[NET]: Make NAPI polling independent of struct net_device objects.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / 8139cp.c
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
18
19 See the file COPYING in this distribution for more information.
20
21 Contributors:
22
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
26
27 TODO:
28 * Test Tx checksumming thoroughly
29
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
42
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
46
47 */
48
49 #define DRV_NAME "8139cp"
50 #define DRV_VERSION "1.3"
51 #define DRV_RELDATE "Mar 22, 2004"
52
53
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/kernel.h>
57 #include <linux/compiler.h>
58 #include <linux/netdevice.h>
59 #include <linux/etherdevice.h>
60 #include <linux/init.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/delay.h>
64 #include <linux/ethtool.h>
65 #include <linux/mii.h>
66 #include <linux/if_vlan.h>
67 #include <linux/crc32.h>
68 #include <linux/in.h>
69 #include <linux/ip.h>
70 #include <linux/tcp.h>
71 #include <linux/udp.h>
72 #include <linux/cache.h>
73 #include <asm/io.h>
74 #include <asm/irq.h>
75 #include <asm/uaccess.h>
76
77 /* VLAN tagging feature enable/disable */
78 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
79 #define CP_VLAN_TAG_USED 1
80 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
81 do { (tx_desc)->opts2 = (vlan_tag_value); } while (0)
82 #else
83 #define CP_VLAN_TAG_USED 0
84 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
85 do { (tx_desc)->opts2 = 0; } while (0)
86 #endif
87
88 /* These identify the driver base version and may not be removed. */
89 static char version[] =
90 KERN_INFO DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
91
92 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
93 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
94 MODULE_VERSION(DRV_VERSION);
95 MODULE_LICENSE("GPL");
96
97 static int debug = -1;
98 module_param(debug, int, 0);
99 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
100
101 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
102 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
103 static int multicast_filter_limit = 32;
104 module_param(multicast_filter_limit, int, 0);
105 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
106
107 #define PFX DRV_NAME ": "
108
109 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
110 NETIF_MSG_PROBE | \
111 NETIF_MSG_LINK)
112 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
113 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
114 #define CP_REGS_SIZE (0xff + 1)
115 #define CP_REGS_VER 1 /* version 1 */
116 #define CP_RX_RING_SIZE 64
117 #define CP_TX_RING_SIZE 64
118 #define CP_RING_BYTES \
119 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
120 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
121 CP_STATS_SIZE)
122 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
123 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
124 #define TX_BUFFS_AVAIL(CP) \
125 (((CP)->tx_tail <= (CP)->tx_head) ? \
126 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
127 (CP)->tx_tail - (CP)->tx_head - 1)
128
129 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
130 #define RX_OFFSET 2
131 #define CP_INTERNAL_PHY 32
132
133 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
134 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
135 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
136 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
137 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
138
139 /* Time in jiffies before concluding the transmitter is hung. */
140 #define TX_TIMEOUT (6*HZ)
141
142 /* hardware minimum and maximum for a single frame's data payload */
143 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
144 #define CP_MAX_MTU 4096
145
146 enum {
147 /* NIC register offsets */
148 MAC0 = 0x00, /* Ethernet hardware address. */
149 MAR0 = 0x08, /* Multicast filter. */
150 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
151 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
152 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
153 Cmd = 0x37, /* Command register */
154 IntrMask = 0x3C, /* Interrupt mask */
155 IntrStatus = 0x3E, /* Interrupt status */
156 TxConfig = 0x40, /* Tx configuration */
157 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
158 RxConfig = 0x44, /* Rx configuration */
159 RxMissed = 0x4C, /* 24 bits valid, write clears */
160 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
161 Config1 = 0x52, /* Config1 */
162 Config3 = 0x59, /* Config3 */
163 Config4 = 0x5A, /* Config4 */
164 MultiIntr = 0x5C, /* Multiple interrupt select */
165 BasicModeCtrl = 0x62, /* MII BMCR */
166 BasicModeStatus = 0x64, /* MII BMSR */
167 NWayAdvert = 0x66, /* MII ADVERTISE */
168 NWayLPAR = 0x68, /* MII LPA */
169 NWayExpansion = 0x6A, /* MII Expansion */
170 Config5 = 0xD8, /* Config5 */
171 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
172 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
173 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
174 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
175 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
176 TxThresh = 0xEC, /* Early Tx threshold */
177 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
178 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
179
180 /* Tx and Rx status descriptors */
181 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
182 RingEnd = (1 << 30), /* End of descriptor ring */
183 FirstFrag = (1 << 29), /* First segment of a packet */
184 LastFrag = (1 << 28), /* Final segment of a packet */
185 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
186 MSSShift = 16, /* MSS value position */
187 MSSMask = 0xfff, /* MSS value: 11 bits */
188 TxError = (1 << 23), /* Tx error summary */
189 RxError = (1 << 20), /* Rx error summary */
190 IPCS = (1 << 18), /* Calculate IP checksum */
191 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
192 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
193 TxVlanTag = (1 << 17), /* Add VLAN tag */
194 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
195 IPFail = (1 << 15), /* IP checksum failed */
196 UDPFail = (1 << 14), /* UDP/IP checksum failed */
197 TCPFail = (1 << 13), /* TCP/IP checksum failed */
198 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
199 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
200 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
201 RxProtoTCP = 1,
202 RxProtoUDP = 2,
203 RxProtoIP = 3,
204 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
205 TxOWC = (1 << 22), /* Tx Out-of-window collision */
206 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
207 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
208 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
209 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
210 RxErrFrame = (1 << 27), /* Rx frame alignment error */
211 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
212 RxErrCRC = (1 << 18), /* Rx CRC error */
213 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
214 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
215 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
216
217 /* StatsAddr register */
218 DumpStats = (1 << 3), /* Begin stats dump */
219
220 /* RxConfig register */
221 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
222 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
223 AcceptErr = 0x20, /* Accept packets with CRC errors */
224 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
225 AcceptBroadcast = 0x08, /* Accept broadcast packets */
226 AcceptMulticast = 0x04, /* Accept multicast packets */
227 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
228 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
229
230 /* IntrMask / IntrStatus registers */
231 PciErr = (1 << 15), /* System error on the PCI bus */
232 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
233 LenChg = (1 << 13), /* Cable length change */
234 SWInt = (1 << 8), /* Software-requested interrupt */
235 TxEmpty = (1 << 7), /* No Tx descriptors available */
236 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
237 LinkChg = (1 << 5), /* Packet underrun, or link change */
238 RxEmpty = (1 << 4), /* No Rx descriptors available */
239 TxErr = (1 << 3), /* Tx error */
240 TxOK = (1 << 2), /* Tx packet sent */
241 RxErr = (1 << 1), /* Rx error */
242 RxOK = (1 << 0), /* Rx packet received */
243 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
