import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / ubi / io.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22 /*
23 * UBI input/output sub-system.
24 *
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
87 */
88
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93 #ifdef CONFIG_PWR_LOSS_MTK_SPOH
94 #include <mach/power_loss_test.h>
95 #endif
96
97 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
98 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
99 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
100 const struct ubi_ec_hdr *ec_hdr);
101 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
102 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
103 const struct ubi_vid_hdr *vid_hdr);
104 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
105 int offset, int len);
106
107 /**
108 * ubi_io_read - read data from a physical eraseblock.
109 * @ubi: UBI device description object
110 * @buf: buffer where to store the read data
111 * @pnum: physical eraseblock number to read from
112 * @offset: offset within the physical eraseblock from where to read
113 * @len: how many bytes to read
114 *
115 * This function reads data from offset @offset of physical eraseblock @pnum
116 * and stores the read data in the @buf buffer. The following return codes are
117 * possible:
118 *
119 * o %0 if all the requested data were successfully read;
120 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
121 * correctable bit-flips were detected; this is harmless but may indicate
122 * that this eraseblock may become bad soon (but do not have to);
123 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
124 * example it can be an ECC error in case of NAND; this most probably means
125 * that the data is corrupted;
126 * o %-EIO if some I/O error occurred;
127 * o other negative error codes in case of other errors.
128 */
129 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
130 int len)
131 {
132 int err, retries = 0;
133 size_t read;
134 loff_t addr;
135
136 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
137
138 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
139 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
140 ubi_assert(len > 0);
141
142 err = self_check_not_bad(ubi, pnum);
143 if (err)
144 return err;
145
146 /*
147 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
148 * do not do this, the following may happen:
149 * 1. The buffer contains data from previous operation, e.g., read from
150 * another PEB previously. The data looks like expected, e.g., if we
151 * just do not read anything and return - the caller would not
152 * notice this. E.g., if we are reading a VID header, the buffer may
153 * contain a valid VID header from another PEB.
154 * 2. The driver is buggy and returns us success or -EBADMSG or
155 * -EUCLEAN, but it does not actually put any data to the buffer.
156 *
157 * This may confuse UBI or upper layers - they may think the buffer
158 * contains valid data while in fact it is just old data. This is
159 * especially possible because UBI (and UBIFS) relies on CRC, and
160 * treats data as correct even in case of ECC errors if the CRC is
161 * correct.
162 *
163 * Try to prevent this situation by changing the first byte of the
164 * buffer.
165 */
166 *((uint8_t *)buf) ^= 0xFF;
167
168 addr = (loff_t)pnum * ubi->peb_size + offset;
169 retry:
170 err = mtd_read(ubi->mtd, addr, len, &read, buf);
171 if (err) {
172 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
173
174 if (mtd_is_bitflip(err)) {
175 /*
176 * -EUCLEAN is reported if there was a bit-flip which
177 * was corrected, so this is harmless.
178 *
179 * We do not report about it here unless debugging is
180 * enabled. A corresponding message will be printed
181 * later, when it is has been scrubbed.
182 */
183 ubi_msg("fixable bit-flip detected at PEB %d", pnum);
184 ubi_assert(len == read);
185 return UBI_IO_BITFLIPS;
186 }
187
188 if (retries++ < UBI_IO_RETRIES) {
189 ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
190 err, errstr, len, pnum, offset, read);
191 yield();
192 goto retry;
193 }
194
195 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
196 err, errstr, len, pnum, offset, read);
197 dump_stack();
198
199 /*
200 * The driver should never return -EBADMSG if it failed to read
201 * all the requested data. But some buggy drivers might do
202 * this, so we change it to -EIO.
203 */
204 if (read != len && mtd_is_eccerr(err)) {
205 ubi_assert(0);
206 err = -EIO;
207 }
208 } else {
209 ubi_assert(len == read);
210
211 if (ubi_dbg_is_bitflip(ubi)) {
212 dbg_gen("bit-flip (emulated)");
213 err = UBI_IO_BITFLIPS;
214 }
215 }
216
217 return err;
218 }
219
220 /**
221 * ubi_io_write - write data to a physical eraseblock.
222 * @ubi: UBI device description object
223 * @buf: buffer with the data to write
224 * @pnum: physical eraseblock number to write to
225 * @offset: offset within the physical eraseblock where to write
226 * @len: how many bytes to write
227 *
228 * This function writes @len bytes of data from buffer @buf to offset @offset
229 * of physical eraseblock @pnum. If all the data were successfully written,
230 * zero is returned. If an error occurred, this function returns a negative
231 * error code. If %-EIO is returned, the physical eraseblock most probably went
232 * bad.
233 *
234 * Note, in case of an error, it is possible that something was still written
235 * to the flash media, but may be some garbage.
236 */
237 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
238 int len)
239 {
240 int err;
241 size_t written;
242 loff_t addr;
243
244 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
245
246 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
247 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
248 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
249 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
250
251 if (ubi->ro_mode) {
252 ubi_err("read-only mode");
253 return -EROFS;
254 }
255
256 err = self_check_not_bad(ubi, pnum);
257 if (err)
258 return err;
259
260 /* The area we are writing to has to contain all 0xFF bytes */
261 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
262 if (err)
263 return err;
264
265 if (offset >= ubi->leb_start) {
266 /*
267 * We write to the data area of the physical eraseblock. Make
268 * sure it has valid EC and VID headers.
