include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / 3c59x.c
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
4
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
7
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
11
12 Problem reports and questions should be directed to
13 vortex@scyld.com
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 */
21
22 /*
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
25 *
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
29 */
30
31
32 #define DRV_NAME "3c59x"
33
34
35
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
41
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
62 */
63 #define tx_interrupt_mitigation 1
64
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h> /* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
99
100 #define RUN_AT(x) (jiffies + (x))
101
102 #include <linux/delay.h>
103
104
105 static const char version[] __devinitconst =
106 DRV_NAME ": Donald Becker and others.\n";
107
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111
112
113 /* Operational parameter that usually are not changed. */
114
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126
127 #define PFX DRV_NAME ": "
128
129
130
131 /*
132 Theory of Operation
133
134 I. Board Compatibility
135
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144
145 II. Board-specific settings
146
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154
155 III. Driver operation
156
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193
194 IV. Notes
195
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
201
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 PCI_USES_MASTER=4,
212 };
213
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220
221 enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
227
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
233
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_TX,
239 CH_3C905B_1,
240
241 CH_3C905B_2,
242 CH_3C905B_FX,
243 CH_3C905C,
244 CH_3C9202,
245 CH_3C980,
246 CH_3C9805,
247
248 CH_3CSOHO100_TX,
249 CH_3C555,
250 CH_3C556,
251 CH_3C556B,
252 CH_3C575,
253
254 CH_3C575_1,
255 CH_3CCFE575,
256 CH_3CCFE575CT,
257 CH_3CCFE656,
258 CH_3CCFEM656,
259
260 CH_3CCFEM656_1,
261 CH_3C450,
262 CH_3C920,
263 CH_3C982A,
264 CH_3C982B,
265
266 CH_905BT4,
267 CH_920B_EMB_WNM,
268 };
269
270
271 /* note: this array directly indexed by above enums, and MUST
272 * be kept in sync with both the enums above, and the PCI device
273 * table below
274 */
275 static struct vortex_chip_info {
276 const char *name;
277 int flags;
278 int drv_flags;
279 int io_size;
280 } vortex_info_tbl[] __devinitdata = {
281 {"3c590 Vortex 10Mbps",
282 PCI_USES_MASTER, IS_VORTEX, 32, },
283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
284 PCI_USES_MASTER, IS_VORTEX, 32, },
285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
286 PCI_USES_MASTER, IS_VORTEX, 32, },
287 {"3c595 Vortex 100baseTx",
288 PCI_USES_MASTER, IS_VORTEX, 32, },
289 {"3c595 Vortex 100baseT4",
290 PCI_USES_MASTER, IS_VORTEX, 32, },
291
292 {"3c595 Vortex 100base-MII",
293 PCI_USES_MASTER, IS_VORTEX, 32, },
294 {"3c900 Boomerang 10baseT",
295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 {"3c900 Boomerang 10Mbps Combo",
297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 {"3c900 Cyclone 10Mbps Combo",
301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302
303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 {"3c900B-FL Cyclone 10base-FL",
306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 {"3c905 Boomerang 100baseTx",
308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 {"3c905 Boomerang 100baseT4",
310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 {"3C905B-TX Fast Etherlink XL PCI",
312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 100baseTx",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315
316 {"3c905B Cyclone 10/100/BNC",
317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 {"3c905B-FX Cyclone 100baseFx",
319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 {"3c905C Tornado",
321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 {"3c980 Cyclone",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326
327 {"3c980C Python-T",
328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 {"3cSOHO100-TX Hurricane",
330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 {"3c555 Laptop Hurricane",
332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 {"3c556 Laptop Tornado",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 HAS_HWCKSM, 128, },
336 {"3c556B Laptop Hurricane",
337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339
340 {"3c575 [Megahertz] 10/100 LAN CardBus",
341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 {"3c575 Boomerang CardBus",
343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 {"3CCFE575BT Cyclone CardBus",
345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 {"3CCFE575CT Tornado CardBus",
348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 {"3CCFE656 Cyclone CardBus",
351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 INVERT_LED_PWR|HAS_HWCKSM, 128, },
353
354 {"3CCFEM656B Cyclone+Winmodem CardBus",
355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 {"3c920 Tornado",
363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 {"3c982 Hydra Dual Port A",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366
367 {"3c982 Hydra Dual Port B",
368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 {"3c905B-T4",
370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 {"3c920B-EMB-WNM Tornado",
372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373
374 {NULL,}, /* NULL terminated list. */
375 };
376
377
378 static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = {
379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384
385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390
391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397
398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404
405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410
411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416
417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422
423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425
426 {0,} /* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429
430
431 /* Operational definitions.
432 These are not used by other compilation units and thus are not
433 exported in a ".h" file.
434
435 First the windows. There are eight register windows, with the command
436 and status registers available in each.
437 */
438 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
439 #define EL3_CMD 0x0e
440 #define EL3_STATUS 0x0e
441
442 /* The top five bits written to EL3_CMD are a command, the lower
443 11 bits are the parameter, if applicable.
444 Note that 11 parameters bits was fine for ethernet, but the new chip
445 can handle FDDI length frames (~4500 octets) and now parameters count
446 32-bit 'Dwords' rather than octets. */
447
448 enum vortex_cmd {
449 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
450 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
451 UpStall = 6<<11, UpUnstall = (6<<11)+1,
452 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
453 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
454 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
455 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
456 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
457 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
458 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
459
460 /* The SetRxFilter command accepts the following classes: */
461 enum RxFilter {
462 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
463
464 /* Bits in the general status register. */
465 enum vortex_status {
466 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
467 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
468 IntReq = 0x0040, StatsFull = 0x0080,
469 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
470 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
471 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
472 };
473
474 /* Register window 1 offsets, the window used in normal operation.
475 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
476 enum Window1 {
477 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
478 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
479 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
480 };
481 enum Window0 {
482 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
483 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
484 IntrStatus=0x0E, /* Valid in all windows. */
485 };
486 enum Win0_EEPROM_bits {
487 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
488 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
489 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
490 };
491 /* EEPROM locations. */
492 enum eeprom_offset {
493 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
494 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
495 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
496 DriverTune=13, Checksum=15};
497
498 enum Window2 { /* Window 2. */
499 Wn2_ResetOptions=12,
500 };
501 enum Window3 { /* Window 3: MAC/config bits. */
502 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
503 };
504
505 #define BFEXT(value, offset, bitcount) \
506 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
507
508 #define BFINS(lhs, rhs, offset, bitcount) \
509 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
510 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
511
512 #define RAM_SIZE(v) BFEXT(v, 0, 3)
513 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
514 #define RAM_SPEED(v) BFEXT(v, 4, 2)
515 #define ROM_SIZE(v) BFEXT(v, 6, 2)
516 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
517 #define XCVR(v) BFEXT(v, 20, 4)
518 #define AUTOSELECT(v) BFEXT(v, 24, 1)
519
520 enum Window4 { /* Window 4: Xcvr/media bits. */
521 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
522 };
523 enum Win4_Media_bits {
524 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
525 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
526 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
527 Media_LnkBeat = 0x0800,
528 };
529 enum Window7 { /* Window 7: Bus Master control. */
530 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
531 Wn7_MasterStatus = 12,
532 };
533 /* Boomerang bus master control registers. */
534 enum MasterCtrl {
535 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
536 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
537 };
538
539 /* The Rx and Tx descriptor lists.
540 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
541 alignment contraint on tx_ring[] and rx_ring[]. */
542 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
543 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
544 struct boom_rx_desc {
545 __le32 next; /* Last entry points to 0. */
546 __le32 status;
547 __le32 addr; /* Up to 63 addr/len pairs possible. */
548 __le32 length; /* Set LAST_FRAG to indicate last pair. */
549 };
550 /* Values for the Rx status entry. */
551 enum rx_desc_status {
552 RxDComplete=0x00008000, RxDError=0x4000,
553 /* See boomerang_rx() for actual error bits */
554 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
555 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
556 };
557
558 #ifdef MAX_SKB_FRAGS
559 #define DO_ZEROCOPY 1
560 #else
561 #define DO_ZEROCOPY 0
562 #endif
563
564 struct boom_tx_desc {
565 __le32 next; /* Last entry points to 0. */
566 __le32 status; /* bits 0:12 length, others see below. */
567 #if DO_ZEROCOPY
568 struct {
569 __le32 addr;
570 __le32 length;
571 } frag[1+MAX_SKB_FRAGS];
572 #else
573 __le32 addr;
574 __le32 length;
575 #endif
576 };
577
578 /* Values for the Tx status entry. */
579 enum tx_desc_status {
580 CRCDisable=0x2000, TxDComplete=0x8000,
581 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
582 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
583 };
584
585 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
586 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
587
588 struct vortex_extra_stats {
589 unsigned long tx_deferred;
590 unsigned long tx_max_collisions;
591 unsigned long tx_multiple_collisions;
592 unsigned long tx_single_collisions;
593 unsigned long rx_bad_ssd;
594 };
595
596 struct vortex_private {
597 /* The Rx and Tx rings should be quad-word-aligned. */
598 struct boom_rx_desc* rx_ring;
599 struct boom_tx_desc* tx_ring;
600 dma_addr_t rx_ring_dma;
601 dma_addr_t tx_ring_dma;
602 /* The addresses of transmit- and receive-in-place skbuffs. */
603 struct sk_buff* rx_skbuff[RX_RING_SIZE];
604 struct sk_buff* tx_skbuff[TX_RING_SIZE];
605 unsigned int cur_rx, cur_tx; /* The next free ring entry */
606 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
607 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
608 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
609 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
610
611 /* PCI configuration space information. */
612 struct device *gendev;
613 void __iomem *ioaddr; /* IO address space */
614 void __iomem *cb_fn_base; /* CardBus function status addr space. */
615
616 /* Some values here only for performance evaluation and path-coverage */
617 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
618 int card_idx;
619
620 /* The remainder are related to chip state, mostly media selection. */
621 struct timer_list timer; /* Media selection timer. */
622 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
623 int options; /* User-settable misc. driver options. */
624 unsigned int media_override:4, /* Passed-in media type. */
625 default_media:4, /* Read from the EEPROM/Wn3_Config. */
626 full_duplex:1, autoselect:1,
627 bus_master:1, /* Vortex can only do a fragment bus-m. */
628 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
629 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
630 partner_flow_ctrl:1, /* Partner supports flow control */
631 has_nway:1,
632 enable_wol:1, /* Wake-on-LAN is enabled */
633 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
634 open:1,
635 medialock:1,
636 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
637 large_frames:1; /* accept large frames */
638 int drv_flags;
639 u16 status_enable;
640 u16 intr_enable;
641 u16 available_media; /* From Wn3_Options. */
642 u16 capabilities, info1, info2; /* Various, from EEPROM. */
643 u16 advertising; /* NWay media advertisement */
644 unsigned char phys[2]; /* MII device addresses. */
645 u16 deferred; /* Resend these interrupts when we
646 * bale from the ISR */
647 u16 io_size; /* Size of PCI region (for release_region) */
648 spinlock_t lock; /* Serialise access to device & its vortex_private */
649 struct mii_if_info mii; /* MII lib hooks/info */
650 };
651
652 #ifdef CONFIG_PCI
653 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
654 #else
655 #define DEVICE_PCI(dev) NULL
656 #endif
657
658 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
659
660 #ifdef CONFIG_EISA
661 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
662 #else
663 #define DEVICE_EISA(dev) NULL
664 #endif
665
666 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
667
668 /* The action to take with a media selection timer tick.