244 but hardware likes to raise it */
245
246 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
247 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
248 RxErr | RxOK | IntrResvd,
249
250 /* C mode command register */
251 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
252 RxOn = (1 << 3), /* Rx mode enable */
253 TxOn = (1 << 2), /* Tx mode enable */
254
255 /* C+ mode command register */
256 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
257 RxChkSum = (1 << 5), /* Rx checksum offload enable */
258 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
259 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
260 CpRxOn = (1 << 1), /* Rx mode enable */
261 CpTxOn = (1 << 0), /* Tx mode enable */
262
263 /* Cfg9436 EEPROM control register */
264 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
265 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
266
267 /* TxConfig register */
268 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
269 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
270
271 /* Early Tx Threshold register */
272 TxThreshMask = 0x3f, /* Mask bits 5-0 */
273 TxThreshMax = 2048, /* Max early Tx threshold */
274
275 /* Config1 register */
276 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
277 LWACT = (1 << 4), /* LWAKE active mode */
278 PMEnable = (1 << 0), /* Enable various PM features of chip */
279
280 /* Config3 register */
281 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
282 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
283 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
284
285 /* Config4 register */
286 LWPTN = (1 << 1), /* LWAKE Pattern */
287 LWPME = (1 << 4), /* LANWAKE vs PMEB */
288
289 /* Config5 register */
290 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
291 MWF = (1 << 5), /* Accept Multicast wakeup frame */
292 UWF = (1 << 4), /* Accept Unicast wakeup frame */
293 LANWake = (1 << 1), /* Enable LANWake signal */
294 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
295
296 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
297 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
298 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
299 };
300
301 static const unsigned int cp_rx_config =
302 (RX_FIFO_THRESH << RxCfgFIFOShift) |
303 (RX_DMA_BURST << RxCfgDMAShift);
304
305 struct cp_desc {
306 u32 opts1;
307 u32 opts2;
308 u64 addr;
309 };
310
311 struct cp_dma_stats {
312 u64 tx_ok;
313 u64 rx_ok;
314 u64 tx_err;
315 u32 rx_err;
316 u16 rx_fifo;
317 u16 frame_align;
318 u32 tx_ok_1col;
319 u32 tx_ok_mcol;
320 u64 rx_ok_phys;
321 u64 rx_ok_bcast;
322 u32 rx_ok_mcast;
323 u16 tx_abort;
324 u16 tx_underrun;
325 } __attribute__((packed));
326
327 struct cp_extra_stats {
328 unsigned long rx_frags;
329 };
330
331 struct cp_private {
332 void __iomem *regs;
333 struct net_device *dev;
334 spinlock_t lock;
335 u32 msg_enable;
336
337 struct napi_struct napi;
338
339 struct pci_dev *pdev;
340 u32 rx_config;
341 u16 cpcmd;
342
343 struct net_device_stats net_stats;
344 struct cp_extra_stats cp_stats;
345
346 unsigned rx_head ____cacheline_aligned;
347 unsigned rx_tail;
348 struct cp_desc *rx_ring;
349 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
350
351 unsigned tx_head ____cacheline_aligned;
352 unsigned tx_tail;
353 struct cp_desc *tx_ring;
354 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
355
356 unsigned rx_buf_sz;
357 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
358
359 #if CP_VLAN_TAG_USED
360 struct vlan_group *vlgrp;
361 #endif
362 dma_addr_t ring_dma;
363
364 struct mii_if_info mii_if;
365 };
366
367 #define cpr8(reg) readb(cp->regs + (reg))
368 #define cpr16(reg) readw(cp->regs + (reg))
369 #define cpr32(reg) readl(cp->regs + (reg))
370 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
371 #define cpw16(reg,val) writew((val), cp->regs + (reg))
372 #define cpw32(reg,val) writel((val), cp->regs + (reg))
373 #define cpw8_f(reg,val) do { \
374 writeb((val), cp->regs + (reg)); \
375 readb(cp->regs + (reg)); \
376 } while (0)
377 #define cpw16_f(reg,val) do { \
378 writew((val), cp->regs + (reg)); \
379 readw(cp->regs + (reg)); \
380 } while (0)
381 #define cpw32_f(reg,val) do { \
382 writel((val), cp->regs + (reg)); \
383 readl(cp->regs + (reg)); \
384 } while (0)
385
386
387 static void __cp_set_rx_mode (struct net_device *dev);
388 static void cp_tx (struct cp_private *cp);
389 static void cp_clean_rings (struct cp_private *cp);
390 #ifdef CONFIG_NET_POLL_CONTROLLER
391 static void cp_poll_controller(struct net_device *dev);
392 #endif
393 static int cp_get_eeprom_len(struct net_device *dev);
394 static int cp_get_eeprom(struct net_device *dev,
395 struct ethtool_eeprom *eeprom, u8 *data);
396 static int cp_set_eeprom(struct net_device *dev,
397 struct ethtool_eeprom *eeprom, u8 *data);
398
399 static struct pci_device_id cp_pci_tbl[] = {
400 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
401 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
402 { },
403 };
404 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
405
406 static struct {
407 const char str[ETH_GSTRING_LEN];
408 } ethtool_stats_keys[] = {
409 { "tx_ok" },
410 { "rx_ok" },
411 { "tx_err" },
412 { "rx_err" },
413 { "rx_fifo" },
414 { "frame_align" },
415 { "tx_ok_1col" },
416 { "tx_ok_mcol" },
417 { "rx_ok_phys" },
418 { "rx_ok_bcast" },
419 { "rx_ok_mcast" },
420 { "tx_abort" },
421 { "tx_underrun" },
422 { "rx_frags" },
423 };
424
425
426 #if CP_VLAN_TAG_USED
427 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
428 {
429 struct cp_private *cp = netdev_priv(dev);
430 unsigned long flags;
431
432 spin_lock_irqsave(&cp->lock, flags);
433 cp->vlgrp = grp;
434 if (grp)
435 cp->cpcmd |= RxVlanOn;
436 else
437 cp->cpcmd &= ~RxVlanOn;
438
439 cpw16(CpCmd, cp->cpcmd);
440 spin_unlock_irqrestore(&cp->lock, flags);
441 }
442 #endif /* CP_VLAN_TAG_USED */
443
444 static inline void cp_set_rxbufsize (struct cp_private *cp)
445 {
446 unsigned int mtu = cp->dev->mtu;
447
448 if (mtu > ETH_DATA_LEN)
449 /* MTU + ethernet header + FCS + optional VLAN tag */
450 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
451 else
452 cp->rx_buf_sz = PKT_BUF_SZ;
453 }
454
455 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
456 struct cp_desc *desc)
457 {
458 skb->protocol = eth_type_trans (skb, cp->dev);
459
460 cp->net_stats.rx_packets++;
461 cp->net_stats.rx_bytes += skb->len;
462 cp->dev->last_rx = jiffies;
463
464 #if CP_VLAN_TAG_USED
465 if (cp->vlgrp && (desc->opts2 & RxVlanTagged)) {
466 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
467 be16_to_cpu(desc->opts2 & 0xffff));
468 } else
469 #endif
470 netif_receive_skb(skb);
471 }
472
473 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
474 u32 status, u32 len)
475 {
476 if (netif_msg_rx_err (cp))
477 printk (KERN_DEBUG
478 "%s: rx err, slot %d status 0x%x len %d\n",
479 cp->dev->name, rx_tail, status, len);
480 cp->net_stats.rx_errors++;
481 if (status & RxErrFrame)
482 cp->net_stats.rx_frame_errors++;
483 if (status & RxErrCRC)
484 cp->net_stats.rx_crc_errors++;
485 if ((status & RxErrRunt) || (status & RxErrLong))
486 cp->net_stats.rx_length_errors++;
487 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
488 cp->net_stats.rx_length_errors++;
489 if (status & RxErrFIFO)
490 cp->net_stats.rx_fifo_errors++;
491 }
492
493 static inline unsigned int cp_rx_csum_ok (u32 status)
494 {
495 unsigned int protocol = (status >> 16) & 0x3;
496
497 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
498 return 1;
499 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
500 return 1;
501 else if ((protocol == RxProtoIP) && (!(status & IPFail)))
502 return 1;
503 return 0;
504 }
505
506 static int cp_rx_poll(struct napi_struct *napi, int budget)
507 {
508 struct cp_private *cp = container_of(napi, struct cp_private, napi);
509 struct net_device *dev = cp->dev;
510 unsigned int rx_tail = cp->rx_tail;
511 int rx;
512
513 rx_status_loop:
514 rx = 0;
515 cpw16(IntrStatus, cp_rx_intr_mask);
516
517 while (1) {
518 u32 status, len;
519 dma_addr_t mapping;
520 struct sk_buff *skb, *new_skb;
521 struct cp_desc *desc;
522 unsigned buflen;
523
524 skb = cp->rx_skb[rx_tail];
525 BUG_ON(!skb);
526
527 desc = &cp->rx_ring[rx_tail];
528 status = le32_to_cpu(desc->opts1);
529 if (status & DescOwn)
530 break;
531
532 len = (status & 0x1fff) - 4;
533 mapping = le64_to_cpu(desc->addr);
534
535 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
536 /* we don't support incoming fragmented frames.