269 */
270 err = self_check_peb_ec_hdr(ubi, pnum);
271 if (err)
272 return err;
273 err = self_check_peb_vid_hdr(ubi, pnum);
274 if (err)
275 return err;
276 }
277
278 if (ubi_dbg_is_write_failure(ubi)) {
279 ubi_err("cannot write %d bytes to PEB %d:%d (emulated)",
280 len, pnum, offset);
281 dump_stack();
282 return -EIO;
283 }
284
285 addr = (loff_t)pnum * ubi->peb_size + offset;
286 err = mtd_write(ubi->mtd, addr, len, &written, buf);
287 if (err) {
288 ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
289 err, len, pnum, offset, written);
290 dump_stack();
291 ubi_dump_flash(ubi, pnum, offset, len);
292 } else
293 ubi_assert(written == len);
294
295 if (!err) {
296 err = self_check_write(ubi, buf, pnum, offset, len);
297 if (err)
298 return err;
299
300 /*
301 * Since we always write sequentially, the rest of the PEB has
302 * to contain only 0xFF bytes.
303 */
304 offset += len;
305 len = ubi->peb_size - offset;
306 if (len)
307 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
308 }
309
310 return err;
311 }
312
313 /**
314 * erase_callback - MTD erasure call-back.
315 * @ei: MTD erase information object.
316 *
317 * Note, even though MTD erase interface is asynchronous, all the current
318 * implementations are synchronous anyway.
319 */
320 static void erase_callback(struct erase_info *ei)
321 {
322 wake_up_interruptible((wait_queue_head_t *)ei->priv);
323 }
324
325 /**
326 * do_sync_erase - synchronously erase a physical eraseblock.
327 * @ubi: UBI device description object
328 * @pnum: the physical eraseblock number to erase
329 *
330 * This function synchronously erases physical eraseblock @pnum and returns
331 * zero in case of success and a negative error code in case of failure. If
332 * %-EIO is returned, the physical eraseblock most probably went bad.
333 */
334 static int do_sync_erase(struct ubi_device *ubi, int pnum)
335 {
336 int err, retries = 0;
337 struct erase_info ei;
338 wait_queue_head_t wq;
339
340 dbg_io("erase PEB %d", pnum);
341 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
342
343 if (ubi->ro_mode) {
344 ubi_err("read-only mode");
345 return -EROFS;
346 }
347
348 retry:
349 init_waitqueue_head(&wq);
350 memset(&ei, 0, sizeof(struct erase_info));
351
352 ei.mtd = ubi->mtd;
353 ei.addr = (loff_t)pnum * ubi->peb_size;
354 ei.len = ubi->peb_size;
355 ei.callback = erase_callback;
356 ei.priv = (unsigned long)&wq;
357
358 err = mtd_erase(ubi->mtd, &ei);
359 atomic_inc(&ubi->ec_count); //MTK
360 if (err) {
361 if (retries++ < UBI_IO_RETRIES) {
362 ubi_warn("error %d while erasing PEB %d, retry",
363 err, pnum);
364 yield();
365 goto retry;
366 }
367 ubi_err("cannot erase PEB %d, error %d", pnum, err);
368 dump_stack();
369 return err;
370 }
371
372 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
373 ei.state == MTD_ERASE_FAILED);
374 if (err) {
375 ubi_err("interrupted PEB %d erasure", pnum);
376 return -EINTR;
377 }
378
379 if (ei.state == MTD_ERASE_FAILED) {
380 if (retries++ < UBI_IO_RETRIES) {
381 ubi_warn("error while erasing PEB %d, retry", pnum);
382 yield();
383 goto retry;
384 }
385 ubi_err("cannot erase PEB %d", pnum);
386 dump_stack();
387 return -EIO;
388 }
389
390 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
391 if (err)
392 return err;
393
394 if (ubi_dbg_is_erase_failure(ubi)) {
395 ubi_err("cannot erase PEB %d (emulated)", pnum);
396 return -EIO;
397 }
398
399 return 0;
400 }
401
402 /* Patterns to write to a physical eraseblock when torturing it */
403 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
404
405 /**
406 * torture_peb - test a supposedly bad physical eraseblock.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock number to test
409 *
410 * This function returns %-EIO if the physical eraseblock did not pass the
411 * test, a positive number of erase operations done if the test was
412 * successfully passed, and other negative error codes in case of other errors.
413 */
414 static int torture_peb(struct ubi_device *ubi, int pnum)
415 {
416 int err, i, patt_count;
417
418 ubi_msg("run torture test for PEB %d", pnum);
419 patt_count = ARRAY_SIZE(patterns);
420 ubi_assert(patt_count > 0);
421
422 mutex_lock(&ubi->buf_mutex);
423 for (i = 0; i < patt_count; i++) {
424 err = do_sync_erase(ubi, pnum);
425 if (err)
426 goto out;
427
428 /* Make sure the PEB contains only 0xFF bytes */
429 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
430 if (err)
431 goto out;
432
433 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
434 if (err == 0) {
435 ubi_err("erased PEB %d, but a non-0xFF byte found",
436 pnum);
437 err = -EIO;
438 goto out;
439 }
440
441 /* Write a pattern and check it */
442 memset(ubi->peb_buf, patterns[i], ubi->peb_size);
443 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
444 if (err)
445 goto out;
446
447 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
448 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
449 if (err)
450 goto out;
451
452 err = ubi_check_pattern(ubi->peb_buf, patterns[i],
453 ubi->peb_size);
454 if (err == 0) {
455 ubi_err("pattern %x checking failed for PEB %d",
456 patterns[i], pnum);
457 err = -EIO;
458 goto out;
459 }
460 }
461
462 err = patt_count;
463 ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum);
464
465 out:
466 mutex_unlock(&ubi->buf_mutex);
467 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
468 /*
469 * If a bit-flip or data integrity error was detected, the test
470 * has not passed because it happened on a freshly erased
471 * physical eraseblock which means something is wrong with it.
