drivers/net: Move && and || to end of previous line
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / 8139cp.c
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
18
19 See the file COPYING in this distribution for more information.
20
21 Contributors:
22
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
26
27 TODO:
28 * Test Tx checksumming thoroughly
29
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
42
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
46
47 */
48
49 #define DRV_NAME "8139cp"
50 #define DRV_VERSION "1.3"
51 #define DRV_RELDATE "Mar 22, 2004"
52
53
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/kernel.h>
57 #include <linux/compiler.h>
58 #include <linux/netdevice.h>
59 #include <linux/etherdevice.h>
60 #include <linux/init.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/delay.h>
64 #include <linux/ethtool.h>
65 #include <linux/mii.h>
66 #include <linux/if_vlan.h>
67 #include <linux/crc32.h>
68 #include <linux/in.h>
69 #include <linux/ip.h>
70 #include <linux/tcp.h>
71 #include <linux/udp.h>
72 #include <linux/cache.h>
73 #include <asm/io.h>
74 #include <asm/irq.h>
75 #include <asm/uaccess.h>
76
77 /* VLAN tagging feature enable/disable */
78 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
79 #define CP_VLAN_TAG_USED 1
80 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
81 do { (tx_desc)->opts2 = cpu_to_le32(vlan_tag_value); } while (0)
82 #else
83 #define CP_VLAN_TAG_USED 0
84 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
85 do { (tx_desc)->opts2 = 0; } while (0)
86 #endif
87
88 /* These identify the driver base version and may not be removed. */
89 static char version[] =
90 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
91
92 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
93 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
94 MODULE_VERSION(DRV_VERSION);
95 MODULE_LICENSE("GPL");
96
97 static int debug = -1;
98 module_param(debug, int, 0);
99 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
100
101 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
102 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
103 static int multicast_filter_limit = 32;
104 module_param(multicast_filter_limit, int, 0);
105 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
106
107 #define PFX DRV_NAME ": "
108
109 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
110 NETIF_MSG_PROBE | \
111 NETIF_MSG_LINK)
112 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
113 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
114 #define CP_REGS_SIZE (0xff + 1)
115 #define CP_REGS_VER 1 /* version 1 */
116 #define CP_RX_RING_SIZE 64
117 #define CP_TX_RING_SIZE 64
118 #define CP_RING_BYTES \
119 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
120 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
121 CP_STATS_SIZE)
122 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
123 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
124 #define TX_BUFFS_AVAIL(CP) \
125 (((CP)->tx_tail <= (CP)->tx_head) ? \
126 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
127 (CP)->tx_tail - (CP)->tx_head - 1)
128
129 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
130 #define CP_INTERNAL_PHY 32
131
132 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
133 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
134 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
135 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
136 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
137
138 /* Time in jiffies before concluding the transmitter is hung. */
139 #define TX_TIMEOUT (6*HZ)
140
141 /* hardware minimum and maximum for a single frame's data payload */
142 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
143 #define CP_MAX_MTU 4096
144
145 enum {
146 /* NIC register offsets */
147 MAC0 = 0x00, /* Ethernet hardware address. */
148 MAR0 = 0x08, /* Multicast filter. */
149 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
150 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
151 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
152 Cmd = 0x37, /* Command register */
153 IntrMask = 0x3C, /* Interrupt mask */
154 IntrStatus = 0x3E, /* Interrupt status */
155 TxConfig = 0x40, /* Tx configuration */
156 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
157 RxConfig = 0x44, /* Rx configuration */
158 RxMissed = 0x4C, /* 24 bits valid, write clears */
159 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
160 Config1 = 0x52, /* Config1 */
161 Config3 = 0x59, /* Config3 */
162 Config4 = 0x5A, /* Config4 */
163 MultiIntr = 0x5C, /* Multiple interrupt select */
164 BasicModeCtrl = 0x62, /* MII BMCR */
165 BasicModeStatus = 0x64, /* MII BMSR */
166 NWayAdvert = 0x66, /* MII ADVERTISE */
167 NWayLPAR = 0x68, /* MII LPA */
168 NWayExpansion = 0x6A, /* MII Expansion */
169 Config5 = 0xD8, /* Config5 */
170 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
171 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
172 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
173 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
174 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
175 TxThresh = 0xEC, /* Early Tx threshold */
176 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
177 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
178
179 /* Tx and Rx status descriptors */
180 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
181 RingEnd = (1 << 30), /* End of descriptor ring */
182 FirstFrag = (1 << 29), /* First segment of a packet */
183 LastFrag = (1 << 28), /* Final segment of a packet */
184 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
185 MSSShift = 16, /* MSS value position */
186 MSSMask = 0xfff, /* MSS value: 11 bits */
187 TxError = (1 << 23), /* Tx error summary */
188 RxError = (1 << 20), /* Rx error summary */
189 IPCS = (1 << 18), /* Calculate IP checksum */
190 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
191 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
192 TxVlanTag = (1 << 17), /* Add VLAN tag */
193 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
194 IPFail = (1 << 15), /* IP checksum failed */
195 UDPFail = (1 << 14), /* UDP/IP checksum failed */
196 TCPFail = (1 << 13), /* TCP/IP checksum failed */
197 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
198 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
199 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
200 RxProtoTCP = 1,
201 RxProtoUDP = 2,
202 RxProtoIP = 3,
203 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
204 TxOWC = (1 << 22), /* Tx Out-of-window collision */
205 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
206 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
207 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
208 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
209 RxErrFrame = (1 << 27), /* Rx frame alignment error */
210 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
211 RxErrCRC = (1 << 18), /* Rx CRC error */
212 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
213 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
214 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
215
216 /* StatsAddr register */
217 DumpStats = (1 << 3), /* Begin stats dump */
218
219 /* RxConfig register */
220 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
221 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
222 AcceptErr = 0x20, /* Accept packets with CRC errors */
223 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
224 AcceptBroadcast = 0x08, /* Accept broadcast packets */
225 AcceptMulticast = 0x04, /* Accept multicast packets */
226 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
227 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
228
229 /* IntrMask / IntrStatus registers */
230 PciErr = (1 << 15), /* System error on the PCI bus */
231 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
232 LenChg = (1 << 13), /* Cable length change */
233 SWInt = (1 << 8), /* Software-requested interrupt */
234 TxEmpty = (1 << 7), /* No Tx descriptors available */
235 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
236 LinkChg = (1 << 5), /* Packet underrun, or link change */
237 RxEmpty = (1 << 4), /* No Rx descriptors available */
238 TxErr = (1 << 3), /* Tx error */
239 TxOK = (1 << 2), /* Tx packet sent */
240 RxErr = (1 << 1), /* Rx error */
241 RxOK = (1 << 0), /* Rx packet received */
242 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