669 Note that we deviate from the 3Com order by checking 10base2 before AUI.
670 */
671 enum xcvr_types {
672 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
673 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
674 };
675
676 static const struct media_table {
677 char *name;
678 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
679 mask:8, /* The transceiver-present bit in Wn3_Config.*/
680 next:8; /* The media type to try next. */
681 int wait; /* Time before we check media status. */
682 } media_tbl[] = {
683 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
684 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
685 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
686 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
687 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
688 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
689 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
690 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
691 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
692 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
693 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
694 };
695
696 static struct {
697 const char str[ETH_GSTRING_LEN];
698 } ethtool_stats_keys[] = {
699 { "tx_deferred" },
700 { "tx_max_collisions" },
701 { "tx_multiple_collisions" },
702 { "tx_single_collisions" },
703 { "rx_bad_ssd" },
704 };
705
706 /* number of ETHTOOL_GSTATS u64's */
707 #define VORTEX_NUM_STATS 5
708
709 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
710 int chip_idx, int card_idx);
711 static int vortex_up(struct net_device *dev);
712 static void vortex_down(struct net_device *dev, int final);
713 static int vortex_open(struct net_device *dev);
714 static void mdio_sync(void __iomem *ioaddr, int bits);
715 static int mdio_read(struct net_device *dev, int phy_id, int location);
716 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
717 static void vortex_timer(unsigned long arg);
718 static void rx_oom_timer(unsigned long arg);
719 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
720 struct net_device *dev);
721 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
722 struct net_device *dev);
723 static int vortex_rx(struct net_device *dev);
724 static int boomerang_rx(struct net_device *dev);
725 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
726 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
727 static int vortex_close(struct net_device *dev);
728 static void dump_tx_ring(struct net_device *dev);
729 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
730 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
731 static void set_rx_mode(struct net_device *dev);
732 #ifdef CONFIG_PCI
733 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
734 #endif
735 static void vortex_tx_timeout(struct net_device *dev);
736 static void acpi_set_WOL(struct net_device *dev);
737 static const struct ethtool_ops vortex_ethtool_ops;
738 static void set_8021q_mode(struct net_device *dev, int enable);
739
740 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
741 /* Option count limit only -- unlimited interfaces are supported. */
742 #define MAX_UNITS 8
743 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
744 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
745 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
746 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
747 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
748 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
749 static int global_options = -1;
750 static int global_full_duplex = -1;
751 static int global_enable_wol = -1;
752 static int global_use_mmio = -1;
753
754 /* Variables to work-around the Compaq PCI BIOS32 problem. */
755 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
756 static struct net_device *compaq_net_device;
757
758 static int vortex_cards_found;
759
760 module_param(debug, int, 0);
761 module_param(global_options, int, 0);
762 module_param_array(options, int, NULL, 0);
763 module_param(global_full_duplex, int, 0);
764 module_param_array(full_duplex, int, NULL, 0);
765 module_param_array(hw_checksums, int, NULL, 0);
766 module_param_array(flow_ctrl, int, NULL, 0);
767 module_param(global_enable_wol, int, 0);
768 module_param_array(enable_wol, int, NULL, 0);
769 module_param(rx_copybreak, int, 0);
770 module_param(max_interrupt_work, int, 0);
771 module_param(compaq_ioaddr, int, 0);
772 module_param(compaq_irq, int, 0);
773 module_param(compaq_device_id, int, 0);
774 module_param(watchdog, int, 0);
775 module_param(global_use_mmio, int, 0);
776 module_param_array(use_mmio, int, NULL, 0);
777 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
778 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
779 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
780 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
781 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
782 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
783 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
784 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
785 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
786 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
787 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
788 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
789 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
790 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
791 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
792 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
793 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
794
795 #ifdef CONFIG_NET_POLL_CONTROLLER
796 static void poll_vortex(struct net_device *dev)
797 {
798 struct vortex_private *vp = netdev_priv(dev);
799 unsigned long flags;
800 local_irq_save(flags);
801 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
802 local_irq_restore(flags);
803 }
804 #endif
805
806 #ifdef CONFIG_PM
807
808 static int vortex_suspend(struct device *dev)
809 {
810 struct pci_dev *pdev = to_pci_dev(dev);
811 struct net_device *ndev = pci_get_drvdata(pdev);
812
813 if (!ndev || !netif_running(ndev))
814 return 0;
815
816 netif_device_detach(ndev);
817 vortex_down(ndev, 1);
818
819 return 0;
820 }
821
822 static int vortex_resume(struct device *dev)
823 {
824 struct pci_dev *pdev = to_pci_dev(dev);
825 struct net_device *ndev = pci_get_drvdata(pdev);
826 int err;
827
828 if (!ndev || !netif_running(ndev))
829 return 0;
830
831 err = vortex_up(ndev);
832 if (err)
833 return err;
834
835 netif_device_attach(ndev);
836
837 return 0;
838 }
839
840 static const struct dev_pm_ops vortex_pm_ops = {
841 .suspend = vortex_suspend,
842 .resume = vortex_resume,
843 .freeze = vortex_suspend,
844 .thaw = vortex_resume,
845 .poweroff = vortex_suspend,
846 .restore = vortex_resume,
847 };
848
849 #define VORTEX_PM_OPS (&vortex_pm_ops)
850
851 #else /* !CONFIG_PM */
852
853 #define VORTEX_PM_OPS NULL
854
855 #endif /* !CONFIG_PM */
856
857 #ifdef CONFIG_EISA
858 static struct eisa_device_id vortex_eisa_ids[] = {
859 { "TCM5920", CH_3C592 },
860 { "TCM5970", CH_3C597 },
861 { "" }
862 };
863 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
864
865 static int __init vortex_eisa_probe(struct device *device)
866 {
867 void __iomem *ioaddr;
868 struct eisa_device *edev;
869
870 edev = to_eisa_device(device);
871
872 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
873 return -EBUSY;
874
875 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
876
877 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
878 edev->id.driver_data, vortex_cards_found)) {
879 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
880 return -ENODEV;
881 }
882
883 vortex_cards_found++;
884
885 return 0;
886 }
887
888 static int __devexit vortex_eisa_remove(struct device *device)
889 {
890 struct eisa_device *edev;
891 struct net_device *dev;
892 struct vortex_private *vp;
893 void __iomem *ioaddr;
894
895 edev = to_eisa_device(device);
896 dev = eisa_get_drvdata(edev);
897
898 if (!dev) {
899 pr_err("vortex_eisa_remove called for Compaq device!\n");
900 BUG();
901 }
902
903 vp = netdev_priv(dev);
904 ioaddr = vp->ioaddr;
905
906 unregister_netdev(dev);
907 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
908 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
909
910 free_netdev(dev);
911 return 0;
912 }
913
914 static struct eisa_driver vortex_eisa_driver = {
915 .id_table = vortex_eisa_ids,
916 .driver = {
917 .name = "3c59x",
918 .probe = vortex_eisa_probe,
919 .remove = __devexit_p(vortex_eisa_remove)
920 }
921 };
922
923 #endif /* CONFIG_EISA */
924
925 /* returns count found (>= 0), or negative on error */
926 static int __init vortex_eisa_init(void)
927 {
928 int eisa_found = 0;
929 int orig_cards_found = vortex_cards_found;
930
931 #ifdef CONFIG_EISA
932 int err;
933
934 err = eisa_driver_register (&vortex_eisa_driver);
935 if (!err) {
936 /*
937 * Because of the way EISA bus is probed, we cannot assume
938 * any device have been found when we exit from
939 * eisa_driver_register (the bus root driver may not be
940 * initialized yet). So we blindly assume something was
941 * found, and let the sysfs magic happend...
942 */
943 eisa_found = 1;
944 }
945 #endif
946
947 /* Special code to work-around the Compaq PCI BIOS32 problem. */
948 if (compaq_ioaddr) {
949 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
950 compaq_irq, compaq_device_id, vortex_cards_found++);
951 }
952
953 return vortex_cards_found - orig_cards_found + eisa_found;
954 }
955
956 /* returns count (>= 0), or negative on error */
957 static int __devinit vortex_init_one(struct pci_dev *pdev,
958 const struct pci_device_id *ent)
959 {
960 int rc, unit, pci_bar;
961 struct vortex_chip_info *vci;
962 void __iomem *ioaddr;
963
964 /* wake up and enable device */
965 rc = pci_enable_device(pdev);
966 if (rc < 0)
967 goto out;
968
969 unit = vortex_cards_found;
970
971 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
972 /* Determine the default if the user didn't override us */
973 vci = &vortex_info_tbl[ent->driver_data];
974 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
975 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
976 pci_bar = use_mmio[unit] ? 1 : 0;
977 else
978 pci_bar = global_use_mmio ? 1 : 0;
979
980 ioaddr = pci_iomap(pdev, pci_bar, 0);
981 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
982 ioaddr = pci_iomap(pdev, 0, 0);
983
984 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
985 ent->driver_data, unit);
986 if (rc < 0) {
987 pci_disable_device(pdev);
988 goto out;
989 }
990
991 vortex_cards_found++;
992
993 out:
994 return rc;
995 }
996
997 static const struct net_device_ops boomrang_netdev_ops = {
998 .ndo_open = vortex_open,
999 .ndo_stop = vortex_close,
1000 .ndo_start_xmit = boomerang_start_xmit,
1001 .ndo_tx_timeout = vortex_tx_timeout,
1002 .ndo_get_stats = vortex_get_stats,
1003 #ifdef CONFIG_PCI
1004 .ndo_do_ioctl = vortex_ioctl,
1005 #endif
1006 .ndo_set_multicast_list = set_rx_mode,
1007 .ndo_change_mtu = eth_change_mtu,
1008 .ndo_set_mac_address = eth_mac_addr,
1009 .ndo_validate_addr = eth_validate_addr,
1010 #ifdef CONFIG_NET_POLL_CONTROLLER
1011 .ndo_poll_controller = poll_vortex,
1012 #endif
1013 };
1014
1015 static const struct net_device_ops vortex_netdev_ops = {
1016 .ndo_open = vortex_open,
1017 .ndo_stop = vortex_close,
1018 .ndo_start_xmit = vortex_start_xmit,
1019 .ndo_tx_timeout = vortex_tx_timeout,
1020 .ndo_get_stats = vortex_get_stats,
1021 #ifdef CONFIG_PCI
1022 .ndo_do_ioctl = vortex_ioctl,
1023 #endif
1024 .ndo_set_multicast_list = set_rx_mode,
1025 .ndo_change_mtu = eth_change_mtu,
1026 .ndo_set_mac_address = eth_mac_addr,
1027 .ndo_validate_addr = eth_validate_addr,
1028 #ifdef CONFIG_NET_POLL_CONTROLLER
1029 .ndo_poll_controller = poll_vortex,
1030 #endif
1031 };
1032
1033 /*
1034 * Start up the PCI/EISA device which is described by *gendev.
1035 * Return 0 on success.
