;
4798
4799 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4800 &val16);
4801 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4802 val16 & ~PCI_X_CMD_ERO);
4803 }
4804
4805 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4806 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4807 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4808 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4809
4810 /* Initialize context mapping and zero out the quick contexts. The
4811 * context block must have already been enabled. */
4812 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4813 rc = bnx2_init_5709_context(bp);
4814 if (rc)
4815 return rc;
4816 } else
4817 bnx2_init_context(bp);
4818
4819 if ((rc = bnx2_init_cpus(bp)) != 0)
4820 return rc;
4821
4822 bnx2_init_nvram(bp);
4823
4824 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4825
4826 val = REG_RD(bp, BNX2_MQ_CONFIG);
4827 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4828 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4829 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4830 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4831 if (CHIP_REV(bp) == CHIP_REV_Ax)
4832 val |= BNX2_MQ_CONFIG_HALT_DIS;
4833 }
4834
4835 REG_WR(bp, BNX2_MQ_CONFIG, val);
4836
4837 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4838 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4839 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4840
4841 val = (BCM_PAGE_BITS - 8) << 24;
4842 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4843
4844 /* Configure page size. */
4845 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4846 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4847 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4848 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4849
4850 val = bp->mac_addr[0] +
4851 (bp->mac_addr[1] << 8) +
4852 (bp->mac_addr[2] << 16) +
4853 bp->mac_addr[3] +
4854 (bp->mac_addr[4] << 8) +
4855 (bp->mac_addr[5] << 16);
4856 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4857
4858 /* Program the MTU. Also include 4 bytes for CRC32. */
4859 mtu = bp->dev->mtu;
4860 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4861 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4862 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4863 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4864
4865 if (mtu < 1500)
4866 mtu = 1500;
4867
4868 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4869 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4870 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4871
4872 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4873 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4874 bp->bnx2_napi[i].last_status_idx = 0;
4875
4876 bp->idle_chk_status_idx = 0xffff;
4877
4878 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4879
4880 /* Set up how to generate a link change interrupt. */
4881 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4882
4883 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4884 (u64) bp->status_blk_mapping & 0xffffffff);
4885 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4886
4887 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4888 (u64) bp->stats_blk_mapping & 0xffffffff);
4889 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4890 (u64) bp->stats_blk_mapping >> 32);
4891
4892 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4893 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4894
4895 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4896 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4897
4898 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4899 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4900
4901 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4902
4903 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4904
4905 REG_WR(bp, BNX2_HC_COM_TICKS,
4906 (bp->com_ticks_int << 16) | bp->com_ticks);
4907
4908 REG_WR(bp, BNX2_HC_CMD_TICKS,
4909 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4910
4911 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4912 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4913 else
4914 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4915 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4916
4917 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4918 val = BNX2_HC_CONFIG_COLLECT_STATS;
4919 else {
4920 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4921 BNX2_HC_CONFIG_COLLECT_STATS;
4922 }
4923
4924 if (bp->irq_nvecs > 1) {
4925 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4926 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4927
4928 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4929 }
4930
4931 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4932 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4933
4934 REG_WR(bp, BNX2_HC_CONFIG, val);
4935
4936 for (i = 1; i < bp->irq_nvecs; i++) {
4937 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4938 BNX2_HC_SB_CONFIG_1;
4939
4940 REG_WR(bp, base,
4941 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4942 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4943 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4944
4945 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4946 (bp->tx_quick_cons_trip_int << 16) |
4947 bp->tx_quick_cons_trip);
4948
4949 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4950 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4951
4952 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4953 (bp->rx_quick_cons_trip_int << 16) |
4954 bp->rx_quick_cons_trip);
4955
4956 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4957 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4958 }
4959
4960 /* Clear internal stats counters. */
4961 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4962
4963 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4964
4965 /* Initialize the receive filter. */
4966 bnx2_set_rx_mode(bp->dev);
4967
4968 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4969 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4970 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4971 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4972 }
4973 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4974 1, 0);
4975
4976 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4977 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4978
4979 udelay(20);
4980
4981 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4982
4983 return rc;
4984 }
4985
4986 static void
4987 bnx2_clear_ring_states(struct bnx2 *bp)
4988 {
4989 struct bnx2_napi *bnapi;
4990 struct bnx2_tx_ring_info *txr;
4991 struct bnx2_rx_ring_info *rxr;
4992 int i;
4993
4994 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4995 bnapi = &bp->bnx2_napi[i];
4996 txr = &bnapi->tx_ring;
4997 rxr = &bnapi->rx_ring;
4998
4999 txr->tx_cons = 0;
5000 txr->hw_tx_cons = 0;
5001 rxr->rx_prod_bseq = 0;
5002 rxr->rx_prod = 0;
5003 rxr->rx_cons = 0;
5004 rxr->rx_pg_prod = 0;
5005 rxr->rx_pg_cons = 0;
5006 }
5007 }
5008
5009 static void
5010 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5011 {
5012 u32 val, offset0, offset1, offset2, offset3;
5013 u32 cid_addr = GET_CID_ADDR(cid);
5014
5015 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5016 offset0 = BNX2_L2CTX_TYPE_XI;
5017 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5018 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5019 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5020 } else {
5021 offset0 = BNX2_L2CTX_TYPE;
5022 offset1 = BNX2_L2CTX_CMD_TYPE;
5023 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5024 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5025 }
5026 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5027 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5028
5029 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5030 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5031
5032 val = (u64) txr->tx_desc_mapping >> 32;
5033 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5034
5035 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5036 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5037 }
5038
5039 static void
5040 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5041 {
5042 struct tx_bd *txbd;
5043 u32 cid = TX_CID;
5044 struct bnx2_napi *bnapi;
5045 struct bnx2_tx_ring_info *txr;
5046
5047 bnapi = &bp->bnx2_napi[ring_num];
5048 txr = &bnapi->tx_ring;
5049
5050 if (ring_num == 0)
5051 cid = TX_CID;
5052 else
5053 cid = TX_TSS_CID + ring_num - 1;
5054
5055 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5056
5057 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5058
5059 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5060 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5061
5062 txr->tx_prod = 0;
5063 txr->tx_prod_bseq = 0;
5064
5065 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5066 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5067
5068 bnx2_init_tx_context(bp, cid, txr);
5069 }
5070
5071 static void
5072 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5073 int num_rings)
5074 {
5075 int i;
5076 struct rx_bd *rxbd;
5077
5078 for (i = 0; i < num_rings; i++) {
5079 int j;
5080
5081 rxbd = &rx_ring[i][0];
5082 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5083 rxbd->rx_bd_len = buf_size;
5084 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5085 }
5086 if (i == (num_rings - 1))
5087 j = 0;
5088 else
5089 j = i + 1;
5090 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5091 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5092 }
5093 }
5094
5095 static void
5096 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5097 {
5098 int i;
5099 u16 prod, ring_prod;
5100 u32 cid, rx_cid_addr, val;
5101 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5102 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5103
5104 if (ring_num == 0)
5105 cid = RX_CID;
5106 else
5107 cid = RX_RSS_CID + ring_num - 1;
5108
5109 rx_cid_addr = GET_CID_ADDR(cid);
5110
5111 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5112 bp->rx_buf_use_size, bp->rx_max_ring);
5113
5114 bnx2_init_rx_context(bp, cid);
5115
5116 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5117 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5118 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5119 }
5120
5121 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5122 if (bp->rx_pg_ring_size) {
5123 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5124 rxr->rx_pg_desc_mapping,
5125 PAGE_SIZE, bp->rx_max_pg_ring);
5126 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5127 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5128 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5129 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5130
5131 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5132 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5133
5134 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5135 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5136
5137 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5138 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5139 }
5140
5141 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5142 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5143
5144 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5145 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5146
5147 ring_prod = prod = rxr->rx_pg_prod;
5148 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5149 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
5150 break;
5151 prod = NEXT_RX_BD(prod);
5152 ring_prod = RX_PG_RING_IDX(prod);
5153 }
5154 rxr->rx_pg_prod = prod;
5155
5156 ring_prod = prod = rxr->rx_prod;
5157 for (i = 0; i < bp->rx_ring_size; i++) {
5158 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
5159 break;
5160 prod = NEXT_RX_BD(prod);
5161 ring_prod = RX_RING_IDX(prod);
5162 }
5163 rxr->rx_prod = prod;
5164
5165 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5166 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5167 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5168
5169 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5170 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5171
5172 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5173 }
5174
5175 static void
5176 bnx2_init_all_rings(struct bnx2 *bp)
5177 {
5178 int i;
5179 u32 val;
5180
5181 bnx2_clear_ring_states(bp);
5182
5183 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5184 for (i = 0; i < bp->num_tx_rings; i++)
5185 bnx2_init_tx_ring(bp, i);
5186
5187 if (bp->num_tx_rings > 1)
5188 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5189 (TX_TSS_CID << 7));
5190
5191 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5192 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5193
5194 for (i = 0; i < bp->num_rx_rings; i++)
5195 bnx2_init_rx_ring(bp, i);
5196
5197 if (bp->num_rx_rings > 1) {
5198 u32 tbl_32;
5199 u8 *tbl = (u8 *) &tbl_32;
5200
5201 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5202 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5203
5204 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5205 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5206 if ((i % 4) == 3)
5207 bnx2_reg_wr_ind(bp,
5208 BNX2_RXP_SCRATCH_RSS_TBL + i,
5209 cpu_to_be32(tbl_32));
5210 }
5211
5212 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5213 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5214
5215 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5216
5217 }
5218 }
5219
5220 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5221 {
5222 u32 max, num_rings = 1;
5223
5224 while (ring_size > MAX_RX_DESC_CNT) {
5225 ring_size -= MAX_RX_DESC_CNT;
5226 num_rings++;
5227 }
5228 /* round to next power of 2 */
5229 max = max_size;
5230 while ((max & num_rings) == 0)
5231 max >>= 1;
5232
5233 if (num_rings != max)
5234 max <<= 1;
5235
5236 return max;
5237 }
5238
5239 static void
5240 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5241 {
5242 u32 rx_size, rx_space, jumbo_size;
5243
5244 /* 8 for CRC and VLAN */
5245 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5246
5247 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5248 sizeof(struct skb_shared_info);
5249
5250 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5251 bp->rx_pg_ring_size = 0;
5252 bp->rx_max_pg_ring = 0;