537 * instead, we attempt to ensure that the
538 * pre-allocated RX skbs are properly sized such
539 * that RX fragments are never encountered
540 */
541 cp_rx_err_acct(cp, rx_tail, status, len);
542 cp->net_stats.rx_dropped++;
543 cp->cp_stats.rx_frags++;
544 goto rx_next;
545 }
546
547 if (status & (RxError | RxErrFIFO)) {
548 cp_rx_err_acct(cp, rx_tail, status, len);
549 goto rx_next;
550 }
551
552 if (netif_msg_rx_status(cp))
553 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d\n",
554 dev->name, rx_tail, status, len);
555
556 buflen = cp->rx_buf_sz + RX_OFFSET;
557 new_skb = dev_alloc_skb (buflen);
558 if (!new_skb) {
559 cp->net_stats.rx_dropped++;
560 goto rx_next;
561 }
562
563 skb_reserve(new_skb, RX_OFFSET);
564
565 pci_unmap_single(cp->pdev, mapping,
566 buflen, PCI_DMA_FROMDEVICE);
567
568 /* Handle checksum offloading for incoming packets. */
569 if (cp_rx_csum_ok(status))
570 skb->ip_summed = CHECKSUM_UNNECESSARY;
571 else
572 skb->ip_summed = CHECKSUM_NONE;
573
574 skb_put(skb, len);
575
576 mapping = pci_map_single(cp->pdev, new_skb->data, buflen,
577 PCI_DMA_FROMDEVICE);
578 cp->rx_skb[rx_tail] = new_skb;
579
580 cp_rx_skb(cp, skb, desc);
581 rx++;
582
583 rx_next:
584 cp->rx_ring[rx_tail].opts2 = 0;
585 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
586 if (rx_tail == (CP_RX_RING_SIZE - 1))
587 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
588 cp->rx_buf_sz);
589 else
590 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
591 rx_tail = NEXT_RX(rx_tail);
592
593 if (rx >= budget)
594 break;
595 }
596
597 cp->rx_tail = rx_tail;
598
599 /* if we did not reach work limit, then we're done with
600 * this round of polling
601 */
602 if (rx < budget) {
603 unsigned long flags;
604
605 if (cpr16(IntrStatus) & cp_rx_intr_mask)
606 goto rx_status_loop;
607
608 spin_lock_irqsave(&cp->lock, flags);
609 cpw16_f(IntrMask, cp_intr_mask);
610 __netif_rx_complete(dev, napi);
611 spin_unlock_irqrestore(&cp->lock, flags);
612 }
613
614 return rx;
615 }
616
617 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
618 {
619 struct net_device *dev = dev_instance;
620 struct cp_private *cp;
621 u16 status;
622
623 if (unlikely(dev == NULL))
624 return IRQ_NONE;
625 cp = netdev_priv(dev);
626
627 status = cpr16(IntrStatus);
628 if (!status || (status == 0xFFFF))
629 return IRQ_NONE;
630
631 if (netif_msg_intr(cp))
632 printk(KERN_DEBUG "%s: intr, status %04x cmd %02x cpcmd %04x\n",
633 dev->name, status, cpr8(Cmd), cpr16(CpCmd));
634
635 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
636
637 spin_lock(&cp->lock);
638
639 /* close possible race's with dev_close */
640 if (unlikely(!netif_running(dev))) {
641 cpw16(IntrMask, 0);
642 spin_unlock(&cp->lock);
643 return IRQ_HANDLED;
644 }
645
646 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
647 if (netif_rx_schedule_prep(dev, &cp->napi)) {
648 cpw16_f(IntrMask, cp_norx_intr_mask);
649 __netif_rx_schedule(dev, &cp->napi);
650 }
651
652 if (status & (TxOK | TxErr | TxEmpty | SWInt))
653 cp_tx(cp);
654 if (status & LinkChg)
655 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
656
657 spin_unlock(&cp->lock);
658
659 if (status & PciErr) {
660 u16 pci_status;
661
662 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
663 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
664 printk(KERN_ERR "%s: PCI bus error, status=%04x, PCI status=%04x\n",
665 dev->name, status, pci_status);
666
667 /* TODO: reset hardware */
668 }
669
670 return IRQ_HANDLED;
671 }
672
673 #ifdef CONFIG_NET_POLL_CONTROLLER
674 /*
675 * Polling receive - used by netconsole and other diagnostic tools
676 * to allow network i/o with interrupts disabled.
677 */
678 static void cp_poll_controller(struct net_device *dev)
679 {
680 disable_irq(dev->irq);
681 cp_interrupt(dev->irq, dev);
682 enable_irq(dev->irq);
683 }
684 #endif
685
686 static void cp_tx (struct cp_private *cp)
687 {
688 unsigned tx_head = cp->tx_head;
689 unsigned tx_tail = cp->tx_tail;
690
691 while (tx_tail != tx_head) {
692 struct cp_desc *txd = cp->tx_ring + tx_tail;
693 struct sk_buff *skb;
694 u32 status;
695
696 rmb();
697 status = le32_to_cpu(txd->opts1);
698 if (status & DescOwn)
699 break;
700
701 skb = cp->tx_skb[tx_tail];
702 BUG_ON(!skb);
703
704 pci_unmap_single(cp->pdev, le64_to_cpu(txd->addr),
705 le32_to_cpu(txd->opts1) & 0xffff,
706 PCI_DMA_TODEVICE);
707
708 if (status & LastFrag) {
709 if (status & (TxError | TxFIFOUnder)) {
710 if (netif_msg_tx_err(cp))
711 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
712 cp->dev->name, status);
713 cp->net_stats.tx_errors++;
714 if (status & TxOWC)
715 cp->net_stats.tx_window_errors++;
716 if (status & TxMaxCol)
717 cp->net_stats.tx_aborted_errors++;
718 if (status & TxLinkFail)
719 cp->net_stats.tx_carrier_errors++;
720 if (status & TxFIFOUnder)
721 cp->net_stats.tx_fifo_errors++;
722 } else {
723 cp->net_stats.collisions +=
724 ((status >> TxColCntShift) & TxColCntMask);
725 cp->net_stats.tx_packets++;
726 cp->net_stats.tx_bytes += skb->len;
727 if (netif_msg_tx_done(cp))
728 printk(KERN_DEBUG "%s: tx done, slot %d\n", cp->dev->name, tx_tail);
729 }
730 dev_kfree_skb_irq(skb);
731 }
732
733 cp->tx_skb[tx_tail] = NULL;
734
735 tx_tail = NEXT_TX(tx_tail);
736 }
737
738 cp->tx_tail = tx_tail;
739
740 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
741 netif_wake_queue(cp->dev);
742 }
743
744 static int cp_start_xmit (struct sk_buff *skb, struct net_device *dev)
745 {
746 struct cp_private *cp = netdev_priv(dev);
747 unsigned entry;
748 u32 eor, flags;
749 unsigned long intr_flags;
750 #if CP_VLAN_TAG_USED
751 u32 vlan_tag = 0;
752 #endif
753 int mss = 0;
754
755 spin_lock_irqsave(&cp->lock, intr_flags);
756
757 /* This is a hard error, log it. */
758 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
759 netif_stop_queue(dev);
760 spin_unlock_irqrestore(&cp->lock, intr_flags);
761 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
762 dev->name);
763 return 1;
764 }
765
766 #if CP_VLAN_TAG_USED
767 if (cp->vlgrp && vlan_tx_tag_present(skb))
768 vlan_tag = TxVlanTag | cpu_to_be16(vlan_tx_tag_get(skb));
769 #endif
770
771 entry = cp->tx_head;
772 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
773 if (dev->features & NETIF_F_TSO)
774 mss = skb_shinfo(skb)->gso_size;
775
776 if (skb_shinfo(skb)->nr_frags == 0) {
777 struct cp_desc *txd = &cp->tx_ring[entry];
778 u32 len;
779 dma_addr_t mapping;
780
781 len = skb->len;
782 mapping = pci_map_single(cp->pdev, skb->data, len, PCI_DMA_TODEVICE);
783 CP_VLAN_TX_TAG(txd, vlan_tag);
784 txd->addr = cpu_to_le64(mapping);
785 wmb();
786
787 flags = eor | len | DescOwn | FirstFrag | LastFrag;
788
789 if (mss)
790 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
791 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
792 const struct iphdr *ip = ip_hdr(skb);
793 if (ip->protocol == IPPROTO_TCP)
794 flags |= IPCS | TCPCS;
795 else if (ip->protocol == IPPROTO_UDP)
796 flags |= IPCS | UDPCS;
797 else
798 WARN_ON(1); /* we need a WARN() */
799 }
800
801 txd->opts1 = cpu_to_le32(flags);
802 wmb();
803
804 cp->tx_skb[entry] = skb;
805 entry = NEXT_TX(entry);
806 } else {
807 struct cp_desc *txd;
808 u32 first_len, first_eor;
809 dma_addr_t first_mapping;
810 int frag, first_entry = entry;
811 const struct iphdr *ip = ip_hdr(skb);
812
813 /* We must give this initial chunk to the device last.
