Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / atlx / atl1.c
1 /*
2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5 *
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
25 *
26 * Contact Information:
27 * Xiong Huang <xiong.huang@atheros.com>
28 * Jie Yang <jie.yang@atheros.com>
29 * Chris Snook <csnook@redhat.com>
30 * Jay Cliburn <jcliburn@gmail.com>
31 *
32 * This version is adapted from the Attansic reference driver.
33 *
34 * TODO:
35 * Add more ethtool functions.
36 * Fix abstruse irq enable/disable condition described here:
37 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38 *
39 * NEEDS TESTING:
40 * VLAN
41 * multicast
42 * promiscuous mode
43 * interrupt coalescing
44 * SMP torture testing
45 */
46
47 #include <asm/atomic.h>
48 #include <asm/byteorder.h>
49
50 #include <linux/compiler.h>
51 #include <linux/crc32.h>
52 #include <linux/delay.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/etherdevice.h>
55 #include <linux/hardirq.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_vlan.h>
58 #include <linux/in.h>
59 #include <linux/interrupt.h>
60 #include <linux/ip.h>
61 #include <linux/irqflags.h>
62 #include <linux/irqreturn.h>
63 #include <linux/jiffies.h>
64 #include <linux/mii.h>
65 #include <linux/module.h>
66 #include <linux/moduleparam.h>
67 #include <linux/net.h>
68 #include <linux/netdevice.h>
69 #include <linux/pci.h>
70 #include <linux/pci_ids.h>
71 #include <linux/pm.h>
72 #include <linux/skbuff.h>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/string.h>
76 #include <linux/tcp.h>
77 #include <linux/timer.h>
78 #include <linux/types.h>
79 #include <linux/workqueue.h>
80
81 #include <net/checksum.h>
82
83 #include "atl1.h"
84
85 #define ATLX_DRIVER_VERSION "2.1.3"
86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, \
87 Chris Snook <csnook@redhat.com>, Jay Cliburn <jcliburn@gmail.com>");
88 MODULE_LICENSE("GPL");
89 MODULE_VERSION(ATLX_DRIVER_VERSION);
90
91 /* Temporary hack for merging atl1 and atl2 */
92 #include "atlx.c"
93
94 /*
95 * This is the only thing that needs to be changed to adjust the
96 * maximum number of ports that the driver can manage.
97 */
98 #define ATL1_MAX_NIC 4
99
100 #define OPTION_UNSET -1
101 #define OPTION_DISABLED 0
102 #define OPTION_ENABLED 1
103
104 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
105
106 /*
107 * Interrupt Moderate Timer in units of 2 us
108 *
109 * Valid Range: 10-65535
110 *
111 * Default Value: 100 (200us)
112 */
113 static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
114 static unsigned int num_int_mod_timer;
115 module_param_array_named(int_mod_timer, int_mod_timer, int,
116 &num_int_mod_timer, 0);
117 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
118
119 #define DEFAULT_INT_MOD_CNT 100 /* 200us */
120 #define MAX_INT_MOD_CNT 65000
121 #define MIN_INT_MOD_CNT 50
122
123 struct atl1_option {
124 enum { enable_option, range_option, list_option } type;
125 char *name;
126 char *err;
127 int def;
128 union {
129 struct { /* range_option info */
130 int min;
131 int max;
132 } r;
133 struct { /* list_option info */
134 int nr;
135 struct atl1_opt_list {
136 int i;
137 char *str;
138 } *p;
139 } l;
140 } arg;
141 };
142
143 static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
144 struct pci_dev *pdev)
145 {
146 if (*value == OPTION_UNSET) {
147 *value = opt->def;
148 return 0;
149 }
150
151 switch (opt->type) {
152 case enable_option:
153 switch (*value) {
154 case OPTION_ENABLED:
155 dev_info(&pdev->dev, "%s enabled\n", opt->name);
156 return 0;
157 case OPTION_DISABLED:
158 dev_info(&pdev->dev, "%s disabled\n", opt->name);
159 return 0;
160 }
161 break;
162 case range_option:
163 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
164 dev_info(&pdev->dev, "%s set to %i\n", opt->name,
165 *value);
166 return 0;
167 }
168 break;
169 case list_option:{
170 int i;
171 struct atl1_opt_list *ent;
172
173 for (i = 0; i < opt->arg.l.nr; i++) {
174 ent = &opt->arg.l.p[i];
175 if (*value == ent->i) {
176 if (ent->str[0] != '\0')
177 dev_info(&pdev->dev, "%s\n",
178 ent->str);
179 return 0;
180 }
181 }
182 }
183 break;
184
185 default:
186 break;
187 }
188
189 dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
190 opt->name, *value, opt->err);
191 *value = opt->def;
192 return -1;
193 }
194
195 /*
196 * atl1_check_options - Range Checking for Command Line Parameters
197 * @adapter: board private structure
198 *
199 * This routine checks all command line parameters for valid user
200 * input. If an invalid value is given, or if no user specified
201 * value exists, a default value is used. The final value is stored
202 * in a variable in the adapter structure.
203 */
204 static void __devinit atl1_check_options(struct atl1_adapter *adapter)
205 {
206 struct pci_dev *pdev = adapter->pdev;
207 int bd = adapter->bd_number;
208 if (bd >= ATL1_MAX_NIC) {
209 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
210 dev_notice(&pdev->dev, "using defaults for all values\n");
211 }
212 { /* Interrupt Moderate Timer */
213 struct atl1_option opt = {
214 .type = range_option,
215 .name = "Interrupt Moderator Timer",
216 .err = "using default of "
217 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
218 .def = DEFAULT_INT_MOD_CNT,
219 .arg = {.r = {.min = MIN_INT_MOD_CNT,
220 .max = MAX_INT_MOD_CNT} }
221 };
222 int val;
223 if (num_int_mod_timer > bd) {
224 val = int_mod_timer[bd];
225 atl1_validate_option(&val, &opt, pdev);
226 adapter->imt = (u16) val;
227 } else
228 adapter->imt = (u16) (opt.def);
229 }
230 }
231
232 /*
233 * atl1_pci_tbl - PCI Device ID Table
234 */
235 static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = {
236 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
237 /* required last entry */
238 {0,}
239 };
240 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
241
242 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
243 NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
244
245 static int debug = -1;
246 module_param(debug, int, 0);
247 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
248
249 /*
250 * Reset the transmit and receive units; mask and clear all interrupts.
251 * hw - Struct containing variables accessed by shared code
252 * return : 0 or idle status (if error)
253 */
254 static s32 atl1_reset_hw(struct atl1_hw *hw)
255 {
256 struct pci_dev *pdev = hw->back->pdev;
257 struct atl1_adapter *adapter = hw->back;
258 u32 icr;
259 int i;
260
261 /*
262 * Clear Interrupt mask to stop board from generating
263 * interrupts & Clear any pending interrupt events
264 */
265 /*
266 * iowrite32(0, hw->hw_addr + REG_IMR);
267 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
268 */
269
270 /*
271 * Issue Soft Reset to the MAC. This will reset the chip's
272 * transmit, receive, DMA. It will not effect
273 * the current PCI configuration. The global reset bit is self-
274 * clearing, and should clear within a microsecond.
275 */
276 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
277 ioread32(hw->hw_addr + REG_MASTER_CTRL);
278
279 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
280 ioread16(hw->hw_addr + REG_PHY_ENABLE);
281
282 /* delay about 1ms */
283 msleep(1);
284
285 /* Wait at least 10ms for All module to be Idle */
286 for (i = 0; i < 10; i++) {
287 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
288 if (!icr)
289 break;
290 /* delay 1 ms */
291 msleep(1);
292 /* FIXME: still the right way to do this? */
293 cpu_relax();
294 }
295
296 if (icr) {
297 if (netif_msg_hw(adapter))
298 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
299 return icr;
300 }
301
302 return 0;
303 }
304
305 /* function about EEPROM
306 *
307 * check_eeprom_exist
308 * return 0 if eeprom exist
309 */
310 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
311 {
312 u32 value;
313 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
314 if (value & SPI_FLASH_CTRL_EN_VPD) {
315 value &= ~SPI_FLASH_CTRL_EN_VPD;
316 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
317 }
318
319 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
320 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
321 }
322
323 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
324 {
325 int i;
326 u32 control;
327
328 if (offset & 3)
329 /* address do not align */
330 return false;
331
332 iowrite32(0, hw->hw_addr + REG_VPD_DATA);
333 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
334 iowrite32(control, hw->hw_addr + REG_VPD_CAP);
335 ioread32(hw->hw_addr + REG_VPD_CAP);
336
337 for (i = 0; i < 10; i++) {
338 msleep(2);
339 control = ioread32(hw->hw_addr + REG_VPD_CAP);
340 if (control & VPD_CAP_VPD_FLAG)
341 break;
342 }
343 if (control & VPD_CAP_VPD_FLAG) {
344 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
345 return true;
346 }
347 /* timeout */
348 return false;
349 }
350
351 /*
352 * Reads the value from a PHY register
353 * hw - Struct containing variables accessed by shared code
354 * reg_addr - address of the PHY register to read
355 */
356 s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
357 {
358 u32 val;
359 int i;
360
361 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
362 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
363 MDIO_CLK_SEL_SHIFT;
364 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
365 ioread32(hw->hw_addr + REG_MDIO_CTRL);
366
367 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
368 udelay(2);
369 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
370 if (!(val & (MDIO_START | MDIO_BUSY)))
371 break;
372 }
373 if (!(val & (MDIO_START | MDIO_BUSY))) {
374 *phy_data = (u16) val;
375 return 0;
376 }
377 return ATLX_ERR_PHY;
378 }
379
380 #define CUSTOM_SPI_CS_SETUP 2
381 #define CUSTOM_SPI_CLK_HI 2
382 #define CUSTOM_SPI_CLK_LO 2
383 #define CUSTOM_SPI_CS_HOLD 2
384 #define CUSTOM_SPI_CS_HI 3
385
386 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
387 {
388 int i;
389 u32 value;
390
391 iowrite32(0, hw->hw_addr + REG_SPI_DATA);
392 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
393
394 value = SPI_FLASH_CTRL_WAIT_READY |
395 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
396 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
397 SPI_FLASH_CTRL_CLK_HI_MASK) <<
398 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
399 SPI_FLASH_CTRL_CLK_LO_MASK) <<
400 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
401 SPI_FLASH_CTRL_CS_HOLD_MASK) <<
402 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
403 SPI_FLASH_CTRL_CS_HI_MASK) <<
404 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
405 SPI_FLASH_CTRL_INS_SHIFT;
406
407 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
408
409 value |= SPI_FLASH_CTRL_START;
410 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
411 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
412
413 for (i = 0; i < 10; i++) {
414 msleep(1);
415 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
416 if (!(value & SPI_FLASH_CTRL_START))
417 break;
418 }
419
420 if (value & SPI_FLASH_CTRL_START)
421 return false;
422
423 *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
424
425 return true;
426 }
427
428 /*
429 * get_permanent_address
430 * return 0 if get valid mac address,
431 */
432 static int atl1_get_permanent_address(struct atl1_hw *hw)
433 {
434 u32 addr[2];
435 u32 i, control;
436 u16 reg;
437 u8 eth_addr[ETH_ALEN];
438 bool key_valid;
439
440 if (is_valid_ether_addr(hw->perm_mac_addr))
441 return 0;
442
443 /* init */
444 addr[0] = addr[1] = 0;
445
446 if (!atl1_check_eeprom_exist(hw)) {
447 reg = 0;
448 key_valid = false;
449 /* Read out all EEPROM content */
450 i = 0;
451 while (1) {
452 if (atl1_read_eeprom(hw, i + 0x100, &control)) {
453 if (key_valid) {
454 if (reg == REG_MAC_STA_ADDR)
455 addr[0] = control;
456 else if (reg == (REG_MAC_STA_ADDR + 4))
457 addr[1] = control;
458 key_valid = false;
459 } else if ((control & 0xff) == 0x5A) {
460 key_valid = true;
461 reg = (u16) (control >> 16);
462 } else
463 break;
464 } else
465 /* read error */
466 break;
467 i += 4;
468 }
469
470 *(u32 *) &eth_addr[2] = swab32(addr[0]);
471 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
472 if (is_valid_ether_addr(eth_addr)) {
473 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
474 return 0;
475 }
476 }
477
478 /* see if SPI FLAGS exist ? */
479 addr[0] = addr[1] = 0;
480 reg = 0;
481 key_valid = false;
482 i = 0;
483 while (1) {
484 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
485 if (key_valid) {
486 if (reg == REG_MAC_STA_ADDR)
487 addr[0] = control;
488 else if (reg == (REG_MAC_STA_ADDR + 4))
489 addr[1] = control;
490 key_valid = false;
491 } else if ((control & 0xff) == 0x5A) {
492 key_valid = true;
493 reg = (u16) (control >> 16);
494 } else
495 /* data end */
496 break;
497 } else
498 /* read error */
499 break;
500 i += 4;
501 }
502
503 *(u32 *) &eth_addr[2] = swab32(addr[0]);
504 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
505 if (is_valid_ether_addr(eth_addr)) {
506 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
507 return 0;
508 }
509
510 /*
511 * On some motherboards, the MAC address is written by the
512 * BIOS directly to the MAC register during POST, and is
513 * not stored in eeprom. If all else thus far has failed
514 * to fetch the permanent MAC address, try reading it directly.