5253 bp->rx_max_pg_ring_idx = 0;
5254 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5255 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5256
5257 jumbo_size = size * pages;
5258 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5259 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5260
5261 bp->rx_pg_ring_size = jumbo_size;
5262 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5263 MAX_RX_PG_RINGS);
5264 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5265 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5266 bp->rx_copy_thresh = 0;
5267 }
5268
5269 bp->rx_buf_use_size = rx_size;
5270 /* hw alignment */
5271 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5272 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5273 bp->rx_ring_size = size;
5274 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5275 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5276 }
5277
5278 static void
5279 bnx2_free_tx_skbs(struct bnx2 *bp)
5280 {
5281 int i;
5282
5283 for (i = 0; i < bp->num_tx_rings; i++) {
5284 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5285 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5286 int j;
5287
5288 if (txr->tx_buf_ring == NULL)
5289 continue;
5290
5291 for (j = 0; j < TX_DESC_CNT; ) {
5292 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5293 struct sk_buff *skb = tx_buf->skb;
5294
5295 if (skb == NULL) {
5296 j++;
5297 continue;
5298 }
5299
5300 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5301
5302 tx_buf->skb = NULL;
5303
5304 j += skb_shinfo(skb)->nr_frags + 1;
5305 dev_kfree_skb(skb);
5306 }
5307 }
5308 }
5309
5310 static void
5311 bnx2_free_rx_skbs(struct bnx2 *bp)
5312 {
5313 int i;
5314
5315 for (i = 0; i < bp->num_rx_rings; i++) {
5316 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5317 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5318 int j;
5319
5320 if (rxr->rx_buf_ring == NULL)
5321 return;
5322
5323 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5324 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5325 struct sk_buff *skb = rx_buf->skb;
5326
5327 if (skb == NULL)
5328 continue;
5329
5330 pci_unmap_single(bp->pdev,
5331 pci_unmap_addr(rx_buf, mapping),
5332 bp->rx_buf_use_size,
5333 PCI_DMA_FROMDEVICE);
5334
5335 rx_buf->skb = NULL;
5336
5337 dev_kfree_skb(skb);
5338 }
5339 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5340 bnx2_free_rx_page(bp, rxr, j);
5341 }
5342 }
5343
5344 static void
5345 bnx2_free_skbs(struct bnx2 *bp)
5346 {
5347 bnx2_free_tx_skbs(bp);
5348 bnx2_free_rx_skbs(bp);
5349 }
5350
5351 static int
5352 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5353 {
5354 int rc;
5355
5356 rc = bnx2_reset_chip(bp, reset_code);
5357 bnx2_free_skbs(bp);
5358 if (rc)
5359 return rc;
5360
5361 if ((rc = bnx2_init_chip(bp)) != 0)
5362 return rc;
5363
5364 bnx2_init_all_rings(bp);
5365 return 0;
5366 }
5367
5368 static int
5369 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5370 {
5371 int rc;
5372
5373 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5374 return rc;
5375
5376 spin_lock_bh(&bp->phy_lock);
5377 bnx2_init_phy(bp, reset_phy);
5378 bnx2_set_link(bp);
5379 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5380 bnx2_remote_phy_event(bp);
5381 spin_unlock_bh(&bp->phy_lock);
5382 return 0;
5383 }
5384
5385 static int
5386 bnx2_shutdown_chip(struct bnx2 *bp)
5387 {
5388 u32 reset_code;
5389
5390 if (bp->flags & BNX2_FLAG_NO_WOL)
5391 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5392 else if (bp->wol)
5393 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5394 else
5395 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5396
5397 return bnx2_reset_chip(bp, reset_code);
5398 }
5399
5400 static int
5401 bnx2_test_registers(struct bnx2 *bp)
5402 {
5403 int ret;
5404 int i, is_5709;
5405 static const struct {
5406 u16 offset;
5407 u16 flags;
5408 #define BNX2_FL_NOT_5709 1
5409 u32 rw_mask;
5410 u32 ro_mask;
5411 } reg_tbl[] = {
5412 { 0x006c, 0, 0x00000000, 0x0000003f },
5413 { 0x0090, 0, 0xffffffff, 0x00000000 },
5414 { 0x0094, 0, 0x00000000, 0x00000000 },
5415
5416 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5417 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5418 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5419 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5420 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5421 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5422 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5423 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5424 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5425
5426 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5427 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5428 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5429 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5430 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5431 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5432
5433 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5434 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5435 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5436
5437 { 0x1000, 0, 0x00000000, 0x00000001 },
5438 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5439
5440 { 0x1408, 0, 0x01c00800, 0x00000000 },
5441 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5442 { 0x14a8, 0, 0x00000000, 0x000001ff },
5443 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5444 { 0x14b0, 0, 0x00000002, 0x00000001 },
5445 { 0x14b8, 0, 0x00000000, 0x00000000 },
5446 { 0x14c0, 0, 0x00000000, 0x00000009 },
5447 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5448 { 0x14cc, 0, 0x00000000, 0x00000001 },
5449 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5450
5451 { 0x1800, 0, 0x00000000, 0x00000001 },
5452 { 0x1804, 0, 0x00000000, 0x00000003 },
5453
5454 { 0x2800, 0, 0x00000000, 0x00000001 },
5455 { 0x2804, 0, 0x00000000, 0x00003f01 },
5456 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5457 { 0x2810, 0, 0xffff0000, 0x00000000 },
5458 { 0x2814, 0, 0xffff0000, 0x00000000 },
5459 { 0x2818, 0, 0xffff0000, 0x00000000 },
5460 { 0x281c, 0, 0xffff0000, 0x00000000 },
5461 { 0x2834, 0, 0xffffffff, 0x00000000 },
5462 { 0x2840, 0, 0x00000000, 0xffffffff },
5463 { 0x2844, 0, 0x00000000, 0xffffffff },
5464 { 0x2848, 0, 0xffffffff, 0x00000000 },
5465 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5466
5467 { 0x2c00, 0, 0x00000000, 0x00000011 },
5468 { 0x2c04, 0, 0x00000000, 0x00030007 },
5469
5470 { 0x3c00, 0, 0x00000000, 0x00000001 },
5471 { 0x3c04, 0, 0x00000000, 0x00070000 },
5472 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5473 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5474 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5475 { 0x3c14, 0, 0x00000000, 0xffffffff },
5476 { 0x3c18, 0, 0x00000000, 0xffffffff },
5477 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5478 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5479
5480 { 0x5004, 0, 0x00000000, 0x0000007f },
5481 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5482
5483 { 0x5c00, 0, 0x00000000, 0x00000001 },
5484 { 0x5c04, 0, 0x00000000, 0x0003000f },
5485 { 0x5c08, 0, 0x00000003, 0x00000000 },
5486 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5487 { 0x5c10, 0, 0x00000000, 0xffffffff },
5488 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5489 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5490 { 0x5c88, 0, 0x00000000, 0x00077373 },
5491 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5492
5493 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5494 { 0x680c, 0, 0xffffffff, 0x00000000 },
5495 { 0x6810, 0, 0xffffffff, 0x00000000 },
5496 { 0x6814, 0, 0xffffffff, 0x00000000 },
5497 { 0x6818, 0, 0xffffffff, 0x00000000 },
5498 { 0x681c, 0, 0xffffffff, 0x00000000 },
5499 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5500 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5501 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5502 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5503 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5504 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5505 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5506 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5507 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5508 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5509 { 0x684c, 0, 0xffffffff, 0x00000000 },
5510 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5511 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5512 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5513 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5514 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5515 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5516
5517 { 0xffff, 0, 0x00000000, 0x00000000 },
5518 };
5519
5520 ret = 0;
5521 is_5709 = 0;
5522 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5523 is_5709 = 1;
5524
5525 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5526 u32 offset, rw_mask, ro_mask, save_val, val;
5527 u16 flags = reg_tbl[i].flags;
5528
5529 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5530 continue;
5531
5532 offset = (u32) reg_tbl[i].offset;
5533 rw_mask = reg_tbl[i].rw_mask;
5534 ro_mask = reg_tbl[i].ro_mask;
5535
5536 save_val = readl(bp->regview + offset);
5537
5538 writel(0, bp->regview + offset);
5539
5540 val = readl(bp->regview + offset);
5541 if ((val & rw_mask) != 0) {
5542 goto reg_test_err;
5543 }
5544
5545 if ((val & ro_mask) != (save_val & ro_mask)) {
5546 goto reg_test_err;
5547 }
5548
5549 writel(0xffffffff, bp->regview + offset);
5550
5551 val = readl(bp->regview + offset);
5552 if ((val & rw_mask) != rw_mask) {
5553 goto reg_test_err;
5554 }
5555
5556 if ((val & ro_mask) != (save_val & ro_mask)) {
5557 goto reg_test_err;
5558 }
5559
5560 writel(save_val, bp->regview + offset);
5561 continue;
5562
5563 reg_test_err:
5564 writel(save_val, bp->regview + offset);
5565 ret = -ENODEV;
5566 break;
5567 }
5568 return ret;
5569 }
5570
5571 static int
5572 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5573 {
5574 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5575 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5576 int i;
5577
5578 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5579 u32 offset;
5580
5581 for (offset = 0; offset < size; offset += 4) {
5582
5583 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5584
5585 if (bnx2_reg_rd_ind(bp, start + offset) !=
5586 test_pattern[i]) {
5587 return -ENODEV;
5588 }
5589 }
5590 }
5591 return 0;
5592 }
5593
5594 static int
5595 bnx2_test_memory(struct bnx2 *bp)
5596 {
5597 int ret = 0;
5598 int i;
5599 static struct mem_entry {
5600 u32 offset;
5601 u32 len;
5602 } mem_tbl_5706[] = {
5603 { 0x60000, 0x4000 },
5604 { 0xa0000, 0x3000 },
5605 { 0xe0000, 0x4000 },
5606 { 0x120000, 0x4000 },
5607 { 0x1a0000, 0x4000 },
5608 { 0x160000, 0x4000 },
5609 { 0xffffffff, 0 },
5610 },
5611 mem_tbl_5709[] = {
5612 { 0x60000, 0x4000 },
5613 { 0xa0000, 0x3000 },
5614 { 0xe0000, 0x4000 },
5615 { 0x120000, 0x4000 },
5616 { 0x1a0000, 0x4000 },
5617 { 0xffffffff, 0 },
5618 };
5619 struct mem_entry *mem_tbl;
5620
5621 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5622 mem_tbl = mem_tbl_5709;
5623 else
5624 mem_tbl = mem_tbl_5706;
5625
5626 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5627 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5628 mem_tbl[i].len)) != 0) {
5629 return ret;
5630 }
5631 }
5632
5633 return ret;
5634 }
5635
5636 #define BNX2_MAC_LOOPBACK 0
5637 #define BNX2_PHY_LOOPBACK 1
5638
5639 static int
5640 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5641 {
5642 unsigned int pkt_size, num_pkts, i;
5643 struct sk_buff *skb, *rx_skb;
5644 unsigned char *packet;
5645 u16 rx_start_idx, rx_idx;
5646 dma_addr_t map;
5647 struct tx_bd *txbd;
5648 struct sw_bd *rx_buf;
5649 struct l2_fhdr *rx_hdr;
5650 int ret = -ENODEV;
5651 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5652 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5653 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5654
5655 tx_napi = bnapi;
5656
5657 txr = &tx_napi->tx_ring;
5658 rxr = &bnapi->rx_ring;
5659 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5660 bp->loopback = MAC_LOOPBACK;
5661 bnx2_set_mac_loopback(bp);
5662 }
5663 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5664 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5665 return 0;
5666
5667 bp->loopback = PHY_LOOPBACK;
5668 bnx2_set_phy_loopback(bp);
5669 }
5670 else
5671 return -EINVAL;
5672
5673 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5674 skb = netdev_alloc_skb(bp->dev, pkt_size);
5675 if (!skb)
5676 return -ENOMEM;
5677 packet = skb_put(skb, pkt_size);
5678 memcpy(packet, bp->dev->dev_addr, 6);
5679 memset(packet + 6, 0x0, 8);
5680 for (i = 14; i < pkt_size; i++)
5681 packet[i] = (unsigned char) (i & 0xff);
5682
5683 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
5684 dev_kfree_skb(skb);
5685 return -EIO;
5686 }
5687 map = skb_shinfo(skb)->dma_head;
5688
5689 REG_WR(bp, BNX2_HC_COMMAND,
5690 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5691
5692 REG_RD(bp, BNX2_HC_COMMAND);
5693
5694 udelay(5);
5695 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5696
5697 num_pkts = 0;
5698
5699 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5700
5701 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5702 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5703 txbd->tx_bd_mss_nbytes = pkt_size;
5704 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5705
5706 num_pkts++;
5707 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5708 txr->tx_prod_bseq += pkt_size;
5709
5710 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5711 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5712
5713 udelay(100);
5714
5715 REG_WR(bp, BNX2_HC_COMMAND,
5716 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5717
5718 REG_RD(bp, BNX2_HC_COMMAND);
5719
5720 udelay(5);
5721
5722 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5723 dev_kfree_skb(skb);
5724
5725 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5726 goto loopback_test_done;
5727
5728 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5729 if (rx_idx != rx_start_idx + num_pkts) {
5730 goto loopback_test_done;
5731 }
5732
5733 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5734 rx_skb = rx_buf->skb;