472 */
473 ubi_err("read problems on freshly erased PEB %d, must be bad",
474 pnum);
475 err = -EIO;
476 }
477 return err;
478 }
479
480 /**
481 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
482 * @ubi: UBI device description object
483 * @pnum: physical eraseblock number to prepare
484 *
485 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
486 * algorithm: the PEB is first filled with zeroes, then it is erased. And
487 * filling with zeroes starts from the end of the PEB. This was observed with
488 * Spansion S29GL512N NOR flash.
489 *
490 * This means that in case of a power cut we may end up with intact data at the
491 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
492 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
493 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
494 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
495 *
496 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
497 * magic numbers in order to invalidate them and prevent the failures. Returns
498 * zero in case of success and a negative error code in case of failure.
499 */
500 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
501 {
502 int err, err1;
503 size_t written;
504 loff_t addr;
505 uint32_t data = 0;
506 /*
507 * Note, we cannot generally define VID header buffers on stack,
508 * because of the way we deal with these buffers (see the header
509 * comment in this file). But we know this is a NOR-specific piece of
510 * code, so we can do this. But yes, this is error-prone and we should
511 * (pre-)allocate VID header buffer instead.
512 */
513 struct ubi_vid_hdr vid_hdr;
514
515 /*
516 * It is important to first invalidate the EC header, and then the VID
517 * header. Otherwise a power cut may lead to valid EC header and
518 * invalid VID header, in which case UBI will treat this PEB as
519 * corrupted and will try to preserve it, and print scary warnings.
520 */
521 addr = (loff_t)pnum * ubi->peb_size;
522 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
523 if (!err) {
524 addr += ubi->vid_hdr_aloffset;
525 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
526 if (!err)
527 return 0;
528 }
529
530 /*
531 * We failed to write to the media. This was observed with Spansion
532 * S29GL512N NOR flash. Most probably the previously eraseblock erasure
533 * was interrupted at a very inappropriate moment, so it became
534 * unwritable. In this case we probably anyway have garbage in this
535 * PEB.
536 */
537 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
538 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
539 err1 == UBI_IO_FF) {
540 struct ubi_ec_hdr ec_hdr;
541
542 err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
543 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
544 err1 == UBI_IO_FF)
545 /*
546 * Both VID and EC headers are corrupted, so we can
547 * safely erase this PEB and not afraid that it will be
548 * treated as a valid PEB in case of an unclean reboot.
549 */
550 return 0;
551 }
552
553 /*
554 * The PEB contains a valid VID header, but we cannot invalidate it.
555 * Supposedly the flash media or the driver is screwed up, so return an
556 * error.
557 */
558 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
559 pnum, err, err1);
560 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
561 return -EIO;
562 }
563
564 /**
565 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
566 * @ubi: UBI device description object
567 * @pnum: physical eraseblock number to erase
568 * @torture: if this physical eraseblock has to be tortured
569 *
570 * This function synchronously erases physical eraseblock @pnum. If @torture
571 * flag is not zero, the physical eraseblock is checked by means of writing
572 * different patterns to it and reading them back. If the torturing is enabled,
573 * the physical eraseblock is erased more than once.
574 *
575 * This function returns the number of erasures made in case of success, %-EIO
576 * if the erasure failed or the torturing test failed, and other negative error
577 * codes in case of other errors. Note, %-EIO means that the physical
578 * eraseblock is bad.
579 */
580 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
581 {
582 int err, ret = 0;
583
584 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
585
586 err = self_check_not_bad(ubi, pnum);
587 if (err != 0)
588 return err;
589
590 if (ubi->ro_mode) {
591 ubi_err("read-only mode");
592 return -EROFS;
593 }
594
595 if (ubi->nor_flash) {
596 err = nor_erase_prepare(ubi, pnum);
597 if (err)
598 return err;
599 }
600
601 if (torture) {
602 ret = torture_peb(ubi, pnum);
603 if (ret < 0)
604 return ret;
605 }
606
607 err = do_sync_erase(ubi, pnum);
608 if (err)
609 return err;
610
611 return ret + 1;
612 }
613
614 /**
615 * ubi_io_is_bad - check if a physical eraseblock is bad.
616 * @ubi: UBI device description object
617 * @pnum: the physical eraseblock number to check
618 *
619 * This function returns a positive number if the physical eraseblock is bad,
620 * zero if not, and a negative error code if an error occurred.
621 */
622 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
623 {
624 struct mtd_info *mtd = ubi->mtd;
625
626 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
627
628 if (ubi->bad_allowed) {
629 int ret;
630
631 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
632 if (ret < 0)
633 ubi_err("error %d while checking if PEB %d is bad",
634 ret, pnum);
635 else if (ret)
636 dbg_io("PEB %d is bad", pnum);
637 return ret;
638 }
639
640 return 0;
641 }
642
643 /**
644 * ubi_io_mark_bad - mark a physical eraseblock as bad.
645 * @ubi: UBI device description object
646 * @pnum: the physical eraseblock number to mark
647 *
648 * This function returns zero in case of success and a negative error code in
649 * case of failure.
650 */
651 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
652 {
653 int err;
654 struct mtd_info *mtd = ubi->mtd;
655
656 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
657
658 if (ubi->ro_mode) {
659 ubi_err("read-only mode");
660 return -EROFS;
661 }
662
663 if (!ubi->bad_allowed)
664 return 0;
665
666 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
667 if (err)
668 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
669 return err;
670 }
671
672 /**
673 * validate_ec_hdr - validate an erase counter header.