515 */
516 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
517 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
518 *(u32 *) &eth_addr[2] = swab32(addr[0]);
519 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
520 if (is_valid_ether_addr(eth_addr)) {
521 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
522 return 0;
523 }
524
525 return 1;
526 }
527
528 /*
529 * Reads the adapter's MAC address from the EEPROM
530 * hw - Struct containing variables accessed by shared code
531 */
532 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
533 {
534 u16 i;
535
536 if (atl1_get_permanent_address(hw))
537 random_ether_addr(hw->perm_mac_addr);
538
539 for (i = 0; i < ETH_ALEN; i++)
540 hw->mac_addr[i] = hw->perm_mac_addr[i];
541 return 0;
542 }
543
544 /*
545 * Hashes an address to determine its location in the multicast table
546 * hw - Struct containing variables accessed by shared code
547 * mc_addr - the multicast address to hash
548 *
549 * atl1_hash_mc_addr
550 * purpose
551 * set hash value for a multicast address
552 * hash calcu processing :
553 * 1. calcu 32bit CRC for multicast address
554 * 2. reverse crc with MSB to LSB
555 */
556 u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
557 {
558 u32 crc32, value = 0;
559 int i;
560
561 crc32 = ether_crc_le(6, mc_addr);
562 for (i = 0; i < 32; i++)
563 value |= (((crc32 >> i) & 1) << (31 - i));
564
565 return value;
566 }
567
568 /*
569 * Sets the bit in the multicast table corresponding to the hash value.
570 * hw - Struct containing variables accessed by shared code
571 * hash_value - Multicast address hash value
572 */
573 void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
574 {
575 u32 hash_bit, hash_reg;
576 u32 mta;
577
578 /*
579 * The HASH Table is a register array of 2 32-bit registers.
580 * It is treated like an array of 64 bits. We want to set
581 * bit BitArray[hash_value]. So we figure out what register
582 * the bit is in, read it, OR in the new bit, then write
583 * back the new value. The register is determined by the
584 * upper 7 bits of the hash value and the bit within that
585 * register are determined by the lower 5 bits of the value.
586 */
587 hash_reg = (hash_value >> 31) & 0x1;
588 hash_bit = (hash_value >> 26) & 0x1F;
589 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
590 mta |= (1 << hash_bit);
591 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
592 }
593
594 /*
595 * Writes a value to a PHY register
596 * hw - Struct containing variables accessed by shared code
597 * reg_addr - address of the PHY register to write
598 * data - data to write to the PHY
599 */
600 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
601 {
602 int i;
603 u32 val;
604
605 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
606 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
607 MDIO_SUP_PREAMBLE |
608 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
609 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
610 ioread32(hw->hw_addr + REG_MDIO_CTRL);
611
612 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
613 udelay(2);
614 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
615 if (!(val & (MDIO_START | MDIO_BUSY)))
616 break;
617 }
618
619 if (!(val & (MDIO_START | MDIO_BUSY)))
620 return 0;
621
622 return ATLX_ERR_PHY;
623 }
624
625 /*
626 * Make L001's PHY out of Power Saving State (bug)
627 * hw - Struct containing variables accessed by shared code
628 * when power on, L001's PHY always on Power saving State
629 * (Gigabit Link forbidden)
630 */
631 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
632 {
633 s32 ret;
634 ret = atl1_write_phy_reg(hw, 29, 0x0029);
635 if (ret)
636 return ret;
637 return atl1_write_phy_reg(hw, 30, 0);
638 }
639
640 /*
641 * Resets the PHY and make all config validate
642 * hw - Struct containing variables accessed by shared code
643 *
644 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
645 */
646 static s32 atl1_phy_reset(struct atl1_hw *hw)
647 {
648 struct pci_dev *pdev = hw->back->pdev;
649 struct atl1_adapter *adapter = hw->back;
650 s32 ret_val;
651 u16 phy_data;
652
653 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
654 hw->media_type == MEDIA_TYPE_1000M_FULL)
655 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
656 else {
657 switch (hw->media_type) {
658 case MEDIA_TYPE_100M_FULL:
659 phy_data =
660 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
661 MII_CR_RESET;
662 break;
663 case MEDIA_TYPE_100M_HALF:
664 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
665 break;
666 case MEDIA_TYPE_10M_FULL:
667 phy_data =
668 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
669 break;
670 default:
671 /* MEDIA_TYPE_10M_HALF: */
672 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
673 break;
674 }
675 }
676
677 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
678 if (ret_val) {
679 u32 val;
680 int i;
681 /* pcie serdes link may be down! */
682 if (netif_msg_hw(adapter))
683 dev_dbg(&pdev->dev, "pcie phy link down\n");
684
685 for (i = 0; i < 25; i++) {
686 msleep(1);
687 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
688 if (!(val & (MDIO_START | MDIO_BUSY)))
689 break;
690 }
691
692 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
693 if (netif_msg_hw(adapter))
694 dev_warn(&pdev->dev,
695 "pcie link down at least 25ms\n");
696 return ret_val;
697 }
698 }
699 return 0;
700 }
701
702 /*
703 * Configures PHY autoneg and flow control advertisement settings
704 * hw - Struct containing variables accessed by shared code
705 */
706 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
707 {
708 s32 ret_val;
709 s16 mii_autoneg_adv_reg;
710 s16 mii_1000t_ctrl_reg;
711
712 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
713 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
714
715 /* Read the MII 1000Base-T Control Register (Address 9). */
716 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
717
718 /*
719 * First we clear all the 10/100 mb speed bits in the Auto-Neg
720 * Advertisement Register (Address 4) and the 1000 mb speed bits in
721 * the 1000Base-T Control Register (Address 9).
722 */
723 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
724 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
725
726 /*
727 * Need to parse media_type and set up
728 * the appropriate PHY registers.
729 */
730 switch (hw->media_type) {
731 case MEDIA_TYPE_AUTO_SENSOR:
732 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
733 MII_AR_10T_FD_CAPS |
734 MII_AR_100TX_HD_CAPS |
735 MII_AR_100TX_FD_CAPS);
736 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
737 break;
738
739 case MEDIA_TYPE_1000M_FULL:
740 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
741 break;
742
743 case MEDIA_TYPE_100M_FULL:
744 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
745 break;
746
747 case MEDIA_TYPE_100M_HALF:
748 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
749 break;
750
751 case MEDIA_TYPE_10M_FULL:
752 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
753 break;
754
755 default:
756 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
757 break;
758 }
759
760 /* flow control fixed to enable all */
761 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
762
763 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
764 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
765
766 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
767 if (ret_val)
768 return ret_val;
769
770 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
771 if (ret_val)
772 return ret_val;
773
774 return 0;
775 }
776
777 /*
778 * Configures link settings.
779 * hw - Struct containing variables accessed by shared code
780 * Assumes the hardware has previously been reset and the
781 * transmitter and receiver are not enabled.
782 */
783 static s32 atl1_setup_link(struct atl1_hw *hw)
784 {
785 struct pci_dev *pdev = hw->back->pdev;
786 struct atl1_adapter *adapter = hw->back;
787 s32 ret_val;
788
789 /*
790 * Options:
791 * PHY will advertise value(s) parsed from
792 * autoneg_advertised and fc
793 * no matter what autoneg is , We will not wait link result.
794 */
795 ret_val = atl1_phy_setup_autoneg_adv(hw);
796 if (ret_val) {
797 if (netif_msg_link(adapter))
798 dev_dbg(&pdev->dev,
799 "error setting up autonegotiation\n");
800 return ret_val;
801 }
802 /* SW.Reset , En-Auto-Neg if needed */
803 ret_val = atl1_phy_reset(hw);
804 if (ret_val) {
805 if (netif_msg_link(adapter))
806 dev_dbg(&pdev->dev, "error resetting phy\n");
807 return ret_val;
808 }
809 hw->phy_configured = true;
810 return ret_val;
811 }
812
813 static void atl1_init_flash_opcode(struct atl1_hw *hw)
814 {
815 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
816 /* Atmel */
817 hw->flash_vendor = 0;
818
819 /* Init OP table */
820 iowrite8(flash_table[hw->flash_vendor].cmd_program,
821 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
822 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
823 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
824 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
825 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
826 iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
827 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
828 iowrite8(flash_table[hw->flash_vendor].cmd_wren,
829 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
830 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
831 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
832 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
833 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
834 iowrite8(flash_table[hw->flash_vendor].cmd_read,
835 hw->hw_addr + REG_SPI_FLASH_OP_READ);
836 }
837
838 /*
839 * Performs basic configuration of the adapter.
840 * hw - Struct containing variables accessed by shared code
841 * Assumes that the controller has previously been reset and is in a
842 * post-reset uninitialized state. Initializes multicast table,
843 * and Calls routines to setup link
844 * Leaves the transmit and receive units disabled and uninitialized.
845 */
846 static s32 atl1_init_hw(struct atl1_hw *hw)
847 {
848 u32 ret_val = 0;
849
850 /* Zero out the Multicast HASH table */
851 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
852 /* clear the old settings from the multicast hash table */
853 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
854
855 atl1_init_flash_opcode(hw);
856
857 if (!hw->phy_configured) {
858 /* enable GPHY LinkChange Interrrupt */
859 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
860 if (ret_val)
861 return ret_val;
862 /* make PHY out of power-saving state */
863 ret_val = atl1_phy_leave_power_saving(hw);
864 if (ret_val)
865 return ret_val;
866 /* Call a subroutine to configure the link */
867 ret_val = atl1_setup_link(hw);
868 }
869 return ret_val;
870 }
871
872 /*
873 * Detects the current speed and duplex settings of the hardware.
874 * hw - Struct containing variables accessed by shared code
875 * speed - Speed of the connection
876 * duplex - Duplex setting of the connection
877 */
878 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
879 {
880 struct pci_dev *pdev = hw->back->pdev;
881 struct atl1_adapter *adapter = hw->back;
882 s32 ret_val;
883 u16 phy_data;
884
885 /* ; --- Read PHY Specific Status Register (17) */
886 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
887 if (ret_val)
888 return ret_val;
889
890 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
891 return ATLX_ERR_PHY_RES;
892
893 switch (phy_data & MII_ATLX_PSSR_SPEED) {
894 case MII_ATLX_PSSR_1000MBS:
895 *speed = SPEED_1000;
896 break;
897 case MII_ATLX_PSSR_100MBS:
898 *speed = SPEED_100;
899 break;
900 case MII_ATLX_PSSR_10MBS:
901 *speed = SPEED_10;
902 break;
903 default:
904 if (netif_msg_hw(adapter))
905 dev_dbg(&pdev->dev, "error getting speed\n");
906 return ATLX_ERR_PHY_SPEED;
907 break;
908 }
909 if (phy_data & MII_ATLX_PSSR_DPLX)
910 *duplex = FULL_DUPLEX;
911 else
912 *duplex = HALF_DUPLEX;
913
914 return 0;
915 }
916
917 void atl1_set_mac_addr(struct atl1_hw *hw)
918 {
919 u32 value;
920 /*
921 * 00-0B-6A-F6-00-DC
922 * 0: 6AF600DC 1: 000B
923 * low dword
924 */
925 value = (((u32) hw->mac_addr[2]) << 24) |
926 (((u32) hw->mac_addr[3]) << 16) |
927 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
928 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
929 /* high dword */
930 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
931 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
932 }
933
934 /*
935 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
936 * @adapter: board private structure to initialize
937 *
938 * atl1_sw_init initializes the Adapter private data structure.
939 * Fields are initialized based on PCI device information and
940 * OS network device settings (MTU size).
941 */
942 static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
943 {
944 struct atl1_hw *hw = &adapter->hw;
945 struct net_device *netdev = adapter->netdev;
946
947 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
948 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
949
950 adapter->wol = 0;
951 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
952 adapter->ict = 50000; /* 100ms */
953 adapter->link_speed = SPEED_0; /* hardware init */
954 adapter->link_duplex = FULL_DUPLEX;
955
956 hw->phy_configured = false;
957 hw->preamble_len = 7;
958 hw->ipgt = 0x60;
959 hw->min_ifg = 0x50;
960 hw->ipgr1 = 0x40;
961 hw->ipgr2 = 0x60;
962 hw->max_retry = 0xf;
963 hw->lcol = 0x37;
964 hw->jam_ipg = 7;
965 hw->rfd_burst = 8;
966 hw->rrd_burst = 8;
967 hw->rfd_fetch_gap = 1;
968 hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
969 hw->rx_jumbo_lkah = 1;
970 hw->rrd_ret_timer = 16;
971 hw->tpd_burst = 4;
972 hw->tpd_fetch_th = 16;
973 hw->txf_burst = 0x100;
974 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
975 hw->tpd_fetch_gap = 1;
976 hw->rcb_value = atl1_rcb_64;
977 hw->dma_ord = atl1_dma_ord_enh;
978 hw->dmar_block = atl1_dma_req_256;
979 hw->dmaw_block = atl1_dma_req_256;
980 hw->cmb_rrd = 4;
981 hw->cmb_tpd = 4;
982 hw->cmb_rx_timer = 1; /* about 2us */
983 hw->cmb_tx_timer = 1; /* about 2us */
984 hw->smb_timer = 100000; /* about 200ms */
985
986 spin_lock_init(&adapter->lock);
987 spin_lock_init(&adapter->mb_lock);
988
989 return 0;
990 }
991
992 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
993 {
994 struct atl1_adapter *adapter = netdev_priv(netdev);
995 u16 result;
996
997 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
998
999 return result;
1000 }
1001
1002 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1003 int val)
1004 {
1005 struct atl1_adapter *adapter = netdev_priv(netdev);
1006
1007 atl1_write_phy_reg(&adapter->hw, reg_num, val);
1008 }
1009
1010 /*
1011 * atl1_mii_ioctl -
1012 * @netdev:
1013 * @ifreq:
1014 * @cmd:
1015 */
1016 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1017 {
1018 struct atl1_adapter *adapter = netdev_priv(netdev);
1019 unsigned long flags;
1020 int retval;
1021
1022 if (!netif_running(netdev))
1023 return -EINVAL;
1024
1025 spin_lock_irqsave(&adapter->lock, flags);
1026 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1027 spin_unlock_irqrestore(&adapter->lock, flags);
1028
1029 return retval;
1030 }
1031
1032 /*
1033 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1034 * @adapter: board private structure
1035 *
1036 * Return 0 on success, negative on failure
1037 */
1038 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1039 {
1040 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1041 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1042 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1043 struct atl1_ring_header *ring_header = &adapter->ring_header;
1044 struct pci_dev *pdev = adapter->pdev;
1045 int size;
1046 u8 offset = 0;
1047
1048 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1049 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1050 if (unlikely(!tpd_ring->buffer_info)) {
1051 if (netif_msg_drv(adapter))
1052 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1053 size);
1054 goto err_nomem;
1055 }
1056 rfd_ring->buffer_info =
1057 (struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
1058
1059 /*
1060 * real ring DMA buffer
1061 * each ring/block may need up to 8 bytes for alignment, hence the
1062 * additional 40 bytes tacked onto the end.