814 * Otherwise we could race with the device.
815 */
816 first_eor = eor;
817 first_len = skb_headlen(skb);
818 first_mapping = pci_map_single(cp->pdev, skb->data,
819 first_len, PCI_DMA_TODEVICE);
820 cp->tx_skb[entry] = skb;
821 entry = NEXT_TX(entry);
822
823 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
824 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
825 u32 len;
826 u32 ctrl;
827 dma_addr_t mapping;
828
829 len = this_frag->size;
830 mapping = pci_map_single(cp->pdev,
831 ((void *) page_address(this_frag->page) +
832 this_frag->page_offset),
833 len, PCI_DMA_TODEVICE);
834 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
835
836 ctrl = eor | len | DescOwn;
837
838 if (mss)
839 ctrl |= LargeSend |
840 ((mss & MSSMask) << MSSShift);
841 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
842 if (ip->protocol == IPPROTO_TCP)
843 ctrl |= IPCS | TCPCS;
844 else if (ip->protocol == IPPROTO_UDP)
845 ctrl |= IPCS | UDPCS;
846 else
847 BUG();
848 }
849
850 if (frag == skb_shinfo(skb)->nr_frags - 1)
851 ctrl |= LastFrag;
852
853 txd = &cp->tx_ring[entry];
854 CP_VLAN_TX_TAG(txd, vlan_tag);
855 txd->addr = cpu_to_le64(mapping);
856 wmb();
857
858 txd->opts1 = cpu_to_le32(ctrl);
859 wmb();
860
861 cp->tx_skb[entry] = skb;
862 entry = NEXT_TX(entry);
863 }
864
865 txd = &cp->tx_ring[first_entry];
866 CP_VLAN_TX_TAG(txd, vlan_tag);
867 txd->addr = cpu_to_le64(first_mapping);
868 wmb();
869
870 if (skb->ip_summed == CHECKSUM_PARTIAL) {
871 if (ip->protocol == IPPROTO_TCP)
872 txd->opts1 = cpu_to_le32(first_eor | first_len |
873 FirstFrag | DescOwn |
874 IPCS | TCPCS);
875 else if (ip->protocol == IPPROTO_UDP)
876 txd->opts1 = cpu_to_le32(first_eor | first_len |
877 FirstFrag | DescOwn |
878 IPCS | UDPCS);
879 else
880 BUG();
881 } else
882 txd->opts1 = cpu_to_le32(first_eor | first_len |
883 FirstFrag | DescOwn);
884 wmb();
885 }
886 cp->tx_head = entry;
887 if (netif_msg_tx_queued(cp))
888 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
889 dev->name, entry, skb->len);
890 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
891 netif_stop_queue(dev);
892
893 spin_unlock_irqrestore(&cp->lock, intr_flags);
894
895 cpw8(TxPoll, NormalTxPoll);
896 dev->trans_start = jiffies;
897
898 return 0;
899 }
900
901 /* Set or clear the multicast filter for this adaptor.
902 This routine is not state sensitive and need not be SMP locked. */
903
904 static void __cp_set_rx_mode (struct net_device *dev)
905 {
906 struct cp_private *cp = netdev_priv(dev);
907 u32 mc_filter[2]; /* Multicast hash filter */
908 int i, rx_mode;
909 u32 tmp;
910
911 /* Note: do not reorder, GCC is clever about common statements. */
912 if (dev->flags & IFF_PROMISC) {
913 /* Unconditionally log net taps. */
914 rx_mode =
915 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
916 AcceptAllPhys;
917 mc_filter[1] = mc_filter[0] = 0xffffffff;
918 } else if ((dev->mc_count > multicast_filter_limit)
919 || (dev->flags & IFF_ALLMULTI)) {
920 /* Too many to filter perfectly -- accept all multicasts. */
921 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
922 mc_filter[1] = mc_filter[0] = 0xffffffff;
923 } else {
924 struct dev_mc_list *mclist;
925 rx_mode = AcceptBroadcast | AcceptMyPhys;
926 mc_filter[1] = mc_filter[0] = 0;
927 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
928 i++, mclist = mclist->next) {
929 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
930
931 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
932 rx_mode |= AcceptMulticast;
933 }
934 }
935
936 /* We can safely update without stopping the chip. */
937 tmp = cp_rx_config | rx_mode;
938 if (cp->rx_config != tmp) {
939 cpw32_f (RxConfig, tmp);
940 cp->rx_config = tmp;
941 }
942 cpw32_f (MAR0 + 0, mc_filter[0]);
943 cpw32_f (MAR0 + 4, mc_filter[1]);
944 }
945
946 static void cp_set_rx_mode (struct net_device *dev)
947 {
948 unsigned long flags;
949 struct cp_private *cp = netdev_priv(dev);
950
951 spin_lock_irqsave (&cp->lock, flags);
952 __cp_set_rx_mode(dev);
953 spin_unlock_irqrestore (&cp->lock, flags);
954 }
955
956 static void __cp_get_stats(struct cp_private *cp)
957 {
958 /* only lower 24 bits valid; write any value to clear */
959 cp->net_stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
960 cpw32 (RxMissed, 0);
961 }
962
963 static struct net_device_stats *cp_get_stats(struct net_device *dev)
964 {
965 struct cp_private *cp = netdev_priv(dev);
966 unsigned long flags;
967
968 /* The chip only need report frame silently dropped. */
969 spin_lock_irqsave(&cp->lock, flags);
970 if (netif_running(dev) && netif_device_present(dev))
971 __cp_get_stats(cp);
972 spin_unlock_irqrestore(&cp->lock, flags);
973
974 return &cp->net_stats;
975 }
976
977 static void cp_stop_hw (struct cp_private *cp)
978 {
979 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
980 cpw16_f(IntrMask, 0);
981 cpw8(Cmd, 0);
982 cpw16_f(CpCmd, 0);
983 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
984
985 cp->rx_tail = 0;
986 cp->tx_head = cp->tx_tail = 0;
987 }
988
989 static void cp_reset_hw (struct cp_private *cp)
990 {
991 unsigned work = 1000;
992
993 cpw8(Cmd, CmdReset);
994
995 while (work--) {
996 if (!(cpr8(Cmd) & CmdReset))
997 return;
998
999 schedule_timeout_uninterruptible(10);
1000 }
1001
1002 printk(KERN_ERR "%s: hardware reset timeout\n", cp->dev->name);
1003 }
1004
1005 static inline void cp_start_hw (struct cp_private *cp)
1006 {
1007 cpw16(CpCmd, cp->cpcmd);
1008 cpw8(Cmd, RxOn | TxOn);
1009 }
1010
1011 static void cp_init_hw (struct cp_private *cp)
1012 {
1013 struct net_device *dev = cp->dev;
1014 dma_addr_t ring_dma;
1015
1016 cp_reset_hw(cp);
1017
1018 cpw8_f (Cfg9346, Cfg9346_Unlock);
1019
1020 /* Restore our idea of the MAC address. */
1021 cpw32_f (MAC0 + 0, cpu_to_le32 (*(u32 *) (dev->dev_addr + 0)));
1022 cpw32_f (MAC0 + 4, cpu_to_le32 (*(u32 *) (dev->dev_addr + 4)));
1023
1024 cp_start_hw(cp);
1025 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1026
1027 __cp_set_rx_mode(dev);
1028 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1029
1030 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1031 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1032 cpw8(Config3, PARMEnable);
1033 cp->wol_enabled = 0;
1034
1035 cpw8(Config5, cpr8(Config5) & PMEStatus);
1036
1037 cpw32_f(HiTxRingAddr, 0);
1038 cpw32_f(HiTxRingAddr + 4, 0);
1039
1040 ring_dma = cp->ring_dma;