243 but hardware likes to raise it */
244
245 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
246 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
247 RxErr | RxOK | IntrResvd,
248
249 /* C mode command register */
250 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
251 RxOn = (1 << 3), /* Rx mode enable */
252 TxOn = (1 << 2), /* Tx mode enable */
253
254 /* C+ mode command register */
255 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
256 RxChkSum = (1 << 5), /* Rx checksum offload enable */
257 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
258 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
259 CpRxOn = (1 << 1), /* Rx mode enable */
260 CpTxOn = (1 << 0), /* Tx mode enable */
261
262 /* Cfg9436 EEPROM control register */
263 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
264 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
265
266 /* TxConfig register */
267 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
268 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
269
270 /* Early Tx Threshold register */
271 TxThreshMask = 0x3f, /* Mask bits 5-0 */
272 TxThreshMax = 2048, /* Max early Tx threshold */
273
274 /* Config1 register */
275 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
276 LWACT = (1 << 4), /* LWAKE active mode */
277 PMEnable = (1 << 0), /* Enable various PM features of chip */
278
279 /* Config3 register */
280 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
281 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
282 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
283
284 /* Config4 register */
285 LWPTN = (1 << 1), /* LWAKE Pattern */
286 LWPME = (1 << 4), /* LANWAKE vs PMEB */
287
288 /* Config5 register */
289 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
290 MWF = (1 << 5), /* Accept Multicast wakeup frame */
291 UWF = (1 << 4), /* Accept Unicast wakeup frame */
292 LANWake = (1 << 1), /* Enable LANWake signal */
293 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
294
295 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
296 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
297 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
298 };
299
300 static const unsigned int cp_rx_config =
301 (RX_FIFO_THRESH << RxCfgFIFOShift) |
302 (RX_DMA_BURST << RxCfgDMAShift);
303
304 struct cp_desc {
305 __le32 opts1;
306 __le32 opts2;
307 __le64 addr;
308 };
309
310 struct cp_dma_stats {
311 __le64 tx_ok;
312 __le64 rx_ok;
313 __le64 tx_err;
314 __le32 rx_err;
315 __le16 rx_fifo;
316 __le16 frame_align;
317 __le32 tx_ok_1col;
318 __le32 tx_ok_mcol;
319 __le64 rx_ok_phys;
320 __le64 rx_ok_bcast;
321 __le32 rx_ok_mcast;
322 __le16 tx_abort;
323 __le16 tx_underrun;
324 } __attribute__((packed));
325
326 struct cp_extra_stats {
327 unsigned long rx_frags;
328 };
329
330 struct cp_private {
331 void __iomem *regs;
332 struct net_device *dev;
333 spinlock_t lock;
334 u32 msg_enable;
335
336 struct napi_struct napi;
337
338 struct pci_dev *pdev;
339 u32 rx_config;
340 u16 cpcmd;
341
342 struct cp_extra_stats cp_stats;
343
344 unsigned rx_head ____cacheline_aligned;
345 unsigned rx_tail;
346 struct cp_desc *rx_ring;
347 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
348
349 unsigned tx_head ____cacheline_aligned;
350 unsigned tx_tail;
351 struct cp_desc *tx_ring;
352 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
353
354 unsigned rx_buf_sz;
355 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
356
357 #if CP_VLAN_TAG_USED
358 struct vlan_group *vlgrp;
359 #endif
360 dma_addr_t ring_dma;
361
362 struct mii_if_info mii_if;
363 };
364
365 #define cpr8(reg) readb(cp->regs + (reg))
366 #define cpr16(reg) readw(cp->regs + (reg))
367 #define cpr32(reg) readl(cp->regs + (reg))
368 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
369 #define cpw16(reg,val) writew((val), cp->regs + (reg))
370 #define cpw32(reg,val) writel((val), cp->regs + (reg))
371 #define cpw8_f(reg,val) do { \
372 writeb((val), cp->regs + (reg)); \
373 readb(cp->regs + (reg)); \
374 } while (0)
375 #define cpw16_f(reg,val) do { \
376 writew((val), cp->regs + (reg)); \
377 readw(cp->regs + (reg)); \
378 } while (0)
379 #define cpw32_f(reg,val) do { \
380 writel((val), cp->regs + (reg)); \
381 readl(cp->regs + (reg)); \
382 } while (0)
383
384
385 static void __cp_set_rx_mode (struct net_device *dev);
386 static void cp_tx (struct cp_private *cp);
387 static void cp_clean_rings (struct cp_private *cp);
388 #ifdef CONFIG_NET_POLL_CONTROLLER
389 static void cp_poll_controller(struct net_device *dev);
390 #endif
391 static int cp_get_eeprom_len(struct net_device *dev);
392 static int cp_get_eeprom(struct net_device *dev,
393 struct ethtool_eeprom *eeprom, u8 *data);
394 static int cp_set_eeprom(struct net_device *dev,
395 struct ethtool_eeprom *eeprom, u8 *data);
396
397 static struct pci_device_id cp_pci_tbl[] = {
398 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
399 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
400 { },
401 };
402 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
403
404 static struct {
405 const char str[ETH_GSTRING_LEN];
406 } ethtool_stats_keys[] = {
407 { "tx_ok" },
408 { "rx_ok" },
409 { "tx_err" },
410 { "rx_err" },
411 { "rx_fifo" },
412 { "frame_align" },
413 { "tx_ok_1col" },
414 { "tx_ok_mcol" },
415 { "rx_ok_phys" },
416 { "rx_ok_bcast" },
417 { "rx_ok_mcast" },
418 { "tx_abort" },
419 { "tx_underrun" },
420 { "rx_frags" },
421 };
422
423
424 #if CP_VLAN_TAG_USED
425 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
426 {
427 struct cp_private *cp = netdev_priv(dev);
428 unsigned long flags;
429
430 spin_lock_irqsave(&cp->lock, flags);
431 cp->vlgrp = grp;
432 if (grp)
433 cp->cpcmd |= RxVlanOn;
434 else
435 cp->cpcmd &= ~RxVlanOn;
436
437 cpw16(CpCmd, cp->cpcmd);
438 spin_unlock_irqrestore(&cp->lock, flags);
439 }
440 #endif /* CP_VLAN_TAG_USED */
441
442 static inline void cp_set_rxbufsize (struct cp_private *cp)
443 {
444 unsigned int mtu = cp->dev->mtu;
445
446 if (mtu > ETH_DATA_LEN)
447 /* MTU + ethernet header + FCS + optional VLAN tag */
448 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
449 else
450 cp->rx_buf_sz = PKT_BUF_SZ;
451 }
452
453 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
454 struct cp_desc *desc)
455 {
456 skb->protocol = eth_type_trans (skb, cp->dev);
457
458 cp->dev->stats.rx_packets++;
459 cp->dev->stats.rx_bytes += skb->len;
460
461 #if CP_VLAN_TAG_USED
462 if (cp->vlgrp && (desc->opts2 & cpu_to_le32(RxVlanTagged))) {
463 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
464 swab16(le32_to_cpu(desc->opts2) & 0xffff));
465 } else
466 #endif
467 netif_receive_skb(skb);
468 }
469
470 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
471 u32 status, u32 len)
472 {
473 if (netif_msg_rx_err (cp))
474 pr_debug("%s: rx err, slot %d status 0x%x len %d\n",
475 cp->dev->name, rx_tail, status, len);
476 cp->dev->stats.rx_errors++;
477 if (status & RxErrFrame)
478 cp->dev->stats.rx_frame_errors++;
479 if (status & RxErrCRC)
480 cp->dev->stats.rx_crc_errors++;
481 if ((status & RxErrRunt) || (status & RxErrLong))
482 cp->dev->stats.rx_length_errors++;
483 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
484 cp->dev->stats.rx_length_errors++;
485 if (status & RxErrFIFO)
486 cp->dev->stats.rx_fifo_errors++;
487 }
488
489 static inline unsigned int cp_rx_csum_ok (u32 status)
490 {
491 unsigned int protocol = (status >> 16) & 0x3;
492
493 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
494 return 1;
495 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
496 return 1;
497 else if ((protocol == RxProtoIP) && (!(status & IPFail)))
498 return 1;
499 return 0;
500 }
501
502 static int cp_rx_poll(struct napi_struct *napi, int budget)
503 {
504 struct cp_private *cp = container_of(napi, struct cp_private, napi);
505 struct net_device *dev = cp->dev;
506 unsigned int rx_tail = cp->rx_tail;
507 int rx;
508
509 rx_status_loop:
510 rx = 0;
511 cpw16(IntrStatus, cp_rx_intr_mask);
512
513 while (1) {
514 u32 status, len;
515 dma_addr_t mapping;
516 struct sk_buff *skb, *new_skb;
517 struct cp_desc *desc;
518 const unsigned buflen = cp->rx_buf_sz;
519
520 skb = cp->rx_skb[rx_tail];
521 BUG_ON(!skb);
522
523 desc = &cp->rx_ring[rx_tail];
524 status = le32_to_cpu(desc->opts1);
525 if (status & DescOwn)
526 break;
527
528 len = (status & 0x1fff) - 4;
529 mapping = le64_to_cpu(desc->addr);
530
531 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
532 /* we don't support incoming fragmented frames.
