bnx2/bnx2x: Unsupported Ethtool operations should return -EINVAL.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2010 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
31 #include <asm/io.h>
32 #include <asm/irq.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if_vlan.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/checksum.h>
43 #include <linux/workqueue.h>
44 #include <linux/crc32.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/firmware.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50
51 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
52 #define BCM_CNIC 1
53 #include "cnic_if.h"
54 #endif
55 #include "bnx2.h"
56 #include "bnx2_fw.h"
57
58 #define DRV_MODULE_NAME "bnx2"
59 #define DRV_MODULE_VERSION "2.0.18"
60 #define DRV_MODULE_RELDATE "Oct 7, 2010"
61 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.0.15.fw"
62 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
63 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.0.17.fw"
64 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
65 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
66
67 #define RUN_AT(x) (jiffies + (x))
68
69 /* Time in jiffies before concluding the transmitter is hung. */
70 #define TX_TIMEOUT (5*HZ)
71
72 static char version[] __devinitdata =
73 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
74
75 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
76 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
77 MODULE_LICENSE("GPL");
78 MODULE_VERSION(DRV_MODULE_VERSION);
79 MODULE_FIRMWARE(FW_MIPS_FILE_06);
80 MODULE_FIRMWARE(FW_RV2P_FILE_06);
81 MODULE_FIRMWARE(FW_MIPS_FILE_09);
82 MODULE_FIRMWARE(FW_RV2P_FILE_09);
83 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
84
85 static int disable_msi = 0;
86
87 module_param(disable_msi, int, 0);
88 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
89
90 typedef enum {
91 BCM5706 = 0,
92 NC370T,
93 NC370I,
94 BCM5706S,
95 NC370F,
96 BCM5708,
97 BCM5708S,
98 BCM5709,
99 BCM5709S,
100 BCM5716,
101 BCM5716S,
102 } board_t;
103
104 /* indexed by board_t, above */
105 static struct {
106 char *name;
107 } board_info[] __devinitdata = {
108 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
109 { "HP NC370T Multifunction Gigabit Server Adapter" },
110 { "HP NC370i Multifunction Gigabit Server Adapter" },
111 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
112 { "HP NC370F Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
115 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
119 };
120
121 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
122 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
123 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
124 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
125 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
126 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
127 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
128 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
130 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
131 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
132 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
134 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
135 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
136 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
137 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
138 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
139 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
140 { PCI_VENDOR_ID_BROADCOM, 0x163b,
141 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
142 { PCI_VENDOR_ID_BROADCOM, 0x163c,
143 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
144 { 0, }
145 };
146
147 static const struct flash_spec flash_table[] =
148 {
149 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
150 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
151 /* Slow EEPROM */
152 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
153 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
154 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
155 "EEPROM - slow"},
156 /* Expansion entry 0001 */
157 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
158 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
159 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
160 "Entry 0001"},
161 /* Saifun SA25F010 (non-buffered flash) */
162 /* strap, cfg1, & write1 need updates */
163 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
164 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
165 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
166 "Non-buffered flash (128kB)"},
167 /* Saifun SA25F020 (non-buffered flash) */
168 /* strap, cfg1, & write1 need updates */
169 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
170 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
171 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
172 "Non-buffered flash (256kB)"},
173 /* Expansion entry 0100 */
174 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
175 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
177 "Entry 0100"},
178 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
179 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
180 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
181 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
182 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
183 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
184 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
185 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
187 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
188 /* Saifun SA25F005 (non-buffered flash) */
189 /* strap, cfg1, & write1 need updates */
190 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
191 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
192 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
193 "Non-buffered flash (64kB)"},
194 /* Fast EEPROM */
195 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
196 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
197 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
198 "EEPROM - fast"},
199 /* Expansion entry 1001 */
200 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
203 "Entry 1001"},
204 /* Expansion entry 1010 */
205 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 "Entry 1010"},
209 /* ATMEL AT45DB011B (buffered flash) */
210 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
211 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
212 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
213 "Buffered flash (128kB)"},
214 /* Expansion entry 1100 */
215 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
217 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
218 "Entry 1100"},
219 /* Expansion entry 1101 */
220 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 "Entry 1101"},
224 /* Ateml Expansion entry 1110 */
225 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
226 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
227 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
228 "Entry 1110 (Atmel)"},
229 /* ATMEL AT45DB021B (buffered flash) */
230 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
231 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
233 "Buffered flash (256kB)"},
234 };
235
236 static const struct flash_spec flash_5709 = {
237 .flags = BNX2_NV_BUFFERED,
238 .page_bits = BCM5709_FLASH_PAGE_BITS,
239 .page_size = BCM5709_FLASH_PAGE_SIZE,
240 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
241 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
242 .name = "5709 Buffered flash (256kB)",
243 };
244
245 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
246
247 static void bnx2_init_napi(struct bnx2 *bp);
248 static void bnx2_del_napi(struct bnx2 *bp);
249
250 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
251 {
252 u32 diff;
253
254 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
255 barrier();
256
257 /* The ring uses 256 indices for 255 entries, one of them
258 * needs to be skipped.
259 */
260 diff = txr->tx_prod - txr->tx_cons;
261 if (unlikely(diff >= TX_DESC_CNT)) {
262 diff &= 0xffff;
263 if (diff == TX_DESC_CNT)
264 diff = MAX_TX_DESC_CNT;
265 }
266 return bp->tx_ring_size - diff;
267 }
268
269 static u32
270 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
271 {
272 u32 val;
273
274 spin_lock_bh(&bp->indirect_lock);
275 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
276 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
277 spin_unlock_bh(&bp->indirect_lock);
278 return val;
279 }
280
281 static void
282 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
283 {
284 spin_lock_bh(&bp->indirect_lock);
285 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
286 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
287 spin_unlock_bh(&bp->indirect_lock);
288 }
289
290 static void
291 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
292 {
293 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
294 }
295
296 static u32
297 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
298 {
299 return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
300 }
301
302 static void
303 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
304 {
305 offset += cid_addr;
306 spin_lock_bh(&bp->indirect_lock);
307 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
308 int i;
309
310 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
311 REG_WR(bp, BNX2_CTX_CTX_CTRL,
312 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
313 for (i = 0; i < 5; i++) {
314 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
315 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
316 break;
317 udelay(5);
318 }
319 } else {
320 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
321 REG_WR(bp, BNX2_CTX_DATA, val);
322 }
323 spin_unlock_bh(&bp->indirect_lock);
324 }
325
326 #ifdef BCM_CNIC
327 static int
328 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
329 {
330 struct bnx2 *bp = netdev_priv(dev);
331 struct drv_ctl_io *io = &info->data.io;
332
333 switch (info->cmd) {
334 case DRV_CTL_IO_WR_CMD:
335 bnx2_reg_wr_ind(bp, io->offset, io->data);
336 break;
337 case DRV_CTL_IO_RD_CMD:
338 io->data = bnx2_reg_rd_ind(bp, io->offset);
339 break;
340 case DRV_CTL_CTX_WR_CMD:
341 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
342 break;
343 default:
344 return -EINVAL;
345 }
346 return 0;
347 }
348
349 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
350 {
351 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
352 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
353 int sb_id;
354
355 if (bp->flags & BNX2_FLAG_USING_MSIX) {
356 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
357 bnapi->cnic_present = 0;
358 sb_id = bp->irq_nvecs;
359 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
360 } else {
361 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
362 bnapi->cnic_tag = bnapi->last_status_idx;
363 bnapi->cnic_present = 1;
364 sb_id = 0;
365 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
366 }
367
368 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
369 cp->irq_arr[0].status_blk = (void *)
370 ((unsigned long) bnapi->status_blk.msi +
371 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
372 cp->irq_arr[0].status_blk_num = sb_id;
373 cp->num_irq = 1;
374 }
375
376 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
377 void *data)
378 {
379 struct bnx2 *bp = netdev_priv(dev);
380 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
381
382 if (ops == NULL)
383 return -EINVAL;
384
385 if (cp->drv_state & CNIC_DRV_STATE_REGD)
386 return -EBUSY;
387
388 bp->cnic_data = data;
389 rcu_assign_pointer(bp->cnic_ops, ops);
390
391 cp->num_irq = 0;
392 cp->drv_state = CNIC_DRV_STATE_REGD;
393
394 bnx2_setup_cnic_irq_info(bp);
395
396 return 0;
397 }
398
399 static int bnx2_unregister_cnic(struct net_device *dev)
400 {
401 struct bnx2 *bp = netdev_priv(dev);
402 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
403 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
404
405 mutex_lock(&bp->cnic_lock);
406 cp->drv_state = 0;
407 bnapi->cnic_present = 0;
408 rcu_assign_pointer(bp->cnic_ops, NULL);
409 mutex_unlock(&bp->cnic_lock);
410 synchronize_rcu();
411 return 0;
412 }
413
414 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
415 {
416 struct bnx2 *bp = netdev_priv(dev);
417 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
418
419 cp->drv_owner = THIS_MODULE;
420 cp->chip_id = bp->chip_id;
421 cp->pdev = bp->pdev;
422 cp->io_base = bp->regview;
423 cp->drv_ctl = bnx2_drv_ctl;
424 cp->drv_register_cnic = bnx2_register_cnic;
425 cp->drv_unregister_cnic = bnx2_unregister_cnic;
426
427 return cp;
428 }
429 EXPORT_SYMBOL(bnx2_cnic_probe);
430
431 static void
432 bnx2_cnic_stop(struct bnx2 *bp)
433 {
434 struct cnic_ops *c_ops;
435 struct cnic_ctl_info info;
436
437 mutex_lock(&bp->cnic_lock);
438 c_ops = bp->cnic_ops;
439 if (c_ops) {
440 info.cmd = CNIC_CTL_STOP_CMD;
441 c_ops->cnic_ctl(bp->cnic_data, &info);
442 }
443 mutex_unlock(&bp->cnic_lock);
444 }
445
446 static void
447 bnx2_cnic_start(struct bnx2 *bp)
448 {
449 struct cnic_ops *c_ops;
450 struct cnic_ctl_info info;
451
452 mutex_lock(&bp->cnic_lock);
453 c_ops = bp->cnic_ops;
454 if (c_ops) {
455 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
456 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
457
458 bnapi->cnic_tag = bnapi->last_status_idx;
459 }
460 info.cmd = CNIC_CTL_START_CMD;
461 c_ops->cnic_ctl(bp->cnic_data, &info);
462 }
463 mutex_unlock(&bp->cnic_lock);
464 }
465
466 #else
467
468 static void
469 bnx2_cnic_stop(struct bnx2 *bp)
470 {
471 }
472
473 static void
474 bnx2_cnic_start(struct bnx2 *bp)
475 {
476 }
477
478 #endif
479
480 static int
481 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
482 {
483 u32 val1;
484 int i, ret;
485
486 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
487 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
488 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
489
490 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
491 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
492
493 udelay(40);
494 }
495
496 val1 = (bp->phy_addr << 21) | (reg << 16) |
497 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
498 BNX2_EMAC_MDIO_COMM_START_BUSY;
499 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
500
501 for (i = 0; i < 50; i++) {
502 udelay(10);
503
504 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
505 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
506 udelay(5);
507
508 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
509 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
510
511 break;
512 }
513 }
514
515 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
516 *val = 0x0;
517 ret = -EBUSY;
518 }
519 else {
520 *val = val1;
521 ret = 0;
522 }
523
524 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
525 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
526 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
527
528 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
529 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
530
531 udelay(40);
532 }
533
534 return ret;
535 }
536
537 static int
538 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
539 {
540 u32 val1;
541 int i, ret;
542
543 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
544 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
545 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
546
547 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
548 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
549
550 udelay(40);
551 }
552
553 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
554 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
555 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
556 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
557
558 for (i = 0; i < 50; i++) {
559 udelay(10);
560
561 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
562 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
563 udelay(5);
564 break;
565 }
566 }
567
568 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
569 ret = -EBUSY;
570 else
571 ret = 0;
572
573 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
574 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
575 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
576
577 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
578 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
579
580 udelay(40);
581 }
582
583 return ret;
584 }
585
586 static void
587 bnx2_disable_int(struct bnx2 *bp)
588 {
589 int i;
590 struct bnx2_napi *bnapi;
591
592 for (i = 0; i < bp->irq_nvecs; i++) {
593 bnapi = &bp->bnx2_napi[i];
594 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
595 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
596 }
597 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
598 }
599
600 static void
601 bnx2_enable_int(struct bnx2 *bp)
602 {
603 int i;
604 struct bnx2_napi *bnapi;
605
606 for (i = 0; i < bp->irq_nvecs; i++) {
607 bnapi = &bp->bnx2_napi[i];
608
609 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
610 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
611 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
612 bnapi->last_status_idx);
613
614 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
615 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
616 bnapi->last_status_idx);
617 }
618 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
619 }
620
621 static void
622 bnx2_disable_int_sync(struct bnx2 *bp)
623 {
624 int i;
625
626 atomic_inc(&bp->intr_sem);
627 if (!netif_running(bp->dev))
628 return;
629
630 bnx2_disable_int(bp);
631 for (i = 0; i < bp->irq_nvecs; i++)
632 synchronize_irq(bp->irq_tbl[i].vector);
633 }
634
635 static void
636 bnx2_napi_disable(struct bnx2 *bp)
637 {
638 int i;
639
640 for (i = 0; i < bp->irq_nvecs; i++)
641 napi_disable(&bp->bnx2_napi[i].napi);
642 }
643
644 static void
645 bnx2_napi_enable(struct bnx2 *bp)
646 {
647 int i;
648
649 for (i = 0; i < bp->irq_nvecs; i++)
650 napi_enable(&bp->bnx2_napi[i].napi);
651 }
652
653 static void
654 bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
655 {
656 if (stop_cnic)
657 bnx2_cnic_stop(bp);
658 if (netif_running(bp->dev)) {
659 bnx2_napi_disable(bp);
660 netif_tx_disable(bp->dev);
661 }
662 bnx2_disable_int_sync(bp);
663 netif_carrier_off(bp->dev); /* prevent tx timeout */
664 }
665
666 static void
667 bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
668 {
669 if (atomic_dec_and_test(&bp->intr_sem)) {
670 if (netif_running(bp->dev)) {
671 netif_tx_wake_all_queues(bp->dev);
672 spin_lock_bh(&bp->phy_lock);
673 if (bp->link_up)
674 netif_carrier_on(bp->dev);
675 spin_unlock_bh(&bp->phy_lock);
676 bnx2_napi_enable(bp);
677 bnx2_enable_int(bp);
678 if (start_cnic)
679 bnx2_cnic_start(bp);
680 }
681 }
682 }
683
684 static void
685 bnx2_free_tx_mem(struct bnx2 *bp)
686 {
687 int i;
688
689 for (i = 0; i < bp->num_tx_rings; i++) {
690 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
691 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
692
693 if (txr->tx_desc_ring) {
694 dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
695 txr->tx_desc_ring,
696 txr->tx_desc_mapping);
697 txr->tx_desc_ring = NULL;
698 }
699 kfree(txr->tx_buf_ring);
700 txr->tx_buf_ring = NULL;
701 }
702 }
703
704 static void
705 bnx2_free_rx_mem(struct bnx2 *bp)
706 {
707 int i;
708
709 for (i = 0; i < bp->num_rx_rings; i++) {
710 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
711 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
712 int j;
713
714 for (j = 0; j < bp->rx_max_ring; j++) {
715 if (rxr->rx_desc_ring[j])
716 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
717 rxr->rx_desc_ring[j],
718 rxr->rx_desc_mapping[j]);
719 rxr->rx_desc_ring[j] = NULL;
720 }
721 vfree(rxr->rx_buf_ring);
722 rxr->rx_buf_ring = NULL;
723
724 for (j = 0; j < bp->rx_max_pg_ring; j++) {
725 if (rxr->rx_pg_desc_ring[j])
726 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
727 rxr->rx_pg_desc_ring[j],
728 rxr->rx_pg_desc_mapping[j]);
729 rxr->rx_pg_desc_ring[j] = NULL;
730 }
731 vfree(rxr->rx_pg_ring);
732 rxr->rx_pg_ring = NULL;
733 }
734 }
735
736 static int
737 bnx2_alloc_tx_mem(struct bnx2 *bp)
738 {
739 int i;
740
741 for (i = 0; i < bp->num_tx_rings; i++) {
742 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
743 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
744
745 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
746 if (txr->tx_buf_ring == NULL)
747 return -ENOMEM;
748
749 txr->tx_desc_ring =
750 dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
751 &txr->tx_desc_mapping, GFP_KERNEL);
752 if (txr->tx_desc_ring == NULL)
753 return -ENOMEM;
754 }
755 return 0;
756 }
757
758 static int
759 bnx2_alloc_rx_mem(struct bnx2 *bp)
760 {
761 int i;
762
763 for (i = 0; i < bp->num_rx_rings; i++) {
764 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
765 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
766 int j;
767
768 rxr->rx_buf_ring =
769 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
770 if (rxr->rx_buf_ring == NULL)
771 return -ENOMEM;
772
773 memset(rxr->rx_buf_ring, 0,
774 SW_RXBD_RING_SIZE * bp->rx_max_ring);
775
776 for (j = 0; j < bp->rx_max_ring; j++) {
777 rxr->rx_desc_ring[j] =
778 dma_alloc_coherent(&bp->pdev->dev,
779 RXBD_RING_SIZE,
780 &rxr->rx_desc_mapping[j],
781 GFP_KERNEL);
782 if (rxr->rx_desc_ring[j] == NULL)
783 return -ENOMEM;
784
785 }
786
787 if (bp->rx_pg_ring_size) {
788 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
789 bp->rx_max_pg_ring);
790 if (rxr->rx_pg_ring == NULL)
791 return -ENOMEM;
792
793 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
794 bp->rx_max_pg_ring);
795 }
796
797 for (j = 0; j < bp->rx_max_pg_ring; j++) {
798 rxr->rx_pg_desc_ring[j] =
799 dma_alloc_coherent(&bp->pdev->dev,
800 RXBD_RING_SIZE,
801 &rxr->rx_pg_desc_mapping[j],
802 GFP_KERNEL);
803 if (rxr->rx_pg_desc_ring[j] == NULL)
804 return -ENOMEM;
805
806 }
807 }
808 return 0;
809 }
810
811 static void
812 bnx2_free_mem(struct bnx2 *bp)
813 {
814 int i;
815 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
816
817 bnx2_free_tx_mem(bp);
818 bnx2_free_rx_mem(bp);
819
820 for (i = 0; i < bp->ctx_pages; i++) {
821 if (bp->ctx_blk[i]) {
822 dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE,
823 bp->ctx_blk[i],
824 bp->ctx_blk_mapping[i]);
825 bp->ctx_blk[i] = NULL;
826 }
827 }
828 if (bnapi->status_blk.msi) {
829 dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
830 bnapi->status_blk.msi,
831 bp->status_blk_mapping);
832 bnapi->status_blk.msi = NULL;
833 bp->stats_blk = NULL;
834 }
835 }
836
837 static int
838 bnx2_alloc_mem(struct bnx2 *bp)
839 {
840 int i, status_blk_size, err;
841 struct bnx2_napi *bnapi;
842 void *status_blk;
843
844 /* Combine status and statistics blocks into one allocation. */
845 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
846 if (bp->flags & BNX2_FLAG_MSIX_CAP)
847 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
848 BNX2_SBLK_MSIX_ALIGN_SIZE);
849 bp->status_stats_size = status_blk_size +
850 sizeof(struct statistics_block);
851
852 status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
853 &bp->status_blk_mapping, GFP_KERNEL);
854 if (status_blk == NULL)
855 goto alloc_mem_err;
856
857 memset(status_blk, 0, bp->status_stats_size);
858
859 bnapi = &bp->bnx2_napi[0];
860 bnapi->status_blk.msi = status_blk;
861 bnapi->hw_tx_cons_ptr =
862 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
863 bnapi->hw_rx_cons_ptr =
864 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
865 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
866 for (i = 1; i < bp->irq_nvecs; i++) {
867 struct status_block_msix *sblk;
868
869 bnapi = &bp->bnx2_napi[i];
870
871 sblk = (void *) (status_blk +
872 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
873 bnapi->status_blk.msix = sblk;
874 bnapi->hw_tx_cons_ptr =
875 &sblk->status_tx_quick_consumer_index;
876 bnapi->hw_rx_cons_ptr =
877 &sblk->status_rx_quick_consumer_index;
878 bnapi->int_num = i << 24;
879 }
880 }
881
882 bp->stats_blk = status_blk + status_blk_size;
883
884 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
885
886 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
887 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
888 if (bp->ctx_pages == 0)
889 bp->ctx_pages = 1;
890 for (i = 0; i < bp->ctx_pages; i++) {
891 bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
892 BCM_PAGE_SIZE,
893 &bp->ctx_blk_mapping[i],
894 GFP_KERNEL);
895 if (bp->ctx_blk[i] == NULL)
896 goto alloc_mem_err;
897 }
898 }
899
900 err = bnx2_alloc_rx_mem(bp);
901 if (err)
902 goto alloc_mem_err;
903
904 err = bnx2_alloc_tx_mem(bp);
905 if (err)
906 goto alloc_mem_err;
907
908 return 0;
909
910 alloc_mem_err:
911 bnx2_free_mem(bp);
912 return -ENOMEM;
913 }
914
915 static void
916 bnx2_report_fw_link(struct bnx2 *bp)
917 {
918 u32 fw_link_status = 0;
919
920 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
921 return;
922
923 if (bp->link_up) {
924 u32 bmsr;
925
926 switch (bp->line_speed) {
927 case SPEED_10:
928 if (bp->duplex == DUPLEX_HALF)
929 fw_link_status = BNX2_LINK_STATUS_10HALF;
930 else
931 fw_link_status = BNX2_LINK_STATUS_10FULL;
932 break;
933 case SPEED_100:
934 if (bp->duplex == DUPLEX_HALF)
935 fw_link_status = BNX2_LINK_STATUS_100HALF;
936 else
937 fw_link_status = BNX2_LINK_STATUS_100FULL;
938 break;
939 case SPEED_1000:
940 if (bp->duplex == DUPLEX_HALF)
941 fw_link_status = BNX2_LINK_STATUS_1000HALF;
942 else
943 fw_link_status = BNX2_LINK_STATUS_1000FULL;
944 break;
945 case SPEED_2500:
946 if (bp->duplex == DUPLEX_HALF)
947 fw_link_status = BNX2_LINK_STATUS_2500HALF;
948 else
949 fw_link_status = BNX2_LINK_STATUS_2500FULL;
950 break;
951 }
952
953 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
954
955 if (bp->autoneg) {
956 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
957
958 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
959 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
960
961 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
962 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
963 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
964 else
965 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
966 }
967 }
968 else
969 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
970
971 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
972 }
973
974 static char *
975 bnx2_xceiver_str(struct bnx2 *bp)
976 {
977 return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
978 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
979 "Copper");
980 }
981
982 static void
983 bnx2_report_link(struct bnx2 *bp)
984 {
985 if (bp->link_up) {
986 netif_carrier_on(bp->dev);
987 netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
988 bnx2_xceiver_str(bp),
989 bp->line_speed,
990 bp->duplex == DUPLEX_FULL ? "full" : "half");
991
992 if (bp->flow_ctrl) {
993 if (bp->flow_ctrl & FLOW_CTRL_RX) {
994 pr_cont(", receive ");
995 if (bp->flow_ctrl & FLOW_CTRL_TX)
996 pr_cont("& transmit ");
997 }
998 else {
999 pr_cont(", transmit ");
1000 }
1001 pr_cont("flow control ON");
1002 }
1003 pr_cont("\n");
1004 } else {
1005 netif_carrier_off(bp->dev);
1006 netdev_err(bp->dev, "NIC %s Link is Down\n",
1007 bnx2_xceiver_str(bp));
1008 }
1009
1010 bnx2_report_fw_link(bp);
1011 }
1012
1013 static void
1014 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1015 {
1016 u32 local_adv, remote_adv;
1017
1018 bp->flow_ctrl = 0;
1019 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1020 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1021
1022 if (bp->duplex == DUPLEX_FULL) {
1023 bp->flow_ctrl = bp->req_flow_ctrl;
1024 }
1025 return;
1026 }
1027
1028 if (bp->duplex != DUPLEX_FULL) {
1029 return;
1030 }
1031
1032 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1033 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1034 u32 val;
1035
1036 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1037 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1038 bp->flow_ctrl |= FLOW_CTRL_TX;
1039 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1040 bp->flow_ctrl |= FLOW_CTRL_RX;
1041 return;
1042 }
1043
1044 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1045 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1046
1047 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1048 u32 new_local_adv = 0;
1049 u32 new_remote_adv = 0;
1050
1051 if (local_adv & ADVERTISE_1000XPAUSE)
1052 new_local_adv |= ADVERTISE_PAUSE_CAP;
1053 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1054 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1055 if (remote_adv & ADVERTISE_1000XPAUSE)
1056 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1057 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1058 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1059
1060 local_adv = new_local_adv;
1061 remote_adv = new_remote_adv;
1062 }
1063
1064 /* See Table 28B-3 of 802.3ab-1999 spec. */
1065 if (local_adv & ADVERTISE_PAUSE_CAP) {
1066 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1067 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1068 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1069 }
1070 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1071 bp->flow_ctrl = FLOW_CTRL_RX;
1072 }
1073 }
1074 else {
1075 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1076 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1077 }
1078 }
1079 }
1080 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1081 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1082 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1083
1084 bp->flow_ctrl = FLOW_CTRL_TX;
1085 }
1086 }
1087 }
1088
1089 static int
1090 bnx2_5709s_linkup(struct bnx2 *bp)
1091 {
1092 u32 val, speed;
1093
1094 bp->link_up = 1;
1095