1063 */
1064 ring_header->size = size =
1065 sizeof(struct tx_packet_desc) * tpd_ring->count
1066 + sizeof(struct rx_free_desc) * rfd_ring->count
1067 + sizeof(struct rx_return_desc) * rrd_ring->count
1068 + sizeof(struct coals_msg_block)
1069 + sizeof(struct stats_msg_block)
1070 + 40;
1071
1072 ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1073 &ring_header->dma);
1074 if (unlikely(!ring_header->desc)) {
1075 if (netif_msg_drv(adapter))
1076 dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1077 goto err_nomem;
1078 }
1079
1080 memset(ring_header->desc, 0, ring_header->size);
1081
1082 /* init TPD ring */
1083 tpd_ring->dma = ring_header->dma;
1084 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1085 tpd_ring->dma += offset;
1086 tpd_ring->desc = (u8 *) ring_header->desc + offset;
1087 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1088
1089 /* init RFD ring */
1090 rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1091 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1092 rfd_ring->dma += offset;
1093 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1094 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1095
1096
1097 /* init RRD ring */
1098 rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1099 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1100 rrd_ring->dma += offset;
1101 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1102 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1103
1104
1105 /* init CMB */
1106 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1107 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1108 adapter->cmb.dma += offset;
1109 adapter->cmb.cmb = (struct coals_msg_block *)
1110 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1111
1112 /* init SMB */
1113 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1114 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1115 adapter->smb.dma += offset;
1116 adapter->smb.smb = (struct stats_msg_block *)
1117 ((u8 *) adapter->cmb.cmb +
1118 (sizeof(struct coals_msg_block) + offset));
1119
1120 return 0;
1121
1122 err_nomem:
1123 kfree(tpd_ring->buffer_info);
1124 return -ENOMEM;
1125 }
1126
1127 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1128 {
1129 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1130 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1131 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1132
1133 atomic_set(&tpd_ring->next_to_use, 0);
1134 atomic_set(&tpd_ring->next_to_clean, 0);
1135
1136 rfd_ring->next_to_clean = 0;
1137 atomic_set(&rfd_ring->next_to_use, 0);
1138
1139 rrd_ring->next_to_use = 0;
1140 atomic_set(&rrd_ring->next_to_clean, 0);
1141 }
1142
1143 /*
1144 * atl1_clean_rx_ring - Free RFD Buffers
1145 * @adapter: board private structure
1146 */
1147 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1148 {
1149 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1150 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1151 struct atl1_buffer *buffer_info;
1152 struct pci_dev *pdev = adapter->pdev;
1153 unsigned long size;
1154 unsigned int i;
1155
1156 /* Free all the Rx ring sk_buffs */
1157 for (i = 0; i < rfd_ring->count; i++) {
1158 buffer_info = &rfd_ring->buffer_info[i];
1159 if (buffer_info->dma) {
1160 pci_unmap_page(pdev, buffer_info->dma,
1161 buffer_info->length, PCI_DMA_FROMDEVICE);
1162 buffer_info->dma = 0;
1163 }
1164 if (buffer_info->skb) {
1165 dev_kfree_skb(buffer_info->skb);
1166 buffer_info->skb = NULL;
1167 }
1168 }
1169
1170 size = sizeof(struct atl1_buffer) * rfd_ring->count;
1171 memset(rfd_ring->buffer_info, 0, size);
1172
1173 /* Zero out the descriptor ring */
1174 memset(rfd_ring->desc, 0, rfd_ring->size);
1175
1176 rfd_ring->next_to_clean = 0;
1177 atomic_set(&rfd_ring->next_to_use, 0);
1178
1179 rrd_ring->next_to_use = 0;
1180 atomic_set(&rrd_ring->next_to_clean, 0);
1181 }
1182
1183 /*
1184 * atl1_clean_tx_ring - Free Tx Buffers
1185 * @adapter: board private structure
1186 */
1187 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1188 {
1189 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1190 struct atl1_buffer *buffer_info;
1191 struct pci_dev *pdev = adapter->pdev;
1192 unsigned long size;
1193 unsigned int i;
1194
1195 /* Free all the Tx ring sk_buffs */
1196 for (i = 0; i < tpd_ring->count; i++) {
1197 buffer_info = &tpd_ring->buffer_info[i];
1198 if (buffer_info->dma) {
1199 pci_unmap_page(pdev, buffer_info->dma,
1200 buffer_info->length, PCI_DMA_TODEVICE);
1201 buffer_info->dma = 0;
1202 }
1203 }
1204
1205 for (i = 0; i < tpd_ring->count; i++) {
1206 buffer_info = &tpd_ring->buffer_info[i];
1207 if (buffer_info->skb) {
1208 dev_kfree_skb_any(buffer_info->skb);
1209 buffer_info->skb = NULL;
1210 }
1211 }
1212
1213 size = sizeof(struct atl1_buffer) * tpd_ring->count;
1214 memset(tpd_ring->buffer_info, 0, size);
1215
1216 /* Zero out the descriptor ring */
1217 memset(tpd_ring->desc, 0, tpd_ring->size);
1218
1219 atomic_set(&tpd_ring->next_to_use, 0);
1220 atomic_set(&tpd_ring->next_to_clean, 0);
1221 }
1222
1223 /*
1224 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1225 * @adapter: board private structure
1226 *
1227 * Free all transmit software resources
1228 */
1229 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1230 {
1231 struct pci_dev *pdev = adapter->pdev;
1232 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1233 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1234 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1235 struct atl1_ring_header *ring_header = &adapter->ring_header;
1236
1237 atl1_clean_tx_ring(adapter);
1238 atl1_clean_rx_ring(adapter);
1239
1240 kfree(tpd_ring->buffer_info);
1241 pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1242 ring_header->dma);
1243
1244 tpd_ring->buffer_info = NULL;
1245 tpd_ring->desc = NULL;
1246 tpd_ring->dma = 0;
1247
1248 rfd_ring->buffer_info = NULL;
1249 rfd_ring->desc = NULL;
1250 rfd_ring->dma = 0;
1251
1252 rrd_ring->desc = NULL;
1253 rrd_ring->dma = 0;
1254 }
1255
1256 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1257 {
1258 u32 value;
1259 struct atl1_hw *hw = &adapter->hw;
1260 struct net_device *netdev = adapter->netdev;
1261 /* Config MAC CTRL Register */
1262 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1263 /* duplex */
1264 if (FULL_DUPLEX == adapter->link_duplex)
1265 value |= MAC_CTRL_DUPLX;
1266 /* speed */
1267 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1268 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1269 MAC_CTRL_SPEED_SHIFT);
1270 /* flow control */
1271 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1272 /* PAD & CRC */
1273 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1274 /* preamble length */
1275 value |= (((u32) adapter->hw.preamble_len
1276 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1277 /* vlan */
1278 if (adapter->vlgrp)
1279 value |= MAC_CTRL_RMV_VLAN;
1280 /* rx checksum
1281 if (adapter->rx_csum)
1282 value |= MAC_CTRL_RX_CHKSUM_EN;
1283 */
1284 /* filter mode */
1285 value |= MAC_CTRL_BC_EN;
1286 if (netdev->flags & IFF_PROMISC)
1287 value |= MAC_CTRL_PROMIS_EN;
1288 else if (netdev->flags & IFF_ALLMULTI)
1289 value |= MAC_CTRL_MC_ALL_EN;
1290 /* value |= MAC_CTRL_LOOPBACK; */
1291 iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1292 }
1293
1294 static u32 atl1_check_link(struct atl1_adapter *adapter)
1295 {
1296 struct atl1_hw *hw = &adapter->hw;
1297 struct net_device *netdev = adapter->netdev;
1298 u32 ret_val;
1299 u16 speed, duplex, phy_data;
1300 int reconfig = 0;
1301
1302 /* MII_BMSR must read twice */
1303 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1304 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1305 if (!(phy_data & BMSR_LSTATUS)) {
1306 /* link down */
1307 if (netif_carrier_ok(netdev)) {
1308 /* old link state: Up */
1309 if (netif_msg_link(adapter))
1310 dev_info(&adapter->pdev->dev, "link is down\n");
1311 adapter->link_speed = SPEED_0;
1312 netif_carrier_off(netdev);
1313 }
1314 return 0;
1315 }
1316
1317 /* Link Up */
1318 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1319 if (ret_val)
1320 return ret_val;
1321
1322 switch (hw->media_type) {
1323 case MEDIA_TYPE_1000M_FULL:
1324 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1325 reconfig = 1;
1326 break;
1327 case MEDIA_TYPE_100M_FULL:
1328 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1329 reconfig = 1;
1330 break;
1331 case MEDIA_TYPE_100M_HALF:
1332 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1333 reconfig = 1;
1334 break;
1335 case MEDIA_TYPE_10M_FULL:
1336 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1337 reconfig = 1;
1338 break;
1339 case MEDIA_TYPE_10M_HALF:
1340 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1341 reconfig = 1;
1342 break;
1343 }
1344
1345 /* link result is our setting */
1346 if (!reconfig) {
1347 if (adapter->link_speed != speed ||
1348 adapter->link_duplex != duplex) {
1349 adapter->link_speed = speed;
1350 adapter->link_duplex = duplex;
1351 atl1_setup_mac_ctrl(adapter);
1352 if (netif_msg_link(adapter))
1353 dev_info(&adapter->pdev->dev,
1354 "%s link is up %d Mbps %s\n",
1355 netdev->name, adapter->link_speed,
1356 adapter->link_duplex == FULL_DUPLEX ?
1357 "full duplex" : "half duplex");
1358 }
1359 if (!netif_carrier_ok(netdev)) {
1360 /* Link down -> Up */
1361 netif_carrier_on(netdev);
1362 }
1363 return 0;
1364 }
1365
1366 /* change original link status */
1367 if (netif_carrier_ok(netdev)) {
1368 adapter->link_speed = SPEED_0;
1369 netif_carrier_off(netdev);
1370 netif_stop_queue(netdev);
1371 }
1372
1373 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1374 hw->media_type != MEDIA_TYPE_1000M_FULL) {
1375 switch (hw->media_type) {
1376 case MEDIA_TYPE_100M_FULL:
1377 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1378 MII_CR_RESET;
1379 break;
1380 case MEDIA_TYPE_100M_HALF:
1381 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1382 break;
1383 case MEDIA_TYPE_10M_FULL:
1384 phy_data =
1385 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1386 break;
1387 default:
1388 /* MEDIA_TYPE_10M_HALF: */
1389 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1390 break;
1391 }
1392 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1393 return 0;
1394 }
1395
1396 /* auto-neg, insert timer to re-config phy */
1397 if (!adapter->phy_timer_pending) {
1398 adapter->phy_timer_pending = true;
1399 mod_timer(&adapter->phy_config_timer,
1400 round_jiffies(jiffies + 3 * HZ));
1401 }
1402
1403 return 0;
1404 }
1405
1406 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1407 {
1408 u32 hi, lo, value;
1409
1410 /* RFD Flow Control */
1411 value = adapter->rfd_ring.count;
1412 hi = value / 16;
1413 if (hi < 2)
1414 hi = 2;
1415 lo = value * 7 / 8;
1416
1417 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1418 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1419 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1420
1421 /* RRD Flow Control */
1422 value = adapter->rrd_ring.count;
1423 lo = value / 16;
1424 hi = value * 7 / 8;
1425 if (lo < 2)
1426 lo = 2;
1427 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1428 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1429 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1430 }
1431
1432 static void set_flow_ctrl_new(struct atl1_hw *hw)
1433 {
1434 u32 hi, lo, value;
1435
1436 /* RXF Flow Control */
1437 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1438 lo = value / 16;
1439 if (lo < 192)
1440 lo = 192;
1441 hi = value * 7 / 8;
1442 if (hi < lo)
1443 hi = lo + 16;
1444 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1445 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1446 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1447
1448 /* RRD Flow Control */
1449 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1450 lo = value / 8;
1451 hi = value * 7 / 8;
1452 if (lo < 2)
1453 lo = 2;
1454 if (hi < lo)
1455 hi = lo + 3;
1456 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1457 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1458 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1459 }
1460
1461 /*
1462 * atl1_configure - Configure Transmit&Receive Unit after Reset
1463 * @adapter: board private structure
1464 *
1465 * Configure the Tx /Rx unit of the MAC after a reset.