533 * instead, we attempt to ensure that the
534 * pre-allocated RX skbs are properly sized such
535 * that RX fragments are never encountered
536 */
537 cp_rx_err_acct(cp, rx_tail, status, len);
538 dev->stats.rx_dropped++;
539 cp->cp_stats.rx_frags++;
540 goto rx_next;
541 }
542
543 if (status & (RxError | RxErrFIFO)) {
544 cp_rx_err_acct(cp, rx_tail, status, len);
545 goto rx_next;
546 }
547
548 if (netif_msg_rx_status(cp))
549 pr_debug("%s: rx slot %d status 0x%x len %d\n",
550 dev->name, rx_tail, status, len);
551
552 new_skb = netdev_alloc_skb_ip_align(dev, buflen);
553 if (!new_skb) {
554 dev->stats.rx_dropped++;
555 goto rx_next;
556 }
557
558 dma_unmap_single(&cp->pdev->dev, mapping,
559 buflen, PCI_DMA_FROMDEVICE);
560
561 /* Handle checksum offloading for incoming packets. */
562 if (cp_rx_csum_ok(status))
563 skb->ip_summed = CHECKSUM_UNNECESSARY;
564 else
565 skb->ip_summed = CHECKSUM_NONE;
566
567 skb_put(skb, len);
568
569 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
570 PCI_DMA_FROMDEVICE);
571 cp->rx_skb[rx_tail] = new_skb;
572
573 cp_rx_skb(cp, skb, desc);
574 rx++;
575
576 rx_next:
577 cp->rx_ring[rx_tail].opts2 = 0;
578 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
579 if (rx_tail == (CP_RX_RING_SIZE - 1))
580 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
581 cp->rx_buf_sz);
582 else
583 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
584 rx_tail = NEXT_RX(rx_tail);
585
586 if (rx >= budget)
587 break;
588 }
589
590 cp->rx_tail = rx_tail;
591
592 /* if we did not reach work limit, then we're done with
593 * this round of polling
594 */
595 if (rx < budget) {
596 unsigned long flags;
597
598 if (cpr16(IntrStatus) & cp_rx_intr_mask)
599 goto rx_status_loop;
600
601 spin_lock_irqsave(&cp->lock, flags);
602 cpw16_f(IntrMask, cp_intr_mask);
603 __napi_complete(napi);
604 spin_unlock_irqrestore(&cp->lock, flags);
605 }
606
607 return rx;
608 }
609
610 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
611 {
612 struct net_device *dev = dev_instance;
613 struct cp_private *cp;
614 u16 status;
615
616 if (unlikely(dev == NULL))
617 return IRQ_NONE;
618 cp = netdev_priv(dev);
619
620 status = cpr16(IntrStatus);
621 if (!status || (status == 0xFFFF))
622 return IRQ_NONE;
623
624 if (netif_msg_intr(cp))
625 pr_debug("%s: intr, status %04x cmd %02x cpcmd %04x\n",
626 dev->name, status, cpr8(Cmd), cpr16(CpCmd));
627
628 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
629
630 spin_lock(&cp->lock);
631
632 /* close possible race's with dev_close */
633 if (unlikely(!netif_running(dev))) {
634 cpw16(IntrMask, 0);
635 spin_unlock(&cp->lock);
636 return IRQ_HANDLED;
637 }
638
639 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
640 if (napi_schedule_prep(&cp->napi)) {
641 cpw16_f(IntrMask, cp_norx_intr_mask);
642 __napi_schedule(&cp->napi);
643 }
644
645 if (status & (TxOK | TxErr | TxEmpty | SWInt))
646 cp_tx(cp);
647 if (status & LinkChg)
648 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
649
650 spin_unlock(&cp->lock);
651
652 if (status & PciErr) {
653 u16 pci_status;
654
655 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
656 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
657 pr_err("%s: PCI bus error, status=%04x, PCI status=%04x\n",
658 dev->name, status, pci_status);
659
660 /* TODO: reset hardware */
661 }
662
663 return IRQ_HANDLED;
664 }
665
666 #ifdef CONFIG_NET_POLL_CONTROLLER
667 /*
668 * Polling receive - used by netconsole and other diagnostic tools
669 * to allow network i/o with interrupts disabled.
670 */
671 static void cp_poll_controller(struct net_device *dev)
672 {
673 disable_irq(dev->irq);
674 cp_interrupt(dev->irq, dev);
675 enable_irq(dev->irq);
676 }
677 #endif
678
679 static void cp_tx (struct cp_private *cp)
680 {
681 unsigned tx_head = cp->tx_head;
682 unsigned tx_tail = cp->tx_tail;
683
684 while (tx_tail != tx_head) {
685 struct cp_desc *txd = cp->tx_ring + tx_tail;
686 struct sk_buff *skb;
687 u32 status;
688
689 rmb();
690 status = le32_to_cpu(txd->opts1);
691 if (status & DescOwn)
692 break;
693
694 skb = cp->tx_skb[tx_tail];
695 BUG_ON(!skb);
696
697 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
698 le32_to_cpu(txd->opts1) & 0xffff,
699 PCI_DMA_TODEVICE);
700
701 if (status & LastFrag) {
702 if (status & (TxError | TxFIFOUnder)) {
703 if (netif_msg_tx_err(cp))
704 pr_debug("%s: tx err, status 0x%x\n",
705 cp->dev->name, status);
706 cp->dev->stats.tx_errors++;
707 if (status & TxOWC)
708 cp->dev->stats.tx_window_errors++;
709 if (status & TxMaxCol)
710 cp->dev->stats.tx_aborted_errors++;
711 if (status & TxLinkFail)
712 cp->dev->stats.tx_carrier_errors++;
713 if (status & TxFIFOUnder)
714 cp->dev->stats.tx_fifo_errors++;
715 } else {
716 cp->dev->stats.collisions +=
717 ((status >> TxColCntShift) & TxColCntMask);
718 cp->dev->stats.tx_packets++;
719 cp->dev->stats.tx_bytes += skb->len;
720 if (netif_msg_tx_done(cp))
721 pr_debug("%s: tx done, slot %d\n", cp->dev->name, tx_tail);
722 }
723 dev_kfree_skb_irq(skb);
724 }
725
726 cp->tx_skb[tx_tail] = NULL;
727
728 tx_tail = NEXT_TX(tx_tail);
729 }
730
731 cp->tx_tail = tx_tail;
732
733 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
734 netif_wake_queue(cp->dev);
735 }
736
737 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
738 struct net_device *dev)
739 {
740 struct cp_private *cp = netdev_priv(dev);
741 unsigned entry;
742 u32 eor, flags;
743 unsigned long intr_flags;
744 #if CP_VLAN_TAG_USED
745 u32 vlan_tag = 0;
746 #endif
747 int mss = 0;
748
749 spin_lock_irqsave(&cp->lock, intr_flags);
750
751 /* This is a hard error, log it. */
752 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
753 netif_stop_queue(dev);
754 spin_unlock_irqrestore(&cp->lock, intr_flags);
755 pr_err(PFX "%s: BUG! Tx Ring full when queue awake!\n",
756 dev->name);
757 return NETDEV_TX_BUSY;
758 }
759
760 #if CP_VLAN_TAG_USED
761 if (cp->vlgrp && vlan_tx_tag_present(skb))
762 vlan_tag = TxVlanTag | swab16(vlan_tx_tag_get(skb));
763 #endif
764
765 entry = cp->tx_head;
766 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
767 if (dev->features & NETIF_F_TSO)
768 mss = skb_shinfo(skb)->gso_size;
769
770 if (skb_shinfo(skb)->nr_frags == 0) {
771 struct cp_desc *txd = &cp->tx_ring[entry];
772 u32 len;
773 dma_addr_t mapping;
774
775 len = skb->len;
776 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
777 CP_VLAN_TX_TAG(txd, vlan_tag);
778 txd->addr = cpu_to_le64(mapping);
779 wmb();
780
781 flags = eor | len | DescOwn | FirstFrag | LastFrag;
782
783 if (mss)
784 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
785 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
786 const struct iphdr *ip = ip_hdr(skb);
787 if (ip->protocol == IPPROTO_TCP)
788 flags |= IPCS | TCPCS;
789 else if (ip->protocol == IPPROTO_UDP)
790 flags |= IPCS | UDPCS;
791 else
792 WARN_ON(1); /* we need a WARN() */
793 }
794
795 txd->opts1 = cpu_to_le32(flags);
796 wmb();
797
798 cp->tx_skb[entry] = skb;
799 entry = NEXT_TX(entry);
800 } else {
801 struct cp_desc *txd;
802 u32 first_len, first_eor;
803 dma_addr_t first_mapping;
804 int frag, first_entry = entry;
805 const struct iphdr *ip = ip_hdr(skb);
806
807 /* We must give this initial chunk to the device last.