5735
5736 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5737 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5738
5739 pci_dma_sync_single_for_cpu(bp->pdev,
5740 pci_unmap_addr(rx_buf, mapping),
5741 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5742
5743 if (rx_hdr->l2_fhdr_status &
5744 (L2_FHDR_ERRORS_BAD_CRC |
5745 L2_FHDR_ERRORS_PHY_DECODE |
5746 L2_FHDR_ERRORS_ALIGNMENT |
5747 L2_FHDR_ERRORS_TOO_SHORT |
5748 L2_FHDR_ERRORS_GIANT_FRAME)) {
5749
5750 goto loopback_test_done;
5751 }
5752
5753 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5754 goto loopback_test_done;
5755 }
5756
5757 for (i = 14; i < pkt_size; i++) {
5758 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5759 goto loopback_test_done;
5760 }
5761 }
5762
5763 ret = 0;
5764
5765 loopback_test_done:
5766 bp->loopback = 0;
5767 return ret;
5768 }
5769
5770 #define BNX2_MAC_LOOPBACK_FAILED 1
5771 #define BNX2_PHY_LOOPBACK_FAILED 2
5772 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5773 BNX2_PHY_LOOPBACK_FAILED)
5774
5775 static int
5776 bnx2_test_loopback(struct bnx2 *bp)
5777 {
5778 int rc = 0;
5779
5780 if (!netif_running(bp->dev))
5781 return BNX2_LOOPBACK_FAILED;
5782
5783 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5784 spin_lock_bh(&bp->phy_lock);
5785 bnx2_init_phy(bp, 1);
5786 spin_unlock_bh(&bp->phy_lock);
5787 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5788 rc |= BNX2_MAC_LOOPBACK_FAILED;
5789 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5790 rc |= BNX2_PHY_LOOPBACK_FAILED;
5791 return rc;
5792 }
5793
5794 #define NVRAM_SIZE 0x200
5795 #define CRC32_RESIDUAL 0xdebb20e3
5796
5797 static int
5798 bnx2_test_nvram(struct bnx2 *bp)
5799 {
5800 __be32 buf[NVRAM_SIZE / 4];
5801 u8 *data = (u8 *) buf;
5802 int rc = 0;
5803 u32 magic, csum;
5804
5805 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5806 goto test_nvram_done;
5807
5808 magic = be32_to_cpu(buf[0]);
5809 if (magic != 0x669955aa) {
5810 rc = -ENODEV;
5811 goto test_nvram_done;
5812 }
5813
5814 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5815 goto test_nvram_done;
5816
5817 csum = ether_crc_le(0x100, data);
5818 if (csum != CRC32_RESIDUAL) {
5819 rc = -ENODEV;
5820 goto test_nvram_done;
5821 }
5822
5823 csum = ether_crc_le(0x100, data + 0x100);
5824 if (csum != CRC32_RESIDUAL) {
5825 rc = -ENODEV;
5826 }
5827
5828 test_nvram_done:
5829 return rc;
5830 }
5831
5832 static int
5833 bnx2_test_link(struct bnx2 *bp)
5834 {
5835 u32 bmsr;
5836
5837 if (!netif_running(bp->dev))
5838 return -ENODEV;
5839
5840 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5841 if (bp->link_up)
5842 return 0;
5843 return -ENODEV;
5844 }
5845 spin_lock_bh(&bp->phy_lock);
5846 bnx2_enable_bmsr1(bp);
5847 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5848 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5849 bnx2_disable_bmsr1(bp);
5850 spin_unlock_bh(&bp->phy_lock);
5851
5852 if (bmsr & BMSR_LSTATUS) {
5853 return 0;
5854 }
5855 return -ENODEV;
5856 }
5857
5858 static int
5859 bnx2_test_intr(struct bnx2 *bp)
5860 {
5861 int i;
5862 u16 status_idx;
5863
5864 if (!netif_running(bp->dev))
5865 return -ENODEV;
5866
5867 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5868
5869 /* This register is not touched during run-time. */
5870 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5871 REG_RD(bp, BNX2_HC_COMMAND);
5872
5873 for (i = 0; i < 10; i++) {
5874 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5875 status_idx) {
5876
5877 break;
5878 }
5879
5880 msleep_interruptible(10);
5881 }
5882 if (i < 10)
5883 return 0;
5884
5885 return -ENODEV;
5886 }
5887
5888 /* Determining link for parallel detection. */
5889 static int
5890 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5891 {
5892 u32 mode_ctl, an_dbg, exp;
5893
5894 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5895 return 0;
5896
5897 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5898 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5899
5900 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5901 return 0;
5902
5903 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5904 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5905 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5906
5907 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5908 return 0;
5909
5910 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5911 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5912 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5913
5914 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5915 return 0;
5916
5917 return 1;
5918 }
5919
5920 static void
5921 bnx2_5706_serdes_timer(struct bnx2 *bp)
5922 {
5923 int check_link = 1;
5924
5925 spin_lock(&bp->phy_lock);
5926 if (bp->serdes_an_pending) {
5927 bp->serdes_an_pending--;
5928 check_link = 0;
5929 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5930 u32 bmcr;
5931
5932 bp->current_interval = BNX2_TIMER_INTERVAL;
5933
5934 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5935
5936 if (bmcr & BMCR_ANENABLE) {
5937 if (bnx2_5706_serdes_has_link(bp)) {
5938 bmcr &= ~BMCR_ANENABLE;
5939 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5940 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5941 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5942 }
5943 }
5944 }
5945 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5946 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5947 u32 phy2;
5948
5949 bnx2_write_phy(bp, 0x17, 0x0f01);
5950 bnx2_read_phy(bp, 0x15, &phy2);
5951 if (phy2 & 0x20) {
5952 u32 bmcr;
5953
5954 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5955 bmcr |= BMCR_ANENABLE;
5956 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5957
5958 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5959 }
5960 } else
5961 bp->current_interval = BNX2_TIMER_INTERVAL;
5962
5963 if (check_link) {
5964 u32 val;
5965
5966 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5967 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5968 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5969
5970 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5971 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5972 bnx2_5706s_force_link_dn(bp, 1);
5973 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5974 } else
5975 bnx2_set_link(bp);
5976 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
5977 bnx2_set_link(bp);
5978 }
5979 spin_unlock(&bp->phy_lock);
5980 }
5981
5982 static void
5983 bnx2_5708_serdes_timer(struct bnx2 *bp)
5984 {
5985 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5986 return;
5987
5988 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
5989 bp->serdes_an_pending = 0;
5990 return;
5991 }
5992
5993 spin_lock(&bp->phy_lock);
5994 if (bp->serdes_an_pending)
5995 bp->serdes_an_pending--;
5996 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5997 u32 bmcr;
5998
5999 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6000 if (bmcr & BMCR_ANENABLE) {
6001 bnx2_enable_forced_2g5(bp);
6002 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6003 } else {
6004 bnx2_disable_forced_2g5(bp);
6005 bp->serdes_an_pending = 2;
6006 bp->current_interval = BNX2_TIMER_INTERVAL;
6007 }
6008
6009 } else
6010 bp->current_interval = BNX2_TIMER_INTERVAL;
6011
6012 spin_unlock(&bp->phy_lock);
6013 }
6014
6015 static void
6016 bnx2_timer(unsigned long data)
6017 {
6018 struct bnx2 *bp = (struct bnx2 *) data;
6019
6020 if (!netif_running(bp->dev))
6021 return;
6022
6023 if (atomic_read(&bp->intr_sem) != 0)
6024 goto bnx2_restart_timer;
6025
6026 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6027 BNX2_FLAG_USING_MSI)
6028 bnx2_chk_missed_msi(bp);
6029
6030 bnx2_send_heart_beat(bp);
6031
6032 bp->stats_blk->stat_FwRxDrop =
6033 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6034
6035 /* workaround occasional corrupted counters */
6036 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6037 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6038 BNX2_HC_COMMAND_STATS_NOW);
6039
6040 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6041 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6042 bnx2_5706_serdes_timer(bp);
6043 else
6044 bnx2_5708_serdes_timer(bp);
6045 }
6046
6047 bnx2_restart_timer:
6048 mod_timer(&bp->timer, jiffies + bp->current_interval);
6049 }
6050
6051 static int
6052 bnx2_request_irq(struct bnx2 *bp)
6053 {
6054 unsigned long flags;
6055 struct bnx2_irq *irq;
6056 int rc = 0, i;
6057
6058 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6059 flags = 0;
6060 else
6061 flags = IRQF_SHARED;
6062
6063 for (i = 0; i < bp->irq_nvecs; i++) {
6064 irq = &bp->irq_tbl[i];
6065 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6066 &bp->bnx2_napi[i]);
6067 if (rc)
6068 break;
6069 irq->requested = 1;
6070 }
6071 return rc;
6072 }
6073
6074 static void
6075 bnx2_free_irq(struct bnx2 *bp)
6076 {
6077 struct bnx2_irq *irq;
6078 int i;
6079
6080 for (i = 0; i < bp->irq_nvecs; i++) {
6081 irq = &bp->irq_tbl[i];
6082 if (irq->requested)
6083 free_irq(irq->vector, &bp->bnx2_napi[i]);
6084 irq->requested = 0;
6085 }
6086 if (bp->flags & BNX2_FLAG_USING_MSI)
6087 pci_disable_msi(bp->pdev);
6088 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6089 pci_disable_msix(bp->pdev);
6090
6091 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6092 }
6093
6094 static void
6095 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6096 {
6097 int i, rc;
6098 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6099 struct net_device *dev = bp->dev;
6100 const int len = sizeof(bp->irq_tbl[0].name);
6101
6102 bnx2_setup_msix_tbl(bp);
6103 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6104 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6105 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6106
6107 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6108 msix_ent[i].entry = i;
6109 msix_ent[i].vector = 0;
6110 }
6111
6112 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
6113 if (rc != 0)
6114 return;
6115
6116 bp->irq_nvecs = msix_vecs;
6117 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6118 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6119 bp->irq_tbl[i].vector = msix_ent[i].vector;
6120 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6121 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6122 }
6123 }
6124
6125 static void
6126 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6127 {
6128 int cpus = num_online_cpus();
6129 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6130
6131 bp->irq_tbl[0].handler = bnx2_interrupt;
6132 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6133 bp->irq_nvecs = 1;
6134 bp->irq_tbl[0].vector = bp->pdev->irq;
6135
6136 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
6137 bnx2_enable_msix(bp, msix_vecs);
6138
6139 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6140 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6141 if (pci_enable_msi(bp->pdev) == 0) {
6142 bp->flags |= BNX2_FLAG_USING_MSI;
6143 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6144 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6145 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6146 } else
6147 bp->irq_tbl[0].handler = bnx2_msi;
6148
6149 bp->irq_tbl[0].vector = bp->pdev->irq;
6150 }
6151 }
6152
6153 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6154 bp->dev->real_num_tx_queues = bp->num_tx_rings;
6155
6156 bp->num_rx_rings = bp->irq_nvecs;
6157 }
6158
6159 /* Called with rtnl_lock */
6160 static int
6161 bnx2_open(struct net_device *dev)
6162 {
6163 struct bnx2 *bp = netdev_priv(dev);
6164 int rc;
6165
6166 netif_carrier_off(dev);
6167
6168 bnx2_set_power_state(bp, PCI_D0);
6169 bnx2_disable_int(bp);
6170
6171 bnx2_setup_int_mode(bp, disable_msi);
6172 bnx2_napi_enable(bp);
6173 rc = bnx2_alloc_mem(bp);
6174 if (rc)
6175 goto open_err;
6176
6177 rc = bnx2_request_irq(bp);
6178 if (rc)
6179 goto open_err;
6180
6181 rc = bnx2_init_nic(bp, 1);
6182 if (rc)
6183 goto open_err;
6184
6185 mod_timer(&bp->timer, jiffies + bp->current_interval);
6186
6187 atomic_set(&bp->intr_sem, 0);
6188
6189 bnx2_enable_int(bp);
6190
6191 if (bp->flags & BNX2_FLAG_USING_MSI) {
6192 /* Test MSI to make sure it is working
6193 * If MSI test fails, go back to INTx mode
6194 */
6195 if (bnx2_test_intr(bp) != 0) {
6196 printk(KERN_WARNING PFX "%s: No interrupt was generated"
6197 " using MSI, switching to INTx mode. Please"
6198 " report this failure to the PCI maintainer"
6199 " and include system chipset information.\n",
6200 bp->dev->name);
6201
6202 bnx2_disable_int(bp);
6203 bnx2_free_irq(bp);
6204
6205 bnx2_setup_int_mode(bp, 1);
6206
6207 rc = bnx2_init_nic(bp, 0);
6208
6209 if (!rc)
6210 rc = bnx2_request_irq(bp);
6211
6212 if (rc) {
6213 del_timer_sync(&bp->timer);
6214 goto open_err;
6215 }
6216 bnx2_enable_int(bp);
6217 }
6218 }
6219 if (bp->flags & BNX2_FLAG_USING_MSI)
6220 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
6221 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6222 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
6223
6224 netif_tx_start_all_queues(dev);
6225
6226 return 0;
6227
6228 open_err:
6229 bnx2_napi_disable(bp);
6230 bnx2_free_skbs(bp);
6231 bnx2_free_irq(bp);
6232 bnx2_free_mem(bp);
6233 return rc;
6234 }
6235
6236 static void
6237 bnx2_reset_task(struct work_struct *work)
6238 {
6239 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6240
6241 if (!netif_running(bp->dev))
6242 return;
6243
6244 bnx2_netif_stop(bp);
6245
6246 bnx2_init_nic(bp, 1);
6247
6248 atomic_set(&bp->intr_sem, 1);
6249 bnx2_netif_start(bp);
6250 }
6251
6252 static void
6253 bnx2_tx_timeout(struct net_device *dev)
6254 {
6255 struct bnx2 *bp = netdev_priv(dev);
6256
6257 /* This allows the netif to be shutdown gracefully before resetting */
6258 schedule_work(&bp->reset_task);
6259 }
6260
6261 #ifdef BCM_VLAN
6262 /* Called with rtnl_lock */
6263 static void
6264 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6265 {
6266 struct bnx2 *bp = netdev_priv(dev);
6267
6268 if (netif_running(dev))
6269 bnx2_netif_stop(bp);
6270
6271 bp->vlgrp = vlgrp;
6272
6273 if (!netif_running(dev))
6274 return;
6275
6276 bnx2_set_rx_mode(dev);
6277 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6278 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6279
6280 bnx2_netif_start(bp);
6281 }
6282 #endif
6283
6284 /* Called with netif_tx_lock.