1096 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1097 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1098 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1099
1100 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1101 bp->line_speed = bp->req_line_speed;
1102 bp->duplex = bp->req_duplex;
1103 return 0;
1104 }
1105 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1106 switch (speed) {
1107 case MII_BNX2_GP_TOP_AN_SPEED_10:
1108 bp->line_speed = SPEED_10;
1109 break;
1110 case MII_BNX2_GP_TOP_AN_SPEED_100:
1111 bp->line_speed = SPEED_100;
1112 break;
1113 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1114 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1115 bp->line_speed = SPEED_1000;
1116 break;
1117 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1118 bp->line_speed = SPEED_2500;
1119 break;
1120 }
1121 if (val & MII_BNX2_GP_TOP_AN_FD)
1122 bp->duplex = DUPLEX_FULL;
1123 else
1124 bp->duplex = DUPLEX_HALF;
1125 return 0;
1126 }
1127
1128 static int
1129 bnx2_5708s_linkup(struct bnx2 *bp)
1130 {
1131 u32 val;
1132
1133 bp->link_up = 1;
1134 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1135 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1136 case BCM5708S_1000X_STAT1_SPEED_10:
1137 bp->line_speed = SPEED_10;
1138 break;
1139 case BCM5708S_1000X_STAT1_SPEED_100:
1140 bp->line_speed = SPEED_100;
1141 break;
1142 case BCM5708S_1000X_STAT1_SPEED_1G:
1143 bp->line_speed = SPEED_1000;
1144 break;
1145 case BCM5708S_1000X_STAT1_SPEED_2G5:
1146 bp->line_speed = SPEED_2500;
1147 break;
1148 }
1149 if (val & BCM5708S_1000X_STAT1_FD)
1150 bp->duplex = DUPLEX_FULL;
1151 else
1152 bp->duplex = DUPLEX_HALF;
1153
1154 return 0;
1155 }
1156
1157 static int
1158 bnx2_5706s_linkup(struct bnx2 *bp)
1159 {
1160 u32 bmcr, local_adv, remote_adv, common;
1161
1162 bp->link_up = 1;
1163 bp->line_speed = SPEED_1000;
1164
1165 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1166 if (bmcr & BMCR_FULLDPLX) {
1167 bp->duplex = DUPLEX_FULL;
1168 }
1169 else {
1170 bp->duplex = DUPLEX_HALF;
1171 }
1172
1173 if (!(bmcr & BMCR_ANENABLE)) {
1174 return 0;
1175 }
1176
1177 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1178 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1179
1180 common = local_adv & remote_adv;
1181 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1182
1183 if (common & ADVERTISE_1000XFULL) {
1184 bp->duplex = DUPLEX_FULL;
1185 }
1186 else {
1187 bp->duplex = DUPLEX_HALF;
1188 }
1189 }
1190
1191 return 0;
1192 }
1193
1194 static int
1195 bnx2_copper_linkup(struct bnx2 *bp)
1196 {
1197 u32 bmcr;
1198
1199 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1200 if (bmcr & BMCR_ANENABLE) {
1201 u32 local_adv, remote_adv, common;
1202
1203 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1204 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1205
1206 common = local_adv & (remote_adv >> 2);
1207 if (common & ADVERTISE_1000FULL) {
1208 bp->line_speed = SPEED_1000;
1209 bp->duplex = DUPLEX_FULL;
1210 }
1211 else if (common & ADVERTISE_1000HALF) {
1212 bp->line_speed = SPEED_1000;
1213 bp->duplex = DUPLEX_HALF;
1214 }
1215 else {
1216 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1217 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1218
1219 common = local_adv & remote_adv;
1220 if (common & ADVERTISE_100FULL) {
1221 bp->line_speed = SPEED_100;
1222 bp->duplex = DUPLEX_FULL;
1223 }
1224 else if (common & ADVERTISE_100HALF) {
1225 bp->line_speed = SPEED_100;
1226 bp->duplex = DUPLEX_HALF;
1227 }
1228 else if (common & ADVERTISE_10FULL) {
1229 bp->line_speed = SPEED_10;
1230 bp->duplex = DUPLEX_FULL;
1231 }
1232 else if (common & ADVERTISE_10HALF) {
1233 bp->line_speed = SPEED_10;
1234 bp->duplex = DUPLEX_HALF;
1235 }
1236 else {
1237 bp->line_speed = 0;
1238 bp->link_up = 0;
1239 }
1240 }
1241 }
1242 else {
1243 if (bmcr & BMCR_SPEED100) {
1244 bp->line_speed = SPEED_100;
1245 }
1246 else {
1247 bp->line_speed = SPEED_10;
1248 }
1249 if (bmcr & BMCR_FULLDPLX) {
1250 bp->duplex = DUPLEX_FULL;
1251 }
1252 else {
1253 bp->duplex = DUPLEX_HALF;
1254 }
1255 }
1256
1257 return 0;
1258 }
1259
1260 static void
1261 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1262 {
1263 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1264
1265 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1266 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1267 val |= 0x02 << 8;
1268
1269 if (bp->flow_ctrl & FLOW_CTRL_TX)
1270 val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
1271
1272 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1273 }
1274
1275 static void
1276 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1277 {
1278 int i;
1279 u32 cid;
1280
1281 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1282 if (i == 1)
1283 cid = RX_RSS_CID;
1284 bnx2_init_rx_context(bp, cid);
1285 }
1286 }
1287
1288 static void
1289 bnx2_set_mac_link(struct bnx2 *bp)
1290 {
1291 u32 val;
1292
1293 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1294 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1295 (bp->duplex == DUPLEX_HALF)) {
1296 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1297 }
1298
1299 /* Configure the EMAC mode register. */
1300 val = REG_RD(bp, BNX2_EMAC_MODE);
1301
1302 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1303 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1304 BNX2_EMAC_MODE_25G_MODE);
1305
1306 if (bp->link_up) {
1307 switch (bp->line_speed) {
1308 case SPEED_10:
1309 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1310 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1311 break;
1312 }
1313 /* fall through */
1314 case SPEED_100:
1315 val |= BNX2_EMAC_MODE_PORT_MII;
1316 break;
1317 case SPEED_2500:
1318 val |= BNX2_EMAC_MODE_25G_MODE;
1319 /* fall through */
1320 case SPEED_1000:
1321 val |= BNX2_EMAC_MODE_PORT_GMII;
1322 break;
1323 }
1324 }
1325 else {
1326 val |= BNX2_EMAC_MODE_PORT_GMII;
1327 }
1328
1329 /* Set the MAC to operate in the appropriate duplex mode. */
1330 if (bp->duplex == DUPLEX_HALF)
1331 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1332 REG_WR(bp, BNX2_EMAC_MODE, val);
1333
1334 /* Enable/disable rx PAUSE. */
1335 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1336
1337 if (bp->flow_ctrl & FLOW_CTRL_RX)
1338 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1339 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1340
1341 /* Enable/disable tx PAUSE. */
1342 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1343 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1344
1345 if (bp->flow_ctrl & FLOW_CTRL_TX)
1346 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1347 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1348
1349 /* Acknowledge the interrupt. */
1350 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1351
1352 bnx2_init_all_rx_contexts(bp);
1353 }
1354
1355 static void
1356 bnx2_enable_bmsr1(struct bnx2 *bp)
1357 {
1358 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1359 (CHIP_NUM(bp) == CHIP_NUM_5709))
1360 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1361 MII_BNX2_BLK_ADDR_GP_STATUS);
1362 }
1363
1364 static void
1365 bnx2_disable_bmsr1(struct bnx2 *bp)
1366 {
1367 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1368 (CHIP_NUM(bp) == CHIP_NUM_5709))
1369 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1370 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1371 }
1372
1373 static int
1374 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1375 {
1376 u32 up1;
1377 int ret = 1;
1378
1379 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1380 return 0;
1381
1382 if (bp->autoneg & AUTONEG_SPEED)
1383 bp->advertising |= ADVERTISED_2500baseX_Full;
1384
1385 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1386 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1387
1388 bnx2_read_phy(bp, bp->mii_up1, &up1);
1389 if (!(up1 & BCM5708S_UP1_2G5)) {
1390 up1 |= BCM5708S_UP1_2G5;
1391 bnx2_write_phy(bp, bp->mii_up1, up1);
1392 ret = 0;
1393 }
1394
1395 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1396 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1397 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1398
1399 return ret;
1400 }
1401
1402 static int
1403 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1404 {
1405 u32 up1;
1406 int ret = 0;
1407
1408 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1409 return 0;
1410
1411 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1412 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1413
1414 bnx2_read_phy(bp, bp->mii_up1, &up1);
1415 if (up1 & BCM5708S_UP1_2G5) {
1416 up1 &= ~BCM5708S_UP1_2G5;
1417 bnx2_write_phy(bp, bp->mii_up1, up1);
1418 ret = 1;
1419 }
1420
1421 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1422 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1423 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1424
1425 return ret;
1426 }
1427
1428 static void
1429 bnx2_enable_forced_2g5(struct bnx2 *bp)
1430 {
1431 u32 uninitialized_var(bmcr);
1432 int err;
1433
1434 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1435 return;
1436
1437 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1438 u32 val;
1439
1440 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1441 MII_BNX2_BLK_ADDR_SERDES_DIG);
1442 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1443 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1444 val |= MII_BNX2_SD_MISC1_FORCE |
1445 MII_BNX2_SD_MISC1_FORCE_2_5G;
1446 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1447 }
1448
1449 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1450 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1451 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1452
1453 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1454 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1455 if (!err)
1456 bmcr |= BCM5708S_BMCR_FORCE_2500;
1457 } else {
1458 return;
1459 }
1460
1461 if (err)
1462 return;
1463
1464 if (bp->autoneg & AUTONEG_SPEED) {
1465 bmcr &= ~BMCR_ANENABLE;
1466 if (bp->req_duplex == DUPLEX_FULL)
1467 bmcr |= BMCR_FULLDPLX;
1468 }
1469 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1470 }
1471
1472 static void
1473 bnx2_disable_forced_2g5(struct bnx2 *bp)
1474 {
1475 u32 uninitialized_var(bmcr);
1476 int err;
1477
1478 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1479 return;
1480
1481 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1482 u32 val;
1483
1484 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1485 MII_BNX2_BLK_ADDR_SERDES_DIG);
1486 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1487 val &= ~MII_BNX2_SD_MISC1_FORCE;
1488 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1489 }
1490
1491 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1492 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1493 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1494
1495 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1496 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1497 if (!err)
1498 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1499 } else {
1500 return;
1501 }
1502
1503 if (err)
1504 return;
1505
1506 if (bp->autoneg & AUTONEG_SPEED)
1507 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1508 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1509 }
1510
1511 static void
1512 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1513 {
1514 u32 val;
1515
1516 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1517 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1518 if (start)
1519 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1520 else
1521 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1522 }
1523
1524 static int
1525 bnx2_set_link(struct bnx2 *bp)
1526 {
1527 u32 bmsr;
1528 u8 link_up;
1529
1530 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1531 bp->link_up = 1;
1532 return 0;
1533 }
1534
1535 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1536 return 0;
1537
1538 link_up = bp->link_up;
1539
1540 bnx2_enable_bmsr1(bp);
1541 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1542 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1543 bnx2_disable_bmsr1(bp);
1544
1545 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1546 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1547 u32 val, an_dbg;
1548
1549 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1550 bnx2_5706s_force_link_dn(bp, 0);
1551 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1552 }
1553 val = REG_RD(bp, BNX2_EMAC_STATUS);
1554
1555 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1556 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1557 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1558
1559 if ((val & BNX2_EMAC_STATUS_LINK) &&
1560 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1561 bmsr |= BMSR_LSTATUS;
1562 else
1563 bmsr &= ~BMSR_LSTATUS;
1564 }
1565
1566 if (bmsr & BMSR_LSTATUS) {
1567 bp->link_up = 1;
1568
1569 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1570 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1571 bnx2_5706s_linkup(bp);
1572 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1573 bnx2_5708s_linkup(bp);
1574 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1575 bnx2_5709s_linkup(bp);
1576 }
1577 else {
1578 bnx2_copper_linkup(bp);
1579 }
1580 bnx2_resolve_flow_ctrl(bp);
1581 }
1582 else {
1583 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1584 (bp->autoneg & AUTONEG_SPEED))
1585 bnx2_disable_forced_2g5(bp);
1586
1587 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1588 u32 bmcr;
1589
1590 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1591 bmcr |= BMCR_ANENABLE;
1592 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1593
1594 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1595 }
1596 bp->link_up = 0;
1597 }
1598
1599 if (bp->link_up != link_up) {
1600 bnx2_report_link(bp);
1601 }
1602
1603 bnx2_set_mac_link(bp);
1604
1605 return 0;
1606 }
1607
1608 static int
1609 bnx2_reset_phy(struct bnx2 *bp)
1610 {
1611 int i;
1612 u32 reg;
1613
1614 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1615
1616 #define PHY_RESET_MAX_WAIT 100
1617 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1618 udelay(10);
1619
1620 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1621 if (!(reg & BMCR_RESET)) {
1622 udelay(20);
1623 break;
1624 }
1625 }
1626 if (i == PHY_RESET_MAX_WAIT) {
1627 return -EBUSY;
1628 }
1629 return 0;
1630 }
1631
1632 static u32
1633 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1634 {
1635 u32 adv = 0;
1636
1637 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1638 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1639
1640 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1641 adv = ADVERTISE_1000XPAUSE;
1642 }
1643 else {
1644 adv = ADVERTISE_PAUSE_CAP;
1645 }
1646 }
1647 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1648 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1649 adv = ADVERTISE_1000XPSE_ASYM;
1650 }
1651 else {
1652 adv = ADVERTISE_PAUSE_ASYM;
1653 }
1654 }
1655 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1656 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1657 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1658 }
1659 else {
1660 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1661 }
1662 }
1663 return adv;
1664 }
1665
1666 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1667
1668 static int
1669 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1670 __releases(&bp->phy_lock)
1671 __acquires(&bp->phy_lock)
1672 {
1673 u32 speed_arg = 0, pause_adv;
1674
1675 pause_adv = bnx2_phy_get_pause_adv(bp);
1676
1677 if (bp->autoneg & AUTONEG_SPEED) {
1678 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1679 if (bp->advertising & ADVERTISED_10baseT_Half)
1680 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1681 if (bp->advertising & ADVERTISED_10baseT_Full)
1682 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1683 if (bp->advertising & ADVERTISED_100baseT_Half)
1684 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1685 if (bp->advertising & ADVERTISED_100baseT_Full)
1686 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1687 if (bp->advertising & ADVERTISED_1000baseT_Full)
1688 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1689 if (bp->advertising & ADVERTISED_2500baseX_Full)
1690 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1691 } else {
1692 if (bp->req_line_speed == SPEED_2500)
1693 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1694 else if (bp->req_line_speed == SPEED_1000)
1695 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1696 else if (bp->req_line_speed == SPEED_100) {
1697 if (bp->req_duplex == DUPLEX_FULL)
1698 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1699 else
1700 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1701 } else if (bp->req_line_speed == SPEED_10) {
1702 if (bp->req_duplex == DUPLEX_FULL)
1703 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1704 else
1705 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1706 }
1707 }
1708
1709 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1710 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1711 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1712 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1713
1714 if (port == PORT_TP)
1715 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1716 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1717
1718 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1719
1720 spin_unlock_bh(&bp->phy_lock);
1721 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1722 spin_lock_bh(&bp->phy_lock);
1723
1724 return 0;
1725 }
1726
1727 static int
1728 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1729 __releases(&bp->phy_lock)
1730 __acquires(&bp->phy_lock)
1731 {
1732 u32 adv, bmcr;
1733 u32 new_adv = 0;
1734
1735 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1736 return bnx2_setup_remote_phy(bp, port);
1737
1738 if (!(bp->autoneg & AUTONEG_SPEED)) {
1739 u32 new_bmcr;
1740 int force_link_down = 0;
1741
1742 if (bp->req_line_speed == SPEED_2500) {
1743 if (!bnx2_test_and_enable_2g5(bp))
1744 force_link_down = 1;
1745 } else if (bp->req_line_speed == SPEED_1000) {
1746 if (bnx2_test_and_disable_2g5(bp))
1747 force_link_down = 1;
1748 }
1749 bnx2_read_phy(bp, bp->mii_adv, &adv);
1750 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1751
1752 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1753 new_bmcr = bmcr & ~BMCR_ANENABLE;
1754 new_bmcr |= BMCR_SPEED1000;
1755
1756 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1757 if (bp->req_line_speed == SPEED_2500)
1758 bnx2_enable_forced_2g5(bp);
1759 else if (bp->req_line_speed == SPEED_1000) {
1760 bnx2_disable_forced_2g5(bp);
1761 new_bmcr &= ~0x2000;
1762 }
1763
1764 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1765 if (bp->req_line_speed == SPEED_2500)
1766 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1767 else
1768 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1769 }
1770
1771 if (bp->req_duplex == DUPLEX_FULL) {
1772 adv |= ADVERTISE_1000XFULL;
1773 new_bmcr |= BMCR_FULLDPLX;
1774 }
1775 else {
1776 adv |= ADVERTISE_1000XHALF;
1777 new_bmcr &= ~BMCR_FULLDPLX;
1778 }
1779 if ((new_bmcr != bmcr) || (force_link_down)) {
1780 /* Force a link down visible on the other side */
1781 if (bp->link_up) {
1782 bnx2_write_phy(bp, bp->mii_adv, adv &
1783 ~(ADVERTISE_1000XFULL |
1784 ADVERTISE_1000XHALF));
1785 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1786 BMCR_ANRESTART | BMCR_ANENABLE);
1787
1788 bp->link_up = 0;
1789 netif_carrier_off(bp->dev);
1790 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1791 bnx2_report_link(bp);
1792 }
1793 bnx2_write_phy(bp, bp->mii_adv, adv);
1794 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1795 } else {
1796 bnx2_resolve_flow_ctrl(bp);
1797 bnx2_set_mac_link(bp);
1798 }
1799 return 0;
1800 }
1801
1802 bnx2_test_and_enable_2g5(bp);
1803
1804 if (bp->advertising & ADVERTISED_1000baseT_Full)
1805 new_adv |= ADVERTISE_1000XFULL;
1806
1807 new_adv |= bnx2_phy_get_pause_adv(bp);
1808
1809 bnx2_read_phy(bp, bp->mii_adv, &adv);
1810 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1811
1812 bp->serdes_an_pending = 0;
1813 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1814 /* Force a link down visible on the other side */
1815 if (bp->link_up) {
1816 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1817 spin_unlock_bh(&bp->phy_lock);
1818 msleep(20);
1819 spin_lock_bh(&bp->phy_lock);
1820 }
1821
1822 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1823 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1824 BMCR_ANENABLE);
1825 /* Speed up link-up time when the link partner
1826 * does not autonegotiate which is very common
1827 * in blade servers. Some blade servers use
1828 * IPMI for kerboard input and it's important
1829 * to minimize link disruptions. Autoneg. involves
1830 * exchanging base pages plus 3 next pages and
1831 * normally completes in about 120 msec.
1832 */
1833 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1834 bp->serdes_an_pending = 1;
1835 mod_timer(&bp->timer, jiffies + bp->current_interval);
1836 } else {
1837 bnx2_resolve_flow_ctrl(bp);
1838 bnx2_set_mac_link(bp);
1839 }
1840
1841 return 0;
1842 }
1843
1844 #define ETHTOOL_ALL_FIBRE_SPEED \
1845 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1846 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1847 (ADVERTISED_1000baseT_Full)
1848
1849 #define ETHTOOL_ALL_COPPER_SPEED \
1850 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1851 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1852 ADVERTISED_1000baseT_Full)
1853
1854 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1855 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1856
1857 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1858
1859 static void
1860 bnx2_set_default_remote_link(struct bnx2 *bp)
1861 {
1862 u32 link;
1863
1864 if (bp->phy_port == PORT_TP)
1865 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1866 else
1867 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1868
1869 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1870 bp->req_line_speed = 0;
1871 bp->autoneg |= AUTONEG_SPEED;
1872 bp->advertising = ADVERTISED_Autoneg;
1873 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1874 bp->advertising |= ADVERTISED_10baseT_Half;
1875 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1876 bp->advertising |= ADVERTISED_10baseT_Full;
1877 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1878 bp->advertising |= ADVERTISED_100baseT_Half;
1879 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1880 bp->advertising |= ADVERTISED_100baseT_Full;
1881 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1882 bp->advertising |= ADVERTISED_1000baseT_Full;
1883 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1884 bp->advertising |= ADVERTISED_2500baseX_Full;
1885 } else {
1886 bp->autoneg = 0;
1887 bp->advertising = 0;
1888 bp->req_duplex = DUPLEX_FULL;
1889 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1890 bp->req_line_speed = SPEED_10;
1891 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1892 bp->req_duplex = DUPLEX_HALF;
1893 }
1894 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1895 bp->req_line_speed = SPEED_100;
1896 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1897 bp->req_duplex = DUPLEX_HALF;
1898 }
1899 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1900 bp->req_line_speed = SPEED_1000;
1901 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1902 bp->req_line_speed = SPEED_2500;
1903 }
1904 }
1905
1906 static void
1907 bnx2_set_default_link(struct bnx2 *bp)
1908 {
1909 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1910 bnx2_set_default_remote_link(bp);
1911 return;
1912 }
1913
1914 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1915 bp->req_line_speed = 0;
1916 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1917 u32 reg;
1918
1919 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1920
1921 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1922 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1923 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1924 bp->autoneg = 0;
1925 bp->req_line_speed = bp->line_speed = SPEED_1000;
1926 bp->req_duplex = DUPLEX_FULL;
1927 }
1928 } else
1929 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1930 }
1931
1932 static void
1933 bnx2_send_heart_beat(struct bnx2 *bp)
1934 {
1935 u32 msg;
1936 u32 addr;
1937
1938 spin_lock(&bp->indirect_lock);
1939 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1940 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1941 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1942 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1943 spin_unlock(&bp->indirect_lock);
1944 }
1945
1946 static void
1947 bnx2_remote_phy_event(struct bnx2 *bp)
1948 {
1949 u32 msg;
1950 u8 link_up = bp->link_up;
1951 u8 old_port;
1952
1953 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1954
1955 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1956 bnx2_send_heart_beat(bp);
1957
1958 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1959
1960 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1961 bp->link_up = 0;
1962 else {
1963 u32 speed;
1964
1965 bp->link_up = 1;
1966 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1967 bp->duplex = DUPLEX_FULL;
1968 switch (speed) {
1969 case BNX2_LINK_STATUS_10HALF:
1970 bp->duplex = DUPLEX_HALF;
1971 case BNX2_LINK_STATUS_10FULL:
1972 bp->line_speed = SPEED_10;
1973 break;
1974 case BNX2_LINK_STATUS_100HALF:
1975 bp->duplex = DUPLEX_HALF;
1976 case BNX2_LINK_STATUS_100BASE_T4:
1977 case BNX2_LINK_STATUS_100FULL:
1978 bp->line_speed = SPEED_100;
1979 break;
1980 case BNX2_LINK_STATUS_1000HALF:
1981 bp->duplex = DUPLEX_HALF;
1982 case BNX2_LINK_STATUS_1000FULL:
1983 bp->line_speed = SPEED_1000;
1984 break;
1985 case BNX2_LINK_STATUS_2500HALF:
1986 bp->duplex = DUPLEX_HALF;
1987 case BNX2_LINK_STATUS_2500FULL:
1988 bp->line_speed = SPEED_2500;
1989 break;
1990 default:
1991 bp->line_speed = 0;
1992 break;
1993 }
1994
1995 bp->flow_ctrl = 0;
1996 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1997 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1998 if (bp->duplex == DUPLEX_FULL)
1999 bp->flow_ctrl = bp->req_flow_ctrl;
2000 } else {
2001 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
2002 bp->flow_ctrl |= FLOW_CTRL_TX;
2003 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2004 bp->flow_ctrl |= FLOW_CTRL_RX;
2005 }
2006
2007 old_port = bp->phy_port;
2008 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2009 bp->phy_port = PORT_FIBRE;
2010 else
2011 bp->phy_port = PORT_TP;
2012
2013 if (old_port != bp->phy_port)
2014 bnx2_set_default_link(bp);
2015
2016 }
2017 if (bp->link_up != link_up)
2018 bnx2_report_link(bp);
2019
2020 bnx2_set_mac_link(bp);
2021 }
2022
2023 static int
2024 bnx2_set_remote_link(struct bnx2 *bp)
2025 {
2026 u32 evt_code;
2027
2028 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2029 switch (evt_code) {
2030 case BNX2_FW_EVT_CODE_LINK_EVENT:
2031 bnx2_remote_phy_event(bp);
2032 break;
2033 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2034 default:
2035 bnx2_send_heart_beat(bp);
2036 break;
2037 }
2038 return 0;
2039 }
2040
2041 static int
2042 bnx2_setup_copper_phy(struct bnx2 *bp)
2043 __releases(&bp->phy_lock)
2044 __acquires(&bp->phy_lock)
2045 {
2046 u32 bmcr;
2047 u32 new_bmcr;
2048
2049 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2050
2051 if (bp->autoneg & AUTONEG_SPEED) {
2052 u32 adv_reg, adv1000_reg;
2053 u32 new_adv_reg = 0;
2054 u32 new_adv1000_reg = 0;
2055
2056 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2057 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2058 ADVERTISE_PAUSE_ASYM);
2059
2060 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2061 adv1000_reg &= PHY_ALL_1000_SPEED;
2062
2063 if (bp->advertising & ADVERTISED_10baseT_Half)
2064 new_adv_reg |= ADVERTISE_10HALF;
2065 if (bp->advertising & ADVERTISED_10baseT_Full)
2066 new_adv_reg |= ADVERTISE_10FULL;
2067 if (bp->advertising & ADVERTISED_100baseT_Half)
2068 new_adv_reg |= ADVERTISE_100HALF;
2069 if (bp->advertising & ADVERTISED_100baseT_Full)
2070 new_adv_reg |= ADVERTISE_100FULL;
2071 if (bp->advertising & ADVERTISED_1000baseT_Full)
2072 new_adv1000_reg |= ADVERTISE_1000FULL;
2073
2074 new_adv_reg |= ADVERTISE_CSMA;
2075
2076 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2077
2078 if ((adv1000_reg != new_adv1000_reg) ||
2079 (adv_reg != new_adv_reg) ||
2080 ((bmcr & BMCR_ANENABLE) == 0)) {
2081
2082 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2083 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2084 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2085 BMCR_ANENABLE);
2086 }
2087 else if (bp->link_up) {
2088 /* Flow ctrl may have changed from auto to forced */
2089 /* or vice-versa. */
2090
2091 bnx2_resolve_flow_ctrl(bp);
2092 bnx2_set_mac_link(bp);
2093 }
2094 return 0;
2095 }
2096
2097 new_bmcr = 0;
2098 if (bp->req_line_speed == SPEED_100) {
2099 new_bmcr |= BMCR_SPEED100;
2100 }
2101 if (bp->req_duplex == DUPLEX_FULL) {
2102 new_bmcr |= BMCR_FULLDPLX;
2103 }
2104 if (new_bmcr != bmcr) {
2105 u32 bmsr;
2106
2107 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2108 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2109
2110 if (bmsr & BMSR_LSTATUS) {
2111 /* Force link down */
2112 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2113 spin_unlock_bh(&bp->phy_lock);
2114 msleep(50);
2115 spin_lock_bh(&bp->phy_lock);
2116
2117 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2118 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2119 }
2120
2121 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2122
2123 /* Normally, the new speed is setup after the link has
2124 * gone down and up again. In some cases, link will not go
2125 * down so we need to set up the new speed here.