808 * Otherwise we could race with the device.
809 */
810 first_eor = eor;
811 first_len = skb_headlen(skb);
812 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
813 first_len, PCI_DMA_TODEVICE);
814 cp->tx_skb[entry] = skb;
815 entry = NEXT_TX(entry);
816
817 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
818 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
819 u32 len;
820 u32 ctrl;
821 dma_addr_t mapping;
822
823 len = this_frag->size;
824 mapping = dma_map_single(&cp->pdev->dev,
825 ((void *) page_address(this_frag->page) +
826 this_frag->page_offset),
827 len, PCI_DMA_TODEVICE);
828 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
829
830 ctrl = eor | len | DescOwn;
831
832 if (mss)
833 ctrl |= LargeSend |
834 ((mss & MSSMask) << MSSShift);
835 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
836 if (ip->protocol == IPPROTO_TCP)
837 ctrl |= IPCS | TCPCS;
838 else if (ip->protocol == IPPROTO_UDP)
839 ctrl |= IPCS | UDPCS;
840 else
841 BUG();
842 }
843
844 if (frag == skb_shinfo(skb)->nr_frags - 1)
845 ctrl |= LastFrag;
846
847 txd = &cp->tx_ring[entry];
848 CP_VLAN_TX_TAG(txd, vlan_tag);
849 txd->addr = cpu_to_le64(mapping);
850 wmb();
851
852 txd->opts1 = cpu_to_le32(ctrl);
853 wmb();
854
855 cp->tx_skb[entry] = skb;
856 entry = NEXT_TX(entry);
857 }
858
859 txd = &cp->tx_ring[first_entry];
860 CP_VLAN_TX_TAG(txd, vlan_tag);
861 txd->addr = cpu_to_le64(first_mapping);
862 wmb();
863
864 if (skb->ip_summed == CHECKSUM_PARTIAL) {
865 if (ip->protocol == IPPROTO_TCP)
866 txd->opts1 = cpu_to_le32(first_eor | first_len |
867 FirstFrag | DescOwn |
868 IPCS | TCPCS);
869 else if (ip->protocol == IPPROTO_UDP)
870 txd->opts1 = cpu_to_le32(first_eor | first_len |
871 FirstFrag | DescOwn |
872 IPCS | UDPCS);
873 else
874 BUG();
875 } else
876 txd->opts1 = cpu_to_le32(first_eor | first_len |
877 FirstFrag | DescOwn);
878 wmb();
879 }
880 cp->tx_head = entry;
881 if (netif_msg_tx_queued(cp))
882 pr_debug("%s: tx queued, slot %d, skblen %d\n",
883 dev->name, entry, skb->len);
884 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
885 netif_stop_queue(dev);
886
887 spin_unlock_irqrestore(&cp->lock, intr_flags);
888
889 cpw8(TxPoll, NormalTxPoll);
890 dev->trans_start = jiffies;
891
892 return NETDEV_TX_OK;
893 }
894
895 /* Set or clear the multicast filter for this adaptor.
896 This routine is not state sensitive and need not be SMP locked. */
897
898 static void __cp_set_rx_mode (struct net_device *dev)
899 {
900 struct cp_private *cp = netdev_priv(dev);
901 u32 mc_filter[2]; /* Multicast hash filter */
902 int i, rx_mode;
903 u32 tmp;
904
905 /* Note: do not reorder, GCC is clever about common statements. */
906 if (dev->flags & IFF_PROMISC) {
907 /* Unconditionally log net taps. */
908 rx_mode =
909 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
910 AcceptAllPhys;
911 mc_filter[1] = mc_filter[0] = 0xffffffff;
912 } else if ((dev->mc_count > multicast_filter_limit) ||
913 (dev->flags & IFF_ALLMULTI)) {
914 /* Too many to filter perfectly -- accept all multicasts. */
915 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
916 mc_filter[1] = mc_filter[0] = 0xffffffff;
917 } else {
918 struct dev_mc_list *mclist;
919 rx_mode = AcceptBroadcast | AcceptMyPhys;
920 mc_filter[1] = mc_filter[0] = 0;
921 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
922 i++, mclist = mclist->next) {
923 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
924
925 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
926 rx_mode |= AcceptMulticast;
927 }
928 }
929
930 /* We can safely update without stopping the chip. */
931 tmp = cp_rx_config | rx_mode;
932 if (cp->rx_config != tmp) {
933 cpw32_f (RxConfig, tmp);
934 cp->rx_config = tmp;
935 }
936 cpw32_f (MAR0 + 0, mc_filter[0]);
937 cpw32_f (MAR0 + 4, mc_filter[1]);
938 }
939
940 static void cp_set_rx_mode (struct net_device *dev)
941 {
942 unsigned long flags;
943 struct cp_private *cp = netdev_priv(dev);
944
945 spin_lock_irqsave (&cp->lock, flags);
946 __cp_set_rx_mode(dev);
947 spin_unlock_irqrestore (&cp->lock, flags);
948 }
949
950 static void __cp_get_stats(struct cp_private *cp)
951 {
952 /* only lower 24 bits valid; write any value to clear */
953 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
954 cpw32 (RxMissed, 0);
955 }
956
957 static struct net_device_stats *cp_get_stats(struct net_device *dev)
958 {
959 struct cp_private *cp = netdev_priv(dev);
960 unsigned long flags;
961
962 /* The chip only need report frame silently dropped. */
963 spin_lock_irqsave(&cp->lock, flags);
964 if (netif_running(dev) && netif_device_present(dev))
965 __cp_get_stats(cp);
966 spin_unlock_irqrestore(&cp->lock, flags);
967
968 return &dev->stats;
969 }
970
971 static void cp_stop_hw (struct cp_private *cp)
972 {
973 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
974 cpw16_f(IntrMask, 0);
975 cpw8(Cmd, 0);
976 cpw16_f(CpCmd, 0);
977 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
978
979 cp->rx_tail = 0;
980 cp->tx_head = cp->tx_tail = 0;
981 }
982
983 static void cp_reset_hw (struct cp_private *cp)
984 {
985 unsigned work = 1000;
986
987 cpw8(Cmd, CmdReset);
988
989 while (work--) {
990 if (!(cpr8(Cmd) & CmdReset))
991 return;
992
993 schedule_timeout_uninterruptible(10);
994 }
995
996 pr_err("%s: hardware reset timeout\n", cp->dev->name);
997 }
998
999 static inline void cp_start_hw (struct cp_private *cp)
1000 {
1001 cpw16(CpCmd, cp->cpcmd);
1002 cpw8(Cmd, RxOn | TxOn);
1003 }
1004
1005 static void cp_init_hw (struct cp_private *cp)
1006 {
1007 struct net_device *dev = cp->dev;
1008 dma_addr_t ring_dma;
1009
1010 cp_reset_hw(cp);
1011
1012 cpw8_f (Cfg9346, Cfg9346_Unlock);
1013
1014 /* Restore our idea of the MAC address. */
1015 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1016 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1017
1018 cp_start_hw(cp);
1019 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1020
1021 __cp_set_rx_mode(dev);
1022 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1023
1024 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1025 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1026 cpw8(Config3, PARMEnable);
1027 cp->wol_enabled = 0;
1028
1029 cpw8(Config5, cpr8(Config5) & PMEStatus);
1030
1031 cpw32_f(HiTxRingAddr, 0);
1032 cpw32_f(HiTxRingAddr + 4, 0);
1033
1034 ring_dma = cp->ring_dma;
