netdev: convert bulk of drivers to netdev_tx_t
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / atlx / atl2.c
1 /*
2 * Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
3 * Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
4 *
5 * Derived from Intel e1000 driver
6 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22
23 #include <asm/atomic.h>
24 #include <linux/crc32.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/hardirq.h>
29 #include <linux/if_vlan.h>
30 #include <linux/in.h>
31 #include <linux/interrupt.h>
32 #include <linux/ip.h>
33 #include <linux/irqflags.h>
34 #include <linux/irqreturn.h>
35 #include <linux/mii.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/pm.h>
41 #include <linux/skbuff.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/tcp.h>
45 #include <linux/timer.h>
46 #include <linux/types.h>
47 #include <linux/workqueue.h>
48
49 #include "atl2.h"
50
51 #define ATL2_DRV_VERSION "2.2.3"
52
53 static char atl2_driver_name[] = "atl2";
54 static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver";
55 static char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation.";
56 static char atl2_driver_version[] = ATL2_DRV_VERSION;
57
58 MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
59 MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
60 MODULE_LICENSE("GPL");
61 MODULE_VERSION(ATL2_DRV_VERSION);
62
63 /*
64 * atl2_pci_tbl - PCI Device ID Table
65 */
66 static struct pci_device_id atl2_pci_tbl[] = {
67 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
68 /* required last entry */
69 {0,}
70 };
71 MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
72
73 static void atl2_set_ethtool_ops(struct net_device *netdev);
74
75 static void atl2_check_options(struct atl2_adapter *adapter);
76
77 /*
78 * atl2_sw_init - Initialize general software structures (struct atl2_adapter)
79 * @adapter: board private structure to initialize
80 *
81 * atl2_sw_init initializes the Adapter private data structure.
82 * Fields are initialized based on PCI device information and
83 * OS network device settings (MTU size).
84 */
85 static int __devinit atl2_sw_init(struct atl2_adapter *adapter)
86 {
87 struct atl2_hw *hw = &adapter->hw;
88 struct pci_dev *pdev = adapter->pdev;
89
90 /* PCI config space info */
91 hw->vendor_id = pdev->vendor;
92 hw->device_id = pdev->device;
93 hw->subsystem_vendor_id = pdev->subsystem_vendor;
94 hw->subsystem_id = pdev->subsystem_device;
95
96 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
97 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
98
99 adapter->wol = 0;
100 adapter->ict = 50000; /* ~100ms */
101 adapter->link_speed = SPEED_0; /* hardware init */
102 adapter->link_duplex = FULL_DUPLEX;
103
104 hw->phy_configured = false;
105 hw->preamble_len = 7;
106 hw->ipgt = 0x60;
107 hw->min_ifg = 0x50;
108 hw->ipgr1 = 0x40;
109 hw->ipgr2 = 0x60;
110 hw->retry_buf = 2;
111 hw->max_retry = 0xf;
112 hw->lcol = 0x37;
113 hw->jam_ipg = 7;
114 hw->fc_rxd_hi = 0;
115 hw->fc_rxd_lo = 0;
116 hw->max_frame_size = adapter->netdev->mtu;
117
118 spin_lock_init(&adapter->stats_lock);
119
120 set_bit(__ATL2_DOWN, &adapter->flags);
121
122 return 0;
123 }
124
125 /*
126 * atl2_set_multi - Multicast and Promiscuous mode set
127 * @netdev: network interface device structure
128 *
129 * The set_multi entry point is called whenever the multicast address
130 * list or the network interface flags are updated. This routine is
131 * responsible for configuring the hardware for proper multicast,
132 * promiscuous mode, and all-multi behavior.
133 */
134 static void atl2_set_multi(struct net_device *netdev)
135 {
136 struct atl2_adapter *adapter = netdev_priv(netdev);
137 struct atl2_hw *hw = &adapter->hw;
138 struct dev_mc_list *mc_ptr;
139 u32 rctl;
140 u32 hash_value;
141
142 /* Check for Promiscuous and All Multicast modes */
143 rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
144
145 if (netdev->flags & IFF_PROMISC) {
146 rctl |= MAC_CTRL_PROMIS_EN;
147 } else if (netdev->flags & IFF_ALLMULTI) {
148 rctl |= MAC_CTRL_MC_ALL_EN;
149 rctl &= ~MAC_CTRL_PROMIS_EN;
150 } else
151 rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
152
153 ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
154
155 /* clear the old settings from the multicast hash table */
156 ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
157 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
158
159 /* comoute mc addresses' hash value ,and put it into hash table */
160 for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
161 hash_value = atl2_hash_mc_addr(hw, mc_ptr->dmi_addr);
162 atl2_hash_set(hw, hash_value);
163 }
164 }
165
166 static void init_ring_ptrs(struct atl2_adapter *adapter)
167 {
168 /* Read / Write Ptr Initialize: */
169 adapter->txd_write_ptr = 0;
170 atomic_set(&adapter->txd_read_ptr, 0);
171
172 adapter->rxd_read_ptr = 0;
173 adapter->rxd_write_ptr = 0;
174
175 atomic_set(&adapter->txs_write_ptr, 0);
176 adapter->txs_next_clear = 0;
177 }
178
179 /*
180 * atl2_configure - Configure Transmit&Receive Unit after Reset
181 * @adapter: board private structure
182 *
183 * Configure the Tx /Rx unit of the MAC after a reset.
184 */
185 static int atl2_configure(struct atl2_adapter *adapter)
186 {
187 struct atl2_hw *hw = &adapter->hw;
188 u32 value;
189
190 /* clear interrupt status */
191 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
192
193 /* set MAC Address */
194 value = (((u32)hw->mac_addr[2]) << 24) |
195 (((u32)hw->mac_addr[3]) << 16) |
196 (((u32)hw->mac_addr[4]) << 8) |
197 (((u32)hw->mac_addr[5]));
198 ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
199 value = (((u32)hw->mac_addr[0]) << 8) |
200 (((u32)hw->mac_addr[1]));
201 ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
202
203 /* HI base address */
204 ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
205 (u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
206
207 /* LO base address */
208 ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
209 (u32)(adapter->txd_dma & 0x00000000ffffffffULL));
210 ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
211 (u32)(adapter->txs_dma & 0x00000000ffffffffULL));
212 ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
213 (u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
214
215 /* element count */
216 ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
217 ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
218 ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM, (u16)adapter->rxd_ring_size);
219
220 /* config Internal SRAM */
221 /*
222 ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
223 ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
224 */
225
226 /* config IPG/IFG */
227 value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
228 MAC_IPG_IFG_IPGT_SHIFT) |
229 (((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
230 MAC_IPG_IFG_MIFG_SHIFT) |
231 (((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
232 MAC_IPG_IFG_IPGR1_SHIFT)|
233 (((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
234 MAC_IPG_IFG_IPGR2_SHIFT);
235 ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
236
237 /* config Half-Duplex Control */
238 value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
239 (((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
240 MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
241 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
242 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
243 (((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
244 MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
245 ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
246
247 /* set Interrupt Moderator Timer */
248 ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
249 ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
250
251 /* set Interrupt Clear Timer */
252 ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
253
254 /* set MTU */
255 ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
256 ENET_HEADER_SIZE + VLAN_SIZE + ETHERNET_FCS_SIZE);
257
258 /* 1590 */
259 ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
260
261 /* flow control */
262 ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
263 ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
264
265 /* Init mailbox */
266 ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
267 ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
268
269 /* enable DMA read/write */
270 ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
271 ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
272
273 value = ATL2_READ_REG(&adapter->hw, REG_ISR);
274 if ((value & ISR_PHY_LINKDOWN) != 0)
275 value = 1; /* config failed */
276 else
277 value = 0;
278
279 /* clear all interrupt status */
280 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
281 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
282 return value;
283 }
284
285 /*
286 * atl2_setup_ring_resources - allocate Tx / RX descriptor resources
287 * @adapter: board private structure
288 *
289 * Return 0 on success, negative on failure
290 */
291 static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
292 {
293 struct pci_dev *pdev = adapter->pdev;
294 int size;
295 u8 offset = 0;
296
297 /* real ring DMA buffer */
298 adapter->ring_size = size =
299 adapter->txd_ring_size * 1 + 7 + /* dword align */
300 adapter->txs_ring_size * 4 + 7 + /* dword align */
301 adapter->rxd_ring_size * 1536 + 127; /* 128bytes align */
302
303 adapter->ring_vir_addr = pci_alloc_consistent(pdev, size,
304 &adapter->ring_dma);
305 if (!adapter->ring_vir_addr)
306 return -ENOMEM;
307 memset(adapter->ring_vir_addr, 0, adapter->ring_size);
308
309 /* Init TXD Ring */
310 adapter->txd_dma = adapter->ring_dma ;
311 offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
312 adapter->txd_dma += offset;
313 adapter->txd_ring = (struct tx_pkt_header *) (adapter->ring_vir_addr +
314 offset);
315
316 /* Init TXS Ring */
317 adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
318 offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
319 adapter->txs_dma += offset;
320 adapter->txs_ring = (struct tx_pkt_status *)
321 (((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
322
323 /* Init RXD Ring */
324 adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
325 offset = (adapter->rxd_dma & 127) ?
326 (128 - (adapter->rxd_dma & 127)) : 0;
327 if (offset > 7)
328 offset -= 8;
329 else
330 offset += (128 - 8);
331
332 adapter->rxd_dma += offset;
333 adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
334 (adapter->txs_ring_size * 4 + offset));
335
336 /*
337 * Read / Write Ptr Initialize:
338 * init_ring_ptrs(adapter);
339 */
340 return 0;
341 }
342
343 /*
344 * atl2_irq_enable - Enable default interrupt generation settings
345 * @adapter: board private structure
346 */
347 static inline void atl2_irq_enable(struct atl2_adapter *adapter)
348 {
349 ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
350 ATL2_WRITE_FLUSH(&adapter->hw);
351 }
352
353 /*
354 * atl2_irq_disable - Mask off interrupt generation on the NIC
355 * @adapter: board private structure
356 */
357 static inline void atl2_irq_disable(struct atl2_adapter *adapter)
358 {
359 ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
360 ATL2_WRITE_FLUSH(&adapter->hw);
361 synchronize_irq(adapter->pdev->irq);
362 }
363
364 #ifdef NETIF_F_HW_VLAN_TX
365 static void atl2_vlan_rx_register(struct net_device *netdev,
366 struct vlan_group *grp)
367 {
368 struct atl2_adapter *adapter = netdev_priv(netdev);
369 u32 ctrl;
370
371 atl2_irq_disable(adapter);
372 adapter->vlgrp = grp;
373
374 if (grp) {
375 /* enable VLAN tag insert/strip */
376 ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
377 ctrl |= MAC_CTRL_RMV_VLAN;
378 ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
379 } else {
380 /* disable VLAN tag insert/strip */
381 ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
382 ctrl &= ~MAC_CTRL_RMV_VLAN;
383 ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
384 }
385
386 atl2_irq_enable(adapter);
387 }
388
389 static void atl2_restore_vlan(struct atl2_adapter *adapter)
390 {
391 atl2_vlan_rx_register(adapter->netdev, adapter->vlgrp);
392 }
393 #endif
394
395 static void atl2_intr_rx(struct atl2_adapter *adapter)
396 {
397 struct net_device *netdev = adapter->netdev;
398 struct rx_desc *rxd;
399 struct sk_buff *skb;
400
401 do {
402 rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
403 if (!rxd->status.update)
404 break; /* end of tx */
405
406 /* clear this flag at once */
407 rxd->status.update = 0;
408
409 if (rxd->status.ok && rxd->status.pkt_size >= 60) {
410 int rx_size = (int)(rxd->status.pkt_size - 4);
411 /* alloc new buffer */
412 skb = netdev_alloc_skb(netdev, rx_size + NET_IP_ALIGN);
413 if (NULL == skb) {
414 printk(KERN_WARNING
415 "%s: Mem squeeze, deferring packet.\n",
416 netdev->name);
417 /*
418 * Check that some rx space is free. If not,
419 * free one and mark stats->rx_dropped++.