674 * @ubi: UBI device description object
675 * @ec_hdr: the erase counter header to check
676 *
677 * This function returns zero if the erase counter header is OK, and %1 if
678 * not.
679 */
680 static int validate_ec_hdr(const struct ubi_device *ubi,
681 const struct ubi_ec_hdr *ec_hdr)
682 {
683 long long ec;
684 int vid_hdr_offset, leb_start;
685
686 ec = be64_to_cpu(ec_hdr->ec);
687 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
688 leb_start = be32_to_cpu(ec_hdr->data_offset);
689
690 if (ec_hdr->version != UBI_VERSION) {
691 ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d",
692 UBI_VERSION, (int)ec_hdr->version);
693 goto bad;
694 }
695
696 if (vid_hdr_offset != ubi->vid_hdr_offset) {
697 ubi_err("bad VID header offset %d, expected %d",
698 vid_hdr_offset, ubi->vid_hdr_offset);
699 goto bad;
700 }
701
702 if (leb_start != ubi->leb_start) {
703 ubi_err("bad data offset %d, expected %d",
704 leb_start, ubi->leb_start);
705 goto bad;
706 }
707
708 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
709 ubi_err("bad erase counter %lld", ec);
710 goto bad;
711 }
712
713 return 0;
714
715 bad:
716 ubi_err("bad EC header");
717 ubi_dump_ec_hdr(ec_hdr);
718 dump_stack();
719 return 1;
720 }
721
722 /**
723 * ubi_io_read_ec_hdr - read and check an erase counter header.
724 * @ubi: UBI device description object
725 * @pnum: physical eraseblock to read from
726 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
727 * header
728 * @verbose: be verbose if the header is corrupted or was not found
729 *
730 * This function reads erase counter header from physical eraseblock @pnum and
731 * stores it in @ec_hdr. This function also checks CRC checksum of the read
732 * erase counter header. The following codes may be returned:
733 *
734 * o %0 if the CRC checksum is correct and the header was successfully read;
735 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
736 * and corrected by the flash driver; this is harmless but may indicate that
737 * this eraseblock may become bad soon (but may be not);
738 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
739 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
740 * a data integrity error (uncorrectable ECC error in case of NAND);
741 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
742 * o a negative error code in case of failure.
743 */
744 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
745 struct ubi_ec_hdr *ec_hdr, int verbose)
746 {
747 int err, read_err;
748 uint32_t crc, magic, hdr_crc;
749
750 dbg_io("read EC header from PEB %d", pnum);
751 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
752
753 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
754 if (read_err) {
755 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
756 return read_err;
757
758 /*
759 * We read all the data, but either a correctable bit-flip
760 * occurred, or MTD reported a data integrity error
761 * (uncorrectable ECC error in case of NAND). The former is
762 * harmless, the later may mean that the read data is
763 * corrupted. But we have a CRC check-sum and we will detect
764 * this. If the EC header is still OK, we just report this as
765 * there was a bit-flip, to force scrubbing.
766 */
767 }
768
769 magic = be32_to_cpu(ec_hdr->magic);
770 if (magic != UBI_EC_HDR_MAGIC) {
771 if (mtd_is_eccerr(read_err))
772 return UBI_IO_BAD_HDR_EBADMSG;
773
774 /*
775 * The magic field is wrong. Let's check if we have read all
776 * 0xFF. If yes, this physical eraseblock is assumed to be
777 * empty.
778 */
779 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
780 /* The physical eraseblock is supposedly empty */
781 if (verbose)
782 ubi_warn("no EC header found at PEB %d, only 0xFF bytes",
783 pnum);
784 dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
785 pnum);
786 if (!read_err)
787 return UBI_IO_FF;
788 else
789 return UBI_IO_FF_BITFLIPS;
790 }
791
792 /*
793 * This is not a valid erase counter header, and these are not
794 * 0xFF bytes. Report that the header is corrupted.
795 */
796 if (verbose) {
797 ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
798 pnum, magic, UBI_EC_HDR_MAGIC);
799 ubi_dump_ec_hdr(ec_hdr);
800 }
801 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
802 pnum, magic, UBI_EC_HDR_MAGIC);
803 return UBI_IO_BAD_HDR;
804 }
805
806 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
807 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
808
809 if (hdr_crc != crc) {
810 if (verbose) {
811 ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
812 pnum, crc, hdr_crc);
813 ubi_dump_ec_hdr(ec_hdr);
814 }
815 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
816 pnum, crc, hdr_crc);
817
818 if (!read_err)
819 return UBI_IO_BAD_HDR;
820 else
821 return UBI_IO_BAD_HDR_EBADMSG;
822 }
823
824 /* And of course validate what has just been read from the media */
825 err = validate_ec_hdr(ubi, ec_hdr);
826 if (err) {
827 ubi_err("validation failed for PEB %d", pnum);
828 return -EINVAL;
829 }
830
831 /*
832 * If there was %-EBADMSG, but the header CRC is still OK, report about
833 * a bit-flip to force scrubbing on this PEB.
834 */
835 return read_err ? UBI_IO_BITFLIPS : 0;
836 }
837
838 /**
839 * ubi_io_write_ec_hdr - write an erase counter header.
840 * @ubi: UBI device description object
841 * @pnum: physical eraseblock to write to
842 * @ec_hdr: the erase counter header to write
843 *
844 * This function writes erase counter header described by @ec_hdr to physical
845 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
846 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
847 * field.
848 *
849 * This function returns zero in case of success and a negative error code in
850 * case of failure. If %-EIO is returned, the physical eraseblock most probably
851 * went bad.