1036 *
1037 * NOTE: pdev can be NULL, for the case of a Compaq device
1038 */
1039 static int __devinit vortex_probe1(struct device *gendev,
1040 void __iomem *ioaddr, int irq,
1041 int chip_idx, int card_idx)
1042 {
1043 struct vortex_private *vp;
1044 int option;
1045 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1046 int i, step;
1047 struct net_device *dev;
1048 static int printed_version;
1049 int retval, print_info;
1050 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1051 const char *print_name = "3c59x";
1052 struct pci_dev *pdev = NULL;
1053 struct eisa_device *edev = NULL;
1054
1055 if (!printed_version) {
1056 pr_info("%s", version);
1057 printed_version = 1;
1058 }
1059
1060 if (gendev) {
1061 if ((pdev = DEVICE_PCI(gendev))) {
1062 print_name = pci_name(pdev);
1063 }
1064
1065 if ((edev = DEVICE_EISA(gendev))) {
1066 print_name = dev_name(&edev->dev);
1067 }
1068 }
1069
1070 dev = alloc_etherdev(sizeof(*vp));
1071 retval = -ENOMEM;
1072 if (!dev) {
1073 pr_err(PFX "unable to allocate etherdev, aborting\n");
1074 goto out;
1075 }
1076 SET_NETDEV_DEV(dev, gendev);
1077 vp = netdev_priv(dev);
1078
1079 option = global_options;
1080
1081 /* The lower four bits are the media type. */
1082 if (dev->mem_start) {
1083 /*
1084 * The 'options' param is passed in as the third arg to the
1085 * LILO 'ether=' argument for non-modular use
1086 */
1087 option = dev->mem_start;
1088 }
1089 else if (card_idx < MAX_UNITS) {
1090 if (options[card_idx] >= 0)
1091 option = options[card_idx];
1092 }
1093
1094 if (option > 0) {
1095 if (option & 0x8000)
1096 vortex_debug = 7;
1097 if (option & 0x4000)
1098 vortex_debug = 2;
1099 if (option & 0x0400)
1100 vp->enable_wol = 1;
1101 }
1102
1103 print_info = (vortex_debug > 1);
1104 if (print_info)
1105 pr_info("See Documentation/networking/vortex.txt\n");
1106
1107 pr_info("%s: 3Com %s %s at %p.\n",
1108 print_name,
1109 pdev ? "PCI" : "EISA",
1110 vci->name,
1111 ioaddr);
1112
1113 dev->base_addr = (unsigned long)ioaddr;
1114 dev->irq = irq;
1115 dev->mtu = mtu;
1116 vp->ioaddr = ioaddr;
1117 vp->large_frames = mtu > 1500;
1118 vp->drv_flags = vci->drv_flags;
1119 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1120 vp->io_size = vci->io_size;
1121 vp->card_idx = card_idx;
1122
1123 /* module list only for Compaq device */
1124 if (gendev == NULL) {
1125 compaq_net_device = dev;
1126 }
1127
1128 /* PCI-only startup logic */
1129 if (pdev) {
1130 /* EISA resources already marked, so only PCI needs to do this here */
1131 /* Ignore return value, because Cardbus drivers already allocate for us */
1132 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1133 vp->must_free_region = 1;
1134
1135 /* enable bus-mastering if necessary */
1136 if (vci->flags & PCI_USES_MASTER)
1137 pci_set_master(pdev);
1138
1139 if (vci->drv_flags & IS_VORTEX) {
1140 u8 pci_latency;
1141 u8 new_latency = 248;
1142
1143 /* Check the PCI latency value. On the 3c590 series the latency timer
1144 must be set to the maximum value to avoid data corruption that occurs
1145 when the timer expires during a transfer. This bug exists the Vortex
1146 chip only. */
1147 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1148 if (pci_latency < new_latency) {
1149 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1150 print_name, pci_latency, new_latency);
1151 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1152 }
1153 }
1154 }
1155
1156 spin_lock_init(&vp->lock);
1157 vp->gendev = gendev;
1158 vp->mii.dev = dev;
1159 vp->mii.mdio_read = mdio_read;
1160 vp->mii.mdio_write = mdio_write;
1161 vp->mii.phy_id_mask = 0x1f;
1162 vp->mii.reg_num_mask = 0x1f;
1163
1164 /* Makes sure rings are at least 16 byte aligned. */
1165 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1166 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1167 &vp->rx_ring_dma);
1168 retval = -ENOMEM;
1169 if (!vp->rx_ring)
1170 goto free_region;
1171
1172 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1173 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1174
1175 /* if we are a PCI driver, we store info in pdev->driver_data
1176 * instead of a module list */
1177 if (pdev)
1178 pci_set_drvdata(pdev, dev);
1179 if (edev)
1180 eisa_set_drvdata(edev, dev);
1181
1182 vp->media_override = 7;
1183 if (option >= 0) {
1184 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1185 if (vp->media_override != 7)
1186 vp->medialock = 1;
1187 vp->full_duplex = (option & 0x200) ? 1 : 0;
1188 vp->bus_master = (option & 16) ? 1 : 0;
1189 }
1190
1191 if (global_full_duplex > 0)
1192 vp->full_duplex = 1;
1193 if (global_enable_wol > 0)
1194 vp->enable_wol = 1;
1195
1196 if (card_idx < MAX_UNITS) {
1197 if (full_duplex[card_idx] > 0)
1198 vp->full_duplex = 1;
1199 if (flow_ctrl[card_idx] > 0)
1200 vp->flow_ctrl = 1;
1201 if (enable_wol[card_idx] > 0)
1202 vp->enable_wol = 1;
1203 }
1204
1205 vp->mii.force_media = vp->full_duplex;
1206 vp->options = option;
1207 /* Read the station address from the EEPROM. */
1208 EL3WINDOW(0);
1209 {
1210 int base;
1211
1212 if (vci->drv_flags & EEPROM_8BIT)
1213 base = 0x230;
1214 else if (vci->drv_flags & EEPROM_OFFSET)
1215 base = EEPROM_Read + 0x30;
1216 else
1217 base = EEPROM_Read;
1218
1219 for (i = 0; i < 0x40; i++) {
1220 int timer;
1221 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1222 /* Pause for at least 162 us. for the read to take place. */
1223 for (timer = 10; timer >= 0; timer--) {
1224 udelay(162);
1225 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1226 break;
1227 }
1228 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1229 }
1230 }
1231 for (i = 0; i < 0x18; i++)
1232 checksum ^= eeprom[i];
1233 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1234 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1235 while (i < 0x21)
1236 checksum ^= eeprom[i++];
1237 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1238 }
1239 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1240 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1241 for (i = 0; i < 3; i++)
1242 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1243 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1244 if (print_info)
1245 pr_cont(" %pM", dev->dev_addr);
1246 /* Unfortunately an all zero eeprom passes the checksum and this
1247 gets found in the wild in failure cases. Crypto is hard 8) */
1248 if (!is_valid_ether_addr(dev->dev_addr)) {
1249 retval = -EINVAL;
1250 pr_err("*** EEPROM MAC address is invalid.\n");
1251 goto free_ring; /* With every pack */
1252 }
1253 EL3WINDOW(2);
1254 for (i = 0; i < 6; i++)
1255 iowrite8(dev->dev_addr[i], ioaddr + i);
1256
1257 if (print_info)
1258 pr_cont(", IRQ %d\n", dev->irq);
1259 /* Tell them about an invalid IRQ. */
1260 if (dev->irq <= 0 || dev->irq >= nr_irqs)
1261 pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1262 dev->irq);
1263
1264 EL3WINDOW(4);
1265 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1266 if (print_info) {
1267 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1268 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1269 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1270 }
1271
1272
1273 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1274 unsigned short n;
1275
1276 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1277 if (!vp->cb_fn_base) {
1278 retval = -ENOMEM;
1279 goto free_ring;
1280 }
1281
1282 if (print_info) {
1283 pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1284 print_name,
1285 (unsigned long long)pci_resource_start(pdev, 2),
1286 vp->cb_fn_base);
1287 }
1288 EL3WINDOW(2);
1289
1290 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1291 if (vp->drv_flags & INVERT_LED_PWR)
1292 n |= 0x10;
1293 if (vp->drv_flags & INVERT_MII_PWR)
1294 n |= 0x4000;
1295 iowrite16(n, ioaddr + Wn2_ResetOptions);
1296 if (vp->drv_flags & WNO_XCVR_PWR) {
1297 EL3WINDOW(0);
1298 iowrite16(0x0800, ioaddr);
1299 }
1300 }
1301
1302 /* Extract our information from the EEPROM data. */
1303 vp->info1 = eeprom[13];
1304 vp->info2 = eeprom[15];
1305 vp->capabilities = eeprom[16];
1306
1307 if (vp->info1 & 0x8000) {
1308 vp->full_duplex = 1;
1309 if (print_info)
1310 pr_info("Full duplex capable\n");
1311 }
1312
1313 {
1314 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1315 unsigned int config;
1316 EL3WINDOW(3);
1317 vp->available_media = ioread16(ioaddr + Wn3_Options);
1318 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1319 vp->available_media = 0x40;
1320 config = ioread32(ioaddr + Wn3_Config);
1321 if (print_info) {
1322 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n",
1323 config, ioread16(ioaddr + Wn3_Options));
1324 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1325 8 << RAM_SIZE(config),
1326 RAM_WIDTH(config) ? "word" : "byte",
1327 ram_split[RAM_SPLIT(config)],
1328 AUTOSELECT(config) ? "autoselect/" : "",
1329 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1330 media_tbl[XCVR(config)].name);
1331 }
1332 vp->default_media = XCVR(config);
1333 if (vp->default_media == XCVR_NWAY)
1334 vp->has_nway = 1;
1335 vp->autoselect = AUTOSELECT(config);
1336 }
1337
1338 if (vp->media_override != 7) {
1339 pr_info("%s: Media override to transceiver type %d (%s).\n",
1340 print_name, vp->media_override,
1341 media_tbl[vp->media_override].name);
1342 dev->if_port = vp->media_override;
1343 } else
1344 dev->if_port = vp->default_media;
1345
1346 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1347 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1348 int phy, phy_idx = 0;
1349 EL3WINDOW(4);
1350 mii_preamble_required++;
1351 if (vp->drv_flags & EXTRA_PREAMBLE)
1352 mii_preamble_required++;
1353 mdio_sync(ioaddr, 32);
1354 mdio_read(dev, 24, MII_BMSR);
1355 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1356 int mii_status, phyx;
1357
1358 /*
1359 * For the 3c905CX we look at index 24 first, because it bogusly
1360 * reports an external PHY at all indices
1361 */
1362 if (phy == 0)
1363 phyx = 24;
1364 else if (phy <= 24)
1365 phyx = phy - 1;
1366 else
1367 phyx = phy;
1368 mii_status = mdio_read(dev, phyx, MII_BMSR);
1369 if (mii_status && mii_status != 0xffff) {
1370 vp->phys[phy_idx++] = phyx;
1371 if (print_info) {
1372 pr_info(" MII transceiver found at address %d, status %4x.\n",
1373 phyx, mii_status);
1374 }
1375 if ((mii_status & 0x0040) == 0)
1376 mii_preamble_required++;
1377 }
1378 }
1379 mii_preamble_required--;
1380 if (phy_idx == 0) {
1381 pr_warning(" ***WARNING*** No MII transceivers found!\n");
1382 vp->phys[0] = 24;
1383 } else {
1384 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1385 if (vp->full_duplex) {
1386 /* Only advertise the FD media types. */
1387 vp->advertising &= ~0x02A0;
1388 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1389 }
1390 }
1391 vp->mii.phy_id = vp->phys[0];
1392 }
1393
1394 if (vp->capabilities & CapBusMaster) {
1395 vp->full_bus_master_tx = 1;
1396 if (print_info) {
1397 pr_info(" Enabling bus-master transmits and %s receives.\n",
1398 (vp->info2 & 1) ? "early" : "whole-frame" );
1399 }
1400 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1401 vp->bus_master = 0; /* AKPM: vortex only */
1402 }
1403
1404 /* The 3c59x-specific entries in the device structure. */
1405 if (vp->full_bus_master_tx) {
1406 dev->netdev_ops = &boomrang_netdev_ops;
1407 /* Actually, it still should work with iommu. */
1408 if (card_idx < MAX_UNITS &&
1409 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1410 hw_checksums[card_idx] == 1)) {
1411 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1412 }
1413 } else
1414 dev->netdev_ops = &vortex_netdev_ops;
1415
1416 if (print_info) {
1417 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1418 print_name,
1419 (dev->features & NETIF_F_SG) ? "en":"dis",
1420 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1421 }
1422
1423 dev->ethtool_ops = &vortex_ethtool_ops;
1424 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1425
1426 if (pdev) {
1427 vp->pm_state_valid = 1;
1428 pci_save_state(VORTEX_PCI(vp));
1429 acpi_set_WOL(dev);
1430 }
1431 retval = register_netdev(dev);
1432 if (retval == 0)
1433 return 0;
1434
1435 free_ring:
1436 pci_free_consistent(pdev,