420 */
421 netdev->stats.rx_dropped++;
422 break;
423 }
424 skb_reserve(skb, NET_IP_ALIGN);
425 skb->dev = netdev;
426 memcpy(skb->data, rxd->packet, rx_size);
427 skb_put(skb, rx_size);
428 skb->protocol = eth_type_trans(skb, netdev);
429 #ifdef NETIF_F_HW_VLAN_TX
430 if (adapter->vlgrp && (rxd->status.vlan)) {
431 u16 vlan_tag = (rxd->status.vtag>>4) |
432 ((rxd->status.vtag&7) << 13) |
433 ((rxd->status.vtag&8) << 9);
434 vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
435 } else
436 #endif
437 netif_rx(skb);
438 netdev->stats.rx_bytes += rx_size;
439 netdev->stats.rx_packets++;
440 } else {
441 netdev->stats.rx_errors++;
442
443 if (rxd->status.ok && rxd->status.pkt_size <= 60)
444 netdev->stats.rx_length_errors++;
445 if (rxd->status.mcast)
446 netdev->stats.multicast++;
447 if (rxd->status.crc)
448 netdev->stats.rx_crc_errors++;
449 if (rxd->status.align)
450 netdev->stats.rx_frame_errors++;
451 }
452
453 /* advance write ptr */
454 if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
455 adapter->rxd_write_ptr = 0;
456 } while (1);
457
458 /* update mailbox? */
459 adapter->rxd_read_ptr = adapter->rxd_write_ptr;
460 ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
461 }
462
463 static void atl2_intr_tx(struct atl2_adapter *adapter)
464 {
465 struct net_device *netdev = adapter->netdev;
466 u32 txd_read_ptr;
467 u32 txs_write_ptr;
468 struct tx_pkt_status *txs;
469 struct tx_pkt_header *txph;
470 int free_hole = 0;
471
472 do {
473 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
474 txs = adapter->txs_ring + txs_write_ptr;
475 if (!txs->update)
476 break; /* tx stop here */
477
478 free_hole = 1;
479 txs->update = 0;
480
481 if (++txs_write_ptr == adapter->txs_ring_size)
482 txs_write_ptr = 0;
483 atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
484
485 txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
486 txph = (struct tx_pkt_header *)
487 (((u8 *)adapter->txd_ring) + txd_read_ptr);
488
489 if (txph->pkt_size != txs->pkt_size) {
490 struct tx_pkt_status *old_txs = txs;
491 printk(KERN_WARNING
492 "%s: txs packet size not consistent with txd"
493 " txd_:0x%08x, txs_:0x%08x!\n",
494 adapter->netdev->name,
495 *(u32 *)txph, *(u32 *)txs);
496 printk(KERN_WARNING
497 "txd read ptr: 0x%x\n",
498 txd_read_ptr);
499 txs = adapter->txs_ring + txs_write_ptr;
500 printk(KERN_WARNING
501 "txs-behind:0x%08x\n",
502 *(u32 *)txs);
503 if (txs_write_ptr < 2) {
504 txs = adapter->txs_ring +
505 (adapter->txs_ring_size +
506 txs_write_ptr - 2);
507 } else {
508 txs = adapter->txs_ring + (txs_write_ptr - 2);
509 }
510 printk(KERN_WARNING
511 "txs-before:0x%08x\n",
512 *(u32 *)txs);
513 txs = old_txs;
514 }
515
516 /* 4for TPH */
517 txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
518 if (txd_read_ptr >= adapter->txd_ring_size)
519 txd_read_ptr -= adapter->txd_ring_size;
520
521 atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
522
523 /* tx statistics: */
524 if (txs->ok) {
525 netdev->stats.tx_bytes += txs->pkt_size;
526 netdev->stats.tx_packets++;
527 }
528 else
529 netdev->stats.tx_errors++;
530
531 if (txs->defer)
532 netdev->stats.collisions++;
533 if (txs->abort_col)
534 netdev->stats.tx_aborted_errors++;
535 if (txs->late_col)
536 netdev->stats.tx_window_errors++;
537 if (txs->underun)
538 netdev->stats.tx_fifo_errors++;
539 } while (1);
540
541 if (free_hole) {
542 if (netif_queue_stopped(adapter->netdev) &&
543 netif_carrier_ok(adapter->netdev))
544 netif_wake_queue(adapter->netdev);
545 }
546 }
547
548 static void atl2_check_for_link(struct atl2_adapter *adapter)
549 {
550 struct net_device *netdev = adapter->netdev;
551 u16 phy_data = 0;
552
553 spin_lock(&adapter->stats_lock);
554 atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
555 atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
556 spin_unlock(&adapter->stats_lock);
557
558 /* notify upper layer link down ASAP */
559 if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
560 if (netif_carrier_ok(netdev)) { /* old link state: Up */
561 printk(KERN_INFO "%s: %s NIC Link is Down\n",
562 atl2_driver_name, netdev->name);
563 adapter->link_speed = SPEED_0;
564 netif_carrier_off(netdev);
565 netif_stop_queue(netdev);
566 }
567 }
568 schedule_work(&adapter->link_chg_task);
569 }
570
571 static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
572 {
573 u16 phy_data;
574 spin_lock(&adapter->stats_lock);
575 atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
576 spin_unlock(&adapter->stats_lock);
577 }
578
579 /*
580 * atl2_intr - Interrupt Handler
581 * @irq: interrupt number
582 * @data: pointer to a network interface device structure
583 * @pt_regs: CPU registers structure
584 */
585 static irqreturn_t atl2_intr(int irq, void *data)
586 {
587 struct atl2_adapter *adapter = netdev_priv(data);
588 struct atl2_hw *hw = &adapter->hw;
589 u32 status;
590
591 status = ATL2_READ_REG(hw, REG_ISR);
592 if (0 == status)
593 return IRQ_NONE;
594
595 /* link event */
596 if (status & ISR_PHY)
597 atl2_clear_phy_int(adapter);
598
599 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
600 ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
601
602 /* check if PCIE PHY Link down */
603 if (status & ISR_PHY_LINKDOWN) {
604 if (netif_running(adapter->netdev)) { /* reset MAC */
605 ATL2_WRITE_REG(hw, REG_ISR, 0);
606 ATL2_WRITE_REG(hw, REG_IMR, 0);
607 ATL2_WRITE_FLUSH(hw);
608 schedule_work(&adapter->reset_task);
609 return IRQ_HANDLED;
610 }
611 }
612
613 /* check if DMA read/write error? */
614 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
615 ATL2_WRITE_REG(hw, REG_ISR, 0);
616 ATL2_WRITE_REG(hw, REG_IMR, 0);
617 ATL2_WRITE_FLUSH(hw);
618 schedule_work(&adapter->reset_task);
619 return IRQ_HANDLED;
620 }
621
622 /* link event */
623 if (status & (ISR_PHY | ISR_MANUAL)) {
624 adapter->netdev->stats.tx_carrier_errors++;
625 atl2_check_for_link(adapter);
626 }
627
628 /* transmit event */
629 if (status & ISR_TX_EVENT)
630 atl2_intr_tx(adapter);
631
632 /* rx exception */
633 if (status & ISR_RX_EVENT)
634 atl2_intr_rx(adapter);
635
636 /* re-enable Interrupt */
637 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
638 return IRQ_HANDLED;
639 }
640
641 static int atl2_request_irq(struct atl2_adapter *adapter)
642 {
643 struct net_device *netdev = adapter->netdev;
644 int flags, err = 0;
645
646 flags = IRQF_SHARED;
647 adapter->have_msi = true;
648 err = pci_enable_msi(adapter->pdev);
649 if (err)
650 adapter->have_msi = false;
651
652 if (adapter->have_msi)
653 flags &= ~IRQF_SHARED;
654
655 return request_irq(adapter->pdev->irq, &atl2_intr, flags, netdev->name,
656 netdev);
657 }
658
659 /*
660 * atl2_free_ring_resources - Free Tx / RX descriptor Resources
661 * @adapter: board private structure
662 *
663 * Free all transmit software resources
664 */
665 static void atl2_free_ring_resources(struct atl2_adapter *adapter)
666 {
667 struct pci_dev *pdev = adapter->pdev;
668 pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr,
669 adapter->ring_dma);
670 }
671
672 /*
673 * atl2_open - Called when a network interface is made active
674 * @netdev: network interface device structure
675 *
676 * Returns 0 on success, negative value on failure
677 *
678 * The open entry point is called when a network interface is made
679 * active by the system (IFF_UP). At this point all resources needed
680 * for transmit and receive operations are allocated, the interrupt
681 * handler is registered with the OS, the watchdog timer is started,
682 * and the stack is notified that the interface is ready.
683 */
684 static int atl2_open(struct net_device *netdev)
685 {
686 struct atl2_adapter *adapter = netdev_priv(netdev);
687 int err;
688 u32 val;
689
690 /* disallow open during test */
691 if (test_bit(__ATL2_TESTING, &adapter->flags))
692 return -EBUSY;
693
694 /* allocate transmit descriptors */
695 err = atl2_setup_ring_resources(adapter);
696 if (err)
697 return err;
698
699 err = atl2_init_hw(&adapter->hw);
700 if (err) {
701 err = -EIO;
702 goto err_init_hw;
703 }
704
705 /* hardware has been reset, we need to reload some things */
706 atl2_set_multi(netdev);
707 init_ring_ptrs(adapter);
708
709 #ifdef NETIF_F_HW_VLAN_TX
710 atl2_restore_vlan(adapter);
711 #endif
712
713 if (atl2_configure(adapter)) {
714 err = -EIO;
715 goto err_config;
716 }
717
718 err = atl2_request_irq(adapter);
719 if (err)
720 goto err_req_irq;
721
722 clear_bit(__ATL2_DOWN, &adapter->flags);
723
724 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ));
725
726 val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
727 ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
728 val | MASTER_CTRL_MANUAL_INT);
729
730 atl2_irq_enable(adapter);
731
732 return 0;
733
734 err_init_hw:
735 err_req_irq:
736 err_config:
737 atl2_free_ring_resources(adapter);
738 atl2_reset_hw(&adapter->hw);
739
740 return err;
741 }
742
743 static void atl2_down(struct atl2_adapter *adapter)
744 {
745 struct net_device *netdev = adapter->netdev;
746
747 /* signal that we're down so the interrupt handler does not
748 * reschedule our watchdog timer */
749 set_bit(__ATL2_DOWN, &adapter->flags);
750
751 netif_tx_disable(netdev);
752
753 /* reset MAC to disable all RX/TX */
754 atl2_reset_hw(&adapter->hw);
755 msleep(1);
756
757 atl2_irq_disable(adapter);
758
759 del_timer_sync(&adapter->watchdog_timer);
760 del_timer_sync(&adapter->phy_config_timer);
761 clear_bit(0, &adapter->cfg_phy);
762
763 netif_carrier_off(netdev);
764 adapter->link_speed = SPEED_0;
765 adapter->link_duplex = -1;
766 }
767
768 static void atl2_free_irq(struct atl2_adapter *adapter)
769 {
770 struct net_device *netdev = adapter->netdev;
771
772 free_irq(adapter->pdev->irq, netdev);
773
774 #ifdef CONFIG_PCI_MSI
775 if (adapter->have_msi)
776 pci_disable_msi(adapter->pdev);
777 #endif
778 }
779
780 /*
781 * atl2_close - Disables a network interface
782 * @netdev: network interface device structure
783 *
784 * Returns 0, this is not allowed to fail
785 *
786 * The close entry point is called when an interface is de-activated
787 * by the OS. The hardware is still under the drivers control, but
788 * needs to be disabled. A global MAC reset is issued to stop the
789 * hardware, and all transmit and receive resources are freed.
790 */
791 static int atl2_close(struct net_device *netdev)
792 {
793 struct atl2_adapter *adapter = netdev_priv(netdev);
794
795 WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
796
797 atl2_down(adapter);
798 atl2_free_irq(adapter);
799 atl2_free_ring_resources(adapter);
800
801 return 0;
802 }
803
804 static inline int TxsFreeUnit(struct atl2_adapter *adapter)
805 {
806 u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
807
808 return (adapter->txs_next_clear >= txs_write_ptr) ?
809 (int) (adapter->txs_ring_size - adapter->txs_next_clear +
810 txs_write_ptr - 1) :
811 (int) (txs_write_ptr - adapter->txs_next_clear - 1);
812 }
813
814 static inline int TxdFreeBytes(struct atl2_adapter *adapter)
815 {
816 u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
817
818 return (adapter->txd_write_ptr >= txd_read_ptr) ?