1035 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1036 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1037
1038 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1039 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1040 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1041
1042 cpw16(MultiIntr, 0);
1043
1044 cpw16_f(IntrMask, cp_intr_mask);
1045
1046 cpw8_f(Cfg9346, Cfg9346_Lock);
1047 }
1048
1049 static int cp_refill_rx(struct cp_private *cp)
1050 {
1051 struct net_device *dev = cp->dev;
1052 unsigned i;
1053
1054 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1055 struct sk_buff *skb;
1056 dma_addr_t mapping;
1057
1058 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1059 if (!skb)
1060 goto err_out;
1061
1062 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1063 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1064 cp->rx_skb[i] = skb;
1065
1066 cp->rx_ring[i].opts2 = 0;
1067 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1068 if (i == (CP_RX_RING_SIZE - 1))
1069 cp->rx_ring[i].opts1 =
1070 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1071 else
1072 cp->rx_ring[i].opts1 =
1073 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1074 }
1075
1076 return 0;
1077
1078 err_out:
1079 cp_clean_rings(cp);
1080 return -ENOMEM;
1081 }
1082
1083 static void cp_init_rings_index (struct cp_private *cp)
1084 {
1085 cp->rx_tail = 0;
1086 cp->tx_head = cp->tx_tail = 0;
1087 }
1088
1089 static int cp_init_rings (struct cp_private *cp)
1090 {
1091 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1092 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1093
1094 cp_init_rings_index(cp);
1095
1096 return cp_refill_rx (cp);
1097 }
1098
1099 static int cp_alloc_rings (struct cp_private *cp)
1100 {
1101 void *mem;
1102
1103 mem = dma_alloc_coherent(&cp->pdev->dev, CP_RING_BYTES,
1104 &cp->ring_dma, GFP_KERNEL);
1105 if (!mem)
1106 return -ENOMEM;
1107
1108 cp->rx_ring = mem;
1109 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1110
1111 return cp_init_rings(cp);
1112 }
1113
1114 static void cp_clean_rings (struct cp_private *cp)
1115 {
1116 struct cp_desc *desc;
1117 unsigned i;
1118
1119 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1120 if (cp->rx_skb[i]) {
1121 desc = cp->rx_ring + i;
1122 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1123 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1124 dev_kfree_skb(cp->rx_skb[i]);
1125 }
1126 }
1127
1128 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1129 if (cp->tx_skb[i]) {
1130 struct sk_buff *skb = cp->tx_skb[i];
1131
1132 desc = cp->tx_ring + i;
1133 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1134 le32_to_cpu(desc->opts1) & 0xffff,
1135 PCI_DMA_TODEVICE);
1136 if (le32_to_cpu(desc->opts1) & LastFrag)
1137 dev_kfree_skb(skb);
1138 cp->dev->stats.tx_dropped++;
1139 }
1140 }
1141
1142 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1143 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1144
1145 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1146 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1147 }
1148
1149 static void cp_free_rings (struct cp_private *cp)
1150 {
1151 cp_clean_rings(cp);
1152 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1153 cp->ring_dma);
1154 cp->rx_ring = NULL;
1155 cp->tx_ring = NULL;
1156 }
1157
1158 static int cp_open (struct net_device *dev)
1159 {
1160 struct cp_private *cp = netdev_priv(dev);
1161 int rc;
1162
1163 if (netif_msg_ifup(cp))
1164 pr_debug("%s: enabling interface\n", dev->name);
1165
1166 rc = cp_alloc_rings(cp);
1167 if (rc)
1168 return rc;
1169
1170 napi_enable(&cp->napi);
1171
1172 cp_init_hw(cp);
1173
1174 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1175 if (rc)
1176 goto err_out_hw;
1177
1178 netif_carrier_off(dev);
1179 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1180 netif_start_queue(dev);
1181
1182 return 0;
1183
1184 err_out_hw:
1185 napi_disable(&cp->napi);
1186 cp_stop_hw(cp);
1187 cp_free_rings(cp);
1188 return rc;
1189 }
1190
1191 static int cp_close (struct net_device *dev)
1192 {
1193 struct cp_private *cp = netdev_priv(dev);
1194 unsigned long flags;
1195
1196 napi_disable(&cp->napi);
1197
1198 if (netif_msg_ifdown(cp))
1199 pr_debug("%s: disabling interface\n", dev->name);
1200
1201 spin_lock_irqsave(&cp->lock, flags);
1202
1203 netif_stop_queue(dev);
1204 netif_carrier_off(dev);
1205
1206 cp_stop_hw(cp);
1207
1208 spin_unlock_irqrestore(&cp->lock, flags);
1209
1210 free_irq(dev->irq, dev);
1211
1212 cp_free_rings(cp);
1213 return 0;
1214 }
1215
1216 static void cp_tx_timeout(struct net_device *dev)
1217 {
1218 struct cp_private *cp = netdev_priv(dev);
1219 unsigned long flags;
1220 int rc;
1221
1222 pr_warning("%s: Transmit timeout, status %2x %4x %4x %4x\n",
1223 dev->name, cpr8(Cmd), cpr16(CpCmd),
1224 cpr16(IntrStatus), cpr16(IntrMask));
1225
1226 spin_lock_irqsave(&cp->lock, flags);
1227
1228 cp_stop_hw(cp);
1229 cp_clean_rings(cp);
1230 rc = cp_init_rings(cp);
1231 cp_start_hw(cp);
1232
1233 netif_wake_queue(dev);
1234
1235 spin_unlock_irqrestore(&cp->lock, flags);
1236
1237 return;
1238 }
1239
1240 #ifdef BROKEN
1241 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1242 {
1243 struct cp_private *cp = netdev_priv(dev);
1244 int rc;
1245 unsigned long flags;
1246
1247 /* check for invalid MTU, according to hardware limits */
1248 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1249 return -EINVAL;
1250
1251 /* if network interface not up, no need for complexity */
1252 if (!netif_running(dev)) {
1253 dev->mtu = new_mtu;
1254 cp_set_rxbufsize(cp); /* set new rx buf size */
1255 return 0;
1256 }
1257
1258 spin_lock_irqsave(&cp->lock, flags);
1259
1260 cp_stop_hw(cp); /* stop h/w and free rings */
1261 cp_clean_rings(cp);
1262
1263 dev->mtu = new_mtu;
1264 cp_set_rxbufsize(cp); /* set new rx buf size */
1265
1266 rc = cp_init_rings(cp); /* realloc and restart h/w */
1267 cp_start_hw(cp);
1268
1269 spin_unlock_irqrestore(&cp->lock, flags);
1270
1271 return rc;
1272 }
1273 #endif /* BROKEN */
1274
1275 static const char mii_2_8139_map[8] = {
1276 BasicModeCtrl,
1277 BasicModeStatus,
1278 0,
1279 0,
1280 NWayAdvert,
1281 NWayLPAR,
1282 NWayExpansion,
1283 0
1284 };
1285
1286 static int mdio_read(struct net_device *dev, int phy_id, int location)
1287 {
1288 struct cp_private *cp = netdev_priv(dev);
1289
1290 return location < 8 && mii_2_8139_map[location] ?