2126 */
2127 if (bmsr & BMSR_LSTATUS) {
2128 bp->line_speed = bp->req_line_speed;
2129 bp->duplex = bp->req_duplex;
2130 bnx2_resolve_flow_ctrl(bp);
2131 bnx2_set_mac_link(bp);
2132 }
2133 } else {
2134 bnx2_resolve_flow_ctrl(bp);
2135 bnx2_set_mac_link(bp);
2136 }
2137 return 0;
2138 }
2139
2140 static int
2141 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2142 __releases(&bp->phy_lock)
2143 __acquires(&bp->phy_lock)
2144 {
2145 if (bp->loopback == MAC_LOOPBACK)
2146 return 0;
2147
2148 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2149 return bnx2_setup_serdes_phy(bp, port);
2150 }
2151 else {
2152 return bnx2_setup_copper_phy(bp);
2153 }
2154 }
2155
2156 static int
2157 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2158 {
2159 u32 val;
2160
2161 bp->mii_bmcr = MII_BMCR + 0x10;
2162 bp->mii_bmsr = MII_BMSR + 0x10;
2163 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2164 bp->mii_adv = MII_ADVERTISE + 0x10;
2165 bp->mii_lpa = MII_LPA + 0x10;
2166 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2167
2168 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2169 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2170
2171 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2172 if (reset_phy)
2173 bnx2_reset_phy(bp);
2174
2175 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2176
2177 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2178 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2179 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2180 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2181
2182 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2183 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2184 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2185 val |= BCM5708S_UP1_2G5;
2186 else
2187 val &= ~BCM5708S_UP1_2G5;
2188 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2189
2190 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2191 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2192 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2193 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2194
2195 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2196
2197 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2198 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2199 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2200
2201 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2202
2203 return 0;
2204 }
2205
2206 static int
2207 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2208 {
2209 u32 val;
2210
2211 if (reset_phy)
2212 bnx2_reset_phy(bp);
2213
2214 bp->mii_up1 = BCM5708S_UP1;
2215
2216 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2217 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2218 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2219
2220 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2221 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2222 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2223
2224 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2225 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2226 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2227
2228 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2229 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2230 val |= BCM5708S_UP1_2G5;
2231 bnx2_write_phy(bp, BCM5708S_UP1, val);
2232 }
2233
2234 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2235 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2236 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2237 /* increase tx signal amplitude */
2238 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2239 BCM5708S_BLK_ADDR_TX_MISC);
2240 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2241 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2242 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2243 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2244 }
2245
2246 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2247 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2248
2249 if (val) {
2250 u32 is_backplane;
2251
2252 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2253 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2254 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2255 BCM5708S_BLK_ADDR_TX_MISC);
2256 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2257 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2258 BCM5708S_BLK_ADDR_DIG);
2259 }
2260 }
2261 return 0;
2262 }
2263
2264 static int
2265 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2266 {
2267 if (reset_phy)
2268 bnx2_reset_phy(bp);
2269
2270 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2271
2272 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2273 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2274
2275 if (bp->dev->mtu > 1500) {
2276 u32 val;
2277
2278 /* Set extended packet length bit */
2279 bnx2_write_phy(bp, 0x18, 0x7);
2280 bnx2_read_phy(bp, 0x18, &val);
2281 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2282
2283 bnx2_write_phy(bp, 0x1c, 0x6c00);
2284 bnx2_read_phy(bp, 0x1c, &val);
2285 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2286 }
2287 else {
2288 u32 val;
2289
2290 bnx2_write_phy(bp, 0x18, 0x7);
2291 bnx2_read_phy(bp, 0x18, &val);
2292 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2293
2294 bnx2_write_phy(bp, 0x1c, 0x6c00);
2295 bnx2_read_phy(bp, 0x1c, &val);
2296 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2297 }
2298
2299 return 0;
2300 }
2301
2302 static int
2303 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2304 {
2305 u32 val;
2306
2307 if (reset_phy)
2308 bnx2_reset_phy(bp);
2309
2310 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2311 bnx2_write_phy(bp, 0x18, 0x0c00);
2312 bnx2_write_phy(bp, 0x17, 0x000a);
2313 bnx2_write_phy(bp, 0x15, 0x310b);
2314 bnx2_write_phy(bp, 0x17, 0x201f);
2315 bnx2_write_phy(bp, 0x15, 0x9506);
2316 bnx2_write_phy(bp, 0x17, 0x401f);
2317 bnx2_write_phy(bp, 0x15, 0x14e2);
2318 bnx2_write_phy(bp, 0x18, 0x0400);
2319 }
2320
2321 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2322 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2323 MII_BNX2_DSP_EXPAND_REG | 0x8);
2324 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2325 val &= ~(1 << 8);
2326 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2327 }
2328
2329 if (bp->dev->mtu > 1500) {
2330 /* Set extended packet length bit */
2331 bnx2_write_phy(bp, 0x18, 0x7);
2332 bnx2_read_phy(bp, 0x18, &val);
2333 bnx2_write_phy(bp, 0x18, val | 0x4000);
2334
2335 bnx2_read_phy(bp, 0x10, &val);
2336 bnx2_write_phy(bp, 0x10, val | 0x1);
2337 }
2338 else {
2339 bnx2_write_phy(bp, 0x18, 0x7);
2340 bnx2_read_phy(bp, 0x18, &val);
2341 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2342
2343 bnx2_read_phy(bp, 0x10, &val);
2344 bnx2_write_phy(bp, 0x10, val & ~0x1);
2345 }
2346
2347 /* ethernet@wirespeed */
2348 bnx2_write_phy(bp, 0x18, 0x7007);
2349 bnx2_read_phy(bp, 0x18, &val);
2350 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2351 return 0;
2352 }
2353
2354
2355 static int
2356 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2357 __releases(&bp->phy_lock)
2358 __acquires(&bp->phy_lock)
2359 {
2360 u32 val;
2361 int rc = 0;
2362
2363 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2364 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2365
2366 bp->mii_bmcr = MII_BMCR;
2367 bp->mii_bmsr = MII_BMSR;
2368 bp->mii_bmsr1 = MII_BMSR;
2369 bp->mii_adv = MII_ADVERTISE;
2370 bp->mii_lpa = MII_LPA;
2371
2372 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2373
2374 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2375 goto setup_phy;
2376
2377 bnx2_read_phy(bp, MII_PHYSID1, &val);
2378 bp->phy_id = val << 16;
2379 bnx2_read_phy(bp, MII_PHYSID2, &val);
2380 bp->phy_id |= val & 0xffff;
2381
2382 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2383 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2384 rc = bnx2_init_5706s_phy(bp, reset_phy);
2385 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2386 rc = bnx2_init_5708s_phy(bp, reset_phy);
2387 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2388 rc = bnx2_init_5709s_phy(bp, reset_phy);
2389 }
2390 else {
2391 rc = bnx2_init_copper_phy(bp, reset_phy);
2392 }
2393
2394 setup_phy:
2395 if (!rc)
2396 rc = bnx2_setup_phy(bp, bp->phy_port);
2397
2398 return rc;
2399 }
2400
2401 static int
2402 bnx2_set_mac_loopback(struct bnx2 *bp)
2403 {
2404 u32 mac_mode;
2405
2406 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2407 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2408 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2409 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2410 bp->link_up = 1;
2411 return 0;
2412 }
2413
2414 static int bnx2_test_link(struct bnx2 *);
2415
2416 static int
2417 bnx2_set_phy_loopback(struct bnx2 *bp)
2418 {
2419 u32 mac_mode;
2420 int rc, i;
2421
2422 spin_lock_bh(&bp->phy_lock);
2423 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2424 BMCR_SPEED1000);
2425 spin_unlock_bh(&bp->phy_lock);
2426 if (rc)
2427 return rc;
2428
2429 for (i = 0; i < 10; i++) {
2430 if (bnx2_test_link(bp) == 0)
2431 break;
2432 msleep(100);
2433 }
2434
2435 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2436 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2437 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2438 BNX2_EMAC_MODE_25G_MODE);
2439
2440 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2441 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2442 bp->link_up = 1;
2443 return 0;
2444 }
2445
2446 static int
2447 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2448 {
2449 int i;
2450 u32 val;
2451
2452 bp->fw_wr_seq++;
2453 msg_data |= bp->fw_wr_seq;
2454
2455 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2456
2457 if (!ack)
2458 return 0;
2459
2460 /* wait for an acknowledgement. */
2461 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2462 msleep(10);
2463
2464 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2465
2466 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2467 break;
2468 }
2469 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2470 return 0;
2471
2472 /* If we timed out, inform the firmware that this is the case. */
2473 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2474 if (!silent)
2475 pr_err("fw sync timeout, reset code = %x\n", msg_data);
2476
2477 msg_data &= ~BNX2_DRV_MSG_CODE;
2478 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2479
2480 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2481
2482 return -EBUSY;
2483 }
2484
2485 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2486 return -EIO;
2487
2488 return 0;
2489 }
2490
2491 static int
2492 bnx2_init_5709_context(struct bnx2 *bp)
2493 {
2494 int i, ret = 0;
2495 u32 val;
2496
2497 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2498 val |= (BCM_PAGE_BITS - 8) << 16;
2499 REG_WR(bp, BNX2_CTX_COMMAND, val);
2500 for (i = 0; i < 10; i++) {
2501 val = REG_RD(bp, BNX2_CTX_COMMAND);
2502 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2503 break;
2504 udelay(2);
2505 }
2506 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2507 return -EBUSY;
2508
2509 for (i = 0; i < bp->ctx_pages; i++) {
2510 int j;
2511
2512 if (bp->ctx_blk[i])
2513 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2514 else
2515 return -ENOMEM;
2516
2517 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2518 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2519 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2520 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2521 (u64) bp->ctx_blk_mapping[i] >> 32);
2522 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2523 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2524 for (j = 0; j < 10; j++) {
2525
2526 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2527 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2528 break;
2529 udelay(5);
2530 }
2531 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2532 ret = -EBUSY;
2533 break;
2534 }
2535 }
2536 return ret;
2537 }
2538
2539 static void
2540 bnx2_init_context(struct bnx2 *bp)
2541 {
2542 u32 vcid;
2543
2544 vcid = 96;
2545 while (vcid) {
2546 u32 vcid_addr, pcid_addr, offset;
2547 int i;
2548
2549 vcid--;
2550
2551 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2552 u32 new_vcid;
2553
2554 vcid_addr = GET_PCID_ADDR(vcid);
2555 if (vcid & 0x8) {
2556 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2557 }
2558 else {
2559 new_vcid = vcid;
2560 }
2561 pcid_addr = GET_PCID_ADDR(new_vcid);
2562 }
2563 else {
2564 vcid_addr = GET_CID_ADDR(vcid);
2565 pcid_addr = vcid_addr;
2566 }
2567
2568 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2569 vcid_addr += (i << PHY_CTX_SHIFT);
2570 pcid_addr += (i << PHY_CTX_SHIFT);
2571
2572 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2573 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2574
2575 /* Zero out the context. */
2576 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2577 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2578 }
2579 }
2580 }
2581
2582 static int
2583 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2584 {
2585 u16 *good_mbuf;
2586 u32 good_mbuf_cnt;
2587 u32 val;
2588
2589 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2590 if (good_mbuf == NULL) {
2591 pr_err("Failed to allocate memory in %s\n", __func__);
2592 return -ENOMEM;
2593 }
2594
2595 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2596 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2597
2598 good_mbuf_cnt = 0;
2599
2600 /* Allocate a bunch of mbufs and save the good ones in an array. */
2601 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2602 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2603 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2604 BNX2_RBUF_COMMAND_ALLOC_REQ);
2605
2606 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2607
2608 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2609
2610 /* The addresses with Bit 9 set are bad memory blocks. */
2611 if (!(val & (1 << 9))) {
2612 good_mbuf[good_mbuf_cnt] = (u16) val;
2613 good_mbuf_cnt++;
2614 }
2615
2616 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2617 }
2618
2619 /* Free the good ones back to the mbuf pool thus discarding
2620 * all the bad ones. */
2621 while (good_mbuf_cnt) {
2622 good_mbuf_cnt--;
2623
2624 val = good_mbuf[good_mbuf_cnt];
2625 val = (val << 9) | val | 1;
2626
2627 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2628 }
2629 kfree(good_mbuf);
2630 return 0;
2631 }
2632
2633 static void
2634 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2635 {
2636 u32 val;
2637
2638 val = (mac_addr[0] << 8) | mac_addr[1];
2639
2640 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2641
2642 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2643 (mac_addr[4] << 8) | mac_addr[5];
2644
2645 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2646 }
2647
2648 static inline int
2649 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
2650 {
2651 dma_addr_t mapping;
2652 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2653 struct rx_bd *rxbd =
2654 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2655 struct page *page = alloc_page(gfp);
2656
2657 if (!page)
2658 return -ENOMEM;
2659 mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
2660 PCI_DMA_FROMDEVICE);
2661 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
2662 __free_page(page);
2663 return -EIO;
2664 }
2665
2666 rx_pg->page = page;
2667 dma_unmap_addr_set(rx_pg, mapping, mapping);
2668 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2669 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2670 return 0;
2671 }
2672
2673 static void
2674 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2675 {
2676 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2677 struct page *page = rx_pg->page;
2678
2679 if (!page)
2680 return;
2681
2682 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
2683 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2684
2685 __free_page(page);
2686 rx_pg->page = NULL;
2687 }
2688
2689 static inline int
2690 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
2691 {
2692 struct sk_buff *skb;
2693 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2694 dma_addr_t mapping;
2695 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2696 unsigned long align;
2697
2698 skb = __netdev_alloc_skb(bp->dev, bp->rx_buf_size, gfp);
2699 if (skb == NULL) {
2700 return -ENOMEM;
2701 }
2702
2703 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2704 skb_reserve(skb, BNX2_RX_ALIGN - align);
2705
2706 mapping = dma_map_single(&bp->pdev->dev, skb->data, bp->rx_buf_use_size,
2707 PCI_DMA_FROMDEVICE);
2708 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
2709 dev_kfree_skb(skb);
2710 return -EIO;
2711 }
2712
2713 rx_buf->skb = skb;
2714 rx_buf->desc = (struct l2_fhdr *) skb->data;
2715 dma_unmap_addr_set(rx_buf, mapping, mapping);
2716
2717 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2718 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2719
2720 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2721
2722 return 0;
2723 }
2724
2725 static int
2726 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2727 {
2728 struct status_block *sblk = bnapi->status_blk.msi;
2729 u32 new_link_state, old_link_state;
2730 int is_set = 1;
2731
2732 new_link_state = sblk->status_attn_bits & event;
2733 old_link_state = sblk->status_attn_bits_ack & event;
2734 if (new_link_state != old_link_state) {
2735 if (new_link_state)
2736 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2737 else
2738 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2739 } else
2740 is_set = 0;
2741
2742 return is_set;
2743 }
2744
2745 static void
2746 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2747 {
2748 spin_lock(&bp->phy_lock);
2749
2750 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2751 bnx2_set_link(bp);
2752 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2753 bnx2_set_remote_link(bp);
2754
2755 spin_unlock(&bp->phy_lock);
2756
2757 }
2758
2759 static inline u16
2760 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2761 {
2762 u16 cons;
2763
2764 /* Tell compiler that status block fields can change. */
2765 barrier();
2766 cons = *bnapi->hw_tx_cons_ptr;
2767 barrier();
2768 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2769 cons++;
2770 return cons;
2771 }
2772
2773 static int
2774 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2775 {
2776 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2777 u16 hw_cons, sw_cons, sw_ring_cons;
2778 int tx_pkt = 0, index;
2779 struct netdev_queue *txq;
2780
2781 index = (bnapi - bp->bnx2_napi);
2782 txq = netdev_get_tx_queue(bp->dev, index);
2783
2784 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2785 sw_cons = txr->tx_cons;
2786
2787 while (sw_cons != hw_cons) {
2788 struct sw_tx_bd *tx_buf;
2789 struct sk_buff *skb;
2790 int i, last;
2791
2792 sw_ring_cons = TX_RING_IDX(sw_cons);
2793
2794 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2795 skb = tx_buf->skb;
2796
2797 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2798 prefetch(&skb->end);
2799
2800 /* partial BD completions possible with TSO packets */
2801 if (tx_buf->is_gso) {
2802 u16 last_idx, last_ring_idx;
2803
2804 last_idx = sw_cons + tx_buf->nr_frags + 1;
2805 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2806 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2807 last_idx++;
2808 }
2809 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2810 break;
2811 }
2812 }
2813
2814 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
2815 skb_headlen(skb), PCI_DMA_TODEVICE);
2816
2817 tx_buf->skb = NULL;
2818 last = tx_buf->nr_frags;
2819
2820 for (i = 0; i < last; i++) {
2821 sw_cons = NEXT_TX_BD(sw_cons);
2822
2823 dma_unmap_page(&bp->pdev->dev,
2824 dma_unmap_addr(
2825 &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
2826 mapping),
2827 skb_shinfo(skb)->frags[i].size,
2828 PCI_DMA_TODEVICE);
2829 }
2830
2831 sw_cons = NEXT_TX_BD(sw_cons);
2832
2833 dev_kfree_skb(skb);
2834 tx_pkt++;
2835 if (tx_pkt == budget)
2836 break;
2837
2838 if (hw_cons == sw_cons)
2839 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2840 }
2841
2842 txr->hw_tx_cons = hw_cons;
2843 txr->tx_cons = sw_cons;
2844
2845 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2846 * before checking for netif_tx_queue_stopped(). Without the
2847 * memory barrier, there is a small possibility that bnx2_start_xmit()
2848 * will miss it and cause the queue to be stopped forever.
2849 */
2850 smp_mb();
2851
2852 if (unlikely(netif_tx_queue_stopped(txq)) &&
2853 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2854 __netif_tx_lock(txq, smp_processor_id());
2855 if ((netif_tx_queue_stopped(txq)) &&
2856 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2857 netif_tx_wake_queue(txq);
2858 __netif_tx_unlock(txq);
2859 }
2860
2861 return tx_pkt;
2862 }
2863
2864 static void
2865 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2866 struct sk_buff *skb, int count)
2867 {
2868 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2869 struct rx_bd *cons_bd, *prod_bd;
2870 int i;
2871 u16 hw_prod, prod;
2872 u16 cons = rxr->rx_pg_cons;
2873
2874 cons_rx_pg = &rxr->rx_pg_ring[cons];
2875
2876 /* The caller was unable to allocate a new page to replace the
2877 * last one in the frags array, so we need to recycle that page
2878 * and then free the skb.
2879 */
2880 if (skb) {
2881 struct page *page;
2882 struct skb_shared_info *shinfo;
2883
2884 shinfo = skb_shinfo(skb);
2885 shinfo->nr_frags--;
2886 page = shinfo->frags[shinfo->nr_frags].page;
2887 shinfo->frags[shinfo->nr_frags].page = NULL;
2888
2889 cons_rx_pg->page = page;
2890 dev_kfree_skb(skb);
2891 }
2892
2893 hw_prod = rxr->rx_pg_prod;
2894
2895 for (i = 0; i < count; i++) {
2896 prod = RX_PG_RING_IDX(hw_prod);
2897
2898 prod_rx_pg = &rxr->rx_pg_ring[prod];
2899 cons_rx_pg = &rxr->rx_pg_ring[cons];
2900 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2901 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2902
2903 if (prod != cons) {
2904 prod_rx_pg->page = cons_rx_pg->page;
2905 cons_rx_pg->page = NULL;
2906 dma_unmap_addr_set(prod_rx_pg, mapping,
2907 dma_unmap_addr(cons_rx_pg, mapping));
2908
2909 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2910 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2911
2912 }
2913 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2914 hw_prod = NEXT_RX_BD(hw_prod);
2915 }
2916 rxr->rx_pg_prod = hw_prod;
2917 rxr->rx_pg_cons = cons;
2918 }
2919
2920 static inline void
2921 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2922 struct sk_buff *skb, u16 cons, u16 prod)
2923 {
2924 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2925 struct rx_bd *cons_bd, *prod_bd;
2926
2927 cons_rx_buf = &rxr->rx_buf_ring[cons];
2928 prod_rx_buf = &rxr->rx_buf_ring[prod];
2929
2930 dma_sync_single_for_device(&bp->pdev->dev,
2931 dma_unmap_addr(cons_rx_buf, mapping),
2932 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2933
2934 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2935
2936 prod_rx_buf->skb = skb;
2937 prod_rx_buf->desc = (struct l2_fhdr *) skb->data;
2938
2939 if (cons == prod)
2940 return;
2941
2942 dma_unmap_addr_set(prod_rx_buf, mapping,
2943 dma_unmap_addr(cons_rx_buf, mapping));
2944
2945 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2946 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2947 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2948 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2949 }
2950
2951 static int
2952 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2953 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2954 u32 ring_idx)
2955 {
2956 int err;
2957 u16 prod = ring_idx & 0xffff;
2958
2959 err = bnx2_alloc_rx_skb(bp, rxr, prod, GFP_ATOMIC);
2960 if (unlikely(err)) {
2961 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2962 if (hdr_len) {
2963 unsigned int raw_len = len + 4;
2964 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2965
2966 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2967 }
2968 return err;
2969 }
2970
2971 skb_reserve(skb, BNX2_RX_OFFSET);
2972 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
2973 PCI_DMA_FROMDEVICE);
2974
2975 if (hdr_len == 0) {
2976 skb_put(skb, len);
2977 return 0;
2978 } else {
2979 unsigned int i, frag_len, frag_size, pages;
2980 struct sw_pg *rx_pg;
2981 u16 pg_cons = rxr->rx_pg_cons;
2982 u16 pg_prod = rxr->rx_pg_prod;
2983
2984 frag_size = len + 4 - hdr_len;
2985 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2986 skb_put(skb, hdr_len);
2987
2988 for (i = 0; i < pages; i++) {
2989 dma_addr_t mapping_old;
2990
2991 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2992 if (unlikely(frag_len <= 4)) {
2993 unsigned int tail = 4 - frag_len;
2994
2995 rxr->rx_pg_cons = pg_cons;
2996 rxr->rx_pg_prod = pg_prod;
2997 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2998 pages - i);
2999 skb->len -= tail;
3000 if (i == 0) {
3001 skb->tail -= tail;
3002 } else {
3003 skb_frag_t *frag =
3004 &skb_shinfo(skb)->frags[i - 1];
3005 frag->size -= tail;
3006 skb->data_len -= tail;
3007 skb->truesize -= tail;
3008 }
3009 return 0;
3010 }
3011 rx_pg = &rxr->rx_pg_ring[pg_cons];
3012
3013 /* Don't unmap yet. If we're unable to allocate a new
3014 * page, we need to recycle the page and the DMA addr.
3015 */
3016 mapping_old = dma_unmap_addr(rx_pg, mapping);
3017 if (i == pages - 1)
3018 frag_len -= 4;
3019
3020 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3021 rx_pg->page = NULL;
3022
3023 err = bnx2_alloc_rx_page(bp, rxr,
3024 RX_PG_RING_IDX(pg_prod),
3025 GFP_ATOMIC);
3026 if (unlikely(err)) {
3027 rxr->rx_pg_cons = pg_cons;
3028 rxr->rx_pg_prod = pg_prod;
3029 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3030 pages - i);
3031 return err;
3032 }
3033
3034 dma_unmap_page(&bp->pdev->dev, mapping_old,
3035 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3036
3037 frag_size -= frag_len;
3038 skb->data_len += frag_len;
3039 skb->truesize += frag_len;
3040 skb->len += frag_len;
3041
3042 pg_prod = NEXT_RX_BD(pg_prod);
3043 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3044 }
3045 rxr->rx_pg_prod = pg_prod;
3046 rxr->rx_pg_cons = pg_cons;
3047 }
3048 return 0;
3049 }
3050
3051 static inline u16
3052 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3053 {
3054 u16 cons;
3055
3056 /* Tell compiler that status block fields can change. */
3057 barrier();
3058 cons = *bnapi->hw_rx_cons_ptr;
3059 barrier();
3060 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3061 cons++;
3062 return cons;
3063 }
3064
3065 static int
3066 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3067 {
3068 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3069 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3070 struct l2_fhdr *rx_hdr;
3071 int rx_pkt = 0, pg_ring_used = 0;
3072
3073 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3074 sw_cons = rxr->rx_cons;
3075 sw_prod = rxr->rx_prod;
3076
3077 /* Memory barrier necessary as speculative reads of the rx
3078 * buffer can be ahead of the index in the status block
3079 */
3080 rmb();
3081 while (sw_cons != hw_cons) {
3082 unsigned int len, hdr_len;
3083 u32 status;
3084 struct sw_bd *rx_buf, *next_rx_buf;
3085 struct sk_buff *skb;
3086 dma_addr_t dma_addr;
3087
3088 sw_ring_cons = RX_RING_IDX(sw_cons);
3089 sw_ring_prod = RX_RING_IDX(sw_prod);
3090
3091 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3092 skb = rx_buf->skb;
3093 prefetchw(skb);
3094
3095 next_rx_buf =
3096 &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
3097 prefetch(next_rx_buf->desc);
3098
3099 rx_buf->skb = NULL;
3100
3101 dma_addr = dma_unmap_addr(rx_buf, mapping);
3102
3103 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
3104 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3105 PCI_DMA_FROMDEVICE);
3106
3107 rx_hdr = rx_buf->desc;
3108 len = rx_hdr->l2_fhdr_pkt_len;
3109 status = rx_hdr->l2_fhdr_status;
3110
3111 hdr_len = 0;
3112 if (status & L2_FHDR_STATUS_SPLIT) {
3113 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3114 pg_ring_used = 1;
3115 } else if (len > bp->rx_jumbo_thresh) {
3116 hdr_len = bp->rx_jumbo_thresh;
3117 pg_ring_used = 1;
3118 }
3119
3120 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3121 L2_FHDR_ERRORS_PHY_DECODE |
3122 L2_FHDR_ERRORS_ALIGNMENT |
3123 L2_FHDR_ERRORS_TOO_SHORT |
3124 L2_FHDR_ERRORS_GIANT_FRAME))) {
3125
3126 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3127 sw_ring_prod);
3128 if (pg_ring_used) {
3129 int pages;
3130
3131 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3132
3133 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3134 }
3135 goto next_rx;
3136 }
3137
3138 len -= 4;
3139
3140 if (len <= bp->rx_copy_thresh) {
3141 struct sk_buff *new_skb;
3142
3143 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3144 if (new_skb == NULL) {
3145 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3146 sw_ring_prod);
3147 goto next_rx;
3148 }
3149
3150 /* aligned copy */
3151 skb_copy_from_linear_data_offset(skb,
3152 BNX2_RX_OFFSET - 6,
3153 new_skb->data, len + 6);
3154 skb_reserve(new_skb, 6);
3155 skb_put(new_skb, len);
3156
3157 bnx2_reuse_rx_skb(bp, rxr, skb,
3158 sw_ring_cons, sw_ring_prod);
3159
3160 skb = new_skb;
3161 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3162 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3163 goto next_rx;
3164
3165 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3166 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
3167 __vlan_hwaccel_put_tag(skb, rx_hdr->l2_fhdr_vlan_tag);
3168
3169 skb->protocol = eth_type_trans(skb, bp->dev);
3170
3171 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3172 (ntohs(skb->protocol) != 0x8100)) {
3173
3174 dev_kfree_skb(skb);
3175 goto next_rx;
3176
3177 }
3178
3179 skb_checksum_none_assert(skb);
3180 if (bp->rx_csum &&
3181 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3182 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3183
3184 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3185 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3186 skb->ip_summed = CHECKSUM_UNNECESSARY;
3187 }
3188 if ((bp->dev->features & NETIF_F_RXHASH) &&
3189 ((status & L2_FHDR_STATUS_USE_RXHASH) ==
3190 L2_FHDR_STATUS_USE_RXHASH))
3191 skb->rxhash = rx_hdr->l2_fhdr_hash;
3192
3193 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3194 napi_gro_receive(&bnapi->napi, skb);
3195 rx_pkt++;
3196
3197 next_rx:
3198 sw_cons = NEXT_RX_BD(sw_cons);
3199 sw_prod = NEXT_RX_BD(sw_prod);
3200
3201 if ((rx_pkt == budget))
3202 break;
3203
3204 /* Refresh hw_cons to see if there is new work */
3205 if (sw_cons == hw_cons) {
3206 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3207 rmb();
3208 }
3209 }
3210 rxr->rx_cons = sw_cons;
3211 rxr->rx_prod = sw_prod;
3212
3213 if (pg_ring_used)
3214 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3215
3216 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3217
3218 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3219
3220 mmiowb();
3221
3222 return rx_pkt;
3223
3224 }
3225
3226 /* MSI ISR - The only difference between this and the INTx ISR
3227 * is that the MSI interrupt is always serviced.
3228 */
3229 static irqreturn_t
3230 bnx2_msi(int irq, void *dev_instance)
3231 {
3232 struct bnx2_napi *bnapi = dev_instance;
3233 struct bnx2 *bp = bnapi->bp;
3234
3235 prefetch(bnapi->status_blk.msi);
3236 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3237 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3238 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3239
3240 /* Return here if interrupt is disabled. */
3241 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3242 return IRQ_HANDLED;
3243
3244 napi_schedule(&bnapi->napi);
3245
3246 return IRQ_HANDLED;
3247 }
3248
3249 static irqreturn_t
3250 bnx2_msi_1shot(int irq, void *dev_instance)
3251 {
3252 struct bnx2_napi *bnapi = dev_instance;
3253 struct bnx2 *bp = bnapi->bp;
3254
3255 prefetch(bnapi->status_blk.msi);
3256
3257 /* Return here if interrupt is disabled. */
3258 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3259 return IRQ_HANDLED;
3260
3261 napi_schedule(&bnapi->napi);
3262
3263 return IRQ_HANDLED;
3264 }
3265
3266 static irqreturn_t
3267 bnx2_interrupt(int irq, void *dev_instance)
3268 {
3269 struct bnx2_napi *bnapi = dev_instance;
3270 struct bnx2 *bp = bnapi->bp;
3271 struct status_block *sblk = bnapi->status_blk.msi;
3272
3273 /* When using INTx, it is possible for the interrupt to arrive
3274 * at the CPU before the status block posted prior to the
3275 * interrupt. Reading a register will flush the status block.
3276 * When using MSI, the MSI message will always complete after
3277 * the status block write.
3278 */
3279 if ((sblk->status_idx == bnapi->last_status_idx) &&
3280 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3281 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3282 return IRQ_NONE;
3283
3284 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3285 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3286 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3287
3288 /* Read back to deassert IRQ immediately to avoid too many
3289 * spurious interrupts.