819 (int) (adapter->txd_ring_size - adapter->txd_write_ptr +
820 txd_read_ptr - 1) :
821 (int) (txd_read_ptr - adapter->txd_write_ptr - 1);
822 }
823
824 static netdev_tx_t atl2_xmit_frame(struct sk_buff *skb,
825 struct net_device *netdev)
826 {
827 struct atl2_adapter *adapter = netdev_priv(netdev);
828 struct tx_pkt_header *txph;
829 u32 offset, copy_len;
830 int txs_unused;
831 int txbuf_unused;
832
833 if (test_bit(__ATL2_DOWN, &adapter->flags)) {
834 dev_kfree_skb_any(skb);
835 return NETDEV_TX_OK;
836 }
837
838 if (unlikely(skb->len <= 0)) {
839 dev_kfree_skb_any(skb);
840 return NETDEV_TX_OK;
841 }
842
843 txs_unused = TxsFreeUnit(adapter);
844 txbuf_unused = TxdFreeBytes(adapter);
845
846 if (skb->len + sizeof(struct tx_pkt_header) + 4 > txbuf_unused ||
847 txs_unused < 1) {
848 /* not enough resources */
849 netif_stop_queue(netdev);
850 return NETDEV_TX_BUSY;
851 }
852
853 offset = adapter->txd_write_ptr;
854
855 txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
856
857 *(u32 *)txph = 0;
858 txph->pkt_size = skb->len;
859
860 offset += 4;
861 if (offset >= adapter->txd_ring_size)
862 offset -= adapter->txd_ring_size;
863 copy_len = adapter->txd_ring_size - offset;
864 if (copy_len >= skb->len) {
865 memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
866 offset += ((u32)(skb->len + 3) & ~3);
867 } else {
868 memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
869 memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
870 skb->len-copy_len);
871 offset = ((u32)(skb->len-copy_len + 3) & ~3);
872 }
873 #ifdef NETIF_F_HW_VLAN_TX
874 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
875 u16 vlan_tag = vlan_tx_tag_get(skb);
876 vlan_tag = (vlan_tag << 4) |
877 (vlan_tag >> 13) |
878 ((vlan_tag >> 9) & 0x8);
879 txph->ins_vlan = 1;
880 txph->vlan = vlan_tag;
881 }
882 #endif
883 if (offset >= adapter->txd_ring_size)
884 offset -= adapter->txd_ring_size;
885 adapter->txd_write_ptr = offset;
886
887 /* clear txs before send */
888 adapter->txs_ring[adapter->txs_next_clear].update = 0;
889 if (++adapter->txs_next_clear == adapter->txs_ring_size)
890 adapter->txs_next_clear = 0;
891
892 ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
893 (adapter->txd_write_ptr >> 2));
894
895 mmiowb();
896 netdev->trans_start = jiffies;
897 dev_kfree_skb_any(skb);
898 return NETDEV_TX_OK;
899 }
900
901 /*
902 * atl2_change_mtu - Change the Maximum Transfer Unit
903 * @netdev: network interface device structure
904 * @new_mtu: new value for maximum frame size
905 *
906 * Returns 0 on success, negative on failure
907 */
908 static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
909 {
910 struct atl2_adapter *adapter = netdev_priv(netdev);
911 struct atl2_hw *hw = &adapter->hw;
912
913 if ((new_mtu < 40) || (new_mtu > (ETH_DATA_LEN + VLAN_SIZE)))
914 return -EINVAL;
915
916 /* set MTU */
917 if (hw->max_frame_size != new_mtu) {
918 netdev->mtu = new_mtu;
919 ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ENET_HEADER_SIZE +
920 VLAN_SIZE + ETHERNET_FCS_SIZE);
921 }
922
923 return 0;
924 }
925
926 /*
927 * atl2_set_mac - Change the Ethernet Address of the NIC
928 * @netdev: network interface device structure
929 * @p: pointer to an address structure
930 *
931 * Returns 0 on success, negative on failure
932 */
933 static int atl2_set_mac(struct net_device *netdev, void *p)
934 {
935 struct atl2_adapter *adapter = netdev_priv(netdev);
936 struct sockaddr *addr = p;
937
938 if (!is_valid_ether_addr(addr->sa_data))
939 return -EADDRNOTAVAIL;
940
941 if (netif_running(netdev))
942 return -EBUSY;
943
944 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
945 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
946
947 atl2_set_mac_addr(&adapter->hw);
948
949 return 0;
950 }
951
952 /*
953 * atl2_mii_ioctl -
954 * @netdev:
955 * @ifreq:
956 * @cmd:
957 */
958 static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
959 {
960 struct atl2_adapter *adapter = netdev_priv(netdev);
961 struct mii_ioctl_data *data = if_mii(ifr);
962 unsigned long flags;
963
964 switch (cmd) {
965 case SIOCGMIIPHY:
966 data->phy_id = 0;
967 break;
968 case SIOCGMIIREG:
969 if (!capable(CAP_NET_ADMIN))
970 return -EPERM;
971 spin_lock_irqsave(&adapter->stats_lock, flags);
972 if (atl2_read_phy_reg(&adapter->hw,
973 data->reg_num & 0x1F, &data->val_out)) {
974 spin_unlock_irqrestore(&adapter->stats_lock, flags);
975 return -EIO;
976 }
977 spin_unlock_irqrestore(&adapter->stats_lock, flags);
978 break;
979 case SIOCSMIIREG:
980 if (!capable(CAP_NET_ADMIN))
981 return -EPERM;
982 if (data->reg_num & ~(0x1F))
983 return -EFAULT;
984 spin_lock_irqsave(&adapter->stats_lock, flags);
985 if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
986 data->val_in)) {
987 spin_unlock_irqrestore(&adapter->stats_lock, flags);
988 return -EIO;
989 }
990 spin_unlock_irqrestore(&adapter->stats_lock, flags);
991 break;
992 default:
993 return -EOPNOTSUPP;
994 }
995 return 0;
996 }
997
998 /*
999 * atl2_ioctl -
1000 * @netdev:
1001 * @ifreq:
1002 * @cmd:
1003 */
1004 static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1005 {
1006 switch (cmd) {
1007 case SIOCGMIIPHY:
1008 case SIOCGMIIREG:
1009 case SIOCSMIIREG:
1010 return atl2_mii_ioctl(netdev, ifr, cmd);
1011 #ifdef ETHTOOL_OPS_COMPAT
1012 case SIOCETHTOOL:
1013 return ethtool_ioctl(ifr);
1014 #endif
1015 default:
1016 return -EOPNOTSUPP;
1017 }
1018 }
1019
1020 /*
1021 * atl2_tx_timeout - Respond to a Tx Hang
1022 * @netdev: network interface device structure
1023 */
1024 static void atl2_tx_timeout(struct net_device *netdev)
1025 {
1026 struct atl2_adapter *adapter = netdev_priv(netdev);
1027
1028 /* Do the reset outside of interrupt context */
1029 schedule_work(&adapter->reset_task);
1030 }
1031
1032 /*
1033 * atl2_watchdog - Timer Call-back
1034 * @data: pointer to netdev cast into an unsigned long
1035 */
1036 static void atl2_watchdog(unsigned long data)
1037 {
1038 struct atl2_adapter *adapter = (struct atl2_adapter *) data;
1039
1040 if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1041 u32 drop_rxd, drop_rxs;
1042 unsigned long flags;
1043
1044 spin_lock_irqsave(&adapter->stats_lock, flags);
1045 drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
1046 drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
1047 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1048
1049 adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs;
1050
1051 /* Reset the timer */
1052 mod_timer(&adapter->watchdog_timer,
1053 round_jiffies(jiffies + 4 * HZ));
1054 }
1055 }
1056
1057 /*
1058 * atl2_phy_config - Timer Call-back
1059 * @data: pointer to netdev cast into an unsigned long
1060 */
1061 static void atl2_phy_config(unsigned long data)
1062 {
1063 struct atl2_adapter *adapter = (struct atl2_adapter *) data;
1064 struct atl2_hw *hw = &adapter->hw;
1065 unsigned long flags;
1066
1067 spin_lock_irqsave(&adapter->stats_lock, flags);
1068 atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
1069 atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
1070 MII_CR_RESTART_AUTO_NEG);
1071 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1072 clear_bit(0, &adapter->cfg_phy);
1073 }
1074
1075 static int atl2_up(struct atl2_adapter *adapter)
1076 {
1077 struct net_device *netdev = adapter->netdev;
1078 int err = 0;
1079 u32 val;
1080
1081 /* hardware has been reset, we need to reload some things */
1082
1083 err = atl2_init_hw(&adapter->hw);
1084 if (err) {
1085 err = -EIO;
1086 return err;
1087 }
1088
1089 atl2_set_multi(netdev);
1090 init_ring_ptrs(adapter);
1091
1092 #ifdef NETIF_F_HW_VLAN_TX
1093 atl2_restore_vlan(adapter);
1094 #endif
1095
1096 if (atl2_configure(adapter)) {
1097 err = -EIO;
1098 goto err_up;
1099 }
1100
1101 clear_bit(__ATL2_DOWN, &adapter->flags);
1102
1103 val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
1104 ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
1105 MASTER_CTRL_MANUAL_INT);
1106
1107 atl2_irq_enable(adapter);
1108
1109 err_up:
1110 return err;
1111 }
1112
1113 static void atl2_reinit_locked(struct atl2_adapter *adapter)
1114 {
1115 WARN_ON(in_interrupt());
1116 while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1117 msleep(1);
1118 atl2_down(adapter);
1119 atl2_up(adapter);
1120 clear_bit(__ATL2_RESETTING, &adapter->flags);
1121 }
1122
1123 static void atl2_reset_task(struct work_struct *work)
1124 {
1125 struct atl2_adapter *adapter;
1126 adapter = container_of(work, struct atl2_adapter, reset_task);
1127
1128 atl2_reinit_locked(adapter);
1129 }
1130
1131 static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
1132 {
1133 u32 value;
1134 struct atl2_hw *hw = &adapter->hw;
1135 struct net_device *netdev = adapter->netdev;
1136
1137 /* Config MAC CTRL Register */
1138 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1139
1140 /* duplex */
1141 if (FULL_DUPLEX == adapter->link_duplex)
1142 value |= MAC_CTRL_DUPLX;
1143
1144 /* flow control */
1145 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1146
1147 /* PAD & CRC */
1148 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1149
1150 /* preamble length */
1151 value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
1152 MAC_CTRL_PRMLEN_SHIFT);
1153
1154 /* vlan */
1155 if (adapter->vlgrp)
1156 value |= MAC_CTRL_RMV_VLAN;
1157
1158 /* filter mode */
1159 value |= MAC_CTRL_BC_EN;
1160 if (netdev->flags & IFF_PROMISC)
1161 value |= MAC_CTRL_PROMIS_EN;
1162 else if (netdev->flags & IFF_ALLMULTI)
1163 value |= MAC_CTRL_MC_ALL_EN;
1164
1165 /* half retry buffer */
1166 value |= (((u32)(adapter->hw.retry_buf &
1167 MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1168
1169 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1170 }
1171
1172 static int atl2_check_link(struct atl2_adapter *adapter)
1173 {
1174 struct atl2_hw *hw = &adapter->hw;
1175 struct net_device *netdev = adapter->netdev;
1176 int ret_val;
1177 u16 speed, duplex, phy_data;
1178 int reconfig = 0;
1179
1180 /* MII_BMSR must read twise */
1181 atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1182 atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1183 if (!(phy_data&BMSR_LSTATUS)) { /* link down */
1184 if (netif_carrier_ok(netdev)) { /* old link state: Up */
1185 u32 value;
1186 /* disable rx */
1187 value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1188 value &= ~MAC_CTRL_RX_EN;
1189 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1190 adapter->link_speed = SPEED_0;
1191 netif_carrier_off(netdev);
1192 netif_stop_queue(netdev);
1193 }
1194 return 0;
1195 }
1196
1197 /* Link Up */
1198 ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1199 if (ret_val)
1200 return ret_val;
1201 switch (hw->MediaType) {
1202 case MEDIA_TYPE_100M_FULL:
1203 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1204 reconfig = 1;
1205 break;
1206 case MEDIA_TYPE_100M_HALF:
1207 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1208 reconfig = 1;
1209 break;
1210 case MEDIA_TYPE_10M_FULL:
1211 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1212 reconfig = 1;
1213 break;
1214 case MEDIA_TYPE_10M_HALF:
1215 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1216 reconfig = 1;
1217 break;
1218 }
1219 /* link result is our setting */
1220 if (reconfig == 0) {
1221 if (adapter->link_speed != speed ||
1222 adapter->link_duplex != duplex) {
1223 adapter->link_speed = speed;
1224 adapter->link_duplex = duplex;
1225 atl2_setup_mac_ctrl(adapter);
1226 printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
1227 atl2_driver_name, netdev->name,
1228 adapter->link_speed,
1229 adapter->link_duplex == FULL_DUPLEX ?
