Merge branch 'wl12xx-next' into for-linville
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / ubi / vtbl.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22 /*
23 * This file includes volume table manipulation code. The volume table is an
24 * on-flash table containing volume meta-data like name, number of reserved
25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
26 * "layout volume".
27 *
28 * The layout volume is an internal volume which is organized as follows. It
29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31 * other. This redundancy guarantees robustness to unclean reboots. The volume
32 * table is basically an array of volume table records. Each record contains
33 * full information about the volume and protected by a CRC checksum.
34 *
35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36 * erased, and the updated volume table is written back to LEB 0. Then same for
37 * LEB 1. This scheme guarantees recoverability from unclean reboots.
38 *
39 * In this UBI implementation the on-flash volume table does not contain any
40 * information about how much data static volumes contain.
41 *
42 * But it would still be beneficial to store this information in the volume
43 * table. For example, suppose we have a static volume X, and all its physical
44 * eraseblocks became bad for some reasons. Suppose we are attaching the
45 * corresponding MTD device, for some reason we find no logical eraseblocks
46 * corresponding to the volume X. According to the volume table volume X does
47 * exist. So we don't know whether it is just empty or all its physical
48 * eraseblocks went bad. So we cannot alarm the user properly.
49 *
50 * The volume table also stores so-called "update marker", which is used for
51 * volume updates. Before updating the volume, the update marker is set, and
52 * after the update operation is finished, the update marker is cleared. So if
53 * the update operation was interrupted (e.g. by an unclean reboot) - the
54 * update marker is still there and we know that the volume's contents is
55 * damaged.
56 */
57
58 #include <linux/crc32.h>
59 #include <linux/err.h>
60 #include <linux/slab.h>
61 #include <asm/div64.h>
62 #include "ubi.h"
63
64 static void self_vtbl_check(const struct ubi_device *ubi);
65
66 /* Empty volume table record */
67 static struct ubi_vtbl_record empty_vtbl_record;
68
69 /**
70 * ubi_change_vtbl_record - change volume table record.
71 * @ubi: UBI device description object
72 * @idx: table index to change
73 * @vtbl_rec: new volume table record
74 *
75 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
76 * volume table record is written. The caller does not have to calculate CRC of
77 * the record as it is done by this function. Returns zero in case of success
78 * and a negative error code in case of failure.
79 */
80 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
81 struct ubi_vtbl_record *vtbl_rec)
82 {
83 int i, err;
84 uint32_t crc;
85 struct ubi_volume *layout_vol;
86
87 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
88 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
89
90 if (!vtbl_rec)
91 vtbl_rec = &empty_vtbl_record;
92 else {
93 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
94 vtbl_rec->crc = cpu_to_be32(crc);
95 }
96
97 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
98 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
99 err = ubi_eba_unmap_leb(ubi, layout_vol, i);
100 if (err)
101 return err;
102
103 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
104 ubi->vtbl_size);
105 if (err)
106 return err;
107 }
108
109 self_vtbl_check(ubi);
110 return 0;
111 }
112
113 /**
114 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
115 * @ubi: UBI device description object
116 * @rename_list: list of &struct ubi_rename_entry objects
117 *
118 * This function re-names multiple volumes specified in @req in the volume
119 * table. Returns zero in case of success and a negative error code in case of
120 * failure.
121 */
122 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
123 struct list_head *rename_list)
124 {
125 int i, err;
126 struct ubi_rename_entry *re;
127 struct ubi_volume *layout_vol;
128
129 list_for_each_entry(re, rename_list, list) {
130 uint32_t crc;
131 struct ubi_volume *vol = re->desc->vol;
132 struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
133
134 if (re->remove) {
135 memcpy(vtbl_rec, &empty_vtbl_record,
136 sizeof(struct ubi_vtbl_record));
137 continue;
138 }
139
140 vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
141 memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
142 memset(vtbl_rec->name + re->new_name_len, 0,
143 UBI_VOL_NAME_MAX + 1 - re->new_name_len);
144 crc = crc32(UBI_CRC32_INIT, vtbl_rec,
145 UBI_VTBL_RECORD_SIZE_CRC);
146 vtbl_rec->crc = cpu_to_be32(crc);
147 }
148
149 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
150 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
151 err = ubi_eba_unmap_leb(ubi, layout_vol, i);
152 if (err)
153 return err;
154
155 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
156 ubi->vtbl_size);
157 if (err)
158 return err;
159 }
160
161 return 0;
162 }
163
164 /**
165 * vtbl_check - check if volume table is not corrupted and sensible.