1437 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1438 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1439 vp->rx_ring,
1440 vp->rx_ring_dma);
1441 free_region:
1442 if (vp->must_free_region)
1443 release_region(dev->base_addr, vci->io_size);
1444 free_netdev(dev);
1445 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval);
1446 out:
1447 return retval;
1448 }
1449
1450 static void
1451 issue_and_wait(struct net_device *dev, int cmd)
1452 {
1453 struct vortex_private *vp = netdev_priv(dev);
1454 void __iomem *ioaddr = vp->ioaddr;
1455 int i;
1456
1457 iowrite16(cmd, ioaddr + EL3_CMD);
1458 for (i = 0; i < 2000; i++) {
1459 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1460 return;
1461 }
1462
1463 /* OK, that didn't work. Do it the slow way. One second */
1464 for (i = 0; i < 100000; i++) {
1465 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1466 if (vortex_debug > 1)
1467 pr_info("%s: command 0x%04x took %d usecs\n",
1468 dev->name, cmd, i * 10);
1469 return;
1470 }
1471 udelay(10);
1472 }
1473 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1474 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1475 }
1476
1477 static void
1478 vortex_set_duplex(struct net_device *dev)
1479 {
1480 struct vortex_private *vp = netdev_priv(dev);
1481 void __iomem *ioaddr = vp->ioaddr;
1482
1483 pr_info("%s: setting %s-duplex.\n",
1484 dev->name, (vp->full_duplex) ? "full" : "half");
1485
1486 EL3WINDOW(3);
1487 /* Set the full-duplex bit. */
1488 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1489 (vp->large_frames ? 0x40 : 0) |
1490 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1491 0x100 : 0),
1492 ioaddr + Wn3_MAC_Ctrl);
1493 }
1494
1495 static void vortex_check_media(struct net_device *dev, unsigned int init)
1496 {
1497 struct vortex_private *vp = netdev_priv(dev);
1498 unsigned int ok_to_print = 0;
1499
1500 if (vortex_debug > 3)
1501 ok_to_print = 1;
1502
1503 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1504 vp->full_duplex = vp->mii.full_duplex;
1505 vortex_set_duplex(dev);
1506 } else if (init) {
1507 vortex_set_duplex(dev);
1508 }
1509 }
1510
1511 static int
1512 vortex_up(struct net_device *dev)
1513 {
1514 struct vortex_private *vp = netdev_priv(dev);
1515 void __iomem *ioaddr = vp->ioaddr;
1516 unsigned int config;
1517 int i, mii_reg1, mii_reg5, err = 0;
1518
1519 if (VORTEX_PCI(vp)) {
1520 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1521 if (vp->pm_state_valid)
1522 pci_restore_state(VORTEX_PCI(vp));
1523 err = pci_enable_device(VORTEX_PCI(vp));
1524 if (err) {
1525 pr_warning("%s: Could not enable device\n",
1526 dev->name);
1527 goto err_out;
1528 }
1529 }
1530
1531 /* Before initializing select the active media port. */
1532 EL3WINDOW(3);
1533 config = ioread32(ioaddr + Wn3_Config);
1534
1535 if (vp->media_override != 7) {
1536 pr_info("%s: Media override to transceiver %d (%s).\n",
1537 dev->name, vp->media_override,
1538 media_tbl[vp->media_override].name);
1539 dev->if_port = vp->media_override;
1540 } else if (vp->autoselect) {
1541 if (vp->has_nway) {
1542 if (vortex_debug > 1)
1543 pr_info("%s: using NWAY device table, not %d\n",
1544 dev->name, dev->if_port);
1545 dev->if_port = XCVR_NWAY;
1546 } else {
1547 /* Find first available media type, starting with 100baseTx. */
1548 dev->if_port = XCVR_100baseTx;
1549 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1550 dev->if_port = media_tbl[dev->if_port].next;
1551 if (vortex_debug > 1)
1552 pr_info("%s: first available media type: %s\n",
1553 dev->name, media_tbl[dev->if_port].name);
1554 }
1555 } else {
1556 dev->if_port = vp->default_media;
1557 if (vortex_debug > 1)
1558 pr_info("%s: using default media %s\n",
1559 dev->name, media_tbl[dev->if_port].name);
1560 }
1561
1562 init_timer(&vp->timer);
1563 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1564 vp->timer.data = (unsigned long)dev;
1565 vp->timer.function = vortex_timer; /* timer handler */
1566 add_timer(&vp->timer);
1567
1568 init_timer(&vp->rx_oom_timer);
1569 vp->rx_oom_timer.data = (unsigned long)dev;
1570 vp->rx_oom_timer.function = rx_oom_timer;
1571
1572 if (vortex_debug > 1)
1573 pr_debug("%s: Initial media type %s.\n",
1574 dev->name, media_tbl[dev->if_port].name);
1575
1576 vp->full_duplex = vp->mii.force_media;
1577 config = BFINS(config, dev->if_port, 20, 4);
1578 if (vortex_debug > 6)
1579 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1580 iowrite32(config, ioaddr + Wn3_Config);
1581
1582 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1583 EL3WINDOW(4);
1584 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1585 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1586 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1587 vp->mii.full_duplex = vp->full_duplex;
1588
1589 vortex_check_media(dev, 1);
1590 }
1591 else
1592 vortex_set_duplex(dev);
1593
1594 issue_and_wait(dev, TxReset);
1595 /*
1596 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1597 */
1598 issue_and_wait(dev, RxReset|0x04);
1599
1600
1601 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1602
1603 if (vortex_debug > 1) {
1604 EL3WINDOW(4);
1605 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1606 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1607 }
1608
1609 /* Set the station address and mask in window 2 each time opened. */
1610 EL3WINDOW(2);
1611 for (i = 0; i < 6; i++)
1612 iowrite8(dev->dev_addr[i], ioaddr + i);
1613 for (; i < 12; i+=2)
1614 iowrite16(0, ioaddr + i);
1615
1616 if (vp->cb_fn_base) {
1617 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1618 if (vp->drv_flags & INVERT_LED_PWR)
1619 n |= 0x10;
1620 if (vp->drv_flags & INVERT_MII_PWR)
1621 n |= 0x4000;
1622 iowrite16(n, ioaddr + Wn2_ResetOptions);
1623 }
1624
1625 if (dev->if_port == XCVR_10base2)
1626 /* Start the thinnet transceiver. We should really wait 50ms...*/
1627 iowrite16(StartCoax, ioaddr + EL3_CMD);
1628 if (dev->if_port != XCVR_NWAY) {
1629 EL3WINDOW(4);
1630 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1631 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1632 }
1633
1634 /* Switch to the stats window, and clear all stats by reading. */
1635 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1636 EL3WINDOW(6);
1637 for (i = 0; i < 10; i++)
1638 ioread8(ioaddr + i);
1639 ioread16(ioaddr + 10);
1640 ioread16(ioaddr + 12);
1641 /* New: On the Vortex we must also clear the BadSSD counter. */
1642 EL3WINDOW(4);
1643 ioread8(ioaddr + 12);
1644 /* ..and on the Boomerang we enable the extra statistics bits. */
1645 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1646
1647 /* Switch to register set 7 for normal use. */
1648 EL3WINDOW(7);
1649
1650 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1651 vp->cur_rx = vp->dirty_rx = 0;
1652 /* Initialize the RxEarly register as recommended. */
1653 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1654 iowrite32(0x0020, ioaddr + PktStatus);
1655 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1656 }
1657 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1658 vp->cur_tx = vp->dirty_tx = 0;
1659 if (vp->drv_flags & IS_BOOMERANG)
1660 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1661 /* Clear the Rx, Tx rings. */
1662 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1663 vp->rx_ring[i].status = 0;
1664 for (i = 0; i < TX_RING_SIZE; i++)
1665 vp->tx_skbuff[i] = NULL;
1666 iowrite32(0, ioaddr + DownListPtr);
1667 }
1668 /* Set receiver mode: presumably accept b-case and phys addr only. */
1669 set_rx_mode(dev);
1670 /* enable 802.1q tagged frames */
1671 set_8021q_mode(dev, 1);
1672 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1673
1674 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1675 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1676 /* Allow status bits to be seen. */
1677 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1678 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1679 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1680 (vp->bus_master ? DMADone : 0);
1681 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1682 (vp->full_bus_master_rx ? 0 : RxComplete) |
1683 StatsFull | HostError | TxComplete | IntReq
1684 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1685 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1686 /* Ack all pending events, and set active indicator mask. */
1687 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1688 ioaddr + EL3_CMD);
1689 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1690 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1691 iowrite32(0x8000, vp->cb_fn_base + 4);
1692 netif_start_queue (dev);
1693 err_out:
1694 return err;
1695 }
1696
1697 static int
1698 vortex_open(struct net_device *dev)
1699 {
1700 struct vortex_private *vp = netdev_priv(dev);
1701 int i;
1702 int retval;
1703
1704 /* Use the now-standard shared IRQ implementation. */
1705 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1706 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1707 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1708 goto err;
1709 }
1710
1711 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1712 if (vortex_debug > 2)
1713 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
1714 for (i = 0; i < RX_RING_SIZE; i++) {
1715 struct sk_buff *skb;
1716 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1717 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1718 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1719
1720 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1721 GFP_KERNEL);
1722 vp->rx_skbuff[i] = skb;
1723 if (skb == NULL)
1724 break; /* Bad news! */
1725
1726 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1727 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1728 }
1729 if (i != RX_RING_SIZE) {
1730 int j;
1731 pr_emerg("%s: no memory for rx ring\n", dev->name);
1732 for (j = 0; j < i; j++) {
1733 if (vp->rx_skbuff[j]) {
1734 dev_kfree_skb(vp->rx_skbuff[j]);
1735 vp->rx_skbuff[j] = NULL;
1736 }
1737 }
1738 retval = -ENOMEM;
1739 goto err_free_irq;
1740 }
1741 /* Wrap the ring. */
1742 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1743 }
1744
1745 retval = vortex_up(dev);
1746 if (!retval)
1747 goto out;
1748
1749 err_free_irq:
1750 free_irq(dev->irq, dev);
1751 err:
1752 if (vortex_debug > 1)
1753 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1754 out:
1755 return retval;
1756 }
1757
1758 static void
1759 vortex_timer(unsigned long data)
1760 {
1761 struct net_device *dev = (struct net_device *)data;
1762 struct vortex_private *vp = netdev_priv(dev);
1763 void __iomem *ioaddr = vp->ioaddr;
1764 int next_tick = 60*HZ;
1765 int ok = 0;
1766 int media_status, old_window;
1767
1768 if (vortex_debug > 2) {
1769 pr_debug("%s: Media selection timer tick happened, %s.\n",
1770 dev->name, media_tbl[dev->if_port].name);
1771 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1772 }
1773
1774 disable_irq_lockdep(dev->irq);
1775 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1776 EL3WINDOW(4);
1777 media_status = ioread16(ioaddr + Wn4_Media);
1778 switch (dev->if_port) {
1779 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1780 if (media_status & Media_LnkBeat) {
1781 netif_carrier_on(dev);
1782 ok = 1;
1783 if (vortex_debug > 1)
1784 pr_debug("%s: Media %s has link beat, %x.\n",
1785 dev->name, media_tbl[dev->if_port].name, media_status);
1786 } else {
1787 netif_carrier_off(dev);
1788 if (vortex_debug > 1) {
1789 pr_debug("%s: Media %s has no link beat, %x.\n",
1790 dev->name, media_tbl[dev->if_port].name, media_status);
1791 }
1792 }
1793 break;
1794 case XCVR_MII: case XCVR_NWAY:
1795 {
1796 ok = 1;
1797 /* Interrupts are already disabled */
1798 spin_lock(&vp->lock);
1799 vortex_check_media(dev, 0);
1800 spin_unlock(&vp->lock);
1801 }
1802 break;
1803 default: /* Other media types handled by Tx timeouts. */
1804 if (vortex_debug > 1)
1805 pr_debug("%s: Media %s has no indication, %x.\n",
1806 dev->name, media_tbl[dev->if_port].name, media_status);
1807 ok = 1;
1808 }
1809
1810 if (!netif_carrier_ok(dev))
1811 next_tick = 5*HZ;
1812
1813 if (vp->medialock)
1814 goto leave_media_alone;
1815
1816 if (!ok) {
1817 unsigned int config;
1818