852 */
853 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
854 struct ubi_ec_hdr *ec_hdr)
855 {
856 int err;
857 uint32_t crc;
858
859 dbg_io("write EC header to PEB %d", pnum);
860 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
861
862 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
863 ec_hdr->version = UBI_VERSION;
864 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
865 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
866 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
867 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
868 ec_hdr->hdr_crc = cpu_to_be32(crc);
869
870 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
871 if (err)
872 return err;
873
874 #ifdef CONFIG_PWR_LOSS_MTK_SPOH
875 PL_RESET_ON_CASE("NAND", "WRITE_EC_Header");
876 #endif
877 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
878 return err;
879 }
880
881 /**
882 * validate_vid_hdr - validate a volume identifier header.
883 * @ubi: UBI device description object
884 * @vid_hdr: the volume identifier header to check
885 *
886 * This function checks that data stored in the volume identifier header
887 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
888 */
889 static int validate_vid_hdr(const struct ubi_device *ubi,
890 const struct ubi_vid_hdr *vid_hdr)
891 {
892 int vol_type = vid_hdr->vol_type;
893 int copy_flag = vid_hdr->copy_flag;
894 int vol_id = be32_to_cpu(vid_hdr->vol_id);
895 int lnum = be32_to_cpu(vid_hdr->lnum);
896 int compat = vid_hdr->compat;
897 int data_size = be32_to_cpu(vid_hdr->data_size);
898 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
899 int data_pad = be32_to_cpu(vid_hdr->data_pad);
900 int data_crc = be32_to_cpu(vid_hdr->data_crc);
901 int usable_leb_size = ubi->leb_size - data_pad;
902
903 if (copy_flag != 0 && copy_flag != 1) {
904 ubi_err("bad copy_flag");
905 goto bad;
906 }
907
908 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
909 data_pad < 0) {
910 ubi_err("negative values");
911 goto bad;
912 }
913
914 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
915 ubi_err("bad vol_id");
916 goto bad;
917 }
918
919 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
920 ubi_err("bad compat");
921 goto bad;
922 }
923
924 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
925 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
926 compat != UBI_COMPAT_REJECT) {
927 #ifndef CONFIG_BLB
928 ubi_err("bad compat");
929 goto bad;
930 #else
931 if (vol_id != UBI_BACKUP_VOLUME_ID) {
932 ubi_err("bad compat");
933 goto bad;
934 }
935 #endif
936 }
937
938 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
939 ubi_err("bad vol_type");
940 goto bad;
941 }
942
943 if (data_pad >= ubi->leb_size / 2) {
944 ubi_err("bad data_pad");
945 goto bad;
946 }
947
948 if (vol_type == UBI_VID_STATIC) {
949 /*
950 * Although from high-level point of view static volumes may
951 * contain zero bytes of data, but no VID headers can contain
952 * zero at these fields, because they empty volumes do not have
953 * mapped logical eraseblocks.
954 */
955 if (used_ebs == 0) {
956 ubi_err("zero used_ebs");
957 goto bad;
958 }
959 if (data_size == 0) {
960 ubi_err("zero data_size");
961 goto bad;
962 }
963 if (lnum < used_ebs - 1) {
964 if (data_size != usable_leb_size) {
965 ubi_err("bad data_size");
966 goto bad;
967 }
968 } else if (lnum == used_ebs - 1) {
969 if (data_size == 0) {
970 ubi_err("bad data_size at last LEB");
971 goto bad;
972 }
973 } else {
974 ubi_err("too high lnum");
975 goto bad;
976 }
977 } else {
978 if (copy_flag == 0) {
979 if (data_crc != 0) {
980 ubi_err("non-zero data CRC");
981 goto bad;
982 }
983 if (data_size != 0) {
984 ubi_err("non-zero data_size");
985 goto bad;
986 }
987 } else {
988 if (data_size == 0) {
989 ubi_err("zero data_size of copy");
990 goto bad;
991 }
992 }
993 if (used_ebs != 0) {
994 ubi_err("bad used_ebs");
995 goto bad;
996 }
997 }
998
999 return 0;
1000
1001 bad:
1002 ubi_err("bad VID header");
1003 ubi_dump_vid_hdr(vid_hdr);
1004 dump_stack();
1005 return 1;
1006 }
1007
1008 /**
1009 * ubi_io_read_vid_hdr - read and check a volume identifier header.
1010 * @ubi: UBI device description object
1011 * @pnum: physical eraseblock number to read from
1012 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
1013 * identifier header
1014 * @verbose: be verbose if the header is corrupted or wasn't found
1015 *
1016 * This function reads the volume identifier header from physical eraseblock
1017 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
1018 * volume identifier header. The error codes are the same as in
1019 * 'ubi_io_read_ec_hdr()'.