166 * @ubi: UBI device description object
167 * @vtbl: volume table
168 *
169 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
170 * and %-EINVAL if it contains inconsistent data.
171 */
172 static int vtbl_check(const struct ubi_device *ubi,
173 const struct ubi_vtbl_record *vtbl)
174 {
175 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
176 int upd_marker, err;
177 uint32_t crc;
178 const char *name;
179
180 for (i = 0; i < ubi->vtbl_slots; i++) {
181 cond_resched();
182
183 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
184 alignment = be32_to_cpu(vtbl[i].alignment);
185 data_pad = be32_to_cpu(vtbl[i].data_pad);
186 upd_marker = vtbl[i].upd_marker;
187 vol_type = vtbl[i].vol_type;
188 name_len = be16_to_cpu(vtbl[i].name_len);
189 name = &vtbl[i].name[0];
190
191 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
192 if (be32_to_cpu(vtbl[i].crc) != crc) {
193 ubi_err("bad CRC at record %u: %#08x, not %#08x",
194 i, crc, be32_to_cpu(vtbl[i].crc));
195 ubi_dump_vtbl_record(&vtbl[i], i);
196 return 1;
197 }
198
199 if (reserved_pebs == 0) {
200 if (memcmp(&vtbl[i], &empty_vtbl_record,
201 UBI_VTBL_RECORD_SIZE)) {
202 err = 2;
203 goto bad;
204 }
205 continue;
206 }
207
208 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
209 name_len < 0) {
210 err = 3;
211 goto bad;
212 }
213
214 if (alignment > ubi->leb_size || alignment == 0) {
215 err = 4;
216 goto bad;
217 }
218
219 n = alignment & (ubi->min_io_size - 1);
220 if (alignment != 1 && n) {
221 err = 5;
222 goto bad;
223 }
224
225 n = ubi->leb_size % alignment;
226 if (data_pad != n) {
227 ubi_err("bad data_pad, has to be %d", n);
228 err = 6;
229 goto bad;
230 }
231
232 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
233 err = 7;
234 goto bad;
235 }
236
237 if (upd_marker != 0 && upd_marker != 1) {
238 err = 8;
239 goto bad;
240 }
241
242 if (reserved_pebs > ubi->good_peb_count) {
243 ubi_err("too large reserved_pebs %d, good PEBs %d",
244 reserved_pebs, ubi->good_peb_count);
245 err = 9;
246 goto bad;
247 }
248
249 if (name_len > UBI_VOL_NAME_MAX) {
250 err = 10;
251 goto bad;
252 }
253
254 if (name[0] == '\0') {
255 err = 11;
256 goto bad;
257 }
258
259 if (name_len != strnlen(name, name_len + 1)) {
260 err = 12;
261 goto bad;
262 }
263 }
264
265 /* Checks that all names are unique */
266 for (i = 0; i < ubi->vtbl_slots - 1; i++) {
267 for (n = i + 1; n < ubi->vtbl_slots; n++) {
268 int len1 = be16_to_cpu(vtbl[i].name_len);
269 int len2 = be16_to_cpu(vtbl[n].name_len);
270
271 if (len1 > 0 && len1 == len2 &&
272 !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
273 ubi_err("volumes %d and %d have the same name \"%s\"",
274 i, n, vtbl[i].name);
275 ubi_dump_vtbl_record(&vtbl[i], i);
276 ubi_dump_vtbl_record(&vtbl[n], n);
277 return -EINVAL;
278 }
279 }
280 }
281
282 return 0;
283
284 bad:
285 ubi_err("volume table check failed: record %d, error %d", i, err);
286 ubi_dump_vtbl_record(&vtbl[i], i);
287 return -EINVAL;
288 }
289
290 /**
291 * create_vtbl - create a copy of volume table.
292 * @ubi: UBI device description object
293 * @ai: attaching information
294 * @copy: number of the volume table copy
295 * @vtbl: contents of the volume table
296 *
297 * This function returns zero in case of success and a negative error code in
298 * case of failure.