1466 */
1467 static u32 atl1_configure(struct atl1_adapter *adapter)
1468 {
1469 struct atl1_hw *hw = &adapter->hw;
1470 u32 value;
1471
1472 /* clear interrupt status */
1473 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1474
1475 /* set MAC Address */
1476 value = (((u32) hw->mac_addr[2]) << 24) |
1477 (((u32) hw->mac_addr[3]) << 16) |
1478 (((u32) hw->mac_addr[4]) << 8) |
1479 (((u32) hw->mac_addr[5]));
1480 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1481 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1482 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1483
1484 /* tx / rx ring */
1485
1486 /* HI base address */
1487 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1488 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1489 /* LO base address */
1490 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1491 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1492 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1493 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1494 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1495 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1496 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1497 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1498 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1499 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1500
1501 /* element count */
1502 value = adapter->rrd_ring.count;
1503 value <<= 16;
1504 value += adapter->rfd_ring.count;
1505 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1506 iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1507 REG_DESC_TPD_RING_SIZE);
1508
1509 /* Load Ptr */
1510 iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1511
1512 /* config Mailbox */
1513 value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1514 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1515 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1516 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1517 ((atomic_read(&adapter->rfd_ring.next_to_use)
1518 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1519 iowrite32(value, hw->hw_addr + REG_MAILBOX);
1520
1521 /* config IPG/IFG */
1522 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1523 << MAC_IPG_IFG_IPGT_SHIFT) |
1524 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1525 << MAC_IPG_IFG_MIFG_SHIFT) |
1526 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1527 << MAC_IPG_IFG_IPGR1_SHIFT) |
1528 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1529 << MAC_IPG_IFG_IPGR2_SHIFT);
1530 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1531
1532 /* config Half-Duplex Control */
1533 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1534 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1535 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1536 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1537 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1538 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1539 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1540 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1541
1542 /* set Interrupt Moderator Timer */
1543 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1544 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1545
1546 /* set Interrupt Clear Timer */
1547 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1548
1549 /* set max frame size hw will accept */
1550 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1551
1552 /* jumbo size & rrd retirement timer */
1553 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1554 << RXQ_JMBOSZ_TH_SHIFT) |
1555 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1556 << RXQ_JMBO_LKAH_SHIFT) |
1557 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1558 << RXQ_RRD_TIMER_SHIFT);
1559 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1560
1561 /* Flow Control */
1562 switch (hw->dev_rev) {
1563 case 0x8001:
1564 case 0x9001:
1565 case 0x9002:
1566 case 0x9003:
1567 set_flow_ctrl_old(adapter);
1568 break;
1569 default:
1570 set_flow_ctrl_new(hw);
1571 break;
1572 }
1573
1574 /* config TXQ */
1575 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1576 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1577 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1578 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1579 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1580 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1581 TXQ_CTRL_EN;
1582 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1583
1584 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1585 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1586 << TX_JUMBO_TASK_TH_SHIFT) |
1587 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1588 << TX_TPD_MIN_IPG_SHIFT);
1589 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1590
1591 /* config RXQ */
1592 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1593 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1594 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1595 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1596 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1597 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1598 RXQ_CTRL_EN;
1599 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1600
1601 /* config DMA Engine */
1602 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1603 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1604 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1605 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1606 DMA_CTRL_DMAW_EN;
1607 value |= (u32) hw->dma_ord;
1608 if (atl1_rcb_128 == hw->rcb_value)
1609 value |= DMA_CTRL_RCB_VALUE;
1610 iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1611
1612 /* config CMB / SMB */
1613 value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1614 hw->cmb_tpd : adapter->tpd_ring.count;
1615 value <<= 16;
1616 value |= hw->cmb_rrd;
1617 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1618 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1619 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1620 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1621
1622 /* --- enable CMB / SMB */
1623 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1624 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1625
1626 value = ioread32(adapter->hw.hw_addr + REG_ISR);
1627 if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1628 value = 1; /* config failed */
1629 else
1630 value = 0;
1631
1632 /* clear all interrupt status */
1633 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1634 iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1635 return value;
1636 }
1637
1638 /*
1639 * atl1_pcie_patch - Patch for PCIE module
1640 */
1641 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1642 {
1643 u32 value;
1644
1645 /* much vendor magic here */
1646 value = 0x6500;
1647 iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1648 /* pcie flow control mode change */
1649 value = ioread32(adapter->hw.hw_addr + 0x1008);
1650 value |= 0x8000;
1651 iowrite32(value, adapter->hw.hw_addr + 0x1008);
1652 }
1653
1654 /*
1655 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1656 * on PCI Command register is disable.
1657 * The function enable this bit.
1658 * Brackett, 2006/03/15
1659 */
1660 static void atl1_via_workaround(struct atl1_adapter *adapter)
1661 {
1662 unsigned long value;
1663
1664 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1665 if (value & PCI_COMMAND_INTX_DISABLE)
1666 value &= ~PCI_COMMAND_INTX_DISABLE;
1667 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1668 }
1669
1670 static void atl1_inc_smb(struct atl1_adapter *adapter)
1671 {
1672 struct net_device *netdev = adapter->netdev;
1673 struct stats_msg_block *smb = adapter->smb.smb;
1674
1675 /* Fill out the OS statistics structure */
1676 adapter->soft_stats.rx_packets += smb->rx_ok;
1677 adapter->soft_stats.tx_packets += smb->tx_ok;
1678 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1679 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1680 adapter->soft_stats.multicast += smb->rx_mcast;
1681 adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
1682 smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
1683
1684 /* Rx Errors */
1685 adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
1686 smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
1687 smb->rx_rrd_ov + smb->rx_align_err);
1688 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1689 adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1690 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1691 adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1692 adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
1693 smb->rx_rxf_ov);
1694
1695 adapter->soft_stats.rx_pause += smb->rx_pause;
1696 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1697 adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1698
1699 /* Tx Errors */
1700 adapter->soft_stats.tx_errors += (smb->tx_late_col +
1701 smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
1702 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1703 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1704 adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1705
1706 adapter->soft_stats.excecol += smb->tx_abort_col;
1707 adapter->soft_stats.deffer += smb->tx_defer;
1708 adapter->soft_stats.scc += smb->tx_1_col;
1709 adapter->soft_stats.mcc += smb->tx_2_col;
1710 adapter->soft_stats.latecol += smb->tx_late_col;
1711 adapter->soft_stats.tx_underun += smb->tx_underrun;
1712 adapter->soft_stats.tx_trunc += smb->tx_trunc;
1713 adapter->soft_stats.tx_pause += smb->tx_pause;
1714
1715 netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1716 netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1717 netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1718 netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1719 netdev->stats.multicast = adapter->soft_stats.multicast;
1720 netdev->stats.collisions = adapter->soft_stats.collisions;
1721 netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1722 netdev->stats.rx_over_errors =
1723 adapter->soft_stats.rx_missed_errors;
1724 netdev->stats.rx_length_errors =
1725 adapter->soft_stats.rx_length_errors;
1726 netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1727 netdev->stats.rx_frame_errors =
1728 adapter->soft_stats.rx_frame_errors;
1729 netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1730 netdev->stats.rx_missed_errors =
1731 adapter->soft_stats.rx_missed_errors;
1732 netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1733 netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1734 netdev->stats.tx_aborted_errors =
1735 adapter->soft_stats.tx_aborted_errors;
1736 netdev->stats.tx_window_errors =
1737 adapter->soft_stats.tx_window_errors;
1738 netdev->stats.tx_carrier_errors =
1739 adapter->soft_stats.tx_carrier_errors;
1740 }
1741
1742 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1743 {
1744 unsigned long flags;
1745 u32 tpd_next_to_use;
1746 u32 rfd_next_to_use;
1747 u32 rrd_next_to_clean;
1748 u32 value;
1749
1750 spin_lock_irqsave(&adapter->mb_lock, flags);
1751
1752 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1753 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1754 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1755
1756 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1757 MB_RFD_PROD_INDX_SHIFT) |
1758 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1759 MB_RRD_CONS_INDX_SHIFT) |
1760 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1761 MB_TPD_PROD_INDX_SHIFT);
1762 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1763
1764 spin_unlock_irqrestore(&adapter->mb_lock, flags);
1765 }
1766
1767 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1768 struct rx_return_desc *rrd, u16 offset)
1769 {
1770 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1771
1772 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1773 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1774 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1775 rfd_ring->next_to_clean = 0;
1776 }
1777 }
1778 }
1779
1780 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1781 struct rx_return_desc *rrd)
1782 {
1783 u16 num_buf;
1784
1785 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1786 adapter->rx_buffer_len;
1787 if (rrd->num_buf == num_buf)
1788 /* clean alloc flag for bad rrd */
1789 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1790 }
1791
1792 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1793 struct rx_return_desc *rrd, struct sk_buff *skb)
1794 {
1795 struct pci_dev *pdev = adapter->pdev;
1796
1797 /*
1798 * The L1 hardware contains a bug that erroneously sets the
1799 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1800 * fragmented IP packet is received, even though the packet
1801 * is perfectly valid and its checksum is correct. There's
1802 * no way to distinguish between one of these good packets
1803 * and a packet that actually contains a TCP/UDP checksum
1804 * error, so all we can do is allow it to be handed up to
1805 * the higher layers and let it be sorted out there.
1806 */
1807
1808 skb->ip_summed = CHECKSUM_NONE;
1809
1810 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1811 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1812 ERR_FLAG_CODE | ERR_FLAG_OV)) {
1813 adapter->hw_csum_err++;
1814 if (netif_msg_rx_err(adapter))
1815 dev_printk(KERN_DEBUG, &pdev->dev,
1816 "rx checksum error\n");
1817 return;
1818 }
1819 }
1820
1821 /* not IPv4 */
1822 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1823 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1824 return;
1825
1826 /* IPv4 packet */
1827 if (likely(!(rrd->err_flg &
1828 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1829 skb->ip_summed = CHECKSUM_UNNECESSARY;
1830 adapter->hw_csum_good++;
1831 return;
1832 }
1833 }
1834
1835 /*
1836 * atl1_alloc_rx_buffers - Replace used receive buffers
1837 * @adapter: address of board private structure
1838 */
1839 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1840 {
1841 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1842 struct pci_dev *pdev = adapter->pdev;
1843 struct page *page;
1844 unsigned long offset;
1845 struct atl1_buffer *buffer_info, *next_info;
1846 struct sk_buff *skb;
1847 u16 num_alloc = 0;
1848 u16 rfd_next_to_use, next_next;
1849 struct rx_free_desc *rfd_desc;
1850
1851 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1852 if (++next_next == rfd_ring->count)
1853 next_next = 0;
1854 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1855 next_info = &rfd_ring->buffer_info[next_next];
1856
1857 while (!buffer_info->alloced && !next_info->alloced) {
1858 if (buffer_info->skb) {
1859 buffer_info->alloced = 1;
1860 goto next;
1861 }
1862
1863 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1864
1865 skb = netdev_alloc_skb_ip_align(adapter->netdev,
1866 adapter->rx_buffer_len);
1867 if (unlikely(!skb)) {
1868 /* Better luck next round */
1869 adapter->netdev->stats.rx_dropped++;
1870 break;
1871 }
1872
1873 buffer_info->alloced = 1;
1874 buffer_info->skb = skb;
1875 buffer_info->length = (u16) adapter->rx_buffer_len;
1876 page = virt_to_page(skb->data);
1877 offset = (unsigned long)skb->data & ~PAGE_MASK;
1878 buffer_info->dma = pci_map_page(pdev, page, offset,
1879 adapter->rx_buffer_len,
1880 PCI_DMA_FROMDEVICE);
1881 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1882 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1883 rfd_desc->coalese = 0;
1884
1885 next:
1886 rfd_next_to_use = next_next;
1887 if (unlikely(++next_next == rfd_ring->count))
1888 next_next = 0;
1889
1890 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1891 next_info = &rfd_ring->buffer_info[next_next];
1892 num_alloc++;
1893 }
1894
1895 if (num_alloc) {
1896 /*
1897 * Force memory writes to complete before letting h/w
1898 * know there are new descriptors to fetch. (Only
1899 * applicable for weak-ordered memory model archs,
1900 * such as IA-64).