1020 *
1021 * Note, the implementation of this function is also very similar to
1022 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1023 */
1024 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1025 struct ubi_vid_hdr *vid_hdr, int verbose)
1026 {
1027 int err, read_err;
1028 uint32_t crc, magic, hdr_crc;
1029 void *p;
1030
1031 dbg_io("read VID header from PEB %d", pnum);
1032 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1033
1034 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1035 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1036 ubi->vid_hdr_alsize);
1037 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1038 return read_err;
1039
1040 magic = be32_to_cpu(vid_hdr->magic);
1041 if (magic != UBI_VID_HDR_MAGIC) {
1042 if (mtd_is_eccerr(read_err))
1043 return UBI_IO_BAD_HDR_EBADMSG;
1044
1045 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1046 if (verbose)
1047 ubi_warn("no VID header found at PEB %d, only 0xFF bytes",
1048 pnum);
1049 dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1050 pnum);
1051 if (!read_err)
1052 return UBI_IO_FF;
1053 else
1054 return UBI_IO_FF_BITFLIPS;
1055 }
1056
1057 if (verbose) {
1058 ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
1059 pnum, magic, UBI_VID_HDR_MAGIC);
1060 ubi_dump_vid_hdr(vid_hdr);
1061 }
1062 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1063 pnum, magic, UBI_VID_HDR_MAGIC);
1064 return UBI_IO_BAD_HDR;
1065 }
1066
1067 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1068 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1069
1070 if (hdr_crc != crc) {
1071 if (verbose) {
1072 ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x",
1073 pnum, crc, hdr_crc);
1074 ubi_dump_vid_hdr(vid_hdr);
1075 }
1076 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1077 pnum, crc, hdr_crc);
1078 if (!read_err)
1079 return UBI_IO_BAD_HDR;
1080 else
1081 return UBI_IO_BAD_HDR_EBADMSG;
1082 }
1083
1084 err = validate_vid_hdr(ubi, vid_hdr);
1085 if (err) {
1086 ubi_err("validation failed for PEB %d", pnum);
1087 return -EINVAL;
1088 }
1089
1090 return read_err ? UBI_IO_BITFLIPS : 0;
1091 }
1092
1093 /**
1094 * ubi_io_write_vid_hdr - write a volume identifier header.
1095 * @ubi: UBI device description object
1096 * @pnum: the physical eraseblock number to write to
1097 * @vid_hdr: the volume identifier header to write
1098 *
1099 * This function writes the volume identifier header described by @vid_hdr to
1100 * physical eraseblock @pnum. This function automatically fills the
1101 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1102 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1103 *
1104 * This function returns zero in case of success and a negative error code in
1105 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1106 * bad.
1107 */
1108 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1109 struct ubi_vid_hdr *vid_hdr)
1110 {
1111 int err;
1112 uint32_t crc;
1113 void *p;
1114
1115 dbg_io("write VID header to PEB %d", pnum);
1116 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1117
1118 err = self_check_peb_ec_hdr(ubi, pnum);
1119 if (err)
1120 return err;
1121
1122 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1123 vid_hdr->version = UBI_VERSION;
1124 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1125 vid_hdr->hdr_crc = cpu_to_be32(crc);
1126
1127 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1128 if (err)
1129 return err;
1130
1131 #ifdef CONFIG_BLB
1132 {
1133 extern int blb_record_page1(struct ubi_device *ubi, int pnum,
1134 struct ubi_vid_hdr *vid_hdr, int);
1135 int vol_id = be32_to_cpu(vid_hdr->vol_id);
1136 if(vol_id < UBI_INTERNAL_VOL_START) {
1137 lockdep_off();
1138 blb_record_page1(ubi, pnum, vid_hdr, 0);
1139 lockdep_on();
1140 }
1141 }
1142 #endif
1143 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1144 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1145 ubi->vid_hdr_alsize);
1146 return err;
1147 }
1148
1149 #ifdef CONFIG_BLB
1150 int ubi_io_write_vid_hdr_blb(struct ubi_device *ubi, int pnum,
1151 struct ubi_vid_hdr *vid_hdr)
1152 {
1153 int err;
1154 uint32_t crc;
1155 void *p;
1156
1157 dbg_io("write VID header to PEB %d", pnum);
1158 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1159
1160 err = self_check_peb_ec_hdr(ubi, pnum);
1161 if (err)
1162 return err;
1163
1164 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1165 vid_hdr->version = UBI_VERSION;
1166 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1167 vid_hdr->hdr_crc = cpu_to_be32(crc);
1168
1169 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1170 if (err)
1171 return err;
1172
1173 {
1174 extern int blb_record_page1(struct ubi_device *ubi, int pnum,
1175 struct ubi_vid_hdr *vid_hdr, int);
1176 int vol_id = be32_to_cpu(vid_hdr->vol_id);
1177 if(vol_id < UBI_INTERNAL_VOL_START) {
1178 lockdep_off();
1179 err = blb_record_page1(ubi, pnum, vid_hdr, 1);
1180 lockdep_on();
1181 if(err) return err;
1182 }
1183 }
1184 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1185 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1186 ubi->vid_hdr_alsize);
1187 return err;
1188 }
1189 #endif
1190
1191 /**
1192 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1193 * @ubi: UBI device description object
1194 * @pnum: physical eraseblock number to check
1195 *
1196 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1197 * it is bad and a negative error code if an error occurred.
1198 */
1199 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1200 {
1201 int err;
1202
1203 if (!ubi_dbg_chk_io(ubi))
1204 return 0;
1205
1206 err = ubi_io_is_bad(ubi, pnum);
1207 if (!err)
1208 return err;
1209
1210 ubi_err("self-check failed for PEB %d", pnum);
1211 dump_stack();
1212 return err > 0 ? -EINVAL : err;
1213 }
1214
1215 /**
1216 * self_check_ec_hdr - check if an erase counter header is all right.
1217 * @ubi: UBI device description object
1218 * @pnum: physical eraseblock number the erase counter header belongs to
1219 * @ec_hdr: the erase counter header to check
1220 *
1221 * This function returns zero if the erase counter header contains valid
1222 * values, and %-EINVAL if not.