299 */
300 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
301 int copy, void *vtbl)
302 {
303 int err, tries = 0;
304 struct ubi_vid_hdr *vid_hdr;
305 struct ubi_ainf_peb *new_aeb;
306
307 dbg_gen("create volume table (copy #%d)", copy + 1);
308
309 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
310 if (!vid_hdr)
311 return -ENOMEM;
312
313 retry:
314 new_aeb = ubi_early_get_peb(ubi, ai);
315 if (IS_ERR(new_aeb)) {
316 err = PTR_ERR(new_aeb);
317 goto out_free;
318 }
319
320 vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
321 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
322 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
323 vid_hdr->data_size = vid_hdr->used_ebs =
324 vid_hdr->data_pad = cpu_to_be32(0);
325 vid_hdr->lnum = cpu_to_be32(copy);
326 vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
327
328 /* The EC header is already there, write the VID header */
329 err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr);
330 if (err)
331 goto write_error;
332
333 /* Write the layout volume contents */
334 err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
335 if (err)
336 goto write_error;
337
338 /*
339 * And add it to the attaching information. Don't delete the old version
340 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
341 */
342 err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
343 kmem_cache_free(ai->aeb_slab_cache, new_aeb);
344 ubi_free_vid_hdr(ubi, vid_hdr);
345 return err;
346
347 write_error:
348 if (err == -EIO && ++tries <= 5) {
349 /*
350 * Probably this physical eraseblock went bad, try to pick
351 * another one.
352 */
353 list_add(&new_aeb->u.list, &ai->erase);
354 goto retry;
355 }
356 kmem_cache_free(ai->aeb_slab_cache, new_aeb);
357 out_free:
358 ubi_free_vid_hdr(ubi, vid_hdr);
359 return err;
360
361 }
362
363 /**
364 * process_lvol - process the layout volume.
365 * @ubi: UBI device description object
366 * @ai: attaching information
367 * @av: layout volume attaching information
368 *
369 * This function is responsible for reading the layout volume, ensuring it is
370 * not corrupted, and recovering from corruptions if needed. Returns volume
371 * table in case of success and a negative error code in case of failure.
372 */
373 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
374 struct ubi_attach_info *ai,
375 struct ubi_ainf_volume *av)
376 {
377 int err;
378 struct rb_node *rb;
379 struct ubi_ainf_peb *aeb;
380 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
381 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
382
383 /*
384 * UBI goes through the following steps when it changes the layout
385 * volume:
386 * a. erase LEB 0;
387 * b. write new data to LEB 0;
388 * c. erase LEB 1;
389 * d. write new data to LEB 1.
390 *
391 * Before the change, both LEBs contain the same data.
392 *
393 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
394 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
395 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
396 * finally, unclean reboots may result in a situation when neither LEB
397 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
398 * 0 contains more recent information.
399 *
400 * So the plan is to first check LEB 0. Then
401 * a. if LEB 0 is OK, it must be containing the most recent data; then
402 * we compare it with LEB 1, and if they are different, we copy LEB
403 * 0 to LEB 1;
404 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
405 * to LEB 0.
406 */
407
408 dbg_gen("check layout volume");
409
410 /* Read both LEB 0 and LEB 1 into memory */
411 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
412 leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
413 if (!leb[aeb->lnum]) {
414 err = -ENOMEM;
415 goto out_free;
416 }
417
418 err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
419 ubi->vtbl_size);
420 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
421 /*
422 * Scrub the PEB later. Note, -EBADMSG indicates an
423 * uncorrectable ECC error, but we have our own CRC and
424 * the data will be checked later. If the data is OK,
425 * the PEB will be scrubbed (because we set
426 * aeb->scrub). If the data is not OK, the contents of
427 * the PEB will be recovered from the second copy, and
428 * aeb->scrub will be cleared in
429 * 'ubi_add_to_av()'.