1230 "Full Duplex" : "Half Duplex");
1231 }
1232
1233 if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
1234 netif_carrier_on(netdev);
1235 netif_wake_queue(netdev);
1236 }
1237 return 0;
1238 }
1239
1240 /* change original link status */
1241 if (netif_carrier_ok(netdev)) {
1242 u32 value;
1243 /* disable rx */
1244 value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1245 value &= ~MAC_CTRL_RX_EN;
1246 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1247
1248 adapter->link_speed = SPEED_0;
1249 netif_carrier_off(netdev);
1250 netif_stop_queue(netdev);
1251 }
1252
1253 /* auto-neg, insert timer to re-config phy
1254 * (if interval smaller than 5 seconds, something strange) */
1255 if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1256 if (!test_and_set_bit(0, &adapter->cfg_phy))
1257 mod_timer(&adapter->phy_config_timer,
1258 round_jiffies(jiffies + 5 * HZ));
1259 }
1260
1261 return 0;
1262 }
1263
1264 /*
1265 * atl2_link_chg_task - deal with link change event Out of interrupt context
1266 * @netdev: network interface device structure
1267 */
1268 static void atl2_link_chg_task(struct work_struct *work)
1269 {
1270 struct atl2_adapter *adapter;
1271 unsigned long flags;
1272
1273 adapter = container_of(work, struct atl2_adapter, link_chg_task);
1274
1275 spin_lock_irqsave(&adapter->stats_lock, flags);
1276 atl2_check_link(adapter);
1277 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1278 }
1279
1280 static void atl2_setup_pcicmd(struct pci_dev *pdev)
1281 {
1282 u16 cmd;
1283
1284 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1285
1286 if (cmd & PCI_COMMAND_INTX_DISABLE)
1287 cmd &= ~PCI_COMMAND_INTX_DISABLE;
1288 if (cmd & PCI_COMMAND_IO)
1289 cmd &= ~PCI_COMMAND_IO;
1290 if (0 == (cmd & PCI_COMMAND_MEMORY))
1291 cmd |= PCI_COMMAND_MEMORY;
1292 if (0 == (cmd & PCI_COMMAND_MASTER))
1293 cmd |= PCI_COMMAND_MASTER;
1294 pci_write_config_word(pdev, PCI_COMMAND, cmd);
1295
1296 /*
1297 * some motherboards BIOS(PXE/EFI) driver may set PME
1298 * while they transfer control to OS (Windows/Linux)
1299 * so we should clear this bit before NIC work normally
1300 */
1301 pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
1302 }
1303
1304 #ifdef CONFIG_NET_POLL_CONTROLLER
1305 static void atl2_poll_controller(struct net_device *netdev)
1306 {
1307 disable_irq(netdev->irq);
1308 atl2_intr(netdev->irq, netdev);
1309 enable_irq(netdev->irq);
1310 }
1311 #endif
1312
1313
1314 static const struct net_device_ops atl2_netdev_ops = {
1315 .ndo_open = atl2_open,
1316 .ndo_stop = atl2_close,
1317 .ndo_start_xmit = atl2_xmit_frame,
1318 .ndo_set_multicast_list = atl2_set_multi,
1319 .ndo_validate_addr = eth_validate_addr,
1320 .ndo_set_mac_address = atl2_set_mac,
1321 .ndo_change_mtu = atl2_change_mtu,
1322 .ndo_do_ioctl = atl2_ioctl,
1323 .ndo_tx_timeout = atl2_tx_timeout,
1324 .ndo_vlan_rx_register = atl2_vlan_rx_register,
1325 #ifdef CONFIG_NET_POLL_CONTROLLER
1326 .ndo_poll_controller = atl2_poll_controller,
1327 #endif
1328 };
1329
1330 /*
1331 * atl2_probe - Device Initialization Routine
1332 * @pdev: PCI device information struct
1333 * @ent: entry in atl2_pci_tbl
1334 *
1335 * Returns 0 on success, negative on failure
1336 *
1337 * atl2_probe initializes an adapter identified by a pci_dev structure.
1338 * The OS initialization, configuring of the adapter private structure,
1339 * and a hardware reset occur.
1340 */
1341 static int __devinit atl2_probe(struct pci_dev *pdev,
1342 const struct pci_device_id *ent)
1343 {
1344 struct net_device *netdev;
1345 struct atl2_adapter *adapter;
1346 static int cards_found;
1347 unsigned long mmio_start;
1348 int mmio_len;
1349 int err;
1350
1351 cards_found = 0;
1352
1353 err = pci_enable_device(pdev);
1354 if (err)
1355 return err;
1356
1357 /*
1358 * atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
1359 * until the kernel has the proper infrastructure to support 64-bit DMA
1360 * on these devices.
1361 */
1362 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) &&
1363 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1364 printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
1365 goto err_dma;
1366 }
1367
1368 /* Mark all PCI regions associated with PCI device
1369 * pdev as being reserved by owner atl2_driver_name */
1370 err = pci_request_regions(pdev, atl2_driver_name);
1371 if (err)
1372 goto err_pci_reg;
1373
1374 /* Enables bus-mastering on the device and calls
1375 * pcibios_set_master to do the needed arch specific settings */
1376 pci_set_master(pdev);
1377
1378 err = -ENOMEM;
1379 netdev = alloc_etherdev(sizeof(struct atl2_adapter));
1380 if (!netdev)
1381 goto err_alloc_etherdev;
1382
1383 SET_NETDEV_DEV(netdev, &pdev->dev);
1384
1385 pci_set_drvdata(pdev, netdev);
1386 adapter = netdev_priv(netdev);
1387 adapter->netdev = netdev;
1388 adapter->pdev = pdev;
1389 adapter->hw.back = adapter;
1390
1391 mmio_start = pci_resource_start(pdev, 0x0);
1392 mmio_len = pci_resource_len(pdev, 0x0);
1393
1394 adapter->hw.mem_rang = (u32)mmio_len;
1395 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1396 if (!adapter->hw.hw_addr) {
1397 err = -EIO;
1398 goto err_ioremap;
1399 }
1400
1401 atl2_setup_pcicmd(pdev);
1402
1403 netdev->netdev_ops = &atl2_netdev_ops;
1404 atl2_set_ethtool_ops(netdev);
1405 netdev->watchdog_timeo = 5 * HZ;
1406 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1407
1408 netdev->mem_start = mmio_start;
1409 netdev->mem_end = mmio_start + mmio_len;
1410 adapter->bd_number = cards_found;
1411 adapter->pci_using_64 = false;
1412
1413 /* setup the private structure */
1414 err = atl2_sw_init(adapter);
1415 if (err)
1416 goto err_sw_init;
1417
1418 err = -EIO;
1419
1420 #ifdef NETIF_F_HW_VLAN_TX
1421 netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
1422 #endif
1423
1424 /* Init PHY as early as possible due to power saving issue */
1425 atl2_phy_init(&adapter->hw);
1426
1427 /* reset the controller to
1428 * put the device in a known good starting state */
1429
1430 if (atl2_reset_hw(&adapter->hw)) {
1431 err = -EIO;
1432 goto err_reset;
1433 }
1434
1435 /* copy the MAC address out of the EEPROM */
1436 atl2_read_mac_addr(&adapter->hw);
1437 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1438 /* FIXME: do we still need this? */
1439 #ifdef ETHTOOL_GPERMADDR
1440 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1441
1442 if (!is_valid_ether_addr(netdev->perm_addr)) {
1443 #else
1444 if (!is_valid_ether_addr(netdev->dev_addr)) {
1445 #endif
1446 err = -EIO;
1447 goto err_eeprom;
1448 }
1449
1450 atl2_check_options(adapter);
1451
1452 init_timer(&adapter->watchdog_timer);
1453 adapter->watchdog_timer.function = &atl2_watchdog;
1454 adapter->watchdog_timer.data = (unsigned long) adapter;
1455
1456 init_timer(&adapter->phy_config_timer);
1457 adapter->phy_config_timer.function = &atl2_phy_config;
1458 adapter->phy_config_timer.data = (unsigned long) adapter;
1459
1460 INIT_WORK(&adapter->reset_task, atl2_reset_task);
1461 INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
1462
1463 strcpy(netdev->name, "eth%d"); /* ?? */
1464 err = register_netdev(netdev);
1465 if (err)
1466 goto err_register;
1467
1468 /* assume we have no link for now */
1469 netif_carrier_off(netdev);
1470 netif_stop_queue(netdev);
1471
1472 cards_found++;
1473
1474 return 0;
1475
1476 err_reset:
1477 err_register:
1478 err_sw_init:
1479 err_eeprom:
1480 iounmap(adapter->hw.hw_addr);
1481 err_ioremap:
1482 free_netdev(netdev);
1483 err_alloc_etherdev:
1484 pci_release_regions(pdev);
1485 err_pci_reg:
1486 err_dma:
1487 pci_disable_device(pdev);
1488 return err;
1489 }
1490
1491 /*
1492 * atl2_remove - Device Removal Routine
1493 * @pdev: PCI device information struct
1494 *
1495 * atl2_remove is called by the PCI subsystem to alert the driver
1496 * that it should release a PCI device. The could be caused by a
1497 * Hot-Plug event, or because the driver is going to be removed from
1498 * memory.