1819 do {
1820 dev->if_port = media_tbl[dev->if_port].next;
1821 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1822 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1823 dev->if_port = vp->default_media;
1824 if (vortex_debug > 1)
1825 pr_debug("%s: Media selection failing, using default %s port.\n",
1826 dev->name, media_tbl[dev->if_port].name);
1827 } else {
1828 if (vortex_debug > 1)
1829 pr_debug("%s: Media selection failed, now trying %s port.\n",
1830 dev->name, media_tbl[dev->if_port].name);
1831 next_tick = media_tbl[dev->if_port].wait;
1832 }
1833 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1834 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1835
1836 EL3WINDOW(3);
1837 config = ioread32(ioaddr + Wn3_Config);
1838 config = BFINS(config, dev->if_port, 20, 4);
1839 iowrite32(config, ioaddr + Wn3_Config);
1840
1841 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1842 ioaddr + EL3_CMD);
1843 if (vortex_debug > 1)
1844 pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1845 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1846 }
1847
1848 leave_media_alone:
1849 if (vortex_debug > 2)
1850 pr_debug("%s: Media selection timer finished, %s.\n",
1851 dev->name, media_tbl[dev->if_port].name);
1852
1853 EL3WINDOW(old_window);
1854 enable_irq_lockdep(dev->irq);
1855 mod_timer(&vp->timer, RUN_AT(next_tick));
1856 if (vp->deferred)
1857 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1858 return;
1859 }
1860
1861 static void vortex_tx_timeout(struct net_device *dev)
1862 {
1863 struct vortex_private *vp = netdev_priv(dev);
1864 void __iomem *ioaddr = vp->ioaddr;
1865
1866 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1867 dev->name, ioread8(ioaddr + TxStatus),
1868 ioread16(ioaddr + EL3_STATUS));
1869 EL3WINDOW(4);
1870 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1871 ioread16(ioaddr + Wn4_NetDiag),
1872 ioread16(ioaddr + Wn4_Media),
1873 ioread32(ioaddr + PktStatus),
1874 ioread16(ioaddr + Wn4_FIFODiag));
1875 /* Slight code bloat to be user friendly. */
1876 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1877 pr_err("%s: Transmitter encountered 16 collisions --"
1878 " network cable problem?\n", dev->name);
1879 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1880 pr_err("%s: Interrupt posted but not delivered --"
1881 " IRQ blocked by another device?\n", dev->name);
1882 /* Bad idea here.. but we might as well handle a few events. */
1883 {
1884 /*
1885 * Block interrupts because vortex_interrupt does a bare spin_lock()
1886 */
1887 unsigned long flags;
1888 local_irq_save(flags);
1889 if (vp->full_bus_master_tx)
1890 boomerang_interrupt(dev->irq, dev);
1891 else
1892 vortex_interrupt(dev->irq, dev);
1893 local_irq_restore(flags);
1894 }
1895 }
1896
1897 if (vortex_debug > 0)
1898 dump_tx_ring(dev);
1899
1900 issue_and_wait(dev, TxReset);
1901
1902 dev->stats.tx_errors++;
1903 if (vp->full_bus_master_tx) {
1904 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1905 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1906 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1907 ioaddr + DownListPtr);
1908 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1909 netif_wake_queue (dev);
1910 if (vp->drv_flags & IS_BOOMERANG)
1911 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1912 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1913 } else {
1914 dev->stats.tx_dropped++;
1915 netif_wake_queue(dev);
1916 }
1917
1918 /* Issue Tx Enable */
1919 iowrite16(TxEnable, ioaddr + EL3_CMD);
1920 dev->trans_start = jiffies;
1921
1922 /* Switch to register set 7 for normal use. */
1923 EL3WINDOW(7);
1924 }
1925
1926 /*
1927 * Handle uncommon interrupt sources. This is a separate routine to minimize
1928 * the cache impact.
1929 */
1930 static void
1931 vortex_error(struct net_device *dev, int status)
1932 {
1933 struct vortex_private *vp = netdev_priv(dev);
1934 void __iomem *ioaddr = vp->ioaddr;
1935 int do_tx_reset = 0, reset_mask = 0;
1936 unsigned char tx_status = 0;
1937
1938 if (vortex_debug > 2) {
1939 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1940 }
1941
1942 if (status & TxComplete) { /* Really "TxError" for us. */
1943 tx_status = ioread8(ioaddr + TxStatus);
1944 /* Presumably a tx-timeout. We must merely re-enable. */
1945 if (vortex_debug > 2 ||
1946 (tx_status != 0x88 && vortex_debug > 0)) {
1947 pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1948 dev->name, tx_status);
1949 if (tx_status == 0x82) {
1950 pr_err("Probably a duplex mismatch. See "
1951 "Documentation/networking/vortex.txt\n");
1952 }
1953 dump_tx_ring(dev);
1954 }
1955 if (tx_status & 0x14) dev->stats.tx_fifo_errors++;
1956 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
1957 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1958 iowrite8(0, ioaddr + TxStatus);
1959 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1960 do_tx_reset = 1;
1961 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1962 do_tx_reset = 1;
1963 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1964 } else { /* Merely re-enable the transmitter. */
1965 iowrite16(TxEnable, ioaddr + EL3_CMD);
1966 }
1967 }
1968
1969 if (status & RxEarly) { /* Rx early is unused. */
1970 vortex_rx(dev);
1971 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1972 }
1973 if (status & StatsFull) { /* Empty statistics. */
1974 static int DoneDidThat;
1975 if (vortex_debug > 4)
1976 pr_debug("%s: Updating stats.\n", dev->name);
1977 update_stats(ioaddr, dev);
1978 /* HACK: Disable statistics as an interrupt source. */
1979 /* This occurs when we have the wrong media type! */
1980 if (DoneDidThat == 0 &&
1981 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1982 pr_warning("%s: Updating statistics failed, disabling "
1983 "stats as an interrupt source.\n", dev->name);
1984 EL3WINDOW(5);
1985 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
1986 vp->intr_enable &= ~StatsFull;
1987 EL3WINDOW(7);
1988 DoneDidThat++;
1989 }
1990 }
1991 if (status & IntReq) { /* Restore all interrupt sources. */
1992 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1993 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1994 }
1995 if (status & HostError) {
1996 u16 fifo_diag;
1997 EL3WINDOW(4);
1998 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
1999 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2000 dev->name, fifo_diag);
2001 /* Adapter failure requires Tx/Rx reset and reinit. */
2002 if (vp->full_bus_master_tx) {
2003 int bus_status = ioread32(ioaddr + PktStatus);
2004 /* 0x80000000 PCI master abort. */
2005 /* 0x40000000 PCI target abort. */
2006 if (vortex_debug)
2007 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2008
2009 /* In this case, blow the card away */
2010 /* Must not enter D3 or we can't legally issue the reset! */
2011 vortex_down(dev, 0);
2012 issue_and_wait(dev, TotalReset | 0xff);
2013 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2014 } else if (fifo_diag & 0x0400)
2015 do_tx_reset = 1;
2016 if (fifo_diag & 0x3000) {
2017 /* Reset Rx fifo and upload logic */
2018 issue_and_wait(dev, RxReset|0x07);
2019 /* Set the Rx filter to the current state. */
2020 set_rx_mode(dev);
2021 /* enable 802.1q VLAN tagged frames */
2022 set_8021q_mode(dev, 1);
2023 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2024 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2025 }
2026 }
2027
2028 if (do_tx_reset) {
2029 issue_and_wait(dev, TxReset|reset_mask);
2030 iowrite16(TxEnable, ioaddr + EL3_CMD);
2031 if (!vp->full_bus_master_tx)
2032 netif_wake_queue(dev);
2033 }
2034 }
2035
2036 static netdev_tx_t
2037 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2038 {
2039 struct vortex_private *vp = netdev_priv(dev);
2040 void __iomem *ioaddr = vp->ioaddr;
2041
2042 /* Put out the doubleword header... */
2043 iowrite32(skb->len, ioaddr + TX_FIFO);
2044 if (vp->bus_master) {
2045 /* Set the bus-master controller to transfer the packet. */
2046 int len = (skb->len + 3) & ~3;
2047 iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2048 ioaddr + Wn7_MasterAddr);
2049 iowrite16(len, ioaddr + Wn7_MasterLen);
2050 vp->tx_skb = skb;
2051 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2052 /* netif_wake_queue() will be called at the DMADone interrupt. */
2053 } else {
2054 /* ... and the packet rounded to a doubleword. */
2055 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2056 dev_kfree_skb (skb);
2057 if (ioread16(ioaddr + TxFree) > 1536) {
2058 netif_start_queue (dev); /* AKPM: redundant? */
2059 } else {
2060 /* Interrupt us when the FIFO has room for max-sized packet. */
2061 netif_stop_queue(dev);
2062 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2063 }
2064 }
2065
2066 dev->trans_start = jiffies;
2067
2068 /* Clear the Tx status stack. */
2069 {
2070 int tx_status;
2071 int i = 32;
2072
2073 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2074 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2075 if (vortex_debug > 2)
2076 pr_debug("%s: Tx error, status %2.2x.\n",
2077 dev->name, tx_status);
2078 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2079 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2080 if (tx_status & 0x30) {
2081 issue_and_wait(dev, TxReset);
2082 }
2083 iowrite16(TxEnable, ioaddr + EL3_CMD);
2084 }
2085 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2086 }
2087 }
2088 return NETDEV_TX_OK;
2089 }
2090
2091 static netdev_tx_t
2092 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2093 {
2094 struct vortex_private *vp = netdev_priv(dev);
2095 void __iomem *ioaddr = vp->ioaddr;
2096 /* Calculate the next Tx descriptor entry. */
2097 int entry = vp->cur_tx % TX_RING_SIZE;
2098 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2099 unsigned long flags;
2100
2101 if (vortex_debug > 6) {
2102 pr_debug("boomerang_start_xmit()\n");
2103 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2104 dev->name, vp->cur_tx);
2105 }
2106
2107 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2108 if (vortex_debug > 0)
2109 pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2110 dev->name);
2111 netif_stop_queue(dev);
2112 return NETDEV_TX_BUSY;
2113 }
2114
2115 vp->tx_skbuff[entry] = skb;
2116
2117 vp->tx_ring[entry].next = 0;
2118 #if DO_ZEROCOPY
2119 if (skb->ip_summed != CHECKSUM_PARTIAL)
2120 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2121 else
2122 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2123
2124 if (!skb_shinfo(skb)->nr_frags) {
2125 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2126 skb->len, PCI_DMA_TODEVICE));
2127 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2128 } else {
2129 int i;
2130
2131 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2132 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2133 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2134
2135 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2136 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2137
2138 vp->tx_ring[entry].frag[i+1].addr =
2139 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2140 (void*)page_address(frag->page) + frag->page_offset,
2141 frag->size, PCI_DMA_TODEVICE));
2142
2143 if (i == skb_shinfo(skb)->nr_frags-1)
2144 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2145 else
2146 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2147 }
2148 }
2149 #else
2150 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2151 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2152 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2153 #endif
2154
2155 spin_lock_irqsave(&vp->lock, flags);
2156 /* Wait for the stall to complete. */
2157 issue_and_wait(dev, DownStall);
2158 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2159 if (ioread32(ioaddr + DownListPtr) == 0) {
2160 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2161 vp->queued_packet++;
2162 }
2163
2164 vp->cur_tx++;
2165 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2166 netif_stop_queue (dev);
2167 } else { /* Clear previous interrupt enable. */
2168 #if defined(tx_interrupt_mitigation)
2169 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2170 * were selected, this would corrupt DN_COMPLETE. No?