6285 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6286 * netif_wake_queue().
6287 */
6288 static netdev_tx_t
6289 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6290 {
6291 struct bnx2 *bp = netdev_priv(dev);
6292 dma_addr_t mapping;
6293 struct tx_bd *txbd;
6294 struct sw_tx_bd *tx_buf;
6295 u32 len, vlan_tag_flags, last_frag, mss;
6296 u16 prod, ring_prod;
6297 int i;
6298 struct bnx2_napi *bnapi;
6299 struct bnx2_tx_ring_info *txr;
6300 struct netdev_queue *txq;
6301 struct skb_shared_info *sp;
6302
6303 /* Determine which tx ring we will be placed on */
6304 i = skb_get_queue_mapping(skb);
6305 bnapi = &bp->bnx2_napi[i];
6306 txr = &bnapi->tx_ring;
6307 txq = netdev_get_tx_queue(dev, i);
6308
6309 if (unlikely(bnx2_tx_avail(bp, txr) <
6310 (skb_shinfo(skb)->nr_frags + 1))) {
6311 netif_tx_stop_queue(txq);
6312 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6313 dev->name);
6314
6315 return NETDEV_TX_BUSY;
6316 }
6317 len = skb_headlen(skb);
6318 prod = txr->tx_prod;
6319 ring_prod = TX_RING_IDX(prod);
6320
6321 vlan_tag_flags = 0;
6322 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6323 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6324 }
6325
6326 #ifdef BCM_VLAN
6327 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6328 vlan_tag_flags |=
6329 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6330 }
6331 #endif
6332 if ((mss = skb_shinfo(skb)->gso_size)) {
6333 u32 tcp_opt_len;
6334 struct iphdr *iph;
6335
6336 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6337
6338 tcp_opt_len = tcp_optlen(skb);
6339
6340 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6341 u32 tcp_off = skb_transport_offset(skb) -
6342 sizeof(struct ipv6hdr) - ETH_HLEN;
6343
6344 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6345 TX_BD_FLAGS_SW_FLAGS;
6346 if (likely(tcp_off == 0))
6347 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6348 else {
6349 tcp_off >>= 3;
6350 vlan_tag_flags |= ((tcp_off & 0x3) <<
6351 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6352 ((tcp_off & 0x10) <<
6353 TX_BD_FLAGS_TCP6_OFF4_SHL);
6354 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6355 }
6356 } else {
6357 iph = ip_hdr(skb);
6358 if (tcp_opt_len || (iph->ihl > 5)) {
6359 vlan_tag_flags |= ((iph->ihl - 5) +
6360 (tcp_opt_len >> 2)) << 8;
6361 }
6362 }
6363 } else
6364 mss = 0;
6365
6366 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
6367 dev_kfree_skb(skb);
6368 return NETDEV_TX_OK;
6369 }
6370
6371 sp = skb_shinfo(skb);
6372 mapping = sp->dma_head;
6373
6374 tx_buf = &txr->tx_buf_ring[ring_prod];
6375 tx_buf->skb = skb;
6376
6377 txbd = &txr->tx_desc_ring[ring_prod];
6378
6379 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6380 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6381 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6382 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6383
6384 last_frag = skb_shinfo(skb)->nr_frags;
6385 tx_buf->nr_frags = last_frag;
6386 tx_buf->is_gso = skb_is_gso(skb);
6387
6388 for (i = 0; i < last_frag; i++) {
6389 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6390
6391 prod = NEXT_TX_BD(prod);
6392 ring_prod = TX_RING_IDX(prod);
6393 txbd = &txr->tx_desc_ring[ring_prod];
6394
6395 len = frag->size;
6396 mapping = sp->dma_maps[i];
6397
6398 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6399 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6400 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6401 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6402
6403 }
6404 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6405
6406 prod = NEXT_TX_BD(prod);
6407 txr->tx_prod_bseq += skb->len;
6408
6409 REG_WR16(bp, txr->tx_bidx_addr, prod);
6410 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6411
6412 mmiowb();
6413
6414 txr->tx_prod = prod;
6415
6416 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6417 netif_tx_stop_queue(txq);
6418 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6419 netif_tx_wake_queue(txq);
6420 }
6421
6422 return NETDEV_TX_OK;
6423 }
6424
6425 /* Called with rtnl_lock */
6426 static int
6427 bnx2_close(struct net_device *dev)
6428 {
6429 struct bnx2 *bp = netdev_priv(dev);
6430
6431 cancel_work_sync(&bp->reset_task);
6432
6433 bnx2_disable_int_sync(bp);
6434 bnx2_napi_disable(bp);
6435 del_timer_sync(&bp->timer);
6436 bnx2_shutdown_chip(bp);
6437 bnx2_free_irq(bp);
6438 bnx2_free_skbs(bp);
6439 bnx2_free_mem(bp);
6440 bp->link_up = 0;
6441 netif_carrier_off(bp->dev);
6442 bnx2_set_power_state(bp, PCI_D3hot);
6443 return 0;
6444 }
6445
6446 #define GET_NET_STATS64(ctr) \
6447 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6448 (unsigned long) (ctr##_lo)
6449
6450 #define GET_NET_STATS32(ctr) \
6451 (ctr##_lo)
6452
6453 #if (BITS_PER_LONG == 64)
6454 #define GET_NET_STATS GET_NET_STATS64
6455 #else
6456 #define GET_NET_STATS GET_NET_STATS32
6457 #endif
6458
6459 static struct net_device_stats *
6460 bnx2_get_stats(struct net_device *dev)
6461 {
6462 struct bnx2 *bp = netdev_priv(dev);
6463 struct statistics_block *stats_blk = bp->stats_blk;
6464 struct net_device_stats *net_stats = &dev->stats;
6465
6466 if (bp->stats_blk == NULL) {
6467 return net_stats;
6468 }
6469 net_stats->rx_packets =
6470 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6471 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6472 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6473
6474 net_stats->tx_packets =
6475 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6476 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6477 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6478
6479 net_stats->rx_bytes =
6480 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6481
6482 net_stats->tx_bytes =
6483 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6484
6485 net_stats->multicast =
6486 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6487
6488 net_stats->collisions =
6489 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6490
6491 net_stats->rx_length_errors =
6492 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6493 stats_blk->stat_EtherStatsOverrsizePkts);
6494
6495 net_stats->rx_over_errors =
6496 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6497 stats_blk->stat_IfInMBUFDiscards);
6498
6499 net_stats->rx_frame_errors =
6500 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6501
6502 net_stats->rx_crc_errors =
6503 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6504
6505 net_stats->rx_errors = net_stats->rx_length_errors +
6506 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6507 net_stats->rx_crc_errors;
6508
6509 net_stats->tx_aborted_errors =
6510 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6511 stats_blk->stat_Dot3StatsLateCollisions);
6512
6513 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6514 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6515 net_stats->tx_carrier_errors = 0;
6516 else {
6517 net_stats->tx_carrier_errors =
6518 (unsigned long)
6519 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6520 }
6521
6522 net_stats->tx_errors =
6523 (unsigned long)
6524 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6525 +
6526 net_stats->tx_aborted_errors +
6527 net_stats->tx_carrier_errors;
6528
6529 net_stats->rx_missed_errors =
6530 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6531 stats_blk->stat_IfInMBUFDiscards + stats_blk->stat_FwRxDrop);
6532
6533 return net_stats;
6534 }
6535
6536 /* All ethtool functions called with rtnl_lock */
6537
6538 static int
6539 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6540 {
6541 struct bnx2 *bp = netdev_priv(dev);
6542 int support_serdes = 0, support_copper = 0;
6543
6544 cmd->supported = SUPPORTED_Autoneg;
6545 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6546 support_serdes = 1;
6547 support_copper = 1;
6548 } else if (bp->phy_port == PORT_FIBRE)
6549 support_serdes = 1;
6550 else
6551 support_copper = 1;
6552
6553 if (support_serdes) {
6554 cmd->supported |= SUPPORTED_1000baseT_Full |
6555 SUPPORTED_FIBRE;
6556 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6557 cmd->supported |= SUPPORTED_2500baseX_Full;
6558
6559 }
6560 if (support_copper) {
6561 cmd->supported |= SUPPORTED_10baseT_Half |
6562 SUPPORTED_10baseT_Full |
6563 SUPPORTED_100baseT_Half |
6564 SUPPORTED_100baseT_Full |
6565 SUPPORTED_1000baseT_Full |
6566 SUPPORTED_TP;
6567
6568 }
6569
6570 spin_lock_bh(&bp->phy_lock);
6571 cmd->port = bp->phy_port;
6572 cmd->advertising = bp->advertising;
6573
6574 if (bp->autoneg & AUTONEG_SPEED) {
6575 cmd->autoneg = AUTONEG_ENABLE;
6576 }
6577 else {
6578 cmd->autoneg = AUTONEG_DISABLE;
6579 }
6580
6581 if (netif_carrier_ok(dev)) {
6582 cmd->speed = bp->line_speed;
6583 cmd->duplex = bp->duplex;
6584 }
6585 else {
6586 cmd->speed = -1;
6587 cmd->duplex = -1;
6588 }
6589 spin_unlock_bh(&bp->phy_lock);
6590
6591 cmd->transceiver = XCVR_INTERNAL;
6592 cmd->phy_address = bp->phy_addr;
6593
6594 return 0;
6595 }
6596
6597 static int
6598 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6599 {
6600 struct bnx2 *bp = netdev_priv(dev);
6601 u8 autoneg = bp->autoneg;
6602 u8 req_duplex = bp->req_duplex;
6603 u16 req_line_speed = bp->req_line_speed;
6604 u32 advertising = bp->advertising;
6605 int err = -EINVAL;
6606
6607 spin_lock_bh(&bp->phy_lock);
6608
6609 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6610 goto err_out_unlock;
6611
6612 if (cmd->port != bp->phy_port &&
6613 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6614 goto err_out_unlock;
6615
6616 /* If device is down, we can store the settings only if the user
6617 * is setting the currently active port.