1041 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1042 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1043
1044 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1045 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1046 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1047
1048 cpw16(MultiIntr, 0);
1049
1050 cpw16_f(IntrMask, cp_intr_mask);
1051
1052 cpw8_f(Cfg9346, Cfg9346_Lock);
1053 }
1054
1055 static int cp_refill_rx (struct cp_private *cp)
1056 {
1057 unsigned i;
1058
1059 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1060 struct sk_buff *skb;
1061 dma_addr_t mapping;
1062
1063 skb = dev_alloc_skb(cp->rx_buf_sz + RX_OFFSET);
1064 if (!skb)
1065 goto err_out;
1066
1067 skb_reserve(skb, RX_OFFSET);
1068
1069 mapping = pci_map_single(cp->pdev, skb->data, cp->rx_buf_sz,
1070 PCI_DMA_FROMDEVICE);
1071 cp->rx_skb[i] = skb;
1072
1073 cp->rx_ring[i].opts2 = 0;
1074 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1075 if (i == (CP_RX_RING_SIZE - 1))
1076 cp->rx_ring[i].opts1 =
1077 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1078 else
1079 cp->rx_ring[i].opts1 =
1080 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1081 }
1082
1083 return 0;
1084
1085 err_out:
1086 cp_clean_rings(cp);
1087 return -ENOMEM;
1088 }
1089
1090 static void cp_init_rings_index (struct cp_private *cp)
1091 {
1092 cp->rx_tail = 0;
1093 cp->tx_head = cp->tx_tail = 0;
1094 }
1095
1096 static int cp_init_rings (struct cp_private *cp)
1097 {
1098 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1099 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1100
1101 cp_init_rings_index(cp);
1102
1103 return cp_refill_rx (cp);
1104 }
1105
1106 static int cp_alloc_rings (struct cp_private *cp)
1107 {
1108 void *mem;
1109
1110 mem = pci_alloc_consistent(cp->pdev, CP_RING_BYTES, &cp->ring_dma);
1111 if (!mem)
1112 return -ENOMEM;
1113
1114 cp->rx_ring = mem;
1115 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1116
1117 return cp_init_rings(cp);
1118 }
1119
1120 static void cp_clean_rings (struct cp_private *cp)
1121 {
1122 struct cp_desc *desc;
1123 unsigned i;
1124
1125 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1126 if (cp->rx_skb[i]) {
1127 desc = cp->rx_ring + i;
1128 pci_unmap_single(cp->pdev, le64_to_cpu(desc->addr),
1129 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1130 dev_kfree_skb(cp->rx_skb[i]);
1131 }
1132 }
1133
1134 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1135 if (cp->tx_skb[i]) {
1136 struct sk_buff *skb = cp->tx_skb[i];
1137
1138 desc = cp->tx_ring + i;
1139 pci_unmap_single(cp->pdev, le64_to_cpu(desc->addr),
1140 le32_to_cpu(desc->opts1) & 0xffff,
1141 PCI_DMA_TODEVICE);
1142 if (le32_to_cpu(desc->opts1) & LastFrag)
1143 dev_kfree_skb(skb);
1144 cp->net_stats.tx_dropped++;
1145 }
1146 }
1147
1148 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1149 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1150
1151 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1152 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1153 }
1154
1155 static void cp_free_rings (struct cp_private *cp)
1156 {
1157 cp_clean_rings(cp);
1158 pci_free_consistent(cp->pdev, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1159 cp->rx_ring = NULL;
1160 cp->tx_ring = NULL;
1161 }
1162
1163 static int cp_open (struct net_device *dev)
1164 {
1165 struct cp_private *cp = netdev_priv(dev);
1166 int rc;
1167
1168 if (netif_msg_ifup(cp))
1169 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1170
1171 rc = cp_alloc_rings(cp);
1172 if (rc)
1173 return rc;
1174
1175 napi_enable(&cp->napi);
1176
1177 cp_init_hw(cp);
1178
1179 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1180 if (rc)
1181 goto err_out_hw;
1182
1183 netif_carrier_off(dev);
1184 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1185 netif_start_queue(dev);
1186
1187 return 0;
1188
1189 err_out_hw:
1190 napi_disable(&cp->napi);
1191 cp_stop_hw(cp);
1192 cp_free_rings(cp);
1193 return rc;
1194 }
1195
1196 static int cp_close (struct net_device *dev)
1197 {
1198 struct cp_private *cp = netdev_priv(dev);
1199 unsigned long flags;
1200
1201 napi_disable(&cp->napi);
1202
1203 if (netif_msg_ifdown(cp))
1204 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1205
1206 spin_lock_irqsave(&cp->lock, flags);
1207
1208 netif_stop_queue(dev);
1209 netif_carrier_off(dev);
1210
1211 cp_stop_hw(cp);
1212
1213 spin_unlock_irqrestore(&cp->lock, flags);
1214
1215 synchronize_irq(dev->irq);
1216 free_irq(dev->irq, dev);
1217
1218 cp_free_rings(cp);
1219 return 0;
1220 }
1221
1222 static void cp_tx_timeout(struct net_device *dev)
1223 {
1224 struct cp_private *cp = netdev_priv(dev);
1225 unsigned long flags;
1226 int rc;
1227
1228 printk(KERN_WARNING "%s: Transmit timeout, status %2x %4x %4x %4x\n",
1229 dev->name, cpr8(Cmd), cpr16(CpCmd),
1230 cpr16(IntrStatus), cpr16(IntrMask));
1231
1232 spin_lock_irqsave(&cp->lock, flags);
1233
1234 cp_stop_hw(cp);
1235 cp_clean_rings(cp);
1236 rc = cp_init_rings(cp);
1237 cp_start_hw(cp);
1238
1239 netif_wake_queue(dev);
1240
1241 spin_unlock_irqrestore(&cp->lock, flags);
1242
1243 return;
1244 }
1245
1246 #ifdef BROKEN
1247 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1248 {
1249 struct cp_private *cp = netdev_priv(dev);
1250 int rc;
1251 unsigned long flags;
1252
1253 /* check for invalid MTU, according to hardware limits */
1254 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1255 return -EINVAL;
1256
1257 /* if network interface not up, no need for complexity */
1258 if (!netif_running(dev)) {
1259 dev->mtu = new_mtu;
1260 cp_set_rxbufsize(cp); /* set new rx buf size */
1261 return 0;
1262 }
1263
1264 spin_lock_irqsave(&cp->lock, flags);
1265
1266 cp_stop_hw(cp); /* stop h/w and free rings */
1267 cp_clean_rings(cp);
1268
1269 dev->mtu = new_mtu;
1270 cp_set_rxbufsize(cp); /* set new rx buf size */
1271
1272 rc = cp_init_rings(cp); /* realloc and restart h/w */
1273 cp_start_hw(cp);
1274
1275 spin_unlock_irqrestore(&cp->lock, flags);
1276
1277 return rc;
1278 }
1279 #endif /* BROKEN */
1280
1281 static const char mii_2_8139_map[8] = {
1282 BasicModeCtrl,
1283 BasicModeStatus,
1284 0,
1285 0,
1286 NWayAdvert,
1287 NWayLPAR,
1288 NWayExpansion,
1289 0
1290 };
1291
1292 static int mdio_read(struct net_device *dev, int phy_id, int location)
1293 {
1294 struct cp_private *cp = netdev_priv(dev);
1295
1296 return location < 8 && mii_2_8139_map[location] ?