2171 */
2172 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2173 #endif
2174 }
2175 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2176 spin_unlock_irqrestore(&vp->lock, flags);
2177 dev->trans_start = jiffies;
2178 return NETDEV_TX_OK;
2179 }
2180
2181 /* The interrupt handler does all of the Rx thread work and cleans up
2182 after the Tx thread. */
2183
2184 /*
2185 * This is the ISR for the vortex series chips.
2186 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2187 */
2188
2189 static irqreturn_t
2190 vortex_interrupt(int irq, void *dev_id)
2191 {
2192 struct net_device *dev = dev_id;
2193 struct vortex_private *vp = netdev_priv(dev);
2194 void __iomem *ioaddr;
2195 int status;
2196 int work_done = max_interrupt_work;
2197 int handled = 0;
2198
2199 ioaddr = vp->ioaddr;
2200 spin_lock(&vp->lock);
2201
2202 status = ioread16(ioaddr + EL3_STATUS);
2203
2204 if (vortex_debug > 6)
2205 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2206
2207 if ((status & IntLatch) == 0)
2208 goto handler_exit; /* No interrupt: shared IRQs cause this */
2209 handled = 1;
2210
2211 if (status & IntReq) {
2212 status |= vp->deferred;
2213 vp->deferred = 0;
2214 }
2215
2216 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2217 goto handler_exit;
2218
2219 if (vortex_debug > 4)
2220 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2221 dev->name, status, ioread8(ioaddr + Timer));
2222
2223 do {
2224 if (vortex_debug > 5)
2225 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2226 dev->name, status);
2227 if (status & RxComplete)
2228 vortex_rx(dev);
2229
2230 if (status & TxAvailable) {
2231 if (vortex_debug > 5)
2232 pr_debug(" TX room bit was handled.\n");
2233 /* There's room in the FIFO for a full-sized packet. */
2234 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2235 netif_wake_queue (dev);
2236 }
2237
2238 if (status & DMADone) {
2239 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2240 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2241 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2242 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2243 if (ioread16(ioaddr + TxFree) > 1536) {
2244 /*
2245 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2246 * insufficient FIFO room, the TxAvailable test will succeed and call
2247 * netif_wake_queue()
2248 */
2249 netif_wake_queue(dev);
2250 } else { /* Interrupt when FIFO has room for max-sized packet. */
2251 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2252 netif_stop_queue(dev);
2253 }
2254 }
2255 }
2256 /* Check for all uncommon interrupts at once. */
2257 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2258 if (status == 0xffff)
2259 break;
2260 vortex_error(dev, status);
2261 }
2262
2263 if (--work_done < 0) {
2264 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2265 dev->name, status);
2266 /* Disable all pending interrupts. */
2267 do {
2268 vp->deferred |= status;
2269 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2270 ioaddr + EL3_CMD);
2271 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2272 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2273 /* The timer will reenable interrupts. */
2274 mod_timer(&vp->timer, jiffies + 1*HZ);
2275 break;
2276 }
2277 /* Acknowledge the IRQ. */
2278 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2279 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2280
2281 if (vortex_debug > 4)
2282 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2283 dev->name, status);
2284 handler_exit:
2285 spin_unlock(&vp->lock);
2286 return IRQ_RETVAL(handled);
2287 }
2288
2289 /*
2290 * This is the ISR for the boomerang series chips.
2291 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2292 */
2293
2294 static irqreturn_t
2295 boomerang_interrupt(int irq, void *dev_id)
2296 {
2297 struct net_device *dev = dev_id;
2298 struct vortex_private *vp = netdev_priv(dev);
2299 void __iomem *ioaddr;
2300 int status;
2301 int work_done = max_interrupt_work;
2302
2303 ioaddr = vp->ioaddr;
2304
2305 /*
2306 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2307 * and boomerang_start_xmit
2308 */
2309 spin_lock(&vp->lock);
2310
2311 status = ioread16(ioaddr + EL3_STATUS);
2312
2313 if (vortex_debug > 6)
2314 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2315
2316 if ((status & IntLatch) == 0)
2317 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2318
2319 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2320 if (vortex_debug > 1)
2321 pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2322 goto handler_exit;
2323 }
2324
2325 if (status & IntReq) {
2326 status |= vp->deferred;
2327 vp->deferred = 0;
2328 }
2329
2330 if (vortex_debug > 4)
2331 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2332 dev->name, status, ioread8(ioaddr + Timer));
2333 do {
2334 if (vortex_debug > 5)
2335 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2336 dev->name, status);
2337 if (status & UpComplete) {
2338 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2339 if (vortex_debug > 5)
2340 pr_debug("boomerang_interrupt->boomerang_rx\n");
2341 boomerang_rx(dev);
2342 }
2343
2344 if (status & DownComplete) {
2345 unsigned int dirty_tx = vp->dirty_tx;
2346
2347 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2348 while (vp->cur_tx - dirty_tx > 0) {
2349 int entry = dirty_tx % TX_RING_SIZE;
2350 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2351 if (ioread32(ioaddr + DownListPtr) ==
2352 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2353 break; /* It still hasn't been processed. */
2354 #else
2355 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2356 break; /* It still hasn't been processed. */
2357 #endif
2358
2359 if (vp->tx_skbuff[entry]) {
2360 struct sk_buff *skb = vp->tx_skbuff[entry];
2361 #if DO_ZEROCOPY
2362 int i;
2363 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2364 pci_unmap_single(VORTEX_PCI(vp),
2365 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2366 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2367 PCI_DMA_TODEVICE);
2368 #else
2369 pci_unmap_single(VORTEX_PCI(vp),
2370 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2371 #endif
2372 dev_kfree_skb_irq(skb);
2373 vp->tx_skbuff[entry] = NULL;
2374 } else {
2375 pr_debug("boomerang_interrupt: no skb!\n");
2376 }
2377 /* dev->stats.tx_packets++; Counted below. */
2378 dirty_tx++;
2379 }
2380 vp->dirty_tx = dirty_tx;
2381 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2382 if (vortex_debug > 6)
2383 pr_debug("boomerang_interrupt: wake queue\n");
2384 netif_wake_queue (dev);
2385 }
2386 }
2387
2388 /* Check for all uncommon interrupts at once. */
2389 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2390 vortex_error(dev, status);
2391
2392 if (--work_done < 0) {
2393 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2394 dev->name, status);
2395 /* Disable all pending interrupts. */
2396 do {
2397 vp->deferred |= status;
2398 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2399 ioaddr + EL3_CMD);
2400 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2401 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2402 /* The timer will reenable interrupts. */
2403 mod_timer(&vp->timer, jiffies + 1*HZ);
2404 break;
2405 }
2406 /* Acknowledge the IRQ. */
2407 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2408 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2409 iowrite32(0x8000, vp->cb_fn_base + 4);
2410
2411 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2412
2413 if (vortex_debug > 4)
2414 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2415 dev->name, status);
2416 handler_exit:
2417 spin_unlock(&vp->lock);
2418 return IRQ_HANDLED;
2419 }
2420
2421 static int vortex_rx(struct net_device *dev)
2422 {
2423 struct vortex_private *vp = netdev_priv(dev);
2424 void __iomem *ioaddr = vp->ioaddr;
2425 int i;
2426 short rx_status;
2427
2428 if (vortex_debug > 5)
2429 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2430 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2431 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2432 if (rx_status & 0x4000) { /* Error, update stats. */
2433 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2434 if (vortex_debug > 2)
2435 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2436 dev->stats.rx_errors++;
2437 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2438 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2439 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2440 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2441 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2442 } else {
2443 /* The packet length: up to 4.5K!. */
2444 int pkt_len = rx_status & 0x1fff;
2445 struct sk_buff *skb;
2446
2447 skb = dev_alloc_skb(pkt_len + 5);
2448 if (vortex_debug > 4)
2449 pr_debug("Receiving packet size %d status %4.4x.\n",
2450 pkt_len, rx_status);
2451 if (skb != NULL) {
2452 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2453 /* 'skb_put()' points to the start of sk_buff data area. */
2454 if (vp->bus_master &&
2455 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2456 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2457 pkt_len, PCI_DMA_FROMDEVICE);
2458 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2459 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2460 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2461 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2462 ;
2463 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2464 } else {
2465 ioread32_rep(ioaddr + RX_FIFO,
2466 skb_put(skb, pkt_len),
2467 (pkt_len + 3) >> 2);
2468 }
2469 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2470 skb->protocol = eth_type_trans(skb, dev);
2471 netif_rx(skb);
2472 dev->stats.rx_packets++;
2473 /* Wait a limited time to go to next packet. */
2474 for (i = 200; i >= 0; i--)
2475 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2476 break;
2477 continue;
2478 } else if (vortex_debug > 0)
2479 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2480 dev->name, pkt_len);
2481 dev->stats.rx_dropped++;
2482 }
2483 issue_and_wait(dev, RxDiscard);
2484 }
2485
2486 return 0;
2487 }
2488
2489 static int
2490 boomerang_rx(struct net_device *dev)
2491 {
2492 struct vortex_private *vp = netdev_priv(dev);
2493 int entry = vp->cur_rx % RX_RING_SIZE;
2494 void __iomem *ioaddr = vp->ioaddr;
2495 int rx_status;
2496 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2497
2498 if (vortex_debug > 5)
2499 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2500
2501 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2502 if (--rx_work_limit < 0)
2503 break;
2504 if (rx_status & RxDError) { /* Error, update stats. */
2505 unsigned char rx_error = rx_status >> 16;
2506 if (vortex_debug > 2)
2507 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2508 dev->stats.rx_errors++;
2509 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2510 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2511 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2512 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2513 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2514 } else {
2515 /* The packet length: up to 4.5K!. */
2516 int pkt_len = rx_status & 0x1fff;
2517 struct sk_buff *skb;
2518 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2519
2520 if (vortex_debug > 4)
2521 pr_debug("Receiving packet size %d status %4.4x.\n",
2522 pkt_len, rx_status);
2523
2524 /* Check if the packet is long enough to just accept without
2525 copying to a properly sized skbuff. */
2526 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2527 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2528 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2529 /* 'skb_put()' points to the start of sk_buff data area. */
2530 memcpy(skb_put(skb, pkt_len),
2531 vp->rx_skbuff[entry]->data,
2532 pkt_len);
2533 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2534 vp->rx_copy++;
2535 } else {
2536 /* Pass up the skbuff already on the Rx ring. */
2537 skb = vp->rx_skbuff[entry];
2538 vp->rx_skbuff[entry] = NULL;
2539 skb_put(skb, pkt_len);
2540 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2541 vp->rx_nocopy++;
2542 }
2543 skb->protocol = eth_type_trans(skb, dev);
2544 { /* Use hardware checksum info. */
2545 int csum_bits = rx_status & 0xee000000;
2546 if (csum_bits &&
2547 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2548 csum_bits == (IPChksumValid | UDPChksumValid))) {
2549 skb->ip_summed = CHECKSUM_UNNECESSARY;
2550 vp->rx_csumhits++;
2551 }
2552 }
2553 netif_rx(skb);
2554 dev->stats.rx_packets++;
2555 }
2556 entry = (++vp->cur_rx) % RX_RING_SIZE;
2557 }
2558 /* Refill the Rx ring buffers. */
2559 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2560 struct sk_buff *skb;
2561 entry = vp->dirty_rx % RX_RING_SIZE;
2562 if (vp->rx_skbuff[entry] == NULL) {
2563 skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2564 if (skb == NULL) {
2565 static unsigned long last_jif;
2566 if (time_after(jiffies, last_jif + 10 * HZ)) {
2567 pr_warning("%s: memory shortage\n", dev->name);
2568 last_jif = jiffies;
2569 }
2570 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2571 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2572 break; /* Bad news! */
2573 }
2574
2575 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2576 vp->rx_skbuff[entry] = skb;
2577 }
2578 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2579 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2580 }
2581 return 0;
2582 }
2583
2584 /*
2585 * If we've hit a total OOM refilling the Rx ring we poll once a second
2586 * for some memory. Otherwise there is no way to restart the rx process.