1291 readw(cp->regs + mii_2_8139_map[location]) : 0;
1292 }
1293
1294
1295 static void mdio_write(struct net_device *dev, int phy_id, int location,
1296 int value)
1297 {
1298 struct cp_private *cp = netdev_priv(dev);
1299
1300 if (location == 0) {
1301 cpw8(Cfg9346, Cfg9346_Unlock);
1302 cpw16(BasicModeCtrl, value);
1303 cpw8(Cfg9346, Cfg9346_Lock);
1304 } else if (location < 8 && mii_2_8139_map[location])
1305 cpw16(mii_2_8139_map[location], value);
1306 }
1307
1308 /* Set the ethtool Wake-on-LAN settings */
1309 static int netdev_set_wol (struct cp_private *cp,
1310 const struct ethtool_wolinfo *wol)
1311 {
1312 u8 options;
1313
1314 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1315 /* If WOL is being disabled, no need for complexity */
1316 if (wol->wolopts) {
1317 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1318 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1319 }
1320
1321 cpw8 (Cfg9346, Cfg9346_Unlock);
1322 cpw8 (Config3, options);
1323 cpw8 (Cfg9346, Cfg9346_Lock);
1324
1325 options = 0; /* Paranoia setting */
1326 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1327 /* If WOL is being disabled, no need for complexity */
1328 if (wol->wolopts) {
1329 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1330 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1331 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1332 }
1333
1334 cpw8 (Config5, options);
1335
1336 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1337
1338 return 0;
1339 }
1340
1341 /* Get the ethtool Wake-on-LAN settings */
1342 static void netdev_get_wol (struct cp_private *cp,
1343 struct ethtool_wolinfo *wol)
1344 {
1345 u8 options;
1346
1347 wol->wolopts = 0; /* Start from scratch */
1348 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1349 WAKE_MCAST | WAKE_UCAST;
1350 /* We don't need to go on if WOL is disabled */
1351 if (!cp->wol_enabled) return;
1352
1353 options = cpr8 (Config3);
1354 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1355 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1356
1357 options = 0; /* Paranoia setting */
1358 options = cpr8 (Config5);
1359 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1360 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1361 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1362 }
1363
1364 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1365 {
1366 struct cp_private *cp = netdev_priv(dev);
1367
1368 strcpy (info->driver, DRV_NAME);
1369 strcpy (info->version, DRV_VERSION);
1370 strcpy (info->bus_info, pci_name(cp->pdev));
1371 }
1372
1373 static int cp_get_regs_len(struct net_device *dev)
1374 {
1375 return CP_REGS_SIZE;
1376 }
1377
1378 static int cp_get_sset_count (struct net_device *dev, int sset)
1379 {
1380 switch (sset) {
1381 case ETH_SS_STATS:
1382 return CP_NUM_STATS;
1383 default:
1384 return -EOPNOTSUPP;
1385 }
1386 }
1387
1388 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1389 {
1390 struct cp_private *cp = netdev_priv(dev);
1391 int rc;
1392 unsigned long flags;
1393
1394 spin_lock_irqsave(&cp->lock, flags);
1395 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1396 spin_unlock_irqrestore(&cp->lock, flags);
1397
1398 return rc;
1399 }
1400
1401 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1402 {
1403 struct cp_private *cp = netdev_priv(dev);
1404 int rc;
1405 unsigned long flags;
1406
1407 spin_lock_irqsave(&cp->lock, flags);
1408 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1409 spin_unlock_irqrestore(&cp->lock, flags);
1410
1411 return rc;
1412 }
1413
1414 static int cp_nway_reset(struct net_device *dev)
1415 {
1416 struct cp_private *cp = netdev_priv(dev);
1417 return mii_nway_restart(&cp->mii_if);
1418 }
1419
1420 static u32 cp_get_msglevel(struct net_device *dev)
1421 {
1422 struct cp_private *cp = netdev_priv(dev);
1423 return cp->msg_enable;
1424 }
1425
1426 static void cp_set_msglevel(struct net_device *dev, u32 value)
1427 {
1428 struct cp_private *cp = netdev_priv(dev);
1429 cp->msg_enable = value;
1430 }
1431
1432 static u32 cp_get_rx_csum(struct net_device *dev)
1433 {
1434 struct cp_private *cp = netdev_priv(dev);
1435 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1436 }
1437
1438 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1439 {
1440 struct cp_private *cp = netdev_priv(dev);
1441 u16 cmd = cp->cpcmd, newcmd;
1442
1443 newcmd = cmd;
1444
1445 if (data)
1446 newcmd |= RxChkSum;
1447 else
1448 newcmd &= ~RxChkSum;
1449
1450 if (newcmd != cmd) {
1451 unsigned long flags;
1452
1453 spin_lock_irqsave(&cp->lock, flags);
1454 cp->cpcmd = newcmd;
1455 cpw16_f(CpCmd, newcmd);
1456 spin_unlock_irqrestore(&cp->lock, flags);
1457 }
1458
1459 return 0;
1460 }
1461
1462 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1463 void *p)
1464 {
1465 struct cp_private *cp = netdev_priv(dev);
1466 unsigned long flags;
1467
1468 if (regs->len < CP_REGS_SIZE)
1469 return /* -EINVAL */;
1470
1471 regs->version = CP_REGS_VER;
1472
1473 spin_lock_irqsave(&cp->lock, flags);
1474 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1475 spin_unlock_irqrestore(&cp->lock, flags);
1476 }
1477
1478 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1479 {
1480 struct cp_private *cp = netdev_priv(dev);
1481 unsigned long flags;
1482
1483 spin_lock_irqsave (&cp->lock, flags);
1484 netdev_get_wol (cp, wol);
1485 spin_unlock_irqrestore (&cp->lock, flags);
1486 }
1487
1488 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1489 {
1490 struct cp_private *cp = netdev_priv(dev);
1491 unsigned long flags;
1492 int rc;
1493
1494 spin_lock_irqsave (&cp->lock, flags);
1495 rc = netdev_set_wol (cp, wol);
1496 spin_unlock_irqrestore (&cp->lock, flags);
1497
1498 return rc;
1499 }
1500
1501 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1502 {
1503 switch (stringset) {
1504 case ETH_SS_STATS:
1505 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1506 break;
1507 default:
1508 BUG();
1509 break;
1510 }
1511 }
1512
1513 static void cp_get_ethtool_stats (struct net_device *dev,
1514 struct ethtool_stats *estats, u64 *tmp_stats)
1515 {
1516 struct cp_private *cp = netdev_priv(dev);
1517 struct cp_dma_stats *nic_stats;
1518 dma_addr_t dma;
1519 int i;
1520
1521 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1522 &dma, GFP_KERNEL);
1523 if (!nic_stats)
1524 return;
1525
1526 /* begin NIC statistics dump */
1527 cpw32(StatsAddr + 4, (u64)dma >> 32);
1528 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1529 cpr32(StatsAddr);
1530
1531 for (i = 0; i < 1000; i++) {
1532 if ((cpr32(StatsAddr) & DumpStats) == 0)
1533 break;
1534 udelay(10);
1535 }
1536 cpw32(StatsAddr, 0);
1537 cpw32(StatsAddr + 4, 0);
1538 cpr32(StatsAddr);
1539
1540 i = 0;
1541 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1542 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1543 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1544 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1545 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1546 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1547 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1548 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1549 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1550 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1551 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1552 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1553 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1554 tmp_stats[i++] = cp->cp_stats.rx_frags;
1555 BUG_ON(i != CP_NUM_STATS);
1556
1557 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1558 }
1559
1560 static const struct ethtool_ops cp_ethtool_ops = {
1561 .get_drvinfo = cp_get_drvinfo,
1562 .get_regs_len = cp_get_regs_len,
1563 .get_sset_count = cp_get_sset_count,
1564 .get_settings = cp_get_settings,
1565 .set_settings = cp_set_settings,
1566 .nway_reset = cp_nway_reset,
1567 .get_link = ethtool_op_get_link,
1568 .get_msglevel = cp_get_msglevel,
1569 .set_msglevel = cp_set_msglevel,
1570 .get_rx_csum = cp_get_rx_csum,
1571 .set_rx_csum = cp_set_rx_csum,
1572 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1573 .set_sg = ethtool_op_set_sg,
1574 .set_tso = ethtool_op_set_tso,
1575 .get_regs = cp_get_regs,
1576 .get_wol = cp_get_wol,
1577 .set_wol = cp_set_wol,
1578 .get_strings = cp_get_strings,
1579 .get_ethtool_stats = cp_get_ethtool_stats,
1580 .get_eeprom_len = cp_get_eeprom_len,
1581 .get_eeprom = cp_get_eeprom,
1582 .set_eeprom = cp_set_eeprom,
1583 };
1584
1585 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1586 {
1587 struct cp_private *cp = netdev_priv(dev);
1588 int rc;
1589 unsigned long flags;
1590
1591 if (!netif_running(dev))
1592 return -EINVAL;
1593
1594 spin_lock_irqsave(&cp->lock, flags);
1595 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1596 spin_unlock_irqrestore(&cp->lock, flags);
1597 return rc;
1598 }
1599
1600 static int cp_set_mac_address(struct net_device *dev, void *p)
1601 {
1602 struct cp_private *cp = netdev_priv(dev);
1603 struct sockaddr *addr = p;
1604
1605 if (!is_valid_ether_addr(addr->sa_data))
1606 return -EADDRNOTAVAIL;
1607
1608 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1609
1610 spin_lock_irq(&cp->lock);
1611
1612 cpw8_f(Cfg9346, Cfg9346_Unlock);
1613 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1614 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1615 cpw8_f(Cfg9346, Cfg9346_Lock);
1616
1617 spin_unlock_irq(&cp->lock);
1618
1619 return 0;
1620 }
1621
1622 /* Serial EEPROM section. */
1623
1624 /* EEPROM_Ctrl bits. */
1625 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1626 #define EE_CS 0x08 /* EEPROM chip select. */
1627 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1628 #define EE_WRITE_0 0x00
1629 #define EE_WRITE_1 0x02
1630 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1631 #define EE_ENB (0x80 | EE_CS)
1632
1633 /* Delay between EEPROM clock transitions.