1297 readw(cp->regs + mii_2_8139_map[location]) : 0;
1298 }
1299
1300
1301 static void mdio_write(struct net_device *dev, int phy_id, int location,
1302 int value)
1303 {
1304 struct cp_private *cp = netdev_priv(dev);
1305
1306 if (location == 0) {
1307 cpw8(Cfg9346, Cfg9346_Unlock);
1308 cpw16(BasicModeCtrl, value);
1309 cpw8(Cfg9346, Cfg9346_Lock);
1310 } else if (location < 8 && mii_2_8139_map[location])
1311 cpw16(mii_2_8139_map[location], value);
1312 }
1313
1314 /* Set the ethtool Wake-on-LAN settings */
1315 static int netdev_set_wol (struct cp_private *cp,
1316 const struct ethtool_wolinfo *wol)
1317 {
1318 u8 options;
1319
1320 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1321 /* If WOL is being disabled, no need for complexity */
1322 if (wol->wolopts) {
1323 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1324 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1325 }
1326
1327 cpw8 (Cfg9346, Cfg9346_Unlock);
1328 cpw8 (Config3, options);
1329 cpw8 (Cfg9346, Cfg9346_Lock);
1330
1331 options = 0; /* Paranoia setting */
1332 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1333 /* If WOL is being disabled, no need for complexity */
1334 if (wol->wolopts) {
1335 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1336 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1337 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1338 }
1339
1340 cpw8 (Config5, options);
1341
1342 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1343
1344 return 0;
1345 }
1346
1347 /* Get the ethtool Wake-on-LAN settings */
1348 static void netdev_get_wol (struct cp_private *cp,
1349 struct ethtool_wolinfo *wol)
1350 {
1351 u8 options;
1352
1353 wol->wolopts = 0; /* Start from scratch */
1354 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1355 WAKE_MCAST | WAKE_UCAST;
1356 /* We don't need to go on if WOL is disabled */
1357 if (!cp->wol_enabled) return;
1358
1359 options = cpr8 (Config3);
1360 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1361 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1362
1363 options = 0; /* Paranoia setting */
1364 options = cpr8 (Config5);
1365 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1366 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1367 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1368 }
1369
1370 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1371 {
1372 struct cp_private *cp = netdev_priv(dev);
1373
1374 strcpy (info->driver, DRV_NAME);
1375 strcpy (info->version, DRV_VERSION);
1376 strcpy (info->bus_info, pci_name(cp->pdev));
1377 }
1378
1379 static int cp_get_regs_len(struct net_device *dev)
1380 {
1381 return CP_REGS_SIZE;
1382 }
1383
1384 static int cp_get_stats_count (struct net_device *dev)
1385 {
1386 return CP_NUM_STATS;
1387 }
1388
1389 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1390 {
1391 struct cp_private *cp = netdev_priv(dev);
1392 int rc;
1393 unsigned long flags;
1394
1395 spin_lock_irqsave(&cp->lock, flags);
1396 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1397 spin_unlock_irqrestore(&cp->lock, flags);
1398
1399 return rc;
1400 }
1401
1402 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1403 {
1404 struct cp_private *cp = netdev_priv(dev);
1405 int rc;
1406 unsigned long flags;
1407
1408 spin_lock_irqsave(&cp->lock, flags);
1409 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1410 spin_unlock_irqrestore(&cp->lock, flags);
1411
1412 return rc;
1413 }
1414
1415 static int cp_nway_reset(struct net_device *dev)
1416 {
1417 struct cp_private *cp = netdev_priv(dev);
1418 return mii_nway_restart(&cp->mii_if);
1419 }
1420
1421 static u32 cp_get_msglevel(struct net_device *dev)
1422 {
1423 struct cp_private *cp = netdev_priv(dev);
1424 return cp->msg_enable;
1425 }
1426
1427 static void cp_set_msglevel(struct net_device *dev, u32 value)
1428 {
1429 struct cp_private *cp = netdev_priv(dev);
1430 cp->msg_enable = value;
1431 }
1432
1433 static u32 cp_get_rx_csum(struct net_device *dev)
1434 {
1435 struct cp_private *cp = netdev_priv(dev);
1436 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1437 }
1438
1439 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1440 {
1441 struct cp_private *cp = netdev_priv(dev);
1442 u16 cmd = cp->cpcmd, newcmd;
1443
1444 newcmd = cmd;
1445
1446 if (data)
1447 newcmd |= RxChkSum;
1448 else
1449 newcmd &= ~RxChkSum;
1450
1451 if (newcmd != cmd) {
1452 unsigned long flags;
1453
1454 spin_lock_irqsave(&cp->lock, flags);
1455 cp->cpcmd = newcmd;
1456 cpw16_f(CpCmd, newcmd);
1457 spin_unlock_irqrestore(&cp->lock, flags);
1458 }
1459
1460 return 0;
1461 }
1462
1463 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1464 void *p)
1465 {
1466 struct cp_private *cp = netdev_priv(dev);
1467 unsigned long flags;
1468
1469 if (regs->len < CP_REGS_SIZE)
1470 return /* -EINVAL */;
1471
1472 regs->version = CP_REGS_VER;
1473
1474 spin_lock_irqsave(&cp->lock, flags);
1475 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1476 spin_unlock_irqrestore(&cp->lock, flags);
1477 }
1478
1479 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1480 {
1481 struct cp_private *cp = netdev_priv(dev);
1482 unsigned long flags;
1483
1484 spin_lock_irqsave (&cp->lock, flags);
1485 netdev_get_wol (cp, wol);
1486 spin_unlock_irqrestore (&cp->lock, flags);
1487 }
1488
1489 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1490 {
1491 struct cp_private *cp = netdev_priv(dev);
1492 unsigned long flags;
1493 int rc;
1494
1495 spin_lock_irqsave (&cp->lock, flags);
1496 rc = netdev_set_wol (cp, wol);
1497 spin_unlock_irqrestore (&cp->lock, flags);
1498
1499 return rc;
1500 }
1501
1502 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1503 {
1504 switch (stringset) {
1505 case ETH_SS_STATS:
1506 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1507 break;
1508 default:
1509 BUG();
1510 break;
1511 }
1512 }
1513
1514 static void cp_get_ethtool_stats (struct net_device *dev,
1515 struct ethtool_stats *estats, u64 *tmp_stats)
1516 {
1517 struct cp_private *cp = netdev_priv(dev);
1518 struct cp_dma_stats *nic_stats;
1519 dma_addr_t dma;
1520 int i;
1521
1522 nic_stats = pci_alloc_consistent(cp->pdev, sizeof(*nic_stats), &dma);
1523 if (!nic_stats)
1524 return;
1525
1526 /* begin NIC statistics dump */
1527 cpw32(StatsAddr + 4, (u64)dma >> 32);
1528 cpw32(StatsAddr, ((u64)dma & DMA_32BIT_MASK) | DumpStats);
1529 cpr32(StatsAddr);
1530
1531 for (i = 0; i < 1000; i++) {
1532 if ((cpr32(StatsAddr) & DumpStats) == 0)
1533 break;
1534 udelay(10);
1535 }
1536 cpw32(StatsAddr, 0);
1537 cpw32(StatsAddr + 4, 0);
1538 cpr32(StatsAddr);
1539
1540 i = 0;
1541 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1542 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1543 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1544 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1545 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1546 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1547 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1548 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1549 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1550 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1551 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1552 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1553 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1554 tmp_stats[i++] = cp->cp_stats.rx_frags;
1555 BUG_ON(i != CP_NUM_STATS);
1556
1557 pci_free_consistent(cp->pdev, sizeof(*nic_stats), nic_stats, dma);
1558 }
1559
1560 static const struct ethtool_ops cp_ethtool_ops = {
1561 .get_drvinfo = cp_get_drvinfo,
1562 .get_regs_len = cp_get_regs_len,
1563 .get_stats_count = cp_get_stats_count,
1564 .get_settings = cp_get_settings,
1565 .set_settings = cp_set_settings,
1566 .nway_reset = cp_nway_reset,
1567 .get_link = ethtool_op_get_link,
1568 .get_msglevel = cp_get_msglevel,
1569 .set_msglevel = cp_set_msglevel,
1570 .get_rx_csum = cp_get_rx_csum,
1571 .set_rx_csum = cp_set_rx_csum,
1572 .get_tx_csum = ethtool_op_get_tx_csum,
1573 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1574 .get_sg = ethtool_op_get_sg,
1575 .set_sg = ethtool_op_set_sg,
1576 .get_tso = ethtool_op_get_tso,
1577 .set_tso = ethtool_op_set_tso,
1578 .get_regs = cp_get_regs,
1579 .get_wol = cp_get_wol,
1580 .set_wol = cp_set_wol,
1581 .get_strings = cp_get_strings,
1582 .get_ethtool_stats = cp_get_ethtool_stats,
1583 .get_eeprom_len = cp_get_eeprom_len,
1584 .get_eeprom = cp_get_eeprom,
1585 .set_eeprom = cp_set_eeprom,
1586 };
1587
1588 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1589 {
1590 struct cp_private *cp = netdev_priv(dev);
1591 int rc;
1592 unsigned long flags;
1593
1594 if (!netif_running(dev))
1595 return -EINVAL;
1596
1597 spin_lock_irqsave(&cp->lock, flags);
1598 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1599 spin_unlock_irqrestore(&cp->lock, flags);
1600 return rc;
1601 }
1602
1603 /* Serial EEPROM section. */
1604
1605 /* EEPROM_Ctrl bits. */
1606 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1607 #define EE_CS 0x08 /* EEPROM chip select. */
1608 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1609 #define EE_WRITE_0 0x00
1610 #define EE_WRITE_1 0x02
1611 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1612 #define EE_ENB (0x80 | EE_CS)
1613
1614 /* Delay between EEPROM clock transitions.