2587 */
2588 static void
2589 rx_oom_timer(unsigned long arg)
2590 {
2591 struct net_device *dev = (struct net_device *)arg;
2592 struct vortex_private *vp = netdev_priv(dev);
2593
2594 spin_lock_irq(&vp->lock);
2595 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2596 boomerang_rx(dev);
2597 if (vortex_debug > 1) {
2598 pr_debug("%s: rx_oom_timer %s\n", dev->name,
2599 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2600 }
2601 spin_unlock_irq(&vp->lock);
2602 }
2603
2604 static void
2605 vortex_down(struct net_device *dev, int final_down)
2606 {
2607 struct vortex_private *vp = netdev_priv(dev);
2608 void __iomem *ioaddr = vp->ioaddr;
2609
2610 netif_stop_queue (dev);
2611
2612 del_timer_sync(&vp->rx_oom_timer);
2613 del_timer_sync(&vp->timer);
2614
2615 /* Turn off statistics ASAP. We update dev->stats below. */
2616 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2617
2618 /* Disable the receiver and transmitter. */
2619 iowrite16(RxDisable, ioaddr + EL3_CMD);
2620 iowrite16(TxDisable, ioaddr + EL3_CMD);
2621
2622 /* Disable receiving 802.1q tagged frames */
2623 set_8021q_mode(dev, 0);
2624
2625 if (dev->if_port == XCVR_10base2)
2626 /* Turn off thinnet power. Green! */
2627 iowrite16(StopCoax, ioaddr + EL3_CMD);
2628
2629 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2630
2631 update_stats(ioaddr, dev);
2632 if (vp->full_bus_master_rx)
2633 iowrite32(0, ioaddr + UpListPtr);
2634 if (vp->full_bus_master_tx)
2635 iowrite32(0, ioaddr + DownListPtr);
2636
2637 if (final_down && VORTEX_PCI(vp)) {
2638 vp->pm_state_valid = 1;
2639 pci_save_state(VORTEX_PCI(vp));
2640 acpi_set_WOL(dev);
2641 }
2642 }
2643
2644 static int
2645 vortex_close(struct net_device *dev)
2646 {
2647 struct vortex_private *vp = netdev_priv(dev);
2648 void __iomem *ioaddr = vp->ioaddr;
2649 int i;
2650
2651 if (netif_device_present(dev))
2652 vortex_down(dev, 1);
2653
2654 if (vortex_debug > 1) {
2655 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2656 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2657 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2658 " tx_queued %d Rx pre-checksummed %d.\n",
2659 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2660 }
2661
2662 #if DO_ZEROCOPY
2663 if (vp->rx_csumhits &&
2664 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2665 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2666 pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2667 }
2668 #endif
2669
2670 free_irq(dev->irq, dev);
2671
2672 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2673 for (i = 0; i < RX_RING_SIZE; i++)
2674 if (vp->rx_skbuff[i]) {
2675 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2676 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2677 dev_kfree_skb(vp->rx_skbuff[i]);
2678 vp->rx_skbuff[i] = NULL;
2679 }
2680 }
2681 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2682 for (i = 0; i < TX_RING_SIZE; i++) {
2683 if (vp->tx_skbuff[i]) {
2684 struct sk_buff *skb = vp->tx_skbuff[i];
2685 #if DO_ZEROCOPY
2686 int k;
2687
2688 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2689 pci_unmap_single(VORTEX_PCI(vp),
2690 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2691 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2692 PCI_DMA_TODEVICE);
2693 #else
2694 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2695 #endif
2696 dev_kfree_skb(skb);
2697 vp->tx_skbuff[i] = NULL;
2698 }
2699 }
2700 }
2701
2702 return 0;
2703 }
2704
2705 static void
2706 dump_tx_ring(struct net_device *dev)
2707 {
2708 if (vortex_debug > 0) {
2709 struct vortex_private *vp = netdev_priv(dev);
2710 void __iomem *ioaddr = vp->ioaddr;
2711
2712 if (vp->full_bus_master_tx) {
2713 int i;
2714 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2715
2716 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2717 vp->full_bus_master_tx,
2718 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2719 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2720 pr_err(" Transmit list %8.8x vs. %p.\n",
2721 ioread32(ioaddr + DownListPtr),
2722 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2723 issue_and_wait(dev, DownStall);
2724 for (i = 0; i < TX_RING_SIZE; i++) {
2725 unsigned int length;
2726
2727 #if DO_ZEROCOPY
2728 length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2729 #else
2730 length = le32_to_cpu(vp->tx_ring[i].length);
2731 #endif
2732 pr_err(" %d: @%p length %8.8x status %8.8x\n",
2733 i, &vp->tx_ring[i], length,
2734 le32_to_cpu(vp->tx_ring[i].status));
2735 }
2736 if (!stalled)
2737 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2738 }
2739 }
2740 }
2741
2742 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2743 {
2744 struct vortex_private *vp = netdev_priv(dev);
2745 void __iomem *ioaddr = vp->ioaddr;
2746 unsigned long flags;
2747
2748 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2749 spin_lock_irqsave (&vp->lock, flags);
2750 update_stats(ioaddr, dev);
2751 spin_unlock_irqrestore (&vp->lock, flags);
2752 }
2753 return &dev->stats;
2754 }
2755
2756 /* Update statistics.
2757 Unlike with the EL3 we need not worry about interrupts changing
2758 the window setting from underneath us, but we must still guard
2759 against a race condition with a StatsUpdate interrupt updating the
2760 table. This is done by checking that the ASM (!) code generated uses
2761 atomic updates with '+='.
2762 */
2763 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2764 {
2765 struct vortex_private *vp = netdev_priv(dev);
2766 int old_window = ioread16(ioaddr + EL3_CMD);
2767
2768 if (old_window == 0xffff) /* Chip suspended or ejected. */
2769 return;
2770 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2771 /* Switch to the stats window, and read everything. */
2772 EL3WINDOW(6);
2773 dev->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2774 dev->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2775 dev->stats.tx_window_errors += ioread8(ioaddr + 4);
2776 dev->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2777 dev->stats.tx_packets += ioread8(ioaddr + 6);
2778 dev->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2779 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2780 /* Don't bother with register 9, an extension of registers 6&7.