430 */
431 aeb->scrub = 1;
432 else if (err)
433 goto out_free;
434 }
435
436 err = -EINVAL;
437 if (leb[0]) {
438 leb_corrupted[0] = vtbl_check(ubi, leb[0]);
439 if (leb_corrupted[0] < 0)
440 goto out_free;
441 }
442
443 if (!leb_corrupted[0]) {
444 /* LEB 0 is OK */
445 if (leb[1])
446 leb_corrupted[1] = memcmp(leb[0], leb[1],
447 ubi->vtbl_size);
448 if (leb_corrupted[1]) {
449 ubi_warn("volume table copy #2 is corrupted");
450 err = create_vtbl(ubi, ai, 1, leb[0]);
451 if (err)
452 goto out_free;
453 ubi_msg("volume table was restored");
454 }
455
456 /* Both LEB 1 and LEB 2 are OK and consistent */
457 vfree(leb[1]);
458 return leb[0];
459 } else {
460 /* LEB 0 is corrupted or does not exist */
461 if (leb[1]) {
462 leb_corrupted[1] = vtbl_check(ubi, leb[1]);
463 if (leb_corrupted[1] < 0)
464 goto out_free;
465 }
466 if (leb_corrupted[1]) {
467 /* Both LEB 0 and LEB 1 are corrupted */
468 ubi_err("both volume tables are corrupted");
469 goto out_free;
470 }
471
472 ubi_warn("volume table copy #1 is corrupted");
473 err = create_vtbl(ubi, ai, 0, leb[1]);
474 if (err)
475 goto out_free;
476 ubi_msg("volume table was restored");
477
478 vfree(leb[0]);
479 return leb[1];
480 }
481
482 out_free:
483 vfree(leb[0]);
484 vfree(leb[1]);
485 return ERR_PTR(err);
486 }
487
488 /**
489 * create_empty_lvol - create empty layout volume.
490 * @ubi: UBI device description object
491 * @ai: attaching information
492 *
493 * This function returns volume table contents in case of success and a
494 * negative error code in case of failure.
495 */
496 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
497 struct ubi_attach_info *ai)
498 {
499 int i;
500 struct ubi_vtbl_record *vtbl;
501
502 vtbl = vzalloc(ubi->vtbl_size);
503 if (!vtbl)
504 return ERR_PTR(-ENOMEM);
505
506 for (i = 0; i < ubi->vtbl_slots; i++)
507 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
508
509 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
510 int err;
511
512 err = create_vtbl(ubi, ai, i, vtbl);
513 if (err) {
514 vfree(vtbl);
515 return ERR_PTR(err);
516 }
517 }
518
519 return vtbl;
520 }
521
522 /**
523 * init_volumes - initialize volume information for existing volumes.
524 * @ubi: UBI device description object
525 * @ai: scanning information
526 * @vtbl: volume table
527 *
528 * This function allocates volume description objects for existing volumes.
529 * Returns zero in case of success and a negative error code in case of
530 * failure.
531 */
532 static int init_volumes(struct ubi_device *ubi,
533 const struct ubi_attach_info *ai,
534 const struct ubi_vtbl_record *vtbl)
535 {
536 int i, reserved_pebs = 0;
537 struct ubi_ainf_volume *av;
538 struct ubi_volume *vol;
539
540 for (i = 0; i < ubi->vtbl_slots; i++) {
541 cond_resched();
542
543 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
544 continue; /* Empty record */
545
546 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
547 if (!vol)
548 return -ENOMEM;
549
550 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
551 vol->alignment = be32_to_cpu(vtbl[i].alignment);
552 vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
553 vol->upd_marker = vtbl[i].upd_marker;
554 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
555 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
556 vol->name_len = be16_to_cpu(vtbl[i].name_len);
557 vol->usable_leb_size = ubi->leb_size - vol->data_pad;
558 memcpy(vol->name, vtbl[i].name, vol->name_len);
559 vol->name[vol->name_len] = '\0';
560 vol->vol_id = i;
561
562 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
563 /* Auto re-size flag may be set only for one volume */
564 if (ubi->autoresize_vol_id != -1) {
565 ubi_err("more than one auto-resize volume (%d and %d)",
566 ubi->autoresize_vol_id, i);
567 kfree(vol);
568 return -EINVAL;
569 }
570
571 ubi->autoresize_vol_id = i;
572 }
573
574 ubi_assert(!ubi->volumes[i]);
575 ubi->volumes[i] = vol;
576 ubi->vol_count += 1;
577 vol->ubi = ubi;
578 reserved_pebs += vol->reserved_pebs;
579
580 /*
581 * In case of dynamic volume UBI knows nothing about how many
582 * data is stored there. So assume the whole volume is used.