6618 */
6619 if (!netif_running(dev) && cmd->port != bp->phy_port)
6620 goto err_out_unlock;
6621
6622 if (cmd->autoneg == AUTONEG_ENABLE) {
6623 autoneg |= AUTONEG_SPEED;
6624
6625 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6626
6627 /* allow advertising 1 speed */
6628 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6629 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6630 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6631 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6632
6633 if (cmd->port == PORT_FIBRE)
6634 goto err_out_unlock;
6635
6636 advertising = cmd->advertising;
6637
6638 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6639 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6640 (cmd->port == PORT_TP))
6641 goto err_out_unlock;
6642 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6643 advertising = cmd->advertising;
6644 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6645 goto err_out_unlock;
6646 else {
6647 if (cmd->port == PORT_FIBRE)
6648 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6649 else
6650 advertising = ETHTOOL_ALL_COPPER_SPEED;
6651 }
6652 advertising |= ADVERTISED_Autoneg;
6653 }
6654 else {
6655 if (cmd->port == PORT_FIBRE) {
6656 if ((cmd->speed != SPEED_1000 &&
6657 cmd->speed != SPEED_2500) ||
6658 (cmd->duplex != DUPLEX_FULL))
6659 goto err_out_unlock;
6660
6661 if (cmd->speed == SPEED_2500 &&
6662 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6663 goto err_out_unlock;
6664 }
6665 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6666 goto err_out_unlock;
6667
6668 autoneg &= ~AUTONEG_SPEED;
6669 req_line_speed = cmd->speed;
6670 req_duplex = cmd->duplex;
6671 advertising = 0;
6672 }
6673
6674 bp->autoneg = autoneg;
6675 bp->advertising = advertising;
6676 bp->req_line_speed = req_line_speed;
6677 bp->req_duplex = req_duplex;
6678
6679 err = 0;
6680 /* If device is down, the new settings will be picked up when it is
6681 * brought up.
6682 */
6683 if (netif_running(dev))
6684 err = bnx2_setup_phy(bp, cmd->port);
6685
6686 err_out_unlock:
6687 spin_unlock_bh(&bp->phy_lock);
6688
6689 return err;
6690 }
6691
6692 static void
6693 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6694 {
6695 struct bnx2 *bp = netdev_priv(dev);
6696
6697 strcpy(info->driver, DRV_MODULE_NAME);
6698 strcpy(info->version, DRV_MODULE_VERSION);
6699 strcpy(info->bus_info, pci_name(bp->pdev));
6700 strcpy(info->fw_version, bp->fw_version);
6701 }
6702
6703 #define BNX2_REGDUMP_LEN (32 * 1024)
6704
6705 static int
6706 bnx2_get_regs_len(struct net_device *dev)
6707 {
6708 return BNX2_REGDUMP_LEN;
6709 }
6710
6711 static void
6712 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6713 {
6714 u32 *p = _p, i, offset;
6715 u8 *orig_p = _p;
6716 struct bnx2 *bp = netdev_priv(dev);
6717 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6718 0x0800, 0x0880, 0x0c00, 0x0c10,
6719 0x0c30, 0x0d08, 0x1000, 0x101c,
6720 0x1040, 0x1048, 0x1080, 0x10a4,
6721 0x1400, 0x1490, 0x1498, 0x14f0,
6722 0x1500, 0x155c, 0x1580, 0x15dc,
6723 0x1600, 0x1658, 0x1680, 0x16d8,
6724 0x1800, 0x1820, 0x1840, 0x1854,
6725 0x1880, 0x1894, 0x1900, 0x1984,
6726 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6727 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6728 0x2000, 0x2030, 0x23c0, 0x2400,
6729 0x2800, 0x2820, 0x2830, 0x2850,
6730 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6731 0x3c00, 0x3c94, 0x4000, 0x4010,
6732 0x4080, 0x4090, 0x43c0, 0x4458,
6733 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6734 0x4fc0, 0x5010, 0x53c0, 0x5444,
6735 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6736 0x5fc0, 0x6000, 0x6400, 0x6428,
6737 0x6800, 0x6848, 0x684c, 0x6860,
6738 0x6888, 0x6910, 0x8000 };
6739
6740 regs->version = 0;
6741
6742 memset(p, 0, BNX2_REGDUMP_LEN);
6743
6744 if (!netif_running(bp->dev))
6745 return;
6746
6747 i = 0;
6748 offset = reg_boundaries[0];
6749 p += offset;
6750 while (offset < BNX2_REGDUMP_LEN) {
6751 *p++ = REG_RD(bp, offset);
6752 offset += 4;
6753 if (offset == reg_boundaries[i + 1]) {
6754 offset = reg_boundaries[i + 2];
6755 p = (u32 *) (orig_p + offset);
6756 i += 2;
6757 }
6758 }
6759 }
6760
6761 static void
6762 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6763 {
6764 struct bnx2 *bp = netdev_priv(dev);
6765
6766 if (bp->flags & BNX2_FLAG_NO_WOL) {
6767 wol->supported = 0;
6768 wol->wolopts = 0;
6769 }
6770 else {
6771 wol->supported = WAKE_MAGIC;
6772 if (bp->wol)
6773 wol->wolopts = WAKE_MAGIC;
6774 else
6775 wol->wolopts = 0;
6776 }
6777 memset(&wol->sopass, 0, sizeof(wol->sopass));
6778 }
6779
6780 static int
6781 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6782 {
6783 struct bnx2 *bp = netdev_priv(dev);
6784
6785 if (wol->wolopts & ~WAKE_MAGIC)
6786 return -EINVAL;
6787
6788 if (wol->wolopts & WAKE_MAGIC) {
6789 if (bp->flags & BNX2_FLAG_NO_WOL)
6790 return -EINVAL;
6791
6792 bp->wol = 1;
6793 }
6794 else {
6795 bp->wol = 0;
6796 }
6797 return 0;
6798 }
6799
6800 static int
6801 bnx2_nway_reset(struct net_device *dev)
6802 {
6803 struct bnx2 *bp = netdev_priv(dev);
6804 u32 bmcr;
6805
6806 if (!netif_running(dev))
6807 return -EAGAIN;
6808
6809 if (!(bp->autoneg & AUTONEG_SPEED)) {
6810 return -EINVAL;
6811 }
6812
6813 spin_lock_bh(&bp->phy_lock);
6814
6815 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6816 int rc;
6817
6818 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6819 spin_unlock_bh(&bp->phy_lock);
6820 return rc;
6821 }
6822
6823 /* Force a link down visible on the other side */
6824 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6825 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6826 spin_unlock_bh(&bp->phy_lock);
6827
6828 msleep(20);
6829
6830 spin_lock_bh(&bp->phy_lock);
6831
6832 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6833 bp->serdes_an_pending = 1;
6834 mod_timer(&bp->timer, jiffies + bp->current_interval);
6835 }
6836
6837 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6838 bmcr &= ~BMCR_LOOPBACK;
6839 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6840
6841 spin_unlock_bh(&bp->phy_lock);
6842
6843 return 0;
6844 }
6845
6846 static u32
6847 bnx2_get_link(struct net_device *dev)
6848 {
6849 struct bnx2 *bp = netdev_priv(dev);
6850
6851 return bp->link_up;
6852 }
6853
6854 static int
6855 bnx2_get_eeprom_len(struct net_device *dev)
6856 {
6857 struct bnx2 *bp = netdev_priv(dev);
6858
6859 if (bp->flash_info == NULL)
6860 return 0;
6861
6862 return (int) bp->flash_size;
6863 }
6864
6865 static int
6866 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6867 u8 *eebuf)
6868 {
6869 struct bnx2 *bp = netdev_priv(dev);
6870 int rc;
6871
6872 if (!netif_running(dev))
6873 return -EAGAIN;
6874
6875 /* parameters already validated in ethtool_get_eeprom */
6876
6877 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6878
6879 return rc;
6880 }
6881
6882 static int
6883 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6884 u8 *eebuf)
6885 {
6886 struct bnx2 *bp = netdev_priv(dev);
6887 int rc;
6888
6889 if (!netif_running(dev))
6890 return -EAGAIN;
6891
6892 /* parameters already validated in ethtool_set_eeprom */
6893
6894 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6895
6896 return rc;
6897 }
6898
6899 static int
6900 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6901 {
6902 struct bnx2 *bp = netdev_priv(dev);
6903
6904 memset(coal, 0, sizeof(struct ethtool_coalesce));
6905
6906 coal->rx_coalesce_usecs = bp->rx_ticks;
6907 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6908 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6909 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6910
6911 coal->tx_coalesce_usecs = bp->tx_ticks;
6912 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
6913 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
6914 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
6915
6916 coal->stats_block_coalesce_usecs = bp->stats_ticks;
6917
6918 return 0;
6919 }
6920
6921 static int
6922 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6923 {
6924 struct bnx2 *bp = netdev_priv(dev);
6925
6926 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
6927 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
6928
6929 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
6930 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
6931
6932 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
6933 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
6934
6935 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
6936 if (bp->rx_quick_cons_trip_int > 0xff)
6937 bp->rx_quick_cons_trip_int = 0xff;
6938
6939 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
6940 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
6941
6942 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
6943 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
6944
6945 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
6946 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
6947
6948 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
6949 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
6950 0xff;
6951
6952 bp->stats_ticks = coal->stats_block_coalesce_usecs;
6953 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
6954 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
6955 bp->stats_ticks = USEC_PER_SEC;
6956 }
6957 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
6958 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6959 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6960
6961 if (netif_running(bp->dev)) {
6962 bnx2_netif_stop(bp);
6963 bnx2_init_nic(bp, 0);
6964 bnx2_netif_start(bp);
6965 }
6966
6967 return 0;
6968 }
6969
6970 static void
6971 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6972 {
6973 struct bnx2 *bp = netdev_priv(dev);
6974
6975 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
6976 ering->rx_mini_max_pending = 0;
6977 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
6978
6979 ering->rx_pending = bp->rx_ring_size;
6980 ering->rx_mini_pending = 0;
6981 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
6982
6983 ering->tx_max_pending = MAX_TX_DESC_CNT;
6984 ering->tx_pending = bp->tx_ring_size;
6985 }
6986
6987 static int
6988 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
6989 {
6990 if (netif_running(bp->dev)) {
6991 bnx2_netif_stop(bp);
6992 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6993 bnx2_free_skbs(bp);
6994 bnx2_free_mem(bp);
6995 }
6996
6997 bnx2_set_rx_ring_size(bp, rx);
6998 bp->tx_ring_size = tx;
6999
7000 if (netif_running(bp->dev)) {
7001 int rc;
7002
7003 rc = bnx2_alloc_mem(bp);
7004 if (!rc)
7005 rc = bnx2_init_nic(bp, 0);
7006
7007 if (rc) {
7008 bnx2_napi_enable(bp);
7009 dev_close(bp->dev);
7010 return rc;
7011 }
7012 bnx2_netif_start(bp);
7013 }
7014 return 0;
7015 }
7016
7017 static int
7018 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7019 {
7020 struct bnx2 *bp = netdev_priv(dev);
7021 int rc;
7022
7023 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7024 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7025 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7026
7027 return -EINVAL;
7028 }
7029 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7030 return rc;
7031 }
7032
7033 static void
7034 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7035 {
7036 struct bnx2 *bp = netdev_priv(dev);
7037
7038 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7039 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7040 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7041 }
7042
7043 static int
7044 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7045 {
7046 struct bnx2 *bp = netdev_priv(dev);
7047
7048 bp->req_flow_ctrl = 0;
7049 if (epause->rx_pause)
7050 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7051 if (epause->tx_pause)
7052 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7053
7054 if (epause->autoneg) {
7055 bp->autoneg |= AUTONEG_FLOW_CTRL;
7056 }
7057 else {
7058 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7059 }
7060
7061 if (netif_running(dev)) {
7062 spin_lock_bh(&bp->phy_lock);
7063 bnx2_setup_phy(bp, bp->phy_port);
7064 spin_unlock_bh(&bp->phy_lock);
7065 }
7066
7067 return 0;
7068 }
7069
7070 static u32
7071 bnx2_get_rx_csum(struct net_device *dev)
7072 {
7073 struct bnx2 *bp = netdev_priv(dev);
7074
7075 return bp->rx_csum;
7076 }
7077
7078 static int
7079 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7080 {
7081 struct bnx2 *bp = netdev_priv(dev);
7082
7083 bp->rx_csum = data;
7084 return 0;
7085 }
7086
7087 static int
7088 bnx2_set_tso(struct net_device *dev, u32 data)
7089 {
7090 struct bnx2 *bp = netdev_priv(dev);
7091
7092 if (data) {
7093 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7094 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7095 dev->features |= NETIF_F_TSO6;
7096 } else
7097 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7098 NETIF_F_TSO_ECN);