1615 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1616 */
1617
1618 #define eeprom_delay() readl(ee_addr)
1619
1620 /* The EEPROM commands include the alway-set leading bit. */
1621 #define EE_EXTEND_CMD (4)
1622 #define EE_WRITE_CMD (5)
1623 #define EE_READ_CMD (6)
1624 #define EE_ERASE_CMD (7)
1625
1626 #define EE_EWDS_ADDR (0)
1627 #define EE_WRAL_ADDR (1)
1628 #define EE_ERAL_ADDR (2)
1629 #define EE_EWEN_ADDR (3)
1630
1631 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1632
1633 static void eeprom_cmd_start(void __iomem *ee_addr)
1634 {
1635 writeb (EE_ENB & ~EE_CS, ee_addr);
1636 writeb (EE_ENB, ee_addr);
1637 eeprom_delay ();
1638 }
1639
1640 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1641 {
1642 int i;
1643
1644 /* Shift the command bits out. */
1645 for (i = cmd_len - 1; i >= 0; i--) {
1646 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1647 writeb (EE_ENB | dataval, ee_addr);
1648 eeprom_delay ();
1649 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1650 eeprom_delay ();
1651 }
1652 writeb (EE_ENB, ee_addr);
1653 eeprom_delay ();
1654 }
1655
1656 static void eeprom_cmd_end(void __iomem *ee_addr)
1657 {
1658 writeb (~EE_CS, ee_addr);
1659 eeprom_delay ();
1660 }
1661
1662 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1663 int addr_len)
1664 {
1665 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1666
1667 eeprom_cmd_start(ee_addr);
1668 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1669 eeprom_cmd_end(ee_addr);
1670 }
1671
1672 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1673 {
1674 int i;
1675 u16 retval = 0;
1676 void __iomem *ee_addr = ioaddr + Cfg9346;
1677 int read_cmd = location | (EE_READ_CMD << addr_len);
1678
1679 eeprom_cmd_start(ee_addr);
1680 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1681
1682 for (i = 16; i > 0; i--) {
1683 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1684 eeprom_delay ();
1685 retval =
1686 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1687 0);
1688 writeb (EE_ENB, ee_addr);
1689 eeprom_delay ();
1690 }
1691
1692 eeprom_cmd_end(ee_addr);
1693
1694 return retval;
1695 }
1696
1697 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1698 int addr_len)
1699 {
1700 int i;
1701 void __iomem *ee_addr = ioaddr + Cfg9346;
1702 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1703
1704 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1705
1706 eeprom_cmd_start(ee_addr);
1707 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1708 eeprom_cmd(ee_addr, val, 16);
1709 eeprom_cmd_end(ee_addr);
1710
1711 eeprom_cmd_start(ee_addr);
1712 for (i = 0; i < 20000; i++)
1713 if (readb(ee_addr) & EE_DATA_READ)
1714 break;
1715 eeprom_cmd_end(ee_addr);
1716
1717 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1718 }
1719
1720 static int cp_get_eeprom_len(struct net_device *dev)
1721 {
1722 struct cp_private *cp = netdev_priv(dev);
1723 int size;
1724
1725 spin_lock_irq(&cp->lock);
1726 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1727 spin_unlock_irq(&cp->lock);
1728
1729 return size;
1730 }
1731
1732 static int cp_get_eeprom(struct net_device *dev,
1733 struct ethtool_eeprom *eeprom, u8 *data)
1734 {
1735 struct cp_private *cp = netdev_priv(dev);
1736 unsigned int addr_len;
1737 u16 val;
1738 u32 offset = eeprom->offset >> 1;
1739 u32 len = eeprom->len;
1740 u32 i = 0;
1741
1742 eeprom->magic = CP_EEPROM_MAGIC;
1743
1744 spin_lock_irq(&cp->lock);
1745
1746 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1747
1748 if (eeprom->offset & 1) {
1749 val = read_eeprom(cp->regs, offset, addr_len);
1750 data[i++] = (u8)(val >> 8);
1751 offset++;
1752 }
1753
1754 while (i < len - 1) {
1755 val = read_eeprom(cp->regs, offset, addr_len);
1756 data[i++] = (u8)val;
1757 data[i++] = (u8)(val >> 8);
1758 offset++;
1759 }
1760
1761 if (i < len) {
1762 val = read_eeprom(cp->regs, offset, addr_len);
1763 data[i] = (u8)val;
1764 }
1765
1766 spin_unlock_irq(&cp->lock);
1767 return 0;
1768 }
1769
1770 static int cp_set_eeprom(struct net_device *dev,
1771 struct ethtool_eeprom *eeprom, u8 *data)
1772 {
1773 struct cp_private *cp = netdev_priv(dev);
1774 unsigned int addr_len;
1775 u16 val;
1776 u32 offset = eeprom->offset >> 1;
1777 u32 len = eeprom->len;
1778 u32 i = 0;
1779
1780 if (eeprom->magic != CP_EEPROM_MAGIC)
1781 return -EINVAL;
1782
1783 spin_lock_irq(&cp->lock);
1784
1785 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1786
1787 if (eeprom->offset & 1) {
1788 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1789 val |= (u16)data[i++] << 8;
1790 write_eeprom(cp->regs, offset, val, addr_len);
1791 offset++;
1792 }
1793
1794 while (i < len - 1) {
1795 val = (u16)data[i++];
1796 val |= (u16)data[i++] << 8;
1797 write_eeprom(cp->regs, offset, val, addr_len);
1798 offset++;
1799 }
1800
1801 if (i < len) {
1802 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1803 val |= (u16)data[i];
1804 write_eeprom(cp->regs, offset, val, addr_len);
1805 }
1806
1807 spin_unlock_irq(&cp->lock);
1808 return 0;
1809 }
1810
1811 /* Put the board into D3cold state and wait for WakeUp signal */
1812 static void cp_set_d3_state (struct cp_private *cp)
1813 {
1814 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1815 pci_set_power_state (cp->pdev, PCI_D3hot);
1816 }
1817
1818 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1819 {
1820 struct net_device *dev;
1821 struct cp_private *cp;
1822 int rc;
1823 void __iomem *regs;
1824 resource_size_t pciaddr;
1825 unsigned int addr_len, i, pci_using_dac;
1826
1827 #ifndef MODULE
1828 static int version_printed;
1829 if (version_printed++ == 0)
1830 printk("%s", version);
1831 #endif
1832
1833 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1834 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1835 dev_err(&pdev->dev,
1836 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip\n",
1837 pdev->vendor, pdev->device, pdev->revision);
1838 dev_err(&pdev->dev, "Try the \"8139too\" driver instead.\n");
1839 return -ENODEV;
1840 }
1841
1842 dev = alloc_etherdev(sizeof(struct cp_private));
1843 if (!dev)
1844 return -ENOMEM;
1845 SET_MODULE_OWNER(dev);
1846 SET_NETDEV_DEV(dev, &pdev->dev);
1847
1848 cp = netdev_priv(dev);
1849 cp->pdev = pdev;
1850 cp->dev = dev;
1851 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1852 spin_lock_init (&cp->lock);
1853 cp->mii_if.dev = dev;
1854 cp->mii_if.mdio_read = mdio_read;
1855 cp->mii_if.mdio_write = mdio_write;