1223 */
1224 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1225 const struct ubi_ec_hdr *ec_hdr)
1226 {
1227 int err;
1228 uint32_t magic;
1229
1230 if (!ubi_dbg_chk_io(ubi))
1231 return 0;
1232
1233 magic = be32_to_cpu(ec_hdr->magic);
1234 if (magic != UBI_EC_HDR_MAGIC) {
1235 ubi_err("bad magic %#08x, must be %#08x",
1236 magic, UBI_EC_HDR_MAGIC);
1237 goto fail;
1238 }
1239
1240 err = validate_ec_hdr(ubi, ec_hdr);
1241 if (err) {
1242 ubi_err("self-check failed for PEB %d", pnum);
1243 goto fail;
1244 }
1245
1246 return 0;
1247
1248 fail:
1249 ubi_dump_ec_hdr(ec_hdr);
1250 dump_stack();
1251 return -EINVAL;
1252 }
1253
1254 /**
1255 * self_check_peb_ec_hdr - check erase counter header.
1256 * @ubi: UBI device description object
1257 * @pnum: the physical eraseblock number to check
1258 *
1259 * This function returns zero if the erase counter header is all right and and
1260 * a negative error code if not or if an error occurred.
1261 */
1262 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1263 {
1264 int err;
1265 uint32_t crc, hdr_crc;
1266 struct ubi_ec_hdr *ec_hdr;
1267
1268 if (!ubi_dbg_chk_io(ubi))
1269 return 0;
1270
1271 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1272 if (!ec_hdr)
1273 return -ENOMEM;
1274
1275 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1276 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1277 goto exit;
1278
1279 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1280 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1281 if (hdr_crc != crc) {
1282 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1283 ubi_err("self-check failed for PEB %d", pnum);
1284 ubi_dump_ec_hdr(ec_hdr);
1285 dump_stack();
1286 err = -EINVAL;
1287 goto exit;
1288 }
1289
1290 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1291
1292 exit:
1293 kfree(ec_hdr);
1294 return err;
1295 }
1296
1297 /**
1298 * self_check_vid_hdr - check that a volume identifier header is all right.
1299 * @ubi: UBI device description object
1300 * @pnum: physical eraseblock number the volume identifier header belongs to
1301 * @vid_hdr: the volume identifier header to check
1302 *
1303 * This function returns zero if the volume identifier header is all right, and
1304 * %-EINVAL if not.
1305 */
1306 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1307 const struct ubi_vid_hdr *vid_hdr)
1308 {
1309 int err;
1310 uint32_t magic;
1311
1312 if (!ubi_dbg_chk_io(ubi))
1313 return 0;
1314
1315 magic = be32_to_cpu(vid_hdr->magic);
1316 if (magic != UBI_VID_HDR_MAGIC) {
1317 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1318 magic, pnum, UBI_VID_HDR_MAGIC);
1319 goto fail;
1320 }
1321
1322 err = validate_vid_hdr(ubi, vid_hdr);
1323 if (err) {
1324 ubi_err("self-check failed for PEB %d", pnum);
1325 goto fail;
1326 }
1327
1328 return err;
1329
1330 fail:
1331 ubi_err("self-check failed for PEB %d", pnum);
1332 ubi_dump_vid_hdr(vid_hdr);
1333 dump_stack();
1334 return -EINVAL;
1335
1336 }
1337
1338 /**
1339 * self_check_peb_vid_hdr - check volume identifier header.
1340 * @ubi: UBI device description object
1341 * @pnum: the physical eraseblock number to check
1342 *
1343 * This function returns zero if the volume identifier header is all right,
1344 * and a negative error code if not or if an error occurred.
1345 */
1346 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1347 {
1348 int err;
1349 uint32_t crc, hdr_crc;
1350 struct ubi_vid_hdr *vid_hdr;
1351 void *p;
1352
1353 if (!ubi_dbg_chk_io(ubi))
1354 return 0;
1355
1356 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1357 if (!vid_hdr)
1358 return -ENOMEM;
1359
1360 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1361 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1362 ubi->vid_hdr_alsize);
1363 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1364 goto exit;
1365
1366 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1367 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1368 if (hdr_crc != crc) {
1369 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1370 pnum, crc, hdr_crc);
1371 ubi_err("self-check failed for PEB %d", pnum);
1372 ubi_dump_vid_hdr(vid_hdr);
1373 dump_stack();
1374 err = -EINVAL;
1375 goto exit;
1376 }
1377
1378 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1379
1380 exit:
1381 ubi_free_vid_hdr(ubi, vid_hdr);
1382 return err;
1383 }
1384
1385 /**
1386 * self_check_write - make sure write succeeded.
1387 * @ubi: UBI device description object
1388 * @buf: buffer with data which were written
1389 * @pnum: physical eraseblock number the data were written to
1390 * @offset: offset within the physical eraseblock the data were written to
1391 * @len: how many bytes were written
1392 *
1393 * This functions reads data which were recently written and compares it with
1394 * the original data buffer - the data have to match. Returns zero if the data
1395 * match and a negative error code if not or in case of failure.
1396 */
1397 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1398 int offset, int len)
1399 {
1400 int err, i;
1401 size_t read;
1402 void *buf1;
1403 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1404
1405 if (!ubi_dbg_chk_io(ubi))
1406 return 0;
1407
1408 buf1 = kmalloc(len, GFP_KERNEL);
1409 if (!buf1) {
1410 ubi_err("cannot allocate memory to check writes");
1411 return 0;
1412 }
1413
1414 err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1415 if (err && !mtd_is_bitflip(err))
1416 goto out_free;
1417
1418 for (i = 0; i < len; i++) {
1419 uint8_t c = ((uint8_t *)buf)[i];
1420 uint8_t c1 = ((uint8_t *)buf1)[i];
1421 int dump_len;
1422
1423 if (c == c1)
1424 continue;
1425
1426 ubi_err("self-check failed for PEB %d:%d, len %d",
1427 pnum, offset, len);
1428 ubi_msg("data differ at position %d", i);
1429 dump_len = max_t(int, 128, len - i);
1430 ubi_msg("hex dump of the original buffer from %d to %d",
1431 i, i + dump_len);
1432 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1433 buf + i, dump_len, 1);
1434 ubi_msg("hex dump of the read buffer from %d to %d",
1435 i, i + dump_len);
1436 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1437 buf1 + i, dump_len, 1);
1438 dump_stack();
1439 err = -EINVAL;
1440 goto out_free;
1441 }
1442
1443 kfree(buf1);
1444 return 0;
1445
1446 out_free:
1447 kfree(buf1);
1448 return err;
1449 }
1450
1451 /**
1452 * ubi_self_check_all_ff - check that a region of flash is empty.