1499 */
1500 /* FIXME: write the original MAC address back in case it was changed from a
1501 * BIOS-set value, as in atl1 -- CHS */
1502 static void __devexit atl2_remove(struct pci_dev *pdev)
1503 {
1504 struct net_device *netdev = pci_get_drvdata(pdev);
1505 struct atl2_adapter *adapter = netdev_priv(netdev);
1506
1507 /* flush_scheduled work may reschedule our watchdog task, so
1508 * explicitly disable watchdog tasks from being rescheduled */
1509 set_bit(__ATL2_DOWN, &adapter->flags);
1510
1511 del_timer_sync(&adapter->watchdog_timer);
1512 del_timer_sync(&adapter->phy_config_timer);
1513
1514 flush_scheduled_work();
1515
1516 unregister_netdev(netdev);
1517
1518 atl2_force_ps(&adapter->hw);
1519
1520 iounmap(adapter->hw.hw_addr);
1521 pci_release_regions(pdev);
1522
1523 free_netdev(netdev);
1524
1525 pci_disable_device(pdev);
1526 }
1527
1528 static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
1529 {
1530 struct net_device *netdev = pci_get_drvdata(pdev);
1531 struct atl2_adapter *adapter = netdev_priv(netdev);
1532 struct atl2_hw *hw = &adapter->hw;
1533 u16 speed, duplex;
1534 u32 ctrl = 0;
1535 u32 wufc = adapter->wol;
1536
1537 #ifdef CONFIG_PM
1538 int retval = 0;
1539 #endif
1540
1541 netif_device_detach(netdev);
1542
1543 if (netif_running(netdev)) {
1544 WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
1545 atl2_down(adapter);
1546 }
1547
1548 #ifdef CONFIG_PM
1549 retval = pci_save_state(pdev);
1550 if (retval)
1551 return retval;
1552 #endif
1553
1554 atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1555 atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1556 if (ctrl & BMSR_LSTATUS)
1557 wufc &= ~ATLX_WUFC_LNKC;
1558
1559 if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
1560 u32 ret_val;
1561 /* get current link speed & duplex */
1562 ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1563 if (ret_val) {
1564 printk(KERN_DEBUG
1565 "%s: get speed&duplex error while suspend\n",
1566 atl2_driver_name);
1567 goto wol_dis;
1568 }
1569
1570 ctrl = 0;
1571
1572 /* turn on magic packet wol */
1573 if (wufc & ATLX_WUFC_MAG)
1574 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
1575
1576 /* ignore Link Chg event when Link is up */
1577 ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1578
1579 /* Config MAC CTRL Register */
1580 ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1581 if (FULL_DUPLEX == adapter->link_duplex)
1582 ctrl |= MAC_CTRL_DUPLX;
1583 ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1584 ctrl |= (((u32)adapter->hw.preamble_len &
1585 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1586 ctrl |= (((u32)(adapter->hw.retry_buf &
1587 MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
1588 MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1589 if (wufc & ATLX_WUFC_MAG) {
1590 /* magic packet maybe Broadcast&multicast&Unicast */
1591 ctrl |= MAC_CTRL_BC_EN;
1592 }
1593
1594 ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
1595
1596 /* pcie patch */
1597 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1598 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1599 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1600 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1601 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1602 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1603
1604 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1605 goto suspend_exit;
1606 }
1607
1608 if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
1609 /* link is down, so only LINK CHG WOL event enable */
1610 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
1611 ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1612 ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
1613
1614 /* pcie patch */
1615 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1616 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1617 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1618 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1619 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1620 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1621
1622 hw->phy_configured = false; /* re-init PHY when resume */
1623
1624 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1625
1626 goto suspend_exit;
1627 }
1628
1629 wol_dis:
1630 /* WOL disabled */
1631 ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
1632
1633 /* pcie patch */
1634 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1635 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1636 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1637 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1638 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1639 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1640
1641 atl2_force_ps(hw);
1642 hw->phy_configured = false; /* re-init PHY when resume */
1643
1644 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
1645
1646 suspend_exit:
1647 if (netif_running(netdev))
1648 atl2_free_irq(adapter);
1649
1650 pci_disable_device(pdev);
1651
1652 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1653
1654 return 0;
1655 }
1656
1657 #ifdef CONFIG_PM
1658 static int atl2_resume(struct pci_dev *pdev)
1659 {
1660 struct net_device *netdev = pci_get_drvdata(pdev);
1661 struct atl2_adapter *adapter = netdev_priv(netdev);
1662 u32 err;
1663
1664 pci_set_power_state(pdev, PCI_D0);
1665 pci_restore_state(pdev);
1666
1667 err = pci_enable_device(pdev);
1668 if (err) {
1669 printk(KERN_ERR
1670 "atl2: Cannot enable PCI device from suspend\n");
1671 return err;
1672 }
1673
1674 pci_set_master(pdev);
1675
1676 ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
1677
1678 pci_enable_wake(pdev, PCI_D3hot, 0);
1679 pci_enable_wake(pdev, PCI_D3cold, 0);
1680
1681 ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
1682
1683 if (netif_running(netdev)) {
1684 err = atl2_request_irq(adapter);
1685 if (err)
1686 return err;
1687 }
1688
1689 atl2_reset_hw(&adapter->hw);
1690
1691 if (netif_running(netdev))
1692 atl2_up(adapter);
1693
1694 netif_device_attach(netdev);
1695
1696 return 0;
1697 }
1698 #endif
1699
1700 static void atl2_shutdown(struct pci_dev *pdev)
1701 {
1702 atl2_suspend(pdev, PMSG_SUSPEND);
1703 }
1704
1705 static struct pci_driver atl2_driver = {
1706 .name = atl2_driver_name,
1707 .id_table = atl2_pci_tbl,
1708 .probe = atl2_probe,
1709 .remove = __devexit_p(atl2_remove),
1710 /* Power Managment Hooks */
1711 .suspend = atl2_suspend,
1712 #ifdef CONFIG_PM
1713 .resume = atl2_resume,
1714 #endif
1715 .shutdown = atl2_shutdown,
1716 };
1717
1718 /*
1719 * atl2_init_module - Driver Registration Routine
1720 *
1721 * atl2_init_module is the first routine called when the driver is
1722 * loaded. All it does is register with the PCI subsystem.
1723 */
1724 static int __init atl2_init_module(void)
1725 {
1726 printk(KERN_INFO "%s - version %s\n", atl2_driver_string,
1727 atl2_driver_version);
1728 printk(KERN_INFO "%s\n", atl2_copyright);
1729 return pci_register_driver(&atl2_driver);
1730 }
1731 module_init(atl2_init_module);
1732
1733 /*
1734 * atl2_exit_module - Driver Exit Cleanup Routine
1735 *
1736 * atl2_exit_module is called just before the driver is removed
1737 * from memory.
1738 */
1739 static void __exit atl2_exit_module(void)
1740 {
1741 pci_unregister_driver(&atl2_driver);
1742 }
1743 module_exit(atl2_exit_module);
1744
1745 static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1746 {
1747 struct atl2_adapter *adapter = hw->back;
1748 pci_read_config_word(adapter->pdev, reg, value);
1749 }
1750
1751 static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1752 {
1753 struct atl2_adapter *adapter = hw->back;
1754 pci_write_config_word(adapter->pdev, reg, *value);
1755 }
1756
1757 static int atl2_get_settings(struct net_device *netdev,
1758 struct ethtool_cmd *ecmd)
1759 {
1760 struct atl2_adapter *adapter = netdev_priv(netdev);
1761 struct atl2_hw *hw = &adapter->hw;
1762
1763 ecmd->supported = (SUPPORTED_10baseT_Half |
1764 SUPPORTED_10baseT_Full |
1765 SUPPORTED_100baseT_Half |
1766 SUPPORTED_100baseT_Full |
1767 SUPPORTED_Autoneg |
1768 SUPPORTED_TP);
1769 ecmd->advertising = ADVERTISED_TP;
1770
1771 ecmd->advertising |= ADVERTISED_Autoneg;
1772 ecmd->advertising |= hw->autoneg_advertised;
1773
1774 ecmd->port = PORT_TP;
1775 ecmd->phy_address = 0;
1776 ecmd->transceiver = XCVR_INTERNAL;
1777
1778 if (adapter->link_speed != SPEED_0) {
1779 ecmd->speed = adapter->link_speed;
1780 if (adapter->link_duplex == FULL_DUPLEX)
1781 ecmd->duplex = DUPLEX_FULL;
1782 else
1783 ecmd->duplex = DUPLEX_HALF;
1784 } else {
1785 ecmd->speed = -1;
1786 ecmd->duplex = -1;
1787 }
1788
1789 ecmd->autoneg = AUTONEG_ENABLE;
1790 return 0;
1791 }
1792
1793 static int atl2_set_settings(struct net_device *netdev,
1794 struct ethtool_cmd *ecmd)
1795 {
1796 struct atl2_adapter *adapter = netdev_priv(netdev);
1797 struct atl2_hw *hw = &adapter->hw;
1798
1799 while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1800 msleep(1);
1801
1802 if (ecmd->autoneg == AUTONEG_ENABLE) {
1803 #define MY_ADV_MASK (ADVERTISE_10_HALF | \
1804 ADVERTISE_10_FULL | \
1805 ADVERTISE_100_HALF| \
1806 ADVERTISE_100_FULL)
1807
1808 if ((ecmd->advertising & MY_ADV_MASK) == MY_ADV_MASK) {
1809 hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
1810 hw->autoneg_advertised = MY_ADV_MASK;
1811 } else if ((ecmd->advertising & MY_ADV_MASK) ==
1812 ADVERTISE_100_FULL) {
1813 hw->MediaType = MEDIA_TYPE_100M_FULL;
1814 hw->autoneg_advertised = ADVERTISE_100_FULL;
1815 } else if ((ecmd->advertising & MY_ADV_MASK) ==
1816 ADVERTISE_100_HALF) {
1817 hw->MediaType = MEDIA_TYPE_100M_HALF;
1818 hw->autoneg_advertised = ADVERTISE_100_HALF;
1819 } else if ((ecmd->advertising & MY_ADV_MASK) ==
1820 ADVERTISE_10_FULL) {
1821 hw->MediaType = MEDIA_TYPE_10M_FULL;
1822 hw->autoneg_advertised = ADVERTISE_10_FULL;
1823 } else if ((ecmd->advertising & MY_ADV_MASK) ==
1824 ADVERTISE_10_HALF) {
1825 hw->MediaType = MEDIA_TYPE_10M_HALF;
1826 hw->autoneg_advertised = ADVERTISE_10_HALF;
1827 } else {
1828 clear_bit(__ATL2_RESETTING, &adapter->flags);
1829 return -EINVAL;
1830 }
1831 ecmd->advertising = hw->autoneg_advertised |
1832 ADVERTISED_TP | ADVERTISED_Autoneg;
1833 } else {
1834 clear_bit(__ATL2_RESETTING, &adapter->flags);
1835 return -EINVAL;
1836 }
1837
1838 /* reset the link */
1839 if (netif_running(adapter->netdev)) {
1840 atl2_down(adapter);
1841 atl2_up(adapter);
1842 } else
1843 atl2_reset_hw(&adapter->hw);
1844
1845 clear_bit(__ATL2_RESETTING, &adapter->flags);
1846 return 0;
1847 }
1848
1849 static u32 atl2_get_tx_csum(struct net_device *netdev)
1850 {
1851 return (netdev->features & NETIF_F_HW_CSUM) != 0;
1852 }
1853
1854 static u32 atl2_get_msglevel(struct net_device *netdev)
1855 {
1856 return 0;
1857 }
1858
1859 /*
1860 * It's sane for this to be empty, but we might want to take advantage of this.