1901 */
1902 wmb();
1903 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1904 }
1905 return num_alloc;
1906 }
1907
1908 static void atl1_intr_rx(struct atl1_adapter *adapter)
1909 {
1910 int i, count;
1911 u16 length;
1912 u16 rrd_next_to_clean;
1913 u32 value;
1914 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1915 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1916 struct atl1_buffer *buffer_info;
1917 struct rx_return_desc *rrd;
1918 struct sk_buff *skb;
1919
1920 count = 0;
1921
1922 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1923
1924 while (1) {
1925 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1926 i = 1;
1927 if (likely(rrd->xsz.valid)) { /* packet valid */
1928 chk_rrd:
1929 /* check rrd status */
1930 if (likely(rrd->num_buf == 1))
1931 goto rrd_ok;
1932 else if (netif_msg_rx_err(adapter)) {
1933 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1934 "unexpected RRD buffer count\n");
1935 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1936 "rx_buf_len = %d\n",
1937 adapter->rx_buffer_len);
1938 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1939 "RRD num_buf = %d\n",
1940 rrd->num_buf);
1941 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1942 "RRD pkt_len = %d\n",
1943 rrd->xsz.xsum_sz.pkt_size);
1944 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1945 "RRD pkt_flg = 0x%08X\n",
1946 rrd->pkt_flg);
1947 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948 "RRD err_flg = 0x%08X\n",
1949 rrd->err_flg);
1950 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951 "RRD vlan_tag = 0x%08X\n",
1952 rrd->vlan_tag);
1953 }
1954
1955 /* rrd seems to be bad */
1956 if (unlikely(i-- > 0)) {
1957 /* rrd may not be DMAed completely */
1958 udelay(1);
1959 goto chk_rrd;
1960 }
1961 /* bad rrd */
1962 if (netif_msg_rx_err(adapter))
1963 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1964 "bad RRD\n");
1965 /* see if update RFD index */
1966 if (rrd->num_buf > 1)
1967 atl1_update_rfd_index(adapter, rrd);
1968
1969 /* update rrd */
1970 rrd->xsz.valid = 0;
1971 if (++rrd_next_to_clean == rrd_ring->count)
1972 rrd_next_to_clean = 0;
1973 count++;
1974 continue;
1975 } else { /* current rrd still not be updated */
1976
1977 break;
1978 }
1979 rrd_ok:
1980 /* clean alloc flag for bad rrd */
1981 atl1_clean_alloc_flag(adapter, rrd, 0);
1982
1983 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1984 if (++rfd_ring->next_to_clean == rfd_ring->count)
1985 rfd_ring->next_to_clean = 0;
1986
1987 /* update rrd next to clean */
1988 if (++rrd_next_to_clean == rrd_ring->count)
1989 rrd_next_to_clean = 0;
1990 count++;
1991
1992 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1993 if (!(rrd->err_flg &
1994 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
1995 | ERR_FLAG_LEN))) {
1996 /* packet error, don't need upstream */
1997 buffer_info->alloced = 0;
1998 rrd->xsz.valid = 0;
1999 continue;
2000 }
2001 }
2002
2003 /* Good Receive */
2004 pci_unmap_page(adapter->pdev, buffer_info->dma,
2005 buffer_info->length, PCI_DMA_FROMDEVICE);
2006 buffer_info->dma = 0;
2007 skb = buffer_info->skb;
2008 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2009
2010 skb_put(skb, length - ETH_FCS_LEN);
2011
2012 /* Receive Checksum Offload */
2013 atl1_rx_checksum(adapter, rrd, skb);
2014 skb->protocol = eth_type_trans(skb, adapter->netdev);
2015
2016 if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) {
2017 u16 vlan_tag = (rrd->vlan_tag >> 4) |
2018 ((rrd->vlan_tag & 7) << 13) |
2019 ((rrd->vlan_tag & 8) << 9);
2020 vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
2021 } else
2022 netif_rx(skb);
2023
2024 /* let protocol layer free skb */
2025 buffer_info->skb = NULL;
2026 buffer_info->alloced = 0;
2027 rrd->xsz.valid = 0;
2028 }
2029
2030 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2031
2032 atl1_alloc_rx_buffers(adapter);
2033
2034 /* update mailbox ? */
2035 if (count) {
2036 u32 tpd_next_to_use;
2037 u32 rfd_next_to_use;
2038
2039 spin_lock(&adapter->mb_lock);
2040
2041 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2042 rfd_next_to_use =
2043 atomic_read(&adapter->rfd_ring.next_to_use);
2044 rrd_next_to_clean =
2045 atomic_read(&adapter->rrd_ring.next_to_clean);
2046 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2047 MB_RFD_PROD_INDX_SHIFT) |
2048 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2049 MB_RRD_CONS_INDX_SHIFT) |
2050 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2051 MB_TPD_PROD_INDX_SHIFT);
2052 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2053 spin_unlock(&adapter->mb_lock);
2054 }
2055 }
2056
2057 static void atl1_intr_tx(struct atl1_adapter *adapter)
2058 {
2059 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2060 struct atl1_buffer *buffer_info;
2061 u16 sw_tpd_next_to_clean;
2062 u16 cmb_tpd_next_to_clean;
2063
2064 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2065 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2066
2067 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2068 struct tx_packet_desc *tpd;
2069
2070 tpd = ATL1_TPD_DESC(tpd_ring, sw_tpd_next_to_clean);
2071 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2072 if (buffer_info->dma) {
2073 pci_unmap_page(adapter->pdev, buffer_info->dma,
2074 buffer_info->length, PCI_DMA_TODEVICE);
2075 buffer_info->dma = 0;
2076 }
2077
2078 if (buffer_info->skb) {
2079 dev_kfree_skb_irq(buffer_info->skb);
2080 buffer_info->skb = NULL;
2081 }
2082
2083 if (++sw_tpd_next_to_clean == tpd_ring->count)
2084 sw_tpd_next_to_clean = 0;
2085 }
2086 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2087
2088 if (netif_queue_stopped(adapter->netdev) &&
2089 netif_carrier_ok(adapter->netdev))
2090 netif_wake_queue(adapter->netdev);
2091 }
2092
2093 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2094 {
2095 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2096 u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2097 return ((next_to_clean > next_to_use) ?
2098 next_to_clean - next_to_use - 1 :
2099 tpd_ring->count + next_to_clean - next_to_use - 1);
2100 }
2101
2102 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2103 struct tx_packet_desc *ptpd)
2104 {
2105 u8 hdr_len, ip_off;
2106 u32 real_len;
2107 int err;
2108
2109 if (skb_shinfo(skb)->gso_size) {
2110 if (skb_header_cloned(skb)) {
2111 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2112 if (unlikely(err))
2113 return -1;
2114 }
2115
2116 if (skb->protocol == htons(ETH_P_IP)) {
2117 struct iphdr *iph = ip_hdr(skb);
2118
2119 real_len = (((unsigned char *)iph - skb->data) +
2120 ntohs(iph->tot_len));
2121 if (real_len < skb->len)
2122 pskb_trim(skb, real_len);
2123 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2124 if (skb->len == hdr_len) {
2125 iph->check = 0;
2126 tcp_hdr(skb)->check =
2127 ~csum_tcpudp_magic(iph->saddr,
2128 iph->daddr, tcp_hdrlen(skb),
2129 IPPROTO_TCP, 0);
2130 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2131 TPD_IPHL_SHIFT;
2132 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2133 TPD_TCPHDRLEN_MASK) <<
2134 TPD_TCPHDRLEN_SHIFT;
2135 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2136 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2137 return 1;
2138 }
2139
2140 iph->check = 0;
2141 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2142 iph->daddr, 0, IPPROTO_TCP, 0);
2143 ip_off = (unsigned char *)iph -
2144 (unsigned char *) skb_network_header(skb);
2145 if (ip_off == 8) /* 802.3-SNAP frame */
2146 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2147 else if (ip_off != 0)
2148 return -2;
2149
2150 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2151 TPD_IPHL_SHIFT;
2152 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2153 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2154 ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2155 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2156 ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2157 return 3;
2158 }
2159 }
2160 return false;
2161 }
2162
2163 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2164 struct tx_packet_desc *ptpd)
2165 {
2166 u8 css, cso;
2167
2168 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2169 css = (u8) (skb->csum_start - skb_headroom(skb));
2170 cso = css + (u8) skb->csum_offset;
2171 if (unlikely(css & 0x1)) {
2172 /* L1 hardware requires an even number here */
2173 if (netif_msg_tx_err(adapter))
2174 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2175 "payload offset not an even number\n");
2176 return -1;
2177 }
2178 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2179 TPD_PLOADOFFSET_SHIFT;
2180 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2181 TPD_CCSUMOFFSET_SHIFT;
2182 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2183 return true;
2184 }
2185 return 0;
2186 }
2187
2188 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2189 struct tx_packet_desc *ptpd)
2190 {
2191 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2192 struct atl1_buffer *buffer_info;
2193 u16 buf_len = skb->len;
2194 struct page *page;
2195 unsigned long offset;
2196 unsigned int nr_frags;
2197 unsigned int f;
2198 int retval;
2199 u16 next_to_use;
2200 u16 data_len;
2201 u8 hdr_len;
2202
2203 buf_len -= skb->data_len;
2204 nr_frags = skb_shinfo(skb)->nr_frags;
2205 next_to_use = atomic_read(&tpd_ring->next_to_use);
2206 buffer_info = &tpd_ring->buffer_info[next_to_use];
2207 BUG_ON(buffer_info->skb);
2208 /* put skb in last TPD */
2209 buffer_info->skb = NULL;
2210
2211 retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2212 if (retval) {
2213 /* TSO */
2214 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2215 buffer_info->length = hdr_len;
2216 page = virt_to_page(skb->data);
2217 offset = (unsigned long)skb->data & ~PAGE_MASK;
2218 buffer_info->dma = pci_map_page(adapter->pdev, page,
2219 offset, hdr_len,
2220 PCI_DMA_TODEVICE);
2221
2222 if (++next_to_use == tpd_ring->count)
2223 next_to_use = 0;
2224
2225 if (buf_len > hdr_len) {
2226 int i, nseg;
2227
2228 data_len = buf_len - hdr_len;
2229 nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2230 ATL1_MAX_TX_BUF_LEN;
2231 for (i = 0; i < nseg; i++) {
2232 buffer_info =
2233 &tpd_ring->buffer_info[next_to_use];
2234 buffer_info->skb = NULL;
2235 buffer_info->length =
2236 (ATL1_MAX_TX_BUF_LEN >=
2237 data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2238 data_len -= buffer_info->length;
2239 page = virt_to_page(skb->data +
2240 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2241 offset = (unsigned long)(skb->data +
2242 (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2243 ~PAGE_MASK;
2244 buffer_info->dma = pci_map_page(adapter->pdev,
2245 page, offset, buffer_info->length,
2246 PCI_DMA_TODEVICE);
2247 if (++next_to_use == tpd_ring->count)
2248 next_to_use = 0;
2249 }
2250 }
2251 } else {
2252 /* not TSO */
2253 buffer_info->length = buf_len;
2254 page = virt_to_page(skb->data);
2255 offset = (unsigned long)skb->data & ~PAGE_MASK;
2256 buffer_info->dma = pci_map_page(adapter->pdev, page,
2257 offset, buf_len, PCI_DMA_TODEVICE);
2258 if (++next_to_use == tpd_ring->count)
2259 next_to_use = 0;
2260 }
2261
2262 for (f = 0; f < nr_frags; f++) {
2263 struct skb_frag_struct *frag;
2264 u16 i, nseg;
2265
2266 frag = &skb_shinfo(skb)->frags[f];
2267 buf_len = frag->size;
2268
2269 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2270 ATL1_MAX_TX_BUF_LEN;
2271 for (i = 0; i < nseg; i++) {
2272 buffer_info = &tpd_ring->buffer_info[next_to_use];
2273 BUG_ON(buffer_info->skb);
2274
2275 buffer_info->skb = NULL;
2276 buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2277 ATL1_MAX_TX_BUF_LEN : buf_len;
2278 buf_len -= buffer_info->length;
2279 buffer_info->dma = pci_map_page(adapter->pdev,
2280 frag->page,
2281 frag->page_offset + (i * ATL1_MAX_TX_BUF_LEN),
2282 buffer_info->length, PCI_DMA_TODEVICE);
2283
2284 if (++next_to_use == tpd_ring->count)
2285 next_to_use = 0;
2286 }
2287 }
2288
2289 /* last tpd's buffer-info */
2290 buffer_info->skb = skb;
2291 }
2292
2293 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2294 struct tx_packet_desc *ptpd)
2295 {
2296 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2297 struct atl1_buffer *buffer_info;
2298 struct tx_packet_desc *tpd;
2299 u16 j;
2300 u32 val;
2301 u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2302
2303 for (j = 0; j < count; j++) {
2304 buffer_info = &tpd_ring->buffer_info[next_to_use];
2305 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2306 if (tpd != ptpd)
2307 memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2308 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2309 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2310 tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2311 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2312
2313 /*
2314 * if this is the first packet in a TSO chain, set
2315 * TPD_HDRFLAG, otherwise, clear it.
2316 */
2317 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2318 TPD_SEGMENT_EN_MASK;
2319 if (val) {
2320 if (!j)
2321 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2322 else
2323 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2324 }
2325
2326 if (j == (count - 1))
2327 tpd->word3 |= 1 << TPD_EOP_SHIFT;
2328
2329 if (++next_to_use == tpd_ring->count)
2330 next_to_use = 0;
2331 }
2332 /*
2333 * Force memory writes to complete before letting h/w
2334 * know there are new descriptors to fetch. (Only
2335 * applicable for weak-ordered memory model archs,
2336 * such as IA-64).