3290 */
3291 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3292
3293 /* Return here if interrupt is shared and is disabled. */
3294 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3295 return IRQ_HANDLED;
3296
3297 if (napi_schedule_prep(&bnapi->napi)) {
3298 bnapi->last_status_idx = sblk->status_idx;
3299 __napi_schedule(&bnapi->napi);
3300 }
3301
3302 return IRQ_HANDLED;
3303 }
3304
3305 static inline int
3306 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3307 {
3308 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3309 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3310
3311 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3312 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3313 return 1;
3314 return 0;
3315 }
3316
3317 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3318 STATUS_ATTN_BITS_TIMER_ABORT)
3319
3320 static inline int
3321 bnx2_has_work(struct bnx2_napi *bnapi)
3322 {
3323 struct status_block *sblk = bnapi->status_blk.msi;
3324
3325 if (bnx2_has_fast_work(bnapi))
3326 return 1;
3327
3328 #ifdef BCM_CNIC
3329 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3330 return 1;
3331 #endif
3332
3333 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3334 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3335 return 1;
3336
3337 return 0;
3338 }
3339
3340 static void
3341 bnx2_chk_missed_msi(struct bnx2 *bp)
3342 {
3343 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3344 u32 msi_ctrl;
3345
3346 if (bnx2_has_work(bnapi)) {
3347 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3348 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3349 return;
3350
3351 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3352 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3353 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3354 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3355 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3356 }
3357 }
3358
3359 bp->idle_chk_status_idx = bnapi->last_status_idx;
3360 }
3361
3362 #ifdef BCM_CNIC
3363 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3364 {
3365 struct cnic_ops *c_ops;
3366
3367 if (!bnapi->cnic_present)
3368 return;
3369
3370 rcu_read_lock();
3371 c_ops = rcu_dereference(bp->cnic_ops);
3372 if (c_ops)
3373 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3374 bnapi->status_blk.msi);
3375 rcu_read_unlock();
3376 }
3377 #endif
3378
3379 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3380 {
3381 struct status_block *sblk = bnapi->status_blk.msi;
3382 u32 status_attn_bits = sblk->status_attn_bits;
3383 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3384
3385 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3386 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3387
3388 bnx2_phy_int(bp, bnapi);
3389
3390 /* This is needed to take care of transient status
3391 * during link changes.
3392 */
3393 REG_WR(bp, BNX2_HC_COMMAND,
3394 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3395 REG_RD(bp, BNX2_HC_COMMAND);
3396 }
3397 }
3398
3399 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3400 int work_done, int budget)
3401 {
3402 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3403 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3404
3405 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3406 bnx2_tx_int(bp, bnapi, 0);
3407
3408 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3409 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3410
3411 return work_done;
3412 }
3413
3414 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3415 {
3416 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3417 struct bnx2 *bp = bnapi->bp;
3418 int work_done = 0;
3419 struct status_block_msix *sblk = bnapi->status_blk.msix;
3420
3421 while (1) {
3422 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3423 if (unlikely(work_done >= budget))
3424 break;
3425
3426 bnapi->last_status_idx = sblk->status_idx;
3427 /* status idx must be read before checking for more work. */
3428 rmb();
3429 if (likely(!bnx2_has_fast_work(bnapi))) {
3430
3431 napi_complete(napi);
3432 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3433 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3434 bnapi->last_status_idx);
3435 break;
3436 }
3437 }
3438 return work_done;
3439 }
3440
3441 static int bnx2_poll(struct napi_struct *napi, int budget)
3442 {
3443 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3444 struct bnx2 *bp = bnapi->bp;
3445 int work_done = 0;
3446 struct status_block *sblk = bnapi->status_blk.msi;
3447
3448 while (1) {
3449 bnx2_poll_link(bp, bnapi);
3450
3451 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3452
3453 #ifdef BCM_CNIC
3454 bnx2_poll_cnic(bp, bnapi);
3455 #endif
3456
3457 /* bnapi->last_status_idx is used below to tell the hw how
3458 * much work has been processed, so we must read it before
3459 * checking for more work.
3460 */
3461 bnapi->last_status_idx = sblk->status_idx;
3462
3463 if (unlikely(work_done >= budget))
3464 break;
3465
3466 rmb();
3467 if (likely(!bnx2_has_work(bnapi))) {
3468 napi_complete(napi);
3469 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3470 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3471 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3472 bnapi->last_status_idx);
3473 break;
3474 }
3475 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3476 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3477 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3478 bnapi->last_status_idx);
3479
3480 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3481 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3482 bnapi->last_status_idx);
3483 break;
3484 }
3485 }
3486
3487 return work_done;
3488 }
3489
3490 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3491 * from set_multicast.
3492 */
3493 static void
3494 bnx2_set_rx_mode(struct net_device *dev)
3495 {
3496 struct bnx2 *bp = netdev_priv(dev);
3497 u32 rx_mode, sort_mode;
3498 struct netdev_hw_addr *ha;
3499 int i;
3500
3501 if (!netif_running(dev))
3502 return;
3503
3504 spin_lock_bh(&bp->phy_lock);
3505
3506 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3507 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3508 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3509 if (!(dev->features & NETIF_F_HW_VLAN_RX) &&
3510 (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3511 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3512 if (dev->flags & IFF_PROMISC) {
3513 /* Promiscuous mode. */
3514 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3515 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3516 BNX2_RPM_SORT_USER0_PROM_VLAN;
3517 }
3518 else if (dev->flags & IFF_ALLMULTI) {
3519 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3520 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3521 0xffffffff);
3522 }
3523 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3524 }
3525 else {
3526 /* Accept one or more multicast(s). */
3527 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3528 u32 regidx;
3529 u32 bit;
3530 u32 crc;
3531
3532 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3533
3534 netdev_for_each_mc_addr(ha, dev) {
3535 crc = ether_crc_le(ETH_ALEN, ha->addr);
3536 bit = crc & 0xff;
3537 regidx = (bit & 0xe0) >> 5;
3538 bit &= 0x1f;
3539 mc_filter[regidx] |= (1 << bit);
3540 }
3541
3542 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3543 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3544 mc_filter[i]);
3545 }
3546
3547 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3548 }
3549
3550 if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
3551 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3552 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3553 BNX2_RPM_SORT_USER0_PROM_VLAN;
3554 } else if (!(dev->flags & IFF_PROMISC)) {
3555 /* Add all entries into to the match filter list */
3556 i = 0;
3557 netdev_for_each_uc_addr(ha, dev) {
3558 bnx2_set_mac_addr(bp, ha->addr,
3559 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3560 sort_mode |= (1 <<
3561 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3562 i++;
3563 }
3564
3565 }
3566
3567 if (rx_mode != bp->rx_mode) {
3568 bp->rx_mode = rx_mode;
3569 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3570 }
3571
3572 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3573 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3574 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3575
3576 spin_unlock_bh(&bp->phy_lock);
3577 }
3578
3579 static int __devinit
3580 check_fw_section(const struct firmware *fw,
3581 const struct bnx2_fw_file_section *section,
3582 u32 alignment, bool non_empty)
3583 {
3584 u32 offset = be32_to_cpu(section->offset);
3585 u32 len = be32_to_cpu(section->len);
3586
3587 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3588 return -EINVAL;
3589 if ((non_empty && len == 0) || len > fw->size - offset ||
3590 len & (alignment - 1))
3591 return -EINVAL;
3592 return 0;
3593 }
3594
3595 static int __devinit
3596 check_mips_fw_entry(const struct firmware *fw,
3597 const struct bnx2_mips_fw_file_entry *entry)
3598 {
3599 if (check_fw_section(fw, &entry->text, 4, true) ||
3600 check_fw_section(fw, &entry->data, 4, false) ||
3601 check_fw_section(fw, &entry->rodata, 4, false))
3602 return -EINVAL;
3603 return 0;
3604 }
3605
3606 static int __devinit
3607 bnx2_request_firmware(struct bnx2 *bp)
3608 {
3609 const char *mips_fw_file, *rv2p_fw_file;
3610 const struct bnx2_mips_fw_file *mips_fw;
3611 const struct bnx2_rv2p_fw_file *rv2p_fw;
3612 int rc;
3613
3614 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3615 mips_fw_file = FW_MIPS_FILE_09;
3616 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3617 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3618 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3619 else
3620 rv2p_fw_file = FW_RV2P_FILE_09;
3621 } else {
3622 mips_fw_file = FW_MIPS_FILE_06;
3623 rv2p_fw_file = FW_RV2P_FILE_06;
3624 }
3625
3626 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3627 if (rc) {
3628 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
3629 return rc;
3630 }
3631
3632 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3633 if (rc) {
3634 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
3635 return rc;
3636 }
3637 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3638 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3639 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3640 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3641 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3642 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3643 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3644 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3645 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
3646 return -EINVAL;
3647 }
3648 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3649 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3650 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3651 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
3652 return -EINVAL;
3653 }
3654
3655 return 0;
3656 }
3657
3658 static u32
3659 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3660 {
3661 switch (idx) {
3662 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3663 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3664 rv2p_code |= RV2P_BD_PAGE_SIZE;
3665 break;
3666 }
3667 return rv2p_code;
3668 }
3669
3670 static int
3671 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3672 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3673 {
3674 u32 rv2p_code_len, file_offset;
3675 __be32 *rv2p_code;
3676 int i;
3677 u32 val, cmd, addr;
3678
3679 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3680 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3681
3682 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3683
3684 if (rv2p_proc == RV2P_PROC1) {
3685 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3686 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3687 } else {
3688 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3689 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3690 }
3691
3692 for (i = 0; i < rv2p_code_len; i += 8) {
3693 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3694 rv2p_code++;
3695 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3696 rv2p_code++;
3697
3698 val = (i / 8) | cmd;
3699 REG_WR(bp, addr, val);
3700 }
3701
3702 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3703 for (i = 0; i < 8; i++) {
3704 u32 loc, code;
3705
3706 loc = be32_to_cpu(fw_entry->fixup[i]);
3707 if (loc && ((loc * 4) < rv2p_code_len)) {
3708 code = be32_to_cpu(*(rv2p_code + loc - 1));
3709 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3710 code = be32_to_cpu(*(rv2p_code + loc));
3711 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3712 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3713
3714 val = (loc / 2) | cmd;
3715 REG_WR(bp, addr, val);
3716 }
3717 }
3718
3719 /* Reset the processor, un-stall is done later. */
3720 if (rv2p_proc == RV2P_PROC1) {
3721 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3722 }
3723 else {
3724 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3725 }
3726
3727 return 0;
3728 }
3729
3730 static int
3731 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3732 const struct bnx2_mips_fw_file_entry *fw_entry)
3733 {
3734 u32 addr, len, file_offset;
3735 __be32 *data;
3736 u32 offset;
3737 u32 val;
3738
3739 /* Halt the CPU. */
3740 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3741 val |= cpu_reg->mode_value_halt;
3742 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3743 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3744
3745 /* Load the Text area. */
3746 addr = be32_to_cpu(fw_entry->text.addr);
3747 len = be32_to_cpu(fw_entry->text.len);
3748 file_offset = be32_to_cpu(fw_entry->text.offset);
3749 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3750
3751 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3752 if (len) {
3753 int j;
3754
3755 for (j = 0; j < (len / 4); j++, offset += 4)
3756 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3757 }
3758
3759 /* Load the Data area. */
3760 addr = be32_to_cpu(fw_entry->data.addr);
3761 len = be32_to_cpu(fw_entry->data.len);
3762 file_offset = be32_to_cpu(fw_entry->data.offset);
3763 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3764
3765 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3766 if (len) {
3767 int j;
3768
3769 for (j = 0; j < (len / 4); j++, offset += 4)
3770 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3771 }
3772
3773 /* Load the Read-Only area. */
3774 addr = be32_to_cpu(fw_entry->rodata.addr);
3775 len = be32_to_cpu(fw_entry->rodata.len);
3776 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3777 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3778
3779 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3780 if (len) {
3781 int j;
3782
3783 for (j = 0; j < (len / 4); j++, offset += 4)
3784 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3785 }
3786
3787 /* Clear the pre-fetch instruction. */
3788 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3789
3790 val = be32_to_cpu(fw_entry->start_addr);
3791 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3792
3793 /* Start the CPU. */
3794 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3795 val &= ~cpu_reg->mode_value_halt;
3796 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3797 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3798
3799 return 0;
3800 }
3801
3802 static int
3803 bnx2_init_cpus(struct bnx2 *bp)
3804 {
3805 const struct bnx2_mips_fw_file *mips_fw =
3806 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3807 const struct bnx2_rv2p_fw_file *rv2p_fw =
3808 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3809 int rc;
3810
3811 /* Initialize the RV2P processor. */
3812 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3813 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3814
3815 /* Initialize the RX Processor. */
3816 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3817 if (rc)
3818 goto init_cpu_err;
3819
3820 /* Initialize the TX Processor. */
3821 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3822 if (rc)
3823 goto init_cpu_err;
3824
3825 /* Initialize the TX Patch-up Processor. */
3826 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3827 if (rc)
3828 goto init_cpu_err;
3829
3830 /* Initialize the Completion Processor. */
3831 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3832 if (rc)
3833 goto init_cpu_err;
3834
3835 /* Initialize the Command Processor. */
3836 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3837
3838 init_cpu_err:
3839 return rc;
3840 }
3841
3842 static int
3843 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3844 {
3845 u16 pmcsr;
3846
3847 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3848
3849 switch (state) {
3850 case PCI_D0: {
3851 u32 val;
3852
3853 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3854 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3855 PCI_PM_CTRL_PME_STATUS);
3856
3857 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3858 /* delay required during transition out of D3hot */
3859 msleep(20);
3860
3861 val = REG_RD(bp, BNX2_EMAC_MODE);
3862 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3863 val &= ~BNX2_EMAC_MODE_MPKT;
3864 REG_WR(bp, BNX2_EMAC_MODE, val);
3865
3866 val = REG_RD(bp, BNX2_RPM_CONFIG);
3867 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3868 REG_WR(bp, BNX2_RPM_CONFIG, val);
3869 break;
3870 }
3871 case PCI_D3hot: {
3872 int i;
3873 u32 val, wol_msg;
3874
3875 if (bp->wol) {
3876 u32 advertising;
3877 u8 autoneg;
3878
3879 autoneg = bp->autoneg;
3880 advertising = bp->advertising;
3881
3882 if (bp->phy_port == PORT_TP) {
3883 bp->autoneg = AUTONEG_SPEED;
3884 bp->advertising = ADVERTISED_10baseT_Half |
3885 ADVERTISED_10baseT_Full |
3886 ADVERTISED_100baseT_Half |
3887 ADVERTISED_100baseT_Full |
3888 ADVERTISED_Autoneg;
3889 }
3890
3891 spin_lock_bh(&bp->phy_lock);
3892 bnx2_setup_phy(bp, bp->phy_port);
3893 spin_unlock_bh(&bp->phy_lock);
3894
3895 bp->autoneg = autoneg;
3896 bp->advertising = advertising;
3897
3898 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3899
3900 val = REG_RD(bp, BNX2_EMAC_MODE);
3901
3902 /* Enable port mode. */
3903 val &= ~BNX2_EMAC_MODE_PORT;
3904 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3905 BNX2_EMAC_MODE_ACPI_RCVD |
3906 BNX2_EMAC_MODE_MPKT;
3907 if (bp->phy_port == PORT_TP)
3908 val |= BNX2_EMAC_MODE_PORT_MII;
3909 else {
3910 val |= BNX2_EMAC_MODE_PORT_GMII;
3911 if (bp->line_speed == SPEED_2500)
3912 val |= BNX2_EMAC_MODE_25G_MODE;
3913 }
3914
3915 REG_WR(bp, BNX2_EMAC_MODE, val);
3916
3917 /* receive all multicast */
3918 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3919 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3920 0xffffffff);
3921 }
3922 REG_WR(bp, BNX2_EMAC_RX_MODE,
3923 BNX2_EMAC_RX_MODE_SORT_MODE);
3924
3925 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3926 BNX2_RPM_SORT_USER0_MC_EN;
3927 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3928 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3929 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3930 BNX2_RPM_SORT_USER0_ENA);
3931
3932 /* Need to enable EMAC and RPM for WOL. */
3933 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3934 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3935 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3936 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3937
3938 val = REG_RD(bp, BNX2_RPM_CONFIG);
3939 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3940 REG_WR(bp, BNX2_RPM_CONFIG, val);
3941
3942 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3943 }
3944 else {
3945 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3946 }
3947
3948 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3949 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3950 1, 0);
3951
3952 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3953 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3954 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3955
3956 if (bp->wol)
3957 pmcsr |= 3;
3958 }
3959 else {
3960 pmcsr |= 3;
3961 }
3962 if (bp->wol) {
3963 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3964 }
3965 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3966 pmcsr);
3967
3968 /* No more memory access after this point until
3969 * device is brought back to D0.
3970 */
3971 udelay(50);
3972 break;
3973 }
3974 default:
3975 return -EINVAL;
3976 }
3977 return 0;
3978 }
3979
3980 static int
3981 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3982 {
3983 u32 val;
3984 int j;
3985
3986 /* Request access to the flash interface. */
3987 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
3988 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3989 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3990 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
3991 break;
3992
3993 udelay(5);
3994 }
3995
3996 if (j >= NVRAM_TIMEOUT_COUNT)
3997 return -EBUSY;
3998
3999 return 0;
4000 }
4001
4002 static int
4003 bnx2_release_nvram_lock(struct bnx2 *bp)
4004 {
4005 int j;
4006 u32 val;
4007
4008 /* Relinquish nvram interface. */
4009 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4010
4011 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4012 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4013 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4014 break;
4015
4016 udelay(5);
4017 }
4018
4019 if (j >= NVRAM_TIMEOUT_COUNT)
4020 return -EBUSY;
4021
4022 return 0;
4023 }
4024
4025
4026 static int
4027 bnx2_enable_nvram_write(struct bnx2 *bp)
4028 {
4029 u32 val;
4030
4031 val = REG_RD(bp, BNX2_MISC_CFG);
4032 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4033
4034 if (bp->flash_info->flags & BNX2_NV_WREN) {
4035 int j;
4036
4037 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4038 REG_WR(bp, BNX2_NVM_COMMAND,
4039 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4040
4041 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4042 udelay(5);
4043
4044 val = REG_RD(bp, BNX2_NVM_COMMAND);
4045 if (val & BNX2_NVM_COMMAND_DONE)
4046 break;
4047 }
4048
4049 if (j >= NVRAM_TIMEOUT_COUNT)
4050 return -EBUSY;
4051 }
4052 return 0;
4053 }
4054
4055 static void
4056 bnx2_disable_nvram_write(struct bnx2 *bp)
4057 {
4058 u32 val;
4059
4060 val = REG_RD(bp, BNX2_MISC_CFG);
4061 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4062 }
4063
4064
4065 static void
4066 bnx2_enable_nvram_access(struct bnx2 *bp)
4067 {
4068 u32 val;
4069
4070 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4071 /* Enable both bits, even on read. */
4072 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4073 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4074 }
4075
4076 static void
4077 bnx2_disable_nvram_access(struct bnx2 *bp)
4078 {
4079 u32 val;
4080
4081 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4082 /* Disable both bits, even after read. */
4083 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4084 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4085 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4086 }
4087
4088 static int
4089 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4090 {
4091 u32 cmd;
4092 int j;
4093
4094 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4095 /* Buffered flash, no erase needed */
4096 return 0;
4097
4098 /* Build an erase command */
4099 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4100 BNX2_NVM_COMMAND_DOIT;
4101
4102 /* Need to clear DONE bit separately. */
4103 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4104
4105 /* Address of the NVRAM to read from. */
4106 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4107
4108 /* Issue an erase command. */
4109 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4110
4111 /* Wait for completion. */
4112 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4113 u32 val;
4114
4115 udelay(5);
4116
4117 val = REG_RD(bp, BNX2_NVM_COMMAND);
4118 if (val & BNX2_NVM_COMMAND_DONE)
4119 break;
4120 }
4121
4122 if (j >= NVRAM_TIMEOUT_COUNT)
4123 return -EBUSY;
4124
4125 return 0;
4126 }
4127
4128 static int
4129 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4130 {
4131 u32 cmd;
4132 int j;
4133
4134 /* Build the command word. */
4135 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4136
4137 /* Calculate an offset of a buffered flash, not needed for 5709. */
4138 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4139 offset = ((offset / bp->flash_info->page_size) <<
4140 bp->flash_info->page_bits) +
4141 (offset % bp->flash_info->page_size);
4142 }
4143
4144 /* Need to clear DONE bit separately. */
4145 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4146
4147 /* Address of the NVRAM to read from. */
4148 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4149
4150 /* Issue a read command. */
4151 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4152
4153 /* Wait for completion. */
4154 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4155 u32 val;
4156
4157 udelay(5);
4158
4159 val = REG_RD(bp, BNX2_NVM_COMMAND);
4160 if (val & BNX2_NVM_COMMAND_DONE) {
4161 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4162 memcpy(ret_val, &v, 4);
4163 break;
4164 }
4165 }
4166 if (j >= NVRAM_TIMEOUT_COUNT)
4167 return -EBUSY;
4168
4169 return 0;
4170 }
4171
4172
4173 static int
4174 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4175 {
4176 u32 cmd;
4177 __be32 val32;
4178 int j;
4179
4180 /* Build the command word. */
4181 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4182
4183 /* Calculate an offset of a buffered flash, not needed for 5709. */
4184 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4185 offset = ((offset / bp->flash_info->page_size) <<
4186 bp->flash_info->page_bits) +
4187 (offset % bp->flash_info->page_size);
4188 }
4189
4190 /* Need to clear DONE bit separately. */
4191 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4192
4193 memcpy(&val32, val, 4);
4194
4195 /* Write the data. */
4196 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4197
4198 /* Address of the NVRAM to write to. */
4199 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4200
4201 /* Issue the write command. */
4202 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4203
4204 /* Wait for completion. */
4205 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4206 udelay(5);
4207
4208 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4209 break;
4210 }
4211 if (j >= NVRAM_TIMEOUT_COUNT)
4212 return -EBUSY;
4213
4214 return 0;
4215 }
4216
4217 static int
4218 bnx2_init_nvram(struct bnx2 *bp)
4219 {
4220 u32 val;
4221 int j, entry_count, rc = 0;
4222 const struct flash_spec *flash;
4223
4224 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4225 bp->flash_info = &flash_5709;
4226 goto get_flash_size;
4227 }
4228
4229 /* Determine the selected interface. */
4230 val = REG_RD(bp, BNX2_NVM_CFG1);
4231
4232 entry_count = ARRAY_SIZE(flash_table);
4233
4234 if (val & 0x40000000) {
4235
4236 /* Flash interface has been reconfigured */
4237 for (j = 0, flash = &flash_table[0]; j < entry_count;
4238 j++, flash++) {
4239 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4240 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4241 bp->flash_info = flash;
4242 break;
4243 }
4244 }
4245 }
4246 else {
4247 u32 mask;
4248 /* Not yet been reconfigured */
4249
4250 if (val & (1 << 23))
4251 mask = FLASH_BACKUP_STRAP_MASK;
4252 else
4253 mask = FLASH_STRAP_MASK;
4254
4255 for (j = 0, flash = &flash_table[0]; j < entry_count;
4256 j++, flash++) {
4257
4258 if ((val & mask) == (flash->strapping & mask)) {
4259 bp->flash_info = flash;
4260
4261 /* Request access to the flash interface. */
4262 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4263 return rc;
4264
4265 /* Enable access to flash interface */
4266 bnx2_enable_nvram_access(bp);
4267
4268 /* Reconfigure the flash interface */
4269 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4270 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4271 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4272 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4273
4274 /* Disable access to flash interface */
4275 bnx2_disable_nvram_access(bp);
4276 bnx2_release_nvram_lock(bp);
4277
4278 break;
4279 }
4280 }
4281 } /* if (val & 0x40000000) */
4282
4283 if (j == entry_count) {
4284 bp->flash_info = NULL;
4285 pr_alert("Unknown flash/EEPROM type\n");
4286 return -ENODEV;
4287 }
4288
4289 get_flash_size:
4290 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4291 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4292 if (val)
4293 bp->flash_size = val;
4294 else
4295 bp->flash_size = bp->flash_info->total_size;
4296
4297 return rc;
4298 }
4299
4300 static int
4301 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4302 int buf_size)
4303 {
4304 int rc = 0;
4305 u32 cmd_flags, offset32, len32, extra;
4306
4307 if (buf_size == 0)
4308 return 0;
4309
4310 /* Request access to the flash interface. */
4311 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4312 return rc;
4313
4314 /* Enable access to flash interface */
4315 bnx2_enable_nvram_access(bp);
4316
4317 len32 = buf_size;
4318 offset32 = offset;
4319 extra = 0;
4320
4321 cmd_flags = 0;
4322
4323 if (offset32 & 3) {
4324 u8 buf[4];
4325 u32 pre_len;
4326
4327 offset32 &= ~3;
4328 pre_len = 4 - (offset & 3);
4329
4330 if (pre_len >= len32) {
4331 pre_len = len32;
4332 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4333 BNX2_NVM_COMMAND_LAST;
4334 }
4335 else {
4336 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4337 }
4338
4339 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4340
4341 if (rc)
4342 return rc;
4343
4344 memcpy(ret_buf, buf + (offset & 3), pre_len);
4345
4346 offset32 += 4;
4347 ret_buf += pre_len;
4348 len32 -= pre_len;
4349 }
4350 if (len32 & 3) {
4351 extra = 4 - (len32 & 3);
4352 len32 = (len32 + 4) & ~3;
4353 }
4354
4355 if (len32 == 4) {
4356 u8 buf[4];
4357
4358 if (cmd_flags)
4359 cmd_flags = BNX2_NVM_COMMAND_LAST;
4360 else
4361 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4362 BNX2_NVM_COMMAND_LAST;
4363
4364 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4365
4366 memcpy(ret_buf, buf, 4 - extra);
4367 }
4368 else if (len32 > 0) {
4369 u8 buf[4];
4370
4371 /* Read the first word. */
4372 if (cmd_flags)
4373 cmd_flags = 0;
4374 else
4375 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4376
4377 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4378
4379 /* Advance to the next dword. */
4380 offset32 += 4;
4381 ret_buf += 4;
4382 len32 -= 4;
4383
4384 while (len32 > 4 && rc == 0) {
4385 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4386
4387 /* Advance to the next dword. */
4388 offset32 += 4;
4389 ret_buf += 4;
4390 len32 -= 4;
4391 }
4392
4393 if (rc)
4394 return rc;
4395
4396 cmd_flags = BNX2_NVM_COMMAND_LAST;
4397 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4398
4399 memcpy(ret_buf, buf, 4 - extra);
4400 }
4401
4402 /* Disable access to flash interface */
4403 bnx2_disable_nvram_access(bp);
4404
4405 bnx2_release_nvram_lock(bp);
4406
4407 return rc;
4408 }
4409
4410 static int
4411 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4412 int buf_size)
4413 {
4414 u32 written, offset32, len32;
4415 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4416 int rc = 0;
4417 int align_start, align_end;
4418
4419 buf = data_buf;
4420 offset32 = offset;
4421 len32 = buf_size;
4422 align_start = align_end = 0;
4423
4424 if ((align_start = (offset32 & 3))) {
4425 offset32 &= ~3;
4426 len32 += align_start;
4427 if (len32 < 4)
4428 len32 = 4;
4429 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4430 return rc;
4431 }
4432
4433 if (len32 & 3) {
4434 align_end = 4 - (len32 & 3);
4435 len32 += align_end;
4436 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4437 return rc;
4438 }
4439
4440 if (align_start || align_end) {
4441 align_buf = kmalloc(len32, GFP_KERNEL);
4442 if (align_buf == NULL)
4443 return -ENOMEM;
4444 if (align_start) {
4445 memcpy(align_buf, start, 4);
4446 }
4447 if (align_end) {
4448 memcpy(align_buf + len32 - 4, end, 4);
4449 }
4450 memcpy(align_buf + align_start, data_buf, buf_size);
4451 buf = align_buf;
4452 }
4453
4454 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4455 flash_buffer = kmalloc(264, GFP_KERNEL);
4456 if (flash_buffer == NULL) {
4457 rc = -ENOMEM;
4458 goto nvram_write_end;
4459 }
4460 }
4461
4462 written = 0;
4463 while ((written < len32) && (rc == 0)) {
4464 u32 page_start, page_end, data_start, data_end;
4465 u32 addr, cmd_flags;
4466 int i;
4467
4468 /* Find the page_start addr */
4469 page_start = offset32 + written;
4470 page_start -= (page_start % bp->flash_info->page_size);
4471 /* Find the page_end addr */
4472 page_end = page_start + bp->flash_info->page_size;
4473 /* Find the data_start addr */
4474 data_start = (written == 0) ? offset32 : page_start;
4475 /* Find the data_end addr */
4476 data_end = (page_end > offset32 + len32) ?