583 */
584 if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
585 vol->used_ebs = vol->reserved_pebs;
586 vol->last_eb_bytes = vol->usable_leb_size;
587 vol->used_bytes =
588 (long long)vol->used_ebs * vol->usable_leb_size;
589 continue;
590 }
591
592 /* Static volumes only */
593 av = ubi_find_av(ai, i);
594 if (!av) {
595 /*
596 * No eraseblocks belonging to this volume found. We
597 * don't actually know whether this static volume is
598 * completely corrupted or just contains no data. And
599 * we cannot know this as long as data size is not
600 * stored on flash. So we just assume the volume is
601 * empty. FIXME: this should be handled.
602 */
603 continue;
604 }
605
606 if (av->leb_count != av->used_ebs) {
607 /*
608 * We found a static volume which misses several
609 * eraseblocks. Treat it as corrupted.
610 */
611 ubi_warn("static volume %d misses %d LEBs - corrupted",
612 av->vol_id, av->used_ebs - av->leb_count);
613 vol->corrupted = 1;
614 continue;
615 }
616
617 vol->used_ebs = av->used_ebs;
618 vol->used_bytes =
619 (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
620 vol->used_bytes += av->last_data_size;
621 vol->last_eb_bytes = av->last_data_size;
622 }
623
624 /* And add the layout volume */
625 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
626 if (!vol)
627 return -ENOMEM;
628
629 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
630 vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
631 vol->vol_type = UBI_DYNAMIC_VOLUME;
632 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
633 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
634 vol->usable_leb_size = ubi->leb_size;
635 vol->used_ebs = vol->reserved_pebs;
636 vol->last_eb_bytes = vol->reserved_pebs;
637 vol->used_bytes =
638 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
639 vol->vol_id = UBI_LAYOUT_VOLUME_ID;
640 vol->ref_count = 1;
641
642 ubi_assert(!ubi->volumes[i]);
643 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
644 reserved_pebs += vol->reserved_pebs;
645 ubi->vol_count += 1;
646 vol->ubi = ubi;
647
648 if (reserved_pebs > ubi->avail_pebs) {
649 ubi_err("not enough PEBs, required %d, available %d",
650 reserved_pebs, ubi->avail_pebs);
651 if (ubi->corr_peb_count)
652 ubi_err("%d PEBs are corrupted and not used",
653 ubi->corr_peb_count);
654 }
655 ubi->rsvd_pebs += reserved_pebs;
656 ubi->avail_pebs -= reserved_pebs;
657
658 return 0;
659 }
660
661 /**
662 * check_av - check volume attaching information.
663 * @vol: UBI volume description object
664 * @av: volume attaching information
665 *
666 * This function returns zero if the volume attaching information is consistent
667 * to the data read from the volume tabla, and %-EINVAL if not.
668 */
669 static int check_av(const struct ubi_volume *vol,
670 const struct ubi_ainf_volume *av)
671 {
672 int err;
673
674 if (av->highest_lnum >= vol->reserved_pebs) {
675 err = 1;
676 goto bad;
677 }
678 if (av->leb_count > vol->reserved_pebs) {
679 err = 2;
680 goto bad;
681 }
682 if (av->vol_type != vol->vol_type) {
683 err = 3;
684 goto bad;
685 }
686 if (av->used_ebs > vol->reserved_pebs) {
687 err = 4;
688 goto bad;
689 }
690 if (av->data_pad != vol->data_pad) {
691 err = 5;
692 goto bad;
693 }
694 return 0;
695
696 bad:
697 ubi_err("bad attaching information, error %d", err);
698 ubi_dump_av(av);
699 ubi_dump_vol_info(vol);
700 return -EINVAL;
701 }
702
703 /**
704 * check_attaching_info - check that attaching information.
705 * @ubi: UBI device description object
706 * @ai: attaching information
707 *
708 * Even though we protect on-flash data by CRC checksums, we still don't trust
709 * the media. This function ensures that attaching information is consistent to
710 * the information read from the volume table. Returns zero if the attaching
711 * information is OK and %-EINVAL if it is not.