1856 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1857 cp->mii_if.phy_id_mask = 0x1f;
1858 cp->mii_if.reg_num_mask = 0x1f;
1859 cp_set_rxbufsize(cp);
1860
1861 rc = pci_enable_device(pdev);
1862 if (rc)
1863 goto err_out_free;
1864
1865 rc = pci_set_mwi(pdev);
1866 if (rc)
1867 goto err_out_disable;
1868
1869 rc = pci_request_regions(pdev, DRV_NAME);
1870 if (rc)
1871 goto err_out_mwi;
1872
1873 pciaddr = pci_resource_start(pdev, 1);
1874 if (!pciaddr) {
1875 rc = -EIO;
1876 dev_err(&pdev->dev, "no MMIO resource\n");
1877 goto err_out_res;
1878 }
1879 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1880 rc = -EIO;
1881 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1882 (unsigned long long)pci_resource_len(pdev, 1));
1883 goto err_out_res;
1884 }
1885
1886 /* Configure DMA attributes. */
1887 if ((sizeof(dma_addr_t) > 4) &&
1888 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) &&
1889 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1890 pci_using_dac = 1;
1891 } else {
1892 pci_using_dac = 0;
1893
1894 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1895 if (rc) {
1896 dev_err(&pdev->dev,
1897 "No usable DMA configuration, aborting.\n");
1898 goto err_out_res;
1899 }
1900 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1901 if (rc) {
1902 dev_err(&pdev->dev,
1903 "No usable consistent DMA configuration, "
1904 "aborting.\n");
1905 goto err_out_res;
1906 }
1907 }
1908
1909 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1910 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1911
1912 regs = ioremap(pciaddr, CP_REGS_SIZE);
1913 if (!regs) {
1914 rc = -EIO;
1915 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1916 (unsigned long long)pci_resource_len(pdev, 1),
1917 (unsigned long long)pciaddr);
1918 goto err_out_res;
1919 }
1920 dev->base_addr = (unsigned long) regs;
1921 cp->regs = regs;
1922
1923 cp_stop_hw(cp);
1924
1925 /* read MAC address from EEPROM */
1926 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1927 for (i = 0; i < 3; i++)
1928 ((u16 *) (dev->dev_addr))[i] =
1929 le16_to_cpu (read_eeprom (regs, i + 7, addr_len));
1930 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1931
1932 dev->open = cp_open;
1933 dev->stop = cp_close;
1934 dev->set_multicast_list = cp_set_rx_mode;
1935 dev->hard_start_xmit = cp_start_xmit;
1936 dev->get_stats = cp_get_stats;
1937 dev->do_ioctl = cp_ioctl;
1938 #ifdef CONFIG_NET_POLL_CONTROLLER
1939 dev->poll_controller = cp_poll_controller;
1940 #endif
1941 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1942 #ifdef BROKEN
1943 dev->change_mtu = cp_change_mtu;
1944 #endif
1945 dev->ethtool_ops = &cp_ethtool_ops;
1946 dev->tx_timeout = cp_tx_timeout;
1947 dev->watchdog_timeo = TX_TIMEOUT;
1948
1949 #if CP_VLAN_TAG_USED
1950 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1951 dev->vlan_rx_register = cp_vlan_rx_register;
1952 #endif
1953
1954 if (pci_using_dac)
1955 dev->features |= NETIF_F_HIGHDMA;
1956
1957 #if 0 /* disabled by default until verified */
1958 dev->features |= NETIF_F_TSO;
1959 #endif
1960
1961 dev->irq = pdev->irq;
1962
1963 rc = register_netdev(dev);
1964 if (rc)
1965 goto err_out_iomap;
1966
1967 printk (KERN_INFO "%s: RTL-8139C+ at 0x%lx, "
1968 "%02x:%02x:%02x:%02x:%02x:%02x, "
1969 "IRQ %d\n",
1970 dev->name,
1971 dev->base_addr,
1972 dev->dev_addr[0], dev->dev_addr[1],
1973 dev->dev_addr[2], dev->dev_addr[3],
1974 dev->dev_addr[4], dev->dev_addr[5],
1975 dev->irq);
1976
1977 pci_set_drvdata(pdev, dev);
1978
1979 /* enable busmastering and memory-write-invalidate */
1980 pci_set_master(pdev);
1981
1982 if (cp->wol_enabled)
1983 cp_set_d3_state (cp);
1984
1985 return 0;
1986
1987 err_out_iomap:
1988 iounmap(regs);
1989 err_out_res:
1990 pci_release_regions(pdev);
1991 err_out_mwi:
1992 pci_clear_mwi(pdev);
1993 err_out_disable:
1994 pci_disable_device(pdev);
1995 err_out_free:
1996 free_netdev(dev);
1997 return rc;
1998 }
1999
2000 static void cp_remove_one (struct pci_dev *pdev)
2001 {
2002 struct net_device *dev = pci_get_drvdata(pdev);
2003 struct cp_private *cp = netdev_priv(dev);
2004
2005 unregister_netdev(dev);
2006 iounmap(cp->regs);
2007 if (cp->wol_enabled)
2008 pci_set_power_state (pdev, PCI_D0);
2009 pci_release_regions(pdev);
2010 pci_clear_mwi(pdev);
2011 pci_disable_device(pdev);
2012 pci_set_drvdata(pdev, NULL);
2013 free_netdev(dev);
2014 }
2015
2016 #ifdef CONFIG_PM
2017 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2018 {
2019 struct net_device *dev = pci_get_drvdata(pdev);
2020 struct cp_private *cp = netdev_priv(dev);
2021 unsigned long flags;
2022
2023 if (!netif_running(dev))
2024 return 0;
2025
2026 netif_device_detach (dev);
2027 netif_stop_queue (dev);
2028
2029 spin_lock_irqsave (&cp->lock, flags);
2030
2031 /* Disable Rx and Tx */
2032 cpw16 (IntrMask, 0);
2033 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2034
2035 spin_unlock_irqrestore (&cp->lock, flags);
2036
2037 pci_save_state(pdev);
2038 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2039 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2040
2041 return 0;
2042 }
2043
2044 static int cp_resume (struct pci_dev *pdev)
2045 {
2046 struct net_device *dev = pci_get_drvdata (pdev);
2047 struct cp_private *cp = netdev_priv(dev);
2048 unsigned long flags;
2049
2050 if (!netif_running(dev))
2051 return 0;
2052
2053 netif_device_attach (dev);
2054
2055 pci_set_power_state(pdev, PCI_D0);
2056 pci_restore_state(pdev);
2057 pci_enable_wake(pdev, PCI_D0, 0);
2058
2059 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2060 cp_init_rings_index (cp);
2061 cp_init_hw (cp);
2062 netif_start_queue (dev);
2063
2064 spin_lock_irqsave (&cp->lock, flags);
2065
2066 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2067
2068 spin_unlock_irqrestore (&cp->lock, flags);
2069
2070 return 0;
2071 }
2072 #endif /* CONFIG_PM */
2073
2074 static struct pci_driver cp_driver = {
2075 .name = DRV_NAME,
2076 .id_table = cp_pci_tbl,
2077 .probe = cp_init_one,
2078 .remove = cp_remove_one,
2079 #ifdef CONFIG_PM
2080 .resume = cp_resume,
2081 .suspend = cp_suspend,
2082 #endif
2083 };
2084
2085 static int __init cp_init (void)
2086 {
2087 #ifdef MODULE
2088 printk("%s", version);
2089 #endif
2090 return pci_register_driver(&cp_driver);
2091 }
2092
2093 static void __exit cp_exit (void)
2094 {
2095 pci_unregister_driver (&cp_driver);
2096 }
2097
2098 module_init(cp_init);
2099 module_exit(cp_exit);