4477 (offset32 + len32) : page_end;
4478
4479 /* Request access to the flash interface. */
4480 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4481 goto nvram_write_end;
4482
4483 /* Enable access to flash interface */
4484 bnx2_enable_nvram_access(bp);
4485
4486 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4487 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4488 int j;
4489
4490 /* Read the whole page into the buffer
4491 * (non-buffer flash only) */
4492 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4493 if (j == (bp->flash_info->page_size - 4)) {
4494 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4495 }
4496 rc = bnx2_nvram_read_dword(bp,
4497 page_start + j,
4498 &flash_buffer[j],
4499 cmd_flags);
4500
4501 if (rc)
4502 goto nvram_write_end;
4503
4504 cmd_flags = 0;
4505 }
4506 }
4507
4508 /* Enable writes to flash interface (unlock write-protect) */
4509 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4510 goto nvram_write_end;
4511
4512 /* Loop to write back the buffer data from page_start to
4513 * data_start */
4514 i = 0;
4515 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4516 /* Erase the page */
4517 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4518 goto nvram_write_end;
4519
4520 /* Re-enable the write again for the actual write */
4521 bnx2_enable_nvram_write(bp);
4522
4523 for (addr = page_start; addr < data_start;
4524 addr += 4, i += 4) {
4525
4526 rc = bnx2_nvram_write_dword(bp, addr,
4527 &flash_buffer[i], cmd_flags);
4528
4529 if (rc != 0)
4530 goto nvram_write_end;
4531
4532 cmd_flags = 0;
4533 }
4534 }
4535
4536 /* Loop to write the new data from data_start to data_end */
4537 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4538 if ((addr == page_end - 4) ||
4539 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4540 (addr == data_end - 4))) {
4541
4542 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4543 }
4544 rc = bnx2_nvram_write_dword(bp, addr, buf,
4545 cmd_flags);
4546
4547 if (rc != 0)
4548 goto nvram_write_end;
4549
4550 cmd_flags = 0;
4551 buf += 4;
4552 }
4553
4554 /* Loop to write back the buffer data from data_end
4555 * to page_end */
4556 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4557 for (addr = data_end; addr < page_end;
4558 addr += 4, i += 4) {
4559
4560 if (addr == page_end-4) {
4561 cmd_flags = BNX2_NVM_COMMAND_LAST;
4562 }
4563 rc = bnx2_nvram_write_dword(bp, addr,
4564 &flash_buffer[i], cmd_flags);
4565
4566 if (rc != 0)
4567 goto nvram_write_end;
4568
4569 cmd_flags = 0;
4570 }
4571 }
4572
4573 /* Disable writes to flash interface (lock write-protect) */
4574 bnx2_disable_nvram_write(bp);
4575
4576 /* Disable access to flash interface */
4577 bnx2_disable_nvram_access(bp);
4578 bnx2_release_nvram_lock(bp);
4579
4580 /* Increment written */
4581 written += data_end - data_start;
4582 }
4583
4584 nvram_write_end:
4585 kfree(flash_buffer);
4586 kfree(align_buf);
4587 return rc;
4588 }
4589
4590 static void
4591 bnx2_init_fw_cap(struct bnx2 *bp)
4592 {
4593 u32 val, sig = 0;
4594
4595 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4596 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4597
4598 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4599 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4600
4601 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4602 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4603 return;
4604
4605 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4606 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4607 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4608 }
4609
4610 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4611 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4612 u32 link;
4613
4614 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4615
4616 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4617 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4618 bp->phy_port = PORT_FIBRE;
4619 else
4620 bp->phy_port = PORT_TP;
4621
4622 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4623 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4624 }
4625
4626 if (netif_running(bp->dev) && sig)
4627 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4628 }
4629
4630 static void
4631 bnx2_setup_msix_tbl(struct bnx2 *bp)
4632 {
4633 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4634
4635 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4636 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4637 }
4638
4639 static int
4640 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4641 {
4642 u32 val;
4643 int i, rc = 0;
4644 u8 old_port;
4645
4646 /* Wait for the current PCI transaction to complete before
4647 * issuing a reset. */
4648 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4649 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4650 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4651 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4652 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4653 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4654 udelay(5);
4655
4656 /* Wait for the firmware to tell us it is ok to issue a reset. */
4657 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4658
4659 /* Deposit a driver reset signature so the firmware knows that
4660 * this is a soft reset. */
4661 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4662 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4663
4664 /* Do a dummy read to force the chip to complete all current transaction
4665 * before we issue a reset. */
4666 val = REG_RD(bp, BNX2_MISC_ID);
4667
4668 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4669 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4670 REG_RD(bp, BNX2_MISC_COMMAND);
4671 udelay(5);
4672
4673 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4674 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4675
4676 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4677
4678 } else {
4679 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4680 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4681 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4682
4683 /* Chip reset. */
4684 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4685
4686 /* Reading back any register after chip reset will hang the
4687 * bus on 5706 A0 and A1. The msleep below provides plenty
4688 * of margin for write posting.
4689 */
4690 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4691 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4692 msleep(20);
4693
4694 /* Reset takes approximate 30 usec */
4695 for (i = 0; i < 10; i++) {
4696 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4697 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4698 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4699 break;
4700 udelay(10);
4701 }
4702
4703 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4704 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4705 pr_err("Chip reset did not complete\n");
4706 return -EBUSY;
4707 }
4708 }
4709
4710 /* Make sure byte swapping is properly configured. */
4711 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4712 if (val != 0x01020304) {
4713 pr_err("Chip not in correct endian mode\n");
4714 return -ENODEV;
4715 }
4716
4717 /* Wait for the firmware to finish its initialization. */
4718 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4719 if (rc)
4720 return rc;
4721
4722 spin_lock_bh(&bp->phy_lock);
4723 old_port = bp->phy_port;
4724 bnx2_init_fw_cap(bp);
4725 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4726 old_port != bp->phy_port)
4727 bnx2_set_default_remote_link(bp);
4728 spin_unlock_bh(&bp->phy_lock);
4729
4730 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4731 /* Adjust the voltage regular to two steps lower. The default
4732 * of this register is 0x0000000e. */
4733 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4734
4735 /* Remove bad rbuf memory from the free pool. */
4736 rc = bnx2_alloc_bad_rbuf(bp);
4737 }
4738
4739 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4740 bnx2_setup_msix_tbl(bp);
4741 /* Prevent MSIX table reads and write from timing out */
4742 REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
4743 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
4744 }
4745
4746 return rc;
4747 }
4748
4749 static int
4750 bnx2_init_chip(struct bnx2 *bp)
4751 {
4752 u32 val, mtu;
4753 int rc, i;
4754
4755 /* Make sure the interrupt is not active. */
4756 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4757
4758 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4759 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4760 #ifdef __BIG_ENDIAN
4761 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4762 #endif
4763 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4764 DMA_READ_CHANS << 12 |
4765 DMA_WRITE_CHANS << 16;
4766
4767 val |= (0x2 << 20) | (1 << 11);
4768
4769 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4770 val |= (1 << 23);
4771
4772 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4773 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4774 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4775
4776 REG_WR(bp, BNX2_DMA_CONFIG, val);
4777
4778 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4779 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4780 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4781 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4782 }
4783
4784 if (bp->flags & BNX2_FLAG_PCIX) {
4785 u16 val16;
4786
4787 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4788 &val16);
4789 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4790 val16 & ~PCI_X_CMD_ERO);
4791 }
4792
4793 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4794 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4795 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4796 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4797
4798 /* Initialize context mapping and zero out the quick contexts. The
4799 * context block must have already been enabled. */
4800 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4801 rc = bnx2_init_5709_context(bp);
4802 if (rc)
4803 return rc;
4804 } else
4805 bnx2_init_context(bp);
4806
4807 if ((rc = bnx2_init_cpus(bp)) != 0)
4808 return rc;
4809
4810 bnx2_init_nvram(bp);
4811
4812 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4813
4814 val = REG_RD(bp, BNX2_MQ_CONFIG);
4815 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4816 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4817 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4818 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4819 if (CHIP_REV(bp) == CHIP_REV_Ax)
4820 val |= BNX2_MQ_CONFIG_HALT_DIS;
4821 }
4822
4823 REG_WR(bp, BNX2_MQ_CONFIG, val);
4824
4825 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4826 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4827 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4828
4829 val = (BCM_PAGE_BITS - 8) << 24;
4830 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4831
4832 /* Configure page size. */
4833 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4834 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4835 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4836 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4837
4838 val = bp->mac_addr[0] +
4839 (bp->mac_addr[1] << 8) +
4840 (bp->mac_addr[2] << 16) +
4841 bp->mac_addr[3] +
4842 (bp->mac_addr[4] << 8) +
4843 (bp->mac_addr[5] << 16);
4844 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4845
4846 /* Program the MTU. Also include 4 bytes for CRC32. */
4847 mtu = bp->dev->mtu;
4848 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4849 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4850 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4851 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4852
4853 if (mtu < 1500)
4854 mtu = 1500;
4855
4856 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4857 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4858 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4859
4860 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4861 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4862 bp->bnx2_napi[i].last_status_idx = 0;
4863
4864 bp->idle_chk_status_idx = 0xffff;
4865
4866 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4867
4868 /* Set up how to generate a link change interrupt. */
4869 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4870
4871 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4872 (u64) bp->status_blk_mapping & 0xffffffff);
4873 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4874
4875 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4876 (u64) bp->stats_blk_mapping & 0xffffffff);
4877 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4878 (u64) bp->stats_blk_mapping >> 32);
4879
4880 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4881 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4882
4883 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4884 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4885
4886 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4887 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4888
4889 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4890
4891 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4892
4893 REG_WR(bp, BNX2_HC_COM_TICKS,
4894 (bp->com_ticks_int << 16) | bp->com_ticks);
4895
4896 REG_WR(bp, BNX2_HC_CMD_TICKS,
4897 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4898
4899 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4900 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4901 else
4902 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4903 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4904
4905 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4906 val = BNX2_HC_CONFIG_COLLECT_STATS;
4907 else {
4908 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4909 BNX2_HC_CONFIG_COLLECT_STATS;
4910 }
4911
4912 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4913 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4914 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4915
4916 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4917 }
4918
4919 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4920 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4921
4922 REG_WR(bp, BNX2_HC_CONFIG, val);
4923
4924 if (bp->rx_ticks < 25)
4925 bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
4926 else
4927 bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
4928
4929 for (i = 1; i < bp->irq_nvecs; i++) {
4930 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4931 BNX2_HC_SB_CONFIG_1;
4932
4933 REG_WR(bp, base,
4934 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4935 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4936 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4937
4938 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4939 (bp->tx_quick_cons_trip_int << 16) |
4940 bp->tx_quick_cons_trip);
4941
4942 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4943 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4944
4945 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4946 (bp->rx_quick_cons_trip_int << 16) |
4947 bp->rx_quick_cons_trip);
4948
4949 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4950 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4951 }
4952
4953 /* Clear internal stats counters. */
4954 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4955
4956 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4957
4958 /* Initialize the receive filter. */
4959 bnx2_set_rx_mode(bp->dev);
4960
4961 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4962 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4963 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4964 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4965 }
4966 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4967 1, 0);
4968
4969 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4970 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4971
4972 udelay(20);
4973
4974 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4975
4976 return rc;
4977 }
4978
4979 static void
4980 bnx2_clear_ring_states(struct bnx2 *bp)
4981 {
4982 struct bnx2_napi *bnapi;
4983 struct bnx2_tx_ring_info *txr;
4984 struct bnx2_rx_ring_info *rxr;
4985 int i;
4986
4987 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4988 bnapi = &bp->bnx2_napi[i];
4989 txr = &bnapi->tx_ring;
4990 rxr = &bnapi->rx_ring;
4991
4992 txr->tx_cons = 0;
4993 txr->hw_tx_cons = 0;
4994 rxr->rx_prod_bseq = 0;
4995 rxr->rx_prod = 0;
4996 rxr->rx_cons = 0;
4997 rxr->rx_pg_prod = 0;
4998 rxr->rx_pg_cons = 0;
4999 }
5000 }
5001
5002 static void
5003 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5004 {
5005 u32 val, offset0, offset1, offset2, offset3;
5006 u32 cid_addr = GET_CID_ADDR(cid);
5007
5008 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5009 offset0 = BNX2_L2CTX_TYPE_XI;
5010 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5011 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5012 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5013 } else {
5014 offset0 = BNX2_L2CTX_TYPE;
5015 offset1 = BNX2_L2CTX_CMD_TYPE;
5016 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5017 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5018 }
5019 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5020 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5021
5022 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5023 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5024
5025 val = (u64) txr->tx_desc_mapping >> 32;
5026 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5027
5028 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5029 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5030 }
5031
5032 static void
5033 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5034 {
5035 struct tx_bd *txbd;
5036 u32 cid = TX_CID;
5037 struct bnx2_napi *bnapi;
5038 struct bnx2_tx_ring_info *txr;
5039
5040 bnapi = &bp->bnx2_napi[ring_num];
5041 txr = &bnapi->tx_ring;
5042
5043 if (ring_num == 0)
5044 cid = TX_CID;
5045 else
5046 cid = TX_TSS_CID + ring_num - 1;
5047
5048 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5049
5050 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5051
5052 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5053 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5054
5055 txr->tx_prod = 0;
5056 txr->tx_prod_bseq = 0;
5057
5058 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5059 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5060
5061 bnx2_init_tx_context(bp, cid, txr);
5062 }
5063
5064 static void
5065 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5066 int num_rings)
5067 {
5068 int i;
5069 struct rx_bd *rxbd;
5070
5071 for (i = 0; i < num_rings; i++) {
5072 int j;
5073
5074 rxbd = &rx_ring[i][0];
5075 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5076 rxbd->rx_bd_len = buf_size;
5077 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5078 }
5079 if (i == (num_rings - 1))
5080 j = 0;
5081 else
5082 j = i + 1;
5083 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5084 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5085 }
5086 }
5087
5088 static void
5089 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5090 {
5091 int i;
5092 u16 prod, ring_prod;
5093 u32 cid, rx_cid_addr, val;
5094 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5095 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5096
5097 if (ring_num == 0)
5098 cid = RX_CID;
5099 else
5100 cid = RX_RSS_CID + ring_num - 1;
5101
5102 rx_cid_addr = GET_CID_ADDR(cid);
5103
5104 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5105 bp->rx_buf_use_size, bp->rx_max_ring);
5106
5107 bnx2_init_rx_context(bp, cid);
5108
5109 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5110 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5111 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5112 }
5113
5114 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5115 if (bp->rx_pg_ring_size) {
5116 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5117 rxr->rx_pg_desc_mapping,
5118 PAGE_SIZE, bp->rx_max_pg_ring);
5119 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5120 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5121 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5122 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5123
5124 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5125 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5126
5127 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5128 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5129
5130 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5131 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5132 }
5133
5134 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5135 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5136
5137 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5138 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5139
5140 ring_prod = prod = rxr->rx_pg_prod;
5141 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5142 if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
5143 netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
5144 ring_num, i, bp->rx_pg_ring_size);
5145 break;
5146 }
5147 prod = NEXT_RX_BD(prod);
5148 ring_prod = RX_PG_RING_IDX(prod);
5149 }
5150 rxr->rx_pg_prod = prod;
5151
5152 ring_prod = prod = rxr->rx_prod;
5153 for (i = 0; i < bp->rx_ring_size; i++) {
5154 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
5155 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
5156 ring_num, i, bp->rx_ring_size);
5157 break;
5158 }
5159 prod = NEXT_RX_BD(prod);
5160 ring_prod = RX_RING_IDX(prod);
5161 }
5162 rxr->rx_prod = prod;
5163
5164 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5165 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5166 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5167
5168 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5169 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5170
5171 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5172 }
5173
5174 static void
5175 bnx2_init_all_rings(struct bnx2 *bp)
5176 {
5177 int i;
5178 u32 val;
5179
5180 bnx2_clear_ring_states(bp);
5181
5182 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5183 for (i = 0; i < bp->num_tx_rings; i++)
5184 bnx2_init_tx_ring(bp, i);
5185
5186 if (bp->num_tx_rings > 1)
5187 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5188 (TX_TSS_CID << 7));
5189
5190 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5191 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5192
5193 for (i = 0; i < bp->num_rx_rings; i++)
5194 bnx2_init_rx_ring(bp, i);
5195
5196 if (bp->num_rx_rings > 1) {
5197 u32 tbl_32 = 0;
5198
5199 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5200 int shift = (i % 8) << 2;
5201
5202 tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
5203 if ((i % 8) == 7) {
5204 REG_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
5205 REG_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
5206 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
5207 BNX2_RLUP_RSS_COMMAND_WRITE |
5208 BNX2_RLUP_RSS_COMMAND_HASH_MASK);
5209 tbl_32 = 0;
5210 }
5211 }
5212
5213 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5214 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5215
5216 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5217
5218 }
5219 }
5220
5221 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5222 {
5223 u32 max, num_rings = 1;
5224
5225 while (ring_size > MAX_RX_DESC_CNT) {
5226 ring_size -= MAX_RX_DESC_CNT;
5227 num_rings++;
5228 }
5229 /* round to next power of 2 */
5230 max = max_size;
5231 while ((max & num_rings) == 0)
5232 max >>= 1;
5233
5234 if (num_rings != max)
5235 max <<= 1;
5236
5237 return max;
5238 }
5239
5240 static void
5241 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5242 {
5243 u32 rx_size, rx_space, jumbo_size;
5244
5245 /* 8 for CRC and VLAN */
5246 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5247
5248 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5249 sizeof(struct skb_shared_info);
5250
5251 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5252 bp->rx_pg_ring_size = 0;
5253 bp->rx_max_pg_ring = 0;
5254 bp->rx_max_pg_ring_idx = 0;
5255 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5256 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5257
5258 jumbo_size = size * pages;
5259 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5260 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5261
5262 bp->rx_pg_ring_size = jumbo_size;
5263 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5264 MAX_RX_PG_RINGS);
5265 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5266 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5267 bp->rx_copy_thresh = 0;
5268 }
5269
5270 bp->rx_buf_use_size = rx_size;
5271 /* hw alignment */
5272 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5273 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5274 bp->rx_ring_size = size;
5275 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5276 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5277 }
5278
5279 static void
5280 bnx2_free_tx_skbs(struct bnx2 *bp)
5281 {
5282 int i;
5283
5284 for (i = 0; i < bp->num_tx_rings; i++) {
5285 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5286 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5287 int j;
5288
5289 if (txr->tx_buf_ring == NULL)
5290 continue;
5291
5292 for (j = 0; j < TX_DESC_CNT; ) {
5293 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5294 struct sk_buff *skb = tx_buf->skb;
5295 int k, last;
5296
5297 if (skb == NULL) {
5298 j++;
5299 continue;
5300 }
5301
5302 dma_unmap_single(&bp->pdev->dev,
5303 dma_unmap_addr(tx_buf, mapping),
5304 skb_headlen(skb),
5305 PCI_DMA_TODEVICE);
5306
5307 tx_buf->skb = NULL;
5308
5309 last = tx_buf->nr_frags;
5310 j++;
5311 for (k = 0; k < last; k++, j++) {
5312 tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
5313 dma_unmap_page(&bp->pdev->dev,
5314 dma_unmap_addr(tx_buf, mapping),
5315 skb_shinfo(skb)->frags[k].size,
5316 PCI_DMA_TODEVICE);
5317 }
5318 dev_kfree_skb(skb);
5319 }
5320 }
5321 }
5322
5323 static void
5324 bnx2_free_rx_skbs(struct bnx2 *bp)
5325 {
5326 int i;
5327
5328 for (i = 0; i < bp->num_rx_rings; i++) {
5329 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5330 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5331 int j;
5332
5333 if (rxr->rx_buf_ring == NULL)
5334 return;
5335
5336 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5337 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5338 struct sk_buff *skb = rx_buf->skb;
5339
5340 if (skb == NULL)
5341 continue;
5342
5343 dma_unmap_single(&bp->pdev->dev,
5344 dma_unmap_addr(rx_buf, mapping),
5345 bp->rx_buf_use_size,
5346 PCI_DMA_FROMDEVICE);
5347
5348 rx_buf->skb = NULL;
5349
5350 dev_kfree_skb(skb);
5351 }
5352 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5353 bnx2_free_rx_page(bp, rxr, j);
5354 }
5355 }
5356
5357 static void
5358 bnx2_free_skbs(struct bnx2 *bp)
5359 {
5360 bnx2_free_tx_skbs(bp);
5361 bnx2_free_rx_skbs(bp);
5362 }
5363
5364 static int
5365 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5366 {
5367 int rc;
5368
5369 rc = bnx2_reset_chip(bp, reset_code);
5370 bnx2_free_skbs(bp);
5371 if (rc)
5372 return rc;
5373
5374 if ((rc = bnx2_init_chip(bp)) != 0)
5375 return rc;
5376
5377 bnx2_init_all_rings(bp);
5378 return 0;
5379 }
5380
5381 static int
5382 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5383 {
5384 int rc;
5385
5386 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5387 return rc;
5388
5389 spin_lock_bh(&bp->phy_lock);
5390 bnx2_init_phy(bp, reset_phy);
5391 bnx2_set_link(bp);
5392 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5393 bnx2_remote_phy_event(bp);
5394 spin_unlock_bh(&bp->phy_lock);
5395 return 0;
5396 }
5397
5398 static int
5399 bnx2_shutdown_chip(struct bnx2 *bp)
5400 {
5401 u32 reset_code;
5402
5403 if (bp->flags & BNX2_FLAG_NO_WOL)
5404 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5405 else if (bp->wol)
5406 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5407 else
5408 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5409
5410 return bnx2_reset_chip(bp, reset_code);
5411 }
5412
5413 static int
5414 bnx2_test_registers(struct bnx2 *bp)
5415 {
5416 int ret;
5417 int i, is_5709;
5418 static const struct {
5419 u16 offset;
5420 u16 flags;
5421 #define BNX2_FL_NOT_5709 1
5422 u32 rw_mask;
5423 u32 ro_mask;
5424 } reg_tbl[] = {
5425 { 0x006c, 0, 0x00000000, 0x0000003f },
5426 { 0x0090, 0, 0xffffffff, 0x00000000 },
5427 { 0x0094, 0, 0x00000000, 0x00000000 },
5428
5429 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5430 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5431 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5432 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5433 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5434 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5435 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5436 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5437 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5438
5439 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5440 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5441 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5442 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5443 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5444 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5445
5446 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5447 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5448 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5449
5450 { 0x1000, 0, 0x00000000, 0x00000001 },
5451 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5452
5453 { 0x1408, 0, 0x01c00800, 0x00000000 },
5454 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5455 { 0x14a8, 0, 0x00000000, 0x000001ff },
5456 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5457 { 0x14b0, 0, 0x00000002, 0x00000001 },
5458 { 0x14b8, 0, 0x00000000, 0x00000000 },
5459 { 0x14c0, 0, 0x00000000, 0x00000009 },
5460 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5461 { 0x14cc, 0, 0x00000000, 0x00000001 },
5462 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5463
5464 { 0x1800, 0, 0x00000000, 0x00000001 },
5465 { 0x1804, 0, 0x00000000, 0x00000003 },
5466
5467 { 0x2800, 0, 0x00000000, 0x00000001 },
5468 { 0x2804, 0, 0x00000000, 0x00003f01 },
5469 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5470 { 0x2810, 0, 0xffff0000, 0x00000000 },
5471 { 0x2814, 0, 0xffff0000, 0x00000000 },
5472 { 0x2818, 0, 0xffff0000, 0x00000000 },
5473 { 0x281c, 0, 0xffff0000, 0x00000000 },
5474 { 0x2834, 0, 0xffffffff, 0x00000000 },
5475 { 0x2840, 0, 0x00000000, 0xffffffff },
5476 { 0x2844, 0, 0x00000000, 0xffffffff },
5477 { 0x2848, 0, 0xffffffff, 0x00000000 },
5478 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5479
5480 { 0x2c00, 0, 0x00000000, 0x00000011 },
5481 { 0x2c04, 0, 0x00000000, 0x00030007 },
5482
5483 { 0x3c00, 0, 0x00000000, 0x00000001 },
5484 { 0x3c04, 0, 0x00000000, 0x00070000 },
5485 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5486 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5487 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5488 { 0x3c14, 0, 0x00000000, 0xffffffff },
5489 { 0x3c18, 0, 0x00000000, 0xffffffff },
5490 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5491 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5492
5493 { 0x5004, 0, 0x00000000, 0x0000007f },
5494 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5495
5496 { 0x5c00, 0, 0x00000000, 0x00000001 },
5497 { 0x5c04, 0, 0x00000000, 0x0003000f },
5498 { 0x5c08, 0, 0x00000003, 0x00000000 },
5499 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5500 { 0x5c10, 0, 0x00000000, 0xffffffff },
5501 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5502 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5503 { 0x5c88, 0, 0x00000000, 0x00077373 },
5504 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5505
5506 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5507 { 0x680c, 0, 0xffffffff, 0x00000000 },
5508 { 0x6810, 0, 0xffffffff, 0x00000000 },
5509 { 0x6814, 0, 0xffffffff, 0x00000000 },
5510 { 0x6818, 0, 0xffffffff, 0x00000000 },
5511 { 0x681c, 0, 0xffffffff, 0x00000000 },
5512 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5513 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5514 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5515 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5516 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5517 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5518 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5519 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5520 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5521 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5522 { 0x684c, 0, 0xffffffff, 0x00000000 },