7099 return 0;
7100 }
7101
7102 static struct {
7103 char string[ETH_GSTRING_LEN];
7104 } bnx2_stats_str_arr[] = {
7105 { "rx_bytes" },
7106 { "rx_error_bytes" },
7107 { "tx_bytes" },
7108 { "tx_error_bytes" },
7109 { "rx_ucast_packets" },
7110 { "rx_mcast_packets" },
7111 { "rx_bcast_packets" },
7112 { "tx_ucast_packets" },
7113 { "tx_mcast_packets" },
7114 { "tx_bcast_packets" },
7115 { "tx_mac_errors" },
7116 { "tx_carrier_errors" },
7117 { "rx_crc_errors" },
7118 { "rx_align_errors" },
7119 { "tx_single_collisions" },
7120 { "tx_multi_collisions" },
7121 { "tx_deferred" },
7122 { "tx_excess_collisions" },
7123 { "tx_late_collisions" },
7124 { "tx_total_collisions" },
7125 { "rx_fragments" },
7126 { "rx_jabbers" },
7127 { "rx_undersize_packets" },
7128 { "rx_oversize_packets" },
7129 { "rx_64_byte_packets" },
7130 { "rx_65_to_127_byte_packets" },
7131 { "rx_128_to_255_byte_packets" },
7132 { "rx_256_to_511_byte_packets" },
7133 { "rx_512_to_1023_byte_packets" },
7134 { "rx_1024_to_1522_byte_packets" },
7135 { "rx_1523_to_9022_byte_packets" },
7136 { "tx_64_byte_packets" },
7137 { "tx_65_to_127_byte_packets" },
7138 { "tx_128_to_255_byte_packets" },
7139 { "tx_256_to_511_byte_packets" },
7140 { "tx_512_to_1023_byte_packets" },
7141 { "tx_1024_to_1522_byte_packets" },
7142 { "tx_1523_to_9022_byte_packets" },
7143 { "rx_xon_frames" },
7144 { "rx_xoff_frames" },
7145 { "tx_xon_frames" },
7146 { "tx_xoff_frames" },
7147 { "rx_mac_ctrl_frames" },
7148 { "rx_filtered_packets" },
7149 { "rx_ftq_discards" },
7150 { "rx_discards" },
7151 { "rx_fw_discards" },
7152 };
7153
7154 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7155 sizeof(bnx2_stats_str_arr[0]))
7156
7157 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7158
7159 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7160 STATS_OFFSET32(stat_IfHCInOctets_hi),
7161 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7162 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7163 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7164 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7165 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7166 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7167 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7168 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7169 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7170 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7171 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7172 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7173 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7174 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7175 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7176 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7177 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7178 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7179 STATS_OFFSET32(stat_EtherStatsCollisions),
7180 STATS_OFFSET32(stat_EtherStatsFragments),
7181 STATS_OFFSET32(stat_EtherStatsJabbers),
7182 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7183 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7184 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7185 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7186 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7187 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7188 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7189 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7190 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7191 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7192 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7193 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7194 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7195 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7196 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7197 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7198 STATS_OFFSET32(stat_XonPauseFramesReceived),
7199 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7200 STATS_OFFSET32(stat_OutXonSent),
7201 STATS_OFFSET32(stat_OutXoffSent),
7202 STATS_OFFSET32(stat_MacControlFramesReceived),
7203 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7204 STATS_OFFSET32(stat_IfInFTQDiscards),
7205 STATS_OFFSET32(stat_IfInMBUFDiscards),
7206 STATS_OFFSET32(stat_FwRxDrop),
7207 };
7208
7209 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7210 * skipped because of errata.
7211 */
7212 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7213 8,0,8,8,8,8,8,8,8,8,
7214 4,0,4,4,4,4,4,4,4,4,
7215 4,4,4,4,4,4,4,4,4,4,
7216 4,4,4,4,4,4,4,4,4,4,
7217 4,4,4,4,4,4,4,
7218 };
7219
7220 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7221 8,0,8,8,8,8,8,8,8,8,
7222 4,4,4,4,4,4,4,4,4,4,
7223 4,4,4,4,4,4,4,4,4,4,
7224 4,4,4,4,4,4,4,4,4,4,
7225 4,4,4,4,4,4,4,
7226 };
7227
7228 #define BNX2_NUM_TESTS 6
7229
7230 static struct {
7231 char string[ETH_GSTRING_LEN];
7232 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7233 { "register_test (offline)" },
7234 { "memory_test (offline)" },
7235 { "loopback_test (offline)" },
7236 { "nvram_test (online)" },
7237 { "interrupt_test (online)" },
7238 { "link_test (online)" },
7239 };
7240
7241 static int
7242 bnx2_get_sset_count(struct net_device *dev, int sset)
7243 {
7244 switch (sset) {
7245 case ETH_SS_TEST:
7246 return BNX2_NUM_TESTS;
7247 case ETH_SS_STATS:
7248 return BNX2_NUM_STATS;
7249 default:
7250 return -EOPNOTSUPP;
7251 }
7252 }
7253
7254 static void
7255 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7256 {
7257 struct bnx2 *bp = netdev_priv(dev);
7258
7259 bnx2_set_power_state(bp, PCI_D0);
7260
7261 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7262 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7263 int i;
7264
7265 bnx2_netif_stop(bp);
7266 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7267 bnx2_free_skbs(bp);
7268
7269 if (bnx2_test_registers(bp) != 0) {
7270 buf[0] = 1;
7271 etest->flags |= ETH_TEST_FL_FAILED;
7272 }
7273 if (bnx2_test_memory(bp) != 0) {
7274 buf[1] = 1;
7275 etest->flags |= ETH_TEST_FL_FAILED;
7276 }
7277 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7278 etest->flags |= ETH_TEST_FL_FAILED;
7279
7280 if (!netif_running(bp->dev))
7281 bnx2_shutdown_chip(bp);
7282 else {
7283 bnx2_init_nic(bp, 1);
7284 bnx2_netif_start(bp);
7285 }
7286
7287 /* wait for link up */
7288 for (i = 0; i < 7; i++) {
7289 if (bp->link_up)
7290 break;
7291 msleep_interruptible(1000);
7292 }
7293 }
7294
7295 if (bnx2_test_nvram(bp) != 0) {
7296 buf[3] = 1;
7297 etest->flags |= ETH_TEST_FL_FAILED;
7298 }
7299 if (bnx2_test_intr(bp) != 0) {
7300 buf[4] = 1;
7301 etest->flags |= ETH_TEST_FL_FAILED;
7302 }
7303
7304 if (bnx2_test_link(bp) != 0) {
7305 buf[5] = 1;
7306 etest->flags |= ETH_TEST_FL_FAILED;
7307
7308 }
7309 if (!netif_running(bp->dev))
7310 bnx2_set_power_state(bp, PCI_D3hot);
7311 }
7312
7313 static void
7314 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7315 {
7316 switch (stringset) {
7317 case ETH_SS_STATS:
7318 memcpy(buf, bnx2_stats_str_arr,
7319 sizeof(bnx2_stats_str_arr));
7320 break;
7321 case ETH_SS_TEST:
7322 memcpy(buf, bnx2_tests_str_arr,
7323 sizeof(bnx2_tests_str_arr));
7324 break;
7325 }
7326 }
7327
7328 static void
7329 bnx2_get_ethtool_stats(struct net_device *dev,
7330 struct ethtool_stats *stats, u64 *buf)
7331 {
7332 struct bnx2 *bp = netdev_priv(dev);
7333 int i;
7334 u32 *hw_stats = (u32 *) bp->stats_blk;
7335 u8 *stats_len_arr = NULL;
7336
7337 if (hw_stats == NULL) {
7338 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7339 return;
7340 }
7341
7342 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7343 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7344 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7345 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7346 stats_len_arr = bnx2_5706_stats_len_arr;
7347 else
7348 stats_len_arr = bnx2_5708_stats_len_arr;
7349
7350 for (i = 0; i < BNX2_NUM_STATS; i++) {
7351 if (stats_len_arr[i] == 0) {
7352 /* skip this counter */
7353 buf[i] = 0;
7354 continue;
7355 }
7356 if (stats_len_arr[i] == 4) {
7357 /* 4-byte counter */
7358 buf[i] = (u64)
7359 *(hw_stats + bnx2_stats_offset_arr[i]);
7360 continue;
7361 }
7362 /* 8-byte counter */
7363 buf[i] = (((u64) *(hw_stats +
7364 bnx2_stats_offset_arr[i])) << 32) +
7365 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
7366 }
7367 }
7368
7369 static int
7370 bnx2_phys_id(struct net_device *dev, u32 data)
7371 {
7372 struct bnx2 *bp = netdev_priv(dev);
7373 int i;
7374 u32 save;
7375
7376 bnx2_set_power_state(bp, PCI_D0);
7377
7378 if (data == 0)
7379 data = 2;
7380
7381 save = REG_RD(bp, BNX2_MISC_CFG);
7382 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7383
7384 for (i = 0; i < (data * 2); i++) {
7385 if ((i % 2) == 0) {
7386 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7387 }
7388 else {
7389 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7390 BNX2_EMAC_LED_1000MB_OVERRIDE |
7391 BNX2_EMAC_LED_100MB_OVERRIDE |
7392 BNX2_EMAC_LED_10MB_OVERRIDE |
7393 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7394 BNX2_EMAC_LED_TRAFFIC);
7395 }
7396 msleep_interruptible(500);
7397 if (signal_pending(current))
7398 break;
7399 }
7400 REG_WR(bp, BNX2_EMAC_LED, 0);
7401 REG_WR(bp, BNX2_MISC_CFG, save);
7402
7403 if (!netif_running(dev))
7404 bnx2_set_power_state(bp, PCI_D3hot);
7405
7406 return 0;
7407 }
7408
7409 static int
7410 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7411 {
7412 struct bnx2 *bp = netdev_priv(dev);
7413
7414 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7415 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7416 else
7417 return (ethtool_op_set_tx_csum(dev, data));
7418 }
7419
7420 static const struct ethtool_ops bnx2_ethtool_ops = {
7421 .get_settings = bnx2_get_settings,
7422 .set_settings = bnx2_set_settings,
7423 .get_drvinfo = bnx2_get_drvinfo,
7424 .get_regs_len = bnx2_get_regs_len,
7425 .get_regs = bnx2_get_regs,
7426 .get_wol = bnx2_get_wol,
7427 .set_wol = bnx2_set_wol,
7428 .nway_reset = bnx2_nway_reset,
7429 .get_link = bnx2_get_link,
7430 .get_eeprom_len = bnx2_get_eeprom_len,
7431 .get_eeprom = bnx2_get_eeprom,
7432 .set_eeprom = bnx2_set_eeprom,
7433 .get_coalesce = bnx2_get_coalesce,
7434 .set_coalesce = bnx2_set_coalesce,
7435 .get_ringparam = bnx2_get_ringparam,
7436 .set_ringparam = bnx2_set_ringparam,
7437 .get_pauseparam = bnx2_get_pauseparam,
7438 .set_pauseparam = bnx2_set_pauseparam,
7439 .get_rx_csum = bnx2_get_rx_csum,
7440 .set_rx_csum = bnx2_set_rx_csum,
7441 .set_tx_csum = bnx2_set_tx_csum,
7442 .set_sg = ethtool_op_set_sg,
7443 .set_tso = bnx2_set_tso,
7444 .self_test = bnx2_self_test,
7445 .get_strings = bnx2_get_strings,
7446 .phys_id = bnx2_phys_id,
7447 .get_ethtool_stats = bnx2_get_ethtool_stats,
7448 .get_sset_count = bnx2_get_sset_count,
7449 };
7450
7451 /* Called with rtnl_lock */
7452 static int
7453 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7454 {
7455 struct mii_ioctl_data *data = if_mii(ifr);
7456 struct bnx2 *bp = netdev_priv(dev);
7457 int err;
7458
7459 switch(cmd) {
7460 case SIOCGMIIPHY:
7461 data->phy_id = bp->phy_addr;
7462
7463 /* fallthru */
7464 case SIOCGMIIREG: {
7465 u32 mii_regval;
7466
7467 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7468 return -EOPNOTSUPP;
7469
7470 if (!netif_running(dev))
7471 return -EAGAIN;
7472
7473 spin_lock_bh(&bp->phy_lock);
7474 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7475 spin_unlock_bh(&bp->phy_lock);
7476
7477 data->val_out = mii_regval;
7478
7479 return err;
7480 }
7481
7482 case SIOCSMIIREG:
7483 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7484 return -EOPNOTSUPP;
7485
7486 if (!netif_running(dev))
7487 return -EAGAIN;
7488
7489 spin_lock_bh(&bp->phy_lock);
7490 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7491 spin_unlock_bh(&bp->phy_lock);
7492
7493 return err;
7494
7495 default:
7496 /* do nothing */
7497 break;
7498 }
7499 return -EOPNOTSUPP;
7500 }
7501
7502 /* Called with rtnl_lock */
7503 static int
7504 bnx2_change_mac_addr(struct net_device *dev, void *p)
7505 {
7506 struct sockaddr *addr = p;
7507 struct bnx2 *bp = netdev_priv(dev);
7508
7509 if (!is_valid_ether_addr(addr->sa_data))
7510 return -EINVAL;
7511
7512 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7513 if (netif_running(dev))
7514 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7515
7516 return 0;
7517 }
7518
7519 /* Called with rtnl_lock */
7520 static int
7521 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7522 {
7523 struct bnx2 *bp = netdev_priv(dev);
7524
7525 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7526 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7527 return -EINVAL;
7528
7529 dev->mtu = new_mtu;
7530 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7531 }