2337 */
2338 wmb();
2339
2340 atomic_set(&tpd_ring->next_to_use, next_to_use);
2341 }
2342
2343 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2344 struct net_device *netdev)
2345 {
2346 struct atl1_adapter *adapter = netdev_priv(netdev);
2347 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2348 int len;
2349 int tso;
2350 int count = 1;
2351 int ret_val;
2352 struct tx_packet_desc *ptpd;
2353 u16 frag_size;
2354 u16 vlan_tag;
2355 unsigned int nr_frags = 0;
2356 unsigned int mss = 0;
2357 unsigned int f;
2358 unsigned int proto_hdr_len;
2359
2360 len = skb_headlen(skb);
2361
2362 if (unlikely(skb->len <= 0)) {
2363 dev_kfree_skb_any(skb);
2364 return NETDEV_TX_OK;
2365 }
2366
2367 nr_frags = skb_shinfo(skb)->nr_frags;
2368 for (f = 0; f < nr_frags; f++) {
2369 frag_size = skb_shinfo(skb)->frags[f].size;
2370 if (frag_size)
2371 count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
2372 ATL1_MAX_TX_BUF_LEN;
2373 }
2374
2375 mss = skb_shinfo(skb)->gso_size;
2376 if (mss) {
2377 if (skb->protocol == htons(ETH_P_IP)) {
2378 proto_hdr_len = (skb_transport_offset(skb) +
2379 tcp_hdrlen(skb));
2380 if (unlikely(proto_hdr_len > len)) {
2381 dev_kfree_skb_any(skb);
2382 return NETDEV_TX_OK;
2383 }
2384 /* need additional TPD ? */
2385 if (proto_hdr_len != len)
2386 count += (len - proto_hdr_len +
2387 ATL1_MAX_TX_BUF_LEN - 1) /
2388 ATL1_MAX_TX_BUF_LEN;
2389 }
2390 }
2391
2392 if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2393 /* not enough descriptors */
2394 netif_stop_queue(netdev);
2395 if (netif_msg_tx_queued(adapter))
2396 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2397 "tx busy\n");
2398 return NETDEV_TX_BUSY;
2399 }
2400
2401 ptpd = ATL1_TPD_DESC(tpd_ring,
2402 (u16) atomic_read(&tpd_ring->next_to_use));
2403 memset(ptpd, 0, sizeof(struct tx_packet_desc));
2404
2405 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2406 vlan_tag = vlan_tx_tag_get(skb);
2407 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2408 ((vlan_tag >> 9) & 0x8);
2409 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2410 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2411 TPD_VLANTAG_SHIFT;
2412 }
2413
2414 tso = atl1_tso(adapter, skb, ptpd);
2415 if (tso < 0) {
2416 dev_kfree_skb_any(skb);
2417 return NETDEV_TX_OK;
2418 }
2419
2420 if (!tso) {
2421 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2422 if (ret_val < 0) {
2423 dev_kfree_skb_any(skb);
2424 return NETDEV_TX_OK;
2425 }
2426 }
2427
2428 atl1_tx_map(adapter, skb, ptpd);
2429 atl1_tx_queue(adapter, count, ptpd);
2430 atl1_update_mailbox(adapter);
2431 mmiowb();
2432 return NETDEV_TX_OK;
2433 }
2434
2435 /*
2436 * atl1_intr - Interrupt Handler
2437 * @irq: interrupt number
2438 * @data: pointer to a network interface device structure
2439 * @pt_regs: CPU registers structure
2440 */
2441 static irqreturn_t atl1_intr(int irq, void *data)
2442 {
2443 struct atl1_adapter *adapter = netdev_priv(data);
2444 u32 status;
2445 int max_ints = 10;
2446
2447 status = adapter->cmb.cmb->int_stats;
2448 if (!status)
2449 return IRQ_NONE;
2450
2451 do {
2452 /* clear CMB interrupt status at once */
2453 adapter->cmb.cmb->int_stats = 0;
2454
2455 if (status & ISR_GPHY) /* clear phy status */
2456 atlx_clear_phy_int(adapter);
2457
2458 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2459 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2460
2461 /* check if SMB intr */
2462 if (status & ISR_SMB)
2463 atl1_inc_smb(adapter);
2464
2465 /* check if PCIE PHY Link down */
2466 if (status & ISR_PHY_LINKDOWN) {
2467 if (netif_msg_intr(adapter))
2468 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2469 "pcie phy link down %x\n", status);
2470 if (netif_running(adapter->netdev)) { /* reset MAC */
2471 iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2472 schedule_work(&adapter->pcie_dma_to_rst_task);
2473 return IRQ_HANDLED;
2474 }
2475 }
2476
2477 /* check if DMA read/write error ? */
2478 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2479 if (netif_msg_intr(adapter))
2480 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2481 "pcie DMA r/w error (status = 0x%x)\n",
2482 status);
2483 iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2484 schedule_work(&adapter->pcie_dma_to_rst_task);
2485 return IRQ_HANDLED;
2486 }
2487
2488 /* link event */
2489 if (status & ISR_GPHY) {
2490 adapter->soft_stats.tx_carrier_errors++;
2491 atl1_check_for_link(adapter);
2492 }
2493
2494 /* transmit event */
2495 if (status & ISR_CMB_TX)
2496 atl1_intr_tx(adapter);
2497
2498 /* rx exception */
2499 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2500 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2501 ISR_HOST_RRD_OV | ISR_CMB_RX))) {
2502 if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2503 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2504 ISR_HOST_RRD_OV))
2505 if (netif_msg_intr(adapter))
2506 dev_printk(KERN_DEBUG,
2507 &adapter->pdev->dev,
2508 "rx exception, ISR = 0x%x\n",
2509 status);
2510 atl1_intr_rx(adapter);
2511 }
2512
2513 if (--max_ints < 0)
2514 break;
2515
2516 } while ((status = adapter->cmb.cmb->int_stats));
2517
2518 /* re-enable Interrupt */
2519 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2520 return IRQ_HANDLED;
2521 }
2522
2523
2524 /*
2525 * atl1_phy_config - Timer Call-back
2526 * @data: pointer to netdev cast into an unsigned long
2527 */
2528 static void atl1_phy_config(unsigned long data)
2529 {
2530 struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2531 struct atl1_hw *hw = &adapter->hw;
2532 unsigned long flags;
2533
2534 spin_lock_irqsave(&adapter->lock, flags);
2535 adapter->phy_timer_pending = false;
2536 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2537 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2538 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2539 spin_unlock_irqrestore(&adapter->lock, flags);
2540 }
2541
2542 /*
2543 * Orphaned vendor comment left intact here:
2544 * <vendor comment>
2545 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2546 * will assert. We do soft reset <0x1400=1> according
2547 * with the SPEC. BUT, it seemes that PCIE or DMA
2548 * state-machine will not be reset. DMAR_TO_INT will
2549 * assert again and again.
2550 * </vendor comment>
2551 */
2552
2553 static int atl1_reset(struct atl1_adapter *adapter)
2554 {
2555 int ret;
2556 ret = atl1_reset_hw(&adapter->hw);
2557 if (ret)
2558 return ret;
2559 return atl1_init_hw(&adapter->hw);
2560 }
2561
2562 static s32 atl1_up(struct atl1_adapter *adapter)
2563 {
2564 struct net_device *netdev = adapter->netdev;
2565 int err;
2566 int irq_flags = IRQF_SAMPLE_RANDOM;
2567
2568 /* hardware has been reset, we need to reload some things */
2569 atlx_set_multi(netdev);
2570 atl1_init_ring_ptrs(adapter);
2571 atlx_restore_vlan(adapter);
2572 err = atl1_alloc_rx_buffers(adapter);
2573 if (unlikely(!err))
2574 /* no RX BUFFER allocated */
2575 return -ENOMEM;
2576
2577 if (unlikely(atl1_configure(adapter))) {
2578 err = -EIO;
2579 goto err_up;
2580 }
2581
2582 err = pci_enable_msi(adapter->pdev);
2583 if (err) {
2584 if (netif_msg_ifup(adapter))
2585 dev_info(&adapter->pdev->dev,
2586 "Unable to enable MSI: %d\n", err);
2587 irq_flags |= IRQF_SHARED;
2588 }
2589
2590 err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2591 netdev->name, netdev);
2592 if (unlikely(err))
2593 goto err_up;
2594
2595 atlx_irq_enable(adapter);
2596 atl1_check_link(adapter);
2597 netif_start_queue(netdev);
2598 return 0;
2599
2600 err_up:
2601 pci_disable_msi(adapter->pdev);
2602 /* free rx_buffers */
2603 atl1_clean_rx_ring(adapter);
2604 return err;
2605 }
2606
2607 static void atl1_down(struct atl1_adapter *adapter)
2608 {
2609 struct net_device *netdev = adapter->netdev;
2610
2611 netif_stop_queue(netdev);
2612 del_timer_sync(&adapter->phy_config_timer);
2613 adapter->phy_timer_pending = false;
2614
2615 atlx_irq_disable(adapter);
2616 free_irq(adapter->pdev->irq, netdev);
2617 pci_disable_msi(adapter->pdev);
2618 atl1_reset_hw(&adapter->hw);
2619 adapter->cmb.cmb->int_stats = 0;
2620
2621 adapter->link_speed = SPEED_0;
2622 adapter->link_duplex = -1;
2623 netif_carrier_off(netdev);
2624
2625 atl1_clean_tx_ring(adapter);
2626 atl1_clean_rx_ring(adapter);
2627 }
2628
2629 static void atl1_tx_timeout_task(struct work_struct *work)
2630 {
2631 struct atl1_adapter *adapter =
2632 container_of(work, struct atl1_adapter, tx_timeout_task);
2633 struct net_device *netdev = adapter->netdev;
2634
2635 netif_device_detach(netdev);
2636 atl1_down(adapter);
2637 atl1_up(adapter);
2638 netif_device_attach(netdev);
2639 }
2640
2641 /*
2642 * atl1_change_mtu - Change the Maximum Transfer Unit
2643 * @netdev: network interface device structure
2644 * @new_mtu: new value for maximum frame size
2645 *
2646 * Returns 0 on success, negative on failure
2647 */
2648 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2649 {
2650 struct atl1_adapter *adapter = netdev_priv(netdev);
2651 int old_mtu = netdev->mtu;
2652 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2653
2654 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2655 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2656 if (netif_msg_link(adapter))
2657 dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2658 return -EINVAL;
2659 }
2660
2661 adapter->hw.max_frame_size = max_frame;
2662 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2663 adapter->rx_buffer_len = (max_frame + 7) & ~7;
2664 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2665
2666 netdev->mtu = new_mtu;
2667 if ((old_mtu != new_mtu) && netif_running(netdev)) {
2668 atl1_down(adapter);
2669 atl1_up(adapter);
2670 }
2671
2672 return 0;
2673 }
2674
2675 /*
2676 * atl1_open - Called when a network interface is made active
2677 * @netdev: network interface device structure
2678 *
2679 * Returns 0 on success, negative value on failure
2680 *
2681 * The open entry point is called when a network interface is made
2682 * active by the system (IFF_UP). At this point all resources needed
2683 * for transmit and receive operations are allocated, the interrupt
2684 * handler is registered with the OS, the watchdog timer is started,
2685 * and the stack is notified that the interface is ready.
2686 */
2687 static int atl1_open(struct net_device *netdev)
2688 {
2689 struct atl1_adapter *adapter = netdev_priv(netdev);
2690 int err;
2691
2692 netif_carrier_off(netdev);
2693
2694 /* allocate transmit descriptors */
2695 err = atl1_setup_ring_resources(adapter);
2696 if (err)
2697 return err;
2698
2699 err = atl1_up(adapter);
2700 if (err)
2701 goto err_up;
2702
2703 return 0;
2704
2705 err_up:
2706 atl1_reset(adapter);
2707 return err;
2708 }
2709
2710 /*
2711 * atl1_close - Disables a network interface
2712 * @netdev: network interface device structure
2713 *
2714 * Returns 0, this is not allowed to fail
2715 *
2716 * The close entry point is called when an interface is de-activated
2717 * by the OS. The hardware is still under the drivers control, but
2718 * needs to be disabled. A global MAC reset is issued to stop the
2719 * hardware, and all transmit and receive resources are freed.
2720 */
2721 static int atl1_close(struct net_device *netdev)
2722 {
2723 struct atl1_adapter *adapter = netdev_priv(netdev);
2724 atl1_down(adapter);
2725 atl1_free_ring_resources(adapter);
2726 return 0;
2727 }
2728
2729 #ifdef CONFIG_PM
2730 static int atl1_suspend(struct pci_dev *pdev, pm_message_t state)
2731 {
2732 struct net_device *netdev = pci_get_drvdata(pdev);
2733 struct atl1_adapter *adapter = netdev_priv(netdev);
2734 struct atl1_hw *hw = &adapter->hw;
2735 u32 ctrl = 0;
2736 u32 wufc = adapter->wol;
2737 u32 val;
2738 int retval;
2739 u16 speed;
2740 u16 duplex;
2741
2742 netif_device_detach(netdev);
2743 if (netif_running(netdev))
2744 atl1_down(adapter);
2745
2746 retval = pci_save_state(pdev);
2747 if (retval)
2748 return retval;
2749
2750 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2751 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2752 val = ctrl & BMSR_LSTATUS;
2753 if (val)
2754 wufc &= ~ATLX_WUFC_LNKC;
2755
2756 if (val && wufc) {
2757 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2758 if (val) {
2759 if (netif_msg_ifdown(adapter))
2760 dev_printk(KERN_DEBUG, &pdev->dev,
2761 "error getting speed/duplex\n");
2762 goto disable_wol;
2763 }
2764
2765 ctrl = 0;
2766
2767 /* enable magic packet WOL */
2768 if (wufc & ATLX_WUFC_MAG)
2769 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2770 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2771 ioread32(hw->hw_addr + REG_WOL_CTRL);
2772
2773 /* configure the mac */
2774 ctrl = MAC_CTRL_RX_EN;
2775 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2776 MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2777 if (duplex == FULL_DUPLEX)
2778 ctrl |= MAC_CTRL_DUPLX;
2779 ctrl |= (((u32)adapter->hw.preamble_len &
2780 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2781 if (adapter->vlgrp)
2782 ctrl |= MAC_CTRL_RMV_VLAN;
2783 if (wufc & ATLX_WUFC_MAG)
2784 ctrl |= MAC_CTRL_BC_EN;
2785 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2786 ioread32(hw->hw_addr + REG_MAC_CTRL);
2787
2788 /* poke the PHY */
2789 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2790 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2791 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2792 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2793
2794 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
2795 goto exit;
2796 }
2797
2798 if (!val && wufc) {
2799 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2800 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2801 ioread32(hw->hw_addr + REG_WOL_CTRL);
2802 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2803 ioread32(hw->hw_addr + REG_MAC_CTRL);
2804 hw->phy_configured = false;
2805 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
2806 goto exit;
2807 }
2808
2809 disable_wol:
2810 iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2811 ioread32(hw->hw_addr + REG_WOL_CTRL);
2812 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2813 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2814 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2815 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2816 hw->phy_configured = false;
2817 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
2818 exit:
2819 if (netif_running(netdev))
2820 pci_disable_msi(adapter->pdev);
2821 pci_disable_device(pdev);
2822 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2823
2824 return 0;
2825 }
2826
2827 static int atl1_resume(struct pci_dev *pdev)
2828 {
2829 struct net_device *netdev = pci_get_drvdata(pdev);
2830 struct atl1_adapter *adapter = netdev_priv(netdev);
2831 u32 err;
2832
2833 pci_set_power_state(pdev, PCI_D0);
2834 pci_restore_state(pdev);
2835
2836 err = pci_enable_device(pdev);
2837 if (err) {
2838 if (netif_msg_ifup(adapter))
2839 dev_printk(KERN_DEBUG, &pdev->dev,
2840 "error enabling pci device\n");
2841 return err;
2842 }
2843
2844 pci_set_master(pdev);
2845 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2846 pci_enable_wake(pdev, PCI_D3hot, 0);
2847 pci_enable_wake(pdev, PCI_D3cold, 0);
2848
2849 atl1_reset_hw(&adapter->hw);
2850 adapter->cmb.cmb->int_stats = 0;
2851
2852 if (netif_running(netdev))
2853 atl1_up(adapter);
2854 netif_device_attach(netdev);
2855
2856 return 0;
2857 }
2858 #else
2859 #define atl1_suspend NULL
2860 #define atl1_resume NULL
2861 #endif
2862
2863 static void atl1_shutdown(struct pci_dev *pdev)
2864 {
2865 #ifdef CONFIG_PM
2866 atl1_suspend(pdev, PMSG_SUSPEND);
2867 #endif
2868 }
2869
2870 #ifdef CONFIG_NET_POLL_CONTROLLER
2871 static void atl1_poll_controller(struct net_device *netdev)
2872 {
2873 disable_irq(netdev->irq);
2874 atl1_intr(netdev->irq, netdev);
2875 enable_irq(netdev->irq);
2876 }
2877 #endif
2878
2879 static const struct net_device_ops atl1_netdev_ops = {
2880 .ndo_open = atl1_open,
2881 .ndo_stop = atl1_close,
2882 .ndo_start_xmit = atl1_xmit_frame,
2883 .ndo_set_multicast_list = atlx_set_multi,
2884 .ndo_validate_addr = eth_validate_addr,
2885 .ndo_set_mac_address = atl1_set_mac,
2886 .ndo_change_mtu = atl1_change_mtu,
2887 .ndo_do_ioctl = atlx_ioctl,
2888 .ndo_tx_timeout = atlx_tx_timeout,
2889 .ndo_vlan_rx_register = atlx_vlan_rx_register,
2890 #ifdef CONFIG_NET_POLL_CONTROLLER
2891 .ndo_poll_controller = atl1_poll_controller,
2892 #endif
2893 };
2894
2895 /*
2896 * atl1_probe - Device Initialization Routine
2897 * @pdev: PCI device information struct
2898 * @ent: entry in atl1_pci_tbl
2899 *
2900 * Returns 0 on success, negative on failure
2901 *
2902 * atl1_probe initializes an adapter identified by a pci_dev structure.