2781 If we do use the 6&7 values the atomic update assumption above
2782 is invalid. */
2783 dev->stats.rx_bytes += ioread16(ioaddr + 10);
2784 dev->stats.tx_bytes += ioread16(ioaddr + 12);
2785 /* Extra stats for get_ethtool_stats() */
2786 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2787 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2788 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2789 EL3WINDOW(4);
2790 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2791
2792 dev->stats.collisions = vp->xstats.tx_multiple_collisions
2793 + vp->xstats.tx_single_collisions
2794 + vp->xstats.tx_max_collisions;
2795
2796 {
2797 u8 up = ioread8(ioaddr + 13);
2798 dev->stats.rx_bytes += (up & 0x0f) << 16;
2799 dev->stats.tx_bytes += (up & 0xf0) << 12;
2800 }
2801
2802 EL3WINDOW(old_window >> 13);
2803 return;
2804 }
2805
2806 static int vortex_nway_reset(struct net_device *dev)
2807 {
2808 struct vortex_private *vp = netdev_priv(dev);
2809 void __iomem *ioaddr = vp->ioaddr;
2810 unsigned long flags;
2811 int rc;
2812
2813 spin_lock_irqsave(&vp->lock, flags);
2814 EL3WINDOW(4);
2815 rc = mii_nway_restart(&vp->mii);
2816 spin_unlock_irqrestore(&vp->lock, flags);
2817 return rc;
2818 }
2819
2820 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2821 {
2822 struct vortex_private *vp = netdev_priv(dev);
2823 void __iomem *ioaddr = vp->ioaddr;
2824 unsigned long flags;
2825 int rc;
2826
2827 spin_lock_irqsave(&vp->lock, flags);
2828 EL3WINDOW(4);
2829 rc = mii_ethtool_gset(&vp->mii, cmd);
2830 spin_unlock_irqrestore(&vp->lock, flags);
2831 return rc;
2832 }
2833
2834 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2835 {
2836 struct vortex_private *vp = netdev_priv(dev);
2837 void __iomem *ioaddr = vp->ioaddr;
2838 unsigned long flags;
2839 int rc;
2840
2841 spin_lock_irqsave(&vp->lock, flags);
2842 EL3WINDOW(4);
2843 rc = mii_ethtool_sset(&vp->mii, cmd);
2844 spin_unlock_irqrestore(&vp->lock, flags);
2845 return rc;
2846 }
2847
2848 static u32 vortex_get_msglevel(struct net_device *dev)
2849 {
2850 return vortex_debug;
2851 }
2852
2853 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2854 {
2855 vortex_debug = dbg;
2856 }
2857
2858 static int vortex_get_sset_count(struct net_device *dev, int sset)
2859 {
2860 switch (sset) {
2861 case ETH_SS_STATS:
2862 return VORTEX_NUM_STATS;
2863 default:
2864 return -EOPNOTSUPP;
2865 }
2866 }
2867
2868 static void vortex_get_ethtool_stats(struct net_device *dev,
2869 struct ethtool_stats *stats, u64 *data)
2870 {
2871 struct vortex_private *vp = netdev_priv(dev);
2872 void __iomem *ioaddr = vp->ioaddr;
2873 unsigned long flags;
2874
2875 spin_lock_irqsave(&vp->lock, flags);
2876 update_stats(ioaddr, dev);
2877 spin_unlock_irqrestore(&vp->lock, flags);
2878
2879 data[0] = vp->xstats.tx_deferred;
2880 data[1] = vp->xstats.tx_max_collisions;
2881 data[2] = vp->xstats.tx_multiple_collisions;
2882 data[3] = vp->xstats.tx_single_collisions;
2883 data[4] = vp->xstats.rx_bad_ssd;
2884 }
2885
2886
2887 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2888 {
2889 switch (stringset) {
2890 case ETH_SS_STATS:
2891 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2892 break;
2893 default:
2894 WARN_ON(1);
2895 break;
2896 }
2897 }
2898
2899 static void vortex_get_drvinfo(struct net_device *dev,
2900 struct ethtool_drvinfo *info)
2901 {
2902 struct vortex_private *vp = netdev_priv(dev);
2903
2904 strcpy(info->driver, DRV_NAME);
2905 if (VORTEX_PCI(vp)) {
2906 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2907 } else {
2908 if (VORTEX_EISA(vp))
2909 strcpy(info->bus_info, dev_name(vp->gendev));
2910 else
2911 sprintf(info->bus_info, "EISA 0x%lx %d",
2912 dev->base_addr, dev->irq);
2913 }
2914 }
2915
2916 static const struct ethtool_ops vortex_ethtool_ops = {
2917 .get_drvinfo = vortex_get_drvinfo,
2918 .get_strings = vortex_get_strings,
2919 .get_msglevel = vortex_get_msglevel,
2920 .set_msglevel = vortex_set_msglevel,
2921 .get_ethtool_stats = vortex_get_ethtool_stats,
2922 .get_sset_count = vortex_get_sset_count,
2923 .get_settings = vortex_get_settings,
2924 .set_settings = vortex_set_settings,
2925 .get_link = ethtool_op_get_link,
2926 .nway_reset = vortex_nway_reset,
2927 };
2928
2929 #ifdef CONFIG_PCI
2930 /*
2931 * Must power the device up to do MDIO operations
2932 */
2933 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2934 {
2935 int err;
2936 struct vortex_private *vp = netdev_priv(dev);
2937 void __iomem *ioaddr = vp->ioaddr;
2938 unsigned long flags;
2939 pci_power_t state = 0;
2940
2941 if(VORTEX_PCI(vp))
2942 state = VORTEX_PCI(vp)->current_state;
2943
2944 /* The kernel core really should have pci_get_power_state() */
2945
2946 if(state != 0)
2947 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
2948 spin_lock_irqsave(&vp->lock, flags);
2949 EL3WINDOW(4);
2950 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
2951 spin_unlock_irqrestore(&vp->lock, flags);
2952 if(state != 0)
2953 pci_set_power_state(VORTEX_PCI(vp), state);
2954
2955 return err;
2956 }
2957 #endif
2958
2959
2960 /* Pre-Cyclone chips have no documented multicast filter, so the only
2961 multicast setting is to receive all multicast frames. At least
2962 the chip has a very clean way to set the mode, unlike many others. */
2963 static void set_rx_mode(struct net_device *dev)
2964 {
2965 struct vortex_private *vp = netdev_priv(dev);
2966 void __iomem *ioaddr = vp->ioaddr;
2967 int new_mode;
2968
2969 if (dev->flags & IFF_PROMISC) {
2970 if (vortex_debug > 3)
2971 pr_notice("%s: Setting promiscuous mode.\n", dev->name);
2972 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
2973 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
2974 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
2975 } else
2976 new_mode = SetRxFilter | RxStation | RxBroadcast;
2977
2978 iowrite16(new_mode, ioaddr + EL3_CMD);
2979 }
2980
2981 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
2982 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
2983 Note that this must be done after each RxReset due to some backwards
2984 compatibility logic in the Cyclone and Tornado ASICs */
2985
2986 /* The Ethernet Type used for 802.1q tagged frames */
2987 #define VLAN_ETHER_TYPE 0x8100
2988
2989 static void set_8021q_mode(struct net_device *dev, int enable)
2990 {
2991 struct vortex_private *vp = netdev_priv(dev);
2992 void __iomem *ioaddr = vp->ioaddr;
2993 int old_window = ioread16(ioaddr + EL3_CMD);
2994 int mac_ctrl;
2995
2996 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
2997 /* cyclone and tornado chipsets can recognize 802.1q
2998 * tagged frames and treat them correctly */
2999
3000 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3001 if (enable)
3002 max_pkt_size += 4; /* 802.1Q VLAN tag */
3003
3004 EL3WINDOW(3);
3005 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3006
3007 /* set VlanEtherType to let the hardware checksumming
3008 treat tagged frames correctly */
3009 EL3WINDOW(7);
3010 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3011 } else {
3012 /* on older cards we have to enable large frames */
3013
3014 vp->large_frames = dev->mtu > 1500 || enable;
3015
3016 EL3WINDOW(3);
3017 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3018 if (vp->large_frames)
3019 mac_ctrl |= 0x40;
3020 else
3021 mac_ctrl &= ~0x40;
3022 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3023 }
3024
3025 EL3WINDOW(old_window);
3026 }
3027 #else
3028
3029 static void set_8021q_mode(struct net_device *dev, int enable)
3030 {
3031 }
3032
3033
3034 #endif
3035
3036 /* MII transceiver control section.
3037 Read and write the MII registers using software-generated serial
3038 MDIO protocol. See the MII specifications or DP83840A data sheet
3039 for details. */
3040
3041 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3042 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3043 "overclocking" issues. */
3044 #define mdio_delay() ioread32(mdio_addr)
3045
3046 #define MDIO_SHIFT_CLK 0x01
3047 #define MDIO_DIR_WRITE 0x04
3048 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3049 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3050 #define MDIO_DATA_READ 0x02
3051 #define MDIO_ENB_IN 0x00
3052
3053 /* Generate the preamble required for initial synchronization and
3054 a few older transceivers. */
3055 static void mdio_sync(void __iomem *ioaddr, int bits)
3056 {
3057 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3058
3059 /* Establish sync by sending at least 32 logic ones. */
3060 while (-- bits >= 0) {
3061 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3062 mdio_delay();
3063 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3064 mdio_delay();
3065 }
3066 }
3067
3068 static int mdio_read(struct net_device *dev, int phy_id, int location)
3069 {
3070 int i;
3071 struct vortex_private *vp = netdev_priv(dev);
3072 void __iomem *ioaddr = vp->ioaddr;
3073 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3074 unsigned int retval = 0;
3075 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3076
3077 if (mii_preamble_required)
3078 mdio_sync(ioaddr, 32);
3079
3080 /* Shift the read command bits out. */
3081 for (i = 14; i >= 0; i--) {
3082 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3083 iowrite16(dataval, mdio_addr);
3084 mdio_delay();
3085 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3086 mdio_delay();
3087 }
3088 /* Read the two transition, 16 data, and wire-idle bits. */
3089 for (i = 19; i > 0; i--) {
3090 iowrite16(MDIO_ENB_IN, mdio_addr);
3091 mdio_delay();
3092 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3093 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3094 mdio_delay();
3095 }
3096 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3097 }
3098
3099 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3100 {
3101 struct vortex_private *vp = netdev_priv(dev);
3102 void __iomem *ioaddr = vp->ioaddr;
3103 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3104 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3105 int i;
3106
3107 if (mii_preamble_required)
3108 mdio_sync(ioaddr, 32);
3109
3110 /* Shift the command bits out. */
3111 for (i = 31; i >= 0; i--) {
3112 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3113 iowrite16(dataval, mdio_addr);
3114 mdio_delay();
3115 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3116 mdio_delay();
3117 }
3118 /* Leave the interface idle. */
3119 for (i = 1; i >= 0; i--) {
3120 iowrite16(MDIO_ENB_IN, mdio_addr);
3121 mdio_delay();
3122 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3123 mdio_delay();
3124 }
3125 return;
3126 }
3127
3128 /* ACPI: Advanced Configuration and Power Interface. */
3129 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3130 static void acpi_set_WOL(struct net_device *dev)
3131 {
3132 struct vortex_private *vp = netdev_priv(dev);
3133 void __iomem *ioaddr = vp->ioaddr;
3134
3135 device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3136
3137 if (vp->enable_wol) {
3138 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3139 EL3WINDOW(7);
3140 iowrite16(2, ioaddr + 0x0c);
3141 /* The RxFilter must accept the WOL frames. */
3142 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3143 iowrite16(RxEnable, ioaddr + EL3_CMD);
3144
3145 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3146 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3147
3148 vp->enable_wol = 0;
3149 return;
3150 }
3151
3152 /* Change the power state to D3; RxEnable doesn't take effect. */
3153 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3154 }
3155 }
3156
3157
3158 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3159 {
3160 struct net_device *dev = pci_get_drvdata(pdev);
3161 struct vortex_private *vp;
3162
3163 if (!dev) {
3164 pr_err("vortex_remove_one called for Compaq device!\n");
3165 BUG();
3166 }
3167
3168 vp = netdev_priv(dev);
3169
3170 if (vp->cb_fn_base)
3171 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3172
3173 unregister_netdev(dev);
3174
3175 if (VORTEX_PCI(vp)) {
3176 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3177 if (vp->pm_state_valid)
3178 pci_restore_state(VORTEX_PCI(vp));
3179 pci_disable_device(VORTEX_PCI(vp));
3180 }
3181 /* Should really use issue_and_wait() here */
3182 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3183 vp->ioaddr + EL3_CMD);
3184
3185 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3186
3187 pci_free_consistent(pdev,
3188 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3189 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3190 vp->rx_ring,
3191 vp->rx_ring_dma);
3192 if (vp->must_free_region)
3193 release_region(dev->base_addr, vp->io_size);
3194 free_netdev(dev);
3195 }
3196
3197
3198 static struct pci_driver vortex_driver = {
3199 .name = "3c59x",
3200 .probe = vortex_init_one,
3201 .remove = __devexit_p(vortex_remove_one),
3202 .id_table = vortex_pci_tbl,
3203 .driver.pm = VORTEX_PM_OPS,
3204 };
3205
3206
3207 static int vortex_have_pci;
3208 static int vortex_have_eisa;
3209
3210
3211 static int __init vortex_init(void)
3212 {
3213 int pci_rc, eisa_rc;
3214
3215 pci_rc = pci_register_driver(&vortex_driver);
3216 eisa_rc = vortex_eisa_init();
3217
3218 if (pci_rc == 0)
3219 vortex_have_pci = 1;
3220 if (eisa_rc > 0)
3221 vortex_have_eisa = 1;
3222
3223 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3224 }
3225
3226
3227 static void __exit vortex_eisa_cleanup(void)
3228 {
3229 struct vortex_private *vp;
3230 void __iomem *ioaddr;
3231
3232 #ifdef CONFIG_EISA
3233 /* Take care of the EISA devices */
3234 eisa_driver_unregister(&vortex_eisa_driver);
3235 #endif
3236
3237 if (compaq_net_device) {
3238 vp = netdev_priv(compaq_net_device);
3239 ioaddr = ioport_map(compaq_net_device->base_addr,
3240 VORTEX_TOTAL_SIZE);
3241
3242 unregister_netdev(compaq_net_device);
3243 iowrite16(TotalReset, ioaddr + EL3_CMD);
3244 release_region(compaq_net_device->base_addr,
3245 VORTEX_TOTAL_SIZE);
3246
3247 free_netdev(compaq_net_device);
3248 }
3249 }
3250
3251
3252 static void __exit vortex_cleanup(void)
3253 {
3254 if (vortex_have_pci)
3255 pci_unregister_driver(&vortex_driver);
3256 if (vortex_have_eisa)
3257 vortex_eisa_cleanup();
3258 }
3259
3260
3261 module_init(vortex_init);
3262 module_exit(vortex_cleanup);