1634 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1635 */
1636
1637 #define eeprom_delay() readl(ee_addr)
1638
1639 /* The EEPROM commands include the alway-set leading bit. */
1640 #define EE_EXTEND_CMD (4)
1641 #define EE_WRITE_CMD (5)
1642 #define EE_READ_CMD (6)
1643 #define EE_ERASE_CMD (7)
1644
1645 #define EE_EWDS_ADDR (0)
1646 #define EE_WRAL_ADDR (1)
1647 #define EE_ERAL_ADDR (2)
1648 #define EE_EWEN_ADDR (3)
1649
1650 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1651
1652 static void eeprom_cmd_start(void __iomem *ee_addr)
1653 {
1654 writeb (EE_ENB & ~EE_CS, ee_addr);
1655 writeb (EE_ENB, ee_addr);
1656 eeprom_delay ();
1657 }
1658
1659 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1660 {
1661 int i;
1662
1663 /* Shift the command bits out. */
1664 for (i = cmd_len - 1; i >= 0; i--) {
1665 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1666 writeb (EE_ENB | dataval, ee_addr);
1667 eeprom_delay ();
1668 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1669 eeprom_delay ();
1670 }
1671 writeb (EE_ENB, ee_addr);
1672 eeprom_delay ();
1673 }
1674
1675 static void eeprom_cmd_end(void __iomem *ee_addr)
1676 {
1677 writeb (~EE_CS, ee_addr);
1678 eeprom_delay ();
1679 }
1680
1681 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1682 int addr_len)
1683 {
1684 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1685
1686 eeprom_cmd_start(ee_addr);
1687 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1688 eeprom_cmd_end(ee_addr);
1689 }
1690
1691 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1692 {
1693 int i;
1694 u16 retval = 0;
1695 void __iomem *ee_addr = ioaddr + Cfg9346;
1696 int read_cmd = location | (EE_READ_CMD << addr_len);
1697
1698 eeprom_cmd_start(ee_addr);
1699 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1700
1701 for (i = 16; i > 0; i--) {
1702 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1703 eeprom_delay ();
1704 retval =
1705 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1706 0);
1707 writeb (EE_ENB, ee_addr);
1708 eeprom_delay ();
1709 }
1710
1711 eeprom_cmd_end(ee_addr);
1712
1713 return retval;
1714 }
1715
1716 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1717 int addr_len)
1718 {
1719 int i;
1720 void __iomem *ee_addr = ioaddr + Cfg9346;
1721 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1722
1723 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1724
1725 eeprom_cmd_start(ee_addr);
1726 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1727 eeprom_cmd(ee_addr, val, 16);
1728 eeprom_cmd_end(ee_addr);
1729
1730 eeprom_cmd_start(ee_addr);
1731 for (i = 0; i < 20000; i++)
1732 if (readb(ee_addr) & EE_DATA_READ)
1733 break;
1734 eeprom_cmd_end(ee_addr);
1735
1736 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1737 }
1738
1739 static int cp_get_eeprom_len(struct net_device *dev)
1740 {
1741 struct cp_private *cp = netdev_priv(dev);
1742 int size;
1743
1744 spin_lock_irq(&cp->lock);
1745 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1746 spin_unlock_irq(&cp->lock);
1747
1748 return size;
1749 }
1750
1751 static int cp_get_eeprom(struct net_device *dev,
1752 struct ethtool_eeprom *eeprom, u8 *data)
1753 {
1754 struct cp_private *cp = netdev_priv(dev);
1755 unsigned int addr_len;
1756 u16 val;
1757 u32 offset = eeprom->offset >> 1;
1758 u32 len = eeprom->len;
1759 u32 i = 0;
1760
1761 eeprom->magic = CP_EEPROM_MAGIC;
1762
1763 spin_lock_irq(&cp->lock);
1764
1765 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1766
1767 if (eeprom->offset & 1) {
1768 val = read_eeprom(cp->regs, offset, addr_len);
1769 data[i++] = (u8)(val >> 8);
1770 offset++;
1771 }
1772
1773 while (i < len - 1) {
1774 val = read_eeprom(cp->regs, offset, addr_len);
1775 data[i++] = (u8)val;
1776 data[i++] = (u8)(val >> 8);
1777 offset++;
1778 }
1779
1780 if (i < len) {
1781 val = read_eeprom(cp->regs, offset, addr_len);
1782 data[i] = (u8)val;
1783 }
1784
1785 spin_unlock_irq(&cp->lock);
1786 return 0;
1787 }
1788
1789 static int cp_set_eeprom(struct net_device *dev,
1790 struct ethtool_eeprom *eeprom, u8 *data)
1791 {
1792 struct cp_private *cp = netdev_priv(dev);
1793 unsigned int addr_len;
1794 u16 val;
1795 u32 offset = eeprom->offset >> 1;
1796 u32 len = eeprom->len;
1797 u32 i = 0;
1798
1799 if (eeprom->magic != CP_EEPROM_MAGIC)
1800 return -EINVAL;
1801
1802 spin_lock_irq(&cp->lock);
1803
1804 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1805
1806 if (eeprom->offset & 1) {
1807 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1808 val |= (u16)data[i++] << 8;
1809 write_eeprom(cp->regs, offset, val, addr_len);
1810 offset++;
1811 }
1812
1813 while (i < len - 1) {
1814 val = (u16)data[i++];
1815 val |= (u16)data[i++] << 8;
1816 write_eeprom(cp->regs, offset, val, addr_len);
1817 offset++;
1818 }
1819
1820 if (i < len) {
1821 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1822 val |= (u16)data[i];
1823 write_eeprom(cp->regs, offset, val, addr_len);
1824 }
1825
1826 spin_unlock_irq(&cp->lock);
1827 return 0;
1828 }
1829
1830 /* Put the board into D3cold state and wait for WakeUp signal */
1831 static void cp_set_d3_state (struct cp_private *cp)
1832 {
1833 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1834 pci_set_power_state (cp->pdev, PCI_D3hot);
1835 }
1836
1837 static const struct net_device_ops cp_netdev_ops = {
1838 .ndo_open = cp_open,
1839 .ndo_stop = cp_close,
1840 .ndo_validate_addr = eth_validate_addr,
1841 .ndo_set_mac_address = cp_set_mac_address,
1842 .ndo_set_multicast_list = cp_set_rx_mode,
1843 .ndo_get_stats = cp_get_stats,
1844 .ndo_do_ioctl = cp_ioctl,
1845 .ndo_start_xmit = cp_start_xmit,
1846 .ndo_tx_timeout = cp_tx_timeout,
1847 #if CP_VLAN_TAG_USED
1848 .ndo_vlan_rx_register = cp_vlan_rx_register,
1849 #endif
1850 #ifdef BROKEN
1851 .ndo_change_mtu = cp_change_mtu,
1852 #endif
1853
1854 #ifdef CONFIG_NET_POLL_CONTROLLER
1855 .ndo_poll_controller = cp_poll_controller,
1856 #endif
1857 };
1858
1859 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1860 {
1861 struct net_device *dev;
1862 struct cp_private *cp;
1863 int rc;
1864 void __iomem *regs;
1865 resource_size_t pciaddr;
1866 unsigned int addr_len, i, pci_using_dac;
1867
1868 #ifndef MODULE
1869 static int version_printed;
1870 if (version_printed++ == 0)
1871 pr_info("%s", version);
1872 #endif
1873
1874 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1875 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1876 dev_info(&pdev->dev,