5523 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5524 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5525 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5526 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5527 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5528 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5529
5530 { 0xffff, 0, 0x00000000, 0x00000000 },
5531 };
5532
5533 ret = 0;
5534 is_5709 = 0;
5535 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5536 is_5709 = 1;
5537
5538 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5539 u32 offset, rw_mask, ro_mask, save_val, val;
5540 u16 flags = reg_tbl[i].flags;
5541
5542 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5543 continue;
5544
5545 offset = (u32) reg_tbl[i].offset;
5546 rw_mask = reg_tbl[i].rw_mask;
5547 ro_mask = reg_tbl[i].ro_mask;
5548
5549 save_val = readl(bp->regview + offset);
5550
5551 writel(0, bp->regview + offset);
5552
5553 val = readl(bp->regview + offset);
5554 if ((val & rw_mask) != 0) {
5555 goto reg_test_err;
5556 }
5557
5558 if ((val & ro_mask) != (save_val & ro_mask)) {
5559 goto reg_test_err;
5560 }
5561
5562 writel(0xffffffff, bp->regview + offset);
5563
5564 val = readl(bp->regview + offset);
5565 if ((val & rw_mask) != rw_mask) {
5566 goto reg_test_err;
5567 }
5568
5569 if ((val & ro_mask) != (save_val & ro_mask)) {
5570 goto reg_test_err;
5571 }
5572
5573 writel(save_val, bp->regview + offset);
5574 continue;
5575
5576 reg_test_err:
5577 writel(save_val, bp->regview + offset);
5578 ret = -ENODEV;
5579 break;
5580 }
5581 return ret;
5582 }
5583
5584 static int
5585 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5586 {
5587 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5588 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5589 int i;
5590
5591 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5592 u32 offset;
5593
5594 for (offset = 0; offset < size; offset += 4) {
5595
5596 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5597
5598 if (bnx2_reg_rd_ind(bp, start + offset) !=
5599 test_pattern[i]) {
5600 return -ENODEV;
5601 }
5602 }
5603 }
5604 return 0;
5605 }
5606
5607 static int
5608 bnx2_test_memory(struct bnx2 *bp)
5609 {
5610 int ret = 0;
5611 int i;
5612 static struct mem_entry {
5613 u32 offset;
5614 u32 len;
5615 } mem_tbl_5706[] = {
5616 { 0x60000, 0x4000 },
5617 { 0xa0000, 0x3000 },
5618 { 0xe0000, 0x4000 },
5619 { 0x120000, 0x4000 },
5620 { 0x1a0000, 0x4000 },
5621 { 0x160000, 0x4000 },
5622 { 0xffffffff, 0 },
5623 },
5624 mem_tbl_5709[] = {
5625 { 0x60000, 0x4000 },
5626 { 0xa0000, 0x3000 },
5627 { 0xe0000, 0x4000 },
5628 { 0x120000, 0x4000 },
5629 { 0x1a0000, 0x4000 },
5630 { 0xffffffff, 0 },
5631 };
5632 struct mem_entry *mem_tbl;
5633
5634 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5635 mem_tbl = mem_tbl_5709;
5636 else
5637 mem_tbl = mem_tbl_5706;
5638
5639 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5640 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5641 mem_tbl[i].len)) != 0) {
5642 return ret;
5643 }
5644 }
5645
5646 return ret;
5647 }
5648
5649 #define BNX2_MAC_LOOPBACK 0
5650 #define BNX2_PHY_LOOPBACK 1
5651
5652 static int
5653 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5654 {
5655 unsigned int pkt_size, num_pkts, i;
5656 struct sk_buff *skb, *rx_skb;
5657 unsigned char *packet;
5658 u16 rx_start_idx, rx_idx;
5659 dma_addr_t map;
5660 struct tx_bd *txbd;
5661 struct sw_bd *rx_buf;
5662 struct l2_fhdr *rx_hdr;
5663 int ret = -ENODEV;
5664 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5665 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5666 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5667
5668 tx_napi = bnapi;
5669
5670 txr = &tx_napi->tx_ring;
5671 rxr = &bnapi->rx_ring;
5672 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5673 bp->loopback = MAC_LOOPBACK;
5674 bnx2_set_mac_loopback(bp);
5675 }
5676 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5677 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5678 return 0;
5679
5680 bp->loopback = PHY_LOOPBACK;
5681 bnx2_set_phy_loopback(bp);
5682 }
5683 else
5684 return -EINVAL;
5685
5686 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5687 skb = netdev_alloc_skb(bp->dev, pkt_size);
5688 if (!skb)
5689 return -ENOMEM;
5690 packet = skb_put(skb, pkt_size);
5691 memcpy(packet, bp->dev->dev_addr, 6);
5692 memset(packet + 6, 0x0, 8);
5693 for (i = 14; i < pkt_size; i++)
5694 packet[i] = (unsigned char) (i & 0xff);
5695
5696 map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
5697 PCI_DMA_TODEVICE);
5698 if (dma_mapping_error(&bp->pdev->dev, map)) {
5699 dev_kfree_skb(skb);
5700 return -EIO;
5701 }
5702
5703 REG_WR(bp, BNX2_HC_COMMAND,
5704 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5705
5706 REG_RD(bp, BNX2_HC_COMMAND);
5707
5708 udelay(5);
5709 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5710
5711 num_pkts = 0;
5712
5713 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5714
5715 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5716 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5717 txbd->tx_bd_mss_nbytes = pkt_size;
5718 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5719
5720 num_pkts++;
5721 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5722 txr->tx_prod_bseq += pkt_size;
5723
5724 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5725 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5726
5727 udelay(100);
5728
5729 REG_WR(bp, BNX2_HC_COMMAND,
5730 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5731
5732 REG_RD(bp, BNX2_HC_COMMAND);
5733
5734 udelay(5);
5735
5736 dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
5737 dev_kfree_skb(skb);
5738
5739 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5740 goto loopback_test_done;
5741
5742 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5743 if (rx_idx != rx_start_idx + num_pkts) {
5744 goto loopback_test_done;
5745 }
5746
5747 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5748 rx_skb = rx_buf->skb;
5749
5750 rx_hdr = rx_buf->desc;
5751 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5752
5753 dma_sync_single_for_cpu(&bp->pdev->dev,
5754 dma_unmap_addr(rx_buf, mapping),
5755 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5756
5757 if (rx_hdr->l2_fhdr_status &
5758 (L2_FHDR_ERRORS_BAD_CRC |
5759 L2_FHDR_ERRORS_PHY_DECODE |
5760 L2_FHDR_ERRORS_ALIGNMENT |
5761 L2_FHDR_ERRORS_TOO_SHORT |
5762 L2_FHDR_ERRORS_GIANT_FRAME)) {
5763
5764 goto loopback_test_done;
5765 }
5766
5767 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5768 goto loopback_test_done;
5769 }
5770
5771 for (i = 14; i < pkt_size; i++) {
5772 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5773 goto loopback_test_done;
5774 }
5775 }
5776
5777 ret = 0;
5778
5779 loopback_test_done:
5780 bp->loopback = 0;
5781 return ret;
5782 }
5783
5784 #define BNX2_MAC_LOOPBACK_FAILED 1
5785 #define BNX2_PHY_LOOPBACK_FAILED 2
5786 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5787 BNX2_PHY_LOOPBACK_FAILED)
5788
5789 static int
5790 bnx2_test_loopback(struct bnx2 *bp)
5791 {
5792 int rc = 0;
5793
5794 if (!netif_running(bp->dev))
5795 return BNX2_LOOPBACK_FAILED;
5796
5797 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5798 spin_lock_bh(&bp->phy_lock);
5799 bnx2_init_phy(bp, 1);
5800 spin_unlock_bh(&bp->phy_lock);
5801 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5802 rc |= BNX2_MAC_LOOPBACK_FAILED;
5803 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5804 rc |= BNX2_PHY_LOOPBACK_FAILED;
5805 return rc;
5806 }
5807
5808 #define NVRAM_SIZE 0x200
5809 #define CRC32_RESIDUAL 0xdebb20e3
5810
5811 static int
5812 bnx2_test_nvram(struct bnx2 *bp)
5813 {
5814 __be32 buf[NVRAM_SIZE / 4];
5815 u8 *data = (u8 *) buf;
5816 int rc = 0;
5817 u32 magic, csum;
5818
5819 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5820 goto test_nvram_done;
5821
5822 magic = be32_to_cpu(buf[0]);
5823 if (magic != 0x669955aa) {
5824 rc = -ENODEV;
5825 goto test_nvram_done;
5826 }
5827
5828 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5829 goto test_nvram_done;
5830
5831 csum = ether_crc_le(0x100, data);
5832 if (csum != CRC32_RESIDUAL) {
5833 rc = -ENODEV;
5834 goto test_nvram_done;
5835 }
5836
5837 csum = ether_crc_le(0x100, data + 0x100);
5838 if (csum != CRC32_RESIDUAL) {
5839 rc = -ENODEV;
5840 }
5841
5842 test_nvram_done:
5843 return rc;
5844 }
5845
5846 static int
5847 bnx2_test_link(struct bnx2 *bp)
5848 {
5849 u32 bmsr;
5850
5851 if (!netif_running(bp->dev))
5852 return -ENODEV;
5853
5854 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5855 if (bp->link_up)
5856 return 0;
5857 return -ENODEV;
5858 }
5859 spin_lock_bh(&bp->phy_lock);
5860 bnx2_enable_bmsr1(bp);
5861 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5862 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5863 bnx2_disable_bmsr1(bp);
5864 spin_unlock_bh(&bp->phy_lock);
5865
5866 if (bmsr & BMSR_LSTATUS) {
5867 return 0;
5868 }
5869 return -ENODEV;
5870 }
5871
5872 static int
5873 bnx2_test_intr(struct bnx2 *bp)
5874 {
5875 int i;
5876 u16 status_idx;
5877
5878 if (!netif_running(bp->dev))
5879 return -ENODEV;
5880
5881 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5882
5883 /* This register is not touched during run-time. */
5884 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5885 REG_RD(bp, BNX2_HC_COMMAND);
5886
5887 for (i = 0; i < 10; i++) {
5888 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5889 status_idx) {
5890
5891 break;
5892 }
5893
5894 msleep_interruptible(10);
5895 }
5896 if (i < 10)
5897 return 0;
5898
5899 return -ENODEV;
5900 }
5901
5902 /* Determining link for parallel detection. */
5903 static int
5904 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5905 {
5906 u32 mode_ctl, an_dbg, exp;
5907
5908 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5909 return 0;
5910
5911 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5912 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5913
5914 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5915 return 0;
5916
5917 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5918 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5919 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5920
5921 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5922 return 0;
5923
5924 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5925 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5926 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5927
5928 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5929 return 0;
5930
5931 return 1;
5932 }
5933
5934 static void
5935 bnx2_5706_serdes_timer(struct bnx2 *bp)
5936 {
5937 int check_link = 1;
5938
5939 spin_lock(&bp->phy_lock);
5940 if (bp->serdes_an_pending) {
5941 bp->serdes_an_pending--;
5942 check_link = 0;
5943 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5944 u32 bmcr;
5945
5946 bp->current_interval = BNX2_TIMER_INTERVAL;
5947
5948 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5949
5950 if (bmcr & BMCR_ANENABLE) {
5951 if (bnx2_5706_serdes_has_link(bp)) {
5952 bmcr &= ~BMCR_ANENABLE;
5953 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5954 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5955 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5956 }
5957 }
5958 }
5959 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5960 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5961 u32 phy2;
5962
5963 bnx2_write_phy(bp, 0x17, 0x0f01);
5964 bnx2_read_phy(bp, 0x15, &phy2);
5965 if (phy2 & 0x20) {
5966 u32 bmcr;
5967
5968 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5969 bmcr |= BMCR_ANENABLE;
5970 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5971
5972 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5973 }
5974 } else
5975 bp->current_interval = BNX2_TIMER_INTERVAL;
5976
5977 if (check_link) {
5978 u32 val;
5979
5980 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5981 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5982 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5983
5984 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5985 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5986 bnx2_5706s_force_link_dn(bp, 1);
5987 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5988 } else
5989 bnx2_set_link(bp);
5990 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
5991 bnx2_set_link(bp);
5992 }
5993 spin_unlock(&bp->phy_lock);
5994 }
5995
5996 static void
5997 bnx2_5708_serdes_timer(struct bnx2 *bp)
5998 {
5999 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
6000 return;
6001
6002 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
6003 bp->serdes_an_pending = 0;
6004 return;
6005 }
6006
6007 spin_lock(&bp->phy_lock);
6008 if (bp->serdes_an_pending)
6009 bp->serdes_an_pending--;
6010 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6011 u32 bmcr;
6012
6013 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6014 if (bmcr & BMCR_ANENABLE) {
6015 bnx2_enable_forced_2g5(bp);
6016 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6017 } else {
6018 bnx2_disable_forced_2g5(bp);
6019 bp->serdes_an_pending = 2;
6020 bp->current_interval = BNX2_TIMER_INTERVAL;
6021 }
6022
6023 } else
6024 bp->current_interval = BNX2_TIMER_INTERVAL;
6025
6026 spin_unlock(&bp->phy_lock);
6027 }
6028
6029 static void
6030 bnx2_timer(unsigned long data)
6031 {
6032 struct bnx2 *bp = (struct bnx2 *) data;
6033
6034 if (!netif_running(bp->dev))
6035 return;
6036
6037 if (atomic_read(&bp->intr_sem) != 0)
6038 goto bnx2_restart_timer;
6039
6040 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6041 BNX2_FLAG_USING_MSI)
6042 bnx2_chk_missed_msi(bp);
6043
6044 bnx2_send_heart_beat(bp);
6045
6046 bp->stats_blk->stat_FwRxDrop =
6047 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6048
6049 /* workaround occasional corrupted counters */
6050 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6051 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6052 BNX2_HC_COMMAND_STATS_NOW);
6053
6054 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6055 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6056 bnx2_5706_serdes_timer(bp);
6057 else
6058 bnx2_5708_serdes_timer(bp);
6059 }
6060
6061 bnx2_restart_timer:
6062 mod_timer(&bp->timer, jiffies + bp->current_interval);
6063 }
6064
6065 static int
6066 bnx2_request_irq(struct bnx2 *bp)
6067 {
6068 unsigned long flags;
6069 struct bnx2_irq *irq;
6070 int rc = 0, i;
6071
6072 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6073 flags = 0;
6074 else
6075 flags = IRQF_SHARED;
6076
6077 for (i = 0; i < bp->irq_nvecs; i++) {
6078 irq = &bp->irq_tbl[i];
6079 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6080 &bp->bnx2_napi[i]);
6081 if (rc)
6082 break;
6083 irq->requested = 1;
6084 }
6085 return rc;
6086 }
6087
6088 static void
6089 bnx2_free_irq(struct bnx2 *bp)
6090 {
6091 struct bnx2_irq *irq;
6092 int i;
6093
6094 for (i = 0; i < bp->irq_nvecs; i++) {
6095 irq = &bp->irq_tbl[i];
6096 if (irq->requested)
6097 free_irq(irq->vector, &bp->bnx2_napi[i]);
6098 irq->requested = 0;
6099 }
6100 if (bp->flags & BNX2_FLAG_USING_MSI)
6101 pci_disable_msi(bp->pdev);
6102 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6103 pci_disable_msix(bp->pdev);
6104
6105 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6106 }
6107
6108 static void
6109 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6110 {
6111 int i, total_vecs, rc;
6112 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6113 struct net_device *dev = bp->dev;
6114 const int len = sizeof(bp->irq_tbl[0].name);
6115
6116 bnx2_setup_msix_tbl(bp);
6117 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6118 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6119 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6120
6121 /* Need to flush the previous three writes to ensure MSI-X
6122 * is setup properly */
6123 REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
6124
6125 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6126 msix_ent[i].entry = i;
6127 msix_ent[i].vector = 0;
6128 }
6129
6130 total_vecs = msix_vecs;
6131 #ifdef BCM_CNIC
6132 total_vecs++;
6133 #endif
6134 rc = -ENOSPC;
6135 while (total_vecs >= BNX2_MIN_MSIX_VEC) {
6136 rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
6137 if (rc <= 0)
6138 break;
6139 if (rc > 0)
6140 total_vecs = rc;
6141 }
6142
6143 if (rc != 0)
6144 return;
6145
6146 msix_vecs = total_vecs;
6147 #ifdef BCM_CNIC
6148 msix_vecs--;
6149 #endif
6150 bp->irq_nvecs = msix_vecs;
6151 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6152 for (i = 0; i < total_vecs; i++) {
6153 bp->irq_tbl[i].vector = msix_ent[i].vector;
6154 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6155 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6156 }
6157 }
6158
6159 static int
6160 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6161 {
6162 int cpus = num_online_cpus();
6163 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6164
6165 bp->irq_tbl[0].handler = bnx2_interrupt;
6166 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6167 bp->irq_nvecs = 1;
6168 bp->irq_tbl[0].vector = bp->pdev->irq;
6169
6170 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
6171 bnx2_enable_msix(bp, msix_vecs);
6172
6173 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6174 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6175 if (pci_enable_msi(bp->pdev) == 0) {
6176 bp->flags |= BNX2_FLAG_USING_MSI;
6177 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6178 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6179 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6180 } else
6181 bp->irq_tbl[0].handler = bnx2_msi;
6182
6183 bp->irq_tbl[0].vector = bp->pdev->irq;
6184 }
6185 }
6186
6187 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6188 netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
6189
6190 bp->num_rx_rings = bp->irq_nvecs;
6191 return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
6192 }
6193
6194 /* Called with rtnl_lock */
6195 static int
6196 bnx2_open(struct net_device *dev)
6197 {
6198 struct bnx2 *bp = netdev_priv(dev);
6199 int rc;
6200
6201 netif_carrier_off(dev);
6202
6203 bnx2_set_power_state(bp, PCI_D0);
6204 bnx2_disable_int(bp);
6205
6206 rc = bnx2_setup_int_mode(bp, disable_msi);
6207 if (rc)
6208 goto open_err;
6209 bnx2_init_napi(bp);
6210 bnx2_napi_enable(bp);
6211 rc = bnx2_alloc_mem(bp);
6212 if (rc)
6213 goto open_err;
6214
6215 rc = bnx2_request_irq(bp);
6216 if (rc)
6217 goto open_err;
6218
6219 rc = bnx2_init_nic(bp, 1);
6220 if (rc)
6221 goto open_err;
6222
6223 mod_timer(&bp->timer, jiffies + bp->current_interval);
6224
6225 atomic_set(&bp->intr_sem, 0);
6226
6227 memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
6228
6229 bnx2_enable_int(bp);
6230
6231 if (bp->flags & BNX2_FLAG_USING_MSI) {
6232 /* Test MSI to make sure it is working
6233 * If MSI test fails, go back to INTx mode
6234 */
6235 if (bnx2_test_intr(bp) != 0) {
6236 netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6237
6238 bnx2_disable_int(bp);
6239 bnx2_free_irq(bp);
6240
6241 bnx2_setup_int_mode(bp, 1);
6242
6243 rc = bnx2_init_nic(bp, 0);
6244
6245 if (!rc)
6246 rc = bnx2_request_irq(bp);
6247
6248 if (rc) {
6249 del_timer_sync(&bp->timer);
6250 goto open_err;
6251 }
6252 bnx2_enable_int(bp);
6253 }
6254 }
6255 if (bp->flags & BNX2_FLAG_USING_MSI)
6256 netdev_info(dev, "using MSI\n");
6257 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6258 netdev_info(dev, "using MSIX\n");
6259
6260 netif_tx_start_all_queues(dev);
6261
6262 return 0;
6263
6264 open_err:
6265 bnx2_napi_disable(bp);
6266 bnx2_free_skbs(bp);
6267 bnx2_free_irq(bp);
6268 bnx2_free_mem(bp);
6269 bnx2_del_napi(bp);
6270 return rc;
6271 }
6272
6273 static void
6274 bnx2_reset_task(struct work_struct *work)
6275 {
6276 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6277
6278 rtnl_lock();
6279 if (!netif_running(bp->dev)) {
6280 rtnl_unlock();
6281 return;
6282 }
6283
6284 bnx2_netif_stop(bp, true);
6285
6286 bnx2_init_nic(bp, 1);
6287
6288 atomic_set(&bp->intr_sem, 1);
6289 bnx2_netif_start(bp, true);
6290 rtnl_unlock();
6291 }
6292
6293 static void
6294 bnx2_dump_state(struct bnx2 *bp)
6295 {
6296 struct net_device *dev = bp->dev;
6297 u32 mcp_p0, mcp_p1, val1, val2;
6298
6299 pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
6300 netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6301 atomic_read(&bp->intr_sem), val1);
6302 pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
6303 pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
6304 netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
6305 netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6306 REG_RD(bp, BNX2_EMAC_TX_STATUS),
6307 REG_RD(bp, BNX2_EMAC_RX_STATUS));
6308 netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6309 REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
6310 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6311 mcp_p0 = BNX2_MCP_STATE_P0;
6312 mcp_p1 = BNX2_MCP_STATE_P1;
6313 } else {
6314 mcp_p0 = BNX2_MCP_STATE_P0_5708;
6315 mcp_p1 = BNX2_MCP_STATE_P1_5708;
6316 }
6317 netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
6318 bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
6319 netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6320 REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
6321 if (bp->flags & BNX2_FLAG_USING_MSIX)
6322 netdev_err(dev, "DEBUG: PBA[%08x]\n",
6323 REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
6324 }
6325
6326 static void
6327 bnx2_tx_timeout(struct net_device *dev)
6328 {
6329 struct bnx2 *bp = netdev_priv(dev);
6330
6331 bnx2_dump_state(bp);
6332
6333 /* This allows the netif to be shutdown gracefully before resetting */
6334 schedule_work(&bp->reset_task);
6335 }
6336
6337 /* Called with netif_tx_lock.
6338 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6339 * netif_wake_queue().
6340 */
6341 static netdev_tx_t
6342 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6343 {
6344 struct bnx2 *bp = netdev_priv(dev);
6345 dma_addr_t mapping;
6346 struct tx_bd *txbd;
6347 struct sw_tx_bd *tx_buf;
6348 u32 len, vlan_tag_flags, last_frag, mss;
6349 u16 prod, ring_prod;
6350 int i;
6351 struct bnx2_napi *bnapi;
6352 struct bnx2_tx_ring_info *txr;
6353 struct netdev_queue *txq;
6354
6355 /* Determine which tx ring we will be placed on */
6356 i = skb_get_queue_mapping(skb);
6357 bnapi = &bp->bnx2_napi[i];
6358 txr = &bnapi->tx_ring;
6359 txq = netdev_get_tx_queue(dev, i);
6360
6361 if (unlikely(bnx2_tx_avail(bp, txr) <
6362 (skb_shinfo(skb)->nr_frags + 1))) {
6363 netif_tx_stop_queue(txq);
6364 netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
6365
6366 return NETDEV_TX_BUSY;
6367 }
6368 len = skb_headlen(skb);
6369 prod = txr->tx_prod;
6370 ring_prod = TX_RING_IDX(prod);
6371
6372 vlan_tag_flags = 0;
6373 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6374 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6375 }
6376
6377 if (vlan_tx_tag_present(skb)) {
6378 vlan_tag_flags |=
6379 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6380 }
6381
6382 if ((mss = skb_shinfo(skb)->gso_size)) {
6383 u32 tcp_opt_len;
6384 struct iphdr *iph;
6385
6386 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6387
6388 tcp_opt_len = tcp_optlen(skb);
6389
6390 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6391 u32 tcp_off = skb_transport_offset(skb) -
6392 sizeof(struct ipv6hdr) - ETH_HLEN;
6393
6394 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6395 TX_BD_FLAGS_SW_FLAGS;
6396 if (likely(tcp_off == 0))
6397 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6398 else {
6399 tcp_off >>= 3;
6400 vlan_tag_flags |= ((tcp_off & 0x3) <<
6401 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6402 ((tcp_off & 0x10) <<
6403 TX_BD_FLAGS_TCP6_OFF4_SHL);
6404 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6405 }
6406 } else {
6407 iph = ip_hdr(skb);
6408 if (tcp_opt_len || (iph->ihl > 5)) {
6409 vlan_tag_flags |= ((iph->ihl - 5) +
6410 (tcp_opt_len >> 2)) << 8;
6411 }
6412 }
6413 } else
6414 mss = 0;
6415
6416 mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
6417 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
6418 dev_kfree_skb(skb);
6419 return NETDEV_TX_OK;
6420 }
6421
6422 tx_buf = &txr->tx_buf_ring[ring_prod];
6423 tx_buf->skb = skb;
6424 dma_unmap_addr_set(tx_buf, mapping, mapping);
6425
6426 txbd = &txr->tx_desc_ring[ring_prod];
6427
6428 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6429 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6430 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6431 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6432
6433 last_frag = skb_shinfo(skb)->nr_frags;
6434 tx_buf->nr_frags = last_frag;
6435 tx_buf->is_gso = skb_is_gso(skb);
6436
6437 for (i = 0; i < last_frag; i++) {
6438 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6439
6440 prod = NEXT_TX_BD(prod);
6441 ring_prod = TX_RING_IDX(prod);
6442 txbd = &txr->tx_desc_ring[ring_prod];
6443
6444 len = frag->size;
6445 mapping = dma_map_page(&bp->pdev->dev, frag->page, frag->page_offset,
6446 len, PCI_DMA_TODEVICE);
6447 if (dma_mapping_error(&bp->pdev->dev, mapping))
6448 goto dma_error;
6449 dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
6450 mapping);
6451
6452 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6453 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6454 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6455 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6456
6457 }
6458 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6459
6460 prod = NEXT_TX_BD(prod);
6461 txr->tx_prod_bseq += skb->len;
6462
6463 REG_WR16(bp, txr->tx_bidx_addr, prod);
6464 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6465
6466 mmiowb();
6467
6468 txr->tx_prod = prod;
6469
6470 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6471 netif_tx_stop_queue(txq);
6472
6473 /* netif_tx_stop_queue() must be done before checking
6474 * tx index in bnx2_tx_avail() below, because in
6475 * bnx2_tx_int(), we update tx index before checking for
6476 * netif_tx_queue_stopped().
6477 */
6478 smp_mb();
6479 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6480 netif_tx_wake_queue(txq);
6481 }
6482
6483 return NETDEV_TX_OK;
6484 dma_error:
6485 /* save value of frag that failed */
6486 last_frag = i;
6487
6488 /* start back at beginning and unmap skb */
6489 prod = txr->tx_prod;
6490 ring_prod = TX_RING_IDX(prod);
6491 tx_buf = &txr->tx_buf_ring[ring_prod];
6492 tx_buf->skb = NULL;
6493 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
6494 skb_headlen(skb), PCI_DMA_TODEVICE);
6495
6496 /* unmap remaining mapped pages */
6497 for (i = 0; i < last_frag; i++) {
6498 prod = NEXT_TX_BD(prod);
6499 ring_prod = TX_RING_IDX(prod);
6500 tx_buf = &txr->tx_buf_ring[ring_prod];
6501 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
6502 skb_shinfo(skb)->frags[i].size,
6503 PCI_DMA_TODEVICE);
6504 }
6505
6506 dev_kfree_skb(skb);
6507 return NETDEV_TX_OK;
6508 }
6509
6510 /* Called with rtnl_lock */
6511 static int
6512 bnx2_close(struct net_device *dev)
6513 {
6514 struct bnx2 *bp = netdev_priv(dev);
6515
6516 cancel_work_sync(&bp->reset_task);
6517
6518 bnx2_disable_int_sync(bp);
6519 bnx2_napi_disable(bp);
6520 del_timer_sync(&bp->timer);
6521 bnx2_shutdown_chip(bp);
6522 bnx2_free_irq(bp);
6523 bnx2_free_skbs(bp);
6524 bnx2_free_mem(bp);
6525 bnx2_del_napi(bp);
6526 bp->link_up = 0;
6527 netif_carrier_off(bp->dev);
6528 bnx2_set_power_state(bp, PCI_D3hot);
6529 return 0;
6530 }
6531
6532 static void
6533 bnx2_save_stats(struct bnx2 *bp)
6534 {
6535 u32 *hw_stats = (u32 *) bp->stats_blk;
6536 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
6537 int i;
6538
6539 /* The 1st 10 counters are 64-bit counters */
6540 for (i = 0; i < 20; i += 2) {
6541 u32 hi;
6542 u64 lo;
6543
6544 hi = temp_stats[i] + hw_stats[i];
6545 lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
6546 if (lo > 0xffffffff)
6547 hi++;
6548 temp_stats[i] = hi;
6549 temp_stats[i + 1] = lo & 0xffffffff;
6550 }
6551
6552 for ( ; i < sizeof(struct statistics_block) / 4; i++)
6553 temp_stats[i] += hw_stats[i];
6554 }
6555
6556 #define GET_64BIT_NET_STATS64(ctr) \
6557 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6558
6559 #define GET_64BIT_NET_STATS(ctr) \
6560 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6561 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6562
6563 #define GET_32BIT_NET_STATS(ctr) \
6564 (unsigned long) (bp->stats_blk->ctr + \
6565 bp->temp_stats_blk->ctr)
6566
6567 static struct rtnl_link_stats64 *
6568 bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
6569 {
6570 struct bnx2 *bp = netdev_priv(dev);
6571
6572 if (bp->stats_blk == NULL)
6573 return net_stats;
6574
6575 net_stats->rx_packets =
6576 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
6577 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
6578 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
6579
6580 net_stats->tx_packets =
6581 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
6582 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
6583 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
6584
6585 net_stats->rx_bytes =
6586 GET_64BIT_NET_STATS(stat_IfHCInOctets);
6587
6588 net_stats->tx_bytes =
6589 GET_64BIT_NET_STATS(stat_IfHCOutOctets);
6590
6591 net_stats->multicast =
6592 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
6593
6594 net_stats->collisions =
6595 GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
6596
6597 net_stats->rx_length_errors =
6598 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
6599 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
6600
6601 net_stats->rx_over_errors =
6602 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6603 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
6604
6605 net_stats->rx_frame_errors =
6606 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
6607
6608 net_stats->rx_crc_errors =
6609 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
6610
6611 net_stats->rx_errors = net_stats->rx_length_errors +
6612 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6613 net_stats->rx_crc_errors;
6614
6615 net_stats->tx_aborted_errors =
6616 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
6617 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
6618
6619 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6620 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6621 net_stats->tx_carrier_errors = 0;
6622 else {
6623 net_stats->tx_carrier_errors =
6624 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
6625 }
6626
6627 net_stats->tx_errors =
6628 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
6629 net_stats->tx_aborted_errors +
6630 net_stats->tx_carrier_errors;
6631
6632 net_stats->rx_missed_errors =
6633 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6634 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
6635 GET_32BIT_NET_STATS(stat_FwRxDrop);
6636
6637 return net_stats;
6638 }
6639
6640 /* All ethtool functions called with rtnl_lock */
6641
6642 static int
6643 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6644 {
6645 struct bnx2 *bp = netdev_priv(dev);
6646 int support_serdes = 0, support_copper = 0;
6647
6648 cmd->supported = SUPPORTED_Autoneg;
6649 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6650 support_serdes = 1;
6651 support_copper = 1;
6652 } else if (bp->phy_port == PORT_FIBRE)
6653 support_serdes = 1;
6654 else
6655 support_copper = 1;
6656
6657 if (support_serdes) {
6658 cmd->supported |= SUPPORTED_1000baseT_Full |
6659 SUPPORTED_FIBRE;
6660 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6661 cmd->supported |= SUPPORTED_2500baseX_Full;
6662
6663 }
6664 if (support_copper) {
6665 cmd->supported |= SUPPORTED_10baseT_Half |
6666 SUPPORTED_10baseT_Full |
6667 SUPPORTED_100baseT_Half |
6668 SUPPORTED_100baseT_Full |
6669 SUPPORTED_1000baseT_Full |
6670 SUPPORTED_TP;
6671
6672 }
6673
6674 spin_lock_bh(&bp->phy_lock);
6675 cmd->port = bp->phy_port;
6676 cmd->advertising = bp->advertising;
6677
6678 if (bp->autoneg & AUTONEG_SPEED) {
6679 cmd->autoneg = AUTONEG_ENABLE;
6680 }
6681 else {
6682 cmd->autoneg = AUTONEG_DISABLE;
6683 }
6684
6685 if (netif_carrier_ok(dev)) {
6686 cmd->speed = bp->line_speed;
6687 cmd->duplex = bp->duplex;
6688 }
6689 else {
6690 cmd->speed = -1;
6691 cmd->duplex = -1;
6692 }
6693 spin_unlock_bh(&bp->phy_lock);
6694
6695 cmd->transceiver = XCVR_INTERNAL;
6696 cmd->phy_address = bp->phy_addr;
6697
6698 return 0;
6699 }
6700
6701 static int
6702 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6703 {
6704 struct bnx2 *bp = netdev_priv(dev);
6705 u8 autoneg = bp->autoneg;
6706 u8 req_duplex = bp->req_duplex;
6707 u16 req_line_speed = bp->req_line_speed;
6708 u32 advertising = bp->advertising;
6709 int err = -EINVAL;
6710
6711 spin_lock_bh(&bp->phy_lock);
6712
6713 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6714 goto err_out_unlock;
6715
6716 if (cmd->port != bp->phy_port &&
6717 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6718 goto err_out_unlock;
6719
6720 /* If device is down, we can store the settings only if the user
6721 * is setting the currently active port.