1861 */
1862 static void atl2_set_msglevel(struct net_device *netdev, u32 data)
1863 {
1864 }
1865
1866 static int atl2_get_regs_len(struct net_device *netdev)
1867 {
1868 #define ATL2_REGS_LEN 42
1869 return sizeof(u32) * ATL2_REGS_LEN;
1870 }
1871
1872 static void atl2_get_regs(struct net_device *netdev,
1873 struct ethtool_regs *regs, void *p)
1874 {
1875 struct atl2_adapter *adapter = netdev_priv(netdev);
1876 struct atl2_hw *hw = &adapter->hw;
1877 u32 *regs_buff = p;
1878 u16 phy_data;
1879
1880 memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
1881
1882 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
1883
1884 regs_buff[0] = ATL2_READ_REG(hw, REG_VPD_CAP);
1885 regs_buff[1] = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
1886 regs_buff[2] = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
1887 regs_buff[3] = ATL2_READ_REG(hw, REG_TWSI_CTRL);
1888 regs_buff[4] = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
1889 regs_buff[5] = ATL2_READ_REG(hw, REG_MASTER_CTRL);
1890 regs_buff[6] = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
1891 regs_buff[7] = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
1892 regs_buff[8] = ATL2_READ_REG(hw, REG_PHY_ENABLE);
1893 regs_buff[9] = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
1894 regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
1895 regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
1896 regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
1897 regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
1898 regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
1899 regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
1900 regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
1901 regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
1902 regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
1903 regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
1904 regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
1905 regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
1906 regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
1907 regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
1908 regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
1909 regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
1910 regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
1911 regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
1912 regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
1913 regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
1914 regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
1915 regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
1916 regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
1917 regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
1918 regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
1919 regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
1920 regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
1921 regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
1922 regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
1923
1924 atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
1925 regs_buff[40] = (u32)phy_data;
1926 atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1927 regs_buff[41] = (u32)phy_data;
1928 }
1929
1930 static int atl2_get_eeprom_len(struct net_device *netdev)
1931 {
1932 struct atl2_adapter *adapter = netdev_priv(netdev);
1933
1934 if (!atl2_check_eeprom_exist(&adapter->hw))
1935 return 512;
1936 else
1937 return 0;
1938 }
1939
1940 static int atl2_get_eeprom(struct net_device *netdev,
1941 struct ethtool_eeprom *eeprom, u8 *bytes)
1942 {
1943 struct atl2_adapter *adapter = netdev_priv(netdev);
1944 struct atl2_hw *hw = &adapter->hw;
1945 u32 *eeprom_buff;
1946 int first_dword, last_dword;
1947 int ret_val = 0;
1948 int i;
1949
1950 if (eeprom->len == 0)
1951 return -EINVAL;
1952
1953 if (atl2_check_eeprom_exist(hw))
1954 return -EINVAL;
1955
1956 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
1957
1958 first_dword = eeprom->offset >> 2;
1959 last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1960
1961 eeprom_buff = kmalloc(sizeof(u32) * (last_dword - first_dword + 1),
1962 GFP_KERNEL);
1963 if (!eeprom_buff)
1964 return -ENOMEM;
1965
1966 for (i = first_dword; i < last_dword; i++) {
1967 if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword])))
1968 return -EIO;
1969 }
1970
1971 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
1972 eeprom->len);
1973 kfree(eeprom_buff);
1974
1975 return ret_val;
1976 }
1977
1978 static int atl2_set_eeprom(struct net_device *netdev,
1979 struct ethtool_eeprom *eeprom, u8 *bytes)
1980 {
1981 struct atl2_adapter *adapter = netdev_priv(netdev);
1982 struct atl2_hw *hw = &adapter->hw;
1983 u32 *eeprom_buff;
1984 u32 *ptr;
1985 int max_len, first_dword, last_dword, ret_val = 0;
1986 int i;
1987
1988 if (eeprom->len == 0)
1989 return -EOPNOTSUPP;
1990
1991 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
1992 return -EFAULT;
1993
1994 max_len = 512;
1995
1996 first_dword = eeprom->offset >> 2;
1997 last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1998 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1999 if (!eeprom_buff)
2000 return -ENOMEM;
2001
2002 ptr = (u32 *)eeprom_buff;
2003
2004 if (eeprom->offset & 3) {
2005 /* need read/modify/write of first changed EEPROM word */
2006 /* only the second byte of the word is being modified */
2007 if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0])))
2008 return -EIO;
2009 ptr++;
2010 }
2011 if (((eeprom->offset + eeprom->len) & 3)) {
2012 /*
2013 * need read/modify/write of last changed EEPROM word
2014 * only the first byte of the word is being modified
2015 */
2016 if (!atl2_read_eeprom(hw, last_dword * 4,
2017 &(eeprom_buff[last_dword - first_dword])))
2018 return -EIO;
2019 }
2020
2021 /* Device's eeprom is always little-endian, word addressable */
2022 memcpy(ptr, bytes, eeprom->len);
2023
2024 for (i = 0; i < last_dword - first_dword + 1; i++) {
2025 if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i]))
2026 return -EIO;
2027 }
2028
2029 kfree(eeprom_buff);
2030 return ret_val;
2031 }
2032
2033 static void atl2_get_drvinfo(struct net_device *netdev,
2034 struct ethtool_drvinfo *drvinfo)
2035 {
2036 struct atl2_adapter *adapter = netdev_priv(netdev);
2037
2038 strncpy(drvinfo->driver, atl2_driver_name, 32);
2039 strncpy(drvinfo->version, atl2_driver_version, 32);
2040 strncpy(drvinfo->fw_version, "L2", 32);
2041 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
2042 drvinfo->n_stats = 0;
2043 drvinfo->testinfo_len = 0;
2044 drvinfo->regdump_len = atl2_get_regs_len(netdev);
2045 drvinfo->eedump_len = atl2_get_eeprom_len(netdev);
2046 }
2047
2048 static void atl2_get_wol(struct net_device *netdev,
2049 struct ethtool_wolinfo *wol)
2050 {
2051 struct atl2_adapter *adapter = netdev_priv(netdev);
2052
2053 wol->supported = WAKE_MAGIC;
2054 wol->wolopts = 0;
2055
2056 if (adapter->wol & ATLX_WUFC_EX)
2057 wol->wolopts |= WAKE_UCAST;
2058 if (adapter->wol & ATLX_WUFC_MC)
2059 wol->wolopts |= WAKE_MCAST;
2060 if (adapter->wol & ATLX_WUFC_BC)
2061 wol->wolopts |= WAKE_BCAST;
2062 if (adapter->wol & ATLX_WUFC_MAG)
2063 wol->wolopts |= WAKE_MAGIC;
2064 if (adapter->wol & ATLX_WUFC_LNKC)
2065 wol->wolopts |= WAKE_PHY;
2066 }
2067
2068 static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2069 {
2070 struct atl2_adapter *adapter = netdev_priv(netdev);
2071
2072 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2073 return -EOPNOTSUPP;
2074
2075 if (wol->wolopts & (WAKE_UCAST | WAKE_BCAST | WAKE_MCAST))
2076 return -EOPNOTSUPP;
2077
2078 /* these settings will always override what we currently have */
2079 adapter->wol = 0;
2080
2081 if (wol->wolopts & WAKE_MAGIC)
2082 adapter->wol |= ATLX_WUFC_MAG;
2083 if (wol->wolopts & WAKE_PHY)
2084 adapter->wol |= ATLX_WUFC_LNKC;
2085
2086 return 0;
2087 }
2088
2089 static int atl2_nway_reset(struct net_device *netdev)
2090 {
2091 struct atl2_adapter *adapter = netdev_priv(netdev);
2092 if (netif_running(netdev))
2093 atl2_reinit_locked(adapter);
2094 return 0;
2095 }
2096
2097 static struct ethtool_ops atl2_ethtool_ops = {
2098 .get_settings = atl2_get_settings,
2099 .set_settings = atl2_set_settings,
2100 .get_drvinfo = atl2_get_drvinfo,
2101 .get_regs_len = atl2_get_regs_len,
2102 .get_regs = atl2_get_regs,
2103 .get_wol = atl2_get_wol,
2104 .set_wol = atl2_set_wol,
2105 .get_msglevel = atl2_get_msglevel,
2106 .set_msglevel = atl2_set_msglevel,
2107 .nway_reset = atl2_nway_reset,
2108 .get_link = ethtool_op_get_link,
2109 .get_eeprom_len = atl2_get_eeprom_len,
2110 .get_eeprom = atl2_get_eeprom,
2111 .set_eeprom = atl2_set_eeprom,
2112 .get_tx_csum = atl2_get_tx_csum,
2113 .get_sg = ethtool_op_get_sg,
2114 .set_sg = ethtool_op_set_sg,
2115 #ifdef NETIF_F_TSO
2116 .get_tso = ethtool_op_get_tso,
2117 #endif
2118 };
2119
2120 static void atl2_set_ethtool_ops(struct net_device *netdev)
2121 {
2122 SET_ETHTOOL_OPS(netdev, &atl2_ethtool_ops);
2123 }
2124
2125 #define LBYTESWAP(a) ((((a) & 0x00ff00ff) << 8) | \
2126 (((a) & 0xff00ff00) >> 8))
2127 #define LONGSWAP(a) ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
2128 #define SHORTSWAP(a) (((a) << 8) | ((a) >> 8))
2129
2130 /*
2131 * Reset the transmit and receive units; mask and clear all interrupts.
2132 *
2133 * hw - Struct containing variables accessed by shared code
2134 * return : 0 or idle status (if error)
2135 */
2136 static s32 atl2_reset_hw(struct atl2_hw *hw)
2137 {
2138 u32 icr;
2139 u16 pci_cfg_cmd_word;
2140 int i;
2141
2142 /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
2143 atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2144 if ((pci_cfg_cmd_word &
2145 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
2146 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
2147 pci_cfg_cmd_word |=
2148 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
2149 atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2150 }
2151
2152 /* Clear Interrupt mask to stop board from generating
2153 * interrupts & Clear any pending interrupt events
2154 */
2155 /* FIXME */
2156 /* ATL2_WRITE_REG(hw, REG_IMR, 0); */
2157 /* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
2158
2159 /* Issue Soft Reset to the MAC. This will reset the chip's
2160 * transmit, receive, DMA. It will not effect
2161 * the current PCI configuration. The global reset bit is self-
2162 * clearing, and should clear within a microsecond.
2163 */
2164 ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
2165 wmb();
2166 msleep(1); /* delay about 1ms */
2167
2168 /* Wait at least 10ms for All module to be Idle */
2169 for (i = 0; i < 10; i++) {
2170 icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
2171 if (!icr)
2172 break;
2173 msleep(1); /* delay 1 ms */
2174 cpu_relax();
2175 }
2176
2177 if (icr)
2178 return icr;
2179
2180 return 0;
2181 }
2182
2183 #define CUSTOM_SPI_CS_SETUP 2
2184 #define CUSTOM_SPI_CLK_HI 2
2185 #define CUSTOM_SPI_CLK_LO 2
2186 #define CUSTOM_SPI_CS_HOLD 2
2187 #define CUSTOM_SPI_CS_HI 3
2188
2189 static struct atl2_spi_flash_dev flash_table[] =
2190 {
2191 /* MFR WRSR READ PROGRAM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */
2192 {"Atmel", 0x0, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 },
2193 {"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 },
2194 {"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7 },
2195 };
2196
2197 static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
2198 {
2199 int i;
2200 u32 value;
2201
2202 ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
2203 ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
2204
2205 value = SPI_FLASH_CTRL_WAIT_READY |
2206 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
2207 SPI_FLASH_CTRL_CS_SETUP_SHIFT |
2208 (CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
2209 SPI_FLASH_CTRL_CLK_HI_SHIFT |
2210 (CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
2211 SPI_FLASH_CTRL_CLK_LO_SHIFT |
2212 (CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
2213 SPI_FLASH_CTRL_CS_HOLD_SHIFT |
2214 (CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
2215 SPI_FLASH_CTRL_CS_HI_SHIFT |
2216 (0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
2217
2218 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2219
2220 value |= SPI_FLASH_CTRL_START;
2221
2222 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2223
2224 for (i = 0; i < 10; i++) {
2225 msleep(1);
2226 value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2227 if (!(value & SPI_FLASH_CTRL_START))
2228 break;
2229 }
2230
2231 if (value & SPI_FLASH_CTRL_START)
2232 return false;
2233
2234 *buf = ATL2_READ_REG(hw, REG_SPI_DATA);
2235
2236 return true;
2237 }
2238
2239 /*
2240 * get_permanent_address
2241 * return 0 if get valid mac address,
2242 */
2243 static int get_permanent_address(struct atl2_hw *hw)
2244 {
2245 u32 Addr[2];
2246 u32 i, Control;
2247 u16 Register;
2248 u8 EthAddr[NODE_ADDRESS_SIZE];
2249 bool KeyValid;
2250
2251 if (is_valid_ether_addr(hw->perm_mac_addr))
2252 return 0;
2253
2254 Addr[0] = 0;
2255 Addr[1] = 0;
2256
2257 if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
2258 Register = 0;
2259 KeyValid = false;
2260
2261 /* Read out all EEPROM content */
2262 i = 0;
2263 while (1) {
2264 if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
2265 if (KeyValid) {
2266 if (Register == REG_MAC_STA_ADDR)
2267 Addr[0] = Control;
2268 else if (Register ==
2269 (REG_MAC_STA_ADDR + 4))
2270 Addr[1] = Control;
2271 KeyValid = false;
2272 } else if ((Control & 0xff) == 0x5A) {
2273 KeyValid = true;
2274 Register = (u16) (Control >> 16);
2275 } else {
2276 /* assume data end while encount an invalid KEYWORD */
2277 break;
2278 }
2279 } else {
2280 break; /* read error */
2281 }
2282 i += 4;
2283 }
2284
2285 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2286 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2287
2288 if (is_valid_ether_addr(EthAddr)) {
2289 memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
2290 return 0;
2291 }
2292 return 1;
2293 }
2294
2295 /* see if SPI flash exists? */
2296 Addr[0] = 0;
2297 Addr[1] = 0;
2298 Register = 0;
2299 KeyValid = false;
2300 i = 0;
2301 while (1) {
2302 if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
2303 if (KeyValid) {
2304 if (Register == REG_MAC_STA_ADDR)
2305 Addr[0] = Control;
2306 else if (Register == (REG_MAC_STA_ADDR + 4))
2307 Addr[1] = Control;
2308 KeyValid = false;
2309 } else if ((Control & 0xff) == 0x5A) {
2310 KeyValid = true;
2311 Register = (u16) (Control >> 16);
2312 } else {
2313 break; /* data end */
2314 }
2315 } else {
2316 break; /* read error */
2317 }
2318 i += 4;
2319 }
2320
2321 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2322 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
2323 if (is_valid_ether_addr(EthAddr)) {
2324 memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
2325 return 0;
2326 }
2327 /* maybe MAC-address is from BIOS */
2328 Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
2329 Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
2330 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2331 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2332
2333 if (is_valid_ether_addr(EthAddr)) {
2334 memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
2335 return 0;
2336 }
2337
2338 return 1;
2339 }
2340
2341 /*
2342 * Reads the adapter's MAC address from the EEPROM
2343 *
2344 * hw - Struct containing variables accessed by shared code
2345 */
2346 static s32 atl2_read_mac_addr(struct atl2_hw *hw)
2347 {
2348 u16 i;
2349
2350 if (get_permanent_address(hw)) {
2351 /* for test */
2352 /* FIXME: shouldn't we use random_ether_addr() here? */
2353 hw->perm_mac_addr[0] = 0x00;
2354 hw->perm_mac_addr[1] = 0x13;
2355 hw->perm_mac_addr[2] = 0x74;
2356 hw->perm_mac_addr[3] = 0x00;
2357 hw->perm_mac_addr[4] = 0x5c;
2358 hw->perm_mac_addr[5] = 0x38;
2359 }
2360
2361 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
2362 hw->mac_addr[i] = hw->perm_mac_addr[i];
2363
2364 return 0;
2365 }
2366
2367 /*
2368 * Hashes an address to determine its location in the multicast table
2369 *
2370 * hw - Struct containing variables accessed by shared code
2371 * mc_addr - the multicast address to hash
2372 *
2373 * atl2_hash_mc_addr
2374 * purpose
2375 * set hash value for a multicast address
2376 * hash calcu processing :
2377 * 1. calcu 32bit CRC for multicast address
2378 * 2. reverse crc with MSB to LSB
2379 */
2380 static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
2381 {
2382 u32 crc32, value;
2383 int i;
2384
2385 value = 0;
2386 crc32 = ether_crc_le(6, mc_addr);
2387
2388 for (i = 0; i < 32; i++)
2389 value |= (((crc32 >> i) & 1) << (31 - i));
2390
2391 return value;
2392 }
2393
2394 /*
2395 * Sets the bit in the multicast table corresponding to the hash value.