7532
7533 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7534 static void
7535 poll_bnx2(struct net_device *dev)
7536 {
7537 struct bnx2 *bp = netdev_priv(dev);
7538 int i;
7539
7540 for (i = 0; i < bp->irq_nvecs; i++) {
7541 disable_irq(bp->irq_tbl[i].vector);
7542 bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
7543 enable_irq(bp->irq_tbl[i].vector);
7544 }
7545 }
7546 #endif
7547
7548 static void __devinit
7549 bnx2_get_5709_media(struct bnx2 *bp)
7550 {
7551 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7552 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7553 u32 strap;
7554
7555 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7556 return;
7557 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7558 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7559 return;
7560 }
7561
7562 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7563 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7564 else
7565 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7566
7567 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7568 switch (strap) {
7569 case 0x4:
7570 case 0x5:
7571 case 0x6:
7572 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7573 return;
7574 }
7575 } else {
7576 switch (strap) {
7577 case 0x1:
7578 case 0x2:
7579 case 0x4:
7580 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7581 return;
7582 }
7583 }
7584 }
7585
7586 static void __devinit
7587 bnx2_get_pci_speed(struct bnx2 *bp)
7588 {
7589 u32 reg;
7590
7591 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7592 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7593 u32 clkreg;
7594
7595 bp->flags |= BNX2_FLAG_PCIX;
7596
7597 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7598
7599 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7600 switch (clkreg) {
7601 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7602 bp->bus_speed_mhz = 133;
7603 break;
7604
7605 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7606 bp->bus_speed_mhz = 100;
7607 break;
7608
7609 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7610 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7611 bp->bus_speed_mhz = 66;
7612 break;
7613
7614 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7615 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7616 bp->bus_speed_mhz = 50;
7617 break;
7618
7619 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7620 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7621 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7622 bp->bus_speed_mhz = 33;
7623 break;
7624 }
7625 }
7626 else {
7627 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7628 bp->bus_speed_mhz = 66;
7629 else
7630 bp->bus_speed_mhz = 33;
7631 }
7632
7633 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7634 bp->flags |= BNX2_FLAG_PCI_32BIT;
7635
7636 }
7637
7638 static int __devinit
7639 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7640 {
7641 struct bnx2 *bp;
7642 unsigned long mem_len;
7643 int rc, i, j;
7644 u32 reg;
7645 u64 dma_mask, persist_dma_mask;
7646
7647 SET_NETDEV_DEV(dev, &pdev->dev);
7648 bp = netdev_priv(dev);
7649
7650 bp->flags = 0;
7651 bp->phy_flags = 0;
7652
7653 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7654 rc = pci_enable_device(pdev);
7655 if (rc) {
7656 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7657 goto err_out;
7658 }
7659
7660 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7661 dev_err(&pdev->dev,
7662 "Cannot find PCI device base address, aborting.\n");
7663 rc = -ENODEV;
7664 goto err_out_disable;
7665 }
7666
7667 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7668 if (rc) {
7669 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7670 goto err_out_disable;
7671 }
7672
7673 pci_set_master(pdev);
7674 pci_save_state(pdev);
7675
7676 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7677 if (bp->pm_cap == 0) {
7678 dev_err(&pdev->dev,
7679 "Cannot find power management capability, aborting.\n");
7680 rc = -EIO;
7681 goto err_out_release;
7682 }
7683
7684 bp->dev = dev;
7685 bp->pdev = pdev;
7686
7687 spin_lock_init(&bp->phy_lock);
7688 spin_lock_init(&bp->indirect_lock);
7689 #ifdef BCM_CNIC
7690 mutex_init(&bp->cnic_lock);
7691 #endif
7692 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7693
7694 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7695 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7696 dev->mem_end = dev->mem_start + mem_len;
7697 dev->irq = pdev->irq;
7698
7699 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7700
7701 if (!bp->regview) {
7702 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7703 rc = -ENOMEM;
7704 goto err_out_release;
7705 }
7706
7707 /* Configure byte swap and enable write to the reg_window registers.
7708 * Rely on CPU to do target byte swapping on big endian systems
7709 * The chip's target access swapping will not swap all accesses
7710 */
7711 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7712 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7713 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7714
7715 bnx2_set_power_state(bp, PCI_D0);
7716
7717 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7718
7719 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7720 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7721 dev_err(&pdev->dev,
7722 "Cannot find PCIE capability, aborting.\n");
7723 rc = -EIO;
7724 goto err_out_unmap;
7725 }
7726 bp->flags |= BNX2_FLAG_PCIE;
7727 if (CHIP_REV(bp) == CHIP_REV_Ax)
7728 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7729 } else {
7730 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7731 if (bp->pcix_cap == 0) {
7732 dev_err(&pdev->dev,
7733 "Cannot find PCIX capability, aborting.\n");
7734 rc = -EIO;
7735 goto err_out_unmap;
7736 }
7737 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7738 }
7739
7740 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7741 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7742 bp->flags |= BNX2_FLAG_MSIX_CAP;
7743 }
7744
7745 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7746 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7747 bp->flags |= BNX2_FLAG_MSI_CAP;
7748 }
7749
7750 /* 5708 cannot support DMA addresses > 40-bit. */
7751 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7752 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7753 else
7754 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7755
7756 /* Configure DMA attributes. */
7757 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7758 dev->features |= NETIF_F_HIGHDMA;
7759 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7760 if (rc) {
7761 dev_err(&pdev->dev,
7762 "pci_set_consistent_dma_mask failed, aborting.\n");
7763 goto err_out_unmap;
7764 }
7765 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7766 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7767 goto err_out_unmap;
7768 }
7769
7770 if (!(bp->flags & BNX2_FLAG_PCIE))
7771 bnx2_get_pci_speed(bp);
7772
7773 /* 5706A0 may falsely detect SERR and PERR. */
7774 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7775 reg = REG_RD(bp, PCI_COMMAND);
7776 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7777 REG_WR(bp, PCI_COMMAND, reg);
7778 }
7779 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7780 !(bp->flags & BNX2_FLAG_PCIX)) {
7781
7782 dev_err(&pdev->dev,
7783 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7784 goto err_out_unmap;
7785 }
7786
7787 bnx2_init_nvram(bp);
7788
7789 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7790
7791 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7792 BNX2_SHM_HDR_SIGNATURE_SIG) {
7793 u32 off = PCI_FUNC(pdev->devfn) << 2;
7794
7795 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7796 } else
7797 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7798
7799 /* Get the permanent MAC address. First we need to make sure the
7800 * firmware is actually running.
7801 */
7802 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7803
7804 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7805 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7806 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7807 rc = -ENODEV;
7808 goto err_out_unmap;
7809 }
7810
7811 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7812 for (i = 0, j = 0; i < 3; i++) {
7813 u8 num, k, skip0;
7814
7815 num = (u8) (reg >> (24 - (i * 8)));
7816 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7817 if (num >= k || !skip0 || k == 1) {
7818 bp->fw_version[j++] = (num / k) + '0';
7819 skip0 = 0;
7820 }
7821 }
7822 if (i != 2)
7823 bp->fw_version[j++] = '.';
7824 }
7825 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
7826 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
7827 bp->wol = 1;
7828
7829 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
7830 bp->flags |= BNX2_FLAG_ASF_ENABLE;
7831
7832 for (i = 0; i < 30; i++) {
7833 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7834 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
7835 break;
7836 msleep(10);
7837 }
7838 }
7839 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7840 reg &= BNX2_CONDITION_MFW_RUN_MASK;
7841 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
7842 reg != BNX2_CONDITION_MFW_RUN_NONE) {
7843 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
7844
7845 bp->fw_version[j++] = ' ';
7846 for (i = 0; i < 3; i++) {
7847 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
7848 reg = swab32(reg);
7849 memcpy(&bp->fw_version[j], &reg, 4);
7850 j += 4;
7851 }
7852 }
7853
7854 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
7855 bp->mac_addr[0] = (u8) (reg >> 8);
7856 bp->mac_addr[1] = (u8) reg;
7857
7858 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
7859 bp->mac_addr[2] = (u8) (reg >> 24);
7860 bp->mac_addr[3] = (u8) (reg >> 16);
7861 bp->mac_addr[4] = (u8) (reg >> 8);
7862 bp->mac_addr[5] = (u8) reg;
7863
7864 bp->tx_ring_size = MAX_TX_DESC_CNT;
7865 bnx2_set_rx_ring_size(bp, 255);
7866
7867 bp->rx_csum = 1;
7868
7869 bp->tx_quick_cons_trip_int = 2;
7870 bp->tx_quick_cons_trip = 20;
7871 bp->tx_ticks_int = 18;
7872 bp->tx_ticks = 80;
7873
7874 bp->rx_quick_cons_trip_int = 2;
7875 bp->rx_quick_cons_trip = 12;
7876 bp->rx_ticks_int = 18;
7877 bp->rx_ticks = 18;
7878
7879 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7880
7881 bp->current_interval = BNX2_TIMER_INTERVAL;
7882
7883 bp->phy_addr = 1;
7884
7885 /* Disable WOL support if we are running on a SERDES chip. */
7886 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7887 bnx2_get_5709_media(bp);
7888 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
7889 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7890
7891 bp->phy_port = PORT_TP;
7892 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7893 bp->phy_port = PORT_FIBRE;
7894 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
7895 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
7896 bp->flags |= BNX2_FLAG_NO_WOL;
7897 bp->wol = 0;
7898 }
7899 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
7900 /* Don't do parallel detect on this board because of
7901 * some board problems. The link will not go down
7902 * if we do parallel detect.
7903 */
7904 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
7905 pdev->subsystem_device == 0x310c)
7906 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
7907 } else {
7908 bp->phy_addr = 2;
7909 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
7910 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
7911 }
7912 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
7913 CHIP_NUM(bp) == CHIP_NUM_5708)
7914 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
7915 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
7916 (CHIP_REV(bp) == CHIP_REV_Ax ||
7917 CHIP_REV(bp) == CHIP_REV_Bx))
7918 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
7919
7920 bnx2_init_fw_cap(bp);
7921
7922 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
7923 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
7924 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
7925 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
7926 bp->flags |= BNX2_FLAG_NO_WOL;
7927 bp->wol = 0;
7928 }
7929
7930 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7931 bp->tx_quick_cons_trip_int =
7932 bp->tx_quick_cons_trip;
7933 bp->tx_ticks_int = bp->tx_ticks;
7934 bp->rx_quick_cons_trip_int =
7935 bp->rx_quick_cons_trip;
7936 bp->rx_ticks_int = bp->rx_ticks;
7937 bp->comp_prod_trip_int = bp->comp_prod_trip;
7938 bp->com_ticks_int = bp->com_ticks;
7939 bp->cmd_ticks_int = bp->cmd_ticks;
7940 }
7941
7942 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7943 *
7944 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7945 * with byte enables disabled on the unused 32-bit word. This is legal
7946 * but causes problems on the AMD 8132 which will eventually stop
7947 * responding after a while.