712 */
713 static int check_attaching_info(const struct ubi_device *ubi,
714 struct ubi_attach_info *ai)
715 {
716 int err, i;
717 struct ubi_ainf_volume *av;
718 struct ubi_volume *vol;
719
720 if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
721 ubi_err("found %d volumes while attaching, maximum is %d + %d",
722 ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
723 return -EINVAL;
724 }
725
726 if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
727 ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
728 ubi_err("too large volume ID %d found", ai->highest_vol_id);
729 return -EINVAL;
730 }
731
732 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
733 cond_resched();
734
735 av = ubi_find_av(ai, i);
736 vol = ubi->volumes[i];
737 if (!vol) {
738 if (av)
739 ubi_remove_av(ai, av);
740 continue;
741 }
742
743 if (vol->reserved_pebs == 0) {
744 ubi_assert(i < ubi->vtbl_slots);
745
746 if (!av)
747 continue;
748
749 /*
750 * During attaching we found a volume which does not
751 * exist according to the information in the volume
752 * table. This must have happened due to an unclean
753 * reboot while the volume was being removed. Discard
754 * these eraseblocks.
755 */
756 ubi_msg("finish volume %d removal", av->vol_id);
757 ubi_remove_av(ai, av);
758 } else if (av) {
759 err = check_av(vol, av);
760 if (err)
761 return err;
762 }
763 }
764
765 return 0;
766 }
767
768 /**
769 * ubi_read_volume_table - read the volume table.
770 * @ubi: UBI device description object
771 * @ai: attaching information
772 *
773 * This function reads volume table, checks it, recover from errors if needed,
774 * or creates it if needed. Returns zero in case of success and a negative
775 * error code in case of failure.
776 */
777 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
778 {
779 int i, err;
780 struct ubi_ainf_volume *av;
781
782 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
783
784 /*
785 * The number of supported volumes is limited by the eraseblock size
786 * and by the UBI_MAX_VOLUMES constant.
787 */
788 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
789 if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
790 ubi->vtbl_slots = UBI_MAX_VOLUMES;
791
792 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
793 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
794
795 av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
796 if (!av) {
797 /*
798 * No logical eraseblocks belonging to the layout volume were
799 * found. This could mean that the flash is just empty. In
800 * this case we create empty layout volume.
801 *
802 * But if flash is not empty this must be a corruption or the
803 * MTD device just contains garbage.
804 */
805 if (ai->is_empty) {
806 ubi->vtbl = create_empty_lvol(ubi, ai);
807 if (IS_ERR(ubi->vtbl))
808 return PTR_ERR(ubi->vtbl);
809 } else {
810 ubi_err("the layout volume was not found");
811 return -EINVAL;
812 }
813 } else {
814 if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
815 /* This must not happen with proper UBI images */
816 ubi_err("too many LEBs (%d) in layout volume",
817 av->leb_count);
818 return -EINVAL;
819 }
820
821 ubi->vtbl = process_lvol(ubi, ai, av);
822 if (IS_ERR(ubi->vtbl))
823 return PTR_ERR(ubi->vtbl);
824 }
825
826 ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
827
828 /*
829 * The layout volume is OK, initialize the corresponding in-RAM data
830 * structures.
831 */
832 err = init_volumes(ubi, ai, ubi->vtbl);
833 if (err)
834 goto out_free;
835
836 /*
837 * Make sure that the attaching information is consistent to the
838 * information stored in the volume table.
839 */
840 err = check_attaching_info(ubi, ai);
841 if (err)
842 goto out_free;
843
844 return 0;
845
846 out_free:
847 vfree(ubi->vtbl);
848 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
849 kfree(ubi->volumes[i]);
850 ubi->volumes[i] = NULL;
851 }
852 return err;
853 }
854
855 /**
856 * self_vtbl_check - check volume table.
857 * @ubi: UBI device description object
858 */
859 static void self_vtbl_check(const struct ubi_device *ubi)
860 {
861 if (!ubi_dbg_chk_gen(ubi))
862 return;
863
864 if (vtbl_check(ubi, ubi->vtbl)) {
865 ubi_err("self-check failed");
866 BUG();
867 }
868 }