2903 * The OS initialization, configuring of the adapter private structure,
2904 * and a hardware reset occur.
2905 */
2906 static int __devinit atl1_probe(struct pci_dev *pdev,
2907 const struct pci_device_id *ent)
2908 {
2909 struct net_device *netdev;
2910 struct atl1_adapter *adapter;
2911 static int cards_found = 0;
2912 int err;
2913
2914 err = pci_enable_device(pdev);
2915 if (err)
2916 return err;
2917
2918 /*
2919 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2920 * shared register for the high 32 bits, so only a single, aligned,
2921 * 4 GB physical address range can be used at a time.
2922 *
2923 * Supporting 64-bit DMA on this hardware is more trouble than it's
2924 * worth. It is far easier to limit to 32-bit DMA than update
2925 * various kernel subsystems to support the mechanics required by a
2926 * fixed-high-32-bit system.
2927 */
2928 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2929 if (err) {
2930 dev_err(&pdev->dev, "no usable DMA configuration\n");
2931 goto err_dma;
2932 }
2933 /*
2934 * Mark all PCI regions associated with PCI device
2935 * pdev as being reserved by owner atl1_driver_name
2936 */
2937 err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2938 if (err)
2939 goto err_request_regions;
2940
2941 /*
2942 * Enables bus-mastering on the device and calls
2943 * pcibios_set_master to do the needed arch specific settings
2944 */
2945 pci_set_master(pdev);
2946
2947 netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2948 if (!netdev) {
2949 err = -ENOMEM;
2950 goto err_alloc_etherdev;
2951 }
2952 SET_NETDEV_DEV(netdev, &pdev->dev);
2953
2954 pci_set_drvdata(pdev, netdev);
2955 adapter = netdev_priv(netdev);
2956 adapter->netdev = netdev;
2957 adapter->pdev = pdev;
2958 adapter->hw.back = adapter;
2959 adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2960
2961 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2962 if (!adapter->hw.hw_addr) {
2963 err = -EIO;
2964 goto err_pci_iomap;
2965 }
2966 /* get device revision number */
2967 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2968 (REG_MASTER_CTRL + 2));
2969 if (netif_msg_probe(adapter))
2970 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2971
2972 /* set default ring resource counts */
2973 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2974 adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2975
2976 adapter->mii.dev = netdev;
2977 adapter->mii.mdio_read = mdio_read;
2978 adapter->mii.mdio_write = mdio_write;
2979 adapter->mii.phy_id_mask = 0x1f;
2980 adapter->mii.reg_num_mask = 0x1f;
2981
2982 netdev->netdev_ops = &atl1_netdev_ops;
2983 netdev->watchdog_timeo = 5 * HZ;
2984
2985 netdev->ethtool_ops = &atl1_ethtool_ops;
2986 adapter->bd_number = cards_found;
2987
2988 /* setup the private structure */
2989 err = atl1_sw_init(adapter);
2990 if (err)
2991 goto err_common;
2992
2993 netdev->features = NETIF_F_HW_CSUM;
2994 netdev->features |= NETIF_F_SG;
2995 netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
2996
2997 /*
2998 * patch for some L1 of old version,
2999 * the final version of L1 may not need these
3000 * patches
3001 */
3002 /* atl1_pcie_patch(adapter); */
3003
3004 /* really reset GPHY core */
3005 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3006
3007 /*
3008 * reset the controller to
3009 * put the device in a known good starting state
3010 */
3011 if (atl1_reset_hw(&adapter->hw)) {
3012 err = -EIO;
3013 goto err_common;
3014 }
3015
3016 /* copy the MAC address out of the EEPROM */
3017 atl1_read_mac_addr(&adapter->hw);
3018 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3019
3020 if (!is_valid_ether_addr(netdev->dev_addr)) {
3021 err = -EIO;
3022 goto err_common;
3023 }
3024
3025 atl1_check_options(adapter);
3026
3027 /* pre-init the MAC, and setup link */
3028 err = atl1_init_hw(&adapter->hw);
3029 if (err) {
3030 err = -EIO;
3031 goto err_common;
3032 }
3033
3034 atl1_pcie_patch(adapter);
3035 /* assume we have no link for now */
3036 netif_carrier_off(netdev);
3037 netif_stop_queue(netdev);
3038
3039 setup_timer(&adapter->phy_config_timer, &atl1_phy_config,
3040 (unsigned long)adapter);
3041 adapter->phy_timer_pending = false;
3042
3043 INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
3044
3045 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3046
3047 INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
3048
3049 err = register_netdev(netdev);
3050 if (err)
3051 goto err_common;
3052
3053 cards_found++;
3054 atl1_via_workaround(adapter);
3055 return 0;
3056
3057 err_common:
3058 pci_iounmap(pdev, adapter->hw.hw_addr);
3059 err_pci_iomap:
3060 free_netdev(netdev);
3061 err_alloc_etherdev:
3062 pci_release_regions(pdev);
3063 err_dma:
3064 err_request_regions:
3065 pci_disable_device(pdev);
3066 return err;
3067 }
3068
3069 /*
3070 * atl1_remove - Device Removal Routine
3071 * @pdev: PCI device information struct
3072 *
3073 * atl1_remove is called by the PCI subsystem to alert the driver
3074 * that it should release a PCI device. The could be caused by a
3075 * Hot-Plug event, or because the driver is going to be removed from
3076 * memory.
3077 */
3078 static void __devexit atl1_remove(struct pci_dev *pdev)
3079 {
3080 struct net_device *netdev = pci_get_drvdata(pdev);
3081 struct atl1_adapter *adapter;
3082 /* Device not available. Return. */
3083 if (!netdev)
3084 return;
3085
3086 adapter = netdev_priv(netdev);
3087
3088 /*
3089 * Some atl1 boards lack persistent storage for their MAC, and get it
3090 * from the BIOS during POST. If we've been messing with the MAC
3091 * address, we need to save the permanent one.
3092 */
3093 if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
3094 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3095 ETH_ALEN);
3096 atl1_set_mac_addr(&adapter->hw);
3097 }
3098
3099 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3100 unregister_netdev(netdev);
3101 pci_iounmap(pdev, adapter->hw.hw_addr);
3102 pci_release_regions(pdev);
3103 free_netdev(netdev);
3104 pci_disable_device(pdev);
3105 }
3106
3107 static struct pci_driver atl1_driver = {
3108 .name = ATLX_DRIVER_NAME,
3109 .id_table = atl1_pci_tbl,
3110 .probe = atl1_probe,
3111 .remove = __devexit_p(atl1_remove),
3112 .suspend = atl1_suspend,
3113 .resume = atl1_resume,
3114 .shutdown = atl1_shutdown
3115 };
3116
3117 /*
3118 * atl1_exit_module - Driver Exit Cleanup Routine
3119 *
3120 * atl1_exit_module is called just before the driver is removed
3121 * from memory.
3122 */
3123 static void __exit atl1_exit_module(void)
3124 {
3125 pci_unregister_driver(&atl1_driver);
3126 }
3127
3128 /*
3129 * atl1_init_module - Driver Registration Routine
3130 *
3131 * atl1_init_module is the first routine called when the driver is
3132 * loaded. All it does is register with the PCI subsystem.
3133 */
3134 static int __init atl1_init_module(void)
3135 {
3136 return pci_register_driver(&atl1_driver);
3137 }
3138
3139 module_init(atl1_init_module);
3140 module_exit(atl1_exit_module);
3141
3142 struct atl1_stats {
3143 char stat_string[ETH_GSTRING_LEN];
3144 int sizeof_stat;
3145 int stat_offset;
3146 };
3147
3148 #define ATL1_STAT(m) \
3149 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3150
3151 static struct atl1_stats atl1_gstrings_stats[] = {
3152 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3153 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3154 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3155 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3156 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3157 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3158 {"multicast", ATL1_STAT(soft_stats.multicast)},
3159 {"collisions", ATL1_STAT(soft_stats.collisions)},
3160 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3161 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3162 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3163 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3164 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3165 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3166 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3167 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3168 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3169 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3170 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3171 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3172 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3173 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3174 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3175 {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3176 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3177 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3178 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3179 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3180 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3181 };
3182
3183 static void atl1_get_ethtool_stats(struct net_device *netdev,
3184 struct ethtool_stats *stats, u64 *data)
3185 {
3186 struct atl1_adapter *adapter = netdev_priv(netdev);
3187 int i;
3188 char *p;
3189
3190 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3191 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3192 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3193 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3194 }
3195
3196 }
3197
3198 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3199 {
3200 switch (sset) {
3201 case ETH_SS_STATS:
3202 return ARRAY_SIZE(atl1_gstrings_stats);
3203 default:
3204 return -EOPNOTSUPP;
3205 }
3206 }
3207
3208 static int atl1_get_settings(struct net_device *netdev,
3209 struct ethtool_cmd *ecmd)
3210 {
3211 struct atl1_adapter *adapter = netdev_priv(netdev);
3212 struct atl1_hw *hw = &adapter->hw;
3213
3214 ecmd->supported = (SUPPORTED_10baseT_Half |
3215 SUPPORTED_10baseT_Full |
3216 SUPPORTED_100baseT_Half |
3217 SUPPORTED_100baseT_Full |
3218 SUPPORTED_1000baseT_Full |
3219 SUPPORTED_Autoneg | SUPPORTED_TP);
3220 ecmd->advertising = ADVERTISED_TP;
3221 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3222 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3223 ecmd->advertising |= ADVERTISED_Autoneg;
3224 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3225 ecmd->advertising |= ADVERTISED_Autoneg;
3226 ecmd->advertising |=
3227 (ADVERTISED_10baseT_Half |
3228 ADVERTISED_10baseT_Full |
3229 ADVERTISED_100baseT_Half |
3230 ADVERTISED_100baseT_Full |
3231 ADVERTISED_1000baseT_Full);
3232 } else
3233 ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3234 }
3235 ecmd->port = PORT_TP;
3236 ecmd->phy_address = 0;
3237 ecmd->transceiver = XCVR_INTERNAL;
3238
3239 if (netif_carrier_ok(adapter->netdev)) {
3240 u16 link_speed, link_duplex;
3241 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3242 ecmd->speed = link_speed;
3243 if (link_duplex == FULL_DUPLEX)
3244 ecmd->duplex = DUPLEX_FULL;
3245 else
3246 ecmd->duplex = DUPLEX_HALF;
3247 } else {
3248 ecmd->speed = -1;
3249 ecmd->duplex = -1;
3250 }
3251 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3252 hw->media_type == MEDIA_TYPE_1000M_FULL)
3253 ecmd->autoneg = AUTONEG_ENABLE;
3254 else
3255 ecmd->autoneg = AUTONEG_DISABLE;
3256
3257 return 0;
3258 }
3259
3260 static int atl1_set_settings(struct net_device *netdev,
3261 struct ethtool_cmd *ecmd)
3262 {
3263 struct atl1_adapter *adapter = netdev_priv(netdev);
3264 struct atl1_hw *hw = &adapter->hw;
3265 u16 phy_data;
3266 int ret_val = 0;
3267 u16 old_media_type = hw->media_type;
3268
3269 if (netif_running(adapter->netdev)) {
3270 if (netif_msg_link(adapter))
3271 dev_dbg(&adapter->pdev->dev,
3272 "ethtool shutting down adapter\n");
3273 atl1_down(adapter);
3274 }
3275