7948 *
7949 * AMD believes this incompatibility is unique to the 5706, and
7950 * prefers to locally disable MSI rather than globally disabling it.
7951 */
7952 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
7953 struct pci_dev *amd_8132 = NULL;
7954
7955 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
7956 PCI_DEVICE_ID_AMD_8132_BRIDGE,
7957 amd_8132))) {
7958
7959 if (amd_8132->revision >= 0x10 &&
7960 amd_8132->revision <= 0x13) {
7961 disable_msi = 1;
7962 pci_dev_put(amd_8132);
7963 break;
7964 }
7965 }
7966 }
7967
7968 bnx2_set_default_link(bp);
7969 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
7970
7971 init_timer(&bp->timer);
7972 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
7973 bp->timer.data = (unsigned long) bp;
7974 bp->timer.function = bnx2_timer;
7975
7976 return 0;
7977
7978 err_out_unmap:
7979 if (bp->regview) {
7980 iounmap(bp->regview);
7981 bp->regview = NULL;
7982 }
7983
7984 err_out_release:
7985 pci_release_regions(pdev);
7986
7987 err_out_disable:
7988 pci_disable_device(pdev);
7989 pci_set_drvdata(pdev, NULL);
7990
7991 err_out:
7992 return rc;
7993 }
7994
7995 static char * __devinit
7996 bnx2_bus_string(struct bnx2 *bp, char *str)
7997 {
7998 char *s = str;
7999
8000 if (bp->flags & BNX2_FLAG_PCIE) {
8001 s += sprintf(s, "PCI Express");
8002 } else {
8003 s += sprintf(s, "PCI");
8004 if (bp->flags & BNX2_FLAG_PCIX)
8005 s += sprintf(s, "-X");
8006 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8007 s += sprintf(s, " 32-bit");
8008 else
8009 s += sprintf(s, " 64-bit");
8010 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8011 }
8012 return str;
8013 }
8014
8015 static void __devinit
8016 bnx2_init_napi(struct bnx2 *bp)
8017 {
8018 int i;
8019
8020 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
8021 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8022 int (*poll)(struct napi_struct *, int);
8023
8024 if (i == 0)
8025 poll = bnx2_poll;
8026 else
8027 poll = bnx2_poll_msix;
8028
8029 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8030 bnapi->bp = bp;
8031 }
8032 }
8033
8034 static const struct net_device_ops bnx2_netdev_ops = {
8035 .ndo_open = bnx2_open,
8036 .ndo_start_xmit = bnx2_start_xmit,
8037 .ndo_stop = bnx2_close,
8038 .ndo_get_stats = bnx2_get_stats,
8039 .ndo_set_rx_mode = bnx2_set_rx_mode,
8040 .ndo_do_ioctl = bnx2_ioctl,
8041 .ndo_validate_addr = eth_validate_addr,
8042 .ndo_set_mac_address = bnx2_change_mac_addr,
8043 .ndo_change_mtu = bnx2_change_mtu,
8044 .ndo_tx_timeout = bnx2_tx_timeout,
8045 #ifdef BCM_VLAN
8046 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
8047 #endif
8048 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
8049 .ndo_poll_controller = poll_bnx2,
8050 #endif
8051 };
8052
8053 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8054 {
8055 #ifdef BCM_VLAN
8056 dev->vlan_features |= flags;
8057 #endif
8058 }
8059
8060 static int __devinit
8061 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8062 {
8063 static int version_printed = 0;
8064 struct net_device *dev = NULL;
8065 struct bnx2 *bp;
8066 int rc;
8067 char str[40];
8068
8069 if (version_printed++ == 0)
8070 printk(KERN_INFO "%s", version);
8071
8072 /* dev zeroed in init_etherdev */
8073 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8074
8075 if (!dev)
8076 return -ENOMEM;
8077
8078 rc = bnx2_init_board(pdev, dev);
8079 if (rc < 0) {
8080 free_netdev(dev);
8081 return rc;
8082 }
8083
8084 dev->netdev_ops = &bnx2_netdev_ops;
8085 dev->watchdog_timeo = TX_TIMEOUT;
8086 dev->ethtool_ops = &bnx2_ethtool_ops;
8087
8088 bp = netdev_priv(dev);
8089 bnx2_init_napi(bp);
8090
8091 pci_set_drvdata(pdev, dev);
8092
8093 rc = bnx2_request_firmware(bp);
8094 if (rc)
8095 goto error;
8096
8097 memcpy(dev->dev_addr, bp->mac_addr, 6);
8098 memcpy(dev->perm_addr, bp->mac_addr, 6);
8099
8100 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
8101 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8102 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8103 dev->features |= NETIF_F_IPV6_CSUM;
8104 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8105 }
8106 #ifdef BCM_VLAN
8107 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8108 #endif
8109 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8110 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8111 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8112 dev->features |= NETIF_F_TSO6;
8113 vlan_features_add(dev, NETIF_F_TSO6);
8114 }
8115 if ((rc = register_netdev(dev))) {
8116 dev_err(&pdev->dev, "Cannot register net device\n");
8117 goto error;
8118 }
8119
8120 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
8121 "IRQ %d, node addr %pM\n",
8122 dev->name,
8123 board_info[ent->driver_data].name,
8124 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8125 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8126 bnx2_bus_string(bp, str),
8127 dev->base_addr,
8128 bp->pdev->irq, dev->dev_addr);
8129
8130 return 0;
8131
8132 error:
8133 if (bp->mips_firmware)
8134 release_firmware(bp->mips_firmware);
8135 if (bp->rv2p_firmware)
8136 release_firmware(bp->rv2p_firmware);
8137
8138 if (bp->regview)
8139 iounmap(bp->regview);
8140 pci_release_regions(pdev);
8141 pci_disable_device(pdev);
8142 pci_set_drvdata(pdev, NULL);
8143 free_netdev(dev);
8144 return rc;
8145 }
8146
8147 static void __devexit
8148 bnx2_remove_one(struct pci_dev *pdev)
8149 {
8150 struct net_device *dev = pci_get_drvdata(pdev);
8151 struct bnx2 *bp = netdev_priv(dev);
8152
8153 flush_scheduled_work();
8154
8155 unregister_netdev(dev);
8156
8157 if (bp->mips_firmware)
8158 release_firmware(bp->mips_firmware);
8159 if (bp->rv2p_firmware)
8160 release_firmware(bp->rv2p_firmware);
8161
8162 if (bp->regview)
8163 iounmap(bp->regview);
8164
8165 free_netdev(dev);
8166 pci_release_regions(pdev);
8167 pci_disable_device(pdev);
8168 pci_set_drvdata(pdev, NULL);
8169 }
8170
8171 static int
8172 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8173 {
8174 struct net_device *dev = pci_get_drvdata(pdev);
8175 struct bnx2 *bp = netdev_priv(dev);
8176
8177 /* PCI register 4 needs to be saved whether netif_running() or not.
8178 * MSI address and data need to be saved if using MSI and
8179 * netif_running().
8180 */
8181 pci_save_state(pdev);
8182 if (!netif_running(dev))
8183 return 0;
8184
8185 flush_scheduled_work();
8186 bnx2_netif_stop(bp);
8187 netif_device_detach(dev);
8188 del_timer_sync(&bp->timer);
8189 bnx2_shutdown_chip(bp);
8190 bnx2_free_skbs(bp);
8191 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8192 return 0;
8193 }
8194
8195 static int
8196 bnx2_resume(struct pci_dev *pdev)
8197 {
8198 struct net_device *dev = pci_get_drvdata(pdev);
8199 struct bnx2 *bp = netdev_priv(dev);
8200
8201 pci_restore_state(pdev);
8202 if (!netif_running(dev))
8203 return 0;
8204
8205 bnx2_set_power_state(bp, PCI_D0);
8206 netif_device_attach(dev);
8207 bnx2_init_nic(bp, 1);
8208 bnx2_netif_start(bp);
8209 return 0;
8210 }
8211
8212 /**
8213 * bnx2_io_error_detected - called when PCI error is detected
8214 * @pdev: Pointer to PCI device
8215 * @state: The current pci connection state
8216 *
8217 * This function is called after a PCI bus error affecting
8218 * this device has been detected.
8219 */
8220 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8221 pci_channel_state_t state)
8222 {
8223 struct net_device *dev = pci_get_drvdata(pdev);
8224 struct bnx2 *bp = netdev_priv(dev);
8225
8226 rtnl_lock();
8227 netif_device_detach(dev);
8228
8229 if (state == pci_channel_io_perm_failure) {
8230 rtnl_unlock();
8231 return PCI_ERS_RESULT_DISCONNECT;
8232 }
8233
8234 if (netif_running(dev)) {
8235 bnx2_netif_stop(bp);
8236 del_timer_sync(&bp->timer);
8237 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8238 }
8239
8240 pci_disable_device(pdev);
8241 rtnl_unlock();
8242
8243 /* Request a slot slot reset. */
8244 return PCI_ERS_RESULT_NEED_RESET;
8245 }
8246
8247 /**
8248 * bnx2_io_slot_reset - called after the pci bus has been reset.
8249 * @pdev: Pointer to PCI device
8250 *
8251 * Restart the card from scratch, as if from a cold-boot.
8252 */
8253 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8254 {
8255 struct net_device *dev = pci_get_drvdata(pdev);
8256 struct bnx2 *bp = netdev_priv(dev);
8257
8258 rtnl_lock();
8259 if (pci_enable_device(pdev)) {
8260 dev_err(&pdev->dev,
8261 "Cannot re-enable PCI device after reset.\n");
8262 rtnl_unlock();
8263 return PCI_ERS_RESULT_DISCONNECT;
8264 }
8265 pci_set_master(pdev);
8266 pci_restore_state(pdev);
8267
8268 if (netif_running(dev)) {
8269 bnx2_set_power_state(bp, PCI_D0);
8270 bnx2_init_nic(bp, 1);
8271 }
8272
8273 rtnl_unlock();
8274 return PCI_ERS_RESULT_RECOVERED;
8275 }
8276
8277 /**
8278 * bnx2_io_resume - called when traffic can start flowing again.
8279 * @pdev: Pointer to PCI device
8280 *
8281 * This callback is called when the error recovery driver tells us that
8282 * its OK to resume normal operation.
8283 */
8284 static void bnx2_io_resume(struct pci_dev *pdev)
8285 {
8286 struct net_device *dev = pci_get_drvdata(pdev);
8287 struct bnx2 *bp = netdev_priv(dev);
8288
8289 rtnl_lock();
8290 if (netif_running(dev))
8291 bnx2_netif_start(bp);
8292
8293 netif_device_attach(dev);
8294 rtnl_unlock();
8295 }
8296
8297 static struct pci_error_handlers bnx2_err_handler = {
8298 .error_detected = bnx2_io_error_detected,
8299 .slot_reset = bnx2_io_slot_reset,
8300 .resume = bnx2_io_resume,
8301 };
8302
8303 static struct pci_driver bnx2_pci_driver = {
8304 .name = DRV_MODULE_NAME,
8305 .id_table = bnx2_pci_tbl,
8306 .probe = bnx2_init_one,
8307 .remove = __devexit_p(bnx2_remove_one),
8308 .suspend = bnx2_suspend,
8309 .resume = bnx2_resume,
8310 .err_handler = &bnx2_err_handler,
8311 };
8312
8313 static int __init bnx2_init(void)
8314 {
8315 return pci_register_driver(&bnx2_pci_driver);
8316 }
8317
8318 static void __exit bnx2_cleanup(void)
8319 {
8320 pci_unregister_driver(&bnx2_pci_driver);
8321 }
8322
8323 module_init(bnx2_init);
8324 module_exit(bnx2_cleanup);
8325
8326
8327