1877 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1878 pdev->vendor, pdev->device, pdev->revision);
1879 return -ENODEV;
1880 }
1881
1882 dev = alloc_etherdev(sizeof(struct cp_private));
1883 if (!dev)
1884 return -ENOMEM;
1885 SET_NETDEV_DEV(dev, &pdev->dev);
1886
1887 cp = netdev_priv(dev);
1888 cp->pdev = pdev;
1889 cp->dev = dev;
1890 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1891 spin_lock_init (&cp->lock);
1892 cp->mii_if.dev = dev;
1893 cp->mii_if.mdio_read = mdio_read;
1894 cp->mii_if.mdio_write = mdio_write;
1895 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1896 cp->mii_if.phy_id_mask = 0x1f;
1897 cp->mii_if.reg_num_mask = 0x1f;
1898 cp_set_rxbufsize(cp);
1899
1900 rc = pci_enable_device(pdev);
1901 if (rc)
1902 goto err_out_free;
1903
1904 rc = pci_set_mwi(pdev);
1905 if (rc)
1906 goto err_out_disable;
1907
1908 rc = pci_request_regions(pdev, DRV_NAME);
1909 if (rc)
1910 goto err_out_mwi;
1911
1912 pciaddr = pci_resource_start(pdev, 1);
1913 if (!pciaddr) {
1914 rc = -EIO;
1915 dev_err(&pdev->dev, "no MMIO resource\n");
1916 goto err_out_res;
1917 }
1918 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1919 rc = -EIO;
1920 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1921 (unsigned long long)pci_resource_len(pdev, 1));
1922 goto err_out_res;
1923 }
1924
1925 /* Configure DMA attributes. */
1926 if ((sizeof(dma_addr_t) > 4) &&
1927 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1928 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1929 pci_using_dac = 1;
1930 } else {
1931 pci_using_dac = 0;
1932
1933 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1934 if (rc) {
1935 dev_err(&pdev->dev,
1936 "No usable DMA configuration, aborting.\n");
1937 goto err_out_res;
1938 }
1939 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1940 if (rc) {
1941 dev_err(&pdev->dev,
1942 "No usable consistent DMA configuration, "
1943 "aborting.\n");
1944 goto err_out_res;
1945 }
1946 }
1947
1948 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1949 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1950
1951 regs = ioremap(pciaddr, CP_REGS_SIZE);
1952 if (!regs) {
1953 rc = -EIO;
1954 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1955 (unsigned long long)pci_resource_len(pdev, 1),
1956 (unsigned long long)pciaddr);
1957 goto err_out_res;
1958 }
1959 dev->base_addr = (unsigned long) regs;
1960 cp->regs = regs;
1961
1962 cp_stop_hw(cp);
1963
1964 /* read MAC address from EEPROM */
1965 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1966 for (i = 0; i < 3; i++)
1967 ((__le16 *) (dev->dev_addr))[i] =
1968 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1969 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1970
1971 dev->netdev_ops = &cp_netdev_ops;
1972 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1973 dev->ethtool_ops = &cp_ethtool_ops;
1974 dev->watchdog_timeo = TX_TIMEOUT;
1975
1976 #if CP_VLAN_TAG_USED
1977 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1978 #endif
1979
1980 if (pci_using_dac)
1981 dev->features |= NETIF_F_HIGHDMA;
1982
1983 #if 0 /* disabled by default until verified */
1984 dev->features |= NETIF_F_TSO;
1985 #endif
1986
1987 dev->irq = pdev->irq;
1988
1989 rc = register_netdev(dev);
1990 if (rc)
1991 goto err_out_iomap;
1992
1993 pr_info("%s: RTL-8139C+ at 0x%lx, %pM, IRQ %d\n",
1994 dev->name,
1995 dev->base_addr,
1996 dev->dev_addr,
1997 dev->irq);
1998
1999 pci_set_drvdata(pdev, dev);
2000
2001 /* enable busmastering and memory-write-invalidate */
2002 pci_set_master(pdev);
2003
2004 if (cp->wol_enabled)
2005 cp_set_d3_state (cp);
2006
2007 return 0;
2008
2009 err_out_iomap:
2010 iounmap(regs);
2011 err_out_res:
2012 pci_release_regions(pdev);
2013 err_out_mwi:
2014 pci_clear_mwi(pdev);
2015 err_out_disable:
2016 pci_disable_device(pdev);
2017 err_out_free:
2018 free_netdev(dev);
2019 return rc;
2020 }
2021
2022 static void cp_remove_one (struct pci_dev *pdev)
2023 {
2024 struct net_device *dev = pci_get_drvdata(pdev);
2025 struct cp_private *cp = netdev_priv(dev);
2026
2027 unregister_netdev(dev);
2028 iounmap(cp->regs);
2029 if (cp->wol_enabled)
2030 pci_set_power_state (pdev, PCI_D0);
2031 pci_release_regions(pdev);
2032 pci_clear_mwi(pdev);
2033 pci_disable_device(pdev);
2034 pci_set_drvdata(pdev, NULL);
2035 free_netdev(dev);
2036 }
2037
2038 #ifdef CONFIG_PM
2039 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2040 {
2041 struct net_device *dev = pci_get_drvdata(pdev);
2042 struct cp_private *cp = netdev_priv(dev);
2043 unsigned long flags;
2044
2045 if (!netif_running(dev))
2046 return 0;
2047
2048 netif_device_detach (dev);
2049 netif_stop_queue (dev);
2050
2051 spin_lock_irqsave (&cp->lock, flags);
2052
2053 /* Disable Rx and Tx */
2054 cpw16 (IntrMask, 0);
2055 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2056
2057 spin_unlock_irqrestore (&cp->lock, flags);
2058
2059 pci_save_state(pdev);
2060 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2061 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2062
2063 return 0;
2064 }
2065
2066 static int cp_resume (struct pci_dev *pdev)
2067 {
2068 struct net_device *dev = pci_get_drvdata (pdev);
2069 struct cp_private *cp = netdev_priv(dev);
2070 unsigned long flags;
2071
2072 if (!netif_running(dev))
2073 return 0;
2074
2075 netif_device_attach (dev);
2076
2077 pci_set_power_state(pdev, PCI_D0);
2078 pci_restore_state(pdev);
2079 pci_enable_wake(pdev, PCI_D0, 0);
2080
2081 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2082 cp_init_rings_index (cp);
2083 cp_init_hw (cp);
2084 netif_start_queue (dev);
2085
2086 spin_lock_irqsave (&cp->lock, flags);
2087
2088 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2089
2090 spin_unlock_irqrestore (&cp->lock, flags);
2091
2092 return 0;
2093 }
2094 #endif /* CONFIG_PM */
2095
2096 static struct pci_driver cp_driver = {
2097 .name = DRV_NAME,
2098 .id_table = cp_pci_tbl,
2099 .probe = cp_init_one,
2100 .remove = cp_remove_one,
2101 #ifdef CONFIG_PM
2102 .resume = cp_resume,
2103 .suspend = cp_suspend,
2104 #endif
2105 };
2106
2107 static int __init cp_init (void)
2108 {
2109 #ifdef MODULE
2110 pr_info("%s", version);
2111 #endif
2112 return pci_register_driver(&cp_driver);
2113 }
2114
2115 static void __exit cp_exit (void)
2116 {
2117 pci_unregister_driver (&cp_driver);
2118 }
2119
2120 module_init(cp_init);
2121 module_exit(cp_exit);