1453 * @ubi: UBI device description object
1454 * @pnum: the physical eraseblock number to check
1455 * @offset: the starting offset within the physical eraseblock to check
1456 * @len: the length of the region to check
1457 *
1458 * This function returns zero if only 0xFF bytes are present at offset
1459 * @offset of the physical eraseblock @pnum, and a negative error code if not
1460 * or if an error occurred.
1461 */
1462 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1463 {
1464 size_t read;
1465 int err;
1466 void *buf;
1467 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1468
1469 if (!ubi_dbg_chk_io(ubi))
1470 return 0;
1471
1472 buf = kmalloc(len, GFP_KERNEL);
1473 if (!buf) {
1474 ubi_err("cannot allocate memory to check for 0xFFs");
1475 return 0;
1476 }
1477
1478 err = mtd_read(ubi->mtd, addr, len, &read, buf);
1479 if (err && !mtd_is_bitflip(err)) {
1480 ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1481 err, len, pnum, offset, read);
1482 goto error;
1483 }
1484
1485 err = ubi_check_pattern(buf, 0xFF, len);
1486 if (err == 0) {
1487 ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1488 pnum, offset, len);
1489 goto fail;
1490 }
1491
1492 kfree(buf);
1493 return 0;
1494
1495 fail:
1496 ubi_err("self-check failed for PEB %d", pnum);
1497 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1498 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1499 err = -EINVAL;
1500 error:
1501 dump_stack();
1502 vfree(buf);
1503 return err;
1504 }
1505
1506 #ifdef CONFIG_BLB
1507 /* Read one page with oob one time */
1508 int ubi_io_read_oob(const struct ubi_device *ubi, void *databuf, void *oobbuf,
1509 int pnum, int offset)
1510 {
1511 int err;
1512 loff_t addr;
1513 struct mtd_oob_ops ops;
1514
1515 dbg_io("read from PEB %d:%d", pnum, offset);
1516
1517 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1518 ubi_assert(offset >= 0 && offset + ubi->mtd->writesize <= ubi->peb_size);
1519
1520 addr = (loff_t)pnum * ubi->peb_size + offset;
1521
1522 ops.mode = MTD_OPS_AUTO_OOB;
1523 ops.ooblen = ubi->mtd->oobavail;
1524 ops.oobbuf = oobbuf;
1525 ops.ooboffs = 0;
1526 ops.len = ubi->mtd->writesize;
1527 ops.datbuf = databuf;
1528 ops.retlen = ops.oobretlen = 0;
1529
1530 err = mtd_read_oob(ubi->mtd, addr, &ops);
1531 if (err) {
1532 if (err == -EUCLEAN) {
1533 /*
1534 * -EUCLEAN is reported if there was a bit-flip which
1535 * was corrected, so this is harmless.
1536 *
1537 * We do not report about it here unless debugging is
1538 * enabled. A corresponding message will be printed
1539 * later, when it is has been scrubbed.
1540 */
1541 ubi_msg("fixable bit-flip detected at addr %lld", addr);
1542 if(oobbuf)
1543 ubi_assert(ops.oobretlen == ops.ooblen);
1544 return UBI_IO_BITFLIPS;
1545 }
1546 if (ops.retlen != ops.len && err == -EBADMSG) {
1547 ubi_err("err(%d), retlen(%d), len(%d)", err, ops.retlen, ops.len);
1548 dump_stack();
1549 err = -EIO;
1550 }
1551 ubi_msg("mtd_read_oob err %d\n", err);
1552 }
1553
1554 return err;
1555 }
1556
1557 /* Write one page with oob one time */
1558 int ubi_io_write_oob(const struct ubi_device *ubi, void *databuf, void *oobbuf,
1559 int pnum, int offset)
1560 {
1561 int err;
1562 loff_t addr;
1563 struct mtd_oob_ops ops;
1564
1565 dbg_io("read from PEB %d:%d", pnum, offset);
1566
1567 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1568 ubi_assert(offset >= 0 && offset + ubi->mtd->writesize <= ubi->peb_size);
1569
1570 addr = (loff_t)pnum * ubi->peb_size + offset;
1571
1572 ops.mode = MTD_OPS_AUTO_OOB;
1573 ops.ooblen = ubi->mtd->oobavail;
1574 ops.oobbuf = oobbuf;
1575 ops.ooboffs = 0;
1576 ops.len = ubi->mtd->writesize;
1577 ops.datbuf = databuf;
1578 ops.retlen = ops.oobretlen = 0;
1579
1580 err = mtd_write_oob(ubi->mtd, addr, &ops);
1581 if (err) {
1582 ubi_err("error %d while writing to addr %lld peb%d:0x%x, written ",
1583 err, addr, pnum, offset);
1584 dump_stack();
1585 } else
1586 ubi_assert(ops.retlen == ops.len);
1587
1588 return err;
1589 }
1590 #endif