6722 */
6723 if (!netif_running(dev) && cmd->port != bp->phy_port)
6724 goto err_out_unlock;
6725
6726 if (cmd->autoneg == AUTONEG_ENABLE) {
6727 autoneg |= AUTONEG_SPEED;
6728
6729 advertising = cmd->advertising;
6730 if (cmd->port == PORT_TP) {
6731 advertising &= ETHTOOL_ALL_COPPER_SPEED;
6732 if (!advertising)
6733 advertising = ETHTOOL_ALL_COPPER_SPEED;
6734 } else {
6735 advertising &= ETHTOOL_ALL_FIBRE_SPEED;
6736 if (!advertising)
6737 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6738 }
6739 advertising |= ADVERTISED_Autoneg;
6740 }
6741 else {
6742 if (cmd->port == PORT_FIBRE) {
6743 if ((cmd->speed != SPEED_1000 &&
6744 cmd->speed != SPEED_2500) ||
6745 (cmd->duplex != DUPLEX_FULL))
6746 goto err_out_unlock;
6747
6748 if (cmd->speed == SPEED_2500 &&
6749 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6750 goto err_out_unlock;
6751 }
6752 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6753 goto err_out_unlock;
6754
6755 autoneg &= ~AUTONEG_SPEED;
6756 req_line_speed = cmd->speed;
6757 req_duplex = cmd->duplex;
6758 advertising = 0;
6759 }
6760
6761 bp->autoneg = autoneg;
6762 bp->advertising = advertising;
6763 bp->req_line_speed = req_line_speed;
6764 bp->req_duplex = req_duplex;
6765
6766 err = 0;
6767 /* If device is down, the new settings will be picked up when it is
6768 * brought up.
6769 */
6770 if (netif_running(dev))
6771 err = bnx2_setup_phy(bp, cmd->port);
6772
6773 err_out_unlock:
6774 spin_unlock_bh(&bp->phy_lock);
6775
6776 return err;
6777 }
6778
6779 static void
6780 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6781 {
6782 struct bnx2 *bp = netdev_priv(dev);
6783
6784 strcpy(info->driver, DRV_MODULE_NAME);
6785 strcpy(info->version, DRV_MODULE_VERSION);
6786 strcpy(info->bus_info, pci_name(bp->pdev));
6787 strcpy(info->fw_version, bp->fw_version);
6788 }
6789
6790 #define BNX2_REGDUMP_LEN (32 * 1024)
6791
6792 static int
6793 bnx2_get_regs_len(struct net_device *dev)
6794 {
6795 return BNX2_REGDUMP_LEN;
6796 }
6797
6798 static void
6799 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6800 {
6801 u32 *p = _p, i, offset;
6802 u8 *orig_p = _p;
6803 struct bnx2 *bp = netdev_priv(dev);
6804 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6805 0x0800, 0x0880, 0x0c00, 0x0c10,
6806 0x0c30, 0x0d08, 0x1000, 0x101c,
6807 0x1040, 0x1048, 0x1080, 0x10a4,
6808 0x1400, 0x1490, 0x1498, 0x14f0,
6809 0x1500, 0x155c, 0x1580, 0x15dc,
6810 0x1600, 0x1658, 0x1680, 0x16d8,
6811 0x1800, 0x1820, 0x1840, 0x1854,
6812 0x1880, 0x1894, 0x1900, 0x1984,
6813 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6814 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6815 0x2000, 0x2030, 0x23c0, 0x2400,
6816 0x2800, 0x2820, 0x2830, 0x2850,
6817 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6818 0x3c00, 0x3c94, 0x4000, 0x4010,
6819 0x4080, 0x4090, 0x43c0, 0x4458,
6820 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6821 0x4fc0, 0x5010, 0x53c0, 0x5444,
6822 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6823 0x5fc0, 0x6000, 0x6400, 0x6428,
6824 0x6800, 0x6848, 0x684c, 0x6860,
6825 0x6888, 0x6910, 0x8000 };
6826
6827 regs->version = 0;
6828
6829 memset(p, 0, BNX2_REGDUMP_LEN);
6830
6831 if (!netif_running(bp->dev))
6832 return;
6833
6834 i = 0;
6835 offset = reg_boundaries[0];
6836 p += offset;
6837 while (offset < BNX2_REGDUMP_LEN) {
6838 *p++ = REG_RD(bp, offset);
6839 offset += 4;
6840 if (offset == reg_boundaries[i + 1]) {
6841 offset = reg_boundaries[i + 2];
6842 p = (u32 *) (orig_p + offset);
6843 i += 2;
6844 }
6845 }
6846 }
6847
6848 static void
6849 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6850 {
6851 struct bnx2 *bp = netdev_priv(dev);
6852
6853 if (bp->flags & BNX2_FLAG_NO_WOL) {
6854 wol->supported = 0;
6855 wol->wolopts = 0;
6856 }
6857 else {
6858 wol->supported = WAKE_MAGIC;
6859 if (bp->wol)
6860 wol->wolopts = WAKE_MAGIC;
6861 else
6862 wol->wolopts = 0;
6863 }
6864 memset(&wol->sopass, 0, sizeof(wol->sopass));
6865 }
6866
6867 static int
6868 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6869 {
6870 struct bnx2 *bp = netdev_priv(dev);
6871
6872 if (wol->wolopts & ~WAKE_MAGIC)
6873 return -EINVAL;
6874
6875 if (wol->wolopts & WAKE_MAGIC) {
6876 if (bp->flags & BNX2_FLAG_NO_WOL)
6877 return -EINVAL;
6878
6879 bp->wol = 1;
6880 }
6881 else {
6882 bp->wol = 0;
6883 }
6884 return 0;
6885 }
6886
6887 static int
6888 bnx2_nway_reset(struct net_device *dev)
6889 {
6890 struct bnx2 *bp = netdev_priv(dev);
6891 u32 bmcr;
6892
6893 if (!netif_running(dev))
6894 return -EAGAIN;
6895
6896 if (!(bp->autoneg & AUTONEG_SPEED)) {
6897 return -EINVAL;
6898 }
6899
6900 spin_lock_bh(&bp->phy_lock);
6901
6902 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6903 int rc;
6904
6905 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6906 spin_unlock_bh(&bp->phy_lock);
6907 return rc;
6908 }
6909
6910 /* Force a link down visible on the other side */
6911 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6912 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6913 spin_unlock_bh(&bp->phy_lock);
6914
6915 msleep(20);
6916
6917 spin_lock_bh(&bp->phy_lock);
6918
6919 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6920 bp->serdes_an_pending = 1;
6921 mod_timer(&bp->timer, jiffies + bp->current_interval);
6922 }
6923
6924 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6925 bmcr &= ~BMCR_LOOPBACK;
6926 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6927
6928 spin_unlock_bh(&bp->phy_lock);
6929
6930 return 0;
6931 }
6932
6933 static u32
6934 bnx2_get_link(struct net_device *dev)
6935 {
6936 struct bnx2 *bp = netdev_priv(dev);
6937
6938 return bp->link_up;
6939 }
6940
6941 static int
6942 bnx2_get_eeprom_len(struct net_device *dev)
6943 {
6944 struct bnx2 *bp = netdev_priv(dev);
6945
6946 if (bp->flash_info == NULL)
6947 return 0;
6948
6949 return (int) bp->flash_size;
6950 }
6951
6952 static int
6953 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6954 u8 *eebuf)
6955 {
6956 struct bnx2 *bp = netdev_priv(dev);
6957 int rc;
6958
6959 if (!netif_running(dev))
6960 return -EAGAIN;
6961
6962 /* parameters already validated in ethtool_get_eeprom */
6963
6964 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6965
6966 return rc;
6967 }
6968
6969 static int
6970 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6971 u8 *eebuf)
6972 {
6973 struct bnx2 *bp = netdev_priv(dev);
6974 int rc;
6975
6976 if (!netif_running(dev))
6977 return -EAGAIN;
6978
6979 /* parameters already validated in ethtool_set_eeprom */
6980
6981 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6982
6983 return rc;
6984 }
6985
6986 static int
6987 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6988 {
6989 struct bnx2 *bp = netdev_priv(dev);
6990
6991 memset(coal, 0, sizeof(struct ethtool_coalesce));
6992
6993 coal->rx_coalesce_usecs = bp->rx_ticks;
6994 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6995 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6996 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6997
6998 coal->tx_coalesce_usecs = bp->tx_ticks;
6999 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
7000 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
7001 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
7002
7003 coal->stats_block_coalesce_usecs = bp->stats_ticks;
7004
7005 return 0;
7006 }
7007
7008 static int
7009 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7010 {
7011 struct bnx2 *bp = netdev_priv(dev);
7012
7013 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
7014 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
7015
7016 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
7017 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
7018
7019 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
7020 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
7021
7022 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
7023 if (bp->rx_quick_cons_trip_int > 0xff)
7024 bp->rx_quick_cons_trip_int = 0xff;
7025
7026 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
7027 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
7028
7029 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
7030 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
7031
7032 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
7033 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
7034
7035 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
7036 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
7037 0xff;
7038
7039 bp->stats_ticks = coal->stats_block_coalesce_usecs;
7040 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
7041 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
7042 bp->stats_ticks = USEC_PER_SEC;
7043 }
7044 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
7045 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7046 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7047
7048 if (netif_running(bp->dev)) {
7049 bnx2_netif_stop(bp, true);
7050 bnx2_init_nic(bp, 0);
7051 bnx2_netif_start(bp, true);
7052 }
7053
7054 return 0;
7055 }
7056
7057 static void
7058 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7059 {
7060 struct bnx2 *bp = netdev_priv(dev);
7061
7062 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
7063 ering->rx_mini_max_pending = 0;
7064 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
7065
7066 ering->rx_pending = bp->rx_ring_size;
7067 ering->rx_mini_pending = 0;
7068 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
7069
7070 ering->tx_max_pending = MAX_TX_DESC_CNT;
7071 ering->tx_pending = bp->tx_ring_size;
7072 }
7073
7074 static int
7075 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
7076 {
7077 if (netif_running(bp->dev)) {
7078 /* Reset will erase chipset stats; save them */
7079 bnx2_save_stats(bp);
7080
7081 bnx2_netif_stop(bp, true);
7082 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
7083 bnx2_free_skbs(bp);
7084 bnx2_free_mem(bp);
7085 }
7086
7087 bnx2_set_rx_ring_size(bp, rx);
7088 bp->tx_ring_size = tx;
7089
7090 if (netif_running(bp->dev)) {
7091 int rc;
7092
7093 rc = bnx2_alloc_mem(bp);
7094 if (!rc)
7095 rc = bnx2_init_nic(bp, 0);
7096
7097 if (rc) {
7098 bnx2_napi_enable(bp);
7099 dev_close(bp->dev);
7100 return rc;
7101 }
7102 #ifdef BCM_CNIC
7103 mutex_lock(&bp->cnic_lock);
7104 /* Let cnic know about the new status block. */
7105 if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
7106 bnx2_setup_cnic_irq_info(bp);
7107 mutex_unlock(&bp->cnic_lock);
7108 #endif
7109 bnx2_netif_start(bp, true);
7110 }
7111 return 0;
7112 }
7113
7114 static int
7115 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7116 {
7117 struct bnx2 *bp = netdev_priv(dev);
7118 int rc;
7119
7120 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7121 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7122 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7123
7124 return -EINVAL;
7125 }
7126 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7127 return rc;
7128 }
7129
7130 static void
7131 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7132 {
7133 struct bnx2 *bp = netdev_priv(dev);
7134
7135 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7136 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7137 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7138 }
7139
7140 static int
7141 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7142 {
7143 struct bnx2 *bp = netdev_priv(dev);
7144
7145 bp->req_flow_ctrl = 0;
7146 if (epause->rx_pause)
7147 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7148 if (epause->tx_pause)
7149 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7150
7151 if (epause->autoneg) {
7152 bp->autoneg |= AUTONEG_FLOW_CTRL;
7153 }
7154 else {
7155 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7156 }
7157
7158 if (netif_running(dev)) {
7159 spin_lock_bh(&bp->phy_lock);
7160 bnx2_setup_phy(bp, bp->phy_port);
7161 spin_unlock_bh(&bp->phy_lock);
7162 }
7163
7164 return 0;
7165 }
7166
7167 static u32
7168 bnx2_get_rx_csum(struct net_device *dev)
7169 {
7170 struct bnx2 *bp = netdev_priv(dev);
7171
7172 return bp->rx_csum;
7173 }
7174
7175 static int
7176 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7177 {
7178 struct bnx2 *bp = netdev_priv(dev);
7179
7180 bp->rx_csum = data;
7181 return 0;
7182 }
7183
7184 static int
7185 bnx2_set_tso(struct net_device *dev, u32 data)
7186 {
7187 struct bnx2 *bp = netdev_priv(dev);
7188
7189 if (data) {
7190 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7191 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7192 dev->features |= NETIF_F_TSO6;
7193 } else
7194 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7195 NETIF_F_TSO_ECN);
7196 return 0;
7197 }
7198
7199 static struct {
7200 char string[ETH_GSTRING_LEN];
7201 } bnx2_stats_str_arr[] = {
7202 { "rx_bytes" },
7203 { "rx_error_bytes" },
7204 { "tx_bytes" },
7205 { "tx_error_bytes" },
7206 { "rx_ucast_packets" },
7207 { "rx_mcast_packets" },
7208 { "rx_bcast_packets" },
7209 { "tx_ucast_packets" },
7210 { "tx_mcast_packets" },
7211 { "tx_bcast_packets" },
7212 { "tx_mac_errors" },
7213 { "tx_carrier_errors" },
7214 { "rx_crc_errors" },
7215 { "rx_align_errors" },
7216 { "tx_single_collisions" },
7217 { "tx_multi_collisions" },
7218 { "tx_deferred" },
7219 { "tx_excess_collisions" },
7220 { "tx_late_collisions" },
7221 { "tx_total_collisions" },
7222 { "rx_fragments" },
7223 { "rx_jabbers" },
7224 { "rx_undersize_packets" },
7225 { "rx_oversize_packets" },
7226 { "rx_64_byte_packets" },
7227 { "rx_65_to_127_byte_packets" },
7228 { "rx_128_to_255_byte_packets" },
7229 { "rx_256_to_511_byte_packets" },
7230 { "rx_512_to_1023_byte_packets" },
7231 { "rx_1024_to_1522_byte_packets" },
7232 { "rx_1523_to_9022_byte_packets" },
7233 { "tx_64_byte_packets" },
7234 { "tx_65_to_127_byte_packets" },
7235 { "tx_128_to_255_byte_packets" },
7236 { "tx_256_to_511_byte_packets" },
7237 { "tx_512_to_1023_byte_packets" },
7238 { "tx_1024_to_1522_byte_packets" },
7239 { "tx_1523_to_9022_byte_packets" },
7240 { "rx_xon_frames" },
7241 { "rx_xoff_frames" },
7242 { "tx_xon_frames" },
7243 { "tx_xoff_frames" },
7244 { "rx_mac_ctrl_frames" },
7245 { "rx_filtered_packets" },
7246 { "rx_ftq_discards" },
7247 { "rx_discards" },
7248 { "rx_fw_discards" },
7249 };
7250
7251 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7252 sizeof(bnx2_stats_str_arr[0]))
7253
7254 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7255
7256 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7257 STATS_OFFSET32(stat_IfHCInOctets_hi),
7258 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7259 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7260 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7261 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7262 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7263 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7264 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7265 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7266 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7267 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7268 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7269 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7270 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7271 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7272 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7273 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7274 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7275 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7276 STATS_OFFSET32(stat_EtherStatsCollisions),
7277 STATS_OFFSET32(stat_EtherStatsFragments),
7278 STATS_OFFSET32(stat_EtherStatsJabbers),
7279 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7280 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7281 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7282 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7283 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7284 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7285 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7286 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7287 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7288 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7289 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7290 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7291 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7292 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7293 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7294 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7295 STATS_OFFSET32(stat_XonPauseFramesReceived),
7296 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7297 STATS_OFFSET32(stat_OutXonSent),
7298 STATS_OFFSET32(stat_OutXoffSent),
7299 STATS_OFFSET32(stat_MacControlFramesReceived),
7300 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7301 STATS_OFFSET32(stat_IfInFTQDiscards),
7302 STATS_OFFSET32(stat_IfInMBUFDiscards),
7303 STATS_OFFSET32(stat_FwRxDrop),
7304 };
7305
7306 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7307 * skipped because of errata.
7308 */
7309 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7310 8,0,8,8,8,8,8,8,8,8,
7311 4,0,4,4,4,4,4,4,4,4,
7312 4,4,4,4,4,4,4,4,4,4,
7313 4,4,4,4,4,4,4,4,4,4,
7314 4,4,4,4,4,4,4,
7315 };
7316
7317 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7318 8,0,8,8,8,8,8,8,8,8,
7319 4,4,4,4,4,4,4,4,4,4,
7320 4,4,4,4,4,4,4,4,4,4,
7321 4,4,4,4,4,4,4,4,4,4,
7322 4,4,4,4,4,4,4,
7323 };
7324
7325 #define BNX2_NUM_TESTS 6
7326
7327 static struct {
7328 char string[ETH_GSTRING_LEN];
7329 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7330 { "register_test (offline)" },
7331 { "memory_test (offline)" },
7332 { "loopback_test (offline)" },
7333 { "nvram_test (online)" },
7334 { "interrupt_test (online)" },
7335 { "link_test (online)" },
7336 };
7337
7338 static int
7339 bnx2_get_sset_count(struct net_device *dev, int sset)
7340 {
7341 switch (sset) {
7342 case ETH_SS_TEST:
7343 return BNX2_NUM_TESTS;
7344 case ETH_SS_STATS:
7345 return BNX2_NUM_STATS;
7346 default:
7347 return -EOPNOTSUPP;
7348 }
7349 }
7350
7351 static void
7352 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7353 {
7354 struct bnx2 *bp = netdev_priv(dev);
7355
7356 bnx2_set_power_state(bp, PCI_D0);
7357
7358 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7359 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7360 int i;
7361
7362 bnx2_netif_stop(bp, true);
7363 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7364 bnx2_free_skbs(bp);
7365
7366 if (bnx2_test_registers(bp) != 0) {
7367 buf[0] = 1;
7368 etest->flags |= ETH_TEST_FL_FAILED;
7369 }
7370 if (bnx2_test_memory(bp) != 0) {
7371 buf[1] = 1;
7372 etest->flags |= ETH_TEST_FL_FAILED;
7373 }
7374 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7375 etest->flags |= ETH_TEST_FL_FAILED;
7376
7377 if (!netif_running(bp->dev))
7378 bnx2_shutdown_chip(bp);
7379 else {
7380 bnx2_init_nic(bp, 1);
7381 bnx2_netif_start(bp, true);
7382 }
7383
7384 /* wait for link up */
7385 for (i = 0; i < 7; i++) {
7386 if (bp->link_up)
7387 break;
7388 msleep_interruptible(1000);
7389 }
7390 }
7391
7392 if (bnx2_test_nvram(bp) != 0) {
7393 buf[3] = 1;
7394 etest->flags |= ETH_TEST_FL_FAILED;
7395 }
7396 if (bnx2_test_intr(bp) != 0) {
7397 buf[4] = 1;
7398 etest->flags |= ETH_TEST_FL_FAILED;
7399 }
7400
7401 if (bnx2_test_link(bp) != 0) {
7402 buf[5] = 1;
7403 etest->flags |= ETH_TEST_FL_FAILED;
7404
7405 }
7406 if (!netif_running(bp->dev))
7407 bnx2_set_power_state(bp, PCI_D3hot);
7408 }
7409
7410 static void
7411 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7412 {
7413 switch (stringset) {
7414 case ETH_SS_STATS:
7415 memcpy(buf, bnx2_stats_str_arr,
7416 sizeof(bnx2_stats_str_arr));
7417 break;
7418 case ETH_SS_TEST:
7419 memcpy(buf, bnx2_tests_str_arr,
7420 sizeof(bnx2_tests_str_arr));
7421 break;
7422 }
7423 }
7424
7425 static void
7426 bnx2_get_ethtool_stats(struct net_device *dev,
7427 struct ethtool_stats *stats, u64 *buf)
7428 {
7429 struct bnx2 *bp = netdev_priv(dev);
7430 int i;
7431 u32 *hw_stats = (u32 *) bp->stats_blk;
7432 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
7433 u8 *stats_len_arr = NULL;
7434
7435 if (hw_stats == NULL) {
7436 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7437 return;
7438 }
7439
7440 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7441 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7442 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7443 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7444 stats_len_arr = bnx2_5706_stats_len_arr;
7445 else
7446 stats_len_arr = bnx2_5708_stats_len_arr;
7447
7448 for (i = 0; i < BNX2_NUM_STATS; i++) {
7449 unsigned long offset;
7450
7451 if (stats_len_arr[i] == 0) {
7452 /* skip this counter */
7453 buf[i] = 0;
7454 continue;
7455 }
7456
7457 offset = bnx2_stats_offset_arr[i];
7458 if (stats_len_arr[i] == 4) {
7459 /* 4-byte counter */
7460 buf[i] = (u64) *(hw_stats + offset) +
7461 *(temp_stats + offset);
7462 continue;
7463 }
7464 /* 8-byte counter */
7465 buf[i] = (((u64) *(hw_stats + offset)) << 32) +
7466 *(hw_stats + offset + 1) +
7467 (((u64) *(temp_stats + offset)) << 32) +
7468 *(temp_stats + offset + 1);
7469 }
7470 }
7471
7472 static int
7473 bnx2_phys_id(struct net_device *dev, u32 data)
7474 {
7475 struct bnx2 *bp = netdev_priv(dev);
7476 int i;
7477 u32 save;
7478
7479 bnx2_set_power_state(bp, PCI_D0);
7480
7481 if (data == 0)
7482 data = 2;
7483
7484 save = REG_RD(bp, BNX2_MISC_CFG);
7485 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7486
7487 for (i = 0; i < (data * 2); i++) {
7488 if ((i % 2) == 0) {
7489 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7490 }
7491 else {
7492 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7493 BNX2_EMAC_LED_1000MB_OVERRIDE |
7494 BNX2_EMAC_LED_100MB_OVERRIDE |
7495 BNX2_EMAC_LED_10MB_OVERRIDE |
7496 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7497 BNX2_EMAC_LED_TRAFFIC);
7498 }
7499 msleep_interruptible(500);
7500 if (signal_pending(current))
7501 break;
7502 }
7503 REG_WR(bp, BNX2_EMAC_LED, 0);
7504 REG_WR(bp, BNX2_MISC_CFG, save);
7505
7506 if (!netif_running(dev))
7507 bnx2_set_power_state(bp, PCI_D3hot);
7508
7509 return 0;
7510 }
7511
7512 static int
7513 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7514 {
7515 struct bnx2 *bp = netdev_priv(dev);
7516
7517 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7518 return ethtool_op_set_tx_ipv6_csum(dev, data);
7519 else
7520 return ethtool_op_set_tx_csum(dev, data);
7521 }
7522
7523 static int
7524 bnx2_set_flags(struct net_device *dev, u32 data)
7525 {
7526 struct bnx2 *bp = netdev_priv(dev);
7527 int rc;
7528
7529 if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN) &&
7530 !(data & ETH_FLAG_RXVLAN))
7531 return -EINVAL;
7532
7533 rc = ethtool_op_set_flags(dev, data, ETH_FLAG_RXHASH | ETH_FLAG_RXVLAN |
7534 ETH_FLAG_TXVLAN);
7535 if (rc)
7536 return rc;
7537
7538 if ((!!(data & ETH_FLAG_RXVLAN) !=
7539 !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
7540 netif_running(dev)) {
7541 bnx2_netif_stop(bp, false);
7542 bnx2_set_rx_mode(dev);
7543 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
7544 bnx2_netif_start(bp, false);
7545 }
7546
7547 return 0;
7548 }
7549
7550 static const struct ethtool_ops bnx2_ethtool_ops = {
7551 .get_settings = bnx2_get_settings,
7552 .set_settings = bnx2_set_settings,
7553 .get_drvinfo = bnx2_get_drvinfo,
7554 .get_regs_len = bnx2_get_regs_len,
7555 .get_regs = bnx2_get_regs,
7556 .get_wol = bnx2_get_wol,
7557 .set_wol = bnx2_set_wol,
7558 .nway_reset = bnx2_nway_reset,
7559 .get_link = bnx2_get_link,
7560 .get_eeprom_len = bnx2_get_eeprom_len,
7561 .get_eeprom = bnx2_get_eeprom,
7562 .set_eeprom = bnx2_set_eeprom,
7563 .get_coalesce = bnx2_get_coalesce,
7564 .set_coalesce = bnx2_set_coalesce,
7565 .get_ringparam = bnx2_get_ringparam,
7566 .set_ringparam = bnx2_set_ringparam,
7567 .get_pauseparam = bnx2_get_pauseparam,
7568 .set_pauseparam = bnx2_set_pauseparam,
7569 .get_rx_csum = bnx2_get_rx_csum,
7570 .set_rx_csum = bnx2_set_rx_csum,
7571 .set_tx_csum = bnx2_set_tx_csum,
7572 .set_sg = ethtool_op_set_sg,
7573 .set_tso = bnx2_set_tso,
7574 .self_test = bnx2_self_test,
7575 .get_strings = bnx2_get_strings,
7576 .phys_id = bnx2_phys_id,
7577 .get_ethtool_stats = bnx2_get_ethtool_stats,
7578 .get_sset_count = bnx2_get_sset_count,
7579 .set_flags = bnx2_set_flags,
7580 .get_flags = ethtool_op_get_flags,
7581 };
7582
7583 /* Called with rtnl_lock */
7584 static int
7585 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7586 {
7587 struct mii_ioctl_data *data = if_mii(ifr);
7588 struct bnx2 *bp = netdev_priv(dev);
7589 int err;
7590
7591 switch(cmd) {
7592 case SIOCGMIIPHY:
7593 data->phy_id = bp->phy_addr;
7594
7595 /* fallthru */
7596 case SIOCGMIIREG: {
7597 u32 mii_regval;
7598
7599 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7600 return -EOPNOTSUPP;
7601
7602 if (!netif_running(dev))
7603 return -EAGAIN;
7604
7605 spin_lock_bh(&bp->phy_lock);
7606 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7607 spin_unlock_bh(&bp->phy_lock);
7608
7609 data->val_out = mii_regval;
7610
7611 return err;
7612 }
7613
7614 case SIOCSMIIREG:
7615 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7616 return -EOPNOTSUPP;
7617
7618 if (!netif_running(dev))
7619 return -EAGAIN;
7620
7621 spin_lock_bh(&bp->phy_lock);
7622 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7623 spin_unlock_bh(&bp->phy_lock);
7624
7625 return err;
7626
7627 default:
7628 /* do nothing */
7629 break;
7630 }
7631 return -EOPNOTSUPP;
7632 }
7633
7634 /* Called with rtnl_lock */
7635 static int
7636 bnx2_change_mac_addr(struct net_device *dev, void *p)
7637 {
7638 struct sockaddr *addr = p;
7639 struct bnx2 *bp = netdev_priv(dev);
7640
7641 if (!is_valid_ether_addr(addr->sa_data))
7642 return -EINVAL;
7643
7644 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7645 if (netif_running(dev))
7646 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7647
7648 return 0;
7649 }
7650
7651 /* Called with rtnl_lock */
7652 static int
7653 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7654 {
7655 struct bnx2 *bp = netdev_priv(dev);
7656
7657 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7658 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7659 return -EINVAL;
7660
7661 dev->mtu = new_mtu;
7662 return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size);
7663 }
7664
7665 #ifdef CONFIG_NET_POLL_CONTROLLER
7666 static void
7667 poll_bnx2(struct net_device *dev)
7668 {
7669 struct bnx2 *bp = netdev_priv(dev);
7670 int i;
7671
7672 for (i = 0; i < bp->irq_nvecs; i++) {
7673 struct bnx2_irq *irq = &bp->irq_tbl[i];
7674
7675 disable_irq(irq->vector);
7676 irq->handler(irq->vector, &bp->bnx2_napi[i]);
7677 enable_irq(irq->vector);
7678 }
7679 }
7680 #endif
7681
7682 static void __devinit
7683 bnx2_get_5709_media(struct bnx2 *bp)
7684 {
7685 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7686 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7687 u32 strap;
7688
7689 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7690 return;
7691 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7692 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7693 return;
7694 }
7695
7696 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7697 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7698 else
7699 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7700
7701 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7702 switch (strap) {
7703 case 0x4:
7704 case 0x5:
7705 case 0x6:
7706 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7707 return;
7708 }
7709 } else {
7710 switch (strap) {
7711 case 0x1:
7712 case 0x2:
7713 case 0x4:
7714 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7715 return;
7716 }
7717 }
7718 }
7719
7720 static void __devinit
7721 bnx2_get_pci_speed(struct bnx2 *bp)
7722 {
7723 u32 reg;
7724
7725 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7726 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7727 u32 clkreg;
7728
7729 bp->flags |= BNX2_FLAG_PCIX;
7730
7731 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7732
7733 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7734 switch (clkreg) {
7735 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7736 bp->bus_speed_mhz = 133;
7737 break;
7738
7739 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7740 bp->bus_speed_mhz = 100;
7741 break;
7742
7743 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7744 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7745 bp->bus_speed_mhz = 66;
7746 break;
7747
7748 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7749 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7750 bp->bus_speed_mhz = 50;
7751 break;
7752
7753 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7754 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7755 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7756 bp->bus_speed_mhz = 33;
7757 break;
7758 }
7759 }
7760 else {
7761 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7762 bp->bus_speed_mhz = 66;
7763 else
7764 bp->bus_speed_mhz = 33;
7765 }
7766
7767 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7768 bp->flags |= BNX2_FLAG_PCI_32BIT;
7769
7770 }
7771
7772 static void __devinit
7773 bnx2_read_vpd_fw_ver(struct bnx2 *bp)
7774 {
7775 int rc, i, j;
7776 u8 *data;
7777 unsigned int block_end, rosize, len;
7778
7779 #define BNX2_VPD_NVRAM_OFFSET 0x300
7780 #define BNX2_VPD_LEN 128
7781 #define BNX2_MAX_VER_SLEN 30
7782
7783 data = kmalloc(256, GFP_KERNEL);
7784 if (!data)
7785 return;
7786
7787 rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
7788 BNX2_VPD_LEN);
7789 if (rc)
7790 goto vpd_done;
7791
7792 for (i = 0; i < BNX2_VPD_LEN; i += 4) {
7793 data[i] = data[i + BNX2_VPD_LEN + 3];
7794 data[i + 1] = data[i + BNX2_VPD_LEN + 2];
7795 data[i + 2] = data[i + BNX2_VPD_LEN + 1];
7796 data[i + 3] = data[i + BNX2_VPD_LEN];
7797 }
7798
7799 i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
7800 if (i < 0)
7801 goto vpd_done;
7802
7803 rosize = pci_vpd_lrdt_size(&data[i]);
7804 i += PCI_VPD_LRDT_TAG_SIZE;
7805 block_end = i + rosize;
7806
7807 if (block_end > BNX2_VPD_LEN)
7808 goto vpd_done;
7809
7810 j = pci_vpd_find_info_keyword(data, i, rosize,
7811 PCI_VPD_RO_KEYWORD_MFR_ID);
7812 if (j < 0)
7813 goto vpd_done;
7814
7815 len = pci_vpd_info_field_size(&data[j]);
7816
7817 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7818 if (j + len > block_end || len != 4 ||
7819 memcmp(&data[j], "1028", 4))
7820 goto vpd_done;
7821
7822 j = pci_vpd_find_info_keyword(data, i, rosize,
7823 PCI_VPD_RO_KEYWORD_VENDOR0);
7824 if (j < 0)
7825 goto vpd_done;
7826
7827 len = pci_vpd_info_field_size(&data[j]);
7828
7829 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7830 if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
7831 goto vpd_done;
7832
7833 memcpy(bp->fw_version, &data[j], len);
7834 bp->fw_version[len] = ' ';
7835
7836 vpd_done:
7837 kfree(data);
7838 }
7839
7840 static int __devinit
7841 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7842 {
7843 struct bnx2 *bp;
7844 unsigned long mem_len;
7845 int rc, i, j;
7846 u32 reg;
7847 u64 dma_mask, persist_dma_mask;
7848 int err;
7849
7850 SET_NETDEV_DEV(dev, &pdev->dev);
7851 bp = netdev_priv(dev);
7852
7853 bp->flags = 0;
7854 bp->phy_flags = 0;
7855
7856 bp->temp_stats_blk =
7857 kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
7858
7859 if (bp->temp_stats_blk == NULL) {
7860 rc = -ENOMEM;
7861 goto err_out;
7862 }
7863
7864 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7865 rc = pci_enable_device(pdev);
7866 if (rc) {
7867 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7868 goto err_out;
7869 }
7870
7871 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7872 dev_err(&pdev->dev,
7873 "Cannot find PCI device base address, aborting\n");
7874 rc = -ENODEV;
7875 goto err_out_disable;
7876 }
7877
7878 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7879 if (rc) {
7880 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7881 goto err_out_disable;
7882 }
7883
7884 pci_set_master(pdev);
7885
7886 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7887 if (bp->pm_cap == 0) {
7888 dev_err(&pdev->dev,
7889 "Cannot find power management capability, aborting\n");
7890 rc = -EIO;
7891 goto err_out_release;
7892 }
7893
7894 bp->dev = dev;
7895 bp->pdev = pdev;
7896
7897 spin_lock_init(&bp->phy_lock);
7898 spin_lock_init(&bp->indirect_lock);
7899 #ifdef BCM_CNIC
7900 mutex_init(&bp->cnic_lock);
7901 #endif
7902 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7903
7904 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7905 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7906 dev->mem_end = dev->mem_start + mem_len;
7907 dev->irq = pdev->irq;
7908
7909 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7910
7911 if (!bp->regview) {
7912 dev_err(&pdev->dev, "Cannot map register space, aborting\n");
7913 rc = -ENOMEM;
7914 goto err_out_release;
7915 }
7916
7917 /* Configure byte swap and enable write to the reg_window registers.