2396 *
2397 * hw - Struct containing variables accessed by shared code
2398 * hash_value - Multicast address hash value
2399 */
2400 static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
2401 {
2402 u32 hash_bit, hash_reg;
2403 u32 mta;
2404
2405 /* The HASH Table is a register array of 2 32-bit registers.
2406 * It is treated like an array of 64 bits. We want to set
2407 * bit BitArray[hash_value]. So we figure out what register
2408 * the bit is in, read it, OR in the new bit, then write
2409 * back the new value. The register is determined by the
2410 * upper 7 bits of the hash value and the bit within that
2411 * register are determined by the lower 5 bits of the value.
2412 */
2413 hash_reg = (hash_value >> 31) & 0x1;
2414 hash_bit = (hash_value >> 26) & 0x1F;
2415
2416 mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
2417
2418 mta |= (1 << hash_bit);
2419
2420 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
2421 }
2422
2423 /*
2424 * atl2_init_pcie - init PCIE module
2425 */
2426 static void atl2_init_pcie(struct atl2_hw *hw)
2427 {
2428 u32 value;
2429 value = LTSSM_TEST_MODE_DEF;
2430 ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
2431
2432 value = PCIE_DLL_TX_CTRL1_DEF;
2433 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
2434 }
2435
2436 static void atl2_init_flash_opcode(struct atl2_hw *hw)
2437 {
2438 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
2439 hw->flash_vendor = 0; /* ATMEL */
2440
2441 /* Init OP table */
2442 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
2443 flash_table[hw->flash_vendor].cmdPROGRAM);
2444 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
2445 flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
2446 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
2447 flash_table[hw->flash_vendor].cmdCHIP_ERASE);
2448 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
2449 flash_table[hw->flash_vendor].cmdRDID);
2450 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
2451 flash_table[hw->flash_vendor].cmdWREN);
2452 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
2453 flash_table[hw->flash_vendor].cmdRDSR);
2454 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
2455 flash_table[hw->flash_vendor].cmdWRSR);
2456 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
2457 flash_table[hw->flash_vendor].cmdREAD);
2458 }
2459
2460 /********************************************************************
2461 * Performs basic configuration of the adapter.
2462 *
2463 * hw - Struct containing variables accessed by shared code
2464 * Assumes that the controller has previously been reset and is in a
2465 * post-reset uninitialized state. Initializes multicast table,
2466 * and Calls routines to setup link
2467 * Leaves the transmit and receive units disabled and uninitialized.
2468 ********************************************************************/
2469 static s32 atl2_init_hw(struct atl2_hw *hw)
2470 {
2471 u32 ret_val = 0;
2472
2473 atl2_init_pcie(hw);
2474
2475 /* Zero out the Multicast HASH table */
2476 /* clear the old settings from the multicast hash table */
2477 ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
2478 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
2479
2480 atl2_init_flash_opcode(hw);
2481
2482 ret_val = atl2_phy_init(hw);
2483
2484 return ret_val;
2485 }
2486
2487 /*
2488 * Detects the current speed and duplex settings of the hardware.
2489 *
2490 * hw - Struct containing variables accessed by shared code
2491 * speed - Speed of the connection
2492 * duplex - Duplex setting of the connection
2493 */
2494 static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
2495 u16 *duplex)
2496 {
2497 s32 ret_val;
2498 u16 phy_data;
2499
2500 /* Read PHY Specific Status Register (17) */
2501 ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
2502 if (ret_val)
2503 return ret_val;
2504
2505 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
2506 return ATLX_ERR_PHY_RES;
2507
2508 switch (phy_data & MII_ATLX_PSSR_SPEED) {
2509 case MII_ATLX_PSSR_100MBS:
2510 *speed = SPEED_100;
2511 break;
2512 case MII_ATLX_PSSR_10MBS:
2513 *speed = SPEED_10;
2514 break;
2515 default:
2516 return ATLX_ERR_PHY_SPEED;
2517 break;
2518 }
2519
2520 if (phy_data & MII_ATLX_PSSR_DPLX)
2521 *duplex = FULL_DUPLEX;
2522 else
2523 *duplex = HALF_DUPLEX;
2524
2525 return 0;
2526 }
2527
2528 /*
2529 * Reads the value from a PHY register
2530 * hw - Struct containing variables accessed by shared code
2531 * reg_addr - address of the PHY register to read
2532 */
2533 static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
2534 {
2535 u32 val;
2536 int i;
2537
2538 val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
2539 MDIO_START |
2540 MDIO_SUP_PREAMBLE |
2541 MDIO_RW |
2542 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2543 ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2544
2545 wmb();
2546
2547 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2548 udelay(2);
2549 val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2550 if (!(val & (MDIO_START | MDIO_BUSY)))
2551 break;
2552 wmb();
2553 }
2554 if (!(val & (MDIO_START | MDIO_BUSY))) {
2555 *phy_data = (u16)val;
2556 return 0;
2557 }
2558
2559 return ATLX_ERR_PHY;
2560 }
2561
2562 /*
2563 * Writes a value to a PHY register
2564 * hw - Struct containing variables accessed by shared code
2565 * reg_addr - address of the PHY register to write
2566 * data - data to write to the PHY
2567 */
2568 static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
2569 {
2570 int i;
2571 u32 val;
2572
2573 val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
2574 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
2575 MDIO_SUP_PREAMBLE |
2576 MDIO_START |
2577 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2578 ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2579
2580 wmb();
2581
2582 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2583 udelay(2);
2584 val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2585 if (!(val & (MDIO_START | MDIO_BUSY)))
2586 break;
2587
2588 wmb();
2589 }
2590
2591 if (!(val & (MDIO_START | MDIO_BUSY)))
2592 return 0;
2593
2594 return ATLX_ERR_PHY;
2595 }
2596
2597 /*
2598 * Configures PHY autoneg and flow control advertisement settings
2599 *
2600 * hw - Struct containing variables accessed by shared code
2601 */
2602 static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
2603 {
2604 s32 ret_val;
2605 s16 mii_autoneg_adv_reg;
2606
2607 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2608 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
2609
2610 /* Need to parse autoneg_advertised and set up
2611 * the appropriate PHY registers. First we will parse for
2612 * autoneg_advertised software override. Since we can advertise
2613 * a plethora of combinations, we need to check each bit
2614 * individually.
2615 */
2616
2617 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2618 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2619 * the 1000Base-T Control Register (Address 9). */
2620 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
2621
2622 /* Need to parse MediaType and setup the
2623 * appropriate PHY registers. */
2624 switch (hw->MediaType) {
2625 case MEDIA_TYPE_AUTO_SENSOR:
2626 mii_autoneg_adv_reg |=
2627 (MII_AR_10T_HD_CAPS |
2628 MII_AR_10T_FD_CAPS |
2629 MII_AR_100TX_HD_CAPS|
2630 MII_AR_100TX_FD_CAPS);
2631 hw->autoneg_advertised =
2632 ADVERTISE_10_HALF |
2633 ADVERTISE_10_FULL |
2634 ADVERTISE_100_HALF|
2635 ADVERTISE_100_FULL;
2636 break;
2637 case MEDIA_TYPE_100M_FULL:
2638 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
2639 hw->autoneg_advertised = ADVERTISE_100_FULL;
2640 break;
2641 case MEDIA_TYPE_100M_HALF:
2642 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
2643 hw->autoneg_advertised = ADVERTISE_100_HALF;
2644 break;
2645 case MEDIA_TYPE_10M_FULL:
2646 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
2647 hw->autoneg_advertised = ADVERTISE_10_FULL;
2648 break;
2649 default:
2650 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
2651 hw->autoneg_advertised = ADVERTISE_10_HALF;
2652 break;
2653 }
2654
2655 /* flow control fixed to enable all */
2656 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
2657
2658 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
2659
2660 ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
2661
2662 if (ret_val)
2663 return ret_val;
2664
2665 return 0;
2666 }
2667
2668 /*
2669 * Resets the PHY and make all config validate
2670 *
2671 * hw - Struct containing variables accessed by shared code
2672 *
2673 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
2674 */
2675 static s32 atl2_phy_commit(struct atl2_hw *hw)
2676 {
2677 s32 ret_val;
2678 u16 phy_data;
2679
2680 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2681 ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
2682 if (ret_val) {
2683 u32 val;
2684 int i;
2685 /* pcie serdes link may be down ! */
2686 for (i = 0; i < 25; i++) {
2687 msleep(1);
2688 val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2689 if (!(val & (MDIO_START | MDIO_BUSY)))
2690 break;
2691 }
2692
2693 if (0 != (val & (MDIO_START | MDIO_BUSY))) {
2694 printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
2695 return ret_val;
2696 }
2697 }
2698 return 0;
2699 }
2700
2701 static s32 atl2_phy_init(struct atl2_hw *hw)
2702 {
2703 s32 ret_val;
2704 u16 phy_val;
2705
2706 if (hw->phy_configured)
2707 return 0;
2708
2709 /* Enable PHY */
2710 ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
2711 ATL2_WRITE_FLUSH(hw);
2712 msleep(1);
2713
2714 /* check if the PHY is in powersaving mode */
2715 atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2716 atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2717
2718 /* 024E / 124E 0r 0274 / 1274 ? */
2719 if (phy_val & 0x1000) {
2720 phy_val &= ~0x1000;
2721 atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
2722 }
2723
2724 msleep(1);
2725
2726 /*Enable PHY LinkChange Interrupt */
2727 ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
2728 if (ret_val)
2729 return ret_val;
2730
2731 /* setup AutoNeg parameters */
2732 ret_val = atl2_phy_setup_autoneg_adv(hw);
2733 if (ret_val)
2734 return ret_val;
2735
2736 /* SW.Reset & En-Auto-Neg to restart Auto-Neg */
2737 ret_val = atl2_phy_commit(hw);
2738 if (ret_val)
2739 return ret_val;
2740
2741 hw->phy_configured = true;
2742
2743 return ret_val;
2744 }
2745
2746 static void atl2_set_mac_addr(struct atl2_hw *hw)
2747 {
2748 u32 value;
2749 /* 00-0B-6A-F6-00-DC
2750 * 0: 6AF600DC 1: 000B
2751 * low dword */
2752 value = (((u32)hw->mac_addr[2]) << 24) |
2753 (((u32)hw->mac_addr[3]) << 16) |
2754 (((u32)hw->mac_addr[4]) << 8) |
2755 (((u32)hw->mac_addr[5]));
2756 ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
2757 /* hight dword */
2758 value = (((u32)hw->mac_addr[0]) << 8) |
2759 (((u32)hw->mac_addr[1]));
2760 ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
2761 }
2762
2763 /*
2764 * check_eeprom_exist
2765 * return 0 if eeprom exist
2766 */
2767 static int atl2_check_eeprom_exist(struct atl2_hw *hw)
2768 {
2769 u32 value;
2770
2771 value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2772 if (value & SPI_FLASH_CTRL_EN_VPD) {
2773 value &= ~SPI_FLASH_CTRL_EN_VPD;
2774 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2775 }
2776 value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
2777 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
2778 }
2779
2780 /* FIXME: This doesn't look right. -- CHS */
2781 static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
2782 {
2783 return true;
2784 }
2785
2786 static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
2787 {
2788 int i;
2789 u32 Control;
2790
2791 if (Offset & 0x3)
2792 return false; /* address do not align */
2793
2794 ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
2795 Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
2796 ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
2797
2798 for (i = 0; i < 10; i++) {
2799 msleep(2);
2800 Control = ATL2_READ_REG(hw, REG_VPD_CAP);
2801 if (Control & VPD_CAP_VPD_FLAG)
2802 break;
2803 }
2804
2805 if (Control & VPD_CAP_VPD_FLAG) {
2806 *pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
2807 return true;
2808 }
2809 return false; /* timeout */
2810 }
2811
2812 static void atl2_force_ps(struct atl2_hw *hw)
2813 {
2814 u16 phy_val;
2815
2816 atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2817 atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2818 atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
2819
2820 atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
2821 atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
2822 atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
2823 atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
2824 }
2825
2826 /* This is the only thing that needs to be changed to adjust the
2827 * maximum number of ports that the driver can manage.