3276 if (ecmd->autoneg == AUTONEG_ENABLE)
3277 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3278 else {
3279 if (ecmd->speed == SPEED_1000) {
3280 if (ecmd->duplex != DUPLEX_FULL) {
3281 if (netif_msg_link(adapter))
3282 dev_warn(&adapter->pdev->dev,
3283 "1000M half is invalid\n");
3284 ret_val = -EINVAL;
3285 goto exit_sset;
3286 }
3287 hw->media_type = MEDIA_TYPE_1000M_FULL;
3288 } else if (ecmd->speed == SPEED_100) {
3289 if (ecmd->duplex == DUPLEX_FULL)
3290 hw->media_type = MEDIA_TYPE_100M_FULL;
3291 else
3292 hw->media_type = MEDIA_TYPE_100M_HALF;
3293 } else {
3294 if (ecmd->duplex == DUPLEX_FULL)
3295 hw->media_type = MEDIA_TYPE_10M_FULL;
3296 else
3297 hw->media_type = MEDIA_TYPE_10M_HALF;
3298 }
3299 }
3300 switch (hw->media_type) {
3301 case MEDIA_TYPE_AUTO_SENSOR:
3302 ecmd->advertising =
3303 ADVERTISED_10baseT_Half |
3304 ADVERTISED_10baseT_Full |
3305 ADVERTISED_100baseT_Half |
3306 ADVERTISED_100baseT_Full |
3307 ADVERTISED_1000baseT_Full |
3308 ADVERTISED_Autoneg | ADVERTISED_TP;
3309 break;
3310 case MEDIA_TYPE_1000M_FULL:
3311 ecmd->advertising =
3312 ADVERTISED_1000baseT_Full |
3313 ADVERTISED_Autoneg | ADVERTISED_TP;
3314 break;
3315 default:
3316 ecmd->advertising = 0;
3317 break;
3318 }
3319 if (atl1_phy_setup_autoneg_adv(hw)) {
3320 ret_val = -EINVAL;
3321 if (netif_msg_link(adapter))
3322 dev_warn(&adapter->pdev->dev,
3323 "invalid ethtool speed/duplex setting\n");
3324 goto exit_sset;
3325 }
3326 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3327 hw->media_type == MEDIA_TYPE_1000M_FULL)
3328 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3329 else {
3330 switch (hw->media_type) {
3331 case MEDIA_TYPE_100M_FULL:
3332 phy_data =
3333 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3334 MII_CR_RESET;
3335 break;
3336 case MEDIA_TYPE_100M_HALF:
3337 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3338 break;
3339 case MEDIA_TYPE_10M_FULL:
3340 phy_data =
3341 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3342 break;
3343 default:
3344 /* MEDIA_TYPE_10M_HALF: */
3345 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3346 break;
3347 }
3348 }
3349 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3350 exit_sset:
3351 if (ret_val)
3352 hw->media_type = old_media_type;
3353
3354 if (netif_running(adapter->netdev)) {
3355 if (netif_msg_link(adapter))
3356 dev_dbg(&adapter->pdev->dev,
3357 "ethtool starting adapter\n");
3358 atl1_up(adapter);
3359 } else if (!ret_val) {
3360 if (netif_msg_link(adapter))
3361 dev_dbg(&adapter->pdev->dev,
3362 "ethtool resetting adapter\n");
3363 atl1_reset(adapter);
3364 }
3365 return ret_val;
3366 }
3367
3368 static void atl1_get_drvinfo(struct net_device *netdev,
3369 struct ethtool_drvinfo *drvinfo)
3370 {
3371 struct atl1_adapter *adapter = netdev_priv(netdev);
3372
3373 strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3374 strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3375 sizeof(drvinfo->version));
3376 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
3377 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3378 sizeof(drvinfo->bus_info));
3379 drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3380 }
3381
3382 static void atl1_get_wol(struct net_device *netdev,
3383 struct ethtool_wolinfo *wol)
3384 {
3385 struct atl1_adapter *adapter = netdev_priv(netdev);
3386
3387 wol->supported = WAKE_MAGIC;
3388 wol->wolopts = 0;
3389 if (adapter->wol & ATLX_WUFC_MAG)
3390 wol->wolopts |= WAKE_MAGIC;
3391 }
3392
3393 static int atl1_set_wol(struct net_device *netdev,
3394 struct ethtool_wolinfo *wol)
3395 {
3396 struct atl1_adapter *adapter = netdev_priv(netdev);
3397
3398 if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3399 WAKE_ARP | WAKE_MAGICSECURE))
3400 return -EOPNOTSUPP;
3401 adapter->wol = 0;
3402 if (wol->wolopts & WAKE_MAGIC)
3403 adapter->wol |= ATLX_WUFC_MAG;
3404 return 0;
3405 }
3406
3407 static u32 atl1_get_msglevel(struct net_device *netdev)
3408 {
3409 struct atl1_adapter *adapter = netdev_priv(netdev);
3410 return adapter->msg_enable;
3411 }
3412
3413 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3414 {
3415 struct atl1_adapter *adapter = netdev_priv(netdev);
3416 adapter->msg_enable = value;
3417 }
3418
3419 static int atl1_get_regs_len(struct net_device *netdev)
3420 {
3421 return ATL1_REG_COUNT * sizeof(u32);
3422 }
3423
3424 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3425 void *p)
3426 {
3427 struct atl1_adapter *adapter = netdev_priv(netdev);
3428 struct atl1_hw *hw = &adapter->hw;
3429 unsigned int i;
3430 u32 *regbuf = p;
3431
3432 for (i = 0; i < ATL1_REG_COUNT; i++) {
3433 /*
3434 * This switch statement avoids reserved regions
3435 * of register space.
3436 */
3437 switch (i) {
3438 case 6 ... 9:
3439 case 14:
3440 case 29 ... 31:
3441 case 34 ... 63:
3442 case 75 ... 127:
3443 case 136 ... 1023:
3444 case 1027 ... 1087:
3445 case 1091 ... 1151:
3446 case 1194 ... 1195:
3447 case 1200 ... 1201:
3448 case 1206 ... 1213:
3449 case 1216 ... 1279:
3450 case 1290 ... 1311:
3451 case 1323 ... 1343:
3452 case 1358 ... 1359:
3453 case 1368 ... 1375:
3454 case 1378 ... 1383:
3455 case 1388 ... 1391:
3456 case 1393 ... 1395:
3457 case 1402 ... 1403:
3458 case 1410 ... 1471:
3459 case 1522 ... 1535:
3460 /* reserved region; don't read it */
3461 regbuf[i] = 0;
3462 break;
3463 default:
3464 /* unreserved region */
3465 regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3466 }
3467 }
3468 }
3469
3470 static void atl1_get_ringparam(struct net_device *netdev,
3471 struct ethtool_ringparam *ring)
3472 {
3473 struct atl1_adapter *adapter = netdev_priv(netdev);
3474 struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3475 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3476
3477 ring->rx_max_pending = ATL1_MAX_RFD;
3478 ring->tx_max_pending = ATL1_MAX_TPD;
3479 ring->rx_mini_max_pending = 0;
3480 ring->rx_jumbo_max_pending = 0;
3481 ring->rx_pending = rxdr->count;
3482 ring->tx_pending = txdr->count;
3483 ring->rx_mini_pending = 0;
3484 ring->rx_jumbo_pending = 0;
3485 }
3486
3487 static int atl1_set_ringparam(struct net_device *netdev,
3488 struct ethtool_ringparam *ring)
3489 {
3490 struct atl1_adapter *adapter = netdev_priv(netdev);
3491 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3492 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3493 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3494
3495 struct atl1_tpd_ring tpd_old, tpd_new;
3496 struct atl1_rfd_ring rfd_old, rfd_new;
3497 struct atl1_rrd_ring rrd_old, rrd_new;
3498 struct atl1_ring_header rhdr_old, rhdr_new;
3499 int err;
3500
3501 tpd_old = adapter->tpd_ring;
3502 rfd_old = adapter->rfd_ring;
3503 rrd_old = adapter->rrd_ring;
3504 rhdr_old = adapter->ring_header;
3505
3506 if (netif_running(adapter->netdev))
3507 atl1_down(adapter);
3508
3509 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3510 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3511 rfdr->count;
3512 rfdr->count = (rfdr->count + 3) & ~3;
3513 rrdr->count = rfdr->count;
3514
3515 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3516 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3517 tpdr->count;
3518 tpdr->count = (tpdr->count + 3) & ~3;
3519
3520 if (netif_running(adapter->netdev)) {
3521 /* try to get new resources before deleting old */
3522 err = atl1_setup_ring_resources(adapter);
3523 if (err)
3524 goto err_setup_ring;
3525
3526 /*
3527 * save the new, restore the old in order to free it,
3528 * then restore the new back again
3529 */
3530
3531 rfd_new = adapter->rfd_ring;
3532 rrd_new = adapter->rrd_ring;
3533 tpd_new = adapter->tpd_ring;
3534 rhdr_new = adapter->ring_header;
3535 adapter->rfd_ring = rfd_old;
3536 adapter->rrd_ring = rrd_old;
3537 adapter->tpd_ring = tpd_old;
3538 adapter->ring_header = rhdr_old;
3539 atl1_free_ring_resources(adapter);
3540 adapter->rfd_ring = rfd_new;
3541 adapter->rrd_ring = rrd_new;
3542 adapter->tpd_ring = tpd_new;
3543 adapter->ring_header = rhdr_new;
3544
3545 err = atl1_up(adapter);
3546 if (err)
3547 return err;
3548 }
3549 return 0;
3550
3551 err_setup_ring:
3552 adapter->rfd_ring = rfd_old;
3553 adapter->rrd_ring = rrd_old;
3554 adapter->tpd_ring = tpd_old;
3555 adapter->ring_header = rhdr_old;
3556 atl1_up(adapter);
3557 return err;
3558 }
3559
3560 static void atl1_get_pauseparam(struct net_device *netdev,
3561 struct ethtool_pauseparam *epause)
3562 {
3563 struct atl1_adapter *adapter = netdev_priv(netdev);
3564 struct atl1_hw *hw = &adapter->hw;
3565
3566 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3567 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3568 epause->autoneg = AUTONEG_ENABLE;
3569 } else {
3570 epause->autoneg = AUTONEG_DISABLE;
3571 }
3572 epause->rx_pause = 1;
3573 epause->tx_pause = 1;
3574 }
3575
3576 static int atl1_set_pauseparam(struct net_device *netdev,
3577 struct ethtool_pauseparam *epause)
3578 {
3579 struct atl1_adapter *adapter = netdev_priv(netdev);
3580 struct atl1_hw *hw = &adapter->hw;
3581
3582 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3583 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3584 epause->autoneg = AUTONEG_ENABLE;
3585 } else {
3586 epause->autoneg = AUTONEG_DISABLE;
3587 }
3588
3589 epause->rx_pause = 1;
3590 epause->tx_pause = 1;
3591
3592 return 0;
3593 }
3594
3595 /* FIXME: is this right? -- CHS */
3596 static u32 atl1_get_rx_csum(struct net_device *netdev)
3597 {
3598 return 1;
3599 }
3600
3601 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3602 u8 *data)
3603 {
3604 u8 *p = data;
3605 int i;
3606
3607 switch (stringset) {
3608 case ETH_SS_STATS:
3609 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3610 memcpy(p, atl1_gstrings_stats[i].stat_string,
3611 ETH_GSTRING_LEN);
3612 p += ETH_GSTRING_LEN;
3613 }
3614 break;
3615 }
3616 }
3617
3618 static int atl1_nway_reset(struct net_device *netdev)
3619 {
3620 struct atl1_adapter *adapter = netdev_priv(netdev);
3621 struct atl1_hw *hw = &adapter->hw;
3622
3623 if (netif_running(netdev)) {
3624 u16 phy_data;
3625 atl1_down(adapter);
3626
3627 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3628 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3629 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3630 } else {
3631 switch (hw->media_type) {
3632 case MEDIA_TYPE_100M_FULL:
3633 phy_data = MII_CR_FULL_DUPLEX |
3634 MII_CR_SPEED_100 | MII_CR_RESET;
3635 break;
3636 case MEDIA_TYPE_100M_HALF:
3637 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3638 break;
3639 case MEDIA_TYPE_10M_FULL:
3640 phy_data = MII_CR_FULL_DUPLEX |
3641 MII_CR_SPEED_10 | MII_CR_RESET;
3642 break;
3643 default:
3644 /* MEDIA_TYPE_10M_HALF */
3645 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3646 }
3647 }
3648 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3649 atl1_up(adapter);
3650 }
3651 return 0;
3652 }
3653
3654 const struct ethtool_ops atl1_ethtool_ops = {
3655 .get_settings = atl1_get_settings,
3656 .set_settings = atl1_set_settings,
3657 .get_drvinfo = atl1_get_drvinfo,
3658 .get_wol = atl1_get_wol,
3659 .set_wol = atl1_set_wol,
3660 .get_msglevel = atl1_get_msglevel,
3661 .set_msglevel = atl1_set_msglevel,
3662 .get_regs_len = atl1_get_regs_len,
3663 .get_regs = atl1_get_regs,
3664 .get_ringparam = atl1_get_ringparam,
3665 .set_ringparam = atl1_set_ringparam,
3666 .get_pauseparam = atl1_get_pauseparam,
3667 .set_pauseparam = atl1_set_pauseparam,
3668 .get_rx_csum = atl1_get_rx_csum,
3669 .set_tx_csum = ethtool_op_set_tx_hw_csum,
3670 .get_link = ethtool_op_get_link,
3671 .set_sg = ethtool_op_set_sg,
3672 .get_strings = atl1_get_strings,
3673 .nway_reset = atl1_nway_reset,
3674 .get_ethtool_stats = atl1_get_ethtool_stats,
3675 .get_sset_count = atl1_get_sset_count,
3676 .set_tso = ethtool_op_set_tso,
3677 };