7918 * Rely on CPU to do target byte swapping on big endian systems
7919 * The chip's target access swapping will not swap all accesses
7920 */
7921 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7922 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7923 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7924
7925 bnx2_set_power_state(bp, PCI_D0);
7926
7927 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7928
7929 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7930 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7931 dev_err(&pdev->dev,
7932 "Cannot find PCIE capability, aborting\n");
7933 rc = -EIO;
7934 goto err_out_unmap;
7935 }
7936 bp->flags |= BNX2_FLAG_PCIE;
7937 if (CHIP_REV(bp) == CHIP_REV_Ax)
7938 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7939
7940 /* AER (Advanced Error Reporting) hooks */
7941 err = pci_enable_pcie_error_reporting(pdev);
7942 if (err) {
7943 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting "
7944 "failed 0x%x\n", err);
7945 /* non-fatal, continue */
7946 }
7947
7948 } else {
7949 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7950 if (bp->pcix_cap == 0) {
7951 dev_err(&pdev->dev,
7952 "Cannot find PCIX capability, aborting\n");
7953 rc = -EIO;
7954 goto err_out_unmap;
7955 }
7956 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7957 }
7958
7959 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7960 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7961 bp->flags |= BNX2_FLAG_MSIX_CAP;
7962 }
7963
7964 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7965 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7966 bp->flags |= BNX2_FLAG_MSI_CAP;
7967 }
7968
7969 /* 5708 cannot support DMA addresses > 40-bit. */
7970 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7971 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7972 else
7973 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7974
7975 /* Configure DMA attributes. */
7976 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7977 dev->features |= NETIF_F_HIGHDMA;
7978 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7979 if (rc) {
7980 dev_err(&pdev->dev,
7981 "pci_set_consistent_dma_mask failed, aborting\n");
7982 goto err_out_unmap;
7983 }
7984 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7985 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7986 goto err_out_unmap;
7987 }
7988
7989 if (!(bp->flags & BNX2_FLAG_PCIE))
7990 bnx2_get_pci_speed(bp);
7991
7992 /* 5706A0 may falsely detect SERR and PERR. */
7993 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7994 reg = REG_RD(bp, PCI_COMMAND);
7995 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7996 REG_WR(bp, PCI_COMMAND, reg);
7997 }
7998 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7999 !(bp->flags & BNX2_FLAG_PCIX)) {
8000
8001 dev_err(&pdev->dev,
8002 "5706 A1 can only be used in a PCIX bus, aborting\n");
8003 goto err_out_unmap;
8004 }
8005
8006 bnx2_init_nvram(bp);
8007
8008 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
8009
8010 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
8011 BNX2_SHM_HDR_SIGNATURE_SIG) {
8012 u32 off = PCI_FUNC(pdev->devfn) << 2;
8013
8014 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
8015 } else
8016 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
8017
8018 /* Get the permanent MAC address. First we need to make sure the
8019 * firmware is actually running.
8020 */
8021 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
8022
8023 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
8024 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
8025 dev_err(&pdev->dev, "Firmware not running, aborting\n");
8026 rc = -ENODEV;
8027 goto err_out_unmap;
8028 }
8029
8030 bnx2_read_vpd_fw_ver(bp);
8031
8032 j = strlen(bp->fw_version);
8033 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
8034 for (i = 0; i < 3 && j < 24; i++) {
8035 u8 num, k, skip0;
8036
8037 if (i == 0) {
8038 bp->fw_version[j++] = 'b';
8039 bp->fw_version[j++] = 'c';
8040 bp->fw_version[j++] = ' ';
8041 }
8042 num = (u8) (reg >> (24 - (i * 8)));
8043 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
8044 if (num >= k || !skip0 || k == 1) {
8045 bp->fw_version[j++] = (num / k) + '0';
8046 skip0 = 0;
8047 }
8048 }
8049 if (i != 2)
8050 bp->fw_version[j++] = '.';
8051 }
8052 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
8053 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
8054 bp->wol = 1;
8055
8056 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
8057 bp->flags |= BNX2_FLAG_ASF_ENABLE;
8058
8059 for (i = 0; i < 30; i++) {
8060 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8061 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
8062 break;
8063 msleep(10);
8064 }
8065 }
8066 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8067 reg &= BNX2_CONDITION_MFW_RUN_MASK;
8068 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
8069 reg != BNX2_CONDITION_MFW_RUN_NONE) {
8070 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
8071
8072 if (j < 32)
8073 bp->fw_version[j++] = ' ';
8074 for (i = 0; i < 3 && j < 28; i++) {
8075 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
8076 reg = swab32(reg);
8077 memcpy(&bp->fw_version[j], &reg, 4);
8078 j += 4;
8079 }
8080 }
8081
8082 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
8083 bp->mac_addr[0] = (u8) (reg >> 8);
8084 bp->mac_addr[1] = (u8) reg;
8085
8086 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
8087 bp->mac_addr[2] = (u8) (reg >> 24);
8088 bp->mac_addr[3] = (u8) (reg >> 16);
8089 bp->mac_addr[4] = (u8) (reg >> 8);
8090 bp->mac_addr[5] = (u8) reg;
8091
8092 bp->tx_ring_size = MAX_TX_DESC_CNT;
8093 bnx2_set_rx_ring_size(bp, 255);
8094
8095 bp->rx_csum = 1;
8096
8097 bp->tx_quick_cons_trip_int = 2;
8098 bp->tx_quick_cons_trip = 20;
8099 bp->tx_ticks_int = 18;
8100 bp->tx_ticks = 80;
8101
8102 bp->rx_quick_cons_trip_int = 2;
8103 bp->rx_quick_cons_trip = 12;
8104 bp->rx_ticks_int = 18;
8105 bp->rx_ticks = 18;
8106
8107 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
8108
8109 bp->current_interval = BNX2_TIMER_INTERVAL;
8110
8111 bp->phy_addr = 1;
8112
8113 /* Disable WOL support if we are running on a SERDES chip. */
8114 if (CHIP_NUM(bp) == CHIP_NUM_5709)
8115 bnx2_get_5709_media(bp);
8116 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
8117 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
8118
8119 bp->phy_port = PORT_TP;
8120 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
8121 bp->phy_port = PORT_FIBRE;
8122 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
8123 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
8124 bp->flags |= BNX2_FLAG_NO_WOL;
8125 bp->wol = 0;
8126 }
8127 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
8128 /* Don't do parallel detect on this board because of
8129 * some board problems. The link will not go down
8130 * if we do parallel detect.
8131 */
8132 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
8133 pdev->subsystem_device == 0x310c)
8134 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
8135 } else {
8136 bp->phy_addr = 2;
8137 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
8138 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
8139 }
8140 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
8141 CHIP_NUM(bp) == CHIP_NUM_5708)
8142 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
8143 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
8144 (CHIP_REV(bp) == CHIP_REV_Ax ||
8145 CHIP_REV(bp) == CHIP_REV_Bx))
8146 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
8147
8148 bnx2_init_fw_cap(bp);
8149
8150 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
8151 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
8152 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
8153 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
8154 bp->flags |= BNX2_FLAG_NO_WOL;
8155 bp->wol = 0;
8156 }
8157
8158 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8159 bp->tx_quick_cons_trip_int =
8160 bp->tx_quick_cons_trip;
8161 bp->tx_ticks_int = bp->tx_ticks;
8162 bp->rx_quick_cons_trip_int =
8163 bp->rx_quick_cons_trip;
8164 bp->rx_ticks_int = bp->rx_ticks;
8165 bp->comp_prod_trip_int = bp->comp_prod_trip;
8166 bp->com_ticks_int = bp->com_ticks;
8167 bp->cmd_ticks_int = bp->cmd_ticks;
8168 }
8169
8170 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8171 *
8172 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8173 * with byte enables disabled on the unused 32-bit word. This is legal
8174 * but causes problems on the AMD 8132 which will eventually stop
8175 * responding after a while.
8176 *
8177 * AMD believes this incompatibility is unique to the 5706, and
8178 * prefers to locally disable MSI rather than globally disabling it.
8179 */
8180 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
8181 struct pci_dev *amd_8132 = NULL;
8182
8183 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
8184 PCI_DEVICE_ID_AMD_8132_BRIDGE,
8185 amd_8132))) {
8186
8187 if (amd_8132->revision >= 0x10 &&
8188 amd_8132->revision <= 0x13) {
8189 disable_msi = 1;
8190 pci_dev_put(amd_8132);
8191 break;
8192 }
8193 }
8194 }
8195
8196 bnx2_set_default_link(bp);
8197 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
8198
8199 init_timer(&bp->timer);
8200 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
8201 bp->timer.data = (unsigned long) bp;
8202 bp->timer.function = bnx2_timer;
8203
8204 pci_save_state(pdev);
8205
8206 return 0;
8207
8208 err_out_unmap:
8209 if (bp->flags & BNX2_FLAG_PCIE)
8210 pci_disable_pcie_error_reporting(pdev);
8211
8212 if (bp->regview) {
8213 iounmap(bp->regview);
8214 bp->regview = NULL;
8215 }
8216
8217 err_out_release:
8218 pci_release_regions(pdev);
8219
8220 err_out_disable:
8221 pci_disable_device(pdev);
8222 pci_set_drvdata(pdev, NULL);
8223
8224 err_out:
8225 return rc;
8226 }
8227
8228 static char * __devinit
8229 bnx2_bus_string(struct bnx2 *bp, char *str)
8230 {
8231 char *s = str;
8232
8233 if (bp->flags & BNX2_FLAG_PCIE) {
8234 s += sprintf(s, "PCI Express");
8235 } else {
8236 s += sprintf(s, "PCI");
8237 if (bp->flags & BNX2_FLAG_PCIX)
8238 s += sprintf(s, "-X");
8239 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8240 s += sprintf(s, " 32-bit");
8241 else
8242 s += sprintf(s, " 64-bit");
8243 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8244 }
8245 return str;
8246 }
8247
8248 static void
8249 bnx2_del_napi(struct bnx2 *bp)
8250 {
8251 int i;
8252
8253 for (i = 0; i < bp->irq_nvecs; i++)
8254 netif_napi_del(&bp->bnx2_napi[i].napi);
8255 }
8256
8257 static void
8258 bnx2_init_napi(struct bnx2 *bp)
8259 {
8260 int i;
8261
8262 for (i = 0; i < bp->irq_nvecs; i++) {
8263 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8264 int (*poll)(struct napi_struct *, int);
8265
8266 if (i == 0)
8267 poll = bnx2_poll;
8268 else
8269 poll = bnx2_poll_msix;
8270
8271 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8272 bnapi->bp = bp;
8273 }
8274 }
8275
8276 static const struct net_device_ops bnx2_netdev_ops = {
8277 .ndo_open = bnx2_open,
8278 .ndo_start_xmit = bnx2_start_xmit,
8279 .ndo_stop = bnx2_close,
8280 .ndo_get_stats64 = bnx2_get_stats64,
8281 .ndo_set_rx_mode = bnx2_set_rx_mode,
8282 .ndo_do_ioctl = bnx2_ioctl,
8283 .ndo_validate_addr = eth_validate_addr,
8284 .ndo_set_mac_address = bnx2_change_mac_addr,
8285 .ndo_change_mtu = bnx2_change_mtu,
8286 .ndo_tx_timeout = bnx2_tx_timeout,
8287 #ifdef CONFIG_NET_POLL_CONTROLLER
8288 .ndo_poll_controller = poll_bnx2,
8289 #endif
8290 };
8291
8292 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8293 {
8294 dev->vlan_features |= flags;
8295 }
8296
8297 static int __devinit
8298 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8299 {
8300 static int version_printed = 0;
8301 struct net_device *dev = NULL;
8302 struct bnx2 *bp;
8303 int rc;
8304 char str[40];
8305
8306 if (version_printed++ == 0)
8307 pr_info("%s", version);
8308
8309 /* dev zeroed in init_etherdev */
8310 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8311
8312 if (!dev)
8313 return -ENOMEM;
8314
8315 rc = bnx2_init_board(pdev, dev);
8316 if (rc < 0) {
8317 free_netdev(dev);
8318 return rc;
8319 }
8320
8321 dev->netdev_ops = &bnx2_netdev_ops;
8322 dev->watchdog_timeo = TX_TIMEOUT;
8323 dev->ethtool_ops = &bnx2_ethtool_ops;
8324
8325 bp = netdev_priv(dev);
8326
8327 pci_set_drvdata(pdev, dev);
8328
8329 rc = bnx2_request_firmware(bp);
8330 if (rc)
8331 goto error;
8332
8333 memcpy(dev->dev_addr, bp->mac_addr, 6);
8334 memcpy(dev->perm_addr, bp->mac_addr, 6);
8335
8336 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_GRO |
8337 NETIF_F_RXHASH;
8338 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8339 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8340 dev->features |= NETIF_F_IPV6_CSUM;
8341 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8342 }
8343 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8344 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8345 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8346 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8347 dev->features |= NETIF_F_TSO6;
8348 vlan_features_add(dev, NETIF_F_TSO6);
8349 }
8350 if ((rc = register_netdev(dev))) {
8351 dev_err(&pdev->dev, "Cannot register net device\n");
8352 goto error;
8353 }
8354
8355 netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8356 board_info[ent->driver_data].name,
8357 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8358 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8359 bnx2_bus_string(bp, str),
8360 dev->base_addr,
8361 bp->pdev->irq, dev->dev_addr);
8362
8363 return 0;
8364
8365 error:
8366 if (bp->mips_firmware)
8367 release_firmware(bp->mips_firmware);
8368 if (bp->rv2p_firmware)
8369 release_firmware(bp->rv2p_firmware);
8370
8371 if (bp->regview)
8372 iounmap(bp->regview);
8373 pci_release_regions(pdev);
8374 pci_disable_device(pdev);
8375 pci_set_drvdata(pdev, NULL);
8376 free_netdev(dev);
8377 return rc;
8378 }
8379
8380 static void __devexit
8381 bnx2_remove_one(struct pci_dev *pdev)
8382 {
8383 struct net_device *dev = pci_get_drvdata(pdev);
8384 struct bnx2 *bp = netdev_priv(dev);
8385
8386 flush_scheduled_work();
8387
8388 unregister_netdev(dev);
8389
8390 if (bp->mips_firmware)
8391 release_firmware(bp->mips_firmware);
8392 if (bp->rv2p_firmware)
8393 release_firmware(bp->rv2p_firmware);
8394
8395 if (bp->regview)
8396 iounmap(bp->regview);
8397
8398 kfree(bp->temp_stats_blk);
8399
8400 if (bp->flags & BNX2_FLAG_PCIE)
8401 pci_disable_pcie_error_reporting(pdev);
8402
8403 free_netdev(dev);
8404
8405 pci_release_regions(pdev);
8406 pci_disable_device(pdev);
8407 pci_set_drvdata(pdev, NULL);
8408 }
8409
8410 static int
8411 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8412 {
8413 struct net_device *dev = pci_get_drvdata(pdev);
8414 struct bnx2 *bp = netdev_priv(dev);
8415
8416 /* PCI register 4 needs to be saved whether netif_running() or not.
8417 * MSI address and data need to be saved if using MSI and
8418 * netif_running().
8419 */
8420 pci_save_state(pdev);
8421 if (!netif_running(dev))
8422 return 0;
8423
8424 flush_scheduled_work();
8425 bnx2_netif_stop(bp, true);
8426 netif_device_detach(dev);
8427 del_timer_sync(&bp->timer);
8428 bnx2_shutdown_chip(bp);
8429 bnx2_free_skbs(bp);
8430 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8431 return 0;
8432 }
8433
8434 static int
8435 bnx2_resume(struct pci_dev *pdev)
8436 {
8437 struct net_device *dev = pci_get_drvdata(pdev);
8438 struct bnx2 *bp = netdev_priv(dev);
8439
8440 pci_restore_state(pdev);
8441 if (!netif_running(dev))
8442 return 0;
8443
8444 bnx2_set_power_state(bp, PCI_D0);
8445 netif_device_attach(dev);
8446 bnx2_init_nic(bp, 1);
8447 bnx2_netif_start(bp, true);
8448 return 0;
8449 }
8450
8451 /**
8452 * bnx2_io_error_detected - called when PCI error is detected
8453 * @pdev: Pointer to PCI device
8454 * @state: The current pci connection state
8455 *
8456 * This function is called after a PCI bus error affecting
8457 * this device has been detected.
8458 */
8459 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8460 pci_channel_state_t state)
8461 {
8462 struct net_device *dev = pci_get_drvdata(pdev);
8463 struct bnx2 *bp = netdev_priv(dev);
8464
8465 rtnl_lock();
8466 netif_device_detach(dev);
8467
8468 if (state == pci_channel_io_perm_failure) {
8469 rtnl_unlock();
8470 return PCI_ERS_RESULT_DISCONNECT;
8471 }
8472
8473 if (netif_running(dev)) {
8474 bnx2_netif_stop(bp, true);
8475 del_timer_sync(&bp->timer);
8476 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8477 }
8478
8479 pci_disable_device(pdev);
8480 rtnl_unlock();
8481
8482 /* Request a slot slot reset. */
8483 return PCI_ERS_RESULT_NEED_RESET;
8484 }
8485
8486 /**
8487 * bnx2_io_slot_reset - called after the pci bus has been reset.
8488 * @pdev: Pointer to PCI device
8489 *
8490 * Restart the card from scratch, as if from a cold-boot.
8491 */
8492 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8493 {
8494 struct net_device *dev = pci_get_drvdata(pdev);
8495 struct bnx2 *bp = netdev_priv(dev);
8496 pci_ers_result_t result;
8497 int err;
8498
8499 rtnl_lock();
8500 if (pci_enable_device(pdev)) {
8501 dev_err(&pdev->dev,
8502 "Cannot re-enable PCI device after reset\n");
8503 result = PCI_ERS_RESULT_DISCONNECT;
8504 } else {
8505 pci_set_master(pdev);
8506 pci_restore_state(pdev);
8507 pci_save_state(pdev);
8508
8509 if (netif_running(dev)) {
8510 bnx2_set_power_state(bp, PCI_D0);
8511 bnx2_init_nic(bp, 1);
8512 }
8513 result = PCI_ERS_RESULT_RECOVERED;
8514 }
8515 rtnl_unlock();
8516
8517 if (!(bp->flags & BNX2_FLAG_PCIE))
8518 return result;
8519
8520 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8521 if (err) {
8522 dev_err(&pdev->dev,
8523 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8524 err); /* non-fatal, continue */
8525 }
8526
8527 return result;
8528 }
8529
8530 /**
8531 * bnx2_io_resume - called when traffic can start flowing again.
8532 * @pdev: Pointer to PCI device
8533 *
8534 * This callback is called when the error recovery driver tells us that
8535 * its OK to resume normal operation.
8536 */
8537 static void bnx2_io_resume(struct pci_dev *pdev)
8538 {
8539 struct net_device *dev = pci_get_drvdata(pdev);
8540 struct bnx2 *bp = netdev_priv(dev);
8541
8542 rtnl_lock();
8543 if (netif_running(dev))
8544 bnx2_netif_start(bp, true);
8545
8546 netif_device_attach(dev);
8547 rtnl_unlock();
8548 }
8549
8550 static struct pci_error_handlers bnx2_err_handler = {
8551 .error_detected = bnx2_io_error_detected,
8552 .slot_reset = bnx2_io_slot_reset,
8553 .resume = bnx2_io_resume,
8554 };
8555
8556 static struct pci_driver bnx2_pci_driver = {
8557 .name = DRV_MODULE_NAME,
8558 .id_table = bnx2_pci_tbl,
8559 .probe = bnx2_init_one,
8560 .remove = __devexit_p(bnx2_remove_one),
8561 .suspend = bnx2_suspend,
8562 .resume = bnx2_resume,
8563 .err_handler = &bnx2_err_handler,
8564 };
8565
8566 static int __init bnx2_init(void)
8567 {
8568 return pci_register_driver(&bnx2_pci_driver);
8569 }
8570
8571 static void __exit bnx2_cleanup(void)
8572 {
8573 pci_unregister_driver(&bnx2_pci_driver);
8574 }
8575
8576 module_init(bnx2_init);
8577 module_exit(bnx2_cleanup);
8578
8579
8580