2828 */
2829 #define ATL2_MAX_NIC 4
2830
2831 #define OPTION_UNSET -1
2832 #define OPTION_DISABLED 0
2833 #define OPTION_ENABLED 1
2834
2835 /* All parameters are treated the same, as an integer array of values.
2836 * This macro just reduces the need to repeat the same declaration code
2837 * over and over (plus this helps to avoid typo bugs).
2838 */
2839 #define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
2840 #ifndef module_param_array
2841 /* Module Parameters are always initialized to -1, so that the driver
2842 * can tell the difference between no user specified value or the
2843 * user asking for the default value.
2844 * The true default values are loaded in when atl2_check_options is called.
2845 *
2846 * This is a GCC extension to ANSI C.
2847 * See the item "Labeled Elements in Initializers" in the section
2848 * "Extensions to the C Language Family" of the GCC documentation.
2849 */
2850
2851 #define ATL2_PARAM(X, desc) \
2852 static const int __devinitdata X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
2853 MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
2854 MODULE_PARM_DESC(X, desc);
2855 #else
2856 #define ATL2_PARAM(X, desc) \
2857 static int __devinitdata X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
2858 static unsigned int num_##X; \
2859 module_param_array_named(X, X, int, &num_##X, 0); \
2860 MODULE_PARM_DESC(X, desc);
2861 #endif
2862
2863 /*
2864 * Transmit Memory Size
2865 * Valid Range: 64-2048
2866 * Default Value: 128
2867 */
2868 #define ATL2_MIN_TX_MEMSIZE 4 /* 4KB */
2869 #define ATL2_MAX_TX_MEMSIZE 64 /* 64KB */
2870 #define ATL2_DEFAULT_TX_MEMSIZE 8 /* 8KB */
2871 ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
2872
2873 /*
2874 * Receive Memory Block Count
2875 * Valid Range: 16-512
2876 * Default Value: 128
2877 */
2878 #define ATL2_MIN_RXD_COUNT 16
2879 #define ATL2_MAX_RXD_COUNT 512
2880 #define ATL2_DEFAULT_RXD_COUNT 64
2881 ATL2_PARAM(RxMemBlock, "Number of receive memory block");
2882
2883 /*
2884 * User Specified MediaType Override
2885 *
2886 * Valid Range: 0-5
2887 * - 0 - auto-negotiate at all supported speeds
2888 * - 1 - only link at 1000Mbps Full Duplex
2889 * - 2 - only link at 100Mbps Full Duplex
2890 * - 3 - only link at 100Mbps Half Duplex
2891 * - 4 - only link at 10Mbps Full Duplex
2892 * - 5 - only link at 10Mbps Half Duplex
2893 * Default Value: 0
2894 */
2895 ATL2_PARAM(MediaType, "MediaType Select");
2896
2897 /*
2898 * Interrupt Moderate Timer in units of 2048 ns (~2 us)
2899 * Valid Range: 10-65535
2900 * Default Value: 45000(90ms)
2901 */
2902 #define INT_MOD_DEFAULT_CNT 100 /* 200us */
2903 #define INT_MOD_MAX_CNT 65000
2904 #define INT_MOD_MIN_CNT 50
2905 ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
2906
2907 /*
2908 * FlashVendor
2909 * Valid Range: 0-2
2910 * 0 - Atmel
2911 * 1 - SST
2912 * 2 - ST
2913 */
2914 ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
2915
2916 #define AUTONEG_ADV_DEFAULT 0x2F
2917 #define AUTONEG_ADV_MASK 0x2F
2918 #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
2919
2920 #define FLASH_VENDOR_DEFAULT 0
2921 #define FLASH_VENDOR_MIN 0
2922 #define FLASH_VENDOR_MAX 2
2923
2924 struct atl2_option {
2925 enum { enable_option, range_option, list_option } type;
2926 char *name;
2927 char *err;
2928 int def;
2929 union {
2930 struct { /* range_option info */
2931 int min;
2932 int max;
2933 } r;
2934 struct { /* list_option info */
2935 int nr;
2936 struct atl2_opt_list { int i; char *str; } *p;
2937 } l;
2938 } arg;
2939 };
2940
2941 static int __devinit atl2_validate_option(int *value, struct atl2_option *opt)
2942 {
2943 int i;
2944 struct atl2_opt_list *ent;
2945
2946 if (*value == OPTION_UNSET) {
2947 *value = opt->def;
2948 return 0;
2949 }
2950
2951 switch (opt->type) {
2952 case enable_option:
2953 switch (*value) {
2954 case OPTION_ENABLED:
2955 printk(KERN_INFO "%s Enabled\n", opt->name);
2956 return 0;
2957 break;
2958 case OPTION_DISABLED:
2959 printk(KERN_INFO "%s Disabled\n", opt->name);
2960 return 0;
2961 break;
2962 }
2963 break;
2964 case range_option:
2965 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
2966 printk(KERN_INFO "%s set to %i\n", opt->name, *value);
2967 return 0;
2968 }
2969 break;
2970 case list_option:
2971 for (i = 0; i < opt->arg.l.nr; i++) {
2972 ent = &opt->arg.l.p[i];
2973 if (*value == ent->i) {
2974 if (ent->str[0] != '\0')
2975 printk(KERN_INFO "%s\n", ent->str);
2976 return 0;
2977 }
2978 }
2979 break;
2980 default:
2981 BUG();
2982 }
2983
2984 printk(KERN_INFO "Invalid %s specified (%i) %s\n",
2985 opt->name, *value, opt->err);
2986 *value = opt->def;
2987 return -1;
2988 }
2989
2990 /*
2991 * atl2_check_options - Range Checking for Command Line Parameters
2992 * @adapter: board private structure
2993 *
2994 * This routine checks all command line parameters for valid user
2995 * input. If an invalid value is given, or if no user specified
2996 * value exists, a default value is used. The final value is stored
2997 * in a variable in the adapter structure.
2998 */
2999 static void __devinit atl2_check_options(struct atl2_adapter *adapter)
3000 {
3001 int val;
3002 struct atl2_option opt;
3003 int bd = adapter->bd_number;
3004 if (bd >= ATL2_MAX_NIC) {
3005 printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
3006 bd);
3007 printk(KERN_NOTICE "Using defaults for all values\n");
3008 #ifndef module_param_array
3009 bd = ATL2_MAX_NIC;
3010 #endif
3011 }
3012
3013 /* Bytes of Transmit Memory */
3014 opt.type = range_option;
3015 opt.name = "Bytes of Transmit Memory";
3016 opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
3017 opt.def = ATL2_DEFAULT_TX_MEMSIZE;
3018 opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
3019 opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
3020 #ifdef module_param_array
3021 if (num_TxMemSize > bd) {
3022 #endif
3023 val = TxMemSize[bd];
3024 atl2_validate_option(&val, &opt);
3025 adapter->txd_ring_size = ((u32) val) * 1024;
3026 #ifdef module_param_array
3027 } else
3028 adapter->txd_ring_size = ((u32)opt.def) * 1024;
3029 #endif
3030 /* txs ring size: */
3031 adapter->txs_ring_size = adapter->txd_ring_size / 128;
3032 if (adapter->txs_ring_size > 160)
3033 adapter->txs_ring_size = 160;
3034
3035 /* Receive Memory Block Count */
3036 opt.type = range_option;
3037 opt.name = "Number of receive memory block";
3038 opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
3039 opt.def = ATL2_DEFAULT_RXD_COUNT;
3040 opt.arg.r.min = ATL2_MIN_RXD_COUNT;
3041 opt.arg.r.max = ATL2_MAX_RXD_COUNT;
3042 #ifdef module_param_array
3043 if (num_RxMemBlock > bd) {
3044 #endif
3045 val = RxMemBlock[bd];
3046 atl2_validate_option(&val, &opt);
3047 adapter->rxd_ring_size = (u32)val;
3048 /* FIXME */
3049 /* ((u16)val)&~1; */ /* even number */
3050 #ifdef module_param_array
3051 } else
3052 adapter->rxd_ring_size = (u32)opt.def;
3053 #endif
3054 /* init RXD Flow control value */
3055 adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
3056 adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
3057 (adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
3058 (adapter->rxd_ring_size / 12);
3059
3060 /* Interrupt Moderate Timer */
3061 opt.type = range_option;
3062 opt.name = "Interrupt Moderate Timer";
3063 opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
3064 opt.def = INT_MOD_DEFAULT_CNT;
3065 opt.arg.r.min = INT_MOD_MIN_CNT;
3066 opt.arg.r.max = INT_MOD_MAX_CNT;
3067 #ifdef module_param_array
3068 if (num_IntModTimer > bd) {
3069 #endif
3070 val = IntModTimer[bd];
3071 atl2_validate_option(&val, &opt);
3072 adapter->imt = (u16) val;
3073 #ifdef module_param_array
3074 } else
3075 adapter->imt = (u16)(opt.def);
3076 #endif
3077 /* Flash Vendor */
3078 opt.type = range_option;
3079 opt.name = "SPI Flash Vendor";
3080 opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
3081 opt.def = FLASH_VENDOR_DEFAULT;
3082 opt.arg.r.min = FLASH_VENDOR_MIN;
3083 opt.arg.r.max = FLASH_VENDOR_MAX;
3084 #ifdef module_param_array
3085 if (num_FlashVendor > bd) {
3086 #endif
3087 val = FlashVendor[bd];
3088 atl2_validate_option(&val, &opt);
3089 adapter->hw.flash_vendor = (u8) val;
3090 #ifdef module_param_array
3091 } else
3092 adapter->hw.flash_vendor = (u8)(opt.def);
3093 #endif
3094 /* MediaType */
3095 opt.type = range_option;
3096 opt.name = "Speed/Duplex Selection";
3097 opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
3098 opt.def = MEDIA_TYPE_AUTO_SENSOR;
3099 opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
3100 opt.arg.r.max = MEDIA_TYPE_10M_HALF;
3101 #ifdef module_param_array
3102 if (num_MediaType > bd) {
3103 #endif
3104 val = MediaType[bd];
3105 atl2_validate_option(&val, &opt);
3106 adapter->hw.MediaType = (u16) val;
3107 #ifdef module_param_array
3108 } else
3109 adapter->hw.MediaType = (u16)(opt.def);
3110 